May 5, 2025

PM15625-LET.01-Rev.02

1818 Farm & Cidery 1811 Richardson Side Road Ottawa (Carp), Ontario K0A 1L0

Attention: Ken Hoppner

Subject: Hydrogeological Assessment and Terrain Analysis

Zoning Bylaw Amendment and Site Plan Control

Application

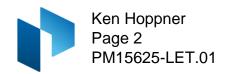
1811 Richardson Side Road Ottawa (Carp), Ontario

Consulting Engineers

9 Auriga Drive Ottawa, Ontario K2E 7T9 Tel: (613) 226-7381

Geotechnical Engineering
Environmental Engineering
Hydrogeology
Materials Testing
Building Science
Rural Development Design
Retaining Wall Design
Noise and Vibration Studies

patersongroup.ca


INTRODUCTION

Further to your request, Paterson has conducted a Hydrogeological Assessment and Terrain Analysis in support of a Re-Zoning Application and Site Plan Control Application for the proposed alteration to allow for a place of assembly as part of an on-farm diversified use (OFDU) and/or restaurant to be located at 1811 Richardson Side Road in Ottawa (Carp), Ontario.

The purpose of this work has been to determine the suitability of the water supply aquifer underlying the site as well as determine the capacity of the site to attenuate the sewage system impacts to support the Re-Zoning Application and Site Plan Control Application.

The Subject Site consists of a 11.68 ha lot and is currently occupied by a residential dwelling, located centrally near Bradley Side Road, a centrally located commercial building (Cidery), a commercial building to the south, and an agricultural area located on the northeastern portion of the property with an associated temporary tent-based greenhouse. The south-western portion of the site generally consists of treed areas. The ground surface generally slopes towards the east. There is a sharp slope from the central property to the northeastern agricultural area. The general direction of water flow is towards the Ottawa River to the north.

The Subject Site is bordered on all sides by agricultural lands, with a church and dwelling located to the south of the site. The site has frontage onto Bradley Side Road to the northwest, Huntmar Drive to the northeast and Richardson Side Road to the southeast.

The subject site itself and the surrounding commercial areas are zoned AG3 for Agricultural General Subzone 3 (GeoOttawa).

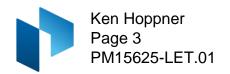
Hydrogeological Pre-consultation

A Hydrogeological pre-consultation was completed with a City of Ottawa Hydrogeologist on June 23, 2024. The City Hydrogeologist noted that water quantity and quality may be an issue. Evidence was provided from the water well hydrofracking process to increase the quantity and was to be confirmed with the pumping test. An 8-hour pumping test with the standard Subdivision Package suite of parameters, trace metals and Volatile Organic Compounds (VOC's) required by the City of Ottawa Hydrogeological and Terrain Analysis Guidelines (HTAG) was determined to be acceptable.

Description of Subject Site

The subject site is an approximately 11.68 ha lot and is currently occupied by a two-storey residential dwelling, a commercial building to the south with associated parking and storage, a commercial building (Cidery), and agricultural lands to the east, with an associated temporary tent-based greenhouse. The Re-zoning Application is for a zoning by-law amendment to increase the number of guests allowed at the OFDU and/or restaurant. Please refer to Figure-1 Key Plan, attached, for the proposed site location.

The residential dwelling is currently serviced by an onsite sewage system and an existing private drilled well. A newly drilled well was installed in 2022 to service the Cidery and a new sewage system will be required to service the proposed change of use. At this time no site plan has been completed.


The newly drilled well, hereafter referred to as Test Well 1 (TW1), is the well which is currently servicing the Cidery and will continue to service the building following the completion of construction. The property owner will need to ensure that protective measures are taken to protect the wellhead, such as the use of a barrier, during construction.

The suitability of the aquifer to supply the subject site was assessed using the methodology provided in City of Ottawa Hydrogeological and Terrain Analysis Guidelines (HTAG).

Based on available Ontario Geological Survey (OGS) mapping (GRS005), the subject site is not within an area of potential karst.

MISSISSIPPI-RIDEAU SOURCE PROTECTION PLAN

The Mississippi-Rideau Source Protection Plan (MRSPP) provides guidance as to which policies apply to a given property, municipality or specific activity and if there are specific designations that apply to the area. The subject site and surrounding areas have not been

designated as a Significant Groundwater Recharge Area (SGRA), Highly Vulnerable Aquifer (HVA), or Intake Protection Zones (IPZ) Zone within the MRSPP.

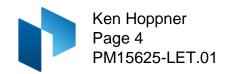
There are no related requirements for this site relative to the MRSPP.

Karst Mapping

As discussed in the City pre-consultation meeting, karst was not considered a concern at the site. Available Karst mapping (OGS GRS005) was reviewed as part of this assessment. The available mapping does not indicate the presence of any inferred or potential karstic features. Furthermore, no indication of karstic features was observed during the site visits completed by Paterson personnel.

FIELDWORK PROGRAM

Well Inspection


A visual inspection of TW1 was performed by Paterson personnel which confirmed that the well casing and cap are in good condition. The final grading around the well will be sufficiently graded to direct surface water away from the wellhead (as required by O.Reg 903) at the time of the new sewage system installation. The stick-up was measured to be 0.49 m above ground surface. Based on a visual inspection by Paterson personnel, the well was deemed to be in good condition.

Well Testing

As a means to demonstrate the adequacy of the aquifer underlying the subject lands, with respect to water quality and quantity, TW1 was tested. TW1 has a Water Well Record (WWR) Well ID of A342224 with a 152.4 mm diameter steel casing that extends to 20.1 m below ground surface (bgs) and a 0.49 m stick-up. The well itself extends to a depth of 121.9 m bgs. Based on available geological mapping, the drift thickness at TW1 varies from 15 to 25 m.

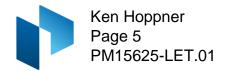
As a means to evaluate the water supply aquifer intercepted by the well, the well was subjected to an 8-hour constant rate pumping test. The pumping test was conducted on June 25, 2024 under the full-time supervision of Paterson personnel. Prior to the pumping test the well was disinfected as per the MECP Disinfection Instruction Sheet, and a datalogger was installed to monitor the background groundwater levels.

The existing submersible pump was used for the 8-hour pumping test. A licensed water well technician (Air Rock) completed the necessary plumbing related activities. The discharge line was placed at a sufficient distance to ensure that the discharge water was being directed away from the well as well as any septic systems in the area. Upon completion of the test, the system was returned to its normal configuration.

The pumping test was carried out at a pumping rate of 30 L/min for a duration of 8 hours. During the pumping test, the pumping rate was periodically measured using the timed volume correlation method. The pumping rate was maintained within 5% of the selected pumping rate. The static water level was recorded manually and an electric datalogger (VanEssen TD-Diver) was installed in the test well prior to the start of the pumping test.

The selected rate of 30 L/min provides approximately 1.4 times (14,400 L) the maximum total daily design sanitary sewage flow (TDDSSF) of 10,000 L/day for the subject site during the 8-hour pumping test in support of the Re-zoning Application. The TDDSSF for the proposed development is 7,125 L/day (design by others) under the Site Plan Application. This provides greater than 2 times the TDDSSF proposed for the Site Plan Application. The total daily design sanitary sewage flows (TDDSSF) are proposed to remain below the limit of 10,000 L/day as set out by the Ontario Building Code (OBC) and does not require a large-scale subsurface sewage system.

The data logger recorded water levels at 30 second intervals. In addition, manual water level readings were taken at periodic intervals during the test.


Recovery data was collected from the well following the completion of the pumping. The well was noted to have achieved 95% recovery approximately 13 hours after the completion of pumping.

Groundwater samples were collected at 4 hours and 8 hours after the start of pumping. Prior to collection of the groundwater samples, the free chlorine residual was verified as non-detectable. The water samples were submitted for comprehensive testing of bacteriological, chemical, and physical water quality parameters consistent with the standard "Subdivision Supply" suite of parameters plus trace metals. VOCs were sampled 4 hours and 8 hours after the start of pumping.

All samples were collected unfiltered and unchlorinated and were placed directly into clean bottles supplied by the analytical laboratory. Samples were placed immediately into a cooler with ice and were transported directly to Environmental Testing Canada Inc.(Eurofins) laboratory in Ottawa. All samples were received by the laboratory within 24 hours of collection.

A series of field tests of the pumped water were carried out at the well head during the 8-hour pumping test. The parameters tested at the well head included: pH, total dissolved solids, conductivity, turbidity, apparent colour, hydrogen sulfide (olfactory only), and temperature. Calibration / confirmation of calibration of all field-testing equipment was performed in Paterson's laboratory the day prior to the pumping test. Values are then confirmed again onsite prior to the start of the pumping test.

Due to elevated measurements for turbidity, colour, and aluminum levels encountered during the pumping test, Paterson personnel returned to the site on July 19, 2024 to collect an additional untreated sample under normal operating conditions of TW1.

Aquifer Analysis

Water Quantity

Pumping test data was analyzed using AQTESOLV Pro Version 4 aquifer analysis software package by HydroSOLVE Inc. Drawdown data was measured using an electronic water level tape and an electronic datalogger unit.

Table 1: SUMMARY OF WATER SUPPLY AQUIFER CHARACTERISTICS OF TW1						
AQUIFER PARAMETER	RESULT OF ANALYSIS					
Transmissivity (m²/day)	1.68					
Pumping Rate (L/min)	30					
Pre-test Static Water Level (m)	4.25					
Post-test Static Water Level (m)	19.47					
Available Drawdown (m)	118.16					
% Drawdown During Pumping Test (%)	13					
Specific Capacity (L/min/m drawdown)	1.97					

The drawdown data was analyzed using the Theis and Cooper Jacob methods of analysis. Aquifer transmissivity is estimated to be 1.68 m²/day. Refer to the Theis and Cooper Jacob methods of analysis data sheets attached to this report.

The pumping test results show that TW1 has a high yield to support the water demands that may be required. Overall maximum drawdown at a constant pumping rate for a period of 8 hours was approximately 15.22 m at approximately 8 hours into the pumping test (13% of the available drawdown). 95% recovery was achieved approximately 13 hours after the end of pumping.

The total volume of water pumped during the 8-hour pumping event was approximately 14,400 L. This is approximately 1.4 times the maximum total daily design volume of water (10,000 L/d) required to support the Re-Zoning Application for all uses on the property. This volume is more than twice the TDDSSF of 7,125 L/day for the Site Plan.

The suitability of the aquifer to support the proposed Re-Zoning Application and Site Plan Control Application for the proposed development was assessed using the methodology provided in the City of Ottawa HTAG. Based on the information summarized in Table 1, it is readily apparent that the water supply well has intercepted an adequately strong water supply aquifer which has sufficient quantity to service the maximum site requirements under OBC.

Given the analyses presented and summarized above, it is our opinion that there is an adequate supply of water to support the proposed Re-Zoning Application and Site Plan Control Application. Available water well records (WWR) of the neighboring properties on

the MECP Well Record mapping website indicated that the wells were screened in limestone. Surrounding WWR's are attached to this report.

Water Quality

Field Data

Turbidity, electrical conductivity, total dissolved solids (TDS), pH, true color and temperature were measured at the wellhead during the pumping test. The measurements and time intervals for each of these parameters are summarized in the graphical representation below. In addition, a HACH Pocket Colorimeter II chlorine reader was used to measure the free chlorine residual level. No chlorine residual was detected in the discharge water prior to the collection of the water samples.

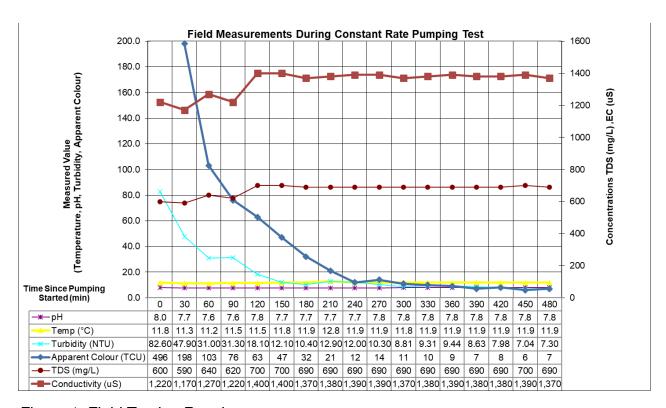
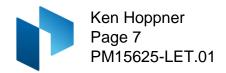
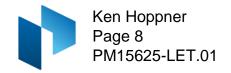



Figure 1: Field Testing Results

Laboratory Data

The Subdivision Package suite of parameters and trace metals laboratory water quality obtained from the pumping test of TW1 is provided in Table 2a and 2b below and the laboratory analyses reports can be found attached. VOC laboratory analytical testing was completed and measured to be non-detect in the sample results and is provided in Table 2c. All laboratory test results can be found attached to this report.

TABLE 2a: GROUNDWATER MICROBIOLOGY & GENERAL GEOCHEMISTRY								
		OD	ws	TW1				
PARAMETER	UNITS	LIMIT TYPE		TW1 GW1 (4 hr) 6/25/2024	TW1 GW2 (8 hr) 6/25/2024	TW1 GW-3 7/19/2024		
MICROBIOLOGICAL			•		-			
Escherichia Coli (E.Coli)	ct/100mL	0	MAC	0	0	-		
Total Coliforms	ct/100mL	0	MAC	0	0	-		
GENERAL CHEMICAL - HE	ALTH RELA	TED	•					
Fluoride (F)	mg/L	1.5	MAC	1.32	1.34	-		
Ammonia (N-NH ₃)	mg/L	-	-	0.259	0.263	-		
Nitrite (N-NO ₂)	mg/L	1	MAC	<0.5	<0.5	-		
Nitrate (N-NO ₃)	mg/L	10	MAC	<0.5	<0.5	-		
Total Kjeldahl Nitrogen	mg/L	-	-	1.460	0.483	-		
Turbidity (Field)	NTU	1.0 (5.0)	MAC/AO	12.00	7.30	0.56		
Turbidity (Laboratory)	NTU	1.0 (5.0)	MAC/AO	11.5	7.1	3.3		
GENERAL CHEMICAL - AE	STHETIC RE	LATED	•					
Alkalinity (as CaCO3)	mg/L	30-500	OG	225	225	-		
Chloride (CI)	mg/L	250	AO	85	86	-		
Colour (Apparent-Lab)	TCU	5	AO	10	10	12		
Colour (Apparent-Field)	TCU	5	AO	12	7	0		
Conductivity	uS/cm	-	-	1,350	1,370	-		
Dissolved Organic Carbon	mg/L	5	AO	1.3	1.0	-		
Hardness (as CaCO3)	mg/L	100	OG	356	360	-		
Ion Balance	unitless	-	-	1.01	1.02	-		
рН	unitless	6.5-8.5	AO	7.97	8.04	-		
Phenols	mg/L	-	-	<0.001	<0.001	-		
Sulphate (SO ₄)	mg/L	500	AO	388	394	-		
Sulphide (S ₂)	mg/L	0.05	AO	0.95	1.16	-		
Tannin & Lignin	mg/L	-	-	0.20	0.30	-		
Total Dissolved Solids	mg/L	500	AO	944	959	-		


1. ODWS identifies the following types of parameters:

MAC = Maximum Allowable Concentration

AO = Aesthetic Objective

OG = Operational Guideline

2. Shaded Concentration Indicates an Exceedance of the ODWS Objective

TABLE 2b: GROUNDWA	TER GEOCHE	MISTRY - ME	TALS				
		OD	ws		TW1		
PARAMETER	UNITS	LIMIT	TYPE	TW1 GW1 (4 hr) 6/25/2024	TW1 GW2 (8 hr) 6/25/2024	TW1 GW-3 7/19/2024	
METALS	•			•			
Aluminum (Al)	mg/L	0.1	OG	0.43	0.34	0.02	
Antimony (Sb)	mg/L	0.006	IMAC	< 0.0005	<0.0005	-	
Arsenic (As)	mg/L	0.01	IMAC	<0.001	<0.001	-	
Barium (Ba)	mg/L	1.0	MAC	0.19	0.19	-	
Beryllium (Be)	mg/L	-	-	<0.0005	<0.0005	-	
Boron (B)	mg/L	5.0	IMAC	0.43	0.44	-	
Cadmium (Cd)	mg/L	0.005	MAC	<0.0001	<0.0001	-	
Calcium (Ca)	mg/L	-	-	74	75	-	
Chromium (Cr)	mg/L	0.05	MAC	0.001	<0.001	-	
Cobalt (Co)	mg/L	-	-	0.0002	<0.0002	-	
Copper (Cu)	mg/L	1.0	AO	<0.001	<0.001	-	
Iron (Fe)	mg/L	0.3	AO	0.68	0.44	-	
Lead (Pb)	mg/L	0.01	MAC	<0.001	<0.001	-	
Magnesium (Mg)	mg/L	-	-	42	42	-	
Manganese (Mn)	mg/L	0.05	AO	0.02	0.02	-	
Mercury (Hg)	mg/L	0.001	MAC	<0.0001	<0.0001	-	
Molybdenum (Mo)	mg/L	-	-	<0.005	<0.005	-	
Nickel (Ni)	mg/L	-	-	<0.005	<0.005	-	
Potassium (K)	mg/L	-	-	6	6	-	
Selenium (Se)	mg/L	0.05	MAC	<0.001	<0.001	-	
Silver (Ag)	mg/L	-	-	<0.0001	<0.0001	-	
Sodium (Na)	mg/L	200	AO	181	186	-	
Strontium (Sr)	mg/L	-	-	2.64	2.72	-	
Thallium (TI)	mg/L	-	-	< 0.0001	<0.0001	-	
Uranium (U)	mg/L	0.02	MAC	<0.001	<0.001	-	
Vanadium (V)	mg/L	-	-	0.001	<0.001	-	
Zinc (Zn)	mg/L	5.0	AO	<0.01	<0.01	-	

1. ODWS identifies the following types of parameters:

MAC = Maximum Acceptable Concentration

IMAC = Interim Maximum Acceptable Concentration

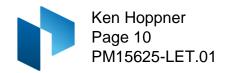
AO = Aesthetic Objective

OG = Operational Guideline

2. Shaded Concentration Indicates an Exceedance of the ODWS Objective

TABLE 2c: GROUNDWATER GEO	CHEMISTRY			T		
		OD	WS	TW1		
PARAMETER	UNITS	LIMIT	TYPE	TW1 GW1 (4 hr)	TW1 GW2 (8 hr)	
				6/25/2024	6/25/2024	
VOCs Surrogates				•		
1,2-dichloroethane-d4	%	-	-	122	109	
4-bromofluorobenzene	%	-	-	71	72	
Toluene-d8	%	_	-	110	113	
Volatiles	,,,				1.10	
1,1,1,2-tetrachloroethane	μg/L	_	_	<0.5	<0.5	
1,1,1-trichloroethane	μg/L	_	_	<0.4	<0.4	
1,1,2,2-tetrachloroethane	μg/L	_	_	<0.5	<0.5	
1,1,2-trichloroethane	μg/L	_	_	<0.4	<0.4	
1,1-dichloroethane	μg/L	-	-	<0.4	<0.4	
1,1-dichloroethylene	μg/L	14.0	MAC	<0.5	<0.5	
1.2-dichlorobenzene	μg/L	200.0	MAC	<0.4	<0.4	
1,2-dichloroethane	μg/L	5.0	IMAC	<0.2	<0.2	
1,2-dichloropropane	μg/L μg/L	-	- 114140	<0.5	<0.5	
1,3,5-trimethylbenzene	μg/L μg/L	_	-	<0.3	<0.3	
1,3-dichlorobenzene	μg/L	_	-	<0.4	<0.4	
1,3-Dichloropropylene (cis+trans)	μg/L μg/L	_	_	<0.3	<0.4	
1,4-dichlorobenzene		5.0	MAC	<0.4	<0.4	
Acetone	μg/L	-	IVAC	<30	<30	
Benzene	μg/L	1.0	MAC	<0.5	<0.5	
Bromodichloromethane	μg/L			<0.3	<0.3	
	μg/L	-	-		<0.3	
Bromoform	μg/L	-	-	<0.4		
Bromomethane	μg/L	-	-	<0.5	<0.5	
c-1,2-Dichloroethylene	μg/L	-	-	<0.4	<0.4	
c-1,3-Dichloropropylene	μg/L	-	-	<0.2	<0.2	
Carbon Tetrachloride	μg/L	2.0	MAC	<0.2	<0.2	
Chloroethane	μg/L	-	-	<0.2	<0.2	
Chloroform	μg/L	-	-	<0.5	<0.5	
Dibromochloromethane	μg/L	-	-	<0.3	<0.3	
Dichlorodifluoromethane	μg/L	-	-	<0.5	<0.5	
Dichloromethane	μg/L	50	MAC	<4.0	<4.0	
Ethylbenzene	μg/L	140	MAC	<0.5	<0.5	
Ethylene Dibromide	μg/L	-	-	<0.2	<0.2	
Hexane	μg/L	-	-	<5	<5	
m/p-xylene	μg/L	-	-	<0.4	<0.4	
Methyl Ethyl Ketone (MEK)	μg/L	-	-	<2	<2	
Methyl Isobutyl Ketone (MIBK)	μg/L	-	-	<5	<5	
Methyl Tert Butyl Ether (MTBE)	μg/L	15	AO	<2	<2	
Monochlorobenzene	μg/L	80	MAC	<0.5	<0.5	
o-xylene	μg/L	-	-	<0.4	<0.4	
Styrene	μg/L	-	-	<0.5	<0.5	
t-1,2-Dichloroethylene	μg/L	-	-	<0.4	<0.4	
t-1,3-Dichloropropylene	μg/L	-	-	<0.2	<0.2	
Tetrachloroethylene	μg/L	10	MAC	<0.3	<0.3	
Toluene	μg/L	60	MAC	<0.4	<0.4	
Trichloroethylene	μg/L	5	MAC	<0.3	<0.3	
Trichlorofluoromethane	μg/L	-	-	<0.5	<0.5	
Vinyl Chloride	μg/L	1	MAC	<0.2	<0.2	
Xylene; total	μg/L	90	MAC	<0.5	<0.5	

1. ODWS identifies the following types of parameters:


MAC = Maximum Acceptable Concentration

IMAC = Interim Maximum Acceptable Concentration

AO = Aesthetic Objective

OG = Operational Guideline

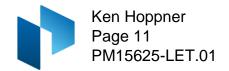
2. Shaded Concentration Indicates an Exceedance of the ODWS Objective

The bacteriological test results (Certificate of Analysis – Report No. 3966666) indicated that the test samples at the 4 and 8 hour interval were non-detect (0 ct/100 mL) for E.Coli and Total Coliforms.

The water quality of the subject water supply well meets all the Ontario Drinking Water Standards maximum acceptable concentrations (MAC). Furthermore, the water meets all of the Aesthetic Objectives (AO) and Operational Guidelines (OG) with the exception of the following.

Hardness (as CaCO ₃)
Total Dissolved Solids (TDS)
Iron (Fe)
Total Sulphides
Aluminum (Al)
Colour
Turbidity

Exceedances of the above parameters are not uncommon of the water supply in the subject aquifer. Each of these groundwater parameters are discussed in detail below.


Should any water treatment be desired by the owner, it is recommended that a water treatment specialist be retained to ensure that water treatment occurs in a safe manner.

Hardness as CaCO₃

Hardness, expressed as calcium carbonate, is an operation guideline and does not appear in the ODWS. Rather, it appears in the Technical Support Documents for Ontario Drinking Water Standards, Objectives and Guidelines as a parameter with an operational guideline at 100 mg/L. At the measured concentrations of 356 and 360 mg/L, the water is considered to be very hard, however, it is below the reasonable treatable limit of 500 mg/L specified in Table 3 of the MOECC guidance document Procedure D-5-5 (1996).

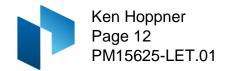
The Langelier calculation provided an LSI of 0.0. Based on the evaluation of the result, the water is saturated and tends to precipitate a scale layer of calcium carbonate (scale forming and mildly corrosive). Based on the range of stability, there are no mitigative measures needed. See Langelier Saturation Index Calculation attached for calculation details.

It is recommended that water hardness be treated using conventional technologies such as water softening or reverse osmosis, if desired by the owner. Without treating hardness, scaling can occur which can result in discolouration and residue build-up on water fixtures, or reduction in boiler efficiency due to scale build-up. According to Health Canada's *Guidelines for Canadian Drinking Water Quality - Summary Tables* "Although hardness may have significant aesthetic effects, a guideline has not been established because public acceptance of hardness may vary considerably according to the local conditions; major contributors to hardness (calcium and magnesium) are not of direct public health concern".

Total Dissolved Solids (TDS)

TDS refers to the concentration of inorganic substances dissolved in water. The main constituents are typically chloride, sulphates, calcium, magnesium, and bicarbonates. The TDS concentration of 944 and 959 mg/L, at the 4- and 8-hour points, respectively, exceeds the Aesthetic Objective of 500 mg/L. At concentrations above 500 mg/L, some consumers may find the taste objectionable, however, as the objective is an aesthetic objective, no treatment is required. It is recommended that a point of use reverse osmosis unit be installed to remove taste issues, if the owner desires, for drinking purposes. As such, no taste problems will occur when the recommended treatment technology, or equivalent, is used.

The Langelier calculation provided an LSI of 0.0. Based on the evaluation of the result, the water is saturated and does not tend to precipitate a scale layer of calcium carbonate (non-scale forming and non-corrosive). Based on the range of stability in the positive direction, there are no mitigative measures needed. See Langelier Saturation Index Calculation attached for calculation details.


Iron

Concentrations of iron above 0.3 mg/L can contribute to staining of fixtures and a metallic taste at higher concentrations. Precipitation of iron can promote the growth of iron bacteria in pipes. The concentration of iron in the groundwater in TW1 was measured to be 0.68 and 0.44 mg/L. The concentration of iron in the groundwater in the test well is considered to be reasonably treatable in accordance with Procedure D-5-5. It is recommended that a water softener or manganese greensand filter be used to reduce the levels of iron and reduce the potential for excessive precipitate occurring in the water supply system, if desired by the property owner. If treatment is not used, negative impacts such as discolouration of water fixtures, precipitation of iron and staining may occur.

Total Sulphides

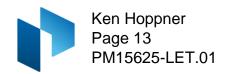
Total sulphides were reported to be present within the water supply aquifer at concentrations of 0.95 and 1.16 mg/L. These can present as compounds such as iron sulphide or hydrogen sulphide, but are not limited to these forms. The value noted is for the **total sulphides** within the sample as there is no laboratory test for only hydrogen sulphide. Total sulphides should **not** be equated to a result for hydrogen sulphide.

Hydrogen sulphide is a gas that is heavier than air and has a very distinct "rotten egg" odour. Through the latter portion of the test, a faint odour was detected periodically. The aesthetic objective for hydrogen sulphide, which is incidentally also the threshold of the average human olfactory detection, is 0.05 mg/L. Field testing (olfactory only) estimated values in the range of 0 to 0.1 mg/L, which is in line with the intermittent olfactory observation. MECP Procedure D-5-5 does not indicate a maximum treatable limit for sulphide. One method to remove hydrogen sulphide, if desired, is a chlorine feeder and filter through oxidation or equivalent method recommended by a water treatment professional.

Aluminum

Aluminum was reported to be present within the water supply aquifer at concentrations of 0.43 and 0.32 mg/L at the 4- and 8-hour marks, respectively. Aluminum has an OG of 0.1 mg/L where an exceedance may cause coating of pipes in the distribution system and flocculation in the distribution system. Aluminum has a federal health related guideline MAC of 2.9 mg/L, which was not exceeded. During a revisit to the subject site and resample, the aluminum concentration was 0.02 mg/L, indicating that TW1 operating under normal usage meets the required guidelines.

Colour

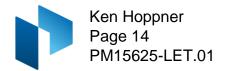

Colour may occur in drinking water for several reasons. It may be due to organic substances from the decay of vegetation, or the presence of metals such as iron, manganese, and copper, which are abundant in nature. The provincial aesthetic objective for colour in drinking water is 5 True Colour Units (TCU). The federal (Health Canada) guideline aesthetic objective limit for colour is 15 TCU (Guidelines for Canadian Drinking Water Quality, Health Canada June 2019). Procedure D-5-5 gives a maximum concentration considered reasonably treatable for colour as 7 TCU. As colour is a strictly aesthetic parameter, a manganese greensand filter or a carbon filter can be used to reduced manganese from the water supply, if desired by the owner.

During the field pumping test, a DR900 colorimeter was used to measure apparent colour in the groundwater at regular intervals. Field testing for colour had values of 12 and 7 TCU. Laboratory testing showed colour values of 10 TCU during the field test and 12 TCU from the revisit. Apparent colour in the groundwater was measured as 0 TCU during regular usage which is below the aesthetic objective of 5 TCU. The elevated apparent colour levels detected in the lab samples is attributed to the precipitation of iron and manganese out of the groundwater.

Turbidity

Turbidity, which is generally an aesthetic parameter, was detected in the laboratory test samples at values of 11.5 and 7.1 NTU at the 4 hour and 8 h mark of the pumping test, and at 3.3 NTU during regular usage. Field testing of turbidity showed values of 12, and 7.3 NTU at the 4- and 8-hour mark of the pumping test and 0.56 NTU during regular usage. The test during regular usage was completed during the resample visit. Continued pumping showed a gradual decrease towards the end of the pumping test. The rented pump would have disturbed any precipitate in the water column during its installation and removal of the existing pump. This is demonstrated by the reduction in turbidity and iron during the pumping test, further corroborated by the reduction in turbidity under normal usage.

The ODWS maximum acceptable concentration for turbidity in drinking water entering the distribution system is 1 NTU. In accordance with Procedure D-5-5, Table 2 does not reflect a maximum concentration considered reasonably treatable for Turbidity. The Aesthetic Objective and Maximum Concentration Considered Reasonably Treatable


(MCCRT) for turbidity in drinking water reaching the consumer is 5 NTU (Procedure D-5-5, Table 3). Rather, Procedure D-5-5 indicated that "particular care must be taken during testing to ensure that the bacteria requirements of Table 1 are met." Based on the test results, the bacteria requirements of Table 1 of D-5-5 have been met (E.Coli = 0 and Total Coliforms = 0).

Sodium

Sodium (Na), an aesthetic parameter, was detected in the laboratory test sample at concentrations of 181 and 186 mg/L, which does not exceed the ODWS aesthetic objective of 200 mg/L. Although sodium is not toxic and no maximum acceptable concentration has been set, concentrations above 20 mg/L require that the Medical Officer of Health be notified of the water quality results, so that this information may be passed on to local physicians for use in treatment of those requiring a sodium-restricted diet. It should be noted that some water treatment technologies, such as water softeners, can increase the sodium concentration so care should be given if such treatment technologies are used.

Water Treatment

A water treatment specialist, PV Plumbing & Water Inc., was retained by the owner to provide a treatment train for the water supply. A quote outlining the treatment system has been attached. Based on the water treatment system, the aforementioned aesthetic objectives will be met. Although a specific water treatment system has been proposed, general water treatment recommendations for the aforementioned parameters are still provided.

Terrain Analysis

Surficial Geology

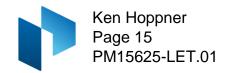
The subsurface conditions are mapped to be fine-textured glaciomarine deposits, mainly consisting of silt and clay, underlying the eastern side of the property; while the western side of the property is mapped to be underlain by stone-poor sandy-silt to silty-sand textured till (OGS MRD218, 2022). The bedrock geology is mapped to be limestone and shale of the Verulam formation of the Simcoe Group (OGS MRD219).

Drift thickness is mapped to be 15 to 25 m bgs, which coincides with neighbouring water well records. The WWR for TW1 showed an overburden thickness of 18m.

Hydrogeological Sensitivity of the Site

The subject site currently contains a two-storey residential dwelling, a commercial building to the south with associated parking and storage, a commercial building (Cidery), and agricultural lands to the east. The subject site is bordered on all sides by agricultural lands, with a church and dwelling located to the south of the site. The site fronts onto Bradley Side Road to the north-west, Huntmar Drive to the north-east and Richardson Side Road to the south-east. All surrounding properties are on private services. The adjacent properties are serviced by private wells and septic systems.

According to available mapping and WWRs, the overburden thickness was observed to be greater than 2 m. As the proposed site does not have bedrock within 2 m of the ground surface, the site is not considered hydrogeologically sensitive. Separation distances are not required to be increased between the septic components and the onsite well.


To corroborate our position in this matter, the water quality of the bedrock aquifer accessed by the onsite drilled potable supply well shows no indication of surface water or surface impacts from sewage system effluent.

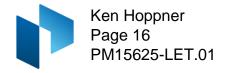
Conceptual Lot Development

This Terrain Analysis is completed to support a Re-zoning Application and a Site Plan Control Application. See the attached Site Plan titled "1818 Farm and Cidery – Site Plan" by Vandenberg & Wildeboer Architects, dated March 20, 2024. The place of assembly will consist of a cidery and open air assembly area along with associated parking.

Sewage System Design and Total Daily Design Sewage Flow

This Terrain Analysis has been completed to support a Re-zoning Application and Site Plan Control Application. The associated Ontario Septic System Office permit and sewage treatment system design by D.B. Grey Engineering Inc has been included in the

overall application submission. The TDDSSF for the place of assembly was provided to be 7,125 L/day. A maximum predicted nitrate concentration will be determined for the site as a whole, and the current assessment will be completed based on existing conditions that include the existing residence. Any associated flows with the residence will be counted towards the total site capacity in the site plan application. The total volumes for the site, including the place of assembly and on-site residence, are less than 10,000 L/day per review and design by others.

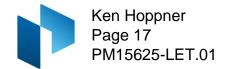

The proposed property will be analysed as part of the Re-zoning Application and Site Plan Control Application to ensure the theoretical impacts are below the Ontario Drinking Water Objective maximum allowable concentration of 10 mg/L of nitrate in the groundwater prior to the property line.

Predictive Nitrate Impact Assessment

Nitrate is considered to be a critical parameter of concern when assessing impacts to groundwater quality downgradient of an onsite sewage system. The City of Ottawa annotated MECP Procedure D-5-4 in the Hydrogeological and Terrain Analysis Guidelines (HTAG) applies for the proposed development. For the purpose of this guideline, the Ontario Drinking Water Objective of 10 mg/L of nitrate is the maximum allowable concentration detectable in the groundwater prior to the property line.

A detailed impact assessment is required due to the proposed zoning of the site. In order to demonstrate that private services would adequately support the proposed Re-zoning Application, a predictive nitrate impact assessment for the subject site was completed. This calculation was completed to determine the maximum sewage flow volume which could be applied to the subject site with the current site conditions and without the use of tertiary treatment systems (nitrate reducing systems). Furthermore, to support the Site Plan Control Application, a maximum TDDSSF of 10,000 L/day will be examined to determine the nitrate concentration at the property boundary. The values shown in the Predictive Nitrate Impact Assessment calculation attached to this report are summarized below:

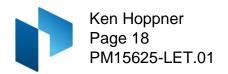
Site area	11.68 ha
Impervious area (%)	7 %
Concentration of nitrate in effluent (Value based on typical effluent concentration)	40 mg/L
Surplus Water (The surplus water value was estimated based on Environment Canada values with a soil type comprised of a mixture between clay loam (Urban (Mature Forest) and anthropogenic sources.)	



□ Combined infiltration factor based on:	0.45
 Topography infiltration factor 	0.10
 Soil texture infiltration factor 	0.20
Cover infiltration factor	0.15

The topography infiltration factor of 0.10 is based upon a hilly land with an average slope of 28 to 47 m/km. The soil texture infiltration factor was based upon "medium combinations of clay and loam" with a value of 0.2 which is a reasonable generalization based upon the site investigations and available geological mapping. The "cover infiltration factor" was calculated at 0.15 based upon the mix of tree cover and cultivated land.

The predicted nitrate concentration calculation for a conventional sewage system (system without nitrate reduction) results in a maximum of **14.16** m³/day of an effluent using a nitrate concentration of 40 mg/L. This maximum is significantly more than the proposed maximum daily usage of 10 m³/d. Therefore, using a conventional sewage system, the maximum TDDSSF of 10,000 L/day (10 m³/d) is less than the maximum volumes that the site can support.


Based on the results of the predicted nitrate impact assessment, it is our opinion that the property can adequately support the proposed re-zoning and development without having an adverse impact on the underlying bedrock aquifer.

CONCLUSIONS

Based on the information contained within the body of this report the following conclusions can be drawn:

- 1. The water supply aquifer intercepted by the existing well is considered to be adequate to support the water quantity demands for the proposed building usage.
- 2. Based on a visual inspection performed by Paterson personnel of TW1, the well casing, stickup, and well cap are in compliance with O.Reg 903. The final grading around the well will be sufficiently graded to direct surface water away from the wellhead at the time of the new sewage system installation. The water supply well should be protected from traffic.
- 3. The preferred water supply intercepted by TW1 contains a water supply that is potable, and contains only elevated concentrations of hardness, TDS, total sulphides, and iron. The noted parameters can be treated with current readily available water conditioning equipment. A water treatment specialist has been retained by the owner to provide treatment for the building water supply.
- 4. Colour, turbidity, and aluminum were measured to be elevated in initial laboratory testing. A resample was completed at a later date. The field testing of the resample showed 0 TCU for colour and 0.56 NTU for turbidity. Laboratory testing for aluminum was under the operational guideline at the resample. These values represent typical usage of TW1.
- 5. If desired by the property owner, a residential grade water softener can be used to facilitate the reduction of the hardness concentration and reduce scaling. If a water softener is used for the proposed development, the owner should be made aware that additional sodium will be added to the water to reduce hardness. If desired, a point-of-use reverse osmosis system can be used to provide a drinking tap source without increasing sodium levels.
- 6. The sodium concentration was measured to be above the 20 mg/L reporting limit and, as such, the Medical Officer of Health for the City of Ottawa should be informed to assist area physicians in the treatment of local residents on sodium reduced diets. It should be noted that some water treatment equipment may further increase the sodium concentration.
- 7. A water treatment specialist has been retained by the owner and a water treatment system has been proposed. The water treatment system to be used by the proposed development can be found attached. The treatment system is proposed to treat the aesthetic exceedances.

- 8. The predicted nitrate concentrations at the property boundary is calculated to be below the required 10 mg/L threshold when a conventional treatment system is used for greater than 10,000 L/day.
- 9. A Sewage System Permit and Building Permit need to be issued prior to the commencement of construction.
- 10. The results of the Hydrogeological Assessment and Terrain Analysis have provided satisfactory evidence that the subject site can support the proposed Re-Zoning Application and Site Plan Control Application with respect to water quality, quantity and sewage system effluent (>10k L/day) attenuation within the property boundary.

We trust that the current submission satisfies your immediate requirements.

Best Regards,

Paterson Group Inc.

Alexander Schopf, PhD, EIT

Michael S. Killam, P.Eng.

Attachments:

- ☐ Key Plan
- MECP Water Well Records
- Eurofins Certificate of Analysis
- AQTESOLV Pumping Test Analysis Reports
- Nitrate Impact Assessment Calculations
- ☐ Langelier Saturation Index (LSI) Calculation
- PV Plumbing & Water Inc. Water Treatment Quote.

FIGURE 1

KEY PLAN

Onta	rio 🖥	Ministr	y of the Envir		nt, T	ag#:A34	42224	r Print B	Below)	7		W	lell l	Recor
01100		Conser	vation and P	arks		A3422	24		,	Regulation	903	Ontario Wa		
Measurer	ments reco	orded in:	Metric 🗇	perial								Page		_ of
	Transfer and and	formation									the state			4450,803
First Nam	e		Last Name 18	18 B	adley S	Side Road I	Inc/Ken	Hoppn	er)					Constructed Vell Owner
Mailing Ad	dress (Stre	et Number/Na dley Side	Road			Municipality Carp		Provinc	On	Postal Code		Telephone	No. (inc	c. area code)
Well Loc											1 7		9,44	
Address	Well Loca	tion (Street Nu ley Side	Road			Township West C	Carleton			Lot P/L	6	Concessio	n	2 3 2 2 3
	strict/Munic		11000			City/Town/Villa				172	Provi	nce	Posta	al Code
		arleton				Carp	10.11					tario		
	8 3	ne Easting	440	rthing 501	7793	Municipal Alan		Number			Other	art 1		
						ecord (see instruc		back of this			. 1	0.000	Der	pth (mft)
General C	Polour	MOST CON	nmon Material			Other Materials	D	2 11		eral Description			From	To
Grou	& Black		Grave		7	Foft)	Boulders	d- Ha	aro +	2 0.			60 '	390 '
	& Black		Limes		7	2017)							390	400 4
0,0,	- Dioon			-		-4T)							900	400
														+
						1								
Denth S	et at (mft)		Annular S Type of Seal		d	Volume E	Planed	After test of		Results of We	1.171.4	d Testing aw Down	I R	ecovery
From 66	56 ′	Nort	(Material and			(m to	均	☐ Clear a	nd sand	free	Time			Water Level (m/ft)
56	0 '		Owners make a			10.	21			Not teste	Static	14'5"	()	112'
		Delifo	nite slurry				21	`	\aleph		1	17.6	1	104
								Pump intake	set at (m	AU .	2	21	2	102
								Pumping rat	e (I/minGe	DO PMD	3	24	3	100
Cable To		Diamon	d Publi	ic	Well Com		lot used	4			4	26.9	4	98
Rotary (C			Dom	estic	☐ Munio	cipal D	ewatering fonitoring	Duration of p	oumping + 0 r	nin	5	29.7	5	95.9
Dering DA percu		Digging	☐ Irriga	tion		ng & Air Conditionin				f pumping (m/ft)	10	41.8	10	86.1
Sother, sp	ectfy 30	MEDE	_ Othe					112 If flowing give		n/GPM)	15	52	15	77.4
Inside		nstruction R	Record - Casir		pth (max)	Status of		7	<	double (m. (D)	20	81.1	20	69.5
Diameter (critical)	(Galvaniz	ed, Fibreglass, Plastic, Steel)	Thickness (cm(n)	From	To	Replaceme	ent Well	200	l		25	69.3	25	65.3
61/24	Steel	-	.188	+2	66	Test Hole Recharge	Well	Recommend (Vmin/GPM)	ted pump	rate	30	76.7	30	62.7
OH	Open	Hole		66	400	Dewatering Observation	g Well	5 Well product			40	80	40	58.2
6					+-	Monitoring Alteration		04	ion (vining		50	101	50	55.4
					+	(Constructi		Disinfected?] No		60	112	60	53.44
1 11 11	Co	nstruction R	ecord - Scree	en .		Insufficient Abandoned	d. Poor	-)	Map of We				$\overline{}$
Outside Diameter		aterial Ivanized, Stoel)	Slot No.	De	oth (m/ft)	Water Qua	lity	Please provi	ide a map	below followin	g instru	uctions on th	e back.	AN)
(cm/in)				5	, io	specify		_	418	318		\	`	$\mathcal{L}_{\mathcal{L}}$
					-	Other, spec	offy		VC 1	FX		\	,	han
	7	Water Det	ails	-	+	Hole Diameter	=	DK	100-			\	111	KINE.
		Kind of Water	: Fresh	nteste	d De		Diameter (cm/irr)	5	10	5		,	1 sky	A how
		Other, spe		Unteste	_	, , ,	93/4		ROW		_		\ ^	Ø
(m/	ft) Gas	Other, spe	cify			66 400	6"					7	\	
		Kind of Water. ☐ Other, spe	: Fresh	Unteste	d	00 400	(O)		P	AA	(S'ÉN	. \	
			or and Well Te	chnici	an Informa	ntion			2.	1 1	7	(1	
Air Ro		Contractor				/ell Contractor's Lio	ence No.	00	Shu	"Cyc	IJ		1	
		et Number/Na	me)			unicipality Kichmond	1	Comments:						
rovince		stal Code	Business E	-mail Ac		, visconorid		1 HP 5	GPM	SET AT 380	FEE	ΞT		
ON		KOA 2ZO		air-ro	ck@sym _l	patico.ca		Vell owner's	Date Pa	ckage Delivered		Ministr	y Use (Only
613838		area code) Na	me of Well Ted Hanna,			, First Name)	200	nformation ackage elivered	Y Y26	122 ONS D	16	Audit No. Z	379	1220
		No. Signatule				ate Schro tted @ 3	3, 31	Yes	2022	ork Completed 4	6			
506E (2020/06)		s Printer for Ontar	75/		Y	Y Y IT IN M	100	140	YYY	Y M M D	DF	Received		
~~~ (2020/06)	~ cheeu.	- ruiger per Ontag	20,5020			Ministry's	Copy							

UTM / 8 2 4 2 5 4 5 5 E  5 R 5 0 / 7 2 0 5 in		31 ^C			ROUND WATER  15 N  JUL 3	BRANCH 0 3 22 1962
Elev. The Ontario Water Re  Elev. The Ontario Water Re  Basin 2 5 WATER WE  County or District Con. Lot ALVY 1 5	LL	RE	C	ORD	Huntl	AMISSION I
Coll.		ss. C	oy	(day	month	year)
Casing and Screen Record				Pumpin	a Test	
Inside diameter of casing 6 74	Sta	atic level				
Total length of casing 7/	1					G.P.M.
Type of screen			_			
Length of screen						<b>u</b>
Depth to top of screen	1				^	<b>4</b>
Diameter of finished hole 5 3/4				oumping rate		G.P.M.
					• feet bele	ow ground surface
Well Log					1	r Record
Overburden and Bedrock Record		From ft.		To ft.	Depth(s) at which water(s) found	Kind of water (fresh, salty, sulphur)
clay.		0		15'		
grandl	77 10	15		40		
anil said.		30	)	5' 5'		
limentone		5-5	_	105		Reck
aolston		103	<u> </u>	125	100	
	1				- 6 14/- 11	•
For what purpose(s) is the water to be used?		In di	aarar	Location of the below shown	of <b>we</b> ll distances of we	ll from
Is well on upland, in valley, or on hillside?			-		icate north by	
Drilling or Boring Firm Wel M & Laughter			,			
Drilling of Boring Firm					50	
Address aft.			L			
Auuress			1	R0#31	The fact of the control of the contr	
Licence Number 5-9-3	أن اه	Sty.		1 - WEL		
Name of Driller or Borer Kelulle Yn "Langher	1			1.4 distas		
Address Ushton Fot						
Date June 30 1962.		; }				
Welnille DK . Laughen						6.1
(Signature of Licensed Drilling or Boring Contractor)						016
Form 7 15M Sets 60-5930			^			
OWRC COPY					€ \$ ₀	

UTM 18 2 425 460 E  FR 50 17 460 N  The Ontario Water R	31 G	on Act	GROUND WATE	No. 3028
Basin 25 Couleton WAIER WE	Township, Village,	ORD	ONTASIO 1 RESOURGES 60	les.
Con. Lot Edd.	Date completed dress	oys. O	ng Test	w 1962 year)
Inside diameter of casing 74'  Total length of casing 74'  Type of screen  Length of screen  Depth to top of screen  Diameter of finished hole	Test-pumping Pumping level Duration of test Water clear or c	24' rate 10 pumping loudy at end o	30 mm	
Well Log		ng of /d	feet bel	ow ground surface
Overburden and Bedrock Record  Clay & boulders  Grand  Grand  Limestone rock	From ft.  0 20 40 5'8	To ft.  20 40 3.9 120	Depth(s) at which water(s found	Kind of water (fresh, salty, sulphur)
For what purpose(s) is the water to be used?  Is well on upland, in valley, or on hillside?  Drilling or Boring Firm Mal Ma Lalydla.	In diagran road and	Location of below show lot line. Indi	of Well distances of we	Il from arrow.
Address.  Licence Number. 5.93  Name of Driller or Borer. Wellie M. Laughlin.  Address.  Date. November 7. 1962.  Walnille W. Laughlin.  (Signature of Licensed Drilling or Boring Contractor)	CARLETONICO.	340°	3	
OWRC COPY	* <b>8</b>	11	\$ 1. July 1	· <b>a</b>

RESOL

## MINISTRY OF THE ENVIRONMENT

The Ontario Water Resources Act

WELL RECOR

15005 CN. 11514699 2. CHECK 🗵 CORRECT BOX WHERE APPLICABLE TOWNSHIP BOROUGH, CITY, TOWN, VILLAGE COUNTY OR DISTRICT HUNTLEY rleton ATE COMPLETED DAY D 2 NO.05 Carp, Untario # 3 BASIN CODE JUL 08, 1977 301 4 26 360 425353 5017358 1514699 LOG OF GAEUDOUDER WAD DEDUCER WALLIAND LOCK MAIRUCITOR DEPTH - FEET GENERAL DESCRIPTION MOST COMMON MATERIAL OTHER MATERIALS GENERAL COLOUR то 0 15 packed sand stones prown 45 15 packed boulders harpan grev boulders packed sand grey 64 80 soft limestone GIBY 80 94 soft limestone 00,156,281,279 10,945,2141,379 10064,2281,379 10,080,21,585 1 10,094 1,585 CASING & OPEN HOLE RECORD WATER RECORD 51 SCREEN KIND OF WATER MATERIAL AND TYPE то FRESH 3 SULPHUR 0066 2 SALTY 4 MINERAL 188 2 GALVANIZED 093 3 CONCRETE **PLUGGING & SEALING RECORD** 1 | FRESH 3 | SULPHUR 61 4 POPEN HOLE D 6 2 SALTY 4 MINERAL -- 188 DEPTH SET AT - FEET (CEMENT GROUT, LEAD PACKER, ETC.) 1 🗆 STEEL **h6** 1 FRESH 3 SULPHUR 2
2 SALTY 4 MINERAL FROM то 0080 2 | GALVANIZED CONCRETE -94 1 | FRESH 3 | SULPHUR 2 | SALTY 4 | MINERAL 4 DEPEN HOLE 18-21 22-25 24-25 1 STEEL 2 GALVANIZED 1 FRESH 3 SULPHUR 3 CONCRETE
4 OPEN HOLE 0094 2 T SALTY 4 MINERAL LOCATION OF WELL 2517 15-16 00 17-18 HOURS 00 MINS 2 BAILER 1 | PUMP IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE. INDICATE NORTH BY ARROW. PUMPING 1 DR PUMPING
2 RECOVERY
45 MINUTES 60 MI WATER LEVELS DURING O 60 32-34 O 60 MINUTES
O 60 FEET O 60 MINUTES
WATER AT FPC 15 MINUTES 30 MINUTES 0 60 29-31 FEET FEET 0 6035-37 0 60 SIDE IF FLOWING 1 CLEAR RECOMMENDED 43-45 RECOPUMP SETTING 80 FEET RATE RECOMMENDED PUMP TYPE RECOMMENDED 0005 SHALLOW I DEEP _ GPM./FT. SPECIFIC CAPACITY 1 TE WATER SUPPLY 5 ABANDONED, INSUFFICIENT SUPPLY FINAL 6 ABANDONED, POOR QUALITY OBSERVATION WELL **STATUS** 7 UNFINISHED 3 TEST HOLE OF WELL 4 RECHARGE WELL 5 COMMERCIAL 1 DOMESTIC 2 STOCK MUNICIPAL WATER USE 3 | IRRIGATION T PUBLIC SUPPLY COOLING OR AIR CONDITIONING

9 NOT USED -HNDUSTRIAL D OTHER AIR PERCUSSION 6 | BORING
7 | DIAMOND
8 | JETTING METHOD 4 OF 9 DRIVING **DRILLING** DRILLERS REMARKS 1558 05 06 75 1558 Capital Water Supply Ltd. DATE OF INSPECTION 9 apr 74 USE Box 490 Stittsville, Ontario LICENCE NUMBER OFFICE wı CSS.58 FORM 7 MOE 07-091

31G5d

Optorio		VVA	<b>4</b> 1	ER	W	ELL	REC(	DRE
Ontario	1. PRINT ONLY IN S	PACES PROVIDED	15	16709		MUNICIP. 1,5,006	CON	
COUNTY OR DISTRICT		TOWNSHIP, BOROUGH, CITY, TOWN, VIL		10703		10 14	_ 15 *	22 23 7 LOT 25-27
Carles	lon	· March	<del></del>			/		006
		?. R.	Ste	ttour	le i	Ont	DATE COMPLETED  DAY 2/ MO	7 YR. 28
		51.76160	٤	6325	ů	BASIN CODE	11 11 1	iv l
	LO	G OF OVERBURDEN AND BE	DROC	K MATERIAL	S (SEE	INSTRUCTIONS)		4
GENERAL COLOUR	MOST COMMON MATERIAL	OTHER MATERIALS			GENER	RAL DESCRIPTION	DEP FROM	TH - FEET
Brown	elay	sand			1	mol	0	7
brown	clay				Da	icked.	3	20
grey	May	stones					20	46
grey	sand	clay + bould	lus		P	acked	46	25
grey	limestone			m	ed	soft	55	200
			-					
				<del> </del>				
31 0003	610512817 1002016	10579 1004612051121	1 0	5-122805	1/31 10	220,012 15 85		
32	14 15		با ليا باليا	, _ , _ , _ ,			]	
<b>Y</b>		51 CASING & OPEN HO	LE REC	ORD :	SIZE(S	4 OF OPENING 31-3.	65 3 DIAMETER 34-38	75 BO LENGTH 39-40
WATER FOUND AT - FEET	المليلة	NSIDE DIAM. MATERIAL THICKNESS INCHES	DEPT)	TO C	S ISLOT	IAL AND TYPE	DEPTH TO TOP	FEET 41-44 80
0/97   20	SALTY 4 MINERAL	STEEL 12 188	0	56"	ก่		OF SCREEN	FEET
	FRESH 3   SULPHUR 19 SALTY 4   MINERAL	- OFEN HOLE		0056	61		SEALING RECO	ORD
20-23 1 🖂	FRESH 3 SULPHUR 24 SALTY 4 MINERAL	617-18 1 STEEL 19 2 GALVANIZED		20-23	DEPTH SE	TO MATE		ENT GROUT. ACKER, ETC.)
25-28 1 🗌	FRESH 3   SULPHUR 29 SALTY 4   MINERAL	3 CONCRETE 4 COPEN HOLE 24-25 I STEEL 26	56	0200	10-1			
30-33	FRESH 3 SULPHUR 34 60	2 GALVANIZED 3 CONCRETE		27-30	18-2			
PUMPING TEST METHO	SALTY 4 MINERAL  D 10 PUMPING RATE	4 OPEN HOLE				30-33 60		
71 1 PUMP 2	. 6	1:-14 DURATION OF PUMPING  15-16  GPM 0/ HOURS 30,77  MI	18 -	- Marie	LC	CATION OF	WELL	
LEVEL	WATER LEVEL 25 END OF WATER LEVEL PUMPING		11	IN DIAGRA LOT LINE.	M BELOV	V SHOW DISTANCES OF CATE WORTH BY ARROW	WELL FROM ROAD A	NÐ
19-21 0/~	1 20.00	0 MINUTES 45 MINUTES 60 MINUTES 35-34 35-	1 1			<i>7</i> 1		
IF FLOWING. GIVE RATE  RECOMMENDED PUMP 1	75 FEET 65 FEET 7	75 FEET 075 FEET 075 FE	ET					
RECOMMENDED PUMP 1	GPM TYPE RECOMMENDED	FEET 1 CLEAR 2 CLOUD	<b>⊣</b> 1			H.	110	2"
SHALLOW	POEP SETTING OF						1	9
54			ַן וּ				2009	
FINAL STATUS	1  WATER SUPPLY 2  OBSERVATION WELL 3  TEST HOLE	<ul> <li>ABANDONED, INSUFFICIENT SUPPLY</li> <li>ABANDONED POOR QUALITY</li> <li>UNFINISHED</li> </ul>					\$ ,	
OF WELL 55-56	4 RECHARGE WELL			· 1		70	,	
WATER 0	2 □ STOCK 6	COMMERCIAL MUNICIPAL	1 6	j l		Ē,		
USE	1	□ PUBLIC SUPPLY □ COOLING OR AIR CONDITIONING 9 □ NOT USED					<b></b>	-
57	1 GCABLE TOOL	6 [] BORING	41	Rich	ands	ion Side	Road.	
METHOD /	2 ROTARY (CONVENTIONAL 3 ROTARY (REVERSE)	-) 7 [] DIAMOND 8 [] JETTING						
DRILLING	4 ROTARY (AIR) 5 AIR PERCUSSION	9 DRIVING	neu	LE S REMARKS:		Į.		
NAME OF WELL CONT	TRACTOR	LICENCE NUMBER	- -	DATA	58 CONT	RACTOR 59-62 DATE R	ECEIVED 3	75_63-68 BO
ADDRESS BOY 490 NAME OF DRILLER OF SIGNITURE OF, CONT	WATER DUPP	LI LIO 1558	JIZI	DATE OF INSPECTION		558	30107	8
BOY 490	STITTSUI	LLE ONT.	SE	22/05	179	INSPECTOR	J. may	
J. Moor	e		GE C	REMARKS:		L.C.		
	Danaal	DAY 27 MO 9 YN	DFFICE.			•		
	OF THE ENVIRONM		لکا ل			e	SS.S8 FORM NO	. 0506-4-77
	C. IIII LINVIRUIN							//

31G5d

FORM NO. 0506-4-77

## WATER WELL RECORD

1516743 1. PRINT ONLY IN SPACES PROVIDED 15,005 2. CHECK X CORRECT BOX WHERE APPLICABLE DATE COMPLETED LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS) DEPTH - FEET MOST COMMON MATERIAL GENERAL COLOUR boulders 0 21 32 34 34 115 002/6/4/3 00322/4/3 00342/67/ 01/52/5 02608/5 10 14 15 21 32 43 75 SIZE(S) OF OPENING CASING & OPEN HOLE RECORD WATER RECORD 41 DEPTH - FEET WATER FOUND KIND OF WATER MATERIAL AND TYPE 3 SULPHUR FRESH SALTY 396 188 GALVANIZED
CONCRETE
COPEN HOLE 3 ULPHUR MINERAL 0034 **PLUGGING & SEALING RECORD** 61 1 | FRESH 3 06 STEEL
GALVANIZED
CONCRETE 3 Modephur Mineral 60 1 FRESH 0250 Z SALTY 4 PEN HOLE 250 1 | FRESH 3 / SULPHUR STEEL
2 | GALVANIZED 18-21 22-25 4 | MINERAL 06 26.29 30-33 80 1 🗌 FRESH 3 | SULPHUR CONCRETE 2 SALTY 4 | MINERAL LOCATION OF WELL BAILER Ø/ 15-16 00 IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE. INDICATE NORTH BY ARROW. PUMPING 2 | RECOVERY WATER LEVELS DURING TES | 60 MINUTES 29-31 ichandson FEET DE D FEET 0 2 CLOUDY O. PUMPING RATE DOOL SETTING 060 SHALLOW DEEP 3 1 WATER SUPPLY 5 ABANDONED, INSUFFICIENT SUPPLY FINAL 6 ABANDONED, POOR QUALITY
7 UNFINISHED 2 | OBSERVATION WELL **STATUS** 3 TEST HOLE OF WELL 4 🔲 RECHARGE WELL 1 DOMESTIC 5 T COMMERCIAL 6 MUNICIPAL 2 🔲 STOCK WATER 3 | IRRIGATION
4 | INDUSTRIAL 7 ☐ PUBLIC SUPPLY 8 COOLING OR AIR CONDITIONING
9 NOT USED USE ☐ OTHER I CABLE TOOL 250-260 . BORING METHOD. 2 ROTARY (CONVENTIONAL)
3 ROTARY (REVERSE) 7 DIAMOND ΩF 4 ROTARY (AIR)
5 AIR PERCUSSION DRILLING 231178 ONLY CAPITAL WATER SUPPLY LID 1558 Ken 17/05 OFFICE USE STITTSUILLE ONT. Casas

## 3165d

ATER WELL RECORD Ontario 1516888 1. PRINT ONLY IN SPACES PROVIDED CÓN 2. CHECK 🗵 CORRECT BOX WHERE APPLICABLE 15006 TOWNSHIP, BOROUGH, CITY CON., BLOCK, TRACT, SURVEY, 006 LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS) GENERAL COLOUR MOST COMMON MATERIAL DEPTH - FEET GENERAL DESCRIPTION FROM Benun Loulders. Hardpan 0 10 25 90 granite 130 200 109/06/413 0025605 00293105 0130921 0175/2173 0200212/19073 WATER RECORD 51 CASING & OPEN HOLE RECORD SCREEN KIND OF WATER DEPTH - FEET FRESH 3 SULPHUR
SALTY 4 MINERAL то DEPTH TO TO: OF SCREEN 1 STEEL
2 GALVANIZED 188 0030 0 1 FRESH 3 SULPHUR
2 SALTY 4 MINERAL CONCRETE
OPEN HOLE 61 **PLUGGING & SEALING RECORD** ☐ STEEL DEPTH SET AT - FEET 1 FRESH 3 SULPHUR
2 SALTY 4 MINERAL 6 MATERIAL AND TYPE Z GALVANIZED CONCRETE OPEN HOLE 0090 1 FRESH 3 SULPHUR
2 SALTY 4 MINERAL 1 STEEL
2 GALVANIZED
3 CONCRETE 22-25 1 | FRESH 3 | SULPHUR
2 | SALTY 4 | MINERAL 30-33 80 90 0200 DPEN HOLE 0003 LOCATION OF WELL 0/ 15-16 Z BAILER 00 WATER LEVEL END OF PUMPING 1 PUMPING IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE. INDICATE NORTH BY ARROW. WATER LEVELS DURING 2 RECOVERY BARNS S FEE! RECOMMENDED PUMP TYPE RECOMMENDED 43-45 RECOMMENDED PUMP SETTING 0/90 FEET RATE 0002 46-49 SHALLOW DEEP 1 WATER SUPPLY 5 ABANDONED, INSUFFICIENT SUPPLY FINAL 6 [] ABANDONED, POOR QUALITY 2 OBSERVATION WELL **STATUS** 3 TEST HOLE
4 RECHARGE WELL 7 UNFINISHED OF WELL 1 DOMESTIC
2 STOCK
3 RRIGATION 5 COMMERCIAL MUNICIPAL WATER 3 | IRRIGATION
4 | INDUSTRIAL PUBLIC SUPPLY COOLING OR AIR CONDITIONING

9 NOT USED USE OTHER 1 CABLE TOOL 6 [] BORING METHOD GOTARY (CONVENTIONAL)

GOTARY (REVERSE)

GOTARY (AIR)

MAIR PERCUSSION 7 [] DIAMOND OF [] JETTING DRILLING 9 [] DRIVING DRILLERS REMARKS OFFICE USE ONLY 1558 **2**201 CSS.58

# 8

## MINISTRY OF THE ENVIRONMENT The Ontario Water Resources Act

3165d

## WATER WELL RECORD

1516900 15,005 2. CHECK X CORRECT BOX WHERE APPLICABLE TOWNSHIP, BOROUGH, CITY, TOWN ARLETON WEST CARLETON STWAY TANK 1995 MERIVALE LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS) GENERAL COLOUR OTHER MATERIALS COMMON MATERIAL DEPTH GENERAL DESCRIPTION то BROWN CLAY LUOM LOOSE 0 8 BlUE 21 HORD FAN 21 4/4/ STONES 38 LIMESTONE 188 000860579277 002/31050577 004431057479 1905861117225 12/88315717 33 32 10 14 15 21 32 43 54 51 WATER RECORD CASING & OPEN HOLE RECORD SCREEN KIND OF WATER FRESH 3 SULPHUR
Control of the sulphur of the sulph MINERAL

1 RESH 3 SULPHUR

SALTY 4 P. ... 0060 MINERAL 61 PLUGGING & SEALING RECORD 4 OPEN HOLE 1 STEEL DEPTH SET AT - FEET 1 FRESH 3 SULPHUR 2 GALVANIZED 2 SALTY 4 MINERAL 1 FRESH 3 SULPHUR
2 SALTY 4 MINERAL 2 GALVANIZED 1 FRESH 3 SULPHUR
2 SALTY 4 MINERAL CONCRETE LOCATION OF WELL WATER LEVEL BELOW SHOW DISTANCES OF WELL FROM ROAD AND INDICATE NORTH BY ARROW. IN DIAG 22-24 018 FEET TAKE SET SETTING 180 FEET GPM./FT. SPECIFIC CAPACITY 1 WATER SUPPLY 5 ABANDONED, INSUFFICIENT SUPPLY FINAL 6 ABANDONED, POOR QUALITY 2 OBSERVATION WELL **STATUS** 3 TEST HOLE 7 UNFINISHED OF WELL 4 | RECHARGE WELL DOMESTIC 5 COMMERCIAL 2 STOCK
3 RRIGATION WATER RICHARD SON ROAD 7 D PUBLIC SUPPLY USE 4 | INDUSTRIAL ■ ☐ COOLING OR AIR CONDITIONING OTHER 9 | NOT USED CABLE TOOL
ROTARY (CONVENTIONAL) 6 [] BORING METHOD 7 [] DIAMOND ROTARY (REVERSE) OF 8 [] JETTING DRILLING 7 OFFICE USE ONLY Well drilling H 79 30 CSSISS WI

(2)	Ministry of the					
W	Environment					

Envi	ronment	WAI	EK WELL KE	CORD
Ontario	1. PRINT ONLY IN S	1 ** 1	1522259 NUNICIP CON.	1 1 1 22 23 74
COUNTY OR DISTRICT	2. CHECK 🔀 CORR	TOWNSHIP, BOROUGH, CITY TOWN, VILLAGE	CON . BLOCK, TRACT, SURVEY ETC	LOT 25-27
Ohlowo	Carlokon	Wost Carleton - Huntle	y Conc. 1	40-53 6
		R. # 3; Carp,	Ontario, KOA 1LO	
		DING RC	ELEVATION RC BASIN CODE "	
	M 10 12	OG OF OVERBURDEN AND BEDRO		
GENERAL COLOUR	Most	OTHER MATERIALS	TENERAL DESCRIPTION	DEPTH - FEET FROM TO
	COMMON MATERIAL	Poul Sone	The sheet	0 20
Brown	Clay	Boulders	Packed	20 34
Gray	Clay	Boulders	Packed	34 55
Gray	Sand	Clay and Boulders	Loose	55 64 <del>1</del>
Gray	Hardpan	Boulders, Sand	Packed  Medium Hard	641 83
Gray	Limestone		redium haid	
		ga i vive i sicisma atte		
	-			
31				
32	عبرا لبليليا	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43 54 65	1111111
	TER RECORD	51 CASING & OPEN HOLE F	RECORD SLOT NO )	METER 34-38 LENGTH 39-4
WATER FOUND AT - FEET	KIND OF WATER	INSIDE WALL THICKNESS INCHES FROM	UM TO WATERIAL AND TYPE	DEPTH TO TOP 41-44 OF SCREEN
66	FRESH 3∃SULPHUR SALTY 4∃MINERALS G□GAS	6 1 2 GALVANIZED .188	0 65 ω	FEET
79		4 OPEN HOLE 5 PLASTIC	61 PLUGGING & SEA	
20-23 1	FRESH 3 SULPHUR 24	17-16 1 □ STEEL 2 □ GALVANIZED 5 3 □ CONCRETE	65 83 DEPTH SET AT - FEET MATERIAL #	ND TYPE (CEMENT GROUT LEAD PACKER, ETC.)
25-28 1 [	FRESH 3 SULPHUR 29	15 4 OPEN HOLE 5 OPLASTIC	27-30 19-21 22-25	
	J SALTY 6 □ GAS		26-29 30-33 80	
	4   MINERALS	4 □ OPEN HOLE 5 □ PLASTIC		
71 PUMPING TEST ME	2 BAILER	TE 11-14 DURATION OF PUMPING  15-16 17-18  8 GPM 16 HOURS MINS	LOCATION OF WE	
STATIC LEVEL	WATER LEVEL 25 END OF WATER PUMPING	LEVELS DURING  PUMPING  RECOVERY	IN DIAGRAM BELOW SHOW DISTANCES OF WEI LOT LINE INDICATE NORTH BY ARROW.	L FROM ROAD AND
TEST 30	22-24 15 MINUTES	S 30 MINUTES 45 MINUTES 60 MINUTES 1-28 29-31 32-34 35-37		H
	ET 30 FEET 30 F	E SET AT WATER AT END OF TEST 42		2
IF FLOWING. GIVE RATE  RECOMMENDED P	GPM	70 FEET 1 € CLEAR 2 □ CLOUDY ED 43-45 RECOMMENDED 46-49	ا ا ا ا ا ا ا	01
RECOMMENDED P	PUMP	ED 43-45 RECOMMENDED 46-45 PUMPING RATE 5 GPM	ا ا ا	<i>da</i>
50-53			( %%	d
FINAL	1 WATER SUPPLY 2 OBSERVATION WI	B □ ABANDONED, INSUFFICIENT SUPPLY ELL G□ ABANDONED POOR QUALITY	& Bradley Side	_
STATUS OF WELL	3   TEST HOLE 4   RECHARGE WELL	7 UNFINISHED 9 DEWATERING	Road	
	1 DOMESTIC 2 STOCK	S () COMMERCIAL  G () MUNICIPAL	Road  Richardson Side Rd	
WATER	3   IRRIGATION 4   INDUSTRIAL	7 Dublic Supply  • Cooling or air conditioning	Kichardson Side Rd	
	OTHER	NOT USED		
METHOD				05000
OF CONSTRUCT	ION 4 ROTARY (REVERS	DRIVING	DRILLEDS DEMANYS	2506 <b>0</b>
NAME OF WELL	L CONTRACTOR	WELL CONTRACTOR'S	DRILLERS REMARKS  DATA S8 CONTRACTOR 59-62 DATE RECO	1
I I	tal Water Suppl	LICENCE NUMBER	SOURCE AF	PR 1 1 1988
ADDRESS	100. Chibbonill	a Ont 170% 300	n S	
ADDRESS  ADDRESS  ADDRESS  NAME OF WE  NAME OF WE  NAME OF WE  NAME OF WE  OF GIGNATIVE PARTY		e, Ont. KOA 3GO WELL TECHNICIAN'S LICENCE NUMBER	D REMARKS	
SIGNATURE P	F TECHNICIAN CONTRACTOR	SUBMISSION DATE	0FFICE	
TY	Truca	1001 DAY OF MO CO YRST		Cariba

MINISTRY OF THE ENVIRONMENT COPY

FORM NO. 0506 (11/86) FORM 9

# The Ontario Water Resources Act WATER WELL RECORD

Ontario	1. PRINT ONLY IN S	PACES PROVIDED  CT BOX WHERE APPLICABLE	1 1	5260	123	1500	ا آڳ ۾ ۲		
COUNTY OR DISTRICT	Z. CHECK (25) CONNE	TOWNSHIP, BOROUGH, CITY, T			CON E	LOCK, TRACT, SURVE	Y ETC	1	OT 25-27
Ottawa C		Address	t Carleton			1	DATE COMPLET		18-53
Jacques	Whitford Ltd.		St.Laurent			Ontario	DAY 21	мо <u>10</u>	YR. 91
21	ZONE EASTING  T	K±8:-426	RC.	ELEVATION	] []	31	_ <u></u>		<u> </u>
1 2		G OF OVERBURDEN A				STRUCTIONS			
GENERAL COLOUR	MOST COMMON MATERIAL	OTHER MATER	RIALS		GENERA	L DESCRIPTION		DEPTH FROM	- FEET TO
Brown	Clay							0	10
	Clay	Stones & Gr	avel		***			10	33
Gray		December 4 02						33	300
Gray	Limestone								
	No. of	2.1							
		m distribution					4.		
		-							
31	1 1 1 1 1 1 1 1 1 1 1 1					بالللب			ــا لىلـ
32	ىنيا لىلىلىل	لىنىا لىلىللا	ا لىلىلىا ل	بللب	إ لىلىا			<u> 1111</u>	75 60
	TER RECORD	51 CASING & O	PEN HOLE RE		Z SIZE (S	OF OPENING	31-33 DIAMETER		LENGTH 39-40
WATER FOUND AT - FEET	KIND OF WATER	INSIDE DIAM MATERIAL INCHES	THICKNESS INCHES FROM	TH - FEET		RIAL AND TYPE		EPTH TO TOP	FEET 41-44 30
	☐ FRESH 3 ☐ SULPHUR ☐ SALTY 4 ☐ MINERALS ☐ GAS	6 1/4 1 STEEL 12	.188	0 34	S				FEET
15-18 1	FRESH 3 DSULPHUR 19 4 DMINERALS GOGAS	3 □ CONCRETE 4 ₩ OPEN HOLE 5 □ PLASTIC			61		G & SEALI		
20-23 1	☐ FRESH 3 ☐ SULPHUR 24 4 ☐ MINERALS	17-18 1 STEEL 2 GALVANIZED 3 CONCRETE		20-2	FROM	ET AT - FEET	MATERIAL AND T		ENT GROUT ACKER, ETC )
<u> </u>	FRESH 3 SULPHUR 29	6 1/16 POPEN HOLE	3	4 200	Gr	onted 22-25	Cement	(	
	☐ SALTY 6 ☐ GAS	24-25 1 □ STEEL 2 □ GALVANIZED 3 □ CONCRETE	, ,						
1 1	SALTY 6 GAS	6 4 POPEN HOLE 5 PLASTIC	20	0 300	J <u> </u>				
71 PUMPING TEST M			17-18		L	OCATION	OF WELL		
STATIC	BAILER  WATER LEVEL. END OF WATER L		PUMPING			OW SHOW DISTANC ICATE NORTH BY A		ROM ROAD	AND
L SE IP-3	PUMPING	30 MINUTES 45 MINUTES	RECOVERY  60 MINUTES 35-37	$\mathcal{Z}$					
		ET 200 EET 200	200 FEET	/		- 11.		L D	7
IF FLOWING. GIVE RATE  RECOMMENDED P	GPM		2 CLOUDY		<u> </u>	Bradle	9 310	<u> </u>	
RECOMMENDED P	PUMP TYPE RECOMMENDE		46-49 2.5 GPM		<del>-</del>				
50-53	DW DEEP SETTING	ZZSEI MAI	2.5		(×			<i></i> ≿	
FINAL	1 WATER SUPPLY	S ABANDONED, INSUF	FICIENT SUPPLY		X 0 0 X		ronder	٥٠³	* wen
STATUS OF WELL	2 OBSERVATION WE 3 TEST HOLE RECHARGE WELL	LL 6 ABANDONED POOR 7 UNFINISHED DEWATERING	QUALITY		7	イ	404.20	XXe	5° ≽`\5
0. 1122	SS-S6 I DOMESTIC	s COMMERCIAL					O.	4	Hes
WATER	2 STOCK 3 RRIGATION	6 MUNICIPAL 7 PUBLIC SUPPLY	TIONING		y X				•
USE	4   INDUSTRIAL OTHER	COOLING OR AIR CONDI     NOT	1 1		0				
METHOD	57 1 CABLE TOOL 2 ROTARY (CONVEN	6   BORING			L				
OF CONSTRUCT	3   ROTARY (REVERS				$R_{ij}$	chardso	n Side	2 7d	<b>N1 22</b>
	S AIR PERCUSSION	DIGGING		DRILLERS REMA					
1 1	L CONTRACTOR	LICEN	CONTRACTOR'S	DATA SOURCE	58	1558°	DATE RECEIVED JAN	1 3 19	92 *** *
O Capita	l Water Supply 1		558	ш .		INSPECTOR	· VIIII	,	
Box 490	O Stittsville,		TECHNICIAN'S	S REMARKS					
Capita OLOWESS BOX 490 NAME OF WILL OS MILL SIGNATURE O	ler		096	FFICE					
I had	ven C	DAY 25 MO.	10 vR91	<u>6</u>				2ء>	
	RY OF THE ENVIRO	ONMENT COPY				-	FOR	M NO. 0506	(11/86) FORM 9

## The Ontario Water Resources Act WATER WELL RECORD

Ontario	1. PRINT ONLY IN 2. CHECK 🗵 CORR	SPACES PROVIDED	11	15261	22	MUNICIP 15005		(, _ , _ ,	101
COUNTY OR DISTRICT		TOWNSHIP, BOROUGH CITY, TOW		untless	CON. B	OCK, TRACT, SURVE	Y ETC	L	ot 25-27
OCTAWA OWNER (SURNAME FI	Carleton 28-47	ADDRESS					DATE COMPLE	11	•-53 VR 91
Jacques	Whitford Ltd.	C-20 2285 S Klg 426	t. Laure	ent Blvd (		Intario	DAY 1.9		YR. 21
21	V 10 12		1   25	26	] []	<u>,,   , ,   </u>			47
	LC	OG OF OVERBURDEN AN	D BEDRO	CK MATERIA	LS ISEE INS	TRUCTIONS)		DEPTH	FFFT
GENERAL COLOUR	MOST COMMON MATERIAL	OTHER MATERIA	LS		GENERAL	DESCRIPTION		FROM	TO
Brown	Clay	Stones						0	14
Gray	Clay	Stones						14	24
Gray	Limestone							24	175
Gray	Limestone							175	205
	_								
					·				
31	بينا ليليلل	للبينا ليليلل	لللل	لتللينا	نا لبلتا	بليلليد	تتنا ليل	Щц	ا لِبل
32	14 15 21 21		لبلبل	ليللل			31-33 DIAMETE	<u> </u>	75 A0
	ATER RECORD	51 CASING & OPE		ECORD	Z SLOT N	OF OPENING O 1	31-33 DIAMETE	R 34-38 L	ENGTH 39-40
WATER FOUND AT - FEET	KIND OF WATER	DIAM MATERIAL THE	ICKNESS NCHES FRU		MATERI	AL AND TYPE		DEPTH TO TOP	41-44 30
60 '	SALTY 4 MINERALS 6 GAS	6 1/4 1 Steel 12 -1	188	0 26	S				FEET
	☐ FRESH 3 ☐ SULPHUR 19 ☐ SALTY 6 ☐ GAS	4 OPEN HOLE			61	PLUGGIN	G & SEALI		
20-23	FRESH 3 SULPHUR 24	17-18 1 STEEL 2 GALVANIZED 3 CONCRETE		20-23	FROM	10	MATERIAL AND T		NT GROUT. CKER. ETC )
	GAS  GAS  GAS  GAS  GAS  GAS  GAS  GAS	6 1/84 POPEN HOLE		26 205	10-11				
	G GAS	24-25 1 STEEL 26 2 GALVANIZED 3 DCONCRETE		27-30	10-21				
	SALTY 6 GAS	4 DOPEN HOLE 5 DPLASTIC			] [	30-33			
71 PUMPING TEST M		- 15.16	17-18		LC	CATION	OF WELL		
STATIC	BAILER  WATER LEVEL 25 END OF WATER	20 GPM 1 HOURS		IN DI		V SHOW DISTANC		ROM ROAD A	ND
F LEVEL	PUMPING 22-24 15 MINUTES	# LL REC	60 MINUTES			_			
		45 feet 45 feet	45 ₁₁₁	<u> </u>	Brad	ley Si	ge K	<u>a</u>	
IF FLOWING. GIVE RATE  RECOMMENDED F	38-41 PUMP INTAKE	SET AT WATER AT END OF TE	-				1		
RECOMMENDED F	PUMP	D 43-45 RECOMMENDED PUMPING	46-49	य			1 65	,	
SHALLO	DW DEEP SETTING	100 FEET RATE	<b>5</b> дрм				j		
FINAL	1 WATER SUPPLY	S ABANDONED, INSUFFICE		비		runder Gols	× 、		
STATUS	B OBSERVATION WE	UNFINISHED	LITY	<u>ا</u>		7 05	Pircy	e	
OF WELL	. 4 RECHARGE WELL  55-56 1 DOMESTIC	DEWATERING  S COMMERCIAL		9	~	way?	E COUP	>-	
WATER	z ☐ STOCK 3 ☑ IRRIGATION	6 MUNICIPAL 7 PUBLIC SUPPLY				Go.			
USE	4 ☐ INDUSTRIAL ☐ OTHER	■ ☐ COOLING OR AIR CONDITION 9 ☐ NOT USE		Ŏ					
	57 1  CABLE TOOL 17	5-205							
METHOD OF	2 AOTARY (CONVEN	NTIONAL) 7 DIAMOND E) 8 DIETTING	1					_	
CONSTRUCT	TION 4 D ROTARY (AIR) 5 2 AIR PERCUSSION	0-175 □ DIGGING □	OTHER	DRILLERS REMAR	RKS			113	303
NAME OF WEL	L CONTRACTOR	WELL CO	NTRACTOR'S NUMBER	> DATA SOURCE	58 COI		DATE RECEIVED		63-68 80
Capita	l Water Supply I			O DATE OF INSP	PECTION	L 558	⊥ APR	3 0 199	2
151	Stittsville,	Ontario K2S 1A6		JSE					
NAME OF WI	ler/ J. Moore	LICENCE	CHNICIAN'S NUMBER	REMARKS					
SIGNATURE O	F TECHNICIAN/CONTRACTOR	SUBMISSION DATE	<u></u>	OFFICE				_	C.
Maker	mil	DAY B MO //	YR.7//	<u> </u>				ححر	1/86) FORM S



## The Ontario Water Resources Act WATER WELL RECORD

Ontano			SPACES PROVIDED	11 1 2	1527	008	MUNICIPA S	ON	
COUNTY OR DISTRICT			TOWNSHIP, BOROUGH	I. CITY, TOWN, VILLAGE	•	CON	N BLOCK, TRACT, SURVEY ETC		LOT 25-27
Ottawa C		28-47	ADDRESS	Carleton -					48-53
	ZONE	EASTING	NORTHING	1	f & Athle	etic Clu	BASIN CODE	14 MO 01	YR. 93
21	M 10	12	KOA	24	25 26		31		47
		. <b>L</b> (	OG OF OVERBUR	DEN AND BEDR	OCK MATER	RIALS (SEE	INSTRUCTIONS)		
GENERAL COLOUR	1	MATERIAL	OTHER	RMATERIALS		GENE	RAL DESCRIPTION	FROM	- FEET TO
Brown	c1	ay	Sand an	d Stones		Р	acked	0	8
Brown	Sa	nd	Stones			L	cose	8	13
Gray	Ha	rdpan	Boulder	'S		H	Ard	13	36
Gray	Li	mestone	Black L	ayers		M	edium	36	90
				<del></del>					
						-			
			37.2						
		·							
31		سيا ليــ							
32	14 15	1 21 1	32		43	<u> </u>	54 65		75 60
41 WAT	TER RECO		51 CASING	& OPEN HOLE	RECORD		(S) OF OPENING 31-33 DI DT NO )		ENGTH 39-40
AT - FEET	FRESH 3	SULPHUR	DIAM MATERIAL INCHES	. I THICKNESS !	ROM TO		ERIAL AND TYPE	DEPTH TO TOP OF SCREEN	#1-44 30
54 ' 🖟	4 0	MINERALS GAS	6 1/4 STEEL 2 GALVANIZI	: ! !!	0 40	)   <u>                                  </u>			FEET
66 10	SALTY 6	MINERALS GAS	4 OPEN HOL 5 PLASTIC	E 19	20	61 DEPTH	PLUGGING & SE		RD NT GROUT
2 0	4 [	MINERALS	2 GALVANIZI	:   '	40 90	FROM	10 MATERIAL 0-13 14-17	LEAD PAI	CKER, ETC )
	. 4 [	SULPHUR 29 MINERALS GAS	ZA-ZS TO STEEL	26	27-	4	0 2 Grou	ted Cement	(7)
	4 0	SULPHUR 34 30 Minerals Gas	2 GALVANIZI 3 CONCRETE 4 OPEN HOL 5 PLASTIC	: [ [		2 6	30-33 80		
71 PUMPING TEST MET		C PUMPING RATE	1) 14 DURATION	OF PUMPING			OCATION OF WE		
1 PUMP	Z E BAILER	25	5 GPM 1	15-16 17-18 HOURSMINS	IN		OW SHOW DISTANCES OF WE		4D
LEVEL	END OF PUMPING 22-2		VELS DURING 2	PUMPING RECOVERY			DICATE NORTH BY ARROW.	LE TROM ROAD AP	.
19-21 19-21	70 · · ·	26.28	29-31	32-34 35-37 O FEET 70FEET					
IF FLOWING. GIVE RATE  RECOMMENDED PUM	38-4		ET AT WATER AT	END OF TEST 42	3		House #	1049	
RECOMMENDED PUM	GF IP TYPE	RECOMMENDED PUMP	FEET 43-45 RECOMMEN		T		House	1773	
SHALLOW	DEEP	SETTING	80 FEET RATE	5 срм					
FINAL		TER SUPPLY		NSUFFICIENT SUPPLY	il				
STATUS OF WELL	3 🛭 те	SERVATION WELL ST HOLE CHARGE WELL	7 UNFINISHED	POOR QUALITY			40'/		
55	· 56 ' 🕱 DC	MESTIC	DEWATERING  5 COMMERCIAL				196"		1
WATER USE	2   ST 3   IR 4   IN	RIGATION	6 MUNICIPAL 7 PUBLIC SUPPLY 8 COOLING OR AIR C	CANDITIONING			X 196		
332		OTHER		NOT USED					
METHOD	² 🗖 Rd	BLE TOOL TARY (CONVENT)	5 ☐ BORIN					0.1	
OF CONSTRUCTIO	3 □ Rd	TARY (REVERSE) TARY (AIR) R PERCUSSION	□ JETTI     □ DRIVI	NG		7	lichardson	5, ae *	012
NAME OF WELL C		FERCUSSION		NG OTHER	DRILLERS REM		ONTRACTOR 59-62 DATE RECEIV		
]		Supply J.	L	1559	SOURCE		1558 MAI	r 0 4 1993	63-68 40
[5]					l w	SPECTION	INSPECTOR		
NAME OF WELL		<del>PV1116}</del>	Ontario K2S	ICENCE NUMBER	REMARKS	(			
SIGNATURE OF T		ONTRACTOR	SUBMISSION DAT		OFFICE				
MINISTRY	DE THE E	NVIRONM	DAY 20	мо. <u>О/</u> уя.93			**	FORM NO. 0506 (11	/86) FORM 9

d ot 3

						1000	ere		
(A) (A)	ntario	Ministry of the Enviro		ag Number (P	Place sticker and pri	int number below)	Regulation 90	<b>W</b> e	ell Record
Instruction	s for Completi	ng Form		A 054					page A of
• Question	ns regarding cor	mpleting th	Tull to avoid delay	/s in process be directed	ing. Further i to the Water	instructions ar	Please retain for futu d explanations are av ment Coordinator a	ire reference.	
<ul> <li>Please p</li> </ul>	orint clearly in bl	ue or black	ink only.	o or a metr	е.		Ministry Us	se Only	
Well Owner	r's Information		ation of Well Inf	ormation	MUN		ON		LOT
First Name		Last Nam	TY PRESBY	LTERAN	Mailing Addres	s (Street Numb	er/Name, RR,Lot,Con	cession)	5
County/Distric	AUJA CARE	=LTON)	Township/City/To	wn/Village_11	Pro	ovince Post	1		(include area code
	ILocation (County)				ownship UEST (#	ARELTON	Lot		ession
RR#/Street Nu	mber/Name RICHARDS		OF RO	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	City/Town/Vi			artment/Block/T	/ ract etc.
3PS Reading	NAD Zoi			thing	Unit Make/M	odel Mode	e of Operation: Un	differentiated	Averaged
og of Over	0 3	3 1 17 10 4	ചാഗ്ര ചെ	217649 tructions)	MAGE	LHIV	Diff	erentiated, specify_	
Seneral Colour	Most common		Other M			Genera	al Description	De	oth Metres
BROWN	SAND		CLAY, STO	NES BO	MINERC			Fr	2,43
RFY	CLAY		SAND, S	TONIES	RAINER	~		7	
REY	LIMES	TONE	BROWN	LIMES	TONE			92	43, 15, 8
•		No. Appendix						/50	07 1000
							3,1		
					Vs.,				
34.									
	Diameter		Cons	truction Rec	ord		Tes	t of Well Yield	
	etres Diameter To Centimetres	Inside	Material	Wall	Depth	Metres	Pumping test method		Recovery
	.9/24.77	diam centimetres	material	thickness centimetres	From	То	SUB. PUMP	Time Water Level min Metres	Time Water Level
	6.63 1523		3	Casing			Pump intake set at (metres) 7 3 5	Static Level O	
6011 70	1001000		Steel Fibreglass		0+1-52		Pumping rate -	1 2.04	1 16.91
Water	Record	15-87	Plastic Concrete Galvanized	648	0	16.91	(litres/min) 36, 4  Duration of pumping	0 2 91	0 150 6010
/ater found Metres	Kind of Water		Steel Fibreglass		`		1_hrs +O min	2 3.96	2 15,94
<b>22.58</b> □ F □ Gas □ S	resh Sulphur Salty Minerals		Plastic Concrete				Final water level end of pumping 1 metres	3 5,27	3 /4,96
ີ່ Other: ⋃ <i>ທ</i> ິ	TESTED						Recommended pump	1 / 22	1 11/08

With the state of					
- se.			A.		
Hole Diameter					
Depth Metres Diameter		truction Record			t of Well Yield
From To Centimetres	Inside   Material	Wall Der	oth Metres	Pumping test method	Draw Down Recovery Time Water Level Time Water Level
0 16.9/24.77	centimetres	centimetres Fro	m To	PUMP	min Metres min Metres
11.91 46 63 1523	3	Casing	J .		Static Level O
16011 70-00 10-0	Steel Fibreglass		~5Z	Pumping rate -	1 2.09 1 16.91
Water Record	5.87 Plastic Concrete	648 ot	16.91	(litres/min) 36, 4 Duration of pumping	
Water found At Metres Kind of Water	Galvanized Steel Fibreglass	0 14	,,,,,	1 hrs + 0 min	2 3-96 2 15.94
Fresh Sulphur	Plastic Concrete			Final water level end	3 5,27 3 14,96
Gas Salty Minerals Other:	Galvanized			of pumping 7 metres	
26 m ☐ Fresh ☐ Sulphur	Steel Fibreglass			Recommended pump type.	4 60 33 4 14,08
Gas Salty Minerals	Plastic Concrete			Shallow Deep Recommended pump	5 7.31 5 13.16
Other: UNTESTED	Galvanized			depth 450 metres	3-10
75   Fresh Sulphur Gas Salty Minerals	Outside Outside	Screen		Recommended pump	10 10.82 10 9.0.7
Gas Salty Minerals Other: STEO	diam Steel Fibreglass	Slot No.		(fittres/min)	15 /2 58 15 6 96 20 2 2 20 5 5
After test of well yield, water was  Clear and sediment free	Plastic Concrete -				20 /4,50 20 5.5/ 25 /4.0 25 3.50
Other, specify CARPING-				If pumping discontinued, give reason.	30 17,03 30 2,62
		asing or Screen	31 111 /5		40 18, 44 40 1, 37
Chlorinated X Yes No	Open hole	16.5	11 46.63	-	50 /8 47 50 / 03 60 /8 47 60 88
Plugging and Sea	lling Record Annular	space Abandonm	ent	Location of	
	(bentonite slurry, neat cement slurry)	etc. Volume Placed (cubic metres)	in diagram below	show distances of well from	m road, lot line, and building.
0 16.91 BENTO,	NITE SLURRY		Indicate north by	arrow.	4
		1014		1	$I_{N}$
	-1		7		
			<del>'</del>	1	30
Me	thod of Construction			1	• 1
Cable Tool Rotary (ai		Digging		,	
☐ Rotary (conventional)	ssion	Other		f 600	
	Water Use		GICHARAS	93	$\int_{\mathcal{S}}$
□ Domestic   □ Industrial     □ Stock   □ Commerce	Public Supply	Other	BICHARDSO	The state of the s	V
☐ Irrigation ☐ Municipal	ial ☐ Not used ☐ Cooling & air	conditioning	Audit No.	6 8 6 5 5 Date	Well Completed
	Final Status of Well			44855 Date	86 /2 P
Water Supply	Unfinished sufficient supply Dewatering	Abandoned, (Oth	er) Was the well owr	ner's information   Date I	Delivered YYYY MM DD
Test Hole Abandoned, po	oor quality Replacement		package delivered	i Ales Ino	06 12 19
Well Contra Name of Well Contractor	actor/Technician Information		Data Causas	Ministry Use (	·
T, SAUNDERS O	RILLING LTD WE	Contractor's Licence No	Data Source	Contra	actor
Business Address (street name, number	, city etc.)	IND VER	Date Received	YYYY MM DD Date o	of Inspection YYYY MM DD
Name of Well Technician (last name, firs	t name) .   Well	<i>OH JOO</i> Technician's Licence No	- Marrier	100	
SAUNDERS	TROY	-517	Remarks	Well F	Record Number
Signature of Technician/Contractor	Date S	Submitted MM D	8		
0506E (09703)		stry's Copy 🕡 Well (		Cette form	nule est disponible en français
	1- J - J - J - J - J - J - J - J - J - J	) > p   w   v v O ii V	C Ooby L	Jelle IOIII	iaio esi disponible en trançais



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

**OFFICIAL CERTIFICATE OF ANALYSIS: 3966666** 

WORK REQUEST : 100292480 Report Date : 2024-07-03

Paterson Group 9 Auriga Dr Nepean, Ontario

K2E 7T9

Attention: Alex Schopf

Reception Date: 2024-06-26
Project: PM15625
Sampler: NA
PO Number: 60535
Temperature: 6 °C

Analysis	Quantity	External Method
Alkalinity (Water, Automated)	2	Modified from SM 2320 B
Ammonia, Total (Water, Colorimetry)	2	Modified from EPA 350.1
Chloride (Water, IC)	2	Modified from SM 4110 B and C
Colour, Apparent (Water, Spectrophotometry)	2	Modified from SM 2120 C
Conductivity (Water, Automated)	2	Modified from SM 2510 B
DOC (Water, IR)	2	Modified from SM 5310 B
Escherichia coli (DC Plate)	2	Modified from MECP E3407
Fluoride (Water, Auto/ISE)	2	Modified from SM 4500-F A and 4500-F C
Hardness (Water, Calculation Only)	2	SM 2340 B
Ion Balance (Water, Calculation)	2	Modified from SM1030 E
Metals Scan (Water, ICP/MS)	2	Modified from EPA 200.8
Metals Scan (Water, ICP/OES)	2	Modified from SM 3120 B
Nitrate (Water, IC)	2	Modified from SM 4110 B and C
Nitrite (Water, IC)	2	Modified from SM 4110 B and C
pH (25°C) (Water, Automated)	2	Modified from SM 4500-H+ B
Phenols (Water, Colorimetry)	2	Modified from EPA 420.2
Sulphate (Water, IC)	2	Modified from SM 4110 B and C
Sulphide (Water, Colorimetry)	2	Modified from SM 4500-S2 D
Tannin and Lignin (Water, Spec)	2	Modified from SM 5550 B
TDS (Estimated)	2	Modified from SM 2510 A
Total Coliforms (DC Plate)	2	Modified from MECP E3407
Total Kjeldahl Nitrogen (Water, Colorimetry)	2	Modified from EPA 351.2
Turbidity (Water, Turbidimeter)	2	Modified from SM 2130 B
VOCs (Water, GC/MS)	2	Modified from EPA 8260

#### Criteria :

A: Ontario Regulation 169/03 (Non-Regulated Drinking Water)

### Sample status upon receipt :

7802343 7802344

Compliant

#### **Certificate Comments:**

7802344

Anions MRL increase due to matrix interference. B spike not available due to high native analyte concentration in the mother sample. B results were verified for this sample. DOC analyzed from plastic sample bottle.

7802343

Anions MRLs increased due to matrix interferences. B spike not available due to high native analyte concentration in the mother sample. B results were verified for this sample.

#### Notes

- All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated.



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

- Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/
- Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Legend:

QC : Reference material (QC) 1 : Results in annex ^ : Analysis not accredited

#### OFFICIAL CERTIFICATE OF ANALYSIS - EXCEEDENCE SUMMARY

Reception Date: 2024-06-26

Client : Paterson Group Project : PM15625

Eurofins	Client Sample	A1.4	<b>D</b> #			Exceeded Cr	iteria
Sample No	Identification	Analyte	Result	Units	Α	В	С
Colour, Appar	ent (Water, Spectrophoto	ometry)					
7802343	TW1 - GW1	Colour (Apparent)	10	TCU	5		
7802344	TW1 - GW2	Colour (Apparent)	10	TCU	5		
Hardness (Wa	ter, Calculation Only)						
7802343	TW1 - GW1	Hardness as CaCO3 (Calculation)	356	mg/L	80-100		
7802344	TW1 - GW2	Hardness as CaCO3 (Calculation)	360	mg/L	80-100		
Metals Scan (	Water, ICP/MS)						
7802343	TW1 - GW1	Aluminum	0.43	mg/L	0.1		
7802344	TW1 - GW2	Aluminum	0.34	mg/L	0.1		
7802343	TW1 - GW1	Iron	0.68	mg/L	0.3		
7802344	TW1 - GW2	Iron	0.44	mg/L	0.3		
Sulphide (Wa	ter, Colorimetry)						
7802343	TW1 - GW1	Sulphide (S2-)	0.95	mg/L	0.05		
7802344	TW1 - GW2	Sulphide (S2-)	1.16	mg/L	0.05		
TDS (Estimate	ed)						
7802343	TW1 - GW1	TDS (Estimated) ^A	944	mg/L	500		
7802344	TW1 - GW2	TDS (Estimated) ^A	959	mg/L	500		
Turbidity (Wa	ter, Turbidimeter)						
7802343	TW1 - GW1	Turbidity	11.5	NTU	5		
7802344	TW1 - GW2	Turbidity	7.10	NTU	5		



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

## **OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS**

Reception Date: 2024-06-26

Client : Paterson Group Project : PM15625

			_	6 O ! !!	<b>20000</b>	=0000		
			Euro	fins Sample No :	7802343	7802344		
				Matrix :	Drinking water	Drinking water		
				Sampling Date :	2024-06-25	2024-06-25		
			Client Samp	le Identification :	TW1 - GW1	TW1 - GW2		
Anions				teria				
	RL	Unit	Α	ВС				
Chloride	0.5	mg/L	250		84.9	86.4		
Nitrate (as Nitrogen)	0.1	mg/L	10.0		<0.5	<0.5		
Nitrite (as Nitrogen)	0.1	mg/L	1.0		<0.5	<0.5		
Sulphate	1	mg/L	500		388	394		
	Furofine	Sample No :	7802343	7802344				
	Luioiiiis	Matrix:	Drinking	Drinking				
			water	water				
	San	npling Date :	2024-06-25	2024-06-25				
	Client Sample Id	entification :	TW1 - GW1	TW1 - GW2				
Calculations	RL	Unit						
	0.1		1.01	1.02				
	0.1							
	0.1			fins Sample No :	7802343	7802344		
	0.1				Drinking	Drinking		
	0.1			fins Sample No : Matrix :	Drinking water	Drinking water		
	0.1		Euro	fins Sample No :  Matrix :  Sampling Date :	Drinking water 2024-06-25	Drinking water 2024-06-25		
on Balance (Calculation)^	0.1		Euro Client Samp	fins Sample No :  Matrix :  Sampling Date :  ole Identification :	Drinking water	Drinking water		
		Unit	Euro Client Samp Cri	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25	Drinking water 2024-06-25		
on Balance (Calculation)^ General Chemistry	RL	Unit ma/L	Client Samp	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1	Drinking water 2024-06-25 TW1 - GW2		
General Chemistry  Alkalinity (as CaCO3)	RL 5	mg/L	Euro Client Samp Cri	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1	Drinking water 2024-06-25 TW1 - GW2		
General Chemistry  Alkalinity (as CaCO3)  Colour (Apparent)	RL 5	mg/L TCU	Client Samp Cri	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1 225	Drinking water 2024-06-25 TW1 - GW2 225		
General Chemistry  Alkalinity (as CaCO3)  Colour (Apparent)  Conductivity @ 25°C	RL 5 2 5	mg/L TCU μS/cm	Client Samp Cri	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1	Drinking water 2024-06-25 TW1 - GW2  225 10 1370		
General Chemistry  Alkalinity (as CaCO3)  Colour (Apparent)  Conductivity @ 25°C  Dissolved Organic Carbon	RL 5	mg/L TCU	Client Samp Cri	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1 225 10 1350	Drinking water 2024-06-25 TW1 - GW2 225		
General Chemistry  Alkalinity (as CaCO3) Colour (Apparent) Conductivity @ 25°C Dissolved Organic Carbon Fluoride	RL 5 2 5 0.5	mg/L TCU μS/cm mg/L	Client Samp Cri A 500 5	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1 225 10 1350 1.3	Drinking water 2024-06-25 TW1 - GW2 225 10 1370 1.0		
General Chemistry  Alkalinity (as CaCO3) Colour (Apparent) Conductivity @ 25°C Dissolved Organic Carbon Fluoride Hardness as CaCO3 (Calculation)	RL 5 2 5 0.5 0.1	mg/L TCU μS/cm mg/L mg/L	Client Samp Cri A 500 5 1.5	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1 225 10 1350 1.3 1.32	Drinking water 2024-06-25 TW1 - GW2 225 10 1370 1.0 1.34		
General Chemistry  Alkalinity (as CaCO3) Colour (Apparent) Conductivity @ 25°C Dissolved Organic Carbon Fluoride Hardness as CaCO3 (Calculation) pH @ 25°C	RL 5 2 5 0.5 0.1	mg/L TCU μS/cm mg/L mg/L	Client Samp Cri A 500 5 1.5 80-100	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1 225 10 1350 1.3 1.32 356	Drinking water 2024-06-25 TW1 - GW2  225 10 1370 1.0 1.34 360		
General Chemistry  Alkalinity (as CaCO3) Colour (Apparent) Conductivity @ 25°C Dissolved Organic Carbon Fluoride Hardness as CaCO3 (Calculation)	RL 5 2 5 0.5 0.1 1	mg/L TCU μS/cm mg/L mg/L	Client Samp Cri A 500 5 1.5 80-100	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1  225 10 1350 1.3 1.32 356 7.97	Drinking water 2024-06-25 TW1 - GW2  225 10 1370 1.0 1.34 360 8.04		
General Chemistry  Alkalinity (as CaCO3) Colour (Apparent) Conductivity @ 25°C Dissolved Organic Carbon Fluoride Hardness as CaCO3 (Calculation) pH @ 25°C Phenols-4AAP Sulphide (S2-)	RL 5 2 5 0.5 0.1 1 1 0.001	mg/L TCU μS/cm mg/L mg/L mg/L	Client Samp Cri A 500 5 1.5 80-100 6.5-8.5	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1  225 10 1350 1.3 1.32 356 7.97 <0.001	Drinking water 2024-06-25 TW1 - GW2  225 10 1370 1.0 1.34 360 8.04 <0.001		
General Chemistry  General Chemistry  Alkalinity (as CaCO3) Colour (Apparent) Conductivity @ 25°C Dissolved Organic Carbon Fluoride Hardness as CaCO3 (Calculation) pH @ 25°C Phenols-4AAP	RL 5 2 5 0.5 0.1 1 0.001 0.001	mg/L TCU μS/cm mg/L mg/L mg/L mg/L	Client Samp Cri A 500 5 1.5 80-100 6.5-8.5	fins Sample No :  Matrix :  Sampling Date :  ole Identification :  teria	Drinking water 2024-06-25 TW1 - GW1  225 10 1350 1.3 1.32 356 7.97 <0.001 0.95	Drinking water 2024-06-25 TW1 - GW2  225 10 1370 1.0 1.34 360 8.04 <0.001 1.16		



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

## **OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS**

Client : Paterson Group Project : PM15625

Reception Date: 2024-06-26 Eurofins Sample No: 7802343 7802344 Matrix: Drinking Drinking water water Sampling Date: 2024-06-25 2024-06-25 Client Sample Identification: TW1 - GW1 TW1 - GW2 Metals Criteria RL Unit Α В C Metals Scan (Water, ICP/MS) 0.43 mg/L 0.1 0.34 0.01 Aluminum mg/L 0.006 < 0.0005 <0.0005 Antimony 0.0005 mg/L 0.01 < 0.001 < 0.001 Arsenic 0.001 Barium 0.001 mg/L 1 0.191 0.190 < 0.0005 <0.0005 Beryllium 0.0005 mg/L 5 mg/L 0.43 0.44 Boron 0.01 0.005 0.0001 mg/L < 0.0001 < 0.0001 Cadmium mg/L 0.05 0.001 < 0.001 Chromium 0.001 Cobalt 0.0002 mg/L 0.0002 <0.0002 mg/L 1 < 0.001 < 0.001 Copper 0.001 mg/L 0.3 0.68 0.44 Iron 0.03 0.01 < 0.001 < 0.001 mg/L Lead 0.001 mg/L 0.05 0.02 0.02 Manganese 0.01 0.0001 mg/L 0.001 < 0.0001 < 0.0001 Mercury 0.005 mg/L <0.005 < 0.005 Molybdenum < 0.005 < 0.005 Nickel 0.005 mg/L 0.05 mg/L < 0.001 < 0.001 Selenium 0.001 < 0.0001 0.0001 mg/L < 0.0001 0.001 mg/L 2.64 2.72 Strontium mg/L < 0.0001 <0.0001 Thallium 0.0001 0.02 < 0.001 < 0.001 mg/L 0.001 Uranium mg/L 0.001 < 0.001 Vanadium 0.001 5 < 0.01 < 0.01 Zinc 0.01 mg/L Metals Scan (Water, ICP/OES) mg/L 74 75 Calcium 1 Magnesium 1 mg/L 42 42 Potassium mg/L 6 6 1 Sodium 1 mg/L 200 181 186 Eurofins Sample No: 7802343 7802344 Matrix: Drinkina Drinking water water Sampling Date: 2024-06-25 2024-06-25 Client Sample Identification: TW1 - GW1 TW1 - GW2 Microbiology Criteria В RL Unit Α С CFU/100mL Escherichia coli (DC) 0 0 0 0 Total Coliforms (DC) CFU/100mL 0 0 0



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

## **OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS**

Client: Paterson Group

Project: PM15625 Reception Date: 2024-06-26

	Eurofins	Sample No :	7802343	7802344			
	Matrix :		Drinking	Drinking			
			water	water			
	San	npling Date :	2024-06-25	2024-06-25			
	Client Sample Id	entification :	TW1 - GW1	TW1 - GW2			
Nutrients	RL	Unit					
Ammonia (Total, as Nitrogen)	0.02	mg/L	0.259	0.263			
Total Kjeldahl Nitrogen	0.1	mg/L	1.46	0.483			



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

#### OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS

Client: Paterson Group

Project: PM15625 Reception Date: 2024-06-26 Eurofins Sample No: 7802343 7802344 Matrix: Drinking Drinking water water 2024-06-25 Sampling Date: 2024-06-25 Client Sample Identification: TW1 - GW1 TW1 - GW2 **Volatile Organic Compounds** Criteria RL Unit Α В C VOCs (Water, GC/MS) ug/L < 0.5 < 0.5 1,1,1,2-Tetrachloroethane 0.5 ug/L <0.4 <0.4 1 1 1-Trichloroethane 0.4 ug/L < 0.5 < 0.5 1,1,2,2-Tetrachloroethane 0.5 1,1,2-Trichloroethane 0.4 ug/L <0.4 <0.4 1,1-Dichloroethane 0.4 ug/L < 0.4 < 0.4 14 ug/L <0.4 <0.4 1.1-Dichloroethene 0.4 ug/L < 0.2 <0.2 1,2-Dibromoethane ug/L 200 <0.4 <0.4 1.2-Dichlorobenzene 0.4 1,2-Dichloroethane 0.2 ug/L 5 <0.2 <0.2 ug/L <0.5 <0.5 0.5 1,2-Dichloropropane ug/L <0.3 <0.3 1,3,5-Trimethylbenzene 0.3 ug/L < 0.4 < 0.4 1,3-Dichlorobenzene 0.4 5 <0.4 <0.4 1 4-Dichlorobenzene 0.4 ug/L Acetone 5 ug/L <5.0 <5.0 ug/L <0.5 <0.5 Benzene 0.5 < 0.3 Bromodichloromethane 0.3 ug/L < 0.3 ug/L <0.4 <0.4 Bromoform 0.4 Bromomethane 0.5 ug/L < 0.5 < 0.5 ug/L 2 Carbon tetrachloride 0.2 <0.2 <0.2 ug/L <0.2 <0.2 Chloroethane 0.2 <0.5 <0.5 ug/L Chloroform 0.5 ug/L <0.2 <0.2 Chloromethane 0.2 ug/L < 0.4 < 0.4 cis-1,2-Dichloroethene 0.4 cis-1,3-Dichloropropene 0.2 ug/L <0.2 <0.2 ug/L < 0.3 < 0.3 Dibromochloromethane 0.3 50 ug/L <4.0 <4.0 Dichloromethane 4 <5 <5 Diethyl ether 5 ug/L ug/L 140 <0.5 <0.5 Ethylbenzene 0.5 ug/L < 0.4 < 0.4 m/p-Xylene 0.4 ug/L <2.0 <2.0 Methyl ethyl ketone (MEK) 2 ug/L <5.0 <5.0 Methyl isobutyl ketone (MIBK) 5 <2 <2 ug/L Methyl tert-butyl ether (MTBE) 2 ug/L 80 <0.5 <0.5 Monochlorobenzene 0.5 ug/L <0.4 < 0.4 o-Xylene 0.4 <0.5 <0.5 Styrene 0.5 ug/L 10 < 0.3 < 0.3 Tetrachloroethylene (PCE) 0.3 ug/L 60 ug/L <0.4 <0.4 Toluene 0.4 trans-1,2-dichloroethene 0.4 ug/L < 0.4 < 0.4 0.2 ug/L <0.2 <0.2 trans-1,3-dichloropropene 5 Trichloroethylene (TCE) ug/L < 0.3 < 0.3 0.3 ug/L <0.5 <0.5 Trichlorofluoromethane 0.5



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

### **OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS**

Client : Paterson Group Project : PM15625

	Eurofins Sample No :	7802343	7802344		
	Matrix :	Drinking	Drinking		
		water	water		
	Sampling Date :	2024-06-25	2024-06-25		
	Client Sample Identification :	TW1 - GW1	TW1 - GW2		

			Client	Sample Ide	ntification:	TW1 - GW1	TW1 - GW2		
Volatile Organic Compounds				Criteria					
	RL	Unit	Α	В	С				
Vinyl chloride	0.2	ug/L	1			<0.2	<0.2		
Xylene (Total)	0.5	ug/L	90			<0.5	<0.5		
1,2-dichloroethane-d4 (surrogate)	0	%				122	109		
4-bromofluorobenzene (surrogate)	0	%				71	72		
Toluene-d8 (surrogate)	0	%				110	113		

Approved by:

Emma-Dawn Ferguson, M.Sc. Environmental Chemist Approved by:

Jason Kennedy, Project Manager

Reception Date: 2024-06-26



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

## OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client : Paterson Group Project : PM15625

Reception Date: 2024-06-26 Matrix Spike QC Duplicate Unit RL **Parameter** Blank Range % Recovery % Range % Recovery % Range % RPD % Alkalinity (Water, Automated) Method: Alkalinity (water, titration to pH 4.5, automated). Internal method: OTT-I-AT-WI45398. mg/L 0-20 Alkalinity (as CaCO3) 5 <5 100 95-105 Prep Date: 2024-06-28 Associated Samples: 7802343, 7802344 Analysis Date: 2024-07-02 Ammonia, Total (Water, Colorimetry) Method: Ammonia (Water, Colorimetry). Internal method: OTT-I-NUT-WI46201. Ammonia (Total, as Nitrogen) mg/L 0.02 < 0.020 80-120 0-20 Associated Samples: 7802343, 7802344 Prep Date: 2024-06-27 Analysis Date: 2024-06-27 Chloride (Water, IC) Method: Anions (Water, Ion Chromatography). Internal method: OTT-I-IC-WI45985. Chloride mg/L 0.5 <0.5 96 80-120 101 80-120 0-20 Prep Date: 2024-06-27 Associated Samples: 7802343, 7802344 Analysis Date: 2024-06-28 Colour, Apparent (Water, Spectrophotometry) Method: Colour (Water, Spectrophotometric). Internal method: OTT-I-SPEC-WI45980. TCU 2 110 39-159 Colour (Apparent) <2 0-40 Associated Samples: 7802343, 7802344 Prep Date: 2024-07-03 Analysis Date: 2024-07-03 Conductivity (Water, Automated) Method: Conductivity (Water, Autotitrator). Internal Method: OTT-I-AT-WI45398 Conductivity @ 25°C 5 98-102 0-20 uS/cm <5 2 Prep Date: 2024-06-28 Associated Samples: 7802343, 7802344 Analysis Date: 2024-07-02 DOC (Water, IR) Method: Organic carbon (water, IR, combustion). Internal method: OTT-I-DEM-WI46148. Dissolved Organic Carbon 80-120 0-15 0.5 < 0.5 84-116 Associated Samples: 7802343, 7802344 Prep Date: 2024-06-28 Analysis Date: 2024-07-02 Escherichia coli (DC Plate) Method: Total Coliforms and E.Coli by MF (Water, DC plate). Internal method: OTT-M-BAC-WI45296. Escherichia coli (DC) CFU/100mL 0 0-30 Associated Samples: 7802343, 7802344 Prep Date: 2024-06-26 Analysis Date: 2024-06-27 Fluoride (Water, Auto/ISE) Method: Fluoride by autotitrator, ion selective electrode. Internal method: OTT-I-AT-WI45398. 100 90-110 Fluoride mg/L 0.1 < 0.10 Associated Samples: 7802343, 7802344 Prep Date: 2024-06-28 Analysis Date: 2024-07-02



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

#### OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client : Paterson Group Project : PM15625

Reception Date: 2024-06-26 QC Matrix Spike Duplicate Unit RL Blank **Parameter** Recovery % Range % RPD % Recovery % Range % Range % Metals Scan (Water, ICP/MS) Method: Metals (Water, ICP/MS). Internal method: AMMTFQE1. 0.01 70-130 0-20 Aluminum < 0.01 100 80-120 mg/L 0.0005 < 0.0005 80-120 95 70-130 0-20 Antimony mg/L 89 0.001 < 0.001 100 80-120 100 70-130 0-20 Arsenic mg/L 0.001 < 0.001 70-130 0-20 Barium 100 80-120 mg/L Beryllium mg/L 0.0005 < 0.0005 112 80-120 113 70-130 0-20 Boron mg/L 0.01 < 0.01 110 80-120 119 70-130 0-20 70-130 Cadmium mg/L 0.0001 < 0.0001 103 80-120 0-20 Chromium mg/L 0.001 < 0.001 110 80-120 70-130 0-20 Cobalt 0.0002 <0.0002 105 80-120 70-130 0-20 mg/L Copper mg/L 0.001 < 0.001 110 80-120 70-130 0-20 Iron mg/L 0.03 < 0.03 90 80-120 101 70-130 0-20 0.001 < 0.001 100 80-120 70-130 0-20 Lead mg/L Manganese mg/L 0.01 < 0.01 100 80-120 70-130 0-20 Mercury mg/L 0.0001 < 0.0001 110 80-120 70-130 0-20 0.005 < 0.005 Molybdenum mg/L 100 80-120 95 70-130 0-20 Nickel mg/L 0.005 < 0.005 110 80-120 70-130 0-20 70-130 Selenium mg/L 0.001 < 0.001 105 80-120 114 0-20 Silver 0.0001 < 0.0001 70-130 mg/L 113 80-120 0-20 Strontium 0.001 <0.001 70-130 0-20 mg/L 100 80-120 0.0001 Thallium < 0.0001 99 80-120 70-130 0-20 mg/L Uranium mg/L 0.001 < 0.001 90 80-120 90 70-130 0-20 <0.001 Vanadium mg/L 0.001 100 80-120 70-130 0-20 Zinc mg/L 0.01 <0.01 110 80-120 70-130 0 - 20

Associated Samples: 7802343

Prep Date: 2024-07-02 Analysis Date: 2024-07-03

								ilialysis Dale	5. 2024-07-03
	Method : Met	als (Water, IC	CP/MS). Internal	method: AM	IMTFQE1.				
Aluminum	mg/L	0.01	<0.01	100	80-120	117	70-130	8	0-20
Antimony	mg/L	0.0005	<0.0005	89	80-120	-	70-130	-	0-20
Arsenic	mg/L	0.001	<0.001	100	80-120	104	70-130	-	0-20
Barium	mg/L	0.001	<0.001	100	80-120	83	70-130	1	0-20
Beryllium	mg/L	0.0005	<0.0005	112	80-120	-	70-130	-	0-20
Boron	mg/L	0.01	<0.01	110	80-120			1	0-20
Cadmium	mg/L	0.0001	<0.0001	103	80-120	-	70-130	-	0-20
Chromium	mg/L	0.001	<0.001	110	80-120	99	70-130	-	0-20
Cobalt	mg/L	0.0002	<0.0002	105	80-120	103	70-130	-	0-20
Copper	mg/L	0.001	<0.001	110	80-120	93	70-130	-	0-20
Iron	mg/L	0.03	< 0.03	90	80-120	100	70-130	4	0-20
Lead	mg/L	0.001	<0.001	100	80-120	89	70-130	-	0-20
Manganese	mg/L	0.01	<0.01	100	80-120	103	70-130	-	0-20
Mercury	mg/L	0.0001	<0.0001	110	80-120	103	70-130	-	0-20
Molybdenum	mg/L	0.005	<0.005	100	80-120	109	70-130	-	0-20
Nickel	mg/L	0.005	<0.005	110	80-120	101	70-130	-	0-20
Selenium	mg/L	0.001	<0.001	105	80-120	-	70-130	-	0-20
Silver	mg/L	0.0001	<0.0001	113	80-120	-	70-130	-	0-20
Strontium	mg/L	0.001	<0.001	100	80-120	73	70-130	1	0-20
Thallium	mg/L	0.0001	<0.0001	99	80-120	-	70-130	-	0-20
Uranium	mg/L	0.001	<0.001	90	80-120	94	70-130	-	0-20



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

## OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client : Paterson Group

Project: PM15625 Reception Date: 2024-06-26

Parameter	Unit	RL	Blank		C		Spike		icate
	Offic	IXL	Dialik	Recovery %	Range %	Recovery %	% Range %	RPD %	Range %
Metals Scan (Water, ICP/MS)									
.,		1	CP/MS). Interna						
Vanadium 	mg/L	0.001	<0.001	100	80-120	100	70-130	-	0-20
Zinc	mg/L	0.01	<0.01	110	80-120	-	70-130	- Davis Data	0-20
	Associated	l Samples : 78	802344					Prep Date Analysis Date	: 2024-07-02 : 2024-07-03
Metals Scan (Water, ICP/OES)								-	
	Method : Metals (\	Nater, ICP/OI	ES). Internal m	nethod: OTT-I-I	MET-WI4849	1.			
Calcium	mg/L	1	<1	107	86-115	100	70-130	0	0-20
Magnesium	mg/L	1	<1	105	91-109	104	70-130	0	0-20
Potassium	mg/L	1	<1	106	87-113	116	70-130	-	0-20
Sodium	mg/L	1	<1	104	85-115	108	70-130	0	0-20
	Associated San	ples : 780234	43, 7802344	!		1	-	•	2024-07-0
Nitrate (Water, IC)								Analysis Date	2024-00-20
Traction, 10)	Method : Anions (Wate	r. Ion Chrom	atography) Int	ernal method	OTT-I-IC-WI	45985.			
Nitrate (as Nitrogen)	mg/L	0.1	<0.1	97	80-120	101	80-120		
	Associated San			-				Prep Date	2024-06-27
	7.0000.0.00	.p.000020	.0, .0020					Analysis Date	
Nitrite (Water, IC)									
	Method : Anions (Wate	r, Ion Chroma	atography). Int	ernal method:	OTT-I-IC-WI-	45985.			
Nitrite (as Nitrogen)	mg/L	0.1	<0.1	93	80-120	100	80-120		
	Associated Sam	nples : 780234	43, 7802344					Prep Date	2024-06-2
								Analysis Date	2024-06-28
pH (25°C) (Water, Automated)									
	Method : pH (Water	, Automated	Meter). Interna	al method: OT	T-I-AT-WI453	98.	_		
pH @ 25°C		1	5.78	100	97-103			0	0-20
	Associated San	iples : 780234	43, 7802344					•	2024-06-2
								Analysis Date	2024-07-0
Phenols (Water, Colorimetry)									
	Method : Phenols (W								
Phenols-4AAP	mg/L	0.001	<0.001	114	75-125	111	70-130	-	0-20
	Associated San	iples : 780234	43, 7802344					Prep Date Analysis Date	2024-06-2
0.1.1.1.1.1.10								Allalysis Date	2024-07-0
Sulphate (Water, IC)	Mathad Aniana (Mata	u lau Ohuaua	-4		OTT LIC W//	45005			
Culabata	Method : Anions (Wate				90-110		90.120		
Sulphate	mg/L	1	<1	95	90-110	95	80-120	D D. t.	0004.00.0
	Associated San	ipies : 780234	43, 7802344					Prep Date Analysis Date:	: 2024-06-27 : 2024-06-28
Sulphide (Water, Colorimetry)									
outpinde (vater, colorinetry)	Method : Sulphide, S2-	(Water Color	rimetrv) Intern	al method: OT	T-I-SPFC-W	145931			
Sulphide (S2-)	mg/L	0.01	<0.01	96	80-120			-	0-20
. , ,	Associated San							Prep Date	2024-07-02
		,	.,					Analysis Date	
Tannin and Lignin (Water, Spec)									
	Method : Tannin and L	ignin (Water,	Spec), Interna	l method: OTT	T-I-SPEC-WIS	57693.			
Tannin and Lignin	mg/L	0.1	<0.1	96	80-120			-	0-20



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

## OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Paterson Group

Project: PM15625 Reception Date: 2024-06-26

	11-24	D.	Disaste	QC	5	Matrix S	Spike	Dupli	cate
Parameter	Unit	RL	Blank	Recovery %	Range %	Recovery %	Range %	RPD %	Range %
Total Coliforms (DC Plate)									
Method : Total (	Coliforms and E.C	oli by MF (V	Vater, DC plate)	. Internal meth	nod: OTT-M-	BAC-WI45296			
Total Coliforms (DC)	CFU/100mL	0	0					-	0-30
	Associated Sam	ples : 78023	43, 7802344				ļ	Prep Date: Analysis Date:	2024-06-26 2024-06-27
Total Kjeldahl Nitrogen (Water, Colorimetry)									
M	lethod : TKN (Wa	ter, colorime	try). Internal me	thod: OTT-I-N	UT-WI4620	1.			
Total Kjeldahl Nitrogen	mg/L	0.1	<0.100	95	70-130	102	70-130	1	0-20
	Associated Sam	ples : 78023	43, 7802344				ļ	Prep Date: Analysis Date:	2024-06-27 2024-06-28
Turbidity (Water, Turbidimeter)									
Met/	nod : Turbidity (W	ater, Turbidii	meter). Internal	method: OTT-l	I-TUR-WI46	288.			
Turbidity	NTU	0.1	<0.1	100	80-120			2	0-30
	Associated Sam	oles : 780234	43, 7802344				ļ	Prep Date: Analysis Date:	2024-06-27 2024-06-28



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

### OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Paterson Group

Project: PM15625 Reception Date: 2024-06-26

			Recovery %	ISAHUE 70				
			, , , , ,	rturige 70	recovery 70	Range %	RPD %	Range %
d · Volatile Organi	ic Compound	ls (Water GC/N	AS) Internal m	ethod: AMVC	DMSF8			
		_ `				70-130	-	0-30
							-	0-30
-							-	0-30
-							-	0-30
-							-	0-30
-							-	0-30
-			96	70-130		70-130	-	0-30
-	0.4	<0.4	111	70-130	87	70-130	-	0-30
-	0.2	<0.2	106	70-130	100	70-130	-	0-30
-							-	0-30
-		<0.3	111	70-130	103	70-130	-	0-30
	0.4	<0.4	110	70-130	104	70-130	-	0-30
-	0.4	<0.4	110	70-130	107	70-130	-	0-30
-							-	0-30
-							_	0-30
							-	0-30
-							-	0-30
-							-	0-30
-							-	0-30
-							-	0-30
							-	0-30
		<0.2	83	70-130	91	70-130	-	0-30
-	0.4	<0.4	97	70-130	105	70-130	-	0-30
-	0.2	<0.2	79	70-130	119	70-130	-	0-30
_							-	0-30
-	4	<4.0	90	70-130	91	70-130	-	0-30
	5	<5	100	70-130	100	70-130	-	0-30
	0.5	<0.5	117	70-130	117	70-130	-	0-30
	0.4	<0.4	94	70-130	98	70-130	-	0-30
-	2	<2.0	74	70-130	93	70-130	-	0-30
-	5		90	70-130	119	70-130	-	0-30
-	2	<2	90	70-130	90	70-130	-	0-30
-	0.5	<0.5	104	70-130	100	70-130	-	0-30
ug/L	0.4	<0.4	117	70-130	96	70-130	-	0-30
ug/L	0.5	<0.5	107	70-130	100	70-130	-	0-30
ug/L	0.3	<0.3	95	70-130	112	70-130	-	0-30
ug/L	0.4	<0.4	109	70-130	92	70-130	-	0-30
ug/L	0.4	<0.4	90	70-130	104	70-130	-	0-30
ug/L	0.2	<0.2	83	70-130	113	70-130	-	0-30
ug/L	0.3	<0.3	102	70-130	104	70-130	-	0-30
ug/L	0.5	<0.5	97	70-130	117	70-130	-	0-30
ug/L	0.2	<0.2	83	70-130	117	70-130	-	0-30
	0.5	<0.5				-		-
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L       0.5         ug/L       0.4         ug/L       0.4         ug/L       0.4         ug/L       0.4         ug/L       0.2         ug/L       0.2         ug/L       0.5         ug/L       0.3         ug/L       0.4         ug/L       0.4         ug/L       0.5         ug/L       0.5         ug/L       0.5         ug/L       0.2         ug/L       0.2         ug/L       0.2         ug/L       0.4         ug/L       0.2         ug/L       0.3         ug/L       0.4         ug/L       0.5         ug/L       0.5         ug/L       0.5         ug/L       0.5         ug/L       0.5         ug/L       0.5         ug/L       0.4         ug/L       0.4         ug/L       0.4         ug/L       0.4         ug/L       0.5         ug/L       0.4         ug/L       0.5         ug/L       0.5	ug/L         0.5         <0.5	ug/L         0.5         <0.5	ug/L         0.5         <0.5	ug/L         0.4         <0.4	ug/L         0.5         <0.5         109         70-130         91         70-130           ug/L         0.4         <0.4         92         70-130         114         70-130           ug/L         0.5         <0.5         119         70-130         114         70-130           ug/L         0.4         <0.4         118         70-130         110         70-130           ug/L         0.4         <0.4         97         70-130         110         70-130           ug/L         0.4         <0.4         99         70-130         113         70-130           ug/L         0.2         <0.2         <0.2         96         70-130         113         70-130           ug/L         0.4         <0.4         111         70-130         100         70-130           ug/L         0.5         <0.5         100         70-130         100         70-130           ug/L         0.5         <0.5         100         70-130         100         70-130           ug/L         0.4         <0.4         110         70-130         103         70-130           ug/L         0.4         <0.4         110         70-130	ug/L         0.5         <0.5

Where RPD % is reported as "-" the calculation is not available because one or both of the duplicates is within 5 times the RL.

Analysis Date: 2024-07-03



Page ____ of ____

STANDARD CHAIN-OF-CUSTO

Eurofins Workorder #: 146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fa 100292480 CLIENT INFORMATION **INVOICE INF** RMATION: YES Paterson Group Company: Contact: Alex Schopf Contact: 2024-06-26 17:07:06 Printed On: Address: 9 Auriga Drive Address: 613-218-3444 Telephone: Telephone: 60535 #1: eardley@patersongroup.ca, mlaflamme@patersongroup.ca **REGULATION/GUIDELINE REQUIRED** Email: Sanitary Sewer, City: Otlawa O. Reg 153 Email: #2: aschopf@patersongroup.ca; Storm Sewer, City: Ottawa Project: PM15625 Quote #: Table # _____ Course / Fine, Surface / subsurface. Type: Com-Ind / Res-Park / Agri / GW / All Other / Sediment 1 **TURN-AROUND TIME (Business Days) ODWSOG** 1 Day* (100%) 2 Day** (50%) 3-5 Days (25%) ✓ 5-7 Days (Standard) PWQO Excess Soil, Table: Please contact Lab in advance to determine rush availability. O. Reg 347/558 *For results reported after rush due date, surcharges will apply: before 12:00 - 100%, after 12:00 - 50%. **For results reported after rush due date, surcharges will apply: before 12:00 - 50%, after 12:00 - 25%. The sample results from this submission will form part of a formal Record of Site Condition (RSC) under O.Reg. 153/04 Yes No Sample Details Sample Analysis Required The optimal temperature conditions during transport should be less than 10°C. Sample(s) Field Filtered --> RN# cannot be frozen, unless otherwise indicated or agreed upon with the Laboratory. Note (Lab Use Only) that this COC is not to be used for drinking water samples. The COC must be complete upon O.Reg.153 parameters Metals submission of the samples, there will be a \$25 surcharge if required information is missing (required fields are shaded in grey). Sample Matrix Total 품 Sample ID Date/Time Collected TW1-GW1 June 25, 2024 GW 10 TW1-GW2 June 25, 2024 GW COMMENTS: PRINT TEMP (°C) Total and Trace Metals Alex Schopf June 25, 2024 Sampled By: Alex Schopf June 26, 2024 Relinquished By CUSTODY SEAL: YES NO ice packs submitted: Yes Received By: 401 Magnetic Drive, Unit #1, North York, ON, M3J 3H9 - Telephone: 416-661-5287 • 380 Vansickle Regd, Unit #630, St. Catharines, ON, L2S 0B5 - Telephone: 905-680-8887 • 608 Norris Court, Kingston, ON, K7P 2R9 - Telephone: 613-634-9307

AFSTDCOC.5



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

**OFFICIAL CERTIFICATE OF ANALYSIS: 3991228** 

WORK REQUEST : 100298583 Report Date : 2024-07-22

Paterson Group 9 Auriga Dr Nepean, Ontario K2E 7T9

Attention: Alex Schopf

Reception Date: 2024-07-19 Project: PM15625

Sampler: NA
PO Number: 60753
Temperature: 14 °C

Analysis	Quantity	External Method
Colour, Apparent (Water, Spectrophotometry)	1	Modified from SM 2120 C
Turbidity (Water, Turbidimeter)	1	Modified from SM 2130 B

#### Criteria:

A: Ontario Regulation 169/03 (Non-Regulated Drinking Water)

### Sample status upon receipt :

7872590 Compliant

#### Notes

- All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated.
- Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/
- Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

### Legend :

www.eurofins.ca

Method references and/or additional QA/QC information available on request.



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

### OFFICIAL CERTIFICATE OF ANALYSIS - EXCEEDENCE SUMMARY

Client : Paterson Group Project : PM15625

Reception Date : 2024-07-19

Eurofins	Client Sample	Analysis	Desuit	11-24-	Exceeded Criteria					
Sample No	Identification	Analyte	Result	Units	A	В	С			
Colour, Appare	ent (Water, Spectrophotom	netry)								
7872590	TW1 - GW - 3	Colour (Apparent)	12	TCU	5					



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

## OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS

Client : Paterson Group

Project: PM15625	Reception Date: 2024-07-19
------------------	----------------------------

				Eurofins Sa	ample No :	7872590		
					Matrix :	Groundwater		
				Samp	oling Date :	2024-07-19		
			Client S	Sample Ide	ntification :	TW1 - GW - 3		
General Chemistry				Criteria				
	RL	Unit	Α	В	С			
Colour (Apparent)	2	TCU	5		12			
Turbidity	0.1	NTU	5			3.29		

Approved by:

Emma-Dawn Ferguson, M.Sc.



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

### OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Paterson Group Project: PM15625

Reception Date: 2024-07-19

	11-24	DI	Disaste	Q	2	Matrix S	Spike	Duplicate	
Parameter	Unit	RL	Blank	Recovery %	Range %	Recovery %	Range %	RPD %	Range %
Colour, Apparent (Water, Spectrophotometry)									
Method	: Colour (Water,	Spectrophoto	ometric). Inter	nal method: OT	T-I-SPEC-W	145980.			
Colour (Apparent)	TCU	2	<2	102	39-159			-	0-40
	Associated	Samples : 78	872590				P	Prep Date: Analysis Date:	2024-07-22 2024-07-22
Turbidity (Water, Turbidimeter)									
Meti	nod : Turbidity (W	ater, Turbidir	meter). Interna	al method: OTT-i	I-TUR-WI46	288.			
Turbidity	NTU	0.1	<0.1	102	80-120			2	0-30
	Associated	Samples: 78	872590				A	Prep Date: Analysis Date:	2024-07-20 2024-07-20

Where RPD % is reported as "-" the calculation is not available because one or both of the duplicates is within 5 times the RL.

# eurofins

Page ____ of ____

## STANDARD CHAIN-OF-CUSTODY

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

			N N	140 COIU	nnaue Ku	Jau, Oille	eo, Ottaw	a, UN, KZ	F / 11 - PUC	iue: 013.1	27 <u>-5692, F</u>	1X: 073-17	-3224							12	
		CLIENT INFORMATION					50				CE INF					100	2985	83		N: Y	'ES ✓ NO 🔲 )
Company:	Paterson Group								Compar	ıy:										A 41-10	
Contact:	Alex Schopf					-			Contact	• 🗀											
Address:	9 Auriga Drive								Address	dress: Printed On: 2024-07-19 17:13:38											
Telephone:	613-218-3444	Cell:				-30			Telepho	elephone: PO #: 60753											
Email:	#1: eardley@patersor	ngroup.ca, mkillam@paterson	group.	<b>c</b> a				M - 17	1	REGULATION/GUIDELINE REQUIRED											
Email:	#z: aschopf@pate	rsongroup.ca;								Sanitary	Sewer, C	ity: Otta	va		-	-		O. Reg	153	_	
Project:	PM15625			Quote #						Storm Sewer, City: Ottawa Table #, Course / Fine, Surface / subsurface.						Fine, Surface / subsurface.					
	TURN-AROUND TIME (Business Days)								opwso	ıG						1				Agri / GW / All Other / Sediment	
1 Da	1 Day* (100%) 2 Day** (50%) 3-5 Days (25%) 5-7 Days (Stand						tandard)		PWQO								Excess Si	oil, Table:		Түре:	
9	Please contact Lab in advance to determine rush availability.  *For results reported after rush due date, surcharges will apply: before 12:00 - 100%, after 12:00 - 50%.								O. Reg	847/558											
	**For results reported after rush due date, surcharges will apply: before 12:00 - 50%, after 12:00 - 25%.							$]\Box$	Other:							The s				bmission will form part of a formal	
							$]\Box$	None								кесога	l of site t	Yes	(RSC) under O.Reg. 153/04 No		
The optimal to	emperature conditions during tra	ensport should be less than 10°C. Sample(s)	(0.000 SUC# 800)	Details		,	1000		1		Sampl	e Analys	is Requ	ired	ed				Sections:		
cannot be fro	zen, unless otherwise indicated	or agreed upon with the Laboratory. Note	Field Fill	ered>			O Pa	~ 152 mas		e.,		1	1	i	1	i a		1	1	<b>1</b>	RN# (Lab Use Only)
		er samples. The COC must be complete upon surcharge if required information is missing					U.Re	g.153 par	ameters	ß		рарет	충		!	als		:		⊑	(120 032 0111)
	(required fields are		110000	ners						ngan			Supply (TC only)		ļ	/let	1	号.	⊨	⊒	
			e Matrix	ıntai	. ₹					+	l le s	ıttacı	livision 2 (Ec/			a		ij	ō	E	
Sample ID		Date/Time Collected	Sample	of Containers	PHC F1	BTEX	VOCs	PAHS	Ğ.	letals	Metals only	See attached	Subdi	TSS	핍	Total Metals	Hg	Turbidity	Colour	Aluminum	
	TW1 - GW - 3	July 19, 2024	GW	1						2	2						Ħ				7872590
<u> </u>	<u> </u>				冒		Ħ		旨		Ħ						Ħ	吉	듥		16 700
			<u> </u>		冒						+==				<del> -</del>	<del></del>		Ť		1	
					i	旹	H	旨	旹	峝	峝	H	量	計			一	旹			
<del> </del>	**			1		1			恃	肯	計		冒		-		픰			<del> </del>	
1					昌				┝═┤		旹			片				$\dashv$			
			1						H		旨										
<u> </u> 			<u> -</u>		믐					H	旹	븕	븜	<u>'</u>		+	믐				
			<u> </u>	 	늼				H			<u>                                   </u>		븕		計	旹				
] 			] 	<u>                                     </u>	<u>니니</u>  1						불	H	뷤	불				블	旹	+=-	
							DATE	(TIME		Ш		COMME	NTS;		<u></u>	اليك					
PRINT SIGN				400	-				TEM	P (*C)											
Sampled By: Alex Schopf Williams			July 19, 2024																		
Relinquished B	Inquished By: Alex Schopf				July 19, 2024  Custody SEAL: YES NO cc packs submitted:																
Received By:	401 Magnetic Drive Unit	#1, North York, ON, M3J 3H9 - Telephone: 4	5.561.5	927 - 3	IRD Vac	ickie Bos	d the	510 50 6	athoring:	100	W14	1/24	5 600 00								ice packs submitted: Yes No
	-va magnetic Ditve, Unit	. ma, mortin Tork, Oly, Maj and - Telephone: 4.	V-001-32		OU VEITS	icale noe	-, - Je "	70, 31. 6	actiai III (25,	O14, L23 (	nos - retet	mone; 90	J-00U-08	u, - 1		N	Baton,	ON, KIP	ZU3 - 161	-priorie; (	013-034-3307

AFSTDCOC.5

order#:



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

**OFFICIAL CERTIFICATE OF ANALYSIS: 3993095** 

WORK REQUEST : 100298584 Report Date : 2024-07-24

Paterson Group 9 Auriga Dr Nepean, Ontario

K2E 7T9 Attention : Alex Schopf Reception Date: 2024-07-19 Project: PM15625

Sampler: NA
PO Number: 60753
Temperature: 14 °C

Analysis	Quantity	External Method
Metals Scan (Water, ICP/MS)	1	Modified from EPA 200.8

#### Criteria:

A: Ontario Regulation 169/03 (Non-Regulated Drinking Water)

#### Sample status upon receipt :

7872596 Compliant

#### Notes

- All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated.
- Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/
- Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

#### Legend:

www.eurofins.ca



0.1

RL

0.01

Unit

mg/L

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

### **OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS**

Reception Date: 2024-07-19

Client : Paterson Group Project : PM15625

Aluminum

	Eurofins Sample No :	7872596		
	Matrix :	Groundwater		
	Sampling Date :	2024-07-19		
	Client Sample Identification:	TW1 - GW - 3		
Metals	Criteria			

0.02

Approved by :

Emma-Dawn Ferguson, M.Sc.



146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

### OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Paterson Group

Project: PM15625 Reception Date: 2024-07-19

<b>-</b>	1144	DI	Diami	QC		Matrix S	Spike	Dupl	icate				
Parameter	Unit	RL	Blank	Recovery %	Range %	Recovery % Range 9		RPD %	Range %				
Metals Scan (Water, ICP/MS)													
Method : Metals (Water, ICP/MS). Internal method: AMMTFQE1.													
Aluminum	mg/L	0.01	<0.01	100	80-120	106	70-130	0	0-20				
	Associated Samples: 7872596 Prep Date: 2024-07-21												
							4	Analysis Date	2024-07-23				

Where RPD % is reported as "-" the calculation is not available because one or both of the duplicates is within 5 times the RL.

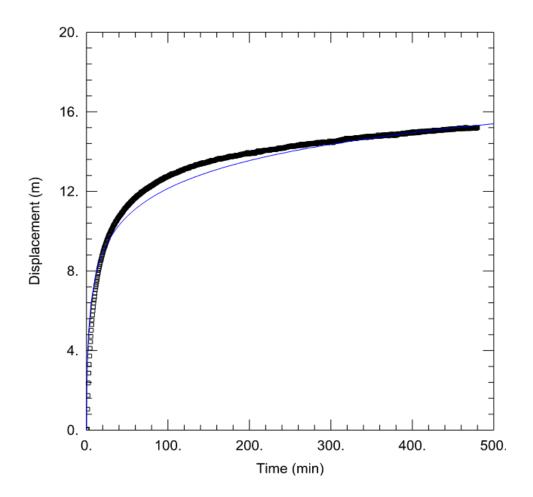
e e	urofins			146								DF-CU			)7. <b>57</b> 77								#:
		CLIENT INFORMATION	DN	145	Loignnac	e KDa	9, OIIIC	as, Otta	wa, UN,	KZE /		INVOIC		- 10	1888 - 18	N (\$		:	1002	9858	14		res 🗸 no 🔲)
Company:	Paterson Group									c	Company:			1				1888 ( 844					
Contact:	Alex Schopf						100			c	Contact	lact:											
Address:	9 Auriga Drive									A	Addres	Printed On: 2024-07-19 17:15:49					49						
Telephone:	613-218-3444	Cel	l:	<u> </u>	_			-		Т	elepho	one:				Ba.			PO #:		753		
Email:	#1: eardley@paterso	ongroup.ca, mkillam@paters	ongrou	ıp.ca		7						,	_		Ri	GUL	ATIO	v/GU	IDELI	NE RI	QUIF	RED	
mail: #2: aschopf@patersongroup.ca;						Sanitary	Sewer, C	ity:_Otta	wa			_		O. Re	; 153	9.500							
Project:	PM15625	<del></del>		Quot	e#:							Storm Se	wer, Cit	/:_Otta	wa			_		Tab	le#	, Course	/ Fine, Surface / subsurface.
	Т	URN-AROUND TIME (Busin	ess Da	ys)							<b>✓</b>	opwsod	3							Гуре: с	om-Ind / F	Res-Park ,	Agri / GW / All Other / Sediment
1 Da	<u> </u>	<u> </u>	S Days (25				<b>✓</b> 5-7	Days (	Standaı	(d)	딜	PWQO								Excess	soil, Table		Туре:
		ease contact Lab in advance to determine re ter rush due date, surcharges will apply: be			ter 12:00	- 50%	<u>.                                    </u>	-		4	Щ	O. Reg 34	17/558						20076				
	**For results reported :	after rush due date, surcharges will apply: b	efore 12:00	- 50%, aft	ter 12:00	- 25%.	•			-	Other:							The sample results from this submission will form part of a f Record of Site Condition (RSC) under O.Reg. 153/04			(RSC) under O.Reg. 153/04		
				Sample Details						None Sample Analysis Required					2.2			ā.		Yes	L_INO		
	- 1	ransport should be less than 10°C. Samp! I or agreed upon with the Laboratory. No	101-13	Filtered	>											F	f		c	r			RN#
	the samples, there will be a \$25	ter samples. The COC must be complete is surcharge if required information is mis			-	1		O.R	eg.153	param	neters	มี		paper	pply only)			tals		<u>ج</u> ا		١Ę	(Lab Use Only)
	(required fields are	e shaded in grey).	Matrix	Containers	1	<u>.</u>						+ Inorganics	γ	ched	11 % 50 1			Metal		Ē	Ę	Ë	
	<del></del>	I-10 4-10 10 10 10 10 10 10 10 10 10 10 10 10 1	Sample Matrix	of Cont		-14-14	втех	VOCs	PAR		P. B.	Wetals +	Metals only	See attached paper	Subdivision Bacti 2 (Ec/I	SS	표	Total	Нg	Turbidity	Colour	Aluminum	
Sample ID	TW1 - GW - 3	Date/Time Collected July 19, 2024	G\		F	<u>-</u>	<u> </u>	Ě		-1	<u> </u>	ž T	ž	L _s	S B				片				7872596
<u> </u>	1441-044-3	July 19, 2024			╬	4				7	H	旹		믬		범	H		불		旹		7872516
<u> </u>					╬	╡╁		$\vdash$		=		+				十	H				旹		
1			-  -	- -	-   -	=11		⊨	<del>                                     </del>			旹				旹	H			<u> </u>			
						7		F	i i i =	1	肓	Ħ			胃	青	F		Ħ		H		
			1	-		Ŧij	F			1		Ħ	Ħ			Ī	Ħ		F		F		
<u> </u>				- -						1						Ī					Ħ		
İ	<del></del>									1													_
		10 10 10 10 10 10 10 10 10 10 10 10 10 1																					-
	PRINT						SIGN			DATE/TIME TEMP (°C) COMMENTS:													
Sampled By:	1				Abstrast				July 19, 2024														
Relinquished B	Ilinquished By: Alex Schopf				Hts. San					July 19, 2024				17				V2- 27	-				

401 Magnetic Drive, Unit #1, North York, ON, M3J 3H9 - Telephone: 416-661-5287 • 380 Vansickle Road, Unit #680, St. Catharines, ON, L2S 085 • Celephone: 905-680-8887 • 608 Norris Court, Kingston, ON, K7P 2R9 - Telephone: 613-634-9307

Page ____ of ____

Received By:

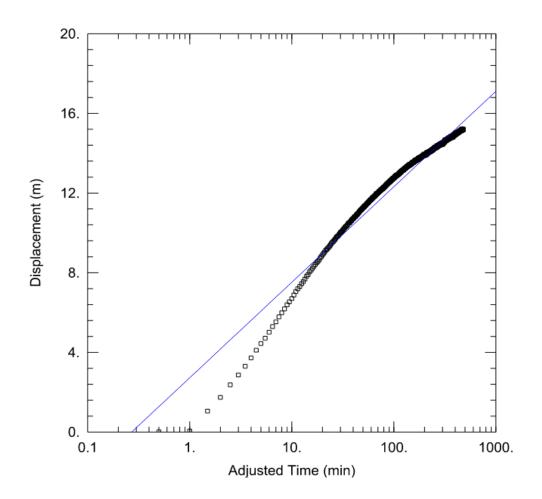
AFSTDCQC.5


Copies: White - Laboratory, Yellow - Sampler

YES NO toe packs submitted: Yes No

CUSTODY SEAL:

## **Pumping Test Analysis Report**


File No.	PM15625	Well ID:	TW1
Date:	Tuesday, June 25, 2024	Solution Method:	Theis
Client:	Ken Hoppner	Transmissitivity (m2/day):	1.7
Site Address:	1811 Richardson Side Road	Discharge Rate (L/min)	30
Project:	Re-zoning Application	Analysis performed by:	AS





## **Pumping Test Analysis Report**

File No.	PM15625	Well ID:	TW1
Date:	Tuesday, June 25, 2024	Solution Method:	Cooper-Jacob
Client:	Ken Hoppner	Transmissitivity (m2/day):	1.65
Site Address:	1811 Richardson Side Road	Discharge Rate (L/min)	30
Project:	Re-zoning Application	Analysis performed by:	AS





## **Pumping Test Analysis Report**

File No. PM15625

Date: Tuesday, June 25, 2024
Client: Ken Hoppner
Site Address: 1811 Richardson Side Road
Project: Re-zoning Application

Summary Table:		
Solution Method:	Well ID:	Transmissitivity (m2/day):
Theis	TW1	1.7
Cooper-Jacob	TW1	1.65
Average:		1.68



PREDICTIVE NITRATE I	MPAC ⁻	Γ ASSESS	EMENT
Infiltration Factors			
Topography		0.10	
Soil		0.20	
Cover		0.15	
Total		0.45	
Site Characteristics			
Area of Site :		116782	$m^2$
Total of roof areas:		2500	$m^2$
Total area of paved driveway areas:		6215	$m^2$
Roof + paved driveway areas		8715	$m^2$
Impervious Area		8715	$m^2$
Percent Impervious Area =		7	%
Infiltration Area =		108067	$m^2$
Septic Effluent			
Concentration of Effluent (Cs) =		40	mg/L
Infiltration Calculation			
Nitrate concentration in precipitation (C _i ) =		0	mg/L
Surplus Water (Environment Canada)		329	mm/yr
Factored Water Surplus =		148	mm/yr
Infiltration % due to stormwater management measures		-	%
Infiltration rate from stormwater management measures =		0	mm/yr
Infiltration Flow Entering the System (Q _i ) =		44	m ³ /day
Mass Balance Model (MOEE, 1995)			
$C_T = (Q_b C_b + Q_e C_e + Q_i C_i)/(Q_b + Q_e + Q_i)$	= Cumulative	Nitrate Concentration	
$Q_b$ = flow entering the system across the upgradient area		0	m ³ /day
C _b = background nitrate concentration		0	mg/L
Cs = concentration of nitrates in the septic effluent		40	mg/L
$Q_i$ = flow entering the system from infiltration		44	m³/day
C _i = Concentration of nitrates in the infiltrate		0	mg/L
	C _T =	10.00	mg/L
Maximum Allowable Sewage Flow Volume			
Daily Sewage Flow (Qs)=		14.61122351	m ³

JOB NO.

## patersongroup

# 1811 Richardson Side Road PM15625

MW1	inputs
Н	- 8
DS	952
Calcium	75
Alkalinity	225
Temp.	11

Langel	Langelier Saturation Index (LSI) Calculation (Langelier, 1936)											
	LSI = pH - pHs $A = (Log10 [TDS] - 1) / 10$ pHs = (9.3 + A + B) - (C + D) $B = -13.12 \times Log10 (oC + 273) + 34.55$ Where: $C = Log10 [Ca2 + as CaCO3] - 0.4$ D = Log10 [alkalinity as CaCO3]											
		LSI =	0.0									
LSI	Effect											
0.5 to 2	Water is super saturated and tends to precipitate a scale lay	er of calcium carbonate (scale fo	rming but non-corrosive)									
0 to 0.5	Water is super saturated and tends to precipitate a scale la	yer of calcium carbonate (slight)	y scale forming and corrosi	ve).								
0	Water is saturated (in equilibrium) with calcium carbonate. A scale layer of calcium carbonate is neither precipitated nor dissolved.											
0 to -0.5	Water is under saturated and tends to dissolve solid calcium carbonate (slightly corrosivebut non-scale forming).											
-0.5 to -2	Water is under saturated and tends to dissolve solid calcium carbonate (seriously corrosive).											



## **QUOTE #1861**

SENT ON:

Oct 06, 2023

RECIPIENT:

## **Ken Hoppner**

1818 Bradley Side Road Ottawa, Ontario K0A 1L0 SENDER:

## PV Plumbing & Water Inc.

3831 Carp Road Carp, Ontario K0A 1L0

Phone: 613-839-5550

Email: contact@pvplumbingwater.com

Product/Service	Description	Qty.	Unit Price	Total
WT / RO / V360	Vectapure 360 4 Stage 75gpm Complete Reverse Osmosis System with Quick Change Filters.	1	\$455.00	\$455.00
	The V360 Reverse Osmosis System is a compact, under-sink residential drinking water system that combines the ease of quick-change colour-coded cartridges, with a 75 gallon (285 liter) per day output. Pure, refreshing drinking water at your fingertips.			
	Your Vectapure 360 system has effortless quarter- turn filter cartridges that change in seconds without the need to turn off the water supply! Each cartridge is colour-coded for easy and trouble-free selection and installation.			
WT / Softener / CS45FP	Franklin Water 45K Deluxe Clack Water Softener with Bypass	1	\$1,695.00	\$1,695.00
WT / CFO / ZEN12	1.2 CuFt Clack Zentec [™] Hybrid Capsulate Chemical-Free Iron, Sulphur, and Manganese Filter - EWS BTZC1 - CFOZ12	1	\$1,606.00	\$1,606.00
	Chemical-Free Zentec TM Capsulate Iron, Sulphur, and Manganese Filtration for iron, sulphur (often referred to as that "rotten egg smell"), and manganese for well water applications.			
	No chemicals, safe for septic beds, inexpensive operation uses air injection with our Zentec TM Hybrid specialty removal media blend for clean filtered water.			



## **QUOTE #1861**

SENT ON:

Oct 06, 2023

Product/Service	Description	Qty.	Unit Price	Total
WT / UV / IHS10D4	Viqua Whole Home UV Rack System with 10" Prefilter and D4 UV Lamp	1	\$1,095.00	\$1,095.00
	The IHS10-D4 been validated through microbial testing to inactivate the following microorganisms: Cryptosporidium, Giardia, E.Coli and Fecal Coliform. The Integrated Home System is a reliable and economical way to treat drinking water in any residential application, for flow rates up to 12 gpm (45 lpm).			
WT / Filters / EPBB10	Pentair carbon block filter for "Big Blue" or other 4.5" x 10" filter housing. 5 Micron Rating. Recommend changing annually.	1	\$65.00	\$65.00
WT / Clack / 75TKJG	3/4" John Guest 90 Tail Kit for Clack	2	\$32.50	\$65.00
LB / Day Rate	Labour charge for jobs requiring full day of work.	1	\$1,350.00	\$1,350.00
Materials	Materials to complete installation. Pipe and fittings.	1	\$350.00	\$350.00
Notes	Recommend onsite consult to nail down requirements and scope of new treatment system once building is further along and ready for water. This quote is for planning purposes only and based off information collected while onsite. Hub drain in utility room would be required for drainage.			
	Assumes use of well water for new building only. Point of use RO treatment for drinking water at bar or kitchen. Softener, iron, sulfur and UV treatment for whole building. Assumes 10GPD flow rate. 75GPM per day RO water.			
	WE DO NOT DRILL GRANITE/STONE/MARBLE COUNTERTOPS FOR R.O. SPIGOT			

Subtotal	\$6,681.00
HST (13.0%)	\$868.53
Total	\$7,549.53

This quote is valid for the next 30 days, after which values may be subject to change.