Servicing and Stormwater Management Report -Norberry Residences - 740 Springland Drive

Project # 160401483

Prepared for: Great Wise Developments

Prepared by: Stantec Consulting Ltd.

Sign-off Sheet

This document entitled Servicing and Stormwater Management Report -Norberry Residences - 740 Springland Drive was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Great Wise Developments (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by _______(signature)

Dustin Thiffault, P.Eng.

Approved by _____

(signature)

Kris Kilborn, Senior Associate – Community Development

Background April 25, 2025

Table of Contents

1.0	BACKGROUND	1.1
2.0	REFERENCES	2.3
3.0	POTABLE WATER SERVICING	3.4
3.1	EXISTING CONDITIONS	3.4
3.2	WATER DEMANDS	3.4
3.3	BOUNDARY CONDITIONS	3.5
3.4	PROPOSED SERVICING	
3.5	SUMMARY OF FINDINGS	
4.0	WASTEWATER SERVICING	4 .1
4.1	EXISTING CONDITIONS	4.1
4.2	DESIGN CRITERIA	4.1
4.3	PROPOSED SERVICING	
5.0	STORMWATER MANAGEMENT AND SERVICING	5.3
5.1	OBJECTIVES	
	5.1.1 Proposed Development Areas	
	5.1.2 Undeveloped Areas	5.3
5.2	SWM CRITERIA AND CONSTRAINTS	5.3
5.3	STORMWATER MANAGEMENT DESIGN	5.4
	5.3.1 Design Methodology	5.5
	5.3.2 Allowable Release Rate	5.5
	5.3.3 Existing Development to Remain	5. <i>6</i>
	5.3.4 Storage Requirements	
	5.3.5 Uncontrolled Area	5.9
	5.3.6 Results	
	5.3.7 Water Quality Control	
6.0	GRADING AND DRAINAGE	6.12
7.0	APPROVALS	7.13
8.0	GEOTECHNICAL INVESTIGATION	8.14
9.0	EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION	9 1
10.0	UTILITIES	
11.0	CONCLUSION	
11.1	POTABLE WATER	11.1

Background April 25, 2025

11.2	SANITARY SERVICING	11.1
	STORMWATER SERVICING	
	GRADING	
11.5	UTILITIES	11.2
	APPROVALS	

Background April 25, 2025

LIST OF TABLES

Background April 25, 2025

1.0 BACKGROUND

Stantec Consulting Ltd. has been retained by Great Wise Developments to prepare a servicing and stormwater management report in support a zoning By-law amendment and site plan control submission. The development is located at 740 Springland Drive, Norberry Residences Ltd., within the existing Riverside Park Community in the City of Ottawa, displayed in **Figure 1**.

The proposed site is 5.68ha and currently consists of three 6-storey and one 10-storey residential apartment building for a total of 761 units. Each building is independently serviced.

The proposed development includes the construction of three new 5 to 6-storey residential buildings within the existing site property for a total of 287 additional units. The construction will also include modifications to the existing parking areas within the entire site. The proposed design is to have each new building block serviced independently to existing infrastructure, similar to the existing buildings, while revising existing and proposed parking areas as illustrated on the site plan "Site Plan - Norberry Residences" by Alexander Wilson Architect Inc, February 2025, seen in **Appendix E**.

The intent of this report is to provide a servicing scenario for the site that is free of conflicts, provides on-site servicing in accordance with City of Ottawa design guidelines, and utilizes the existing local infrastructure in accordance with the guidelines outlined per consultation with City of Ottawa staff.

Background April 25, 2025

Figure 1 – Proposed Site Plan Location

References April 25, 2025

2.0 REFERENCES

Documents referenced in preparation of this report include:

- Assessment of Adequacy of Public Services for Great Wise Developments, 740 Springland Drive, Ottawa ON, David Schaeffer Engineering Ltd., September 2017, Revision 1
- City of Ottawa Sewer Design Guidelines, 2nd Ed., City of Ottawa, October 2012
- City of Ottawa Design Guidelines Water Distribution, Infrastructure Services Department, City of Ottawa, First Edition, July 2010
- Geotechnical Investigation Proposed Multi Storey Buildings Norberry Crescent, Paterson Group Inc., March 27, 2019.
- Environmental Noise Control Study Proposed Multi Storey Buildings Norberry Crescent, Paterson Group Inc., March 27, 2019.
- Phase 1 Environmental Site Assessment 2660 Norberry Crescent & 740, 790, 840 Springland Drive, Paterson Group Inc., February 16, 2017.

Potable Water Servicing April 25, 2025

3.0 POTABLE WATER SERVICING

3.1 EXISTING CONDITIONS

The proposed 740 Springfield Drive development is a part of pressure zone 2C of the City of Ottawa water distribution system. Potable water is supplied to the site via a 200mm watermain within Norberry Crescent and a 300mm watermain on Springland Drive located just south of the Billings Bridge Pump station.

3.2 WATER DEMANDS

Water demands for the development were estimated using the Ministry of Environment's Design Guidelines for Drinking Water Systems (2008) and the Ottawa Design Guidelines – Water Distribution (2010). A daily rate of 280 L/cap/day has been applied for the population of the proposed site. The total estimated population count for all three proposed buildings is 517 persons based on a combined unit count of 287 using the average apartment unit density of 1.8 persons/unit set out by the City of Ottawa Water Distribution Guidelines. See **Appendix A.1** for detailed domestic water demand estimates.

The water demand for each building is displayed in **Table 1** below:

Table 1 - Domestic Water Demand Summary

Building ID	Unit Count	Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hourly Demand (L/s)
Α	103	185	0.60	1.50	3.30
В	94	169	0.55	1.37	3.02
С	90	162	0.53	1.31	2.89
Total	234	517	1.67	4.19	9.21

Ordinary construction was considered in the assessment for fire flow requirements according to the FUS Guidelines. The FUS Guidelines indicate that low hazard occupancies include apartments, dwellings, dormitories, hotels, and schools, and as such, a low hazard occupancy / limited combustible building contents credit was applied. A sprinkler system conforming to NFPA 13 was considered, and a credit applied per FUS Guidelines. Based on calculations per the FUS Guidelines, the maximum required fire flows for this development are 233L/s (14,000L/min for Building B).

Based on Fire Underwriters' Survey (FUS) fire flow demand calculations (see **Appendix A**) the fire flow demands for each of the proposed buildings are displayed in **Table 2** below:

Potable Water Servicing April 25, 2025

Table 2 - Building Fire Flow Demand Summary

Building ID	Building A	Building B	Building C
FUS Fire flow demand (L/s)	200	233	200

3.3 BOUNDARY CONDITIONS

Boundary conditions for two connection points along the Norberry Crescent 200mm watermain were provided by the City of Ottawa for the three demand scenarios. Connection point one corresponds to building A and connection point two applies to building B and C.

The following is a summary of the boundary conditions received from the City of Ottawa in an email dated April 25, 2025 (see **Appendix A**), and are displayed in **Table 3** below organized by Building ID:

Table 3 - Watermain Boundary Conditions for Hydraulic Analysis

Demand Scenario	Building A	Building B	Building C
Minimum HGL During Peak Hour Demand	125.0m	125.0m	125.0m
Max HGL – Average Day Demand	132.2m	132.2m	132.2m
HGL For Maximum Day + Fire Flow Demands	112.3m	104.5m	104.5m

Finished floor elevations used in the analysis are presented in **Drawing GP-1** found in **Appendix E.**

3.4 PROPOSED SERVICING

Water supply is proposed to be connected to each building independently, feeding directly off the adjacent 200mm watermain on Norberry Crescent. Each building is proposed to be fitted with two 50mm service connections. The two connections per building will be required given the average day demand exceeds 50 m³/day, as per the City of Ottawa Technical Bulletin ISTB 2014-02. The proposed servicing layout can be found in the **SSP Drawing** found in **Appendix E.**

Potable Water Servicing April 25, 2025

Per the boundary conditions provided by the City of Ottawa and based on a site elevation of 77.9 m per **Drawing GP-1**, adequate flows are available for the subject site with pressures ranging from 47.1m (67.0 psi) to 54.3m (77.2 psi) under average day and peak hour conditions. This pressure range within the guidelines of 50 - 80 psi based on Ottawa's Design Guidelines for Water Distribution. No additional measures are required to address minimum and maximum pressure conditions.

Under emergency fire flow conditions, the minimum pressure in the distribution system is allowed to drop to 140kPa (20 psi).

Using boundary conditions for the proposed development under maximum day demands and a fire flow requirement of 233L/s per the FUS methodology, it can be confirmed that the system will maintain a residual pressure of approximately 37.8 psi (26.6 m); which is in excess of the required 140 kPa (20 psi). The above demonstrates that the existing watermain within Norberry Crescent can provide adequate fire and domestic flows in excess of flow requirements for the subject site. Existing hydrants along Norberry Crescent provide adequate building coverage and are located within 45m of proposed building fire department connections per Ontario Building Code requirements.

3.5 SUMMARY OF FINDINGS

The proposed development is located in an area of the City's water distribution system that has sufficient capacity to provide both the required domestic and emergency fire flows. Based on boundary conditions as provided by City of Ottawa staff, fire flows are available for this development based on FUS guidelines and as per the City of Ottawa water distribution guidelines.

Servicing and Stormwater Management Report -Norberry Residences - 740 Springland Drive

Wastewater Servicing April 25, 2025

4.0 WASTEWATER SERVICING

4.1 EXISTING CONDITIONS

The proposed site is surrounded by a 225mm diameter sanitary sewer on Norberry Crescent and a 525mm sanitary sewer on Springland Drive, all of which form part of the Rideau River Collector Sewer catchment area. Both sewers within the adjacent rights-of-way are available to service the proposed buildings.

The four existing residential buildings on site are serviced by the Springland Drive 525mm diameter sanitary sewer adjacent to the subject site.

A residual flow capacity analysis by DSEL was performed based on contributary areas. It was determined in their Assessment of Adequacy of Services Report for Great Wise Developments (2017), see **Appendix B**, that there is a residual capacity of 16.1 L/s available in the north end of the sanitary sewer on Norberry Crescent.

4.2 DESIGN CRITERIA

As outlined in the City of Ottawa's Sewer Design Guidelines the following design criteria were used to calculate estimated wastewater flow rates and to size the sanitary sewers:

- Minimum Full Flow Velocity 0.6 m/s
- Maximum Full Flow Velocity 3.0 m/s
- Manning's roughness coefficient for all smooth walled pipes 0.013
- Average Wastewater Generation 280L/cap/day
- Peak Factor 4.0 (Harmon's)
- Extraneous Flow Allowance 0.33 l/s/ha
- Manhole Spacing 120 m
- Minimum Cover 2.5m
- Population Density for Average Apartment
 1.8 pers./apartment

4.3 PROPOSED SERVICING

The proposed buildings will be serviced independently based on an overall waste generation for 517 people in addition to an assumed infiltration rate for the development area. The service connections consist of a 135mm diameter pipe that increases at an immediate manhole to a 200mm diameter pipe which outlets to the existing 225mm diameter sanitary sewer within the Norberry Crescent right of way. The contributing flow considers infiltration for only the building area given that there is only a small service connection pipe at the outer edge of the property

Wastewater Servicing April 25, 2025

vulnerable to infiltration. The layout for the sanitary service connections can be found in the **OSSP-1 Drawing** in **Appendix E**. The calculations made to determine the projected sanitary outflows are set out in the sanitary design sheet found in **Appendix B** and summarized in **Table 4** below.

Table 4 - Sanitary Outflow Summary

Building ID	Total Sanitary Outflow (L/s)
Α	2.2
В	2.0
С	1.9
Total	6.1 L/s

The estimated wastewater flow generation for the proposed site changes is 6.1 L/s, which is well within the downstream flow capacity of 16.1 L/s, set out in the Assessment of Adequacy of Public Service by DSEL engineering (September 2017). Therefore, the sanitary outflow from the proposed development is predicted to be well within the capacity of the downstream wastewater infrastructure.

Stormwater Management and Servicing April 25, 2025

5.0 STORMWATER MANAGEMENT AND SERVICING

5.1 OBJECTIVES

The overall site has been provided stormwater management criteria set out by the City of Ottawa. Stormwater management criteria will be applied for site areas being redeveloped, whereas existing buildings and parking areas to remain will discharge to their contributing sewers per predevelopment conditions.

The site has been divided into subcatchments for both existing and post-development conditions. Each subcatchment is characterized as either developed or undeveloped for the means of determining which criteria applies.

The existing and proposed stormwater drainage areas are displayed in the **SD-1** and **EXSD Drawings** found in **Appendix E**.

5.1.1 Proposed Development Areas

The objective of this stormwater management (SWM) plan is to determine the measures necessary to control the post development peak minor system release rate from the 100-year storm event to that of the 5-year storm under existing conditions for on-site areas to be redeveloped (approximately 1.51ha of the 5.59ha site). Quality control will also be required for runoff associated with the proposed development areas.

5.1.2 Undeveloped Areas

The areas of the site not being redeveloped are not anticipated to require further modifications to the stormwater management plan. Areas not under redevelopment expect negligible change in runoff coefficient values, and thus would indicate no change in stormwater runoff quantity or direction for such areas.

5.2 SWM CRITERIA AND CONSTRAINTS

The stormwater runoff coming from the site are tributary to the Sawmill Creek sub-watershed and is part of the City of Ottawa sewer system. The stormwater management criteria for the proposed site have therefore been set out by City of Ottawa staff and the City of Ottawa Sewer Design Guidelines. The following summarizes the criteria used in the preparation of this stormwater management plan:

Stormwater Management and Servicing April 25, 2025

- Stormwater runoff from the proposed Building A, B and C and affected adjacent parking lots up to and including the 100-year event to be stored on site and released into the minor system at the 5-year storm release rate for the developed areas under existing conditions, at a maximum rate equivalent to 282.3 L/s for the for the portion of the site that will be developed.
- Maximum 100-year water depth of 0.35 m in parking and access areas
- Provide adequate emergency overflow conveyance (overland flow route) off-site for redeveloped areas. It is of note that some areas not forming part of the site redevelopment area may not have been designed with an overland flow outlet to the municipal right-of-way. Such areas are to remain as per existing conditions.
- Size storm sewers to convey 5-year storm event, assuming only roof controls are imposed. (i.e. provide capacity for system without inlet control devices installed)
- Size storm sewers using an inlet time of concentration (Tc) of 10 minutes.
- Quality control of runoff from the proposed developed areas with a TSS removal efficiency of 80% is to be provided on site prior to discharge into the Norberry Crescent Right of Way.
- Proposed sites to discharge the existing 1200mm diameter storm sewer running east along Springland Drive ROW at the boundary of the subject site and ultimately to Sawmill Creek (City of Ottawa).
- Post-development runoff coefficient (C) value based on proposed impervious areas as per site plan drawing (see **Appendix E**)
- Pre-development runoff coefficient (C) value based on existing impervious areas as per existing conditions / removals drawing (see Appendix E)
- Areas under redevelopment to meet City of Ottawa quantity control target of the 5-year event using a runoff coefficient C of 0.5.

5.3 STORMWATER MANAGEMENT DESIGN

The proposed changes to the residential development will consist of adding one five-storey and two six-storey buildings, revisions to existing parking and landscaped areas and associated

Stormwater Management and Servicing April 25, 2025

servicing infrastructure. The remainder of the site will incur minimal to no changes from its existing conditions.

Stormwater runoff from the proposed development will be directed to the existing storm sewers on Norberry Crescent. Sump pumps and backwater valves will be provided for foundation drainage of the proposed buildings. The proposed site plan and existing storm sewer infrastructure on Norberry Crescent are shown on **Drawing SSP-1**.

5.3.1 Design Methodology

The proposed stormwater management plan is designed to detain runoff on the rooftops and on surface areas to ensure that peak flows after construction will not exceed the target release rates for the site.

Areas of the site incurring changes due to the newly proposed buildings and parking revisions will be controlled where possible via inlet control devices (ICDs) installed within receiving catch basins in order to restrict the peak minor system release rate to the target amount.

Any areas being developed that were left uncontrolled are as a result of grading restrictions, in particular to allow for emergency overland flow runoff from the proposed site and to avoid impacts to existing or proposed building openings. These uncontrolled release rates were compensated for by over controlling in other developed areas where inlet control devices (ICDs) were implemented.

5.3.2 Allowable Release Rate

The Modified Rational Method was used to assess the quantity and volume of runoff generated during post development conditions. The site was subdivided into subcatchments (subareas) tributary to storm sewer inlets, as defined by the location of catchbasins / inlet grates and used in the storm sewer design (see **Appendix C**). A summary of subareas and runoff coefficients is also provided in **Appendix C**, and **Drawing SD-1** indicates the stormwater management subcatchments, found in **Appendix E**.

City of Ottawa staff have provided the quantity control criteria for the overall site, with criteria specified for the developed areas. The City of Ottawa staff have outlined that the minor system target criteria for these areas is such that the 100-year post development release rate must be at most equal to the 5-year release rate of the same areas under existing conditions.

In order to determine this 5-year target release rate the Modified Rational Method was employed to assess the rate of runoff for existing conditions for the areas of the site being developed. Runoff coefficients (C) for the identified catchment areas have been calculated

Stormwater Management and Servicing April 25, 2025

based on actual pervious and impervious areas shown on the existing site plan. C coefficient values have been increased by 25% for the post-development 100-year storm event based on MTO Drainage Manual recommendations.

A summary of the existing subcatchments used to establish the target release rate is displayed below in **Table 5**.

Q = 2.78 CiA
Where: Q = peak flow rate, L/s
A = drainage area, ha
I = rainfall intensity, mm/hr (per Ottawa IDF curves)
C = site runoff coefficient

Table 5: Target Release Rates

Existing Areas to be Developed	Area (ha)	Runoff Coefficient (C value)	5-year Q _{release} (L/s)
EX-6	0.42	0.66	80.7
EX-16	0.48	0.58	80.8
EX-17	0.41	0.90	106.4
Ex-18	0.05	0.20	2.8
Ex-20	0.19	0.21	11.6
Post Develop	282.3		

In addition to the above target, proposed areas for redevelopment (Areas L301A, L102A, L103A, L103B, L300A, L303A, RAMP-B, and BLDGA, B and C) are required to meet a peak discharge rate equating to that of the 5-year event using a runoff coefficient of 0.50 and a time of concentration of 10 minutes. Areas F100A and F101A have not been included in the above, as their drainage patterns are relatively unchanged from existing conditions. The above areas total 1.17ha, with a resultant peak release rate target of **169.3L/s**.

5.3.3 Existing Development to Remain

The remaining 4.08ha of the development constituting areas EX1 through EX5, EX7 through EX15, and EX19 are not anticipated to receive significant changes with respect to tributary impervious area, and are not proposed to receive storm sewer modifications.

The area and runoff coefficient for the portions of the site to remain was summarized based on **Drawing SD-1** and **Drawing-EXSD**. The AxC values listed in the table below measure the area multiplied by the runoff coefficient during predevelopment and post-development. The

Stormwater Management and Servicing April 25, 2025

imperviousness of the subcatchments vary individually based on soft landscaping being added to areas and hard surfacing to others, however, changes to overall AxC are negligible. A summary of the calculated pre-development and post-development AxC values is displayed in **Table 6** below.

Table 6: AxC Comparison Summary for Existing Areas to Remain

Area ID	Pre Development AxC	Post Development AxC
EX-1	0.091	0.094
EX-2	0.094	0.100
EX-3	0.209	0.208
EX-4	0.497	0.432
EX-5	0.208	0.208
EX-7	0.015	0.015
EX-8	0.495	0.464
EX-9	0.055	0.055
EX-10	0.201	0.259
EX-11	0.049	0.056
EX-12	0.209	0.209
EX-13	0.209	0.209
EX-14	0.118	0.132
EX-15	0.034	0.034
EX-19	0.062	0.07
Total	2.54	2.54

5.3.4 Storage Requirements

The site requires quantity control measures to meet the stormwater release criteria. It is proposed that restricted release rooftop drains are to be used to reduce the peak outflow from the site. Additionally, surface storage on parking areas will be provided. Detailed stormwater management calculations are provided in **Appendix C**.

5.3.4.1 Rooftop Storage

It is proposed to retain stormwater on the rooftops by installing restricted flow roof drains. The following calculations assume the roof will be equipped with Watts drains 25% open, see **Appendix C** for details.

Stormwater Management and Servicing April 25, 2025

Watts Drainage "Accutrol" roof drain weir data has been used to calculate a practical roof release rate and detention storage volume for the rooftops. It should be noted that the "Accutrol" weir has been used as an example only, and that other products may be specified for use, provided that the total roof drain release rate is restricted to match the maximum rate of release indicated in Table 7, and that sufficient roof storage is provided to meet (or exceed) the resulting volume of detained stormwater.

Further details regarding the retention of stormwater on the proposed rooftop during the 5 and 100-year storm events can be found in **Appendix C**.

Area ID Area (ha) Head (m) Q_{release} (L/s) V_{stored} (m³) **BLDGA** 0.12 0.14 7.4 40.0 **BLDGB** 0.11 0.14 7.3 36.0 **BLDGC** 0.12 0.14 7.4 40.0 Total 116.0 22.1

Table 7: Peak Controlled (Rooftop) 100-Year Release Rate

5.3.4.2 Surface Storage

In addition to rooftop storage, it is proposed to detain stormwater on the surface parking lot areas and in two pipe sections using inlet control devices (ICDs) in the proposed drainage structures. The modified rational method was used to determine the peak volume requirement for the parking areas. **Table 8** summarizes the proposed ICD characteristics.

Table 8: 5 and 100 Year ICD Characteristics

Area ID	Structure ID	Orifice Type	5-year Head	5-year Release

Area ID	Structure ID	Orifice Type	5-year Head (m)	5-year Release Rate (L/s)	100-year Head (m)	100-year Release Rate (L/s)
L103B	CB203	LMF 95	1.48	9.7	1.63	10.2
L103A	CB201	83mm Diameter Orifice	1.58	5.4	1.63	18.7
L102A	CB200B	LMF 80	1.54	7.1	1.66	7.4
L301A	AREA DRAIN 301	127mm Diameter Orifice	1.38	40.2	1.56	42.8
L300A	AREA DRAIN 300	127mm Diameter Orifice	1.38	40.2	1.56	42.8

Stormwater Management and Servicing April 25, 2025

Area ID	Structure ID	Orifice Type	5-year Head (m)	5-year Release Rate (L/s)	100-year Head (m)	100-year Release Rate (L/s)
L303A	CB207	83mm Diameter Orifice	1.53	12.1	1.62	18.6
Total				114.7		140.3
Total	(Including Roof Release)	*NOTE: Totals may not sum exactly due to rounding		134.1		162.4

5.3.5 Uncontrolled Area

A small portion of the site fronting and adjacent to Norberry Crescent (EX-18, UNC-2) could not be graded to enter the site's storm sewer system and will sheet drain uncontrolled on to the adjacent street. The runoff from drainage area F100A flows into a trench drain and is to connect with the adjacent on-site building's internal plumbing. These uncontrolled areas are displayed on **Drawing SD-1. Table 9** and

Table 10 below summarize the 5 and 100-year uncontrolled release rates from the proposed development.

Table 9: Peak Uncontrolled (Tributary) 5-Year Release Rate

Area ID	Area (ha)	Runoff 'C'	Q _{release} (L/s)
F100A	0.11	0.49	15.6
F101A	0.09	0.87	22.7
UNC-2	0.05	0.30	4.6
EX-18	0.07	0.25	4.9
RAMP-B	0.01	0.77	3.6
Total			51.4

Stormwater Management and Servicing April 25, 2025

Table 10: Peak Uncontrolled (Tributary) 100-Year Release Rate

Area ID	Area (ha)	Runoff 'C'	Q _{release} (L/s)
F100A	0.11	0.61	33.4
F101A	0.09	1.00	44.7
UNC-2	0.05	0.38	9.9
EX-18	0.07	0.31	10.4
RAMP-B	0.01	0.96	5.7
Total			104.2

5.3.6 Results

The proposed redeveloped areas have a 100-year minor system release rate of 266.6 L/s, which lies below the predevelopment release rate of 282.3 L/s. Additionally, redeveloped areas forming controlled runoff from the site release at less than the target rate of 169.3L/s. Therefore, the proposed stormwater network for the developed areas meets the stormwater management quantity control criteria set out by the City of Ottawa.

These results are quantified in **Table 11** below:

Table 11: Proposed Development Release Rate Summary

Proposed Developed Area of Site								
Flow Classification	100-year Release Rate (L/s)	Target Release Rate (L/s)						
Controlled Runoff	162.4	169.3						
Uncontrolled Runoff	104.2							
Total	266.6	282.3						

Rainfall events beyond the 100-year storm (climate change event) will spill from the proposed ponding locations as shown along the proposed major overland flow route to adjacent downstream rights of way as depicted on **Drawing GP-1** and identified in **Section 6** below.

Stormwater Management and Servicing April 25, 2025

5.3.7 Water Quality Control

On-site water quality control is required to provide 80% TSS removal prior to discharging to Springland Drive and ultimately to Sawmill Creek. There are three Stormceptor units (model STC300) proposed downstream of the proposed buildings and parking areas to treat runoff from impervious surfaces prior to release to the existing downstream minor system. The Stormceptors will provide greater than 80% TSS removal per detailed sizing calculations for included in **Appendix C.4**. The Stormceptor units will be privately maintained. The location and general arrangement of the Stormceptor units are indicated on **Drawing SD-1**.

Grading and Drainage April 25, 2025

6.0 GRADING AND DRAINAGE

A grading and drainage plan has been prepared which satisfies the stormwater management requirements and any grade raise restrictions for the site. Site grading has been established to provide an overland flow route required for stormwater management directed in its majority towards Norberry Crescent. Grades along the property lines of the site have been set to tie smoothly into the existing grades.

The subject site maintains emergency overland flow routes for flows deriving from storm events in excess of the maximum design event to the existing Springland Drive and Norberry Crescent as depicted in **Drawing GP-1**.

Approvals April 25, 2025

7.0 APPROVALS

Ontario Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approvals (ECA) are expected to be required for storm sewer infrastructure including the proposed Stormceptor oil-grit-separators that are intended to serve multiple private parcels corresponding to each building within the overall property. Sanitary, water, and storm sewer connections discharging independently to pre-existing sewer systems are unaffected.

The subject site is not adjacent to any floodplain or watercourse, and no modifications are proposed that would require an application for alteration of a watercourse from the local Conservation Authority under the Lakes and Rivers Improvement Act. The Rideau Valley Conservation Authority will need to be consulted to obtain municipal approval for site development. There are no municipal drains adjacent to this site and no other approvals are required from other regulatory agencies.

Geotechnical Investigation April 25, 2025

8.0 GEOTECHNICAL INVESTIGATION

A geotechnical investigation was conducted by Paterson Group Inc. in March 2019 titled "Geotechnical Investigation - Proposed Multi-Storey Buildings Norberry Crescent Ottawa, Ontario". The following is a summary of existing soil conditions encountered within the subject area and construction recommendations. For details which are not summarized below, please see the original Paterson Group report. The subsurface profile at the borehole locations consists of asphaltic concrete followed by a silty sand with gravel fill overlying a hard to stiff silty clay crust and a grey, very stiff to firm silty clay deposit. Glacial till was encountered below the above noted layers consisting of dense to compact silty clay with sand to sandy silt with clay, gravel, cobbles and boulders. Practical refusal to augering on inferred bedrock was encountered in BH 2 to BH 5 and BH 8 at depths ranging between 5.3 to 7.0 m.

It is expected that the long-term groundwater level will be at a depth ranging between 2.5 to 3.5 m below existing grade. It should be noted that the groundwater level is subject to seasonal fluctuations. Therefore, groundwater could vary at the time of construction. (see **Appendix D** for excerpts from the geotechnical report). It is anticipated that groundwater infiltration into the excavations should be controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Geological mapping indicates the subject site is located in an area where the bedrock consists of limestone of the Bobcaygeon Formation. The overburden drift thickness is anticipated to be between 5 to 10 m in depth.

The native soil or approved fill has been considered to be an acceptable subgrade surface on which to commence backfilling for floor slab construction. Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab.

Pavement structures for driveways and access routes are provided in **Table 12** and **Table 13** below.

Geotechnical Investigation April 25, 2025

Table 12 - Recommended Flexible Pavement Structure – Parking Areas

Thickness (mm)	Material Description								
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete								
150	Base - OPSS Granular A Crushed Stone								
300	Subbase - OPSS Granular B Type II								
-	Subgrade – Either fill, in OPSS Granular B Type II material placed over in situ soil or fill.								

Table 13 - Recommended Flexible Pavement Structure – Access Lanes and Heavy Truck Parking Areas

Thickness (mm)	Material Description							
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete							
50	Binder Course – HL-8 or Superpave 19.0 Asphaltic Concrete							
150	Base - OPSS Granular A Crushed Stone							
300	Subbase – OPSS Granular B Type II							
-	Subgrade – Either fill or OPSS Granular B Type I or II material placed over in situ soil or fill.							

Erosion and Sediment Control During Construction April 25, 2025

9.0 EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents:

- Limit extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from entering existing ditches.
- Provide sediment traps and basins during dewatering.
- Install filter cloth between catchbasins and frames.
- Plan construction at proper time to avoid flooding.

Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall event, complete inspections and guarantee proper performance. The inspection is to include:

- 1. Verification that water is not flowing under silt barriers.
- 2. Clean and change filter cloth at catch basins.

Refer to **Drawing ECDS-1** for the proposed location of silt fences, straw bales, filter cloth and other erosion control structures.

Utilities April 25, 2025

10.0 UTILITIES

Hydro, Bell, Gas and Cable servicing for the proposed development should be readily available within subsurface utility infrastructure within or within close proximity to the subject site. It is anticipated that existing infrastructure will be sufficient to provide the means of distribution for the proposed site. Detailed design of the required utility services will be further investigated as part of the composite utility planning process following design circulation.

Conclusion April 25, 2025

11.0 CONCLUSION

11.1 POTABLE WATER

The proposed residential development is located in an area of the City's water distribution system that has sufficient capacity to provide both the required domestic and emergency fire flows. Based on the modeling results and the boundary conditions determined, fire flow demands in excess of 14,000 L/min will be available within the watermain network proposed for the development.

The minimum and maximum pressures of **67.0 psi** (**461.9 kPa**) to **77.2 psi** (**532.3 kPa**) observed under peak and average day demand conditions are within the acceptable pressure range of 40 psi (275kPa) to 80 psi (552kPa). No additional measures are required to address minimum and maximum pressure conditions.

11.2 SANITARY SERVICING

The proposed buildings are to have their wastewater serviced independently. The proposed sanitary sewer laterals are sufficiently sized to provide gravity drainage for the site. The proposed blocks will be serviced by 200 mm diameter service laterals directing wastewater flows to the existing 225 mm dia. Norberry Crescent sanitary sewer. A backflow preventer will be required for the proposed buildings in accordance with the Ottawa sewer design guidelines and will be coordinated with building mechanical engineers. The proposed sanitary drainage pattern is in accordance with the City of Ottawa Sewer Design guidelines and falls within the outlined downstream sewer capacity set out in the Assessment of Adequacy of Public Service by DSEL engineering (September 2017).

11.3 STORMWATER SERVICING

The proposed stormwater management plan is in compliance with the goals specified by the City of Ottawa staff and with the City of Ottawa Design guidelines. Rooftop, pipe, and surface storage in combination with ICDs are proposed to limit inflow from the site area into the minor system to the required target release rates. Quality control will be achieved by on-site oil grit separators sized to achieve 80% TSS removal as required.

11.4 GRADING

Grading for the site has been designed to provide an emergency overland flow route as per City requirements and reflects the overall recommendations provided in the Geotechnical Investigation. Erosion and sediment control measures will be implemented during construction to reduce the impact on existing infrastructure.

Conclusion April 25, 2025

11.5 UTILITIES

All utilities (Hydro Ottawa, Bell Canada, Rogers Ottawa, and Enbridge Gas) have existing plants in the subject area. Exact size, location and routing of utilities will be finalized after design circulation.

11.6 APPROVALS

Ontario Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approvals (ECA) are expected for shared stormwater infrastructure within the subject site.

The Rideau Valley Conservation Authority will need to be consulted to obtain municipal approval for site development.

No other approvals are anticipated to be required from other regulatory agencies.

Conclusion April 25, 2025

APPENDICES

Conclusion April 25, 2025

Appendix A WATER SUPPLY SERVICING

A.1 DOMESTIC WATER DEMAND ESTIMATE

740 Springland Drive - Domestic Water Demand Estimates

Densities as per City Guidelines: Avg Apt 1.8 ppu

Building ID	Units	Population	Daily Rate of	Avg Day	Demand	Max Day	Demand ¹	Peak Hour Demand ²	
Dullding 1D	Office	1 opulation	Demand	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Α	103	185	280	36.1	0.60	90.1	1.50	198.3	3.30
В	94	169	280	32.9	0.55	82.3	1.37	181.0	3.02
С	90	162	280	31.5	0.53	78.8	1.31	173.3	2.89
Total Site :	287	517		100.45	1.67	251.13	4.19	552.48	9.21

Demand conversion factors per Table 4.2 of the City of Ottawa Water Design Guidelines and Technical Bulletin ISTB-2021-03:

The City of Ottawa water demand criteria was used to estimate peak demand rates for residential areas are as follows:

- maximum day demand rate = 2.5 x average day demand rate for residential
- 2 maximum hour demand rate = 2.2 x maximum day demand rate for residential

Conclusion April 25, 2025

A.2 FIRE FLOW REQUIREMENTS PER FUS

Stantec

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines

Stantec Project #: 160401483
Project Name: 740 Springland Drive
Date: 4/25/2025

Fire Flow Calculation #: 1

Description: Apartment Building A

Ordinary Construction structure 6-storey residential apartment building has estimated building footprint 1225 sqm with spinkler system but not supervised per site plan provided by Q9 planning dated Feb 24, 2025

Step	Task	Notes									Value Used	Req'd Fire Flow (L/min)	
1	Determine Type of Construction	Type III - Ordinary Construction / Type IV-C - Mass Timber Construction									1	-	
2	Determine Effective		Sum of All Floor Areas									NO	-
2	Floor Area	1225	1225	1225	1225	1225	1225					7350	-
3	Determine Required Fire Flow				(F = 220 x C	x A ^{1/2}). Rour	nd to nearest 1	000 L/min				-	19000
4	Determine Occupancy Charge					Limited Co	ombustible					-15%	16150
						Conforms	to NFPA 13					-30%	
5	Determine Sprinkler Reduction		Standard Water Supply							-10%	-6460		
		Not Fully Supervised or N/A							0%	-0400			
		% Coverage of Sprinkler System						100%					
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction o Wall	-	Fire	wall / Sprinkler	red ?	-	-
	Datamaina la ana asa fan	North	10.1 to 20	20	6	> 100	Type III-IV - Unprote	ected Openings		NO		10%	
6	Determine Increase for Exposures (Max. 75%)	East	> 30	60	1	41-60	Type \	V		NO		0%	2423
		South	> 30	20	6	> 100	Type III-IV - Unprote	ected Openings		NO		0%	2423
		West	20.1 to 30	60	6	> 100	Type III-IV - Unprote	ected Openings		NO		5%	
	Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min											12000	
7	Determine Final	Total Required Fire Flow in L/s							200.0				
	Required Fire Flow	Required Fire Flow (hrs)							2.50				
		Required Volume of Fire Flow (m³)							1800				

Stantec

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines

Stantec Project #: 160401483
Project Name: 740 Springland Drive
Date: 4/25/2025

Fire Flow Calculation #: 2

Description: Apartment Building B

Ordinary Construction structure 6-storey residential apartment building has estimated building footprint 1096 sqm with spinkler system but not supervised per site plan provided by Q9 planning dated Feb 24, 2025

Step	Task		Value Used	Req'd Fire Flow (L/min)							
1	Determine Type of Construction	Type III - Ordinary Construction / Type IV-C - Mass Timber Construction									-
2	Determine Effective	Sum of All Floor Areas						NO	-		
2	Floor Area	1096	1096	1096	1096	1096	1096			6577	-
3	Determine Required Fire Flow		•		(F = 220 x C	x A ^{1/2}). Rou	nd to nearest 1000 L/min		•	-	18000
4	Determine Occupancy Charge					Limited C	ombustible			-15%	15300
		Conforms to NFPA 13						-30%			
_	Determine Sprinkler Reduction	Standard Water Supply							-10%	(100	
5		Not Fully Supervised or N/A							0%	-6120	
		% Coverage of Sprinkler System							100%		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Firewall / Sprink	lered ?	-	-
		North	20.1 to 30	54	6	> 100	Type III-IV - Unprotected Openings	NO		5%	
6	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	20	5	81-100	Type III-IV - Unprotected Openings	NO		9%	4437
		South	> 30	54	1	41-60	Type V	NO		0%	4437
		West	3.1 to 10	20	6	> 100	Type III-IV - Unprotected Openings	NO		15%	
					Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min						14000
7	Determine Final Required Fire Flow	Total Required Fire Flow in L/s							233.3		
′						Required	Duration of Fire Flow (hrs)				3.00
			Required Volume of Fire Flow (m³)						2520		

Stantec

FUS Fire Flow Calculation Sheet - 2020 FUS Guidelines

Stantec Project #: 160401483 Project Name: 740 Springland Drive Date: 4/25/2025

Fire Flow Calculation #: 3

Description: Apartment Building C

Ordinary construction structure 5-storey residential apartment building has estimated building footprint 1095 sqm with spinkler system but not supervised per site plan provided by Q9 planning dated Feb 24, 2025

Step	Task					No	otes		Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Type III - C	Ordinary Con	struction / Ty	pe IV-C - Mass Timber Con	struction	1	-
2	Determine Effective		Sum	of All Floor A	Areas				NO	-
2	Floor Area	1215	1215	1215	1215	1215			6075	-
3	Determine Required Fire Flow				(F = 220 x C	x A ^{1/2}). Rour	nd to nearest 1000 L/min		-	17000
4	Determine Occupancy Charge					Limited Co	ombustible		-15%	14450
						Conforms	to NFPA 13		-30%	
5	Determine Sprinkler					Standard W	ater Supply		-10%	-5780
3	Reduction				1	Not Fully Sup	ervised or N/A		0%	-3760
					% (Sprinkler System		100%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	Firewall / Sprinklered ?	-	-
	Datamaina la ana ara fan	North	20.1 to 30	60	5	> 100	Type III-IV - Unprotected Openings	NO	5%	
6	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	20	5	81-100	Type III-IV - Unprotected Openings	NO	9%	3324
		South	> 30	60	1	41-60	Type V	NO	0%	3324
		West	10.1 to 20	20	5	81-100	Type III-IV - Unprotected Openings	NO	9%	
					Total Requi	ired Fire Flow	in L/min, Rounded to Near	est 1000L/min		12000
7	Determine Final					Total I	Required Fire Flow in L/s			200.0
'	Required Fire Flow					Required	Duration of Fire Flow (hrs)			2.50
						Require	d Volume of Fire Flow (m³)			1800

SERVICING AND STORMWATER MANAGEMENT REPORT - NORBERRY RESIDENCES - 740 SPRINGLAND DRIVE

Conclusion April 25, 2025

A.3 BOUNDARY CONDITIONS

Johnson, Warren

Subject: FW: Norberry Overview

From: Shillington, Jeffrey < jeff.shillington@ottawa.ca>

Sent: Friday, April 25, 2025 9:14 AM

To: Kilborn, Kris < kris.kilborn@stantec.com >

Cc: Christine McCuaig <christine@q9planning.com>

Subject: RE: Norberry Overview

HI Kris,

My apologies for the delay. Here are the boundary conditions:

The following are boundary conditions, HGL, for hydraulic analysis at 740 Springland Drive (zone 2W2C) assumed to be connected via two separate **dual connections** (Connection 1 for Building A **AND** Connection 2 for Buildings B&C) to the 203mm watermain on Norberry Crescent (see attached PDF for location).

Connection 1 (Building A): Minimum HGL: 125.0 m Maximum HGL: 132.2 m

Max Day + Fire Flow (200 L/s): 112.3 m

Connection 2 (Buildings B & C):

Minimum HGL: 125.0 m Maximum HGL: 132.2 m

Max Day + Fire Flow (233.3 L/s): 104.5 m

Please refer to Guidelines and Technical bulletin ISDTB-2021-01 concerning residential areas serving 50 or more dwellings.

These are for current conditions and are based on computer model simulation.

Disclaimer:

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

"The IWSD has recently updated their water modelling software. Any significant difference between previously received BC results and newly received BC results could be attributed to this update."

Let me know if you require anything further.

1

Regards,

Jeff Shillington, P. Eng. Senior Project Manager, Development Review, South Branch Planning, Infrastructure and Economic Development City of Ottawa

tel: 580-2424 x 16960

email: jeff.shillington@ottawa.ca

Classified as City of Ottawa - Internal / Ville d'Ottawa - classé interne

From: Kilborn, Kris < kris < kris.kilborn@stantec.com>
Sent: Tuesday, April 22, 2025 10:19 AM

To: Shillington, Jeffrey < <u>jeff.shillington@ottawa.ca</u>> **Cc:** Christine McCuaig < <u>christine@q9planning.com</u>>

Subject: RE: Norberry Overview

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good morning Jeff and hope the long weekend was great.

Just want to check in to see if you have heard anything back on the boundary condition request The owner is quite anxious about this as its tied to some financial obligations with CMHC.

Any help in expediting this would be appreciated

Sincerely

Kris Kilborn

Principal, Community Development Business Center Practice Lead

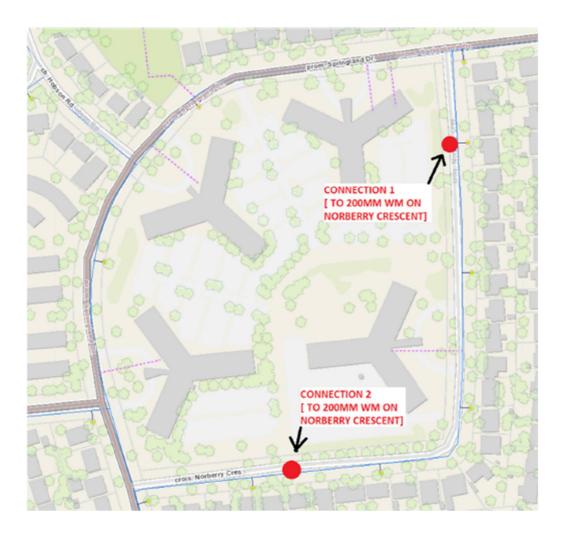
Mobile: 613 297-0571 Fax: 613 722-2799 kris.kilborn@stantec.com Stantec

300 - 1331 Clyde Avenue Ottawa ON K2C 3G4

Classified as City of Ottawa - Internal / Ville d'Ottawa - classé interne

From: Kilborn, Kris

Sent: Wednesday, April 16, 2025 9:51 AM


To: Shillington, Jeffrey < <u>jeff.shillington@ottawa.ca</u>> **Cc:** Christine McCuaig < <u>christine@q9planning.com</u>>

Subject: RE: Norberry Overview

Hey Jeff see below. Let me know if you require any additional information

2

This document was created by an application that isn't licensed to use <u>novaPDF</u>. Purchase a license to generate PDF files without this notice.

Sincerely

Kris Kilborn

Principal, Community Development Business Center Practice Lead

Mobile: 613 297-0571 Fax: 613 722-2799 kris.kilborn@stantec.com

Stantec

300 - 1331 Clyde Avenue Ottawa ON K2C 3G4

From: Shillington, Jeffrey < jeff.shillington@ottawa.ca>

Sent: Wednesday, April 16, 2025 8:50 AM **To:** Kilborn, Kris < <u>kris.kilborn@stantec.com</u>>

Cc: Christine McCuaig < christine@q9planning.com>

Subject: RE: Norberry Overview

Hi Kris,

I received the following from the modeling group late yesterday:

Please request Stantec to provide connection locations figure for the buildings where we would provide the BC from. BC requests should include this information.

Regards,

Jeff Shillington, P. Eng. Senior Project Manager, Development Review, South Branch Planning, Infrastructure and Economic Development City of Ottawa

tel: 580-2424 x 16960

email: jeff.shillington@ottawa.ca

Classified as City of Ottawa - Internal / Ville d'Ottawa - classé interne

From: Kilborn, Kris < kris.kilborn@stantec.com>
Sent: Wednesday, April 16, 2025 8:28 AM

To: Shillington, Jeffrey < jeff.shillington@ottawa.ca > **Cc:** Christine McCuaig < christine@q9planning.com >

Subject: RE: Norberry Overview

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good morning Jeff and hope all is well

The owner wanted me to check back in with you on the Watermain request.

They are in a bit of a time crunch for submission as they are applying for CMHC ACLP financing which is time sensitive.

Any help on getting the revised boundary conditions would be appreciated

Sincerely

Kris Kilborn

Principal, Community Development Business Center Practice Lead

Mobile: 613 297-0571 Fax: 613 722-2799 kris.kilborn@stantec.com Stantec

300 - 1331 Clyde Avenue Ottawa ON K2C 3G4

Classified as City of Ottawa - Internal / Ville d'Ottawa - classé interne

From: Shillington, Jeffrey < jeff.shillington@ottawa.ca>

Sent: Friday, April 11, 2025 8:32 AM

To: Kilborn, Kris < kris.kilborn@stantec.com >

Cc: Thiffault, Dustin <Dustin.Thiffault@stantec.com>; Johnson, Warren <Warren.Johnson@stantec.com>

Subject: RE: Norberry Overview

Hi Kris,

Yes, I've sent the BC's off. I will send them back to you when I get them.

Jeff

Classified as City of Ottawa - Internal / Ville d'Ottawa - classé interne

From: Kilborn, Kris < kris < kris.kilborn@stantec.com>
Sent: Thursday, April 10, 2025 10:01 AM

To: Shillington, Jeffrey <jeff.shillington@ottawa.ca>

Cc: Thiffault, Dustin < dustin.thiffault@stantec.com >; Johnson, Warren < Warren.Johnson@stantec.com >

Subject: RE: Norberry Overview

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good morning Jeff

I just wanted to circle back around with you to confirm that you received my email from last Friday and you have forwarded along

To the City water group for review.

Please get back to me at your earliest convenience

Sincerely

Kris Kilborn

Principal, Community Development Business Center Practice Lead

Mobile: 613 297-0571 Fax: 613 722-2799 kris.kilborn@stantec.com

Stantec

300 - 1331 Clyde Avenue Ottawa ON K2C 3G4

From: Kilborn, Kris

Sent: Friday, April 4, 2025 11:00 AM

To: Shillington, Jeffrey < jeff.shillington@ottawa.ca>

Cc: Thiffault, Dustin <Dustin.Thiffault@stantec.com>; Johnson, Warren <Warren.Johnson@stantec.com>

Subject: RE: Norberry Overview

Good morning Jeff and thanks for getting back to me

Please find below and attached updated boundary condition request for you to pass along to the Water Group.

I have also attached the updated sanitary discharge information for your review and acceptance.

Connection #1 (Building A):

Average Day Demand: 36.05 L/min (0.6 L/s) Max Day Demand: 90.13 L/min (1.5 L/s) Peak Hour Demand: 198.28 L/min (3.30 L/s)

Fire Flow: 12000 L/min (200 L/s)

Connection #2 (Building B&C)

Average Day Demand: 64.40 L/min (1.07 L/s) Max Day Demand: 161.00 L/min (2.68 L/s) Peak Hour Demand: 354.20 L/min (5.90 L/s)

Fire Flow:

Building B – 14000 L/min (233.3 L/s) [Govern]

Building C - 12000 L/min (200 L/s)

Sanitary flow with updated unit number and population would be:

Building A – 2.2 L/s Building B – 2.0 L/s Building C – 1.9 L/s

Please let me know if you require any additional information and have a great weekend

Sincerely

Kris Kilborn

Principal, Community Development Business Center Practice Lead

Mobile: 613 297-0571

Fax: 613 722-2799 kris.kilborn@stantec.com Stantec 300 - 1331 Clyde Avenue Ottawa ON K2C 3G4

From: Shillington, Jeffrey < jeff.shillington@ottawa.ca>

Sent: Wednesday, April 2, 2025 1:52 PM **To:** Kilborn, Kris <<u>kris.kilborn@stantec.com</u>>

Cc: Thiffault, Dustin < Dustin.Thiffault@stantec.com; Johnson, Warren < Warren.Johnson@stantec.com;

Subject: RE: Norberry Overview

Hi Kris.

I just left you a voicemail, but yes, new boundary conditions should be requested and once those are provided your FUS and domestic water calcs should be updated along with updated sanitary calcs.

I don't believe there would be any change to the stormwater, but if there are any changes to the footprints of the buildings and/or parking lots, the stormwater calcs would also need to be updated.

Let me know if you have any further questions.

Regards,

Jeff Shillington, P. Eng. Senior Project Manager, Development Review, South Branch Planning, Infrastructure and Economic Development City of Ottawa

tel: 580-2424 x 16960

email: jeff.shillington@ottawa.ca

From: Kilborn, Kris < kris < kris.kilborn@stantec.com>
Sent: Wednesday, April 2, 2025 11:10 AM

To: Shillington, Jeffrey < jeff.shillington@ottawa.ca>

Cc: Thiffault, Dustin <dustin.thiffault@stantec.com>; Johnson, Warren <Warren.Johnson@stantec.com>

Subject: FW: Norberry Overview

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good morning Jeff and hope all is well

Further to my voice message this morning, I am hoping I could receive some clarification on the updated engineering for the 740 Springland Drive project.

I received the below information from Christine for updates to the servicing report as a result of addition of storeys to the building.

Could you please confirm if you will require a new boundary condition request for this project with updated FUS calcs and I will have prepared and sent over.

Please don't hesitate to call if you have any questions

Sincerely

Kris Kilborn

Principal, Community Development Business Center Practice Lead

Fax: 613 722-2799 kris.kilborn@stantec.com Stantec 300 - 1331 Clyde Avenue Ottawa ON K2C 3G4

Mobile: 613 297-0571

From: Christine McCuaig < christine@q9planning.com>

Sent: Monday, March 31, 2025 10:59 AM **To:** Kilborn, Kris < <u>kris.kilborn@stantec.com</u>>

Subject: Fwd: Norberry Overview

Hey Kris,

See below for the Norberry project. We are submitting a revision application to add a single storey. Staff seem alright with it. Please see the Feedback Form comments attached though I have pulled out the engineering one and provided it below. Let me know what you need to move ahead with your work.

Engineering Comments:

12.As the original site plan application was approved and provided that the only change is to add an additional floor to the buildings, this should not affect any previously approved stormwater management design. However, the additional floor will increase sanitary flows and water consumption (domestic and fire flow) calculations. An update to the Servicing Brief with updated sanitary and water calculations to accommodate the additional floor is required. Feel free to contact Jeff Shillington, Senior Engineer - Infrastructure Applications, for follow-up questions.

Thanks Christine

Christine McCuaig, RPP MCIP M.Pl c. 613-850-8345

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

8

Caution: This email originated from outside of Stantec. Please take extra precaution.

Attention: Ce courriel provient de l'extérieur de Stantec. Veuillez prendre des précautions supplémentaires.

Atención: Este correo electrónico proviene de fuera de Stantec. Por favor, tome precauciones adicionales.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Caution: This email originated from outside of Stantec. Please take extra precaution.

Attention: Ce courriel provient de l'extérieur de Stantec. Veuillez prendre des précautions supplémentaires.

Atención: Este correo electrónico proviene de fuera de Stantec. Por favor, tome precauciones adicionales.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

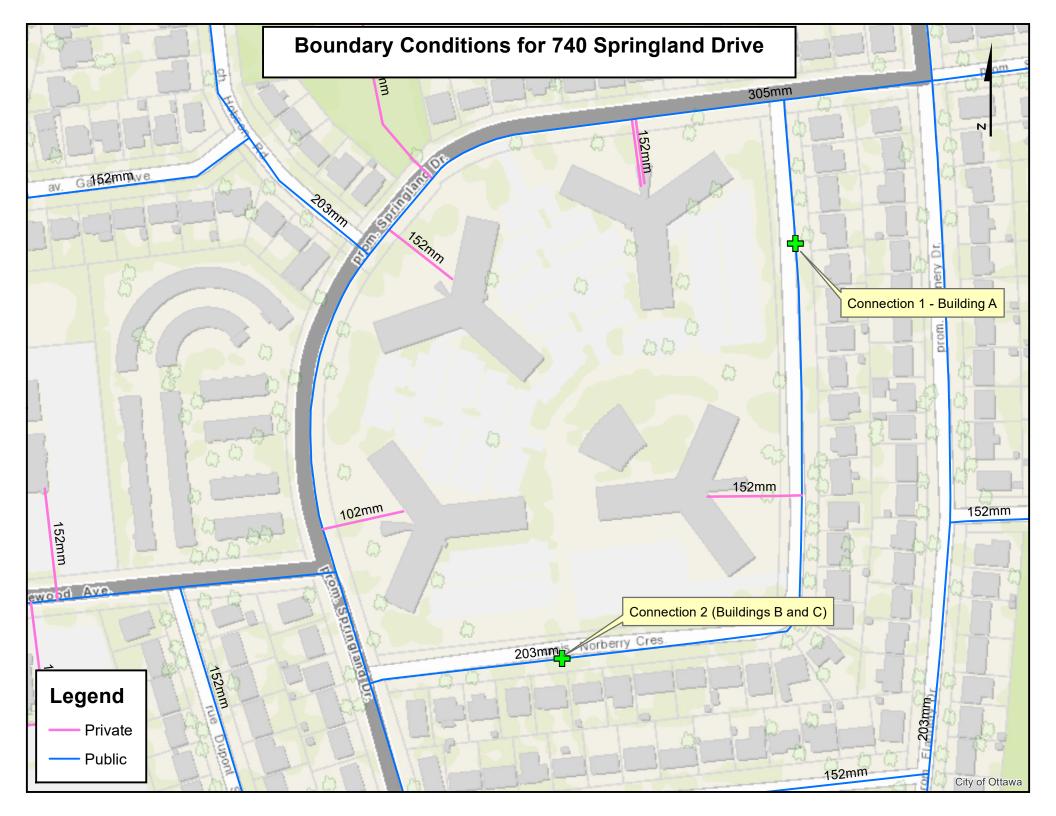
Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Caution: This email originated from outside of Stantec. Please take extra precaution.

Attention: Ce courriel provient de l'extérieur de Stantec. Veuillez prendre des précautions supplémentaires.

Atención: Este correo electrónico proviene de fuera de Stantec. Por favor, tome precauciones adicionales.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.


Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

9

Caution: This email originated from outside of Stantec. Please take extra precaution.

Attention: Ce courriel provient de l'extérieur de Stantec. Veuillez prendre des précautions supplémentaires.

Atención: Este correo electrónico proviene de fuera de Stantec. Por favor, tome precauciones adicionales.

SERVICING AND STORMWATER MANAGEMENT REPORT - NORBERRY RESIDENCES - 740 SPRINGLAND DRIVE

Conclusion April 25, 2025

Appendix B WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN SHEET

	51
Stantec	D R D

NORBERRY RESIDENCES

DATE: 4/25/2025
REVISION: 4
DESIGNED BY: ZW
CHECKED BY: KK

SANITARY SEWER DESIGN SHEET (City of Ottawa)

FILE NUMBER: 160401483

DESIGN PARAMETERS

MAX PEAK FACTOR (RES.)= AVG. DAILY FLOW / PERSON MINIMUM VELOCITY 0.60 m/s 4.0 280 l/p/day MIN PEAK FACTOR (RES.)= 2.0 COMMERCIAL MAXIMUM VELOCITY 3.00 m/s 28,000 l/ha/day PEAKING FACTOR (INDUSTRIAL): 2.4 INDUSTRIAL (HEAVY) 55,000 l/ha/day MANNINGS n 0.013 PEAKING FACTOR (ICI >20%): 1.5 INDUSTRIAL (LIGHT) 35,000 l/ha/day BEDDING CLASS PERSONS / SINGLE 3.4 INSTITUTIONAL 28,000 l/ha/day MINIMUM COVER 2.50 m PERSONS / TOWNHOME INFILTRATION 2.7 0.33 l/s/Ha 8.0 HARMON CORRECTION FACTOR

ERSONS / APARTMENT 1.8

																PERSONS /	APARTMENT		1.8																	
	LOCAT	ION					RESIDENTIA	AL AREA AND	POPULATION				COMM	ERCIAL	INDUS	ΓRIAL (L)	INDUS	TRIAL (H)	INSTITU	JTIONAL	GREEN	/ UNUSED	C+I+I		INFILTRATION	N	TOTAL				PII	PE				
A	REA ID	FROM	TO	AREA		UNITS		POP.	CUMUI	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
N	UMBER	M.H.	M.H.		SINGLE	TOWN	APT		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW							(FULL)	PEAK FLOW	(FULL)	(ACT.)
				(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
В	LDG A	BLDG	1	0.12	0	0	103	185	0.12	185	3.53	2.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.12	0.12	0.0	2.2	4.1	135	PVC	DR 28	1.00	11.5	18.75%	0.80	0.51
		1	1A	0.00	0	0	0	0	0.12	185	3.53	2.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.12	0.0	2.2	11.8	200	PVC	SDR 35	5.85	80.9	2.67%	2.54	0.92
																													225							
В	LDG B	BLDG	2	0.11	0	0	94	169	0.11	169	3.54	1.9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.11	0.11	0.0	2.0	4.3	135	PVC	DR 28	1.00	11.5	17.16%	0.80	0.50
		2	2A	0.00	0	0	0	0	0.11	169	3.54	1.9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.11	0.0	2.0	11.4	200	PVC	SDR 35	0.32	18.9	10.45%	0.60	0.32
																													225							
В	LDG C	BLDG	3	0.12	0	0	90	162	0.12	162	3.54	1.9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.12	0.12	0.0	1.9	2.6	135	PVC	DR 28	1.00	11.5	16.50%	0.80	0.50
		3	3A	0.00	0	0	0	0	0.12	162	3.54	1.9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.12	0.0	1.9	12.8	200	PVC	SDR 35	1.55	41.6	4.57%	1.31	0.56
																													225							

SERVICING AND STORMWATER MANAGEMENT REPORT - NORBERRY RESIDENCES - 740 SPRINGLAND DRIVE

Conclusion April 25, 2025

Appendix C STORMWATER MANAGEMENT

C.1 STORM SEWER DESIGN SHEET

	1																																					
	NORBERRY	RESIDEN	CES			STORM					PARAME	<u>TERS</u>																										
() Stantec						DESIGN	N SHEE	T		I = a / (t+	b) ^c		(As per C	ity of Otta	wa Guide	lines, 201	2)																					
Staritec	DATE:	2021	-06-14			(City of	Ottawa)				1:2 yr	1:5 yr	1:10 yr	1:100 yr																								
	REVISION:		3							a =	732.951	998.071	1174.184	1735.688	MANNING	S'S n =	0.013		BEDDING	CLASS =	В																	
	DESIGNED BY:			FILE NUM	IBER:	16040148	33			b =	6.199	6.053	6.014	6.014	MINIMUM	COVER:	2.00	m																				
	CHECKED BY:		CT							c =	0.810	0.814	0.816	0.820	TIME OF	ENTRY	10	min																				
LOCATION													DR	AINAGE AR	EA																	PIPE SELEC	TION					
AREA ID	FROM TO	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH F	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H. M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR	(100-YEAR)	AxC (100YR))						Q _{CONTROL}	(CIA/360)	0	R DIAMETEI	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
		(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
BLDGA	BLDG A EX. MAIN	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.30	76.81	104.19	122.14	178.56	7.4	7.4	7.4	12.8	200 600	200 600	CIRCULAR	PVC	SDR 35	1.00	33.3	22.22%	1.05	0.70	0.30
		1																	10.30									600	600									
BLDGB, L303A, RAMP-B	BLDG B EX. MAIN	0.25	0.00	0.00	0.01	0.11	0.62	0.00	0.00	0.77	0.155	0.155	0.000	0.000	0.000	0.000	0.008	0.008	10.00	76.81	104.19	122.14	178.56	7.3	7.3	44.2	12.9	250	250	CIRCULAR	PVC	SDR 35	1.00	60.4	73.16%	1.22	1.17	0.18
																			10.18									525	525									
																							.=															
BLDGC, L300A, L301A	BLDG C EX. MAIN	0.00	0.00	0.00	0.00	0.39	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.13	76.81	104.19	122.14	178.56	93.0	93.0	93.0	12.1	300 525	300	CIRCULAR	PVC	SDR 35	1.40	113.8	81.75%	1.62	1.60	0.13
		1																	10.13									525	525									-
L103A	CB 201 STC 103	0.00	0.13	0.00	0.00	0.00	0.00	0.45	0.00	0.00	0.000	0.000	0.059	0.059	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	16.9	14.6	200	200	CIRCULAR	PVC	SDR 35	1.00	33.3	50.83%	1.05	0.90	0.27
																			10.27																			
L103B	CB 203 STC 103	0.00	0.06	0.00	0.00	0.00	0.00	0.61	0.00	0.00	0.000	0.000	0.037	0.037	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	10.6	15.2	200	200	CIRCULAR	PVC	SDR 35	1.00	33.3	31.80%	1.05	0.79	0.32
	STC 103 EX. MAIN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.095	0.000	0.000	0.000	0.000	10.32 10.32	75.59	102.52	120.17	175.66	0.0	0.0	07.4	18.3	200	300	CIRCULAR	PVC	SDR 35	4.00	197.1	13.74%	0.00	1.63	0.40
	STC 103 EX. MAIN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.095	0.000	0.000	0.000	0.000	10.32	75.59	102.52	120.17	175.00	0.0	0.0	27.1	18.3	300 450	450	CIRCULAR	PVC	SDR 35	4.20	197.1	13.74%	2.80	1.03	0.19
		1																	10.51									730	730									
L102A	CB 200 STC 102		0.12	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.000	0.000	0.084	0.084	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	24.3	14.2	200	200	CIRCULAR	PVC	SDR 35	1.00	33.3	72.99%	1.05	1.00	0.24
	STC 102 EX. MAIN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.084	0.000	0.000	0.000	0.000	10.24	75.91	102.96	120.69	176.43	0.0	0.0	24.0	13.4	300	300	CIRCULAR	PVC	SDR 35	4.85	211.8	11.35%	3.01	1.64	0.14
																			10.37									450	450									
F101A	CB 204 101	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.76	0.000	0.000	0.000	0.000	0.000	0.000	0.084	0.084	10.00	76.81	104.19	122.14	178.56	0.0	0.0	41.5	8.8	250	250	CIRCULAR	PVC	SDR 35	1.00	60.4	68.65%	1.22	1.15	0.13
1 101A	101 100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.70	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.084	10.13	76.32	103.52	121.35		0.0	0.0	41.2	48.2	375	375	CIRCULAR	PVC	SDR 35	0.25				0.67	1.20
		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.300	2.300	2.200	2.200	2.300	2.500	2.300	2.301	11.33									525	525								2.01	0

SERVICING AND STORMWATER MANAGEMENT REPORT - NORBERRY RESIDENCES - 740 SPRINGLAND DRIVE

Conclusion April 25, 2025

C.2 PRE DEVELOPMENT RATIONAL METHOD CALCULATIONS

File No: 160401483 Project: Norberry Residences
Date: 25-Jun-19

SWM Approach: Post-development to Pre-development flows

Pre-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Sub-catc	hment	Runoff C	oefficient Table Area		Runoff			Overall
Area	1		(ha)	(Coefficient			Runoff
Catchment Type	ID / Description		"A"		"C"	"A	x C"	Coefficient
Uncontrolled - Tributary	EX-20	Hard	0.003		0.9	0.002		
Official officer - Tributary	LX-20	Soft	0.187		0.9	0.002		
		Subtotal		0.19			0.0399	0.210
Uncontrolled - Tributary	EX-19	Hard	0.045		0.9	0.041		
Choomeoned Theatary		Soft	0.106		0.2	0.021		
		Subtotal		0.151			0.06191	0.410
Uncontrolled - Tributary	EX-18	Hard	0.000		0.9	0.000		
,		Soft	0.049		0.2	0.010		
		Subtotal		0.049			0.0098	0.200
Uncontrolled - Tributary	EX-17	Hard	0.408		0.9	0.367		
•		Soft	0.000		0.2	0.000		
		Subtotal		0.408			0.3672	0.900
Uncontrolled - Tributary	EX-16	Hard	0.261		0.9	0.235		
		Soft	0.220		0.2	0.044		
		Subtotal		0.481			0.27898	0.580
Uncontrolled - Tributary	EX-15	Hard	0.026		0.9	0.023		
		Soft	0.052		0.2	0.010		
		Subtotal		0.078			0.03354	0.430
Uncontrolled - Tributary	EX-14	Hard	0.072		0.9	0.065		
		Soft	0.265		0.2	0.053		
		Subtotal		0.337			0.11795	0.350
Uncontrolled - Tributary	EX-13	Hard	0.232		0.9	0.209		
		Soft	0.000	0.000	0.2	0.000	0.0000	0.000
		Subtotal		0.232			0.2088	0.900
Uncontrolled - Tributary	EX-12	Hard	0.232		0.9	0.209		
		Soft	0.000	0.000	0.2	0.000	0.2088	0.000
		Subtotal		0.232			0.2088	0.900
Uncontrolled - Tributary	EX-11	Hard	0.032		0.9	0.029		
		Soft	0.101	0.422	0.2	0.020	0.04004	0.070
		Subtotal		0.133			0.04921	0.370
Uncontrolled - Tributary	EX-10	Hard	0.189		0.9	0.170		
		Soft Subtotal	0.151	0.34	0.2	0.030	0.2006	0.590
		Subtotal		0.54			0.2000	0.550
Uncontrolled - Tributary	EX-9	Hard	0.061		0.9	0.055		
		Soft Subtotal	0.000	0.061	0.2	0.000	0.0549	0.900
		Cubiciai		0.001			0.0040	0.500
Uncontrolled - Tributary	EX-8	Hard	0.511		0.9	0.460		
		Soft Subtotal	0.177	0.688	0.2	0.035	0.49536	0.720
Uncontrolled - Tributary	EX-7	Hard Soft	0.000		0.9 0.2	0.000 0.015		
		Subtotal	0.075	0.0746	0.2	0.015	0.01492	0.200
Uncontrolled - Tributary	EX-6	Hard Soft	0.277		0.9 0.2	0.250 0.029		
		Soft Subtotal	0.145	0.422	0.2	0.029	0.27852	0.660
Uncontrolled - Tributary	EX-5	Hard Soft	0.231 0.000		0.9 0.2	0.208 0.000		
		Subtotal	0.000	0.231	0.2	0.000	0.2079	0.900
Uncontrolled - Tributary	EX-4	Hard Soft	0.510		0.9 0.2	0.459 0.038		
		Subtotal	0.190	0.7	0.2	0.000	0.497	0.710
Uncontrolled - Tributary	EX-3	Hard Soft	0.232 0.000		0.9 0.2	0.209		
		Subtotal	0.000	0.232	5.2	0.000	0.2088	0.900
Hannahallad T.A. C.	EVO	11	0.050		0.0	0.050		
Uncontrolled - Tributary	EX-2	Hard Soft	0.058 0.211		0.9 0.2	0.052 0.042		
		Subtotal		0.269			0.09415	0.350
Uppentralled T-thut	EV 4	U	0.040		0.0	0.044		
Uncontrolled - Tributary	EX-1	Hard Soft	0.049 0.235		0.9 0.2	0.044 0.047		
		Subtotal		0.284			0.09088	0.320
Total				5.403			3.519	
rerall Runoff Coefficient= C:								0.65

Total Roof Areas Total Tributary Surface Areas (Controlled and Uncontrolled) Total Tributary Area to Outlet	0.000 ha 5.593 ha 5.593 ha
Total Uncontrolled Areas (Non-Tributary)	0.000 ha
Total Site	5.593 ha

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

5 yr Inte		$I = a/(t + b)^{c}$	a =	998.071	t (min)	I (mm/hr)
City of C	Ottawa		b = c =	6.053 0.814	5 10	141.18 104.19
					15	83.56
					20 25	70.25 60.90
					30	53.93
					35	48.52
					40	44.18 40.63
					45 50	37.65
					55	35.12
				L	60	32.94
5 YI Subdrainage Are			rget Release		tion of Sit	е
Area (ha		3	y Area to Outle			
Typical T	ime of Conce	ntration				
tc (min)	I (5 yr) (mm/hr)	Qtarget (L/s)				
10	104.19	1055.18				
5 YEAR	R Modified F	Rational Met	hod for Entir	e Site		
Subdrainage Are	a: EX-20				Uncontroll	ed - Tributary
Area (ha						,
tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored	Ī
(min) 10	(mm/hr) 104.19	(L/s) 11.56	(L/s) 11.56	(L/s)	(m^3)	
20	70.25	7.79	7.79			
30	53.93	5.98	5.98			
40 50	44.18 37.65	4.90 4.18	4.90 4.18			
60	32.94	3.65	3.65			
70	29.37	3.26	3.26			
80 90	26.56 24.29	2.95 2.69	2.95 2.69			
100	22.41	2.49	2.49			
110 120	20.82 19.47	2.31 2.16	2.31 2.16			
Subdrainage Are	a: EX-19				Uncontrol	ed - Tributary
Area (ha					Oncom on	ou modaly
tc (min)	I (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10	104.19	17.93	17.93			•
20 30	70.25 53.93	12.09 9.28	12.09 9.28			
40	44.18	7.60	7.60			
50	37.65	6.48	6.48			
60 70	32.94 29.37	5.67 5.06	5.67 5.06			
80	26.56	4.57	4.57			
90 100	24.29 22.41	4.18	4.18 3.86			
110	20.82	3.86 3.58	3.58			
120 Subdrainage Are	19.47 a: EX-18	3.35	3.35		Uncontroll	ed - Tributary
Area (ha					550mii 011	-2butaly
tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10 20	104.19 70.25	2.84 1.91	2.84 1.91			•
30	53.93	1.91	1.91			
40	44.18	1.20	1.20			
50 60	37.65 32.94	1.03 0.90	1.03 0.90			
70	29.37	0.80	0.80			
80	26.56	0.72	0.72			
90 100	24.29 22.41	0.66 0.61	0.66 0.61			
110 120	20.82	0.57 0.53	0.57 0.53			
Subdrainage Are	a: EX-17	0.00	3.00		Uncontroll	ed - Tributary
Area (ha						,
tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored	Ī
(min)	(mm/hr) 104.19	(L/s)	(L/s)	(L/s)	(m^3)	Į
10 20	104.19 70.25	106.36 71.71	106.36 71.71			
30	53.93	55.05	55.05			
40 50	44.18 37.65	45.10	45.10			
50 60	37.65 32.94	38.44 33.63	38.44 33.63			
70	29.37	29.98	29.98			
80	26.56	27.11	27.11			
90	24.29 22.41	24.79 22.87	24.79 22.87			
100						
100 110	20.82	21.26	21.26			

	100 yr Inte	nsitv	I = a/(t + b)	a =	1735.688	t (min)	I (mm/hr)
	City of Otta		(c · 5)	b =	6.014	5	242.70
			[c =	0.820	10 15	178.56 142.89
						20	119.95
						25 30	103.85 91.87
						35 40	82.58
						45	75.15 69.05
						50 55	63.95 59.62
						60	55.89
Subdrai			velopment Topment Tributar	-		ortion of S	ite
Ouburui	Area (ha): C:	5.5926	3	y Aica to Gua			
	Estimated 1						
	tc (min)	I (100 yr) (mm/hr)	Q100yr (L/s)				
	10	178.56	2260.38	stheed for Fr	tina Cita		
			I Rational Me	etnoa for En	tire Site		
Subdrai	nage Area: Area (ha): C:	0.19 0.26				Uncontroll	ed - Tributary
	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
	10 20	178.56 119.95	24.76 16.63	24.76 16.63	` -/	` -/	
	30	91.87	12.74	12.74			
	40 50	75.15 63.95	10.42 8.87	10.42 8.87			
	60 70	55.89 49.79	7.75 6.90	7.75 6.90			
	80	44.99	6.24	6.24			
	90 100	41.11 37.90	5.70 5.26	5.70 5.26			
	110 120	35.20 32.89	4.88 4.56	4.88 4.56			
Cubata			4.00	4.00		Uneerte."	od Tribut
Supdrai	nage Area: Area (ha): C:	EX-19 0.15 0.51				Uncontroll	ed - Tributary
	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
	10 20	178.56 119.95	38.41 25.81	38.41 25.81			
	30	91.87	19.76	19.76			
	40 50	75.15 63.95	16.17 13.76	16.17 13.76			
	60 70	55.89 49.79	12.03 10.71	12.03 10.71			
	80	44.99	9.68	9.68			
	90 100	41.11 37.90	8.84 8.15	8.84 8.15			
	110 120	35.20 32.89	7.57 7.08	7.57 7.08			
Subdrai	nage Area: Area (ha):	EX-18 0.05				Uncontroll	ed - Tributary
	C:	0.25 I (100 yr)	Qactual	Qrelease	Qstored	Vstored	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
	10 20	178.56 119.95	4.08	4.08			
	30 40	91.87 75.15	3.13 2.56	3.13 2.56			
	50	63.95	2.18	2.18			
	60 70	55.89 49.79	1.90 1.70	1.90 1.70			
	80 90	44.99 41.11	1.53 1.40	1.53 1.40			
	100	37.90	1.29	1.29			
	110 120	35.20 32.89	1.20 1.12	1.20 1.12			
Subdrai	nage Area: Area (ha):	EX-17 0.41				Uncontroll	ed - Tributary
	C:	1.00 I (100 yr)	Qactual	Qrelease	Qstored	Vstored	
	(min) 10	(mm/hr) 178.56	(L/s) 202.53	(L/s) 202.53	(L/s)	(m^3)	
	20 30	119.95 91.87	136.05 104.20	136.05 104.20			
	40	75.15	85.23	85.23			
	50 60	63.95 55.89	72.54 63.40	72.54 63.40			
	70	49.79	56.47	56.47			
	80 90	44.99 41.11	51.03 46.63	51.03 46.63			
	100	37.90	42.99	42.99			
	110	35.20	39.93	39.93			

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Stora

Modified						
Subdrai	nage Area: Area (ha): C:	EX-16 0.48 0.58				Uncontrolled - Tributary
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 104.19	(L/s) 80.81	(L/s) 80.81	(L/s)	(m^3)
	20	70.25	54.48	54.48		
	30	53.93	41.82	41.82		
	40	44.18	34.27	34.27		
	50	37.65	29.20	29.20		
	60 70	32.94 29.37	25.55 22.78	25.55 22.78		
	80	26.56	20.60	20.60		
	90	24.29	18.84	18.84		
	100	22.41	17.38	17.38		
	110 120	20.82 19.47	16.15 15.10	16.15 15.10		
Subdrai	nage Area: Area (ha): C:	EX-15 0.08 0.43				Uncontrolled - Tributary
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	10	104.19	9.72	9.72		
	20 30	70.25 53.93	6.55 5.03	6.55 5.03		
	40	53.93 44.18	4.12	4.12		
	50	37.65	3.51	3.51		
	60	32.94	3.07	3.07		
	70 80	29.37 26.56	2.74 2.48	2.74 2.48		
	90	26.56	2.48	2.48		
	100	22.41	2.09	2.09		
	110 120	20.82 19.47	1.94 1.82	1.94 1.82		
	120	19.47	1.02	1.02		
Subdrai	nage Area: Area (ha): C:	EX-14 0.34 0.35				Uncontrolled - Tributary
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	10 20	104.19 70.25	34.17 23.04	34.17 23.04		
	30	53.93	17.68	17.68		
	40					
	40	44.18	14.49	14.49		
	50	37.65	12.35	12.35		
	50 60	37.65 32.94	12.35 10.80	12.35 10.80		
	50 60 70	37.65 32.94 29.37	12.35 10.80 9.63	12.35 10.80 9.63		
	50 60	37.65 32.94	12.35 10.80	12.35 10.80		
	50 60 70 80 90 100	37.65 32.94 29.37 26.56 24.29 22.41	12.35 10.80 9.63 8.71 7.96 7.35	12.35 10.80 9.63 8.71 7.96 7.35		
	50 60 70 80 90 100	37.65 32.94 29.37 26.56 24.29 22.41 20.82	12.35 10.80 9.63 8.71 7.96 7.35 6.83	12.35 10.80 9.63 8.71 7.96 7.35 6.83		
Subdrai	50 60 70 80 90 100	37.65 32.94 29.37 26.56 24.29 22.41	12.35 10.80 9.63 8.71 7.96 7.35	12.35 10.80 9.63 8.71 7.96 7.35		Uncontrolled - Tributary
Subdrai	50 60 70 80 90 100 110 120 nage Area: Area (ha):	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38	Osterad	
Subdrai	50 60 70 80 90 100 110 120 nage Area:	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38	Qstored (L/s)	Vstored
Subdrai	50 60 70 80 90 100 110 120 nage Area: Area (ha): C: tc (min)	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 104.19	12.35 10.80 9.63 8.71 7.96 7.35 6.38 Qactual (L/s) 60.48	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38	Qstored (L/s)	
Subdrai	50 60 70 80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 (mm/hr) 104.19 70.25	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 60.48 40.78		Vstored
Subdrai	50 60 70 80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 60.48 40.78 31.30		Vstored
Subdrai	50 60 70 80 90 100 1100 1120 nage Area: Area (ha): C: (min) 10 20 30 40 50	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86	12.35 10.80 9.63 8.71 7.35 6.83 6.38 Qrelease (L/s) 60.48 40.78 31.30 25.65 21.86		Vstored
Subdrai	50 60 70 80 90 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.32 25.65 21.86 19.12	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 60.48 40.78 41.30 25.65 21.86 19.12		Vstored
Subdrai	50 60 70 80 90 100 110 120 nage Area: (ha): C: tc (min) 10 20 30 40 50 60 70	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37	12.35 10.80 9.63 8.77 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 60.48 40.78 31.30 25.65 21.86 19.12		Vstored
Subdrai	50 60 70 80 90 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.83 6.84 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05		Vstored
Subdrai	50 60 70 80 90 1100 120 120 100 100 100 100 100 100 1	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 1 (5 yr) (mm/hr) 104.19 70.25 33.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05 15.42 14.10 13.01	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 21.86 40.78 40.78 40.78 40.78 19.12 17.05 21.86 19.12 17.05 15.42 14.10 13.01		Vstored
Subdrai	50 60 70 80 90 100 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05 15.42 14.10 13.01 12.09	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05 14.10 13.01 12.09		Vstored
	50 60 70 80 90 110 120 nage Area: Area (ha): 50 60 70 80 90 110 120 120 120 120 120 120 120 120 12	37.65 32.94 29.37 26.56 24.29 22.41 20.81 20.81 EX-13 0.29 I (5 yr) (mm/hr) 70.25 53.93 44.18 37.65 24.29 22.41 20.82 19.47 EX-12 0.23	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05 15.42 14.10 13.01	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 21.86 40.78 40.78 40.78 40.78 19.12 17.05 21.86 19.12 17.05 15.42 14.10 13.01		Vstored
	50 60 70 80 90 1110 120 120 100 60 60 70 80 80 90 110 120 100 80 90 100 110 120 120 120 120 120 120 120 12	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-12 0.90	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05 15.42 14.10 12.09 11.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 60.48 40.78 41.78 41.70 25.65 21.86 19.12 17.05 15.42 14.10 13.01 12.09 11.30	(Us)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 90 110 120 120 110 120 120 120 120 120 12	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX.13 0.90 I (5 yr) I (5 yr) I (5 yr)	12.35 10.80 9.63 8.71 7.98 7.35 6.83 6.38 6.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 0.48 40.78 25.65 11.20 17.05 15.42 14.10 12.01 12.01	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 90 110 120 120 100 50 60 70 80 90 100 110 120 100 110 120 100 120 120 12	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-12 0.90	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05 15.42 14.10 12.09 11.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 60.48 40.78 41.78 41.70 25.65 21.86 19.12 17.05 15.42 14.10 13.01 12.09 11.30	(Us)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 110 120 120 100 110 11	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX.13 0.20 0.90 I (5 yr) (mm/lhr) 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05 15.42 14.10 12.09 11.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 13.00 12.65 19.12 17.05 15.42 14.10 12.09 11.30	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 90 110 120 nage Area: Area (ha): C: tc (min) 10 110 120 nage Area: Area (ha): C: tc (min) 10 10 110 120 110 110 120 110 110 120 110 11	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.23 0.90 I (5 yr) (mm/hr) 104.19 104.19 26.56 24.29 22.41 20.82 19.47 EX-13 0.90 I (5 yr) (mm/hr) 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 105.39 106.50	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 12.09 11.30 Qactual 12.09 11.30 Qactual (L/s) 15.42 14.10 13.01 12.09 11.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 6.38 Qrelease (L/s) 21.86 19.12 17.05 15.42 14.10 13.01 12.09 11.30 Qrelease (L/s) 13.01 14.00 15.00 15.00 16.04	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 110 120 120 100 110 11	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX.13 0.20 0.90 I (5 yr) (mm/lhr) 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 21.86 19.12 17.05 15.42 14.10 12.09 11.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 Qrelease (L/s) 13.00 12.65 19.12 17.05 15.42 14.10 12.09 11.30	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 90 1110 120 110 20 30 100 1120 110 20 30 40 50 60 60 60 60 60 60 60 60 60 60 60 60 60	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.20 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 22.94 22.241 20.82 24.29 24.29 19.47 EX-12 0.23 0.90 I (5 yr) (mm/hr) 104.19 53.93 44.18 37.65 53.93 44.18 37.65	12.35 10.80 9.63 8.71 7.96 7.36 6.83 6.38 Cactual (L/s) 60.48 40.78 31.30 25.65 15.42 14.10 12.09 11.30 Cactual (L/s) 60.48 40.78 31.30 50.65 60.48 40.78 31.30 50.65 60.48 40.78 31.30 60.48 40.78 60.48	12.35 10.80 9.63 8.71 7.96 7.38 6.83 6.38 Crelease (L/s) 60.48 40.78 31.30 12.09 11.30 Crelease (L/s) 15.42 14.10 13.01 12.09 11.30 Crelease (L/s) 60.48 40.78 31.30	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 90 1100 120 120 100 80 90 100 110 120 100 100 110 120 100 100 110 120 100 10	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.20 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 EX-12 0.90 I (5 yr) (mm/hr) 104.19 70.25 104.19 70.25 105.10 104.19 70.25 105.10 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 105.393 1	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 6.38 Qactual (L/s) 60.48 40.78 31.30 25.65 19.12 17.05 11.30 Qactual (L/s) 60.48 40.78 31.30 12.09 11.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 6.38 6.38 0.48 40.78 31.30 25.65 21.86 19.12 17.05 11.30 12.09 11.30	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 90 1110 120 120 120 120 120 120 120 120 1	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.90 I (5 yr) (mm/hr) 104.19 20.25 32.94 29.37 26.56 22.94 29.37 26.56 22.41 20.82 19.47	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 6.38 Cactual (L/s) 60.48 40.78 31.30 11.20 11.30 Cactual (L/s) 60.48 40.78 31.30 50.65 51.42 60.48 40.78 31.30 60.48 40.78 31.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 6.38 6.38 60.48 40.78 31.30 25.65 11.25 17.05 11.30 12.09 11.30 11.30	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 90 1100 120 120 100 1100 120 100 1100 1	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-13 0.20 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 EX-12 0.90 I (5 yr) (mm/hr) 104.19 70.25 104.19 70.25 105.10 104.19 70.25 105.10 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 104.19 105.393 1	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 6.38 Qactual (L/s) 60.48 40.78 31.30 12.09 11.30 Qactual (L/s) 60.48 40.78 31.30 12.09 11.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 6.38 6.38 0.48 40.78 31.30 25.65 21.86 19.12 17.05 11.30 12.09 11.30	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	50 60 70 80 90 1110 120 120 120 120 120 120 120 120 1	37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX.13 0.23 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 24.29 22.41 20.82 19.47 EX.12 0.23 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 23 29.47	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 6.38 Cactual (L/s) 60.48 40.78 31.30 11.20 11.30 Cactual (L/s) 60.48 40.78 31.30 50.65 51.42 60.48 40.78 31.30 60.48 40.78 31.30	12.35 10.80 9.63 8.71 7.96 7.35 6.83 6.38 6.38 6.38 6.38 6.38 6.38 6.38	(L/s)	Vstored (m^3) Uncontrolled - Tributary

Outside 1						
Subdraii	nage Area:	EX-16				Uncontrolled - Tributary
	Area (ha): C:	0.48 0.73				
	·					
	tc (min)	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 178.56	(L/s) 173.11	(L/s) 173.11	(L/s)	(m^3)
	20	119.95	116.29	116.29		
	30	91.87	89.06	89.06		
	40	75.15	72.85	72.85		
	50 60	63.95 55.89	62.00 54.19	62.00 54.19		
	70	49.79	48.27	48.27		
	80	44.99	43.62	43.62		
	90	41.11	39.86	39.86		
	100	37.90	36.75	36.75		
	110 120	35.20 32.89	34.13 31.89	34.13 31.89		
	120	02.00	31.03	01.00		
Subdraii	nage Area:	EX-15				Uncontrolled - Tributary
	Area (ha): C:	0.08 0.54				
	٥.	0.54				
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 178.56	(L/s) 20.81	(L/s) 20.81	(L/s)	(m^3)
	20	119.95	13.98	13.98		
	30	91.87	10.71	10.71		
	40	75.15	8.76	8.76		
	50	63.95	7.45	7.45		
	60 70	55.89 49.79	6.51 5.80	6.51 5.80		
	80	44.99	5.80	5.80		
	90	41.11	4.79	4.79		
	100	37.90	4.42	4.42		
	110 120	35.20 32.89	4.10 3.83	4.10 3.83		
			0.00	0.00		
Subdraii	nage Area:	EX-14				Uncontrolled - Tributary
	Area (ha): C:	0.34 0.44				
		0.44				
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr)	(L/s)	(L/s) 73.19	(L/s)	(m^3)
	20	178.56 119.95	73.19 49.16	49.16		
	30	91.87	37.65	37.65		
	40	75.15	30.80	30.80		
	50	63.95	26.21	26.21		
	60 70	55.89 49.79	22.91 20.41	22.91 20.41		
	80	44.99	18.44	18.44		
	90	41.11	16.85	16.85		
	100	37.90	15.54	15.54		
	110	35.20	14.43 13.48	14.43 13.48		
			10.40	13.40		
	120	32.89				
Subdraii	nage Area:	EX-13				Uncontrolled - Tributary
Subdraii	nage Area: Area (ha):	EX-13 0.23				Uncontrolled - Tributary
Subdrain	nage Area:	EX-13 0.23 1.00				
Subdrain	nage Area: Area (ha): C:	EX-13 0.23 1.00	Qactual	Qrelease	Qstored	Vstored
Subdrain	nage Area: Area (ha): C:	EX-13 0.23 1.00 I (100 yr) (mm/hr)	(L/s)	(L/s)	Qstored (L/s)	
Subdrain	nage Area: Area (ha): C: tc (min) 10 20	EX-13 0.23 1.00	(L/s) 115.16 77.36	(L/s) 115.16 77.36		Vstored
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	(L/s) 115.16 77.36 59.25	(L/s) 115.16 77.36 59.25		Vstored
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15	(L/s) 115.16 77.36 59.25 48.47	(L/s) 115.16 77.36 59.25 48.47		Vstored
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	(L/s) 115.16 77.36 59.25 48.47 41.25	(L/s) 115.16 77.36 59.25 48.47 41.25		Vstored
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	(L/s) 115.16 77.36 59.25 48.47	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05		Vstored
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02		Vstored
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51		Vstored
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45		Vstored
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51		Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70		Vstored (m^3)
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area:	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70		Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 91.87 75.15 63.95 55.89 44.79 44.99 41.11 37.90 35.20 32.89 EX-12 0.23	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70		Vstored (m^3)
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C:	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.97 44.11 37.90 35.20 32.89 EX-12 0.23 1.00	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C:	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 35.20 32.89 EX-12 0.23 1.00	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qrelease	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 1120 nage Area: Area (ha): C: tc (min)	EX-13 0.23 1.00 yr) (mm/hr) 178.56 119.95 55.89 49.79 44.99 41.11 37.90 35.20 20.23 1.00 yr) (mm/hr)	(L/s) 115.16 77.36 79.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s)	(L/s) 115.16 77.36 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C:	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 35.20 32.89 EX-12 0.23 1.00	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qrelease	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 30 40 50 60 60 60 70 80 60 60 60 70 80 60 60 70 80 80 90 100 110 120 30	EX-13 0.23 1.00 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 32.20 32.89 EX-12 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	(L/s) 115.16 177.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) 115.16 77.36	(L/s) 115.16 115.17 36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qrelease (L/s) 115.16 77.36 59.25	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 40	EX-13 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 35.20 32.89 EX-12 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) 115.16 77.36 59.25 48.47	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qrelease (L/s) 115.16 77.36 59.25 48.47	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 110 1120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 32.89 EX-12 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	(L/s) 115.16 177.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25	(L/s) 115.16 15.17 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 16.18 16.18 16.18 17.38 115.16 17.38 18.1	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 40 40 40 50 60	EX-13 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 95.89 44.91 41.11 37.90 35.20 32.89 EX-12 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	(L/s) 115.16 77.36 59.26 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 48.47 41.25 36.05	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 110 1120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50	EX-13 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 32.89 EX-12 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	(L/s) 115.16 177.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25	(L/s) 115.16 15.17 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 16.18 16.18 16.18 17.38 115.16 17.38 18.1	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 110 120 area (ha): C: tc (min) 10 20 30 40 50 60 70 80 80 90 100 100 100 100 100 100 100 100 100	EX-13 0.23 1.00 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 32.89 EX-12 0.23 1.00 1 (100 yr) (mm/hr) (mm/hr) 178.56 119.95 55.89 49.79 44.91	(Us) 115.16 17.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (Us) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51	(L/s) 115.16 17.36 59.25 48.47 41.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 110 120 nage Area: Area (ha): C: tc (min) 10 40 40 50 60 70 80 80	EX-13 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 95.89 44.99 44.191 37.90 35.20 32.89 EX-12 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 95.89 44.79 44.99	(L/s) 115.16 177.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02	(L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 48.47 41.25 36.05 32.11 29.02	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

		alculatons			
Subdrainage Area:	EX-11				Uncontrolled - Tributary
Area (ha): C:	0.13 0.37				
-	1 (5)	0	01	0-4	W-td
tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10	104.19	14.25	14.25		
20	70.25	9.61	9.61		
30 40	53.93 44.18	7.38 6.04	7.38 6.04		
50	37.65	5.15	5.15		
60	32.94	4.51	4.51		
70	29.37	4.02	4.02		
80 90	26.56 24.29	3.63 3.32	3.63 3.32		
100	22.41	3.07	3.07		
110	20.82	2.85	2.85		
120	19.47	2.66	2.66		
Subdrainage Area:	EX-10				Uncontrolled - Tributary
Area (ha): C:	0.34 0.59				
U .	0.55				
tc	l (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10 20	104.19 70.25	58.11 39.18	58.11 39.18		
30	53.93	30.07	30.07		
40	44.18	24.64	24.64		
50 60	37.65	21.00	21.00		
60 70	32.94 29.37	18.37 16.38	18.37 16.38		
80	26.56	14.81	14.81		
90	24.29	13.54	13.54		
100 110	22.41 20.82	12.50 11.61	12.50 11.61		
120	19.47	10.86	10.86		
Cubdusi: 4-	EV ^				Uncentralled Tableton
Subdrainage Area: Area (ha):	EX-9 0.06				Uncontrolled - Tributary
C:	0.90				
tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease	Qstored	Vstored
10	104.19	15.90	(L/s) 15.90	(L/s)	(m^3)
20	70.25	10.72	10.72		
30	53.93	8.23	8.23		
40 50	44.18 37.65	6.74 5.75	6.74 5.75		
60	32.94	5.03	5.03		
70	29.37	4.48	4.48		
80 90	26.56 24.29	4.05 3.71	4.05 3.71		
100	22.41	3.42	3.42		
110	20.82	3.18	3.18		
120	19.47	2.97	2.97		
Subdrainage Area:	EX-8				Uncontrolled - Tributary
Area (ha): C:	0.69				
٥.					
	0.72				
tc (min)	I (5 yr)	Qactual	Qrelease	Qstored	Vstored (m^3)
tc (min) 10		Qactual (L/s) 143.48	Qrelease (L/s) 143.48	Qstored (L/s)	Vstored (m^3)
(min) 10 20	I (5 yr) (mm/hr) 104.19 70.25	(L/s) 143.48 96.74	(L/s) 143.48 96.74		
(min) 10 20 30	I (5 yr) (mm/hr) 104.19 70.25 53.93	(L/s) 143.48 96.74 74.26	(L/s) 143.48 96.74 74.26		
(min) 10 20	1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18	(L/s) 143.48 96.74 74.26 60.85	(L/s) 143.48 96.74 74.26 60.85		
(min) 10 20 30 40 50 60	1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37		
(min) 10 20 30 40 50 60 70	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45		
(min) 10 20 30 40 50 60 70 80	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58		
(min) 10 20 30 40 50 60 70	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45		
(min) 10 20 30 40 50 60 70 80 90 100	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67		
(min) 10 20 30 40 50 60 70 80 90 100	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86		
(min) 10 20 30 40 50 60 70 80 90 100	1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67		
(min) 10 20 30 40 50 60 70 80 90 110 110 120 Subdrainage Area: Area (ha):	1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67		(m^3)
(min) 10 20 30 40 50 60 70 80 90 100 110 120 Subdrainage Area:	1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-7	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67		(m^3)
(min) 10 20 30 40 50 60 70 80 90 110 112 Subdrainage Area: Area (ha):	1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-7 0.07 0.20	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67	(L/s)	Uncontrolled - Tributary
(min) 10 20 30 40 50 60 70 80 90 100 110 120 Subdrainage Area: Area (ha): C: (min)	1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-7 0.07 0.20	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67 26.81	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67 26.81		(m^3)
(min) 10 20 30 40 50 60 70 80 90 100 110 120 Subdrainage Area: Area (ha): C:	1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 29.37 26.56 24.29.37 26.56 24.21 20.82 19.47 0.07 0.20	(L/s) 143.48 96.74 74.26 60.85 51.85 40.45 36.58 33.45 30.86 28.67 26.81	(L/s) 143.48 96.74 74.26 60.85 61.85 45.37 40.45 36.58 33.46 28.67 26.81	(L/s)	Uncontrolled - Tributary Vstored
(min) 10 20 30 40 50 60 70 80 90 100 110 120 Subdrainage Area: Area (ha): C: tc (min) 10 20	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 24.29 22.41 20.82 19.47 EX-7 0.07 0.20 I (5 yr) (mm/hr) 104.19 70.25	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.46 28.67 26.81 Qactual (L/s) 4.32 2.91	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67 26.81	(L/s)	Uncontrolled - Tributary Vstored
(min) 10 20 30 40 50 60 70 80 90 100 110 120 Subdrainage Area: Area (ha): C:	1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 29.37 26.56 24.29 22.41 20.82 19.47 0.07 0.20 1(5 yr) (mm/hr) 104.19	(L/s) 143.48 96.74 74.26 60.85 51.85 40.45 36.58 33.45 30.86 28.67 26.81	(L/s) 143.48 96.74 74.26 60.85 61.85 45.37 40.45 36.58 33.46 28.67 26.81	(L/s)	Uncontrolled - Tributary Vstored
(min) 10 20 30 40 50 60 70 80 90 110 112 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 24.29 22.41 20.82 19.47 LX-7 0.20 L(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65	(L/s) 143.48 96.74 74.26 60.85 51.85 51.85 33.45 30.86 28.67 26.81	(L/s) 143.48 143.47 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67 26.81	(L/s)	Uncontrolled - Tributary Vstored
(min) 10 20 30 40 50 60 70 80 90 100 110 120 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-7 0.07 (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 33.45 30.86 28.67 26.81	(L/s) 143.48 96.74 74.26 60.85 51.85 51.85 45.37 40.45 30.86 28.67 26.81 Qrelease (L/s) 4.32 2.91 2.24 1.83 1.566	(L/s)	Uncontrolled - Tributary Vstored
(min) 10 20 30 40 50 60 70 80 90 110 120 Subdrainage Area: (ha): C: tc (min) 10 20 30 40 50 60 70	1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 0.07 0.20 115 yr) 104.19 70.25 53.93 44.18 37.65 32.94 49.37	(L/s) 143.48 143.48 143.48 143.48 143.45 143	(L/s) 143.48 96.74 74.26 60.85 51.85 51.85 45.37 40.45 30.86 28.67 26.81 Qrelease (L/s) 4.32 2.91 1.224 1.83 1.56 1.37 1.22	(L/s)	Uncontrolled - Tributary Vstored
(min) 10 20 30 40 50 60 70 80 90 100 110 120 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-7 0.07 (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 33.45 30.86 28.67 26.81	(L/s) 143.48 96.74 74.26 60.85 51.85 51.85 45.37 40.45 30.86 28.67 26.81 Qrelease (L/s) 4.32 2.91 2.24 1.83 1.566	(L/s)	Uncontrolled - Tributary Vstored
(min) 10 20 30 40 50 60 70 80 90 110 120 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 90 110 110 110 110 110 110 110 110	I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-7 0.07 0.20 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37	(L/s) 143.48 96.74 74.26 60.85 51.85 51.87 40.45 36.58 33.45 30.86 67 26.81	(L/s) 143.48 96.74 74.26 60.85 51.85 45.37 40.45 36.58 33.45 30.86 28.67 26.81	(L/s)	Uncontrolled - Tributary Vstored
(min) 10 20 30 40 50 60 70 80 90 110 120 Subdrainage Area: (ha): (min) 10 20 30 40 50 60 70 80 90 90	1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 24.29 22.41 20.82 19.47 EX-7 0.07 0.20 1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29	(L/s) 143.48 143.48 60.85 51.85 51.85 33.45 30.86 28.67 26.81	(L/s) 143.48 96.74 74.26 60.85 51.85 51.85 345.37 40.45 30.86 28.67 26.81	(L/s)	Uncontrolled - Tributary Vstored

	nage Area:	EX-11				Uncontrolled - Tributary
	Area (ha):	0.13				
	C:	0.46				
1	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	10	178.56	30.53	30.53		
	20	119.95	20.51	20.51		
	30 40	91.87 75.15	15.71	15.71 12.85		
	50	63.95	12.85 10.94	12.85		
	60	55.89	9.56	9.56		
	70	49.79	8.51	8.51		
	80	44.99	7.69	7.69		
	90	41.11	7.03	7.03		
	100	37.90	6.48	6.48		
	110	35.20	6.02	6.02		
	120	32.89	5.63	5.63		
Subdrair	1200 Aron:	EV 10				Uncontrolled - Tributary
	nage Area: Area (ha):	EX-10 0.34				Officontrolled - Tributary
	C:	0.74				
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	10	178.56	124.47	124.47		
	20 30	119.95	83.62	83.62		
	30 40	91.87 75.15	64.04 52.38	64.04 52.38		
	50	63.95	52.38 44.58	52.38 44.58		
	60	55.89	38.96	38.96		
	70	49.79	34.71	34.71		
	80	44.99	31.36	31.36		
	90	41.11	28.66	28.66		
	100	37.90	26.42	26.42		
	110	35.20	24.54	24.54		
	120	32.89	22.93	22.93		
Subdreit	nage Area:	EX-9				Uncontrolled - Tributary
	Area (ha):	0.06				oncommunica - moundry
	C:	1.00				
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
Į	(min) 10	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	20	178.56 119.95	30.28 20.34	30.28 20.34		
	30	91.87	15.58	15.58		
	40	75.15	12.74	12.74		
	50	63.95	10.85	10.85		
	60	55.89	9.48	9.48		
	70	49.79	8.44	8.44		
	80	44.99	7.63	7.63		
	80 90	44.99 41.11	6.97	6.97		
	80 90 100	44.99 41.11 37.90	6.97 6.43	6.97 6.43		
	80 90	44.99 41.11 37.90 35.20	6.97	6.97		
	80 90 100 110	44.99 41.11 37.90	6.97 6.43 5.97	6.97 6.43 5.97		
	80 90 100 110 120	44.99 41.11 37.90 35.20 32.89	6.97 6.43 5.97	6.97 6.43 5.97		Uncontrolled - Tributary
	80 90 100 110 120 nage Area: Area (ha):	44.99 41.11 37.90 35.20 32.89 EX-8 0.69	6.97 6.43 5.97	6.97 6.43 5.97		Uncontrolled - Tributary
	80 90 100 110 120	44.99 41.11 37.90 35.20 32.89	6.97 6.43 5.97	6.97 6.43 5.97		Uncontrolled - Tributary
	80 90 100 110 120 nage Area: Area (ha):	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90	6.97 6.43 5.97 5.58	6.97 6.43 5.97 5.58	Qstored	
	80 90 100 110 120 nage Area: Area (ha):	44.99 41.11 37.90 35.20 32.89 EX-8 0.69	6.97 6.43 5.97	6.97 6.43 5.97 5.58 Qrelease (L/s)	Qstored (L/s)	Uncontrolled - Tributary Vstored (m^3)
	80 90 100 110 120 nage Area: Area (ha): C: tc (min)	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 I (100 yr) (mm/hr) 178.56	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37		Vstored
	80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 I (100 yr) (mm/hr) 178.56 119.95	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48		Vstored
	80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 I (100 yr) (mm/hr) 178.56 119.95 91.87	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14		Vstored
	80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35		Vstored
	80 90 100 110 120 nage Area: (ha): C: tc (min) 10 20 30 40 50	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09		Vstored
	80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22		Vstored
	80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 70	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09	G.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71		Vstored
	80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77		Vstored
	80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	44,99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 I (100 yr) (mm/hr) 178.56 119.95 55.89 49.79 44.99 41.11 37.90	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25		Vstored
	80 90 100 110 120 hage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110	44,99 41.11 37.90 35.20 32.89 0.89 0.90 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 49.79 44.99 41.11 37.90 35.20	Gactual (L/s) 307.37 206.48 110.09 96.22 85.71 77.45 70.77 65.25 60.60	6.97 6.43 5.97 5.58 Qrelease (L(s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 60.60		Vstored
	80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	44,99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 I (100 yr) (mm/hr) 178.56 119.95 55.89 49.79 44.99 41.11 37.90	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25		Vstored
	80 90 100 1120 nage Area: Area (ha): C: tc (min) 20 30 40 50 60 70 80 90 110 120	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.11 37.90 35.20 32.89	Gactual (L/s) 307.37 206.48 110.09 96.22 85.71 77.45 70.77 65.25 60.60	6.97 6.43 5.97 5.58 Qrelease (L(s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 60.60		Vstored (m*3)
Subdrair	80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120	44,99 41,11 37,90 35,20 32,89 EX-8 0,69 0,90 I (100 yr) (mm/hr) 178,56 119,95 91,87 75,15 63,95 95,89 44,79 44,99 41,11 37,90 35,20 32,89	Gactual (L/s) 307.37 206.48 110.09 96.22 85.71 77.45 70.77 65.25 60.60	6.97 6.43 5.97 5.58 Qrelease (L(s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 60.60		Vstored
Subdrair	80 90 100 1120 nage Area: Area (ha): C: tc (min) 20 30 40 50 60 70 80 90 110 120	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 95.89 44.99 41.11 37.90 35.20 32.89 EX-7 0.07	Gactual (L/s) 307.37 206.48 110.09 96.22 85.71 77.45 70.77 65.25 60.60	6.97 6.43 5.97 5.58 Qrelease (L(s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 60.60		Vstored (m*3)
Subdrair	80 90 100 110 120 120 120 120 120 10 20 30 40 50 60 70 80 90 110 120	44.99 41.11 37.90 35.20 32.89 EX-8 0.89 0.90 0.90 1(100 yr) (mm/hr) 178.56 119.95 51.87 75.15 63.95 94.79 44.99 44.11 37.90 35.20 32.89 EX-7 0.07 0.25	Gactual (L/s) 307.37 206.48 110.09 96.22 85.71 77.45 70.77 65.25 60.60	6.97 6.43 5.97 5.58 Qrelease (L(s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 60.60		Vstored (m*3)
Subdrair	80 90 100 110 120 120 120 120 120 10 20 30 40 50 60 70 80 90 110 120	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 95.89 44.99 41.11 37.90 35.20 32.89 EX-7 0.07	Gactual (L/s) 307.37 206.48 110.09 96.22 85.71 77.45 70.77 65.25 60.60	6.97 6.43 5.97 5.58 Qrelease (L(s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 60.60		Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrair	80 90 100 110 1120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 120 120 120 120 120 120 120 12	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 1(100 yr) (mm/hr) 178.56 63.98 55.89 44.79 44.99 44.11 37.90 32.89 EX-7 0.07 0.25	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62	(L/s)	Vstored (m^3) Uncontrolled - Tributary
Subdrain	80 90 100 1120 1220 1220 130 40 50 60 70 80 110 120 120 120 120 120 120 120 120 12	44.99 41.11 37.90 35.20 32.89 EX-8 0.89 0.90 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 32.89 EX-7 0.07 0.25	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 17.77,45 70.77 65.25 60.60 56.62	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	80 90 100 110 1120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 120 120 120 120 120 120 120 12	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 0.90 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 44.99 44.99 44.19 37.90 35.20 32.89 EX-7 0.07 0.25 1(100 yr) 1(110.95) 1(110.95) 1(110.95) 1(110.95) 1(110.95) 1(110.95)	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 765.25 60.60 56.62	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrair	80 90 100 1120 1220 1220 1320 140 150 160 170 170 170 170 170 170 170 170 170 17	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 1(100 yr) (mm/hr) 178.56 119.95 55.89 49.79 44.19 37.90 32.89 EX-7 0.07 0.25 I (100 yr) (mm/hr) 178.56 119.95 91.87	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 17.77,45 70.77 65.25 60.60 56.62 Qactual (L/s) 9.26 6.22 4.76	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 156.14 129.35 110.09 96.22 85.71 77.45 70.76 65.25 60.60 56.62	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	80 90 1000 1110 120 hage Area: Area (ha): C: tc (min) 10 40 120 120 120 120 120 120 120 120 120 12	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 0.90 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 44.99 44.99 44.19 178.56 179.56 179.56 179.56 179.56 179.56 179.56 179.56 179.56 179.56	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.62 Qactual (L/s) 9.22 6.22 4.76 3.39	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	80 90 100 1120 1220 1326 Area (ha): C: (min) 10 20 30 120 120 120 120 120 120 120 120 120 12	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 1(100 yr) (mm/hr) 178.56 119.95 55.89 49.79 44.99 41.11 37.90 32.89 EX-7 0.25 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.47 65.25 60.60 56.62	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.745 70.765.25 60.60 56.62	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrair	80 90 100 1120 1220 1320 Area (ha): C: tc (min) 120 120 120 130 Area (ha): C: tc (min) 10 20 30 40 120 120 120 120 120 120 130 Area (ha): C: tc (min) 10 20 30 40 50 60 60	44.99 41.11 37.90 35.289 EX-8 0.69 0.90 0.90 (mm/hr) 178.56 119.95 91.87 75.15 63.95 94.79 44.91 37.90 35.20 32.89 EX-7 0.07 0.25 I(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 208.14 129.35 110.09 96.22 85.71 77.74 60.60 60.60 66.62 Qactual (L/s) 9.22 4.76 3.90 3.32 2.90	6.97 6.43 5.97 6.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62 Qrelease (L/s) 9.26 6.22 4.76 3.39 3.32 2.90	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrair	80 90 100 1120 1220 1326 Area (ha): C: (min) 10 20 30 120 120 120 120 120 120 120 120 120 12	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 1(100 yr) (mm/hr) 178.56 119.95 55.89 44.79 44.99 41.11 37.90 35.20 32.89 EX-7 0.07 0.25 1(100 yr) 178.56 119.95 56.89 49.79	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77.45 70.77.45 60.60 56.62 Qactual (L/s) 9.26 6.22 4.76 3.30 3.32 2.98	6.97 6.43 5.97 6.58 Qrelease (Lts) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62 Qrelease (Lts) 9.26 6.22 4.76 3.90 3.32 2.90	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	80 90 1000 1110 120 120 120 120 120 120 120	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 0.90 1(100 yr) (mm/hr) 178.56 119.95 55.89 44.79 44.99 35.20 32.89 EX-7 0.07 0.25 1(100 yr) (mm/hr) 178.56 119.95 55.89 49.79 44.99 41.11	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62 Qactual (L/s) 9.26 6.22 4.76 3.39 2.58 2.33 2.58 2.33 2.33	6.97 6.43 5.97 6.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 45.71 77.45 70.77 65.25 60.60 56.62 Qrelease (L/s) 9.26 6.22 4.76 3.90 3.92 2.98 2.33 2.13	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	80 90 100 1120 1220 130 40 100 110 120 120 130 40 100 100 100 100 100 100 100 100 100	44.99 41.11 37.90 35.20 32.89 EX-8 0.89 0.90 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 178.56 119.95 91.87 75.15 63.95 55.89 49.79	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62 Qactual (L/s) 6.22 4.76 6.22 4.76 3.39 2.33 2.13 2.13 1.97	6.97 6.43 5.97 5.58 Qrelease (L/s) 307.37 206.48 118.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62 Qrelease (L/s) 3.90 3.32 2.90 2.88 2.33 2.13 1.97	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	80 90 1000 1110 120 120 120 120 120 120 120	44.99 41.11 37.90 35.20 32.89 EX-8 0.69 0.90 0.90 1(100 yr) (mm/hr) 178.56 119.95 55.89 44.79 44.99 35.20 32.89 EX-7 0.07 0.25 1(100 yr) (mm/hr) 178.56 119.95 55.89 49.79 44.99 41.11	6.97 6.43 5.97 5.58 Qactual (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 85.71 77.45 70.77 65.25 60.60 56.62 Qactual (L/s) 9.26 6.22 4.76 3.39 2.58 2.33 2.58 2.33 2.33	6.97 6.43 5.97 6.58 Qrelease (L/s) 307.37 206.48 158.14 129.35 110.09 96.22 45.71 77.45 70.77 65.25 60.60 56.62 Qrelease (L/s) 9.26 6.22 4.76 3.90 3.92 2.98 2.33 2.13	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

EX-6 0.42 0.66 Uncontrolled - Tributary Subdrainage Area: Area (ha): C: Qactual (L/s) 80.68 54.39 41.76 34.21 29.15 25.51 I (5 yr) (mm/hr) 104.19 Qstored (L/s) 80.68 54.39 41.76 34.21 29.15 25.51 22.74 20.57 18.81 17.35 16.12 15.07 (min) 10 20 30 40 50 60 70 80 90 100 110 (L/s) 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 25.51 22.74 20.57 18.81 17.35 16.12 15.07 Subdrainage Area: Area (ha): C: Uncontrolled - Tributary I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 Vstored (m^3) Qactua Qrelease Qstored (L/s) 40.60 31.17 25.54 21.76 19.04 16.98 15.35 14.04 12.95 12.03 11.25 20 30 40 50 60 70 80 90 100 110 120 40.60 31.17 25.54 21.76 19.04 16.98 15.35 14.04 12.95 12.03 11.25 32.94 29.37 26.56 24.29 22.41 20.82 19.47 Uncontrolled - Tributary I (5 yr) Qactual Qstored (m^3) (L/s) 143.96 (L/s) 143.96 (L/s) 20 30 40 50 60 70 80 90 100 110 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 97.06 74.51 61.05 52.02 45.52 40.58 36.70 33.56 30.96 28.77 26.90 97.06 74.51 61.05 52.02 45.52 40.58 36.70 33.56 30.96 28.77 26.90 Subdrainage Area: Area (ha): C: Uncontrolled - Tributary EX-3 0.23 Vstored (m^3) (min) 10 20 30 40 50 60 70 80 90 100 110 (L/s) 60.48 (L/s) (L/s) 60.48 40.78 31.30 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 40.78 31.30 31.30 25.65 21.86 19.12 17.05 15.42 14.10 13.01 12.09 25.65 21.86 19.12 17.05 15.42 14.10 13.01 12.09 Subdrainage Area: Area (ha): C: EX-2 0.27 0.35 Uncontrolled - Tributary I (5 yr) (mm/hr) 104.19 70.25 Qreleas Qstored Vstored (m^3) tc (min) 10 20 30 40 50 60 70 80 90 100 110 Qactual (L/s) 27.27 18.39 14.11 11.56 9.86 8.62 7.69 6.95 6.36 5.86 5.45 (L/s) 27.27 18.39 14.11 11.56 (L/s) 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 9.86 8.62 7.69 6.95 6.36 5.86 5.45 5.10

Subdrair	nage Area:	EX-6				Uncontrolled - Tributary
	Area (ha):	0.42				*
	C:	0.83				
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
Į	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	10 20	178.56 119.95	172.82 116.09	172.82 116.09		
	30	91.87	88.92	88.92		
	40	75.15	72.73	72.73		
	50	63.95	61.90	61.90		
	60 70	55.89	54.10	54.10		
	70 80	49.79 44.99	48.19 43.54	48.19 43.54		
	90	41.11	39.79	39.79		
	100	37.90	36.68	36.68		
	110	35.20	34.07	34.07		
	120	32.89	31.84	31.84		
Subdrair	nage Area:	EX-5				Uncontrolled - Tributary
	Area (ha):	0.23				•
	C:	1.00				
1	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
ı	10	178.56	114.67	114.67		 -
	20	119.95	77.03	77.03		
	30 40	91.87 75.15	59.00 48.26	59.00 48.26		
	50	63.95	41.07	41.07		
	60	55.89	35.89	35.89		
	70	49.79	31.97	31.97		
	80	44.99	28.89	28.89		
	90 100	41.11 37.90	26.40 24.34	26.40 24.34		
	110	35.20	22.61	22.61		
	120	32.89	21.12	21.12		
Cultural						Uncentralist Table
	nage Area: Area (ha):	EX-4 0.70				Uncontrolled - Tributary
	C:	0.70				
,						
	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (I/e)	Vstored (m^3)
l	10	178.56	308.38	308.38	(L/s)	(···· 0)
	20	119.95	207.16	207.16		
	30	91.87	158.66	158.66		
	40	75.15	129.78	129.78		
	50	63.95	110.45	110.45		
	60 70	55.89 49.79	96.53 85.99	96.53 85.99		
	60 70 80	55.89 49.79 44.99	96.53 85.99 77.70	96.53 85.99 77.70		
	60 70 80 90	55.89 49.79 44.99 41.11	96.53 85.99 77.70 71.00	96.53 85.99 77.70 71.00		
	60 70 80 90 100	55.89 49.79 44.99 41.11 37.90	96.53 85.99 77.70 71.00 65.46	96.53 85.99 77.70 71.00 65.46		
	60 70 80 90	55.89 49.79 44.99 41.11	96.53 85.99 77.70 71.00	96.53 85.99 77.70 71.00		
	60 70 80 90 100 110 120	55.89 49.79 44.99 41.11 37.90 35.20 32.89	96.53 85.99 77.70 71.00 65.46 60.80	96.53 85.99 77.70 71.00 65.46 60.80		
	60 70 80 90 100 110 120	55.89 49.79 44.99 41.11 37.90 35.20 32.89	96.53 85.99 77.70 71.00 65.46 60.80	96.53 85.99 77.70 71.00 65.46 60.80		Uncontrolled - Tributary
	60 70 80 90 100 110 120	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23	96.53 85.99 77.70 71.00 65.46 60.80	96.53 85.99 77.70 71.00 65.46 60.80		Uncontrolled - Tributary
	60 70 80 90 100 110 120 nage Area: Area (ha):	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00	96.53 85.99 77.70 71.00 65.46 60.80 56.81	96.53 85.99 77.70 71.00 65.46 60.80 56.81		
	60 70 80 90 100 110 120 mage Area: Area (ha): C:	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00	96.53 85.99 77.70 71.00 65.46 60.80 56.81	96.53 85.99 77.70 71.00 65.46 60.80 56.81	Qstored	Vstored
	60 70 80 90 100 110 120 nage Area: Area (ha): C:	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I (100 yr) (mm/hr)	96.53 85.99 77.70 71.00 65.46 60.80 56.81	96.53 85.99 77.70 71.00 65.46 60.80 56.81	Qstored (L/s)	
	60 70 80 90 100 110 120 mage Area: Area (ha): C:	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00	96.53 85.99 77.70 71.00 65.46 60.80 56.81	96.53 85.99 77.70 71.00 65.46 60.80 56.81		Vstored
	60 70 80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25		Vstored
	60 70 80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47		Vstored
	60 70 80 90 100 110 120 mage Area: Area (ha): c: tc (min) 10 20 30 40 50	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I (100 yr) (mm/hr) 178.56 91.87 75.15 63.95	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25		Vstored
	60 70 80 90 100 110 120 mage Area: (ha): C: tc (min) 10 20 30 40 50 60	55.89 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.05		Vstored
	60 70 80 90 100 110 120 mage Area: Area (ha): c: tc (min) 10 20 30 40 50	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I (100 yr) (mm/hr) 178.56 91.87 75.15 63.95	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25		Vstored
	60 70 80 90 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 40 50 60 70 80 90	55.89 49.79 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 73.25 48.47 41.25 36.05 32.11 29.02 26.51		Vstored
	60 70 80 90 1100 1110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45	96.53 85.99 77.70 71.00 65.46 60.80 66.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45		Vstored
	60 70 80 90 1100 1110 120 nage Area (ha): c: tc (min) 10 20 30 40 50 60 70 80 90 1110	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.96 49.79 44.99 41.11 37.90 35.20	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.21 129.02 26.51 24.55 22.70		Vstored
	60 70 80 90 1100 1110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45	96.53 85.99 77.70 71.00 65.46 60.80 66.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45		Vstored
Subdrain	60 70 80 90 1000 1110 20 1100 1100 1100 1100 11	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 95.89 44.99 41.11 37.90 35.20 32.89	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.21 129.02 26.51 24.55 22.70		Vstored
Subdrain	60 70 80 90 100 1120 nage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 110 110 110 110 Area (ha):	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 [(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.11 37.90 35.20 32.89 EX-2 0.27	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.21 129.02 26.51 24.55 22.70		Vstored (m²3)
Subdrain	60 70 80 90 1000 1110 1220 1120 1120 1120 1120	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 95.89 44.99 41.11 37.90 35.20 32.89	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.21 129.02 26.51 24.55 22.70		Vstored (m²3)
Subdrain	60 70 80 90 100 1120 nage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 110 110 110 110 Area (ha):	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 [(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.11 37.90 35.20 32.89 EX-2 0.27	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qactual (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.21 129.02 26.51 24.55 22.70		Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	60 70 80 90 1100 1120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C: tc (min)	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I(100 yr) (mm/hr) 178.56 51.87 55.89 49.79 44.11 37.90 35.20 32.89 EX-2 0.27 0.44	96.53 85.99 77.70 71.00 65.46 60.80 56.81 115.16 77.36 59.25 48.47 41.25 32.11 29.02 26.51 24.45 22.70 21.22	96.53 85.99 77.70 71.00 65.46 60.80 66.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 32.11 29.02 26.51 24.45 22.70 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary
Subdrain	60 70 80 90 100 1120 nage Area: Area (ha): c: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): c: tc (min) 110 120 120 120 120 120 100 110 120 110 110	55.89 49.79 44.99 41.11 37.90 35.20 EX-3 0.23 1.00 178.56 119.95 91.87 75.15 63.95 944.99 44.99 44.191 37.90 35.20 32.89 EX-2 0.27 0.44 I (100 yr) (mm/hr) 178.56	96.53 85.99 77.70 71.00 65.46 60.80 56.81 William (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 32.11 29.02 26.51 24.45 22.70 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	60 70 80 90 1100 1110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 1100 1101 120 ange Area: Area (ha): C: tc (min) 10 20 30 30 30 30 30 30 30 30 30 30 30 30 30	55.89 49.79 44.99 41.11 37.90 35.29 EX-3 0.23 1.00 I(100 yr) (mm/hr) 178.56 3.95 91.87 75.15 63.95 94.79 44.99 41.11 37.90 35.20 32.89 EX-2 0.27 0.44 I(100 yr) (mm/hr) 178.56 119.95	96.53 85.99 77.70 71.00 65.46 60.80 56.81 115.16 17.36 59.25 48.47 41.25 48.47 41.25 22.70 21.22 Qactual (L's) 58.42 39.24 58.42 39.24	96.53 85.99 77.70 71.00 65.46 60.80 66.81 115.16 77.36 59.25 48.47 41.25 32.11 29.02 26.51 24.45 22.70 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	60 70 80 90 100 1120 nage Area: Area (ha): c: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): c: tc (min) 110 20 30 40 50 60 70 80 60 70 80 90 110 120 60 70 80 90 110 120 30 30 40 30 30	55.89 49.79 44.99 41.11 37.90 35.20 1.00 EX-3 0.23 1.00 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 32.89 EX-2 0.27 0.44 I (100 yr) (mm/hr) 178.56 119.95 91.87	96.53 85.99 77.70 71.00 65.46 60.80 56.81 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L's)	96.53 85.99 77.70 71.00 65.46 60.80 56.81 15.16 77.36 59.25 48.47 41.25 32.11 29.02 226.51 24.50 21.22 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	60 70 80 90 1100 1110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 1100 1101 120 ange Area: Area (ha): C: tc (min) 10 20 30 30 30 30 30 30 30 30 30 30 30 30 30	55.89 49.79 44.99 41.11 37.90 35.29 EX-3 0.23 1.00 I(100 yr) (mm/hr) 178.56 3.95 91.87 75.15 63.95 94.79 44.99 41.11 37.90 35.20 32.89 EX-2 0.27 0.44 I(100 yr) (mm/hr) 178.56 119.95	96.53 85.99 77.70 71.00 65.46 60.80 56.81 115.16 17.36 59.25 48.47 41.25 48.47 41.25 22.70 21.22 Qactual (L's) 58.42 39.24 58.42 39.24	96.53 85.99 77.70 71.00 65.46 60.80 66.81 115.16 77.36 59.25 48.47 41.25 32.11 29.02 26.51 24.45 22.70 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	60 70 80 90 100 1100 1120 mage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 1100 1120 mage Area: Area (ha): C: tc (min) 10 20 30 40 40 40	55.89 49.79 44.99 41.11 37.90 35.20 EX-3 0.23 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 94.99 44.11 37.90 35.20 32.89 EX-2 0.27 0.44 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15	96.53 85.99 77.70 71.00 65.46 60.80 56.81 (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) 68.80 59.25 48.47 21.22 Qactual (L/s) 69.25 48.47 21.22 Qactual (L/s) 69.25 48.47 21.22	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Qrelease (L/s) 115.16 77.36 59.25 48.47 41.25 36.01 29.02 26.51 24.45 22.70 21.22 Qrelease (L/s) 32.11 29.02 26.51 24.45 22.70 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	60 70 80 90 100 1100 1120 nage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 hage Area: C: (min) 10 20 30 40 50 60 70 10 20 10 30 40 50 60 70 70 70 70 80 80 90 100 110 100 100 110 100 100 100 100	55.89 49.79 44.99 41.11 37.90 35.20 EX-3 0.23 1.00 I(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.79 44.11 37.90 32.89 EX-2 0.27 0.44 I(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	96.53 85.99 77.70 71.00 65.46 60.80 56.81 115.16 177.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) 58.42 39.24 39.24 58.42 39.26 39.26 59.26	96.53 85.99 77.70 71.00 65.46 60.80 66.81 115.16 77.36 59.25 48.47 41.25 20.22 26.51 24.45 22.70 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	60 70 80 90 100 1120 1220 100 110 120 100 110 120 100 110 120 100 110 120 100 10	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 94.79 44.99 44.11 37.90 35.20 32.89 EX-2 0.27 0.44 I(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99	96.53 85.99 77.70 71.00 65.46 60.80 56.81 (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) Qactual (L/s) 9.25 48.47 21.22 20.51 24.45 22.70 21.22	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Sec. 10 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qrelease (L/s) Qrelease (L/s) Qrelease (L/s) 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	60 70 80 90 1100 1120 nage Area (ha): C: (min) 10 20 30 40 110 110 110 110 110 10 20 30 40 50 60 70 80 90 110 110 10 20 30 40 50 60 70 80 90 90 90 90 90	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 I(100 yr) (mm/hr) 178.56 119.95 55.89 44.79 44.99 41.11 37.90 35.20 32.89 EX-2 0.44 I(100 yr) I	96.53 85.99 77.70 71.00 65.46 60.80 56.81 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L's) 58.42 39.24 40.06 24.59 24.50 26.51 24.65 22.70 21.22	96.53 85.99 77.70 71.00 65.46 60.80 66.81 115.16 77.36 59.25 48.47 41.25 22.70 21.22 26.51 24.45 22.70 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored
Subdrain	60 70 80 90 100 1120 1220 100 110 120 100 110 120 100 110 120 100 110 120 100 10	55.89 49.79 44.99 41.11 37.90 35.20 32.89 EX-3 0.23 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 94.79 44.99 44.11 37.90 35.20 32.89 EX-2 0.27 0.44 I(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99	96.53 85.99 77.70 71.00 65.46 60.80 56.81 (L/s) 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qactual (L/s) Qactual (L/s) 9.25 48.47 21.22 20.51 24.45 22.70 21.22	96.53 85.99 77.70 71.00 65.46 60.80 56.81 Sec. 10 115.16 77.36 59.25 48.47 41.25 36.05 32.11 29.02 26.51 24.45 22.70 21.22 Qrelease (L/s) Qrelease (L/s) Qrelease (L/s) 21.22	(L/s)	Vstored (m^3) Uncontrolled - Tributary Vstored

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

Subdrainage Area: Area (ha): C:	EX-1 0.28 0.32				Uncontroll	ed - Tributary
tc (min)	I (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10	104.19	26.32	26.32		•	•
20	70.25	17.75	17.75			
30	53.93	13.62	13.62			
40	44.18	11.16	11.16			
50	37.65	9.51	9.51			
60	32.94	8.32	8.32			
70	29.37	7.42	7.42			
80	26.56	6.71	6.71			
90	24.29	6.14	6.14			
100	22.41	5.66	5.66			
110	20.82	5.26	5.26			
120	19.47	4.92	4.92			

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

Subdrainage Area: Area (ha): C:	0.28				Uncontroll	ed - Tributary
tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10	178.56	56.39	56.39			
20	119.95	37.88	37.88			
30	91.87	29.01	29.01			
40	75.15	23.73	23.73			
50	63.95	20.20	20.20			
60	55.89	17.65	17.65			
70	49.79	15.72	15.72			
80	44.99	14.21	14.21			
90	41.11	12.98	12.98			
100	37.90	11.97	11.97			
110	35.20	11.12	11.12			
120	32.89	10.39	10.39			

SERVICING AND STORMWATER MANAGEMENT REPORT - NORBERRY RESIDENCES - 740 SPRINGLAND DRIVE

Conclusion April 25, 2025

C.3 POST DEVELOPMENT RATIONAL METHOD CALCULATIONS

File No: 160401483 Project: Norberry Residences Date: 10-Jun-21

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Sub-catchm Area			Area (ha)	Rund	ient		Overall Runoff
Catchment Type	ID / Description	on	"A"	"C"	"A	x C"	Coefficient
Uncontrolled - Tributary	RAMP-B	Hard Soft Subtotal	0.010 0.002	0.9 0.2 0.012	0.009 0.000	0.00924	0.770
Controlled - Tributary	L103B	Hard Soft Subtotal	0.037 0.026	0.9 0.2 0.064	0.034 0.005	0.038796	0.610
Controlled - Tributary	L103A	Hard Soft Subtotal	0.048 0.086	0.9 0.2 0.134	0.043 0.017	0.0603	0.450
Controlled - Tributary	L102A	Hard Soft Subtotal	0.083 0.033	0.9 0.2 0.116	0.075 0.007	0.0812	0.700
Uncontrolled - Tributary	F100A	Hard Soft Subtotal	0.046 0.064	0.9 0.2 0.110	0.041 0.013	0.0539	0.490
Roof	BLDGA	Hard Soft Subtotal	0.115 0.000	0.9 0.2	0.104 0.000	0.1035	0.900
Roof	BLDGC	Hard Soft Subtotal	0.115 0.000	0.9 0.2 0.115	0.104 0.000	0.1035	0.900
Roof	BLDGB	Hard Soft Subtotal	0.107 0.000	0.113 0.9 0.2 0.107	0.096 0.000	0.0963	0.900
Controlled - Tributary	L301A	Hard Soft	0.133 0.006	0.9 0.2	0.120 0.001		
Controlled - Tributary	L300A	Subtotal Hard Soft Subtotal	0.131 0.006	0.139 0.9 0.2 0.137	0.118 0.001	0.12093	0.870
Controlled - Tributary	L303A	Hard Soft Subtotal	0.152 0.101	0.137 0.9 0.2 0.253	0.137 0.020	0.11919	0.870
Uncontrolled - Tributary	F101A	Hard Soft Subtotal	0.086 0.004	0.253 0.9 0.2	0.078 0.001	0.0783	0.620
Uncontrolled - Tributary	UNC-2	Hard Soft Subtotal	0.008 0.046	0.090 0.9 0.2 0.053	0.007 0.009	0.0783	0.870
Uncontrolled - Tributary	EX-19	Hard Soft Subtotal	0.058 0.088	0.9 0.2	0.053 0.018	0.01602	
Uncontrolled - Tributary	EX-18	Hard Soft Subtotal	0.005 0.062	0.146 0.9 0.2 0.067	0.004 0.012	0.07008	0.480
Uncontrolled - Tributary	EX-15	Hard Soft Subtotal	0.026 0.052	0.9 0.2 0.078	0.023 0.010	0.03354	0.430
Uncontrolled - Tributary	EX-14	Hard Soft	0.094 0.235	0.9 0.2	0.085 0.047		
Uncontrolled - Tributary	EX-13	Subtotal Hard Soft Subtotal	0.232 0.000	0.329 0.9 0.2 0.232	0.209 0.000	0.1316	0.400
Uncontrolled - Tributary	EX-12	Hard Soft	0.232 0.000	0.9 0.2	0.209 0.000		
Uncontrolled - Tributary	EX-11	Subtotal Hard Soft	0.042 0.091	0.232 0.9 0.2	0.038 0.018	0.2088	0.900
Uncontrolled - Tributary	EX-10	Subtotal Hard Soft	0.263 0.113	0.133 0.9 0.2	0.237 0.023	0.05586	0.420
Uncontrolled - Tributary	EX-9	Subtotal Hard Soft	0.061 0.000	0.376 0.9 0.2	0.055 0.000	0.25944	0.690
Uncontrolled - Tributary	EX-8	Subtotal Hard Soft	0.459 0.255	0.061 0.9 0.2	0.413 0.051	0.05463	0.900
Uncontrolled - Tributary	EX-7	Subtotal Hard Soft	0.000 0.075	0.714 0.9 0.2	0.000 0.015	0.4641	0.650
Uncontrolled - Tributary	EX-5	Subtotal Hard Soft	0.231 0.000	0.075 0.9 0.2	0.208 0.000	0.01492	0.200
Uncontrolled - Tributary	EX-4	Subtotal Hard Soft	0.421 0.265	0.231 0.9 0.2	0.379 0.053	0.2079	0.900
Uncontrolled - Tributary	EX-3	Subtotal Hard Soft	0.231 0.000	0.686 0.9 0.2	0.208 0.000	0.43218	0.630
Uncontrolled - Tributary	EX-2	Subtotal Hard Soft	0.065 0.204	0.231 0.9 0.2	0.059 0.041	0.2079	0.900
Uncontrolled - Tributary	EX-1	Subtotal Hard Soft	0.053 0.231	0.269 0.9 0.2	0.047 0.046	0.09953	0.370
Total		Subtotal		0.284 5.588		0.09372 3.598	0.330
Overall Runoff Coefficient= C:			0.337 h				0.64

Total Roof Areas

Total Tributary Surface Areas (Controlled and Uncontrolled)

5.251 ha

Total Tributary Area to Outlet

Total Uncontrolled Areas (Non-Tributary)

Total Uncontrolled Areas (Non-Tributary)

Total Site

5.588 ha

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

6/10/2021	$I = a/(t + b)^c$	a =	998.071	t (min)	I (mm/hr)
City of Ottawa	-	b =	6.053	5	141.18
		c =	0.814	10	104.19
				15	83.56
				20	70.25
				25	60.90
				30	53.93
				35	48.52
				40	44.18
				45	40.63
				50	37.65
				55	35.12
				60	32.94

Predevelopment Release from Entire Site

Subdrainage Area: Predevelopment Tributary Area to Outle Area (ha): 5.59 C: 0.65

Typical Time of Concentration

tc	l (5 yr)	Qtarget	I (100 yr)	Qtarget
(min)	(mm/hr)	(L/s)	(mm/hr)	(L/s)
10	104.19	1055.2	178.56	

5 YEAR Modified Rational Method for Entire Site

tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
5	141.18	3.6	3.6		
10	104.19	2.7	2.7		
15	83.56	2.1	2.1		
20	70.25	1.8	1.8		
25	60.90	1.6	1.6		
30	53.93	1.4	1.4		
35	48.52	1.2	1.2		
40	44.18	1.1	1.1		
45	40.63	1.0	1.0		
50	37.65	1.0	1.0		
55	35.12	0.9	0.9		

 Subdrainage Area:
 L103B

 Area (ha):
 0.06

 C:
 0.61

Controlled - Tributary

tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	104.19	11.2	9.7	1.5	0.9
20	70.25	7.6	9.7	0.0	0.0
30	53.93	5.8	9.7	0.0	0.0
40	44.18	4.8	9.7	0.0	0.0
50	37.65	4.1	9.7	0.1	0.3
60	32.94	3.6	9.7	0.0	0.0
70	29.37	3.2	9.7	0.0	0.0
80	26.56	2.9	9.7	0.0	0.0
90	24.29	2.6	9.7	0.0	0.0
100	22.41	2.4	9.7	0.0	0.0
110	20.82	2.2	9.7	0.0	0.0
120	10.47	2.1	0.7	0.0	0.0

Orifice Diameter: LMF 95
Invert Elevation 75.57
T/G Elevation 76.95
Max Ponding Depth 0.10
Downstream W/L 75.42

	Stage	Head	Discharge	Vreq	Vavail	Volume
		(m)	(L/s)	(cu. m)	(cu. m)	Check
5-year Water Level	77.05	1.48	9.7	0.9	16.0	OK

0.09

tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	0.07	(m^3)
10	104.19	17.5	5.4	12.1	7.2
20	70.25	11.8	5.4	6.4	7.6
30	53.93	9.0	5.4	3.6	6.5
40	44.18	7.4	5.4	2.0	4.8
50	37.65	6.3	5.4	0.9	2.7
60	32.94	5.5	5.4	0.1	0.4
70	29.37	4.9	5.4	0.0	0.0
80	26.56	4.5	5.4	0.0	0.0
90	24.29	4.1	5.4	0.0	0.0
100	22.41	3.8	5.4	0.0	0.0
110	20.82	3.5	5.4	0.0	0.0
120	19.47	3.3	5.4	0.0	0.0

e Above CE

Orifice Equation: CdA(2gh)*0.5
Orifice Diameter: 83.00
Invert Elevation 75.57
T/G Elevation 76.95
Max Ponding Depth 0.20
Downstream W/L 75.42 Where C = 0.61

	Stage	Head	Discharge	Vreq	Vavail	Volume
		(m)	(L/s)	(cu. m)	(cu. m)	Check
5-year Water Leve	77.15	1.58	5.4	7.6	14.3	OK

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

100 yr Intensity	I = a/(t + b)	a =	1735.688	t (min)	I (mm/hr)
City of Ottawa		b =	6.014	5	242.70
		c =	0.820	10	178.56
	_			15	142.89
				20	119.95
				25	103.85
				30	91.87
				35	82.58
				40	75.15
				45	69.05
				50	63.95
				55	59.62
				60	55.89

Subdrainage Area: Redeveloped Site Area
Area (ha): 1.55
C: 0.63

Typical Time of Concentration

١	tc	I (5 yr)	Qtarget
	(min)	(mm/hr)	(L/s)
	10	104.19	282.3

100 YEAR Modified Rational Method for Entire Site

ſ	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
L	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	10	178.56	5.7	5.7		
	20	119.95	3.9	3.9		
	30	91.87	2.9	2.9		
	40	75.15	2.4	2.4		
	50	63.95	2.1	2.1		
	60	55.89	1.8	1.8		
	70	49.79	1.6	1.6		
	80	44.99	1.4	1.4		
	90	41.11	1.3	1.3		
	100	37.90	1.2	1.2		
	110	35.20	1.1	1.1		
	120	32.80	1.1	1.1		

Controlled - Tributary

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	24.1	10.2	13.9	8.3
20	119.95	16.2	10.2	6.0	7.2
30	91.87	12.4	10.2	2.2	4.0
40	75.15	10.1	10.2	0.0	0.0
50	63.95	8.6	10.2	0.0	0.0
60	55.89	7.5	10.2	0.0	0.0
70	49.79	6.7	10.2	0.0	0.0
80	44.99	6.1	10.2	0.0	0.0
90	41.11	5.5	10.2	0.0	0.0
100	37.90	5.1	10.2	0.0	0.0
110	35.20	4.7	10.2	0.0	0.0
120	32.89	4.4	10.2	0.0	0.0

Storage: Surface Storage Above CB

Orifice: LMF 95
Invert Elevation 75.57 m
T/G Elevation 76.95 m
Max Ponding Depth 0.25 m
Downstream W/L 75.42 m

(m) 1.63 (L/s) 10.2 (cu. m) (cu. m) 8.3 16.0 Check OK 100-year Water Leve 77.20

Area (ha):	0.13					
C:	0.56					
tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored	
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	

(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	37.4	18.7	18.8	11.3
20	119.95	25.1	18.7	6.5	7.8
30	91.87	19.3	18.7	0.6	1.1
40	75.15	15.7	18.7	0.0	0.0
50	63.95	13.4	18.7	0.0	0.0
60	55.89	11.7	18.7	0.0	0.0
70	49.79	10.4	18.7	0.0	0.0
80	44.99	9.4	18.7	0.0	0.0
90	41.11	8.6	18.7	0.0	0.0
100	37.90	7.9	18.7	0.0	0.0
110	35.20	7.4	18.7	0.0	0.0
120	32.89	6.9	18.7	0.0	0.0
	10 20 30 40 50 60 70 80 90 100 110	10 178.56 20 119.95 30 91.87 40 75.15 50 63.95 60 55.89 70 49.79 80 44.99 90 41.11 100 37.90 110 35.20	10 178.56 37.4 20 119.95 25.1 30 91.87 19.3 40 75.15 15.7 50 63.95 11.7 70 49.79 10.4 80 44.99 9.4 90 41.11 8.6 100 37.90 7.9 110 35.20 7.4	10 178.56 37.4 18.7 20 1195 25.1 18.7 30 91.87 19.3 18.7 40 75.15 15.7 18.7 50 63.95 11.7 18.7 70 49.79 10.4 18.7 80 44.99 9.4 18.7 100 37.90 7.9 18.7 110 35.20 7.4 18.7	10 178.56 37.4 18.7 18.8 20 1195 25.1 18.7 6.5 30 91.87 19.3 18.7 0.6 40 75.15 15.7 18.7 0.0 63.95 11.7 18.7 0.0 65.89 11.7 18.7 0.0 60 55.89 11.7 18.7 0.0 60 44.99 9.4 18.7 0.0 60 44.99 9.4 18.7 0.0 60 37.90 7.9 18.7 0.0 100 37.90 7.9 18.7 0.0 110 35.20 7.4 18.7 0.0

Surface Storage Above CE

Orifice Equation: Q = CdA(2gh)^0.5
Orifice Diameter: 83.00 mm
Invert Elevation 75.57 m
T/G Elevation 76.95 m
Max Ponding Depth 0.25 m
Downstream W/L 75.42 m Where C = CB Storage: 0.61 0.71 m3

100-year Water Leve 77.20

Project #160401483, Norberry Residences Modified Rational Method Calculators for Storage

Subdra	inage Area:	L102A				Controll	ed - Tributary	
	Area (ha): C:	0.12						
	tc	l (5 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
	10 20	104.19 70.25	23.5 15.9	7.1 7.1	16.4 8.8	9.9 10.5		
	30	53.93	12.2	7.1	5.1	9.1		
	40 50	44.18	10.0	7.1	2.9	6.9		
	60	37.65 32.94	8.5 7.4	7.1 7.1	1.4 0.3	4.2 1.2		
	70	29.37	6.6	7.1	0.0	0.0		
	80 90	26.56 24.29	6.0 5.5	7.1 7.1	0.0	0.0		
	100	22.41	5.1	7.1	0.0	0.0		
	110	20.82	4.7	7.1	0.0	0.0		
Storage:	120 e Above CE	19.47	4.4	7.1	0.0	0.0		
Orific	ce Diameter:	LMF 80						
Inv	ert Elevation	75.44	m					
Max Po	G Elevation anding Depth	76.82 0.16	m m					
	nstream W/L	75.30	m					
	ſ	Stage	Head	Discharge	Vreq	Vavail	Volume	
_			(m)	(L/s)	(cu. m)	(cu. m)	Check	
5-year	Water Leve	76.98	1.54	7.1	10.5	53.9	OK	
Subdra	inage Area:	F100A				Uncontroll	ed - Tributary	
Lubura	Area (ha):	0.11				2201111011		
	C:	0.49						
	tc (min)	I (5 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min) 10	(mm/hr) 104.19	(L/s) 15.6	(L/s) 15.6	(L/s)	(m^3)		
	20	70.25	10.5	10.5				
	30 40	53.93 44.18	8.1 6.6	8.1 6.6				
	50	37.65	5.6	5.6				
	60	32.94	4.9	4.9				
	70 80	29.37 26.56	4.4 4.0	4.4 4.0				
	90	24.29	3.6	3.6				
	100	22.41	3.4	3.4				
	110 120	20.82 19.47	3.1 2.9	3.1 2.9				
Subdra	inage Area: Area (ha):	BLDGA 0.12		N	Maximum Sto	orage Depth	Roof 150 mm	ı
	C:	0.90						
		I (5 yr)	Qactual	Qrelease (L/s)	Qstored	Vstored (m^3)	Depth (mm)	
ı	tc (min)							
	tc (min) 10	(mm/hr) 104.19	(L/s) 30.0	6.3	(L/s) 23.6	14.2	101.1	0.00
	(min) 10 20	(mm/hr) 104.19 70.25	30.0 20.2	6.3 6.4	23.6 13.8	14.2 16.5	101.1 105.6	0.00
	(min) 10 20 30	(mm/hr) 104.19 70.25 53.93	30.0 20.2 15.5	6.3 6.4 6.4	23.6 13.8 9.1	14.2 16.5 16.3	101.1 105.6 105.2	0.00
	(min) 10 20	(mm/hr) 104.19 70.25	30.0 20.2	6.3 6.4	23.6 13.8	14.2 16.5	101.1 105.6	0.00
	(min) 10 20 30 40 50 60	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94	30.0 20.2 15.5 12.7 10.8 9.5	6.3 6.4 6.4 6.4 6.3 6.2	23.6 13.8 9.1 6.3 4.5 3.3	14.2 16.5 16.3 15.2 13.6 11.9	101.1 105.6 105.2 103.0 99.9 94.5	0.00 0.00 0.00 0.00 0.00
	(min) 10 20 30 40 50 60 70	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37	30.0 20.2 15.5 12.7 10.8 9.5 8.5	6.3 6.4 6.4 6.3 6.2 6.0	23.6 13.8 9.1 6.3 4.5 3.3 2.4	14.2 16.5 16.3 15.2 13.6 11.9 10.2	101.1 105.6 105.2 103.0 99.9 94.5 89.0	0.00 0.00 0.00 0.00 0.00
	(min) 10 20 30 40 50 60 70 80 90	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0	6.3 6.4 6.4 6.3 6.2 6.0 5.9 5.8	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00
	(min) 10 20 30 40 50 60 70 80 90 100	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4	6.3 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00
	(min) 10 20 30 40 50 60 70 80 90	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0	6.3 6.4 6.4 6.3 6.2 6.0 5.9 5.8	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Chara	(min) 10 20 30 40 50 60 70 80 90 100 110 120	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0	6.3 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage:	(min) 10 20 30 40 50 60 70 80 90 100 110	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6	6.3 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Storage:	(min) 10 20 30 40 50 60 70 80 90 100 110 120	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6	6.3 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4 5.2	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8 56.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	(min) 10 20 30 40 50 60 70 80 90 100 110 120	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6	6.3 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8 56.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	(min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storag	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 ge	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6	6.3 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.4 5.2	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8 56.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	(min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storag	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 ge	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4 5.2 Discharge (L/s) 6.4	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m)	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8 56.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	(min) 10 20 30 40 50 60 70 80 90 100 1120 Roof Storag Water Leve	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 ge Depth (mm) 105.56 BLDGC 0.12	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4 5.2 Discharge (L/s) 6.4	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5	14.2 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m)	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8 56.7 Discharge Check 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	(min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storag Water Leve inage Area: Area (ha): C: tc (min) 10	(mm/hr) 104.19 104.19 104.19 104.19 104.19 144.18 37.65 32.94 429.37 26.56 24.29 22.41 20.82 19.47 20.82 19.47 Depth (mm) 105.56 BLDGC 0.12 0.90 I (5 yr) (mm/hr) 104.19	30.0 20.2 15.5 12.7 10.8 9.5 7.6 7.0 6.4 6.0 5.6 Head (m) 0.11	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.6 5.4 5.2	23.6 13.8 9.1 6.3 4.5 3.3 4.5 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5 Qstored (L/s) 23.6	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m*3) 14.2	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8 56.7 Discharge Check 0.00 Roof 150 mm Depth (mm) 101.1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5-year	(min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storag Water Leve	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 39 Depth (mm) 105.56 BLDGC 0.12 0.90 1 (5 yr) (mm/hr)	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6 Head (m) 0.11	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4 5.2 Discharge ((L/s))	23.6 13.8 9.1 6.3 4.5 3.3 4.5 3.2 4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m*3)	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8 56.7 Discharge Check 0.00 Roof 150 mm	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	min min	(mm/hr) 104.19 70.25 53.93 44.18 37.65 53.93 44.18 37.65 624.29 22.41 20.82 19.47 105.56 BLDGC 0.12 0.90 1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 6.4 6.0 5.6 Head (m) 0.11 Qactual (L/s) 30.0 20.2 15.5 12.7	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4 5.2 Discharge (L/s) 6.4 A	23.6 13.8 9.1 6.3 4.5 3.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5 Qstored (L/s) 23.6 13.8 9.1 6.3	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m*3) 14.2 16.5 16.3	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8 56.7 10.00 Roof 150 mm Depth (mm) 101.1 105.6 105.2 103.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	(min) 10 20 30 40 50 60 70 110 120 70 70 70 70 70 70 70	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29.37 22.41 20.82 19.47 39 Depth (mm) 105.56 BLDGC 0.12 0.90 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65	20.2 20.2 215.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6 Head (m) 0.11 Qactual (L/s) 30.0 20.2 15.5 12.7 10.8	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4 5.2 Discharge (L/s) 6.4	23.6 13.8 9.1 6.3 4.5 3.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5 Qatored (L/s) 23.6 13.8 9.1 6.3 4.5	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 vstored (m*3) 14.2 16.5 16.3 15.2 13.6	101.1 105.6 105.2 103.0 99.9 94.5 89.0 94.5 89.0 105.2 103.0 99.9 94.5 89.0 103.0 99.9 Poepth (mm) 101.1 105.6 105.2 103.0 99.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	min min	(mm/hr) 104.19 70.25 53.93 44.18 37.65 53.93 44.18 37.65 624.29 22.41 20.82 19.47 105.56 BLDGC 0.12 0.90 1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18	30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 6.4 6.0 5.6 Head (m) 0.11 Qactual (L/s) 30.0 20.2 15.5 12.7	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4 5.2 Discharge (L/s) 6.4 A	23.6 13.8 9.1 6.3 4.5 3.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5 Qstored (L/s) 23.6 13.8 9.1 6.3	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m*3) 14.2 16.5 16.3	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8 56.7 10.00 Roof 150 mm Depth (mm) 101.1 105.6 105.2 103.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	min min	(mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 105.56 BLDGC 0.12 0.90 1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56	30.0 20.2 215.5 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6 Head (m) 0.11 Qactual (L/s) 30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4 5.2 Discharge (L/s) 6.3 6.4 6.4 6.4 6.3 6.2 6.0 6.3 6.4 6.4 6.5 6.3 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5 Aaximum Ste (L/s) 23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.8	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m*3) 14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4	101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 105.6 105.0 Poeth (mm) 101.1 105.6 105.2 103.0 99.9 94.5 89.0 88.3 89.0 88.3 89.9 88.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	(min) 10 20 30 40 50 60 70 80 90 110 120 Water Leve Inage Area: Area (ha): C: tc (min) 120 30 40 50 60 70 80 90 80 90 90	(mm/hr) 104.19 70.25 63.93 44.18 104.19 104.	30.0 20.2 215.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6 Head (m) 0.111 Qactual (L/s) 30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.6 5.4 Discharge (L/s) 6.4 A Qrelease (L/s) 6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.8	23.6 13.8 9.1 6.3 4.5 3.3 2.4 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m'3) 14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4	101.1 101.5 105.2 103.0 99.9 94.5 89.0 83.4 77.9 94.5 89.0 88.4 77.9 101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 98.5 89.0 83.4 77.9 98.5 88.5 88.5 88.5 88.5 88.5 88.5 88	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	min 10 10 10 10 10 10 10 1	(mm/hr) 104.19 70.25 3.393 44.18 20.31 29.37 26.55 6 0.12 29.37 20.55 6 0.12 20.82 29.37 20.55 6 0.12 20.82 29.37 20.55 6 0.12 20.82 29.37 20.55 6 0.12 20.82 29.37 20.55 6 0.12 20.82 29.37 20.55 6 0.12 20.82 29.37 20.55 6 0.12 20.82 29.37 20.55 6 0.12 20.82 29.37 20.55 6 0.12 20.32 20.55 6 0.12 20.32 20.55 6 0.12 20.32 20.55 6 0.12 20.32 20.35 6 0.12 20.32 20.35 6 0.12 20.35 6 0.	30.0 20.2 215.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 10.11 Cactual (L/s) 30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 6.4 6.0 6.4 6.0	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.4 5.2 Discharge (L/s) 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.4 5.2 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	23.6 13.8 9.1 6.3 4.5 3.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5 Qatored (L/s) 23.6 13.8 9.1 1.8 1.2 0.9 0.6 0.4 1.8 1.2 0.9 0.6 0.9 0.9 0.6	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m'3) 14.2 16.5 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	101.1 105.6 105.2 103.0 99.9 94.5 89.0 Discharge Check 0.00 Roof 150 mm Depth (mm) 101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	(min) 10 10 10 10 10 10 10 1	(mm/hr) 104.19 70.25 53.93 44.18 105.56 EBLDGC 0.12 0.90 (mm/hr) 104.55 33.93 44.18 22.94 42.90 82 22.41 11.10 (mm) 105.56 EBLDGC 0.12 0.90 (mm/hr) 104.19 29.37 37.65 53.93 29.42 29.37 20.52 24.29 29.37 20.52 24.29 29.37 20.55 23.93 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 29.37 20.55 24.29 2	30.0 20.2 215.5 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6 Head (m) 0.11 Qactual (L/s) 30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.8 5.6 5.4 5.2 Discharge (L/s) 6.3 6.4 6.4 6.4 6.3 6.2 6.9 5.9 5.8 6.3 6.4 6.4 6.5 6.3 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	23.6 13.8 9.1 6.3 4.5 3.3 4.5 3.3 2.4 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5 Castored (L/s) 23.6 13.8 9.1 6.3 4.5 3.3 4.5 2.4 1.8 0.9 1.6 0.4	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m*3) 14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8	101.1 105.6 105.2 103.0 99.9 94.5 89.0 71.4 63.8 56.7 105.0 Roof 150 mm Depth (mm) 101.1 105.6 105.2 103.0 99.9 94.5 89.0 88.4 77.9 89.0 88.4 77.9 89.0 88.4 77.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year	min 10 10 10 10 10 10 10 1	(mm/hr) 104.19 70.25 3.393 44.18 20.32 94 71 104.19 70.25 20.37 26.55 6 71 104.19 70.25 20.37 20	30.0 20.2 215.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 10.11 Cactual (L/s) 30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 6.4 6.0 6.4 6.0	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.4 5.2 Discharge (L/s) 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.4 5.2 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	23.6 13.8 9.1 6.3 4.5 3.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5 Qatored (L/s) 23.6 13.8 9.1 1.8 1.2 0.9 0.6 0.4 1.8 1.2 0.9 0.6 0.9 0.9 0.6	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m'3) 14.2 16.5 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	101.1 105.6 105.2 103.0 99.9 94.5 89.0 Discharge Check 0.00 Roof 150 mm Depth (mm) 101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year Subdra	min min	(mm/hp) 104.19 70.25 3.393 44.18 2.2937 26.56 6.0.12 (mm/hp) 105.56 BBLGC 0.12 2.241 7.0.30 1.16 yr) 105.56 1.16 yr) 105.56 3.32 94 4.18 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.2	30.0 20.2 20.2 15.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 5.6 Head (m) 0.11	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.4 5.2 Discharge (L/s) 6.4	23.6 9.1 13.8 9.1 16.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 4 Vreq (cu. m) 10.5 23.6 24.6 1.8 1.8 1.2 2.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m^3) 14.2 16.5 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	101.1 101.5 105.2 103.0 99.9 94.5 89.0 105.6 105	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5-year Subdra	min min	(mm/hr) 104.19 70.25 3.393 44.18 20.32 94 71 104.19 70.25 20.37 26.55 6 71 104.19 70.25 20.37 20	30.0 20.2 215.5 12.7 10.8 9.5 8.5 7.6 7.0 6.4 6.0 10.11 Cactual (L/s) 30.0 20.2 15.5 12.7 10.8 9.5 8.5 7.6 6.4 6.0 6.4 6.0	6.3 6.4 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.4 5.2 Discharge (L/s) 6.4 6.4 6.3 6.2 6.0 5.9 5.6 5.4 5.2 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	23.6 13.8 9.1 6.3 4.5 3.3 4.5 3.3 2.4 1.8 1.2 0.9 0.6 0.4 Vreq (cu. m) 16.5 Qatored (L/s) 23.6 13.8 9.1 1.8 1.2 0.9 0.6 0.4 1.8 1.2 0.9 0.6 0.9 0.9 0.6	14.2 16.5 16.3 15.2 13.6 11.9 10.2 8.4 6.7 5.2 3.9 2.8 Vavail (cu. m) 46.0 Vstored (m'3) 14.2 16.5 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	101.1 105.6 105.2 103.0 99.9 94.5 89.0 Discharge Check 0.00 Roof 150 mm Depth (mm) 101.1 105.6 105.2 103.0 99.9 94.5 89.0 83.4 77.9 71.4 63.8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Subdra	inage Area:	L102A				Control	led - Tributary		
	Area (ha): C:	0.12 0.88							
	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)			
	10	178.56	50.4	7.4	43.0	25.8			
	20 30	119.95 91.87	33.8 25.9	7.4 7.4	26.5 18.6	31.8 33.4			
	40	75.15	21.2	7.4	13.8	33.4			
	50	63.95	18.0	7.4	10.7	32.0			
	60 70	55.89 49.79	15.8 14.0	7.4 7.4	8.4 6.7	30.3 28.1			
	80	44.99	12.7	7.4	5.3	25.6			
	90 100	41.11 37.90	11.6 10.7	7.4 7.4	4.2 3.3	20.0			
	110 120	35.20 32.89	9.9 9.3	7.4 7.4	2.6 1.9	17.0 13.8			
Storage:	Surface Sto	rage Above	CE						
Orific	ce Diameter:	LMF 80		CB Storage:	0.71	m3			
	ert Elevation	75.44 76.82							
	nding Depth	0.28	m						
	nstream W/L	75.30	m						
		Stage	Head (m)	Discharge (L/s)	Vreq	Vavail (cu. m)	Volume Check		
100-year	Water Leve	77.10	(m) 1.66	7.4	(cu. m) 33.4	53.9 20.50	OK		
Cubden	Inaga Araai	E1004					led - Tributary		
Subura	inage Area: Area (ha): C:	F100A 0.11 0.61				Uncontrol	ed - Iribulary		
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored			
	(min) 10	(mm/hr) 178.56	(L/s) 33.4	(L/s) 33.4	(L/s)	(m^3)			
	20 30	119.95 91.87	22.5 17.2	22.5 17.2					
	40	75.15	14.1	14.1					
	50 60	63.95 55.89	12.0 10.5	12.0 10.5					
	70	49.79	9.3	9.3					
	80 90	44.99 41.11	8.4 7.7	8.4 7.7					
	100	37.90	7.1	7.1					
	110 120	35.20 32.89	6.6 6.2	6.6 6.2					
Subdra	inage Area:	BLDGA					Roof		
	Area (ha): C:	0.12 1.00		N	Maximum Sto	orage Depth	150	mm	
	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)		
	10	178.56	57.1	7.1	50.0	30.0	129.4		0.00
	20 30	119.95 91.87	38.3 29.4	7.3 7.4	31.1 22.0	37.3 39.6	138.7 141.8		0.00
	40	75.15	24.0	7.4	16.6	40.0	142.2		0.00
	50 60	63.95 55.89	20.4 17.9	7.4 7.3	13.1 10.6	39.3 38.0	141.3 139.7		0.00
	70	49.79	15.9	7.3	8.7	36.4	137.6		0.00
	80 90	44.99 41.11	14.4 13.1	7.2 7.1	7.2 6.0	34.5 32.5	135.2 132.5		0.00
	100	37.90	12.1	7.1	5.1	30.3	129.8		0.00
	110 120	35.20 32.89	11.3 10.5	7.0 6.9	4.3 3.6	28.1 26.0	127.0 123.8		0.00
Storage:	Roof Storag		-						
	į	Depth	Head	Discharge	Vreq	Vavail	Discharge		
100-year	Water Leve	Depth (mm) 142.21	Head (m) 0.14	Discharge (L/s) 7.4	Vreq (cu. m) 40.0	Vavail (cu. m) 46.0	Discharge Check 0.00		
	Water Leve	(mm)	(m)	(L/s) 7.4	(cu. m) 40.0	(cu. m) 46.0	Check		
		(mm) 142.21	(m)	(L/s) 7.4	(cu. m)	(cu. m) 46.0	Check 0.00	mm	
	inage Area: Area (ha): C:	(mm) 142.21 BLDGC 0.12 1.00	(m) 0.14	(L/s) 7.4	(cu. m) 40.0 Maximum Sto	(cu. m) 46.0 prage Depth	Check 0.00 Roof 150	mm	
	inage Area: Area (ha): C: tc (min)	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56	(m) 0.14 Qactual (L/s) 57.1	(L/s) 7.4 N Qrelease (L/s) 7.1	(cu. m) 40.0 Maximum Sto Qstored (L/s) 50.0	(cu. m) 46.0 prage Depth Vstored (m^3) 30.0	Check 0.00 Roof 150 Depth (mm) 129.4	mm	0.00
	inage Area: Area (ha): C: tc (min)	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56 119.95	(m) 0.14 Qactual (L/s)	(L/s) 7.4 N Qrelease (L/s) 7.1 7.3	(cu. m) 40.0 Maximum Sto Qstored (L/s)	(cu. m) 46.0 prage Depth Vstored (m^3)	Check 0.00 Roof 150 Depth (mm)	mm	0.00
	tc (min) 10 20 30 40	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15	(m) 0.14 Qactual (L/s) 57.1 38.3 29.4 24.0	(L/s) 7.4 N Qrelease (L/s) 7.1 7.3 7.4 7.4	(cu. m) 40.0 Maximum Sto (L/s) 50.0 31.1 22.0 16.6	(cu. m) 46.0 varage Depth vstored (m^3) 30.0 37.3 39.6 40.0	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8 142.2	mm	0.00 0.00 0.00
	tc (min) 10 20 30	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	(m) 0.14 Qactual (L/s) 57.1 38.3 29.4	(L/s) 7.4 Orelease (L/s) 7.1 7.3 7.4 7.4 7.4	(cu. m) 40.0 Maximum Sto (L/s) 50.0 31.1 22.0	vstored (m^3) 30.0 37.3 39.6	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8	mm	0.00
	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	Qactual (L/s) 57.1 38.3 29.4 24.0 20.4 17.9 15.9	(L/s) 7.4 Prelease (L/s) 7.1 7.3 7.4 7.4 7.3 7.3 7.3	(cu. m) 40.0 40.0 Ataximum Sto (L/s) 50.0 31.1 22.0 16.6 13.1 10.6 8.7	vstored (m^3) 30.0 37.3 39.6 40.0 39.3 38.0 36.4	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8 142.2 141.3 139.7 137.6	mm	0.00 0.00 0.00 0.00 0.00
	tc (min) 10 20 30 40 50 60 70 80	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	Qactual (L/s) 57.1 38.3 29.4 24.0 20.4 17.9 15.9 14.4	(L/s) 7.4 N Qrelease (L/s) 7.1 7.3 7.4 7.4 7.4 7.3 7.2	(cu. m) 40.0 Maximum Sto (L/s) 50.0 31.1 22.0 16.6 13.1 10.6 8.7 7.2	(cu. m) 46.0 vstored (m^3) 30.0 37.3 39.6 40.0 39.3 38.0 36.4 34.5	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8 142.2 141.3 139.7 137.6 135.2	mm	0.00 0.00 0.00 0.00 0.00 0.00
	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	(m) 0.14 Qactual (L/s) 57.1 38.3 29.4 24.0 20.4 17.9 15.9 14.4 13.1 12.1	(L/s) 7.4 N Qrelease (L/s) 7.1 7.3 7.4 7.4 7.4 7.3 7.2 7.1 7.1 7.1	(cu. m) 40.0 Maximum Sto Qstored (L/s) 50.0 31.1 22.0 16.6 13.1 10.6 8.7 7.2 6.0 5.1	(cu. m) 46.0 Vstored (m^3) 30.0 37.3 39.6 40.0 39.3 36.4 34.5 32.5 30.3	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8 142.2 141.3 139.7 137.6 135.2 132.5 129.8	mm	0.00 0.00 0.00 0.00 0.00 0.00 0.00
	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20	(m) 0.14 Qactual (L/s) 57.1 38.3 29.4 24.0 20.4 17.9 15.9 14.4 13.1 12.1 11.3	(L/s) 7.4 N Qrelease (L/s) 7.1 7.3 7.4 7.4 7.4 7.7 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.1 7.1 7.1 7.0	(cu. m) 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	vstored (m^3) 30.0 37.3 39.6 40.0 38.0 36.4 34.5 32.5 30.3 28.1	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8 142.2 141.3 139.7 137.6 135.2 132.5 129.8 127.0	mm	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Subdra	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.11 37.90 35.20 32.89	(m) 0.14 Qactual (L/s) 57.1 38.3 29.4 24.0 20.4 17.9 15.9 14.4 13.1 12.1	(L/s) 7.4 N Qrelease (L/s) 7.1 7.3 7.4 7.4 7.4 7.3 7.2 7.1 7.1 7.1	(cu. m) 40.0 Maximum Sto Qstored (L/s) 50.0 31.1 22.0 16.6 13.1 10.6 8.7 7.2 6.0 5.1	(cu. m) 46.0 Vstored (m^3) 30.0 37.3 39.6 40.0 39.3 36.4 34.5 32.5 30.3	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8 142.2 141.3 139.7 137.6 135.2 132.5 129.8	mm	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Subdra	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	(mm) 142.21 BLDGC 0.12 1.00 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 35.20 32.89	(m) 0.14 Qactual (L/s) 57.1 38.3 29.4 24.0 20.4 17.9 14.4 13.1 11.3 10.5	(L/s) 7.4 N Qrelease (L/s) 7.1 7.3 7.4 7.4 7.4 7.3 7.3 7.2 7.1 7.1 7.1 7.0 6.9	(cu. m) 40.0 Aaximum Sto Qstored (L/s) 50.0 31.1 22.0 16.6 13.1 10.6 8.7 7.2 6.0 5.1 4.3 3.6	(cu. m) 46.0 vstored (m^3) 30.0 37.3 38.6 40.0 39.3 38.0 36.4 34.5 32.5 30.3 28.1 26.0	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8 142.2 141.3 139.7 137.6 135.2 132.5 129.8 127.0 123.8	nm	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Subdra	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storae	(mm) 142.21 BLDGC 0.12 1.00 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ge	(m) 0.14 Qactual (L/s) 57.1 38.3 29.4 24.0 20.4 17.9 15.9 14.4 13.1 11.3 10.5	(L/s) 7.4 N Qrelease (L/s) 7.1 7.3 7.4 7.4 7.4 7.3 7.3 7.2 7.1 7.0 6.9 Discharge (L/s)	(cu. m) 40.0 Ataximum Sto (L/s) 50.0 31.1 10.6 8.7 7.2 6.0 5.1 4.3 3.6	(cu. m) 46.0 variage Depth Vstored (m^3) 30.0 37.3 39.6 40.0 39.3 38.0 36.4 34.5 32.5 32.5 28.1 26.0	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8 142.2 141.3 139.7 137.6 135.2 132.5 129.8 127.0 123.8 Discharge Check	nm	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Subdra	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120	(mm) 142.21 BLDGC 0.12 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ge	(m) 0.14 Qactual (L/s) 57.1 38.3 29.4 24.0 20.4 17.9 14.4 13.1 11.3 10.5	(L/s) 7.4 N Qrelease (L/s) 7.1 7.3 7.4 7.4 7.4 7.3 7.2 7.1 7.1 7.0 6.9 Discharge	(cu. m) 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	(cu. m) 46.0 vrage Depth Vstored (m*3) 30.0 37.3 39.6 40.0 39.3 38.0 38.4 34.5 32.5 30.3 28.1 26.0	Check 0.00 Roof 150 Depth (mm) 129.4 138.7 141.8 142.2 141.3 139.7 137.6 135.2 132.5 129.8 127.0 123.8 Discharge	mm	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

oumeu	Rationali			J.J. Jiorug	,				
Subdra	inage Area:	BLDGB					Roof		
Subula	Area (ha):	0.11		N	Maximum St	orage Depth	150	mm	
	C:	0.90				5 ,			
1	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored	Depth		
1	(min)	(mm/hr)	(L/s) 27.9	(L/s)	(L/s)	(m^3) 12.9	(mm) 100.5		
1	10	104.19 70.25	27.9 18.8	6.3 6.4	21.6 12.4	12.9 14.9	100.5 104.5		0.00
	30	70.25 53.93	14.4	6.4	8.0	14.9	104.5		0.00
	40	44.18	11.8	6.3	5.5	13.2	101.0		0.00
	50	37.65	10.1	6.2	3.9	11.6	96.3		0.00
	60	32.94	8.8	6.1	2.7	9.9	90.5		0.00
	70	29.37	7.9	5.9	1.9	8.2	84.6		0.00
	80	26.56	7.1	5.8	1.3	6.4	78.7		0.00
	90	24.29	6.5	5.6	0.9	4.9	71.9		0.00
	100	22.41	6.0	5.4	0.6	3.6	63.7		0.00
	110	20.82	5.6	5.2	0.4	2.5	56.0		0.00
	120	19.47	5.2	5.0	0.2	1.6	49.5		0.00
Storage:	Roof Storag	10							
Otorage.	1001 Otoraç	30							
		Depth	Head	Discharge	Vreq	Vavail	Discharge	î	
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check		
5-year	Water Leve	104.51	0.10	6.4	14.9	42.8	0.00		
								•	
Subdra	inage Area:	L301A				Controll	ed - Tributary		
	Area (ha):	0.14							
1	C:	0.87							
1	tc	I (E vor)	Qactual	Orelease	Ostored	Vstored			
	(min)	l (5 yr) (mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)			
1	10	104.19	35.0	40.2	0.0	0.0			
	20	70.25	23.6	40.2	0.0	0.0			
1	30	53.93	18.1	40.2	0.0	0.0			
1	40	44.18	14.9	40.2	0.0	0.0			
1	50	37.65	12.7	40.2	0.0	0.0			
	60	32.94	11.1	40.2	0.0	0.0			
	70	29.37	9.9	40.2	0.0	0.0			
	80	26.56	8.9	40.2	0.0	0.0			
	90	24.29	8.2	40.2	0.0	0.0			
	100	22.41	7.5	40.2	0.0	0.0			
	110 120	20.82	7.0 6.5	40.2 40.2	0.0	0.0			
	120	19.47	6.5	40.2	0.0	0.0			
Storage:	e Above CE								
Storage.	_ , 0E								
Orific	ce Equation:	CdA(2ah)	0.5	Where C =	0.61				
	ce Diameter:		mm						
Inv	ert Elevation	77.99	m						
T.	'/G Elevation	79.37	m						
	onding Depth		m						
Dowr	nstream W/L	75.30	m						
		Ote	He	Dioot	\/e	Vos11	Volume		
1		Stage	Head (m)	Discharge	Vreq	Vavail	Volume		
5.vear	Water Level	79.37	(m) 1.38	(L/s) 40.2	(cu. m)	(cu. m) 16.1	Check OK		
3-year	atoi Leve	10.51	1.00	40.4	0.0	10.1	OIL	ļ.	
Subdra	inage Area:	L300A				Controll	ed - Tributary		
1	Area (ha):	0.14					,		
1	C:	0.87							
1									
1	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored			
1	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)			
1	10	104.19	34.5	40.2	0.0	0.0			
1	20 30	70.25 53.93	23.3 17.9	40.2 40.2	0.0	0.0 0.0			
1	40	53.93 44.18	17.9	40.2 40.2	0.0	0.0			
1	50	37.65	12.5	40.2	0.0	0.0			
1	60	32.94	10.9	40.2	0.0	0.0			
1	70	29.37	9.7	40.2	0.0	0.0			
1	80	26.56	8.8	40.2	0.0	0.0			
1	90	24.29	8.0	40.2	0.0	0.0			
1	100	22.41	7.4	40.2	0.0	0.0			
1	110	20.82	6.9	40.2	0.0	0.0			
1	120	19.47	6.5	40.2	0.0	0.0			
Storage:	e Above CE								
Storage:	6 ADOVE CE								
Orific	ce Equation:	CdA(2ah)	0.5	Where C =	0.61				
	ce Equation. ce Diameter:		mm	0 -	0.01				
	ert Elevation		m						
	/G Elevation	79.27	m						
Max Po	onding Depth	0.00	m						
Dowr	nstream W/L	75.30	m						
1									
		Stage	Head	Discharge	Vreq	Vavail	Volume		
· · ·	. 18/-41	70.07	(m)	(L/s)	(cu. m)	(cu. m)	Check		
5-year	Water Leve	79.27	1.38	40.2	0.0	18.7	OK	ļ.	

Subdrain	age Area: Area (ha):	BLDGB 0.11		N	1aximum Sto	rage Depth	Roof 150	mm
	C:	1.00				9		
	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
_	10	178.56	53.1	7.0	46.1	27.6	129.0	
	20 30	119.95 91.87	35.7 27.3	7.3 7.3	28.4 20.0	34.1 36.0	137.9 140.6	
	40	75.15	22.4	7.3	15.0	36.0	140.6	
	50	63.95	19.0	7.3	11.7	35.2	139.4	
	60 70	55.89 49.79	16.6 14.8	7.3 7.2	9.4 7.6	33.7 32.0	137.4 135.0	
	80	44.99	13.4	7.1	6.3	30.0	132.3	
	90	41.11	12.2	7.1	5.2	28.0	129.4	
	100 110	37.90 35.20	11.3 10.5	7.0 6.9	4.3 3.6	25.8 23.7	126.4 122.8	
	120	32.89	9.8	6.8	3.0	21.7	118.6	
torage: F	Roof Storag	je						
	ſ	Depth	Head	Discharge	Vreq	Vavail	Discharge	
100-year V	/ater Level	(mm) 140.63	(m) 0.14	(L/s) 7.3	(cu. m)	(cu. m) 42 8	Check 0.00	
100 your 1	dioi Eoro	140.00	0.14	7.0	00.0	72.0	0.00	
Subdrain	age Area: Area (ha):	L301A 0.14				Controll	ed - Tributary	
	C:	1.00						
	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)		
	10	178.56	69.0	42.8	26.2	15.7		
	20 30	119.95 91.87	46.4 35.5	42.8 42.8	3.6 0.0	4.3 0.0		
	40	75.15	29.0	42.8	0.0	0.0		
	50	63.95	24.7	42.8	0.0	0.0		
	60	55.89	21.6	42.8	0.0	0.0		
	70 80	49.79 44.99	19.2 17.4	42.8 42.8	0.0	0.0		
	90	41.11	15.9	42.8	0.0	0.0		
	100	37.90	14.6	42.8	0.0	0.0		
	110 120	35.20 32.89	13.6 12.7	42.8 42.8	0.0	0.0		
Storage: S	Surface Sto	rage Above	CE					
Orifice	Equation:	Q = CdA(2gi	h)^0.5	Where C =	0.61			
Orifice	Diameter:	127.00 r	mm					
	t Elevation Elevation	77.99 r 79.37 r						
Max Pond	ding Depth	0.18 r	m					
Downst	tream W/L	75.30 r						
		Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check	
100-year V	/ater Leve	79.55	1.56	42.8	15.7	16.1	OK	
						0.35		
Subdrain	age Area: Area (ha):	L300A 0.14				Controll	ed - Tributary	
	C:	1.00						
ſ	tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)		
	10	178.56	68.0	42.8	25.3	15.2		
	20	119.95	45.7	42.8	2.9	3.5		
	30 40	91.87 75.15	35.0 28.6	42.8 42.8	0.0	0.0		
	50	63.95	24.4	42.8	0.0	0.0		
	60	55.89	21.3	42.8	0.0	0.0		
	70 80	49.79 44.99	19.0 17.1	42.8 42.8	0.0	0.0		
	90	41.11	15.7	42.8	0.0	0.0		
	100	37.90	14.4	42.8	0.0	0.0		
	110 120	35.20 32.89	13.4 12.5	42.8 42.8	0.0	0.0		
Storage: S		rage Above		42.0	0.0	0.0		
		Q = CdA(2gl		Where C =	0.61			
Orifice	Diameter:	127.00 r	mm		2.31			
Inver	t Elevation	77.89 r						
T/G Max Pon	Elevation ding Depth	79.27 r 0.18 r	TI M					
	ream W/L	75.30 r						
	Г	Stage	Head	Discharge	Vreq	Vavail	Volume	
		-		(L/s)			Check	
100-year V		79.45	(m) 1.56	42.8	(cu. m) 15.2	(cu. m) 18.7	OK	

Project #160401483, Norberry Residences Modified Rational Method Calculators for Storage

Qubde-1	inago Avor	13034				Control!	ad - Tributo-	
Subdrai	inage Area: Area (ha):	L303A 0.25				Controll	ed - Tributary	
	C:	0.62						
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min) 10	(mm/hr) 104.19	(L/s) 45.4	(L/s) 12.1	(L/s) 33.3	(m^3) 20.0		
	20	70.25	30.6	12.1	18.5	22.2		
	30	53.93	23.5	12.1	11.4	20.5		
	40	44.18	19.3	12.1	7.2	17.2		
	50 60	37.65 32.94	16.4 14.4	12.1 12.1	4.3 2.3	12.9 8.1		
	70	29.37	12.8	12.1	0.7	2.9		
	80	26.56	11.6	12.1	0.0	0.0		
	90	24.29	10.6	12.1	0.0	0.0		
	100	22.41	9.8	12.1	0.0	0.0		
	110 120	20.82 19.47	9.1 8.5	12.1 12.1	0.0	0.0		
	120	19.47	8.5	12.1	0.0	0.0		
Storage:	e Above CE							
	e Diameter:	83.00						
Inve	ert Elevation /G Elevation	76.33 77.71	m m					
Max Po	nding Depth	0.15	m					
Down	stream W/L	75.23	m					
	_							
		Stage	Head	Discharge	Vreq	Vavail	Volume	
5.400	Water Level	77.86	(m) 1.53	(L/s) 12.1	(cu. m) 22.2	(cu. m) 85.1	Check OK	
3-yedr	ator Leve	11.00	1.33	14.1	24.4	00.1	υN	
Subdrai	inage Area:	F101A				Uncontroll	ed - Tributary	
	Area (ha): C:	0.09						
	C:	0.67						
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
	10	104.19	22.7	22.7				
	20	70.25	15.3	15.3				
	30 40	53.93 44.18	11.7 9.6	11.7 9.6				
	50	37.65	8.2	8.2				
	60	32.94	7.2	7.2				
	70	29.37	6.4	6.4				
	80	26.56	5.8	5.8				
	90 100	24.29 22.41	5.3 4.9	5.3 4.9				
	110	20.82	4.5	4.5				
	120	19.47	4.2	4.2				
Subdrai	inage Area:	UNC-2				Uncontroll	ed - Tributary	
	Area (ha): C:	0.05						
	C.	0.30						
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored		
		(mm/hr)	(L/s)		(1 (-)			
	(min)			(L/s)	(L/s)	(m^3)		
	10	104.19	4.6	4.6	(L/S)	(m^3)		
	10 20				(L/S)	(m^3)		
	10	104.19 70.25 53.93 44.18	4.6 3.1	4.6 3.1	(L/S)	(m^3)		
	10 20 30 40 50	104.19 70.25 53.93 44.18 37.65	4.6 3.1 2.4 2.0 1.7	4.6 3.1 2.4 2.0 1.7	(L/s)	(m^3)		
	10 20 30 40 50 60	104.19 70.25 53.93 44.18 37.65 32.94	4.6 3.1 2.4 2.0 1.7 1.5	4.6 3.1 2.4 2.0 1.7 1.5	(L/S)	(m^3)		
	10 20 30 40 50 60 70	104.19 70.25 53.93 44.18 37.65 32.94 29.37	4.6 3.1 2.4 2.0 1.7 1.5 1.3	4.6 3.1 2.4 2.0 1.7 1.5 1.3	(US)	(m^3)		
	10 20 30 40 50 60	104.19 70.25 53.93 44.18 37.65 32.94	4.6 3.1 2.4 2.0 1.7 1.5	4.6 3.1 2.4 2.0 1.7 1.5	(US)	(m^3)		
	10 20 30 40 50 60 70 80 90	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1	(LIS)	(m^3)		
	10 20 30 40 50 60 70 80 90 100	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9	(US)	(m^3)		
	10 20 30 40 50 60 70 80 90	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1	(LIS)	(m^3)		
Subdrai	10 20 30 40 50 60 70 80 90 100 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9	(L/S)		ed - Tributan	
Subdrai	10 20 30 40 50 60 70 80 90 100 110 120	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9	(L/s)		ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 100 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9	(L/s)		ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 100 110 120 inage Area: Area (ha):	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9		Uncontrolle	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 110 120 inage Area: Area (ha):	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 100 1100 120 inage Area: Area (ha): C:	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9		Uncontrolle	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 110 120 inage Area: Area (ha):	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 100 120 inage Area: Area (ha): C: tc (min) 10 20 30	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48 I (5 yr) (mm/hr) 104.19 70.25	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 1100 1120 inage Area: Area (ha): C: tc (min) 10 20 30 40	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 21.47 EX-19 0.15 0.48 1 (5 yr) (mm/hr) 104.19 70.25 53.93 44.18	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5 8.6	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 100 1120 inage Area: Area (ha): C: tc (min) 10 20 30 40 50	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48 I (5 yr) (mm/hr) 104.19 704.19 704.93 44.18 37.65	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5 8.6 7.3	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6 7.3	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 100 110 120 100 110 20 30 40 50 60	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48 1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5 8.6 7.3 6.4	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 6.6	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 100 1120 inage Area: Area (ha): C: tc (min) 10 20 30 40 50	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48 I (5 yr) (mm/hr) 104.19 704.19 704.93 44.18 37.65	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5 8.6 7.3	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6 7.3	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 110 122 Area (ha): 10 20 30 40 50 60 70 80 90 80 90	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5 6.7 5.2 4.7	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 5.2 4.7	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 110 120 inage Area: Area (min) 10 20 30 40 50 60 70 80 90 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 19.47 EX-19 0.15 0.48 1(5 yr) (mm/hr) 104.19 70.25 32.94 29.37 44.18 37.65 32.94 29.37 26.56 24.29 24.21	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 0.9 0.9	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 4.4	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 770 80 90 110 120 120 10 20 10 20 30 40 50 60 60 770 80 60 60 70 80 60 70 80 60 70 80 60 70 80 60 70 80 90 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 5.2 4.7 4.4	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 5.2 4.7 4.4	Qstored	Uncontrolli Vstored	ed - Tributary	
Subdrai	10 20 30 40 50 60 70 80 90 110 120 inage Area: Area (min) 10 20 30 40 50 60 70 80 90 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 19.47 EX-19 0.15 0.48 1(5 yr) (mm/hr) 104.19 70.25 32.94 29.37 44.18 37.65 32.94 29.37 26.56 24.29 24.21	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 0.9 0.9	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 4.4	Qstored	Uncontrolli Vstored	ed - Tributary	
	10 20 30 40 50 60 770 80 90 110 120 120 10 20 10 20 30 40 50 60 60 770 80 60 60 70 80 60 70 80 60 70 80 60 70 80 60 70 80 90 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 5.2 4.7 4.4	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 5.2 4.7 4.4	Qstored	Uncontroll Vstored (m^3)	ed - Tributary	
	10 20 30 40 50 60 70 80 90 110 120 inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 110 120 12	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 0.48 11(5 yr) 104.19 70.25 53.93 44.18 37.65 32.94 44.18 37.65 32.94 24.29 22.41 29.82 19.47	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 5.2 4.7 4.4	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 5.2 4.7 4.4	Qstored	Uncontroll Vstored (m^3)		
	10 20 30 40 50 60 70 80 90 110 120 inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 110 110 110 110 110 110 110 110	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-19 0.15 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 5.2 4.7 4.4	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 20.3 13.7 10.5 8.6 7.3 6.4 5.7 5.2 4.7 4.4	Qstored	Uncontroll Vstored (m^3)		
	10 20 30 40 50 60 70 80 90 110 120 image Area: Area (ha): C: tc (min) 10 0 60 70 80 80 90 110 120 40 50 60 70 80 80 90 110 120 40 50 60 70 80 60 70 80 60 70 80 60 70 80 60 70 80 60 70 80 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 70 80 70 80 80 80 90 70 80 80 80 90 70 80 80 80 90 80 80 80 90 80 80 80 80 80 80 80 80 80 80 80 80 80	104.19 70.25 53.93 53.93 44.18 37.65 32.94 22.41 19.47 10.41 104.19 70.61 104.19 70.61 20.82 20.	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 0.9 Qactual (L/s) (L/s) 8.6 7.3 6.4 5.7 5.2 4.7 4.4 1.3.8	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 0.9 Qrelease (L/s) 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	Qstored (L/s)	Uncontrolli Vstored (m^3) Uncontrolli		
	10 20 30 40 50 60 70 80 90 100 1120 inage Area: Area (ha): 20 20 40 40 60 70 10 1120 10 20 20 40 40 60 60 60 60 60 60 60 110 120 120 120 120 120 120 120 120 12	104.19 70.25 53.93 29.44 18 37.65 22.94 29.37 26.55 24.29 19.47 20.82 22.41 104.19 70.55 33.93 11(5 yr) 104.19 29.37 29.37 29.37 29.37 29.37 29.37 29.37 EX-18 20.82 24.29 29.37 20.82 24.29 20.82 20.	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 1.5 8.6 6.7 5.7 5.7 5.7 4.4 4.1 3.8	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 18.8 8.8 8.9 8.9 8.9 8.7 1.3 6.4 4.1 3.8	Qstored (L/s)	Uncontrolle Vstored (m²3) Uncontrolle		
	10 20 30 40 50 60 70 80 90 110 120 inage Area: Area (ha): C: tc (min) 10 60 70 80 80 90 110 120 120 120 120 120 120 120 120 12	104.19 (19.1) 10	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 0.9 Qactual (L/s) 8.6 7.3 6.4 5.7 5.2 4.7 4.4 1.3.8	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrolease (L/s) 2.3 3.7 1.5 8.6 7.3 6.4 5.7 5.2 4.7 4.4 1.3.8	Qstored (L/s)	Uncontrolli Vstored (m^3) Uncontrolli		
	10 20 30 40 50 60 70 80 90 100 1120 inage Area: Area (ha): 20 20 40 40 60 70 10 1120 10 20 20 40 40 60 60 60 60 60 60 60 110 120 120 120 120 120 120 120 120 12	104.19 70.25 53.93 29.44 18 37.65 22.94 29.37 26.55 24.29 19.47 20.82 22.41 104.19 70.55 33.93 11(5 yr) 104.19 29.37 29.37 29.37 29.37 29.37 29.37 29.37 EX-18 20.82 24.29 29.37 20.82 24.29 20.82 20.	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 1.5 8.6 6.7 5.7 5.7 5.7 4.4 4.1 3.8	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 18.8 8.8 8.9 8.9 8.9 8.7 1.3 6.4 4.1 3.8	Qstored (L/s)	Uncontrolle Vstored (m²3) Uncontrolle		
	10 20 30 40 50 60 70 80 90 100 11120 image Area: Area (ha): c (min) 10 20 30 40 50 60 70 80 90 100 1110 20 c (min) 10 20 60 60 60 60 60 60 60 60 60 60 60 60 60	104.19 10	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 4.7 4.4 4.1 3.8	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 7.3 8.8 8.7 7.3 8.7 7.3 8.7 7.3 8.7 8.7 8.7 8.8 8.8 8.4 4.1 8.8 Qrelease (L/s) 3.8 2.5	Qstored (L/s)	Uncontrolle Vstored (m²3) Uncontrolle		
	10 20 30 40 50 60 70 80 90 110 120 inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 80 90 110 120 cinage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 110 120 30 40 40 40 40 40 40 40 40 40 40 40 40 40	104.19 (19.1) 10	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 0.9 Qactual (L/s) 4.6 7.3 6.4 5.7 5.2 4.7 4.4 1.3.8 Qactual (L/s) 4.9 3.3 2.5 2.1	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 1.3 1.2 1.1 1.0 1.0 1.3 1.2 1.1 1.0 1.5 1.3 1.2 1.1 1.0 1.5	Qstored (L/s)	Uncontrolle Vstored (m²3) Uncontrolle		
	10 20 30 40 50 60 70 80 90 100 1110 120 image Area: Area (ha): c (min) 10 20 30 40 100 110 20 image Area: C (min) 10 20 30 40 50 60 60 60 60 60 60 60 60 60 60 60 60 60	104.19 70.25 53.93 37.65 53.93 22.94 29.37 104.19 104.19 104.19 104.19 104.19 104.19 105.25 106.97 1	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 1.5 8.6 8.7 4.4 4.1 3.8 Qactual (L/s) 4.9 3.3 2.5 2.1 1.8	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 1.5 8.6 7.3 8.7 5.7 5.7 4.4 4.1 3.8 Qrelease (L/s) 3.3 2.5 2.1 1.8	Qstored (L/s)	Uncontrolle Vstored (m²3) Uncontrolle		
	10 20 30 40 50 60 70 80 90 110 120 inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 80 90 110 120 C: tc (min) 110 120 30 40 50 60 70 80 80 90 100 110 120 60 60 60 70 80 80 90 100 110 120 60 60 60 60 60 60 60 60 60 60 60 60 60	104.19 (19.1) 10	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 0.9 Qactual (L/s) 4.7 5.7 5.2 4.7 4.4 1.3.8 Qactual (L/s) 4.9 3.3 2.5 2.1 1.8 1.5	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 1.3 1.2 1.1 1.0 1.0 1.3 1.2 1.1 1.0 1.3 1.2 1.3 1.2 1.3	Qstored (L/s)	Uncontrolle Vstored (m²3) Uncontrolle		
	10 20 30 40 50 60 70 80 90 100 1110 120 image Area: Area (ha): c (min) 10 20 30 40 100 110 20 image Area: C (min) 10 20 30 40 50 60 60 60 60 60 60 60 60 60 60 60 60 60	104.19 70.25 53.93 37.65 53.93 22.94 29.37 104.19 104.19 104.19 104.19 104.19 104.19 105.25 106.97 1	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qactual (L/s) 1.5 8.6 8.7 4.4 4.1 3.8 Qactual (L/s) 4.9 3.3 2.5 2.1 1.8	4.6 3.1 2.4 2.0 1.7 1.5 1.3 1.2 1.1 1.0 0.9 0.9 Qrelease (L/s) 1.5 8.6 7.3 8.7 5.7 5.7 4.4 4.1 3.8 Qrelease (L/s) 3.3 2.5 2.1 1.8	Qstored (L/s)	Uncontrolle Vstored (m²3) Uncontrolle		

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

Subdrainage Area:	L303A				Controll	ed - Trib
Area (ha):	0.25					
C:	0.78					
tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored	
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
10	178.56	97.3	18.6	78.7	47.2	
20	119.95	65.4	18.6	46.8	56.1	
30	91.87	50.1	18.6	31.5	56.6	
40	75.15	41.0	18.6	22.4	53.6	
50	63.95	34.9	18.6	16.3	48.8	
60	55.89	30.5	18.6	11.9	42.7	
70	49.79	27.1	18.6	8.5	35.8	
80	44.99	24.5	18.6	5.9	28.4	
90	41.11	22.4	18.6	3.8	20.5	
100	37.90	20.7	18.6	2.1	12.3	
110	35.20	19.2	18.6	0.6	3.8	
120	32.89	17.9	18.6	0.0	0.0	
Storage: Surface Sto	rage Above	СВ				
Orifice Equation:	Q = CdA(2a)	h)^0.5	Where C =	0.61		
Orifice Diameter:			CB Storage:	0.62		
Invert Flevation						
T/G Elevation						
Max Ponding Depth						
Downstream W/L	75.23 r					
	Stage	Head	Discharge	Vreq	Vavail	Volume
		(m)	(L/s)	(cu. m)	(cu. m)	Check
100-year Water Leve	77.95	1.62	18.6	56.6	85.1	OK
					28.46	
Subdrainage Area:	F101A				Uncontroll	ed - Tributar
Area (ha):	0.09				GIIGOIIIIOII	ou - mbutar

	age Area: Area (ha): C:	0.09 1.00				Uncontrol	ied - Tributary
Ī	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
L	10	178.56	44.7	44.7	(L/S)	(111-3)	
	20	119.95	30.0	30.0			
	30	91.87	23.0	23.0			
	40	75.15	18.8	18.8			
	50	63.95	16.0	16.0			
	60	55.89	14.0	14.0			
	70	49.79	12.5	12.5			
	80	44.99	11.3	11.3			
	90	41.11	10.3	10.3			
	100	37.90	9.5	9.5			
	110	35.20	8.8	8.8			

	age Area: Area (ha): C:					Uncontro	lled - 1
Г	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored	1
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
_	10	178.56	9.9	9.9		•	-
	20	119.95	6.7	6.7			
	30	91.87	5.1	5.1			
	40	75.15	4.2	4.2			
	50	63.95	3.6	3.6			
	60	55.89	3.1	3.1			
	70	49.79	2.8	2.8			
	80	44.99	2.5	2.5			
	90	41.11	2.3	2.3			
	100	37.90	2.1	2.1			
	110	35.20	2.0	2.0			

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	43.5	43.5		
20	119.95	29.2	29.2		
30	91.87	22.4	22.4		
40	75.15	18.3	18.3		
50	63.95	15.6	15.6		
60	55.89	13.6	13.6		
70	49.79	12.1	12.1		
80	44.99	11.0	11.0		
90	41.11	10.0	10.0		
100	37.90	9.2	9.2		
110	35.20	8.6	8.6		
120	32.89	8.0	8.0		

Uncontrolled - Tributary

	age Area: Area (ha): C:	EX-18 0.07 0.31				Uncontro
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
_	10	178.56	10.4	10.4		
	20	119.95	7.0	7.0		
	30	91.87	5.3	5.3		
	40	75.15	4.4	4.4		
	50	63.95	3.7	3.7		
	60	55.89	3.3	3.3		
	70	49.79	2.9	2.9		
	80	44.99	2.6	2.6		
	90	41.11	2.4	2.4		
	100	37.90	2.2	2.2		
	110	35.20	2.0	2.0		
	120	32.89	1.9	1.9		

Project #160401483, Norberry Residences

	Rational I					
Subdrai	nage Area: Area (ha):	EX-15 0.08				Uncontrolled - Tributary
	C:	0.43				
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 104.19	(L/s)	(L/s)	(L/s)	(m^3)
	20	70.25	6.6	6.6		
	30	53.93	5.0	5.0		
	40 50	44.18 37.65	4.1 3.5	4.1 3.5		
	60	32.94	3.1	3.1		
	70	29.37	2.7	2.7		
	80 90	26.56 24.29	2.5 2.3	2.5 2.3		
	100	22.41	2.1	2.1		
	110	20.82	1.9	1.9		
	120	19.47	1.8	1.8		
Subdrai	nage Area: Area (ha): C:	EX-14 0.33 0.40				Uncontrolled - Tributary
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	10 20	104.19	38.1 25.7	38.1 25.7		
	30	70.25 53.93	25.7 19.7	19.7		
	40	44.18	16.2	16.2		
	50	37.65	13.8	13.8		
	60 70	32.94 29.37	12.1 10.7	12.1 10.7		
	80	26.56	9.7	9.7		
	90	24.29	8.9	8.9		
	100 110	22.41 20.82	8.2 7.6	8.2 7.6		
	120	19.47	7.1	7.1		
Subdest	nage Area:	EX-13				Uncontrolled - Tributary
Suburai	Area (ha): C:	0.23 0.90				Oncontrolled - Hibitary
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 104.19	(L/s) 60.5	(L/s) 60.5	(L/s)	(m^3)
	20	70.25	40.8	40.8		
	30	53.93	31.3	31.3		
	40 50	44.18 37.65	25.6 21.9	25.6 21.9		
	60	32.94	19.1	19.1		
	70	29.37	17.0	17.0		
	80 90	26.56 24.29	15.4 14.1	15.4 14.1		
	100	24.29	14.1	14.1		
	110	20.82	12.1	12.1		
	120	19.47	11.3	11.3		
Subdrai	nage Area: Area (ha): C:	EX-12 0.23 0.90				Uncontrolled - Tributary
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	10	104.19	60.5	60.5		
	20	104.19 70.25	40.8	40.8		
	20 30	104.19 70.25 53.93	40.8 31.3	40.8 31.3		
	20	104.19 70.25	40.8	40.8		
	20 30 40 50 60	104.19 70.25 53.93 44.18 37.65 32.94	40.8 31.3 25.6 21.9 19.1	40.8 31.3 25.6 21.9 19.1		
	20 30 40 50 60 70	104.19 70.25 53.93 44.18 37.65 32.94 29.37	40.8 31.3 25.6 21.9 19.1 17.0	40.8 31.3 25.6 21.9 19.1 17.0		
	20 30 40 50 60 70 80	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56	40.8 31.3 25.6 21.9 19.1 17.0 15.4	40.8 31.3 25.6 21.9 19.1 17.0 15.4		
	20 30 40 50 60 70 80 90	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0		
	20 30 40 50 60 70 80 90 100	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1		
Subdrai	20 30 40 50 60 70 80 90 100 110 120	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0		Uncontrolled - Tributary
Subdrai	20 30 40 50 60 70 80 90 100 110 120 nage Area: Area (ha):	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3		
Subdrai	20 30 40 50 60 70 80 90 100 110 120 nage Area: Area (ha): C:	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3	Qstored (L's)	Uncontrolled - Tributary Vstored (m°3)
Subdrai	20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C:	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42 I (5 yr) (mm/hr) 104.19	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3		Vstored
Subdrai	20 30 40 50 60 70 80 90 100 110 120 nage Area: Area (ha): C:	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3		Vstored
Subdrai	20 30 40 50 60 70 80 100 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 21.47 EX-11 0.13 0.42 I (5 yr) (mu/hr) 104.19 70.25 53.93 44.18	40.8 31.8 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9		Vstored
Subdrai	20 30 40 50 60 70 80 90 100 120 inage Area: Area (ha): C: tc (min) 10 20 30 40 50	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qactual (L/s) 16.2 10.9 8.4 6.9 5.8	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 5.8		Vstored
Subdrai	20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 110 120	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qactual (L/s) 16.2 10.9 8.4 6.9 5.8 5.1 4.6	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 5.8 5.1		Vstored
Subdrai	20 30 40 50 60 70 80 90 110 120 Area (ha): C: tc (min) 10 20 30 40 50 60 70 70 80	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 19.47 EX-11 0.13 0.42 I (5y) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qactual (L/s) 16.2 10.9 8.4 6.9 5.1 4.6	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 5.1 4.6		Vstored
Subdrai	20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 100 110 120 50 60 70 100 100 100 100 100 100 100 100 100	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42 I (5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qactual (L/s) 16.2 10.9 8.4 6.9 5.8 5.1 4.6	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 5.8 5.1 4.6 4.1 3.8		Vstored
Subdrai	20 30 40 50 60 70 80 90 1100 1120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 70 80 90 100 1100 120 120	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42 11(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 42.937 26.56	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qactual (L/s) 16.2 10.9 6.8 5.1 4.6 4.1 3.8 3.5 3.2	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 5.8 5.1 4.6 4.1 3.8 5.1 4.1 3.8 5.1 4.1 6.9 5.1 4.1 6.9 5.1 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9		Vstored
Subdrai	20 30 40 50 60 70 80 90 1100 110 110 120 tc (min) 10 20 30 40 60 70 80 90 100	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42 I (5 yr) (mm/hr) 10.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qactual (Lfs) 16.2 10.9 8.4 6.9 5.8 5.1 4.6 3.5 5.1	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 5.8 5.1 4.1 3.8 3.8		Vstored
	20 30 40 50 60 70 80 90 1100 1120 nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 70 80 90 100 1100 120 120	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-11 0.13 0.42 11(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 42.937 26.56	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qactual (L/s) 16.2 10.9 6.8 5.1 4.6 4.1 3.8 3.5 3.2	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 5.8 5.1 4.6 4.1 3.8 5.1 4.1 3.8 5.1 4.1 6.9 5.1 4.1 6.9 5.1 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9		Vstored
	20 30 40 50 60 70 80 90 100 110 120 nage Area: (min) 10 20 30 40 50 60 70 80 90 110 120 Area (ha): Area (ha):	104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 19.47 EX-11 0.13 0.42 1(5 yr) (mm/hr) 104.19 70.25 53.93 44.18 37.65 32.94 29.37 26.56 24.29 22.41 20.82 19.47 EX-10 0.38	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qactual (L/s) 16.2 10.9 6.8 5.1 4.6 4.1 3.8 3.5 3.2	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	20 30 40 50 60 70 80 90 110 112 120 110 120 20 30 100 60 70 80 60 70 80 90 100 110 120 100 110 120 100 1100 11	104.19 (10.25) 10.25 (10.25) 1	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Gactual (L/s) 16.2 10.9 8.4 4.6 6.9 8.5 8.8 3.5 3.2 3.0	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 6.9 5.8 3.5 1.4 4.8 3.5 3.2 3.0		Vstored (m^3)
	20 30 40 50 60 70 80 90 110 120 20 30 40 50 60 70 80 90 110 110 120 90 90 90 90 90 90 90 90 90 90 90 90 90	104.19 10	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qactual (L/s) 16.2 10.9 8.4 6.9 5.8 5.1 4.6 4.1 3.8 3.5 3.2 3.0	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 9.5.8 5.1 4.6 4.1 3.8 3.5 3.2 3.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	20 30 40 50 60 70 80 90 110 120 20 30 80 90 110 110 120 100 110 120 100 110 120 100 110 120 100 120 12	104.19 (194.19 105.19 104.19 1	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 5.8 5.1 4.6 4.1 3.8 3.5 3.2 3.0	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 5.1 4.6 4.1 3.8 3.5 3.2 3.0	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	20 30 40 50 60 770 80 90 1100 1120 120 30 40 80 90 100 1120 120 120 120 120 120 120 120 1	104.19 10	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 8.3 16.2 3.0 Qactual (L/s) 75.1 50.7 38.9 31.9	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 5.8 8.5.1 4.6 8.9 5.1 3.8 3.5 3.2 3.0 Qrelease (L/s) 75.1 75.7 38.9 31.9	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	20 30 40 50 60 70 80 90 110 20 30 40 50 60 70 80 90 110 120 90 110 20 80 90 100 110 120 90 80 90 100 110 120 90 120 90 120 90 120 90 120 90 120 90 120 90 120 90 90 90 90 90 90 90 90 90 90 90 90 90	104.19 (194.19 104.19 1	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 5.8 5.1 4.6 4.1 3.8 3.5 3.2 3.0 Qactual (L/s) Cactual (L/s) 3.9 27.2	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 5.1 4.6 4.1 3.8 3.5 3.2 3.0	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	20 30 40 50 60 70 80 90 110 120 10 20 30 40 50 60 70 80 90 110 120 10 120 10 120 10 120 10 120 12	104.19 (194.19 104.19 1	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 8.3 16.2 3.0 Qactual (L/s) 75.1 50.7 38.9 31.9	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 5.8 8.5.1 4.6 8.9 5.1 3.8 3.5 3.2 3.0 Qrelease (L/s) 75.1 75.7 38.9 31.9	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	20 30 40 50 60 60 70 80 80 90 100 110 120 100 1100 1100 1100 120 100 10	104.19 10	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 6.9 8.4 6.9 8.3 3.5 3.0 Qactual (L/s) 75.1 50.7 38.9 31.9 27.2 23.8 21.2 19.2	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 6.9 5.8 4.8 6.9 6.9 5.1 4.1 3.8 3.5 3.2 3.0 Qrelease (L/s) 75.1 75.7 38.9 31.9 27.2 23.8 21.2	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	20 30 40 50 60 70 80 90 110 120 mage Area: Area (ha): 20 30 40 50 60 70 80 90 110 120 c: tc (min) 120 mage Area: Area (ha): 20 30 40 50 60 70 80 90 60 70 80 90 70 80 90 90 90 90 90 90 90 90 90 90 90 90 90	104.19 10	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 6.8 5.1 4.6 4.1 3.8 3.5 3.2 3.0 Qactual (L/s) Qactual (L/s) 22.2 38.2 21.9 27.2 23.8 21.5 21.5	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 9.5.8 5.1 4.6 4.1 3.8 3.5 3.2 3.0	(L/s)	Vstored (m^3) Uncontrolled - Tributary
	20 30 40 50 60 60 70 80 80 90 100 110 120 100 1100 1100 1100 120 100 10	104.19 10	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 16.2 10.9 8.4 6.9 6.9 8.4 6.9 8.3 3.5 3.0 Qactual (L/s) 75.1 50.7 38.9 31.9 27.2 23.8 21.2 19.2	40.8 31.3 25.6 21.9 19.1 17.0 15.4 14.1 13.0 12.1 11.3 Qrelease (L/s) 16.2 10.9 8.4 6.9 6.9 5.8 4.8 6.9 6.9 5.1 4.1 3.8 3.5 3.2 3.0 Qrelease (L/s) 75.1 75.7 38.9 31.9 27.2 23.8 21.2	(L/s)	Vstored (m^3) Uncontrolled - Tributary

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

Subdrainage Area: EX-14 Area (ha): 0.33 C: 0.50

 tc
 I (100 yr)
 Qactual (Us)
 Grelease (Us)
 Qstored (m^3)
 Vstored (m^3)

 10
 178.56
 81.7
 81.7
 91.7

 20
 119.95
 54.9
 54.9
 54.9

 30
 91.87
 42.0
 42.0
 42.0

 40
 75.15
 34.4
 34.4
 50.6
 63.95
 29.2
 29.2
 29.2
 69.2
 69.2
 29.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2
 69.2

Subdrainage Area: EX-13 Area (ha): 0.23 C: 1.00

 tc (min)
 I (100 yr) (mmhr)
 Qactual (L/s)
 Crelease (L/s)
 Qatored (L/s)
 Vstored (L/s)

 10
 115.66
 115.2
 115.2
 115.2

 20
 119.95
 77.4
 77.4
 77.4

 30
 91.87
 59.3
 59.3
 59.3

 40
 75.15
 48.5
 48.5
 48.5

 50
 63.95
 41.2
 41.2
 47.2

 60
 55.89
 36.0
 36.0
 36.0

 70
 44.79
 29.0
 29.0
 99.0
 41.11
 26.5
 26.5

 100
 37.90
 24.4
 24.4
 24.7
 24.7
 24.7

Subdrainage Area: EX-12 Area (ha): 0.23 Uncontrolled - Tributary

Uncontrolled - Tributary

Uncontrolled - Tributary

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	115.2	115.2		
20	119.95	77.4	77.4		
30	91.87	59.3	59.3		
40	75.15	48.5	48.5		
50	63.95	41.2	41.2		
60	55.89	36.0	36.0		
70	49.79	32.1	32.1		
80	44.99	29.0	29.0		
90	41.11	26.5	26.5		
100	37.90	24.4	24.4		
110	35.20	22.7	22.7		
400	22.00	24.2	24.2		

Subdrainage Area: EX-11 Area (ha): 0.13 C: 0.53 Uncontrolled - Tributary

 tc (min)
 I (100 yr) (ms/hr)
 Qactual (Us)
 Grelease (Us)
 Qstored (Us)
 Vstored (m^3)

 10
 178.56
 44.7
 24.7
 20.7
 19.95
 223.3
 23.3
 23.3
 23.3
 23.3
 17.8
 17.8
 17.8
 17.8
 14.6
 14.6
 14.6
 10.8
 10.8
 10.8
 10.8
 70
 49.79
 9.7
 9.7
 80
 44.99
 8.7
 8.7
 90
 41.11
 8.0
 8.0
 8.0
 10.8
 70
 40.79
 9.7
 7.7
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74
 4.74<

Subdrainage Area: EX-10 Area (ha): 0.38 C: 0.86 Uncontrolled - Tributary

tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10	178.56	161.0	161.0		
20	119.95	108.1	108.1		
30	91.87	82.8	82.8		
40	75.15	67.7	67.7		
50	63.95	57.7	57.7		
60	55.89	50.4	50.4		
70	49.79	44.9	44.9		
80	44.99	40.6	40.6		
90	41.11	37.1	37.1		
100	37.90	34.2	34.2		
110	35.20	31.7	31.7		

Subdra	inage Area:	EX-9				Uncontrolled - Tributary
Subdrai	nage Area: Area (ha): C:					Uncontrolled - Iributary
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 104.19	(L/s) 15.8	(L/s) 15.8	(L/s)	(m^3)
	20 30	70.25 53.93	10.7 8.2	10.7 8.2		
	40	44.18	6.7	6.7		
	50 60	37.65 32.94	5.7 5.0	5.7 5.0		
	70	29.37	4.5	4.5		
	80 90	26.56 24.29	4.0 3.7	4.0 3.7		
	100	22.41	3.4	3.4		
	110 120	20.82 19.47	3.2 3.0	3.2 3.0		
Subdrai	inage Area: Area (ha): C:	EX-8 0.71 0.65				Uncontrolled - Tributary
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 104.19	(L/s) 134.4	(L/s) 134.4	(L/s)	(m^3)
	20	70.25	90.6	90.6		
	30 40	53.93 44.18	69.6 57.0	69.6 57.0		
	50	37.65	48.6	48.6		
	60 70	32.94 29.37	42.5 37.9	42.5 37.9		
	80	26.56	34.3	34.3		
	90 100	24.29 22.41	31.3 28.9	31.3 28.9		
	110 120	20.82 19.47	26.9 25.1	26.9 25.1		
			20.1	20.1		
Subdrai	inage Area: Area (ha): C:					Uncontrolled - Tributary
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min) 10	(mm/hr) 104.19	(L/s) 4.3	(L/s) 4.3	(L/s)	(m^3)
	20	70.25	2.9	2.9		
	30 40	53.93 44.18	2.2 1.8	2.2 1.8		
	50	37.65	1.6	1.6		
	60 70	32.94 29.37	1.4 1.2	1.4 1.2		
	80	26.56	1.1	1.1		
	90 100	24.29 22.41	1.0 0.9	1.0 0.9		
	110 120	20.82 19.47	0.9	0.9 0.8		
Subdrai	inage Area: Area (ha): C:	EX-5	0.0	0.0		Uncontrolled - Tributary
	tc .	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
	10 20	104.19 70.25	60.2 40.6	60.2 40.6		
	30	53.93 44.18	31.2 25.5	31.2 25.5		
	40 50	37.65	21.8	21.8		
	60 70	32.94	19.0 17.0	19.0		
	80	29.37 26.56	15.4	17.0 15.4		
	90 100	24.29 22.41	14.0 13.0	14.0 13.0		
	110	20.82	12.0	12.0		
	120	19.47	11.3	11.3		
Subdrai	inage Area: Area (ha): C:					Uncontrolled - Tributary
	tc (min)	I (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
	10 20	104.19 70.25	125.2 84.4	125.2 84.4		
	30	53.93	64.8	64.8		
	40 50	44.18 37.65	53.1 45.2	53.1 45.2		
	60 70	32.94 29.37	39.6 35.3	39.6 35.3		
	80	26.56	31.9	31.9		
	90 100	24.29 22.41	29.2 26.9	29.2 26.9		
	110	20.82	25.0	25.0		
	120	19.47	23.4	23.4		
Subdrai	inage Area: Area (ha): C:					Uncontrolled - Tributary
	tc (min)	I (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
	10	104.19	60.2	60.2	(L/S)	(111 3)
	20	70.25 53.93	40.6 31.2	40.6 31.2		
			U1.2			
	30 40	44.18	25.5	25.5		
	30 40 50	44.18 37.65	21.8	21.8		
	30 40 50 60 70	44.18 37.65 32.94 29.37	21.8 19.0 17.0	21.8 19.0 17.0		
	30 40 50 60	44.18 37.65 32.94	21.8 19.0	21.8 19.0		
	30 40 50 60 70 80	44.18 37.65 32.94 29.37 26.56	21.8 19.0 17.0 15.4	21.8 19.0 17.0 15.4		

bdrainage Are Area (ha	a): 0.06				Uncontrolled - Tributary
	C: 1.00	Onstant	01	0-11	Vstored
tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s) 30.1	Qstored (L/s)	(m^3)
10 20	178.56 119.95	30.1 20.2	20.2		
30 40	91.87 75.15	15.5 12.7	15.5 12.7		
50	63.95	10.8	10.8		
60 70	55.89 49.79	9.4 8.4	9.4 8.4		
80	44.99	7.6	7.6		
90 100	41.11 37.90	6.9 6.4	6.9 6.4		
110 120	35.20 32.89	5.9 5.6	5.9 5.6		
bdrainage Are					Uncontrolled - Tributary
Area (ha					Uncontrolled - Iributary
tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10 20	178.56 119.95	288.0 193.4	288.0 193.4		
30	91.87	148.2	148.2		
40 50	75.15 63.95	121.2 103.1	121.2 103.1		
60 70	55.89 49.79	90.1 80.3	90.1 80.3		
80	44.99	72.6	72.6		
90 100	41.11 37.90	66.3 61.1	66.3 61.1		
110 120	35.20 32.89	56.8 53.1	56.8 53.1		
bdrainage Are		30.1	30.1		Uncontrolled - Tributary
Area (ha					Chombined - Tributary
tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10 20	178.56 119.95	9.3 6.2	9.3 6.2		
30 40	91.87 75.15	4.8 3.9	4.8 3.9		
50	63.95	3.3	3.3		
60 70	55.89 49.79	2.9 2.6	2.9 2.6		
80	44.99	2.3	2.3		
90 100	41.11 37.90	2.1	2.1 2.0		
110 120	35.20 32.89	1.8 1.7	1.8 1.7		
bdrainage Are	a: EX-5				Uncontrolled - Tributary
Area (ha	a): 0.23 C: 1.00				
tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min) 10	(mm/hr) 178.56	(L/s) 114.7	(L/s) 114.7	(L/s)	(m^3)
20 30	119.95 91.87	77.0 59.0	77.0 59.0		
40	75.15	48.3	48.3		
50 60	63.95 55.89	41.1 35.9	41.1 35.9		
70 80	49.79	32.0	32.0		
90	44.99 41.11	28.9 26.4	28.9 26.4		
100 110	37.90 35.20	24.3 22.6	24.3 22.6		
120	32.89	21.1	21.1		
ıbdrainage Are Area (ha					Uncontrolled - Tributary
	C: 0.79				
tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10 20	178.56 119.95	268.2 180.1	268.2 180.1		
30 40	91.87 75.15	138.0 112.9	138.0 112.9		
50	63.95	96.0	96.0		
60 70	55.89 49.79	83.9 74.8	83.9 74.8		
80	44.99	67.6	67.6		
90 100	41.11 37.90	61.7 56.9	61.7 56.9		
110	35.20	52.9	52.9		
120	32.89	49.4	49.4		
ıbdrainage Are Area (ha					Uncontrolled - Tributary
7.104 (1.1	C: 1.00				
tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)

tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10	178.56	114.7	114.7		•
20	119.95	77.0	77.0		
30	91.87	59.0	59.0		
40	75.15	48.3	48.3		
50	63.95	41.1	41.1		
60	55.89	35.9	35.9		
70	49.79	32.0	32.0		
80	44.99	28.9	28.9		
90	41 11	26.4	26.4		

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

Subdrainage Area Area (ha) C	0.27				Uncontro
tc (min)	I (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
10	104.19	28.8	28.8		
20	70.25	19.4	19.4		
30	53.93	14.9	14.9		
40	44.18	12.2	12.2		
50	37.65	10.4	10.4		
60	32.94	9.1	9.1		
70	29.37	8.1	8.1		
80	26.56	7.3	7.3		
90	24.29	6.7	6.7		
100	22.41	6.2	6.2		
110	20.82	5.8	5.8		
120	19.47	5.4	5.4		

Subdrainage Area:	EX-1
Area (ha):	0.28
C.	0.33

Uncontrolled - Tributary

tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	104.19	27.1	27.1		
20	70.25	18.3	18.3		
30	53.93	14.1	14.1		
40	44.18	11.5	11.5		
50	37.65	9.8	9.8		
60	32.94	8.6	8.6		
70	29.37	7.7	7.7		
80	26.56	6.9	6.9		
90	24.29	6.3	6.3		
100	22.41	5.8	5.8		
110	20.82	5.4	5.4		
120	19.47	5.1	5.1		

YEAR SUMMARY TO OUTLET

Tributary Area	1.18 ha
Total 5yr Flow to Sewer	134.1 L/s
Non-Tributary Area	0.33 ha
Total 5yr Flow Uncontrolled	51.4 L/s
Total Area	1.51 ha
Total 5yr Flow	185.5 L/s
Target	282.3 L/s

Project #160401483, Norberry Residences Modified Rational Method Calculatons for Storage

bdrainag Ar	je Area: ea (ha): C:					Uncontrolled - Tributary
	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)
	10	178.56	61.8	61.8		
	20	119.95	41.5	41.5		
	30	91.87	31.8	31.8		
	40	75.15	26.0	26.0		
	50	63.95	22.1	22.1		
	60	55.89	19.3	19.3		
	70	49.79	17.2	17.2		
	80	44.99	15.6	15.6		
	90	41.11	14.2	14.2		
	100	37.90	13.1	13.1		
	110	35.20	12.2	12.2		
	120	32.89	11.4	11.4		

Subdrainage Area:	EX-1	
Area (ha):	0.28	
C:	0.41	

Uncontrolled - Tributary

tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)
10	178.56	58.2	58.2		•
20	119.95	39.1	39.1		
30	91.87	29.9	29.9		
40	75.15	24.5	24.5		
50	63.95	20.8	20.8		
60	55.89	18.2	18.2		
70	49.79	16.2	16.2		
80	44.99	14.7	14.7		
90	41.11	13.4	13.4		
100	37.90	12.3	12.3		
110	35.20	11.5	11.5		
120	32.89	10.7	10.7		

100 YEAR SUMMARY TO OUTLET

Controlled Tributary Area	1.18 ha
Total 100yr Flow to Sewer	162.4 L/s
Uncontrolled Tributary Area	0.33 ha
Total 100yr Flow Uncontrolled	104.2 L/s
Total Area	1.51 ha
Total 100yr Flow	266.6 L/s
Target	282.3 L/s

*Existing Areas of The Site to Remain

Tributary Area Total 100yr Flow to Sewer

Project #160401483, Norberry Residences Roof Drain Design Sheet, Area BLDGA Standard Watts Model R1100 Accutrol Roof Drain

6/10/2021

0/10/2021									
	Rating Curve				Volume Estimation				
Elevation	Elevation Discharge Rate Outlet Discharge		Storage	Elevation	Area	Volume	(cu. m)	Water Depth	
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)	
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000	
0.025	0.0003	0.0025	0	0.025	26	0	0	0.025	
0.050	0.0006	0.0050	2	0.050	102	1	2	0.050	
0.075	0.0007	0.0057	6	0.075	230	4	6	0.075	
0.100	0.0008	0.0063	14	0.100	409	8	14	0.100	
0.125	0.0009	0.0069	27	0.125	639	13	27	0.125	
0.150	0.0009	0.0076	46	0.150	920	19	46	0.150	

	Drawdown Estimate									
Total	Total									
Volume	Time	Vol	Detention							
(cu.m)	(sec)	(cu.m)	Time (hr)							
0.0	0.0	0.0	0							
1.5	295.4	1.5	0.082044							
5.5	712.6	4.0	0.279992							
13.4	1248.9	7.9	0.626922							
26.4	1871.9	13.0	1.14689							
45.8	2559.8	19.4	1.857939							

Rooftop Storage Summary			
Total Building Area (sq.m)		1150	
Assume Available Roof Area (sq.m)	80%	920	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	115
Number of Roof Notches*		8	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		46	
Estimated 100 Year Drawdown Time (h)		1.6	

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Res	sults	5yr	100yr	Available
	Qresult (cu.m/s)	0.006	0.007	-
	Depth (m)	0.106	0.142	0.150
	Volume (cu.m)	16.5	40.0	46.0
	Draintime (hrs)	0.8	1.6	

From Watts Drain Catalogue

Head (m) I	L/s				
	Open	75%	50%	25%	Closed
0.025	0.3155	0.31545	0.31545	0.31545	0.31545
0.050	0.6309	0.6309	0.6309	0.6309	0.31545
0.075	0.9464	0.86749	0.78863	0.70976	0.31545
0.100	1.2618	1.10408	0.94635	0.78863	0.31545
0.125	1.5773	1.34067	1.10408	0.86749	0.31545

Project #160401483, Norberry Residences Roof Drain Design Sheet, Area BLDGB Standard Watts Model R1100 Accutrol Roof Drain

6/10/2021

	Rating Curve				Volume Estimation			
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	(cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0025	0	0.025	24	0	0	0.025
0.050	0.0006	0.0050	2	0.050	95	1	2	0.050
0.075	0.0007	0.0057	5	0.075	214	4	5	0.075
0.100	0.0008	0.0063	13	0.100	380	7	13	0.100
0.125	0.0009	0.0069	25	0.125	594	12	25	0.125
0.150	0.0009	0.0076	43	0.150	856	18	43	0.150

43

1.5

Drawdown Estimate								
Total	Total							
Volume	Time	Vol	Detention					
(cu.m)	(sec)	(cu.m)	Time (hr)					
0.0	0.0	0.0	0					
1.4	274.8	1.4	0.07634					
5.2	663.0	3.8	0.26051					
12.5	1162.1	7.3	0.58331					
24.6	1741.7	12.1	1.06711					
42.6	2381.7	18.0	1.72869					

0.8675 0.3155

0.150 1.8927 1.5773 1.2618 **0.9464** 0.3155

0.125 1.5773 1.3407 1.1041

Roottop Storage Summary			<u></u>							
				From Watts Drain Catalogue						
Total Building Area (sq.m)		1070		Head (m)	L/s					
Assume Available Roof Area (sq.	80%	856			Open	75%	50%	25%	Closed	
Roof Imperviousness		0.99		0.025	0.3155	0.3155	0.3155	0.3155	0.3155	
Roof Drain Requirement (sq.m/Notch)		232		0.050	0.6309	0.6309	0.6309	0.6309	0.3155	
Number of Roof Notches*		8		0.075	0.9464	0.8675	0.7886	0.7098	0.3155	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.100	1.2618	1.1041	0.9464	0.7886	0.3155	

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Res

Max. Allowable Storage (cu.m)

Estimated 100 Year Drawdown Time (h)

sults	5yr	100yr	Available
Qresult (cu.m/s)	0.006	0.007	-
Depth (m)	0.105	0.141	0.150
Volume (cu.m)	14.9	36.0	42.8
Draintime (hrs)	0.7	1.5	

Project #160401483, Norberry Residences Roof Drain Design Sheet, Area BLDGC Standard Watts Model R1100 Accutrol Roof Drain

6/10/2021

Rating Curve				Volume Estimation				
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume (cu. m)		Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0025	0	0.025	26	0	0	0.025
0.050	0.0006	0.0050	2	0.050	102	1	2	0.050
0.075	0.0007	0.0057	6	0.075	230	4	6	0.075
0.100	0.0008	0.0063	14	0.100	409	8	14	0.100
0.125	0.0009	0.0069	27	0.125	639	13	27	0.125
0.150	0.0009	0.0076	46	0.150	920	19	46	0.150

Drawdown Estimate							
Total	Total						
Volume	Time	Vol	Detention				
(cu.m)	(sec)	(cu.m)	Time (hr)				
0.0	0.0	0.0	0				
1.5	295.4	1.5	0.08204				
5.5	712.6	4.0	0.27999				
13.4	1248.9	7.9	0.62692				
26.4	1871.9	13.0	1.14689				
45.8	2559.8	19.4	1.85794				

Rooftop Storage Summary			_					
				From Watts D	rain Catalog	ue		
Total Building Area (sq.m)		1150		Head (m) L/s				
Assume Available Roof Area (sq.	80%	920		Ope	n 75'	6 50%	25%	Closed
Roof Imperviousness		0.99		0.025 0.3	155 0.315	5 0.3155	0.3155	0.3155
Roof Drain Requirement (sq.m/Notch)		232		0.050 0.6	309 0.630	9 0.6309	0.6309	0.3155
Number of Roof Notches*		8		0.075 0.9	464 0.867	5 0.7886	0.7098	0.3155
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.100 1.2	618 1.104	1 0.9464	0.7886	0.3155
Max. Allowable Storage (cu.m)		46		0.125 1.5	773 1.340	7 1.1041	0.8675	0.3155
Estimated 100 Year Drawdown Time (h)		1.6		0.150 1.8	927 1.577	3 1.2618	0.9464	0.3155

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

^ -			D • • • •
Ca	ıcu	lation	Kesu

sults	5yr	100yr	Available
Qresult (cu.m/s)	0.006	0.007	-
Depth (m)	0.106	0.142	0.150
Volume (cu.m)	16.5	40.0	46.0
Draintime (hrs)	0.8	1.6	

Adjustable	Accutrol	Weir

Tag: _____

Adjustable Flow Control for Roof Drains

ADJUSTABLE ACCUTROL(for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2" of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: $[5 \text{ gpm}(\text{per inch of head}) \times 2 \text{ inches of head}] + 2-1/2 \text{ gpm}(\text{for the third inch of head}) = 12-1/2 \text{ gpm}$.

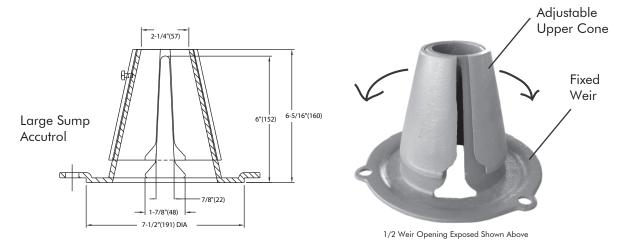


TABLE 1. Adjustable Accutrol Flow Rate Settings

			Head of Wat	er		
Weir Opening	1"	2"	3"	4"	5"	6"
Exposed		Flow R	ate (gallons p	er minute)		
Fully Exposed	5	10	15	20	25	30
3/4	5	10	13.75	17.5	21.25	25
1/2	5	10	12.5	15	17.5	20
1/4	5	10	11.25	12.5	13.75	15
Closed	5	10	10	10	10	10

Job Name	Contractor
Job Location	Contractor's P.O. No.
Engineer	Representative

WATTS Drainage reserves the right to modify or change product design or construction without prior notice and without incurring any obligation to make similar changes and modifications to products previously or subsequently sold. See your WATTS Drainage representative for any clarification. Dimensions are subject to manufacturing tolerances.

CANADA: 5435 North Service Road, Burlington, ON, L7L 5H7 TEL: 905-332-6718 TOLL-FREE: 1-888-208-8927 Website: www.wattsdrainage.ca

SERVICING AND STORMWATER MANAGEMENT REPORT - NORBERRY RESIDENCES - 740 SPRINGLAND DRIVE

Conclusion April 25, 2025

C.4 OIL/GRIT SEPARATOR SIZING CALCULATIONS

Detailed Stormceptor Sizing Report – STC 101

Project Information & Location			
Project Name	Norberry Crescent	Project Number	160401483
City	Ottawa	State/ Province	Ontario
Country	Canada	Date	7/10/2019
Designer Information		EOR Information (optional)	
Name	Cameron Odam	Name	
Company	Stantec Consulting Ltd.	Company	
Phone #	613-724-4353	Phone #	
Email	cameron.odam@stantec.com	Email	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	STC 101
Recommended Stormceptor Model	STC 300
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	80
PSD	Fine Distribution
Rainfall Station	OTTAWA MACDONALD-CARTIER INT'L A

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided	% Runoff Volume Captured Provided	
STC 300	80	97	
STC 750	87	99	
STC 1000	88	99	
STC 1500	89	99	
STC 2000	91	100	
STC 3000	92	100	
STC 4000	94	100	
STC 5000	94	100	
STC 6000	95	100	
STC 9000	97	100	
STC 10000	97	100	
STC 14000	98	100	
StormceptorMAX	Custom	Custom	

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station			
State/Province	Ontario	Total Number of Rainfall Events	4093
Rainfall Station Name	OTTAWA MACDONALD- CARTIER INT'L A	Total Rainfall (mm)	20978.1
Station ID #	6000	Average Annual Rainfall (mm)	567.0
Coordinates	45°19'N, 75°40'W	Total Evaporation (mm)	977.6
Elevation (ft)	370	Total Infiltration (mm)	9814.3
Years of Rainfall Data	37	Total Rainfall that is Runoff (mm)	10186.2

Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal
 defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Drainage Area		
Total Area (ha)	0.364	
Imperviousness %	53.1	

Up Stream Storage		
Storage (ha-m)	Discharge (cms)	
0.000	0.000	
0.002	0.035	
0.003	0.077	

Water Quality Objective	
TSS Removal (%)	80.0
Runoff Volume Capture (%)	90.00
Oil Spill Capture Volume (L)	
Peak Conveyed Flow Rate (L/s)	
Water Quality Flow Rate (L/s)	

0.003	0.077	
Up Stream Flow Diversion		
Max. Flow to Stormce	ptor (cms)	
Desi	gn Details	
Stormceptor Inlet Inve	rt Elev (m)	
Stormceptor Outlet Inve	ert Elev (m)	
Stormceptor Rim Elev (m)		
Normal Water Level Elevation (m)		
Pipe Diameter (r	mm)	375
Pipe Materia	I	PVC - plastic
Multiple Inlets (Y/N)	Yes
Grate Inlet (Y/	N)	No

Particle Size Distribution (PSD)

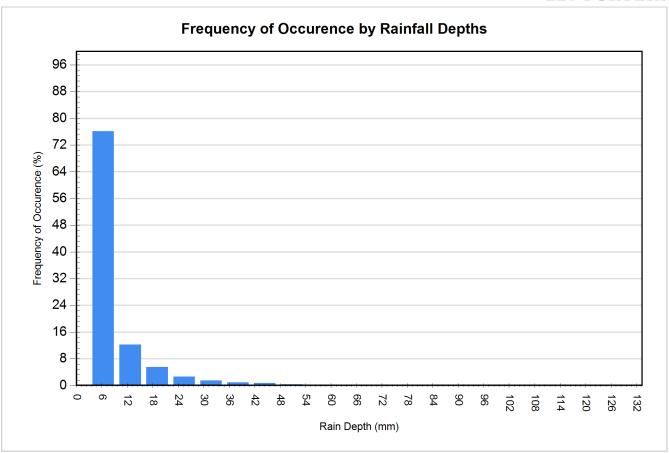
Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

Fine Distribution		
Particle Diameter (microns)	Distribution %	Specific Gravity
20.0	20.0	1.30
60.0	20.0	1.80
150.0	20.0	2.20
400.0	20.0	2.65
2000.0	20.0	2.65

Site Name		STC 101	
	Site I	Details	
Drainage Area		Infiltration Parameters	
Total Area (ha)	0.364	Horton's equation is used to estimate infiltration	
Imperviousness %	53.1	Max. Infiltration Rate (mm/hr) 61.98	
Surface Characteristics		Min. Infiltration Rate (mm/hr) 10.16	
Width (m)	121.00	Decay Rate (1/sec) 0.0005	
Slope %	2	Regeneration Rate (1/sec) 0.01	
Impervious Depression Storage (mm)	0.508	Evaporation	
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day) 2.54	
Impervious Manning's n	0.015	Dry Weather Flow	
Pervious Manning's n	0.25	Dry Weather Flow (lps) 0	
Maintenance Frequency		Winter Months	
Maintenance Frequency (months) >	12	Winter Infiltration 0	
	TSS Loadin	ng Parameters	
TSS Loading Function			
Buildup/Wash-off Parameters		TSS Availability Parameters	
Target Event Mean Conc. (EMC) mg/L		Availability Constant A	
Exponential Buildup Power		Availability Factor B	
Exponential Washoff Exponent		Availability Exponent C	
		Min. Particle Size Affected by Availability (micron)	

Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (L/s)	Runoff Volume (m³)	Volume Over (m³)	Cumulative Runoff Volume (%)	
1	22271	15072	59.6	
4	33593	3753	90.0	
9	36302	1044	97.2	
16	37068	278	99.3	
25	37296	50	99.9	
36	37343	3	100.0	
49	37346	0	100.0	

Cumulative Runoff Volume by Runoff Rate For area: 0.364(ha), imperviousness: 53.1%, rainfall station: OTTAWA MACDONALD-CARTIER INT'L A Cumulative Runoff Volume (%) 32 Flow (L/s)



Rainfall Event Analysis				
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)
6.35	3113	76.1	5230	24.9
12.70	501	12.2	4497	21.4
19.05	225	5.5	3469	16.5
25.40	105	2.6	2317	11.0
31.75	62	1.5	1765	8.4
38.10	35	0.9	1206	5.8
44.45	28	0.7	1163	5.5
50.80	12	0.3	557	2.7
57.15	7	0.2	378	1.8
63.50	1	0.0	63	0.3
69.85	1	0.0	64	0.3
76.20	1	0.0	76	0.4
82.55	0	0.0	0	0.0
88.90	1	0.0	84	0.4
95.25	0	0.0	0	0.0
101.60	0	0.0	0	0.0
107.95	0	0.0	0	0.0
114.30	1	0.0	109	0.5
120.65	0	0.0	0	0.0
127.00	0	0.0	0	0.0

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

Detailed Stormceptor Sizing Report – Norberry 102

Project Information & Location				
Project Name	Norberry Crescent	Project Number 160401483		
City	Ottawa	State/ Province	Ontario	
Country	Canada	Date 7/10/2019		
Designer Information		EOR Information (o	ptional)	
Name	Dustin Thiffault	Name		
Company	Stantec Consulting Ltd.	Company		
Phone #	613-724-4420	Phone #		
Email	dustin.thiffault@stantec.com	Email		

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	Norberry 102
Recommended Stormceptor Model	STC 300
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	86
PSD	Fine Distribution
Rainfall Station	OTTAWA MACDONALD-CARTIER INT'L A

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary				
Stormceptor Model % TSS Removal Provided		% Runoff Volume Captured Provided		
STC 300	86	100		
STC 750	92	100		
STC 1000	93	100		
STC 1500	93	100		
STC 2000	95	100		
STC 3000	96	100		
STC 4000	97	100		
STC 5000	97	100		
STC 6000	98	100		
STC 9000	98	100		
STC 10000	98	100		
STC 14000	99	100		
StormceptorMAX	Custom	Custom		

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station				
State/Province	Ontario	Ontario Total Number of Rainfall Events 4093		
Rainfall Station Name	OTTAWA MACDONALD- CARTIER INT'L A	Total Rainfall (mm)	20978.1	
Station ID #	6000	Average Annual Rainfall (mm)	567.0	
Coordinates	45°19'N, 75°40'W	Total Evaporation (mm)	1287.3	
Elevation (ft)	370	Total Infiltration (mm)	5979.4	
Years of Rainfall Data	37	Total Rainfall that is Runoff (mm)	13711.4	

Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal
 defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Discharge (cms)

Drainage Area			
Total Area (ha)	0.12		
Imperviousness %	71.4		
Water Quality Objective			
TSS Removal (%)	80.0		
Runoff Volume Capture (%)	90.00		
Oil Spill Capture Volume (L)			
Peak Conveyed Flow Rate (L/s)			
Water Quality Flow Rate (L/s)			

2100114		.ge (ee)	
0.000 0.000			
Up Stream	Flow Diversi	on	
Max. Flow to Stormce	otor (cms)		
Design Details			
Stormceptor Inlet Inve	75.30		
Stormceptor Outlet Inve	75.25		
Stormceptor Rim E	77.12		
Normal Water Level Elevation (m)		74.52	
Pipe Diameter (mm)		300	
Pipe Material		PVC - plastic	
Multiple Inlets (Y/N)		No	
Grate Inlet (Y/N)		No	

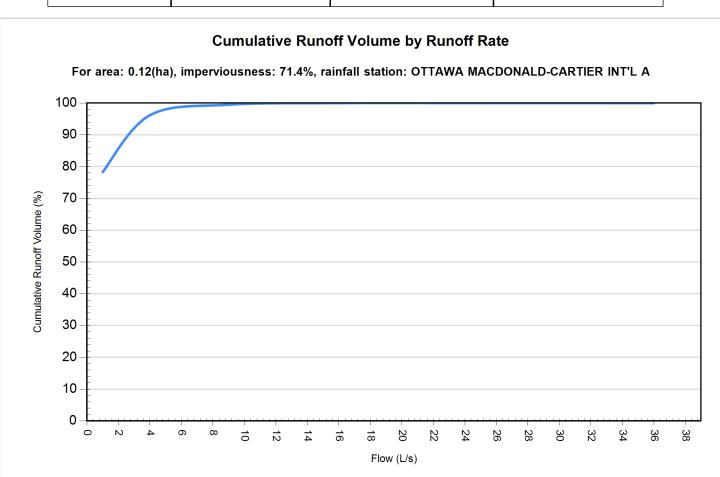
Up Stream Storage

Storage (ha-m)

Particle Size Distribution (PSD)

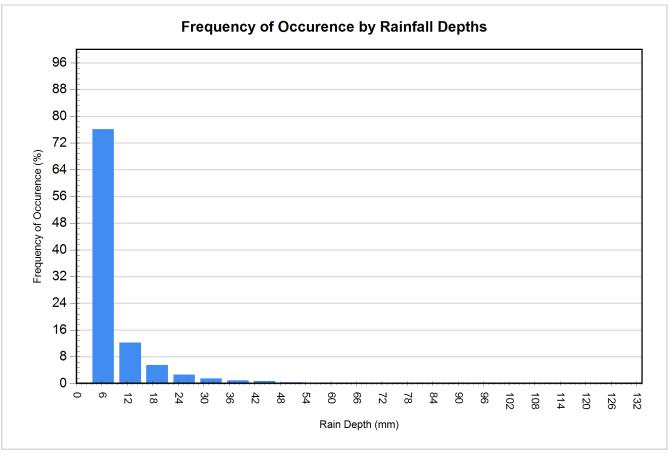
Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

Fine Distribution			
Particle Diameter (microns)	Distribution %	Specific Gravity	
20.0	20.0	1.30	
60.0	20.0	1.80	
150.0	20.0	2.20	
400.0	20.0	2.65	
2000.0	20.0	2.65	



Site Name		Norberry 102		
Site Details				
Drainage Area		Infiltration Parameters		
Total Area (ha)	0.12	Horton's equation is used to estimate infiltration		
Imperviousness %	71.4	Max. Infiltration Rate (mm/hr) 61.98		
Surface Characteristics	S	Min. Infiltration Rate (mm/hr) 10.16		
Width (m)	69.00	Decay Rate (1/sec) 0.00055		
Slope %	2	Regeneration Rate (1/sec) 0.01		
Impervious Depression Storage (mm)	0.508	Evaporation		
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day) 2.54		
Impervious Manning's n	0.015	Dry Weather Flow		
Pervious Manning's n	0.25	Dry Weather Flow (lps) 0		
Maintenance Frequency		Winter Months		
Maintenance Frequency (months) > 12		Winter Infiltration 0		
	TSS Loading	ng Parameters		
TSS Loading Function				
Buildup/Wash-off Parame	eters	TSS Availability Parameters		
Target Event Mean Conc. (EMC) mg/L		Availability Constant A		
Exponential Buildup Power		Availability Factor B		
Exponential Washoff Exponent		Availability Exponent C		
		Min. Particle Size Affected by Availability (micron)		

Cumulative Runoff Volume by Runoff Rate				
Runoff Rate (L/s)	Runoff Volume (m³)	Volume Over (m³)	Cumulative Runoff Volume (%)	
1	12990	3594	78.3	
4	15954	631	96.2	
9	16501	84	99.5	
16	16583	2	100.0	
25	16585	0	100.0	
36	16585	0	100.0	



	Rainfall Event Analysis			
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)
6.35	3113	76.1	5230	24.9
12.70	501	12.2	4497	21.4
19.05	225	5.5	3469	16.5
25.40	105	2.6	2317	11.0
31.75	62	1.5	1765	8.4
38.10	35	0.9	1206	5.8
44.45	28	0.7	1163	5.5
50.80	12	0.3	557	2.7
57.15	7	0.2	378	1.8
63.50	1	0.0	63	0.3
69.85	1	0.0	64	0.3
76.20	1	0.0	76	0.4
82.55	0	0.0	0	0.0
88.90	1	0.0	84	0.4
95.25	0	0.0	0	0.0
101.60	0	0.0	0	0.0
107.95	0	0.0	0	0.0
114.30	1	0.0	109	0.5
120.65	0	0.0	0	0.0
127.00	0	0.0	0	0.0

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

Detailed Stormceptor Sizing Report – STC 103

Project Information & Location			
Project Name	Norberry Crescent	Project Number	160401483
City	Ottawa	State/ Province	Ontario
Country	Canada	Date 7/10/2019	
Designer Information		EOR Information (o	ptional)
Name	Cameron Odam	Name	
Company	Stantec Consulting Ltd.	Company	
Phone #	613-724-4353	Phone #	
Email	cameron.odam@stantec.com	Email	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	STC 103
Recommended Stormceptor Model	STC 300
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	86
PSD	Fine Distribution
Rainfall Station	OTTAWA MACDONALD-CARTIER INT'L A

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided	% Runoff Volume Captured Provided	
STC 300	86	99	
STC 750	92	100	
STC 1000	93	100	
STC 1500	93	100	
STC 2000	95	100	
STC 3000	96	100	
STC 4000	97	100	
STC 5000	97	100	
STC 6000	98	100	
STC 9000	98	100	
STC 10000	98	100	
STC 14000	99	100	
StormceptorMAX	Custom	Custom	

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station				
State/Province	State/Province Ontario Total Number of Rainfall Events			
Rainfall Station Name	OTTAWA MACDONALD- CARTIER INT'L A Total Rainfall (mm)		20978.1	
Station ID #	6000	Average Annual Rainfall (mm)	567.0	
Coordinates	45°19'N, 75°40'W	Total Evaporation (mm)	767.6	
Elevation (ft)	370	Total Infiltration (mm)	11935.8	
Years of Rainfall Data	37	Total Rainfall that is Runoff (mm)	8274.7	

Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal
 defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Discharge (cms)

Drainage Area		
Total Area (ha)	0.198	
Imperviousness %	42.9	
Water Quality Objective		
TSS Removal (%)	80.0	
Runoff Volume Capture (%)	90.00	
Oil Spill Capture Volume (L)		
Peak Conveyed Flow Rate (L/s)		
Water Quality Flow Rate (L/s)		

Otorago (na m)		igo (omo)	
0.000	0.000		
Up Stream	Flow Diversi	on	
Max. Flow to Stormce	ptor (cms)		
Design Details			
Stormceptor Inlet Inve	75.42		
Stormceptor Outlet Invert Elev (m)		75.37	
Stormceptor Rim Elev (m)		77.23	
Normal Water Level Elevation (m)		74.52	
Pipe Diameter (mm)		300	
Pipe Material		PVC - plastic	
Multiple Inlets (Y/N)		Yes	
Grate Inlet (Y/I	N)	No	

Up Stream Storage

Storage (ha-m)

Particle Size Distribution (PSD)

Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

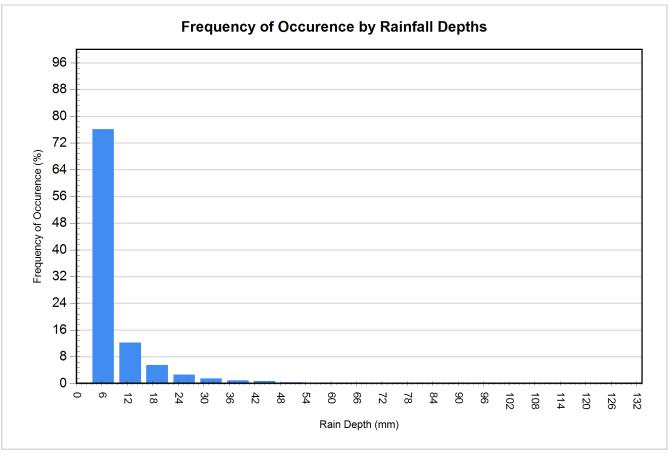
Fine Distribution			
Particle Diameter (microns)	Distribution %	Specific Gravity	
20.0	20.0	1.30	
60.0	20.0	1.80	
150.0	20.0	2.20	
400.0	20.0	2.65	
2000.0	20.0	2.65	

Site Name		STC 103	
Site Details			
Drainage Area		Infiltration Parameters	
Total Area (ha)	0.198	Horton's equation is used to estimate infiltration	
Imperviousness %	42.9	Max. Infiltration Rate (mm/hr) 61	
Surface Characteristics	5	Min. Infiltration Rate (mm/hr)	10.16
Width (m)	89.00	Decay Rate (1/sec)	0.00055
Slope %	2	Regeneration Rate (1/sec)	0.01
Impervious Depression Storage (mm)	mpervious Depression Storage (mm) 0.508		
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day)	2.54
Impervious Manning's n 0.015		Dry Weather Flow	
Pervious Manning's n	0.25	Dry Weather Flow (lps)	
Maintenance Frequency	y	Winter Months	
Maintenance Frequency (months) >	12	Winter Infiltration	0
	TSS Loading) Parameters	
TSS Loading Function			
Buildup/Wash-off Parame	eters	TSS Availability Paramete	ers
Target Event Mean Conc. (EMC) mg/L		Availability Constant A	
Exponential Buildup Power		Availability Factor B	
Exponential Washoff Exponent		Availability Exponent C	
		Min. Particle Size Affected by Availability (micron)	

Cumulative Runoff Volume by Runoff Rate			
Runoff Rate (L/s)	Runoff Volume (m³)	Volume Over (m³)	Cumulative Runoff Volume (%)
1	12901	3626	78.1
4	15856	672	95.9
9	16402	125	99.2
16	16516	11	99.9
25	16527	0	100.0
36	16527	0	100.0

Cumulative Runoff Volume by Runoff Rate For area: 0.198(ha), imperviousness: 42.9%, rainfall station: OTTAWA MACDONALD-CARTIER INT'L A Cumulative Runoff Volume (%)

Flow (L/s)



	Rainfall Event Analysis				
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)	
6.35	3113	76.1	5230	24.9	
12.70	501	12.2	4497	21.4	
19.05	225	5.5	3469	16.5	
25.40	105	2.6	2317	11.0	
31.75	62	1.5	1765	8.4	
38.10	35	0.9	1206	5.8	
44.45	28	0.7	1163	5.5	
50.80	12	0.3	557	2.7	
57.15	7	0.2	378	1.8	
63.50	1	0.0	63	0.3	
69.85	1	0.0	64	0.3	
76.20	1	0.0	76	0.4	
82.55	0	0.0	0	0.0	
88.90	1	0.0	84	0.4	
95.25	0	0.0	0	0.0	
101.60	0	0.0	0	0.0	
107.95	0	0.0	0	0.0	
114.30	1	0.0	109	0.5	
120.65	0	0.0	0	0.0	
127.00	0	0.0	0	0.0	

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

SERVICING AND STORMWATER MANAGEMENT REPORT - NORBERRY RESIDENCES - 740 SPRINGLAND DRIVE

Conclusion April 25, 2025

Appendix D GEOTECHNICAL INVESTIGATION

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

patersongroup

Geotechnical Investigation

Proposed Multi-Storey Buildings Norberry Crescent Ottawa, Ontario

Prepared For

Greatwise Developments

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa, Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca March 27, 2019

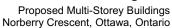
Report PG4834-1

Table of Contents

	P	age
1.0	Introduction	1
2.0	Proposed Development	1
3.0	Method of Investigation	
	3.1 Field Investigation	2
	3.2 Field Survey	
	3.3 Laboratory Testing	
	3.4 Analytical Testing	
4.0	Observations	
	4.1 Surface Conditions	4
	4.2 Subsurface Profile	4
	4.3 Groundwater	5
5.0	Discussion	
	5.1 Geotechnical Assessment	7
	5.2 Site Grading and Preparation	7
	5.3 Foundation Design	
	5.4 Design for Earthquakes	9
	5.5 Slab-on-Grade Construction	
	5.5 Pavement Structure	. 10
6.0	Design and Construction Precautions	
	6.1 Foundation Drainage and Backfill	. 12
	6.2 Protection of Footings Against Frost Action	. 12
	6.3 Excavation Side Slopes	
	6.4 Pipe Bedding and Backfill	. 13
	6.5 Groundwater Control	
	6.6 Winter Construction	
	6.7 Corrosion Potential and Sulphate	
	6.8 Landscaping Considerations	. 15
7.0	Recommendations	. 17
8.0	Statement of Limitations	. 18

Appendices

Appendix 1 Soil Profile and Test Data Sheets


Symbols and Terms

Analytical Testing Results

Atterberg Limit Testing Results

Appendix 2 Figure 1 - Key Plan

Drawing PG4834-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Greatwise Developments to conduct a geotechnical investigation for the proposed multi-storey residential development to be located at Norberry Crescent in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2 of this report).

The objectives of the current investigation were to:

Determine the subsurface conditions by means of boreholes.
--

Provide geotechnical recommendations pertaining to design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. The report contains Paterson's findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as understood at the time of writing this report.

2.0 Proposed Development

Based on the available drawings, it is our understanding that the proposed development will consist of three, four (4) storey residential slab-on-grade buildings along with associated at-grade parking areas, access lanes, and landscaped areas. It is anticipated that the proposed development will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

The field program for the current investigation was completed on February 25 and 26, 2019. At that time, nine (9) boreholes were advanced to a maximum depth of 6.8 m below existing grade. The borehole locations were distributed in a manner to provide general coverage of the proposed development taking into consideration existing site features. The locations of the boreholes are shown on Drawing PG4834-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were completed using a truck-mounted auger drill rig operated by a two-person crew. All fieldwork was conducted with the full-time supervision of Paterson personnel under the direction of a senior engineer. The test hole procedure consisted of augering to the required depths at the selected locations, and sampling and testing the overburden.

Sampling and In-situ Testing

Soil samples were recovered with a 50 mm diameter split-spoon sample or from the auger flights. The split-spoon and auger samples were classified on site and placed in sealed plastic bags. All samples were transported to Paterson's laboratory. The depths at which the split-spoon and auger samples were recovered from the boreholes are presented as SS and AU, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Overburden thickness was also evaluated during the course of the investigation by dynamic cone penetration testing (DCPT) at BH 4. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at its tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

Undrained shear strength tests were conducted in cohesive soils with a field vane apparatus.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

Flexible polyethylene standpipes were installed in a number of boreholes to permit monitoring of the groundwater levels subsequent to the completion of the current sampling program. The groundwater observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data Sheets in Appendix 1.

3.2 Field Survey

The boreholes completed during the field investigation were selected in the field and surveyed by Paterson personnel. The ground surface elevations at the borehole locations were referenced to a temporary benchmark (TBM), consisting of a catch basin cover located within the eastern parking area adjacent to 840 Springland Drive. An arbitrary elevation of 100.00 m was assigned to the TBM. The locations of the boreholes and the ground surface elevation at each borehole location are presented on Drawing PG4834-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples recovered from the subject site were visually examined in our laboratory to review the field logs. All samples will be stored in the laboratory for a period of one (1) month after the issuance of this report. They will then be discarded unless we are otherwise directed.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the potential for exposed ferrous metals and the sulphate potential against subsurface concrete structures. The results are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is presently occupied by four existing multi-storey residential buildings, a parking structure with one level of above-grade parking situated between the existing building at 660 Norberry Crescent and Norberry Crescent, a central slab-on-grade recreational building, accompanying access lanes and at-grade parking.

The ground surface across the subject site is relatively flat and at grade with Norberry Crescent and Springland Drive. The majority of the site is surfaced with asphalt parking areas and grass/tree covered landscaped areas. The subject site is bordered by Norberry Crescent along the south and east, and Springland Drive along the north and west borders.

4.2 Subsurface Profile

Overburden

The subsurface profile at the borehole locations consists of asphaltic concrete followed by a silty sand with gravel fill overlying a hard to stiff silty clay crust and a grey, very stiff to firm silty clay deposit. Glacial till was encountered below the above noted layers consisting of dense to compact silty clay with sand to sandy silt with clay, gravel, cobbles and boulders.

Practical refusal to augering on inferred bedrock was encountered in BH 2 to BH 5 and BH 8 at depths ranging between 5.3 to 7.0 m. Specific details of the soil profile at each test hole location are presented on the Soil Profile and Test Data sheets provided in Appendix 1.

Bedrock

Based on available geological mapping, the subject site is located in an area where the bedrock consists of limestone of the Bobcaygeon Formation. The overburden drift thickness is anticipated to be between 5 to 10 m in depth.

Atterberg Limit Testing

A total of 4 atterberg limit tests, as well as associated moisture content tests, were completed on the recovered silty clay samples at selected locations throughout the subject site. The results of the Atterberg limits tests are presented in Table 1 and on the Atterberg Limits Results sheet in Appendix 1. The tested silty clay samples classify as inorganic clay of low plasticity (CL), inorganic clay of high plasticity (CH) and inorganic clay and silt of low plasticity (CL-ML) in accordance with the Unified Soil Classification System.

Table 1 - Atterberg Limits Results								
Sample	Depth (m)	LL (%)	PL (%)	PI (%)	w (%)	Classification		
BH 1	1.5	44	18.0	26	18.2	CL		
BH 2	0.75	26	15	11	14.9	CL		
BH 4	2.3	53	18	35	18.1	СН		
BH 5	0.75	22	15	6	15.2	CL-ML		

Notes: LL: Liquid Limit; PL: Plastic Limit; PI: Plasticity Index; w: water content;

CH: Inorganic Clay of High Plasticity CL: Inorganic Clay of Low Plasticity

CL-ML: Inorganic Clay and Silt of Low Plasticity

Shrinkage Testing

The results of the shrinkage limit test indicate a shrinkage limit of 18% and a shrinkage ratio of 1.92.

4.3 Groundwater

Groundwater levels were measured in the piezometers at the borehole locations on March 5, 2019. The measured groundwater level (GWL) readings are presented in Table 2 below.

Table 2 - Groundwater Measurements at Monitoring Well Locations							
Test Hole Location	Ground Surface Elevation (m)	GW Level Reading (m)	GW Level Elev. (m)				
BH 1	100.13	2.04	98.09				
BH 2	99.99	1.31	98.68				
BH 3	100.05	BLOCKED	n/a				
BH 4	99.56	3.33	96.23				
BH 5	100.30	BLOCKED	n/a				
BH 6	100.20	1.15	99.05				
BH 7	100.12	1.69	98.43				
BH 8	100.64	1.75	98.89				
BH 9	100.87	1.30	99.57				

It should be noted that groundwater measurements can be influenced by surface water infiltrating the backfilled boreholes and moisture perched within the silty clay deposit. The long-term groundwater table can also be estimated based on consistency, moisture levels and colour of the recovered soil samples. Based on our field observations and experience with the local area, it is expected that the long-term groundwater level will be at a depth ranging between 2.5 to 3.5 m below existing grade. It should be noted that the groundwater level is subject to seasonal fluctuations. Therefore, groundwater could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered suitable for the proposed development. The proposed multi-storey buildings are anticipated to be founded on shallow footings placed on an undisturbed hard to stiff brown to grey silty clay, glacial till, or engineered fill placed over an undisturbed bearing medium.

Due to the presence of a sensitive silty clay layer at the site, the proposed development will be subjected to grade raise restrictions. Permissible grade raise recommendations are discussed in Subsection 5.3.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under the proposed building, paved areas, pipe bedding and other settlement sensitive structures.

Consideration could be given to leaving the existing fill free of significant amounts of deleterious fill and other construction remnants under the proposed buildings floor slabs outside the lateral support of the proposed footings. However, it is recommended that the existing fill for the slab-on-grade be approved by the geotechnical consultant at the time of construction. It is recommended that the existing fill be proof-rolled using an adequate compaction equipment making several passes. Any poor performance areas should be sub-excavated and replaced with OPSS Granular A crushed stone or Granular B Type II and compacted to 98% of the material's SPMDD.

Fill Placement

Fill placed for grading beneath the structure(s) or other settlement sensitive areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The engineered fill should be placed in maximum 300 mm thick lifts and compacted to 98% of the material's standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be placed as general landscaping fill where surface settlement is a minor concern. The backfill materials should be spread in thin lifts and at a minimum compacted by the tracks of the spreading equipment to minimize voids. If the non-specified backfill is to be placed to increase the subgrade level for areas to be paved, the fill should be compacted in maximum 300 mm lifts and compacted to 95% of the material's SPMDD. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

5.3 Foundation Design

Shallow Foundation

Footings placed on an undisturbed, hard to stiff brown silty clay bearing surface or compact glacial till can be designed using a bearing resistance value at Serviceability Limit States (SLS) of **150 kPa** and a factored bearing resistance value at Ultimate Limit States (ULS) of **250 kPa**. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS. Footings founded on engineered fill placed on undisturbed bearing medium can be designed using the above noted bearing resistance values.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Settlement

Footings designed using the bearing resistance value at SLS provided herein will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to the in-situ bearing medium soils above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Permissible Grade Raise

Based on the existing borehole coverage and results of the undrained shear strength testing completed within the underlying cohesive soils, a permissible grade raise restriction of **1.0 m** is provided for design purposes for the subject site.

5.4 Design for Earthquakes

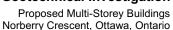
The site class for seismic site response can be taken as **Class C** for the foundations considered at this site. The soils underlying the subject site are not susceptible to liquefaction. Refer to the latest revision of the Ontario Building Code for a full discussion of the earthquake design requirements.

5.5 Slab-on-Grade Construction

With the removal of topsoil and deleterious fill, such as those containing organic materials, within the footprint of the proposed building, the native soil or approved fill is considered to be an acceptable subgrade surface on which to commence backfilling for floor slab construction. Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab.

It is recommended that the upper 200 mm of sub-floor fill consist of Granular A crushed stone. All backfill materials within the footprint of the proposed building should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of its SPMDD.

Proposed Multi-Storey Buildings Norberry Crescent, Ottawa, Ontario


5.6 Pavement Structure

For design purposes, the pavement structure presented in the following tables could be used for the design of car only parking areas, access lanes and heavy truck parking.

Table 3 - Recommended Flexible Pavement Structure - Parking Areas									
Thickness (mm)	Material Description								
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete								
150	BASE - OPSS Granular A Crushed Stone								
300 SUBBASE - OPSS Granular B Type II									
SUBGRADE - Either fill, OPSS Granular B Type II material placed over in situ soil or fill									

Table 4 - Recommended Flexible Pavement Structure - Access Lanes and Heavy Truck Parking Areas									
Thickness (mm)	Material Description								
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete								
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete								
150	BASE - OPSS Granular A Crushed Stone								
300 SUBBASE - OPSS Granular B Type II									
SUBGRADE - Either fill or OPSS Granular B Type I or II material placed over in situ soil or fill									

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project. If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing load carrying capacity.

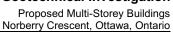
Due to the impervious nature of the subgrade materials consideration should be provided to installing subdrains during the pavement construction. The subdrains should extend in four orthogonal directions and longitudinally when placed along a curb. The clear crushed stone surrounding the drainage lines or the pipe, should be wrapped with suitable filter cloth. The subdrain inverts should be shaped to promote water flow to the drainage lines.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage

A perimeter foundation drainage system is optional for the proposed structures. However, it is still recommended that a perimeter foundation system be used where structures susceptible to frost heave such as sidewalks, are proposed within the perimeter of the proposed building. The system should consist of a 100 to 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 19 mm clear stone, placed at the footing level around the exterior perimeter of the structure. The clear stone or the pipe itself should be wrapped in a non-woven geotextile. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.


Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and are not recommended for re-use as backfill against the foundation walls unless used in conjunction with a composite drainage system (such as Delta Drain 6000 or equivalent). Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should be used for this purpose.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effects of frost action. A minimum of 1.5 m of soil cover alone, or a combination of soil cover and foundation insulation, should be provided. More details regarding foundation insulation can be provided, if requested.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the heated structure and require additional protection, such as soil cover of 2.1 m or an equivalent combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be excavated at acceptable slopes or should be retained by shoring systems from the beginning of the excavation until the structure is backfilled.

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. Below the groundwater lever, flatter slopes, such as 3H:1V, could be required due to the presence of loose silty and/or sandy silt. The subsurface soils are considered to be a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects. The side slopes of excavations in bedrock can be cut quasi-vertically (i.e. 1H:10V).

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

A trench box is recommended to protect personnel working in trenches with steep or vertical sides. Services are expected to be installed by "cut and cover" methods and excavations should not remain open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications & Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

A minimum of 150 mm of OPSS Granular A should be placed for bedding for sewer or water pipes when placed on soil subgrade. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to a minimum of 300 mm above the obvert of the pipe should consist of OPSS Granular A (concrete or PSM PVC pipes) or sand (concrete pipe). The bedding and cover materials should be placed in maximum 225 mm thick lifts and compacted to 95% of the SPMDD.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce the potential differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD.

To reduce long term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively fry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the material's SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches.

6.5 Groundwater Control

It is anticipated that groundwater infilitration into the excavations should be controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required if more than 400,000 L/day are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site mostly consist of frost susceptible materials. In presence of water and freezing conditions ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

The trench excavations should be carried out in a manner to avoid the introduction of frozen materials, snow or ice into the trenches.

6.7 Corrosion Potential and Sulphate

The results on analytical testing show that the sulphate content is less than 0.1%. The results are indicative that Type 10 Portland Cement (Type GU) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity in indicative of a moderate to very aggressive corrosive environment.

6.8 Landscaping Considerations

Tree Planting Restrictions

In accordance with the City of Ottawa Tree Planting in Sensitive Marine Clay Soils (2017 Guidelines), Paterson completed a soils review of the site to determine applicable tree planting setbacks. Atterberg limits testing was completed for recovered silty clay samples at selected locations within the north portion of the subject site. Sieve analysis testing was also completed on selected soil samples. The above noted soil samples were recovered from elevations below the anticipated design underside of footing elevation and 3.5 m depth below anticipated finished grade. The results of our testing are presented in Subsection 4.2 and in Appendix 1.

Area 1 - Glacial Till (Building B)

No tree planting restrictions are required for the subject area (Building B) due to the absence of a silty clay deposit within the future location of the proposed residential building (southwest portion of the site).

Area 2 - Low to Medium Sensitivity Area (Buildings A and C)

A low to medium sensitivity clay soil was encountered across the remainder of the subject site. Based on our Atterberg Limits test results, the modified plasticity limit does not exceed 40% in all the boreholes locations where silty clay was encountered. The following tree planting setbacks are recommended for the low to medium sensitivity area. Large trees (mature height over 14 m) can be planted within these areas provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g. in a park or other green space). Tree planting setback limits may be reduced to 4.5 m for small (mature tree height up to 7.5m) and medium size trees (mature tree height 7.5 m to 14 m) provided that the conditions noted below are met.

Report: PG4834-1 March 26, 2019

7.0 Recommendations

A materials testing and observation services program is a requirement for the provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:

Review of the grading plan from a geotechnical perspective.
Observation of all bearing surfaces prior to the placement of concrete.
Sampling and testing of the concrete and fill materials used.
Periodic observation of the condition of unsupported excavation side slope in excess of 3 m in height, if applicable.
Observation of all subgrades prior to backfilling.
Field density tests to determine the level of compaction achieved.
Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations provided in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the drawings and specifications are completed.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, we request immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine its suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Greatwise Developments or their agents is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Paterson Group Inc.

Drew Petahtegoose, EIT

Faisal Abou-Seido, P.Eng.

Report Distribution:

- ☐ Greatwise Developments (4 copies)
- □ Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TESTING RESULTS

ATTERBERG LIMIT TESTING RESULTS

Geotechnical Investigation

Proposed Multi-Storey Buildings - Norberry Crescent Ottawa, Ontario

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top of catchbasin cover located within the eastern parking area, adjacent to 840 Springland Drive. An arbitrary elevation of 100.00m was assigned to the

FILE NO. **PG4834**

HOLE NO.

REMARKS

DATUM

BH₁ BORINGS BY CME 55 Power Auger DATE February 25, 2019 **SAMPLE** Pen. Resist. Blows/0.3m STRATA PLOT **DEPTH** ELEV. Piezometer Construction **SOIL DESCRIPTION** 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER Water Content % 80 **GROUND SURFACE** 20 0+100.13Asphaltic concrete 0.08 1 **FILL:** Brown silty sand with gravel SS 2 56 50 +1 + 99.131.37 Stiff, brown SILTY CLAY 2 SS 88 5 2 + 98.13- firm and grey by 2.1m depth 3.05 3+97.13GLACIAL TILL: Loose, grey silty SS 3 54 8 sand with clay and gravel 3.66 End of Borehole (GWL @ 2.04m - March 5, 2019) 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Multi-Storey Buildings - Norberry Crescent Ottawa, Ontario

DATUM

TBM - Top of catchbasin cover located within the eastern parking area, adjacent to 840 Springland Drive. An arbitrary elevation of 100.00m was assigned to the

FILE NO. **PG4834**

REMARKS HOLE NO. **BH 2 BORINGS BY** CME 55 Power Auger DATE February 25, 2019

BORINGS BY CME 55 Power Auger					ATE	February	25, 2019)	Ditz	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH			Resist. Blows/0.3m 50 mm Dia. Cone	ار د د
	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	o \	Water Content %	Piezometer Construction
GROUND SURFACE			ı	2	Z	0-	99.99	20	40 60 80	<u> </u>
Asphaltic concrete 0.08 FILL: Brown silty sand with gravel 0.76		& AU	1				33.33			
Compact, brown SANDY SILT , trace clay1.37		ss	2		11	1-	98.99			<u>_</u>
Very stiff, brown SILTY CLAY		_				2-	97.99		12	
- grey by 2.1m depth		_				3-	96.99	Δ	12	
GLACIAL TILL: Loose, grey silt with clay, gravel, cobbles and boulders		ss	3	67	3	4-	-95.99			
5 46		ss × ss	4	79	6	5-	-94.99			
End of Borehole Practical refusal to augering at 5.46m		Δ 00	Ü		001					
depth (GWL @ 1.31m - March 5, 2019)										
								20 She	40 60 80 100 ear Strength (kPa) sturbed △ Remoulded)

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Multi-Storey Buildings - Norberry Crescent Ottawa, Ontario

DATUM

TBM - Top of catchbasin cover located within the eastern parking area, adjacent to 840 Springland Drive. An arbitrary elevation of 100.00m was assigned to the

FILE NO. PG4834

REMARKS TBM.

HOLE NO.

BH 3

BORINGS BY CME 55 Power Auger			D	ATE	February	BH 3			
SOIL DESCRIPTION	PLOT		SAN	IPLE	T	DEPTH	ELEV.	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone	
GROUND SURFACE	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80	
Asphaltic concrete 0.08 FILL: Brown silty sand with gravel and crushed stone 0.60	\bowtie	AU	1			0-	100.05		
Stiff, brown SILTY CLAY		ss	2	75	11	1-	-99.05	Δ	
1.98		7				2-	-98.05		
		ss	3	54	13	3-	-97.05		
GLACIAL TILL: Loose to compact, grey sandy silt with gravel, cobbles and boulders		ss	4	33	8				
		ss ×ss	5	46	11 50+	4-	-96.05		
F 46						5-	-95.05		
End of Borehole Practical refusal to augering at 5.46m depth	5\^^^^	⊠ SS	7	100	50+			<u></u>	
(Piezometer blocked at 0.50m depth - March 5, 2019)									
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Multi-Storey Buildings - Norberry Crescent Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top of catchbasin cover located within the eastern parking area, adjacent to 840 Springland Drive. An arbitrary elevation of 100.00m was assigned to the

FILE NO. **PG4834**

REMARKS

DATUM

BORINGS BY CME 55 Power Auger				0	DATE	February	25, 2019		HOL	E NO.	вн	4	
SOIL DESCRIPTION	PLOT		SAN	/IPLE	ı	DEPTH	ELEV.	Pen. R ● 5		. Blov n Dia.			_
	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 V	Vater	Cont	ent %	%	Piezometer
GROUND SURFACE	ß		Z	핊	z º		00.50	20	40	60	8	0	Ę.
	05 15	AU	1			0-	99.56						
FILL: Brown silty sand with gravel		ss	2	72	50+	1-	-98.56						
Compact to loose, brown SILTY SAND, with gravel, trace clay	52 44	ss	3		11	2-	-97.56						
Stiff, grey SILTY CLAY		SS	4	71	4	3-	-96.56	A		······································			
<u>4</u> .	47	_				4-	-95.56						
		ss	5		3	5-	-94.56						
GLACIAL TILL: Very loose, grey clayey silt with sand and gravel		∭ ss Â7	6		Р	6-	-93.56						
Dynamic Cone Penetration Test 6. commenced at 6.70m depth.	70 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ss Î	7		3								
End of Borehole Practical DCPT refusal at 6.91m depth													
(GWL @ 3.33m - March 5, 2019)								20 Shea		60 ength		a)	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Multi-Storey Buildings - Norberry Crescent Ottawa, Ontario

DATUM

TBM - Top of catchbasin cover located within the eastern parking area, adjacent to 840 Springland Drive. An arbitrary elevation of 100.00m was assigned to the

PG4834

REMARKS

HOLE NO.

FILE NO.

RH 5

BORINGS BY CME 55 Power Auger				D	ATE	February	BH 5				
SOIL DESCRIPTION	PLOT		SAN	/IPLE	T	DEPTH ELEV		Pen. Resist. Blows/0.3m • 50 mm Dia. Cone			
GROUND SURFACE	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	• 50 mm Dia. Cone O Water Content % 20 40 60 80			
Asphaltic concrete 0.08		8				0-	100.30	20 40 30 30			
FILL: Brown silty sand with gravel		AU	1								
1.07		ss	2	46	8	1-	-99.30				
Very stiff to stiff, brown SILTY CLAY with sand		ss	3	67	10	2-	-98.30				
grey by 2.1m depth		ss	4	50	10		07.00				
3.35		ss	5	67	10	3-	97.30				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ss	6	100	11	4-	-96.30				
GLACIAL TILL: Loose to compact, grey sandy silt with gravel, cobbles and boulders		ss	7	100	12	5-	-95.30				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ss	8	100	4	6-	-94.30				
6.81		ss	9	71	12						
End of Borehole											
Practical refusal to augering at 6.81m depth											
Piezometer blocked - March 5, 2019)											
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded			

Geotechnical Investigation Proposed Multi-Storey Buildings - Norberry Crescent

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Ottawa, Ontario TBM - Top of catchbasin cover located within the eastern parking area, adjacent

PG4834

FILE NO.

to 840 Springland Drive. An arbitrary elevation of 100.00m was assigned to the **REMARKS**

DATUM

BORINGS BY CME 55 Power Auger				D	ATE	February	25. 2019)	HOLE N	^{IO.} BH 6	
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH (m)	ELEV.	Pen. R		slows/0.3m ia. Cone)÷
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(11)	(11)	0 V	Vater Co	ontent %	Piezometer
GROUND SURFACE	Ø		N	RE	z °	0-	100.20	20	40	60 80	Ë
Asphaltic concrete 0.08 FILL: Brown silty sand with gravel 0.76		AU	1				100.20				
Firm to stiff, brown SILTY CLAY		ss	2	62	11	1-	99.20				
grey by 1.4m depth		-				2-	-98.20	4	•		
<u>3.35</u>		-				3-	97.20	<u></u>		11)	06
End of Borehole (Piezometer blocked at 1.15m depth - March 5, 2019)											
								20 Shea		60 80 10 gth (kPa) △ Remoulded	- 00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Multi-Storey Buildings - Norberry Crescent Ottawa, Ontario

DATUM

TBM - Top of catchbasin cover located within the eastern parking area, adjacent

FILE NO. **PG4834**

to 840 Springland Drive. An arbitrary elevation of 100.00m was assigned to the

REMARKS HOLE NO. **BH7** BORINGS BY CME 55 Power Auger DATE February 25 2019

BORINGS BY CME 55 Power Auger	DATE February 25, 2019					ВН /		
SOIL DESCRIPTION	PLOT		SAN	IPLE	Т	DEPTH		Pen. Resist. Blows/0.3m • 50 mm Dia. Cone
	STRATA E	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	 50 mm Dia. Cone Water Content % 40 60 80
GROUND SURFACE	ω		Z	Æ	z °		100 10	20 40 60 80
Asphaltic concrete 0.08 FILL: Brown silty sand with gravel		AU	1			0-	100.12	
1.37_		ss	2	67	58	1-	-99.12	
Grey SILTY CLAY		ss	3	83	3	2-	-98.12	
GLACIAL TILL: Loose, grey silty clay with sand, gravel, cobbles and boulders		ss	4	75	7			
3 66		ss	5	29	10	3-	97.12	
End of Borehole	^ ^ ^							
(GWL @ 1.69m - March 5, 2019)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Multi-Storey Buildings - Norberry Crescent Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top of catchbasin cover located within the eastern parking area, adjacent to 840 Springland Drive. An arbitrary elevation of 100.00m was assigned to the

PG4834

FILE NO.

DATUM

REMARKS

BORINGS BY CME 55 Power Auger				D	ATE	February	25, 2019	HOLE NO. BH 8
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ■ 50 mm Dia. Cone
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(,,,,	(111)	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80
GROUND SURFACE		2	ų –	88	z °	0-	-100.64	20 40 60 80 🗓
Asphaltic concrete 0.08 FILL: Brown silty sand with gravel		& AU	1			0	100.01	
<u>1</u> . <u>3</u> 7		∑ss -	2	50	50+	1-	-99.64	
		ss	3	33	9	2-	-98.64	
		ss	4	46	9	3-	-97.64	
GLACIAL TILL: Loose to compact, brown silty clay with sand and gravel		ss	5	75	8			
		ss	6	50	11	4-	-96.64	
		ss	7	33	5	5-	-95.64	
		ss 7	8	29	13	6-	-94.64	
6.70 End of Borehole		ss	9	83	2			
(GWL @ 1.75m - March 5, 2019)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Multi-Storey Buildings - Norberry Crescent Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

TBM - Top of catchbasin cover located within the eastern parking area, adjacent to 840 Springland Drive. An arbitrary elevation of 100.00m was assigned to the

FILE NO. PG4834

HOLE NO.

DATUM

REMARKS

BORINGS BY CME 55 Power Auger		•			DATE	February	25, 2019	BH 9	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	
GROUND SURFACE	STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Water Content %	Piezometer
Asphaltic concrete 0.0	D \\\\^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	×		-		0-	100.87	20 40 60 80	L
FILL: Brown silty sand with gravel		AU	1						
1.3	7	X ss	2		50+	1-	-99.87		<u></u>
		ss	3	38	10	2-	-98.87		
		ss	4	67	8	3-	-97.87		
GLACIAL TILL: Loose, grey silty clay with sand and gravel	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ss	5	33	7				
		ss	6	33	6	4-	-96.87		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ss	7	50	7	5-	-95.87		
		ss	8	21	3	6-	-94.87		
6.7/ End of Borehole) ,^^^, , ,^^^,	ss	9	50	7				
(GWL @ 1.30m - March 5, 2019)									
								20 40 60 80 1 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	00

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value Relative Densit		
Very Loose	<4	<15	
Loose	4-10	15-35	
Compact	10-30	35-65	
Dense	30-50	65-85	
Very Dense	>50	>85	

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value		
Very Soft	<12	<2		
Soft	12-25	2-4		
Firm	25-50	4-8		
Stiff	50-100	8-15		
Very Stiff	100-200	15-30		
Hard	>200	>30		

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

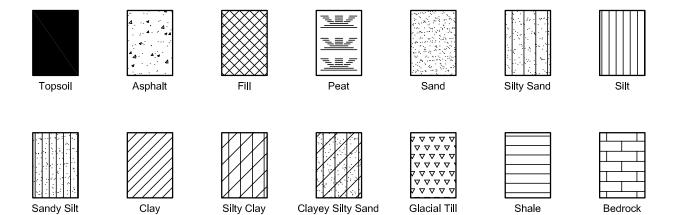
p'o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST

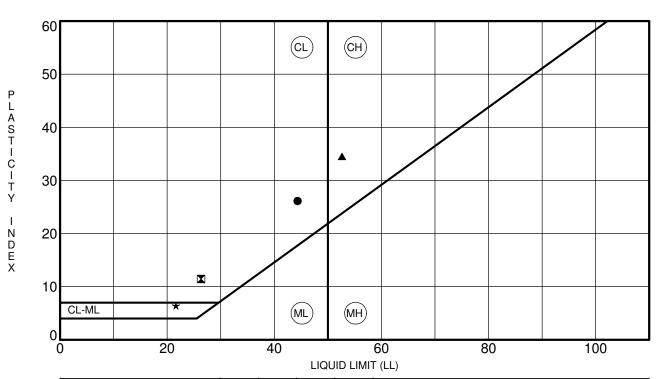
Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

Order #: 1909218


Report Date: 01-Mar-2019

Order Date: 26-Feb-2019

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Client PO: 26036 Project Description: PG4834

	Client ID:	BH1 SS3	-	-	-
	Sample Date:	02/25/2019 13:00	-	-	-
	Sample ID:	1909218-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	76.0	-	-	-
General Inorganics	-				
рН	0.05 pH Units	7.70	-	-	-
Resistivity	0.10 Ohm.m	26.3	-	-	-
Anions					
Chloride	5 ug/g dry	83	-	-	-
Sulphate	5 ug/g dry	86	-	-	-

						1			
S	pecimen Id	entification	LL	PL	PI	Fines	Classification		
•	BH 1	SS 3	44	18	26		CL - Inorganic clays of low plasticity		
	BH 2	SS 2	26	15	11		CL - Inorganic clays of low plasticity		
	BH 4	SS 4	53	18	35		CH - Inorganic clays of high plasticity		
*	BH 5	SS 2	22	15	6		CL-ML - Inorganic clay & silt with low plasti		
\Box									

CLIENT Greatwise Developments FILE NO. PG4834 PROJECT Geotechnical Investigation - Proposed DATE 25 Feb 19 **Multi-Storey Buildings - Norberry Crescent**

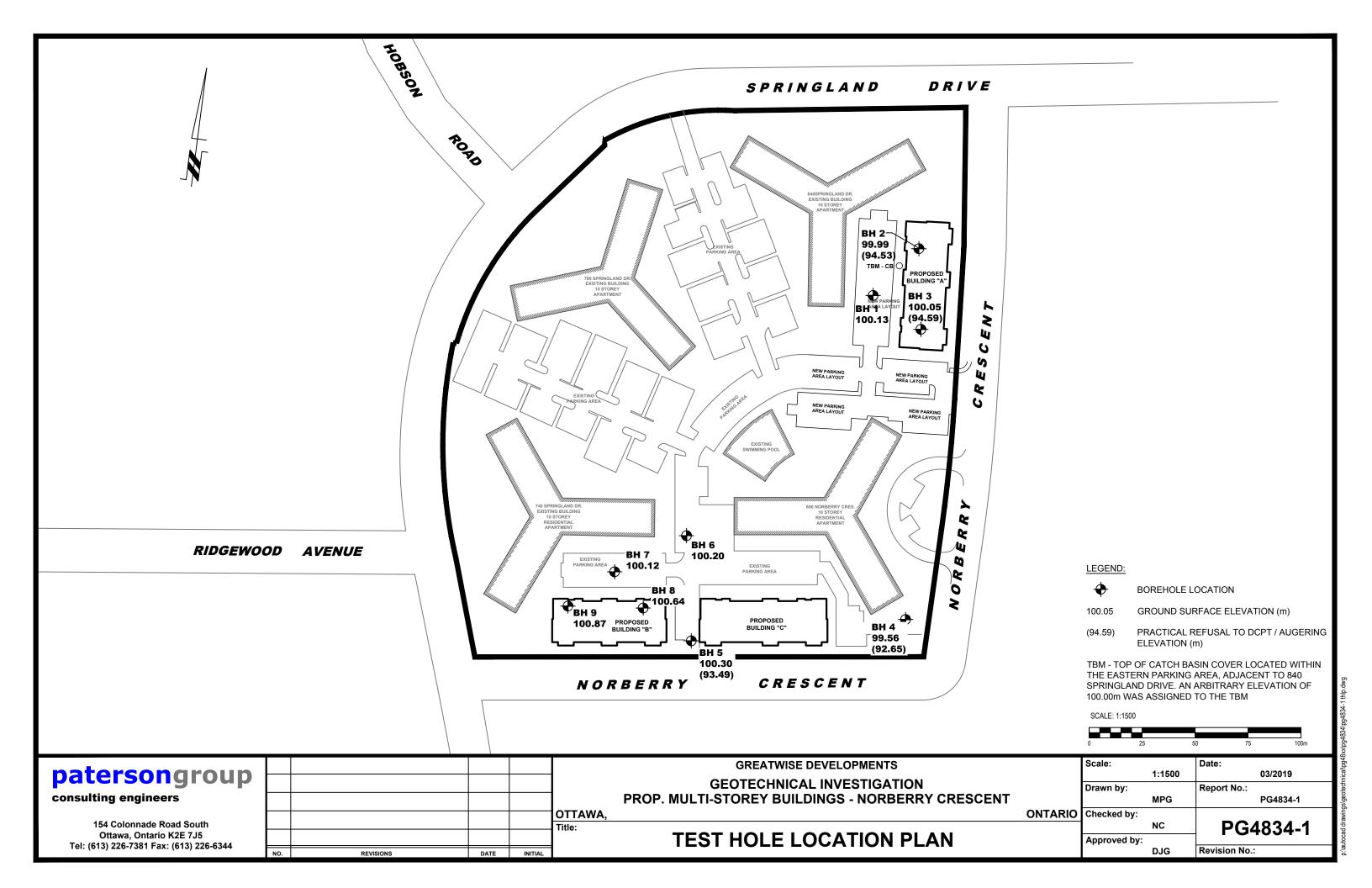
patersongroup

Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

ATTERBERG LIMITS' RESULTS

APPENDIX 2


FIGURE 1 - KEY PLAN

DRAWING PG4834-1 - TEST HOLE LOCATION PLAN

FIGURE 1 KEY PLAN

SERVICING AND STORMWATER MANAGEMENT REPORT - NORBERRY RESIDENCES - 740 SPRINGLAND DRIVE

Conclusion April 25, 2025

Appendix E DRAWINGS

144 SPACES

OJECT INFORMATION	DRAWING NOTES:
IING R5B[2459] (H)18	PROPERTY LINE 3.0m FRONTYARD SETBACK LINE
AREA 13.808 acres 55,880.0 sq. m. 601,490 sq. ft.	3 NEW VISITOR PARKING IN EXISTING ENTRANCE DRIVEWAY
ELOPMENT TYPE PLANNED UNIT DEVELOPMENT	4 PROPOSED PAD-MOUNT TRANSFORMER
DING HEIGHT 18.6 M	EXISTING VEHICLE RAMP (TO BE REPLACED) SEE LANDSCAPE PLAN FOR NEW LANDSCAPING
NT YARD SETBACK 3.0 M NER SIDE YARD SETBACK 3.0 M	7 FIRE HYDRANT - EXISTING
ILDING STATISTICS - EXISTING	8 6.0 METRE WIDE FIRE ACCESS ROUTE
COVERAGE	9 SIAMESE CONNECTION
<u>COVERAGE</u> PAVED SURFACE = 23 990.0 sq. m. 42.93%	EXTERIOR BIKE STORAGE ON CONCRETE PAD. SEE LANDSCAPE PLANS
BUILDING FOOTPRINT = 14 250.0 sq. m. 25.50%	11) 1:12 SLOPE MAX. B/F RAMP C/W 920mm HIGH HANDRAIL
ANDSCAPE OPEN SPACE = 17 640.0 sq. m. 31.57% TOTAL = 55 880.0 sq. m. 100.0%	12 EXISTING GAS METERS 13 LINE OF EXISTING GARAGE TO BE REMOVED
DING HEIGHTS	NEW ENTRANCE TO COVERED PARKING GARAGE - SEE
PRINGLAND 18.0 M - 6 STOREYS	FLOOR PLANS 15) NEW RETAINING WALL - SEE CIVIL
PRINGLAND 18.0 M - 6 STOREYS	(16) EXISTING SIDEWALK TO BE REMOVED
PRINGLAND 18.0 M - 6 STOREYS NORBERRY 30.0 M - 10 STOREYS	17 EXTEND EXISTING ASPHALT SIDEWALK
SANSON CONTROL CONTROL PERSON TROUBER	18 LINE OF EXISTING ENTRANCE CANOPY ABOVE
COUNT - PER BUILDING PRINGLAND 168 UNITS	19 EXISTING LOADING/GARBAGE STORAGE BAY 20 LINE OF 5x5M SITE TRIANGLE
PRINGLAND 171 UNITS	21) LINE OF 3x3M SITE TRIANGLE
PRINGLAND 171 UNITS	2.0M WIDE CONCRETE SIDEWALK AS PER CITY STANDARDS. DEPRESSED CURBS & TWSI AT ALL INTERSECTIONS AS PER
NORBERRY 251 UNITS	SC 7.1 LINE OF LIMITING DISTANCE FROM EXISTING BUILDING.
L 761 UNITS	UNLIMITED PERMITTED OPENINGS (7.5M)
PARKING - OVERALL SITE EXISTING	24 ENCLOSED BIKE STORAGE C/W 1.8M H. CHAIN-LINK FENCE ON CONCRETE PAD, HORIZONTAL SPACES AS PER CITY BYLAWS (1.8MdX0.6Mw), SEE LANDSCAPE
RED 145 SPACES (E GRADE 88 SPACES	HATCH INDICATES LOCATION OF TEMPORARY SNOW
ACE 526 SPACES	STORAGE DATCH/DEDAID EVISTING ASPHALT SUBFACES AS DECLIDED.
L 759 SPACES	SEE CIVIL FOR GRADING
DENTIAL: 741 SPACES (0.97/UNIT)	27) B/F PARKING SPACES, TYPE A & B AS PER CITY STANDARDS. 28) SEE LANDSCAPE DRAWINGS FOR SIDEWALK DETAIL
OR: 18 SPACES (0.02/UNIT)	29 LINE OF NEW BELOW-GRADE GARAGE
LDING STATISTICS - PROPOSED	30 STEPS UP TO NEW DECK, SEE GRADING PLAN
NT YARD SETBACK REQUIRED: 3.0 M MIN.	31 EXIT STAIRS, C/W PRE-FINISHED METAL HANDRAIL
PROPOSED: VARIES - 6.0 M MIN.	32 1.83 x 3.05m PATIO, TYP.
NER SIDE YARDS SETBACK REQUIRED: 3.0 M MIN.	SITE PLAN SYMBOLS:
PROPOSED: VARIES - 6.0 M MIN.	SIDEWALKS / WALKING SURFACE
DING HEIGHTS	
DING 'A' 18.5 M - 6 STOREYS DING 'B' 18.6 M - 6 STOREYS	NOT USED
DING 'C' 17.2 M - 5 STOREYS	CONCRETE PAVERS, SEE LANDSCAPE
DING FOOTPRINT	AND CIVIL
DING 'A' 1 225.0 m2 [13 186 sq. ft.] DING 'B' 1 096.2 m2 [11 799 sq. ft.]	NEW/REPAIRED ASPHALT PARKING SURFACE AND CURBS. SEE CIVIL
DING 'C' 3 936.5 m2 [42 370 sq. ft.]	TEMPORARY SNOW STORAGE
L NEW: 6 257.7 m2 [67 357 sq. ft.]	LOCATION
COUNT - PER BUILDING	OPEN LANDSCAPE AREA FOR AMENITY
DING 'A' 103 UNITS DING 'B' 94 UNITS	SPACE CALCULATIONS PROPERTY LINE
DING 'C' 90 UNITS	- 3.0 M FRONT & CORNER SETBACK LINE
L NEW: 287 UNITS	6.0 M PROP. MIN. BLG. SETBACK LINE
NITY SPACE - PER BUILDING	LINE OF SIGHT TRIANGLE
MON MINIMUM) DING 'A' - PROVIDED, PRIVATE: 0 M2	— 。 — 。 EXISTING GAS LINE
DING 'A' - PROVIDED, COMMON: 742 M2	— P — P EXISTING U/G HYDRO LINE
DING 'A' - PROVIDED, TOTAL: 742 M2 DING 'B' - REQUIRED (6M2/UNIT, 3M2 564 M2	— 8 — 8 — EXISTING U/G BELL LINE
MON MINIMUM) DING 'B' - PROVIDED, PRIVATE: 0 M2	— w — w — EXISTING WATER LINE
DING B'-ROVIDED, PRIVATE. 564 M2	1.8M H. CHAINLINK FENCE
DING 'B' - PROVIDED, TOTAL: 564 M2	BIKE RACK
DING 'C' - REQUIRED (6M2/UNIT, 3M2 540 M2 MON MINIMUM)	
DING 'C' - PROVIDED, PRIVATE: 0 M2	- FIH FIRE HYDRANT
DING 'C' - PROVIDED, COMMON: 715 M2 DING 'C' - PROVIDED, TOTAL: 715 M2	SIAMESE CONNECTION VEHICULAR DIRECTION
LDING STATISTICS - TOTAL SITE	VEHICULAR DIRECTION EXISTING TREE TO BE REMOVED -
COVERAGE	SEE LANDSCAPE PLANS
PAVED SURFACE = 14 220.0 sq. m. 25.45% BUILDING FOOTPRINT = 20 507.7 sq. m. 36.70%	EXISTING TREE TO REMAIN STREET LIGHT
ANDSCAPE OPEN SPACE = 21 152.3 sq. m. 37.85%	STREET LIGHT EXISTING PARKING SPACE
TOTAL = 55 880.0 sq. m. 100%	TO BE REMOVED
COUNT - OVERALL TING 761 UNITS	EXISTING 2.6M x 5.2M PARKING SPACE
OSED 287 UNITS	NEW 2.6M x 5.2M PARKING SPACE
L: 1048 UNITS	NEW 2.4M x 5.2M PARKING SPACE,
PARKING - OVERALL PROVIDED ERED 248 SPACES	s COMPLETE WITH IDENTIFICATION SIGNAGE FOR COMPACT CARS
/E GRADE 115 SPACES FACE 486 SPACES	NEW 2.4M x 4.6M PARKING SPACE, COMPLETE WITH IDENTIFICATION
AL (INCLUDES 104 VISITOR SPACES) 849 SPACES	SIGNAGE FOR COMPACT CARS
JCED SIZE PARKING SPACES: 4.6m MIN. 369 SPACES (MAX 50% SPACES [425])	NEW PAD-MOUNT TRANSFORMER
JIRED PARKING:	NOTE: SEE LANDSCAPE FOR ALL SURFACE MATERIAL AND PATTERN
DENTIAL: 692 SPACES (0.66/UNIT) OR: 104 SPACES (0.1/UNIT AFTER 12)	PROJECT DEVELOPER
796 SPACES	GREATWISE DEVELOPMENT Inc. 333 Wilson Avenue, Suite 200
STORAGE - NEW CONSTRUCTION ONLY DING 'A':	Toronto, ON, M3H 1T2 Tel: (416) 630 6767
OSED: 28 SPACES	E-Mail: natan@gsregalgroup.com
RIOR: 32 SPACES	LIDRAN DI ANNED
L: 60 SPACES URED: 52 SPACES	URBAN PLANNER JD Planning
DING 'B':	JD Planning 43 Eccles Street, Unit C
OSED: 14 SPACES	Ottawa, ON Canada, K1R 6S3 Tel.:(613) 812-1726
RIOR: 34 SPACES	E-Mail: jessica@jdplan.ca
L: 48 SPACES JIRED: 47 SPACES	CIVII ENGINEED
DING 'C':	CIVIL ENGINEER Stantec Consulting Ltd
OSED: 29 SPACES	Stantec Consulting Ltd. 400 - 1331 Clyde Avenue
RIOR: 16 SPACES L: 45 SPACES	Ottawa, ON Canada, K2C 3G4 Tel: (613) 722-4420
URED: 45 SPACES	www.stantec.com
TOTAL: 153 SPACES	LANDSCAPE ARCHITECT
JIRED: 144 SPACES	Laroque Levstek 5871 Hugh Crescent

DRAWING NOTES: 1 PROPERTY LINE

Osgoode, ON Canada, K0A 2W0

E-Mail: rlevstek@larocquelevstek.com

Tel.:(613) 826-0518

LEGAL DESCRIPTION

TOPOGRAPHICAL PLAN OF **BLOCK A REGISTERED PLAN 749 and BLOCK D REGISTERED PLAN 775**

CITY OF OTTAWA

SURVEYOR Annis O'Sullivan Vollebekk Ltd. Ontario Land Surveyors 14 Concourse Gate, Suite 500, Nepean, Ontario K2E 7S6 Tel: (613) 727-0850 Fax: (613) 727-1079 Prepared by Annis, O'Sullivan, Vollebekk Ltd. E-Mail: EdH@aovltd.com

DO NOT SCALE DRAWINGS

CHECK AND VERIFY ALL DIMENSIONS BEFORE PROCEEDING WITH THE WORK.

DRAWINGS NOT TO BE USED FOR CONSTRUCTION UNLESS STAMPED AND SIGNED BY THE CONSULTANT.

THESE DRAWINGS HAVE BEEN DESIGNED IN COMFORMANCE WITH THE ONTARIO BUILDING

Revisions Revision Revision Number Date 2021-09-27 REVISED SITE PLAN CONTROL 2022-05-16 REVISED SITE PLAN CONTROL

2022-08-19 REVISED SITE PLAN CONTROL

2024-12-11 ISSUED FOR CLIENT REVIEW

Admiralty Place 103-20 Gore Street Kingston Ontario, K7L 2L1 t: 613.545.3744 ext 213 f: 613.545.1411

Alexander Wilson Architect Inc

NORBERRY RESIDENCES

2640, 2710, 2730 NORBERRY CRESCENT, OTTAWA, ONTARIO

SITE PLAN

Proposed Submission

Checked By 2025-02-24 1:16:26 PM Project No. 2062

GENERAL NOTES AND SPECIFICATIONS

- ALL MATERIALS AND CONSTRUCTION METHODS TO BE IN ACCORDANCE WITH OPS AND CITY OF OTTAWA STANDARD SPECIFICATIONS AND DRAWINGS AND OPSD SUPPLEMENT. ONTARIO PROVINCIAL STANDARDS WILL APPLY WHERE NO CITY STANDARDS ARE AVAILABLE.
- THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL PERMITS REQUIRED AND BEAR COST OF SAME INCLUDING WATER PERMIT AND ASSOCIATED COSTS.
- SERVICE AND UTILITY LOCATIONS ARE APPROXIMATE, CONTRACTOR TO VERIFY LOCATION AND ELEVATION OF EXISTING SERVICES AND UTILITIES PRIOR TO CONSTRUCTION. CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING LOCATES FROM ALL UTILITY COMPANIES TO LOCATE EXISTING UTILITIES PRIOR TO EXCAVATION. THE CONTRACTOR IS RESPONSIBLE FOR PROTECTION AND
- 4. ALL DISTURBED AREAS SHALL BE REINSTATED TO EQUAL OR BETTER CONDITION TO THE SATISFACTION OF THE ENGINEER & THE CITY, PAVEMENT REINSTATEMENT FOR SERVICE AND UTILITY CUTS SHALL BE IN ACCORDANCE WITH OPSD 509.010 AND
- ALL WORK SHALL BE COMPLETED IN ACCORDANCE WITH THE "OCCUPATIONAL HEALTH AND SAFETY ACT AND REGULATION FOR CONSTRUCTION PROJECTS". THE GENERAL CONTRACTOR SHALL BE DEEMED TO BE THE CONSTRUCTOR AS DEFINED IN THE ACT.
- THE CONTRACTOR SHALL SUBMIT AN EROSION AND SEDIMENTATION CONTROL PLAN THAT WILL IMPLEMENT BEST MANAGEMENT PRACTICES TO PROVIDE PROTECTION FOR RECEIVING STORM SEWERS OR DRAINAGE DURING CONSTRUCTION ACTIVITIES. THIS PLAN SHALL INCLUDE BUT NOT BE LIMITED TO CATCH BASINS INSERTS, STRAW BALE CHECK DAMS AND SEDIMENT CONTROLS AROUND ALL DISTURBED AREAS. DEWATERING SHALL BE PUMPED INTO SEDIMENT TRAPS. REFER TO DRAWING EC/DS-1 FOR CONCEPTUAL EROSION AND SEDIMENT
- SITE PLAN PREPARED BY ALEXANDER WILSON ARCHITECT INC. DATED FEBRUARY
- 3. ORIGINAL REGISTERED SURVEY PLANS (4-R PLANS) FOR SUBDIVISION OF PART OF LOT 23 (J.G.) PREPARED BY HENRY R. FARLEY DATED JANUARY 18, 1961 AND DECEMBER 19, 1962.
- TOPOGRAPHIC SURVEY SUPPLIED BY ANNIS , O'SULLIVAN, VOLLEBEKK LTD. DATED

JOB BENCHMARK: TOP OF SPINDLE OF FIRE HYDRANT ON NORBERRY CRESCENT SOUTH OF PROPOSED SITE. ELEV=78.31

BEARINGS ARE GRID, DERIVED FROM CAN-NET 2016 REAL TIME NETWORK GPS OBSERVATIONS AND ARE REFERENCED TO SPECIFIED CONTROL POINTS 01919680005 AND 01919680105, MTM ZONE 9 (76°30' WEST LONGITUDE) NAD-83 (ORIGINAL). FOR BEARING COMPARISONS, A ROTATION OF 0°33'10" COUNTER-CLOCKWISE WAS APPLIED TO BEARINGS ON PLANS P1, P2, P3 & P4.

ELEVATIONS SHOWN ARE GEODETIC AND ARE REFERRED TO THE CGVD28 GEODETIC DATUM.

- 0. REFER TO LANDSCAPE ARCHITECTURE PLAN FOR ALL LANDSCAPING FEATURES (ie. TREES, WALKWAYS, PARK DETAILS, NOISE BARRIERS, FENCES etc.)
- GEOTECHNICAL INVESTIGATION PG4834-REVISION 1 PREPARED BY PATERSON GROUP, DATED APRIL 28, 2020. GEOTECHNICAL INFORMATION PRESENTED ON THESE DRAWINGS MAY BE INTERPOLATED FROM THE ORIGINAL REPORT. REFER TO ORIGINAL GEOTECHNICAL REPORT FOR ADDITIONAL DETAILS AND TO VERIFY ASSUMPTIONS MADE HEREIN.
- 12. STREET LIGHTING TO CITY OF OTTAWA STANDARDS.
- 13. ALL DIMENSIONS ARE IN METRES UNLESS OTHERWISE STATED. DIMENSIONS SHALL BE CHECKED AND VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO THE START OF CONSTRUCTION. ANY DISCREPANCIES TO BE REPORTED IMMEDIATELY
- 14. THERE WILL BE NO SUBSTITUTION OF MATERIALS UNLESS PRIOR WRITTEN APPROVAL BY THE CONTRACT ADMINISTRATOR AND DIRECTOR OF ENGINEERING HAS BEEN OBTAINED.
- 15. HERITAGE OPERATIONS UNIT OF THE ONTARIO MINISTRY OF CULTURE TO BE NOTIFIED IF DEEPLY BURRIED ARCHEOLOGICAL REMAINS ARE FOUND ON THE PROPERTY DURING CONSTRUCTION ACTIVITIES.

ROADWORKS

OF THE CONSULTANT.

- ALL TOPSOIL AND ORGANIC MATERIAL TO BE STRIPPED FROM WITHIN THE FULL RIGHT OF WAY PRIOR TO CONSTRUCTION.
- SUB-EXCAVATE SOFT AREAS & FILL WITH GRANULAR 'B' COMPACTED IN 0.30m
- ALL GRANULAR FOR ROADS SHALL BE COMPACTED TO A MINIMUM OF 100% STANDARD PROCTOR MAXIMUM DRY DENSITY (SPMDD)
- 4. ROAD SUBDRAINS SHALL BE CONSTRUCTED AS PER CITY OF OTTAWA STANDARD
- ASPHALT WEAR COURSE SHALL NOT BE PLACED UNTIL THE VIDEO INSPECTION OF

SEWERS & NECESSARY REPAIRS HAVE BEEN CARRIED OUT TO THE SATISFACTION

- CONTRACTOR TO OBTAIN A ROAD OCCUPANCY PERMIT 48 HOURS PRIOR TO COMMENCING ANY WORK WITHIN THE MUNICIPAL ROAD ALLOWANCE IF
- REQUIRED BY THE MUNICIPALITY. ALL WORK ON THE MUNICIPAL RIGHT OF WAY AND EASEMENTS TO BE INSPECTED BY THE MUNICIPALITY PRIOR TO BACKFILLING. PAVEMENT REINSTATEMENT FOR SERVICE AND UTILITY CUTS SHALL BE IN
- ACCORDANCE WITH CITY OF OTTAWA STANDARD R10, AND OPSD 509.010, AND
- 8. CONCRETE CURBS SHALL BE CONSTRUCTED AS PER CITY STANDARD SC1.1.

- 9. CONCRETE SIDEWALKS SHALL BE CONSTRUCTED AS PER CITY STANDARD SC1.4.
- 10. PAVEMENT CONSTRUCTION AS PER GEOTECHNICAL INVESTIGATION PG4834-REVISION 1 PREPARED BY PATERSON GROUP, DATED DECEMBER 10,

40mm HL3 OR SUPERPAVE 12.5 ASPHALTIC CONCRETE 50mm HL8 OR SUPERPAVE 19.0 ASPHALTIC CONCRETE 150mm OPSS GRANULAR A BASE 300mm OPSS GRANULAR B TYPE |

LIGHT DUTY ASPHALT
50mm HL3 OR SUPERPAVE 12.5 ASPHALTIC CONCRETE 150 OPSS GRANULAR 'A' BASE

300 OPSS GRANULAR 'B' TYPE II

WATER SUPPLY SERVICING

- THE CONTRACTOR SHALL CONSTRUCT WATERMAIN, WATER SERVICES, CONNECTIONS & APPURTENANCES AS PER CITY OF OTTAWA SPECIFICATIONS & SHALL CO-ORDINATE AND PAY ALL RELATED COSTS INCLUDING THE COST OF
- CONNECTION, INSPECTION & DISINFECTION BY CITY PERSONNEL. WATER SERVICES ARE TO BE PVC PIPE AS PER CITY OF OTTAWA STANDARD W26 (UNLESS OTHERWISE NOTED). WATER SERVICE TO BE TERMINATED 1.0m FROM THE FACE OF BUILDING UNLESS OTHERWISE NOTED. STAND POST TO BE INSTALLED AT
- . WATER VALVES TO BE INSTALLED AS PER CITY OF OTTAWA STANDARD W24.
- WATERMAIN TRENCH AND BEDDING SHALL BE IN ACCORDANCE WITH CITY OF OTTAWA STD. W17 UNLESS OTHERWISE SPECIFIED. BEDDING AND COVER MATERIAL TO BE SPECIFIED BY PROJECT GEOTECHNICAL CONSULTANT.
- SERVICE CONNECTIONS SHALL BE INSTALLED A MINIMUM OF 2400mm FROM ANY CATCHBASIN, MANHOLE, OR OBJECT THAT MAY CONTRIBUTE TO FREEZING. THERMAL INSULATION SHALL BE INSTALLED ON ALL PROPOSED CB'S ON THE W/M STREET SIDE WHERE 2400mm SEPARATION CANNOT BE ACHIEVED. (AS PER CITY OF OTTAWA W22 & W23)
- . CATHODIC PROTECTION TO BE SUPPLIED ON METALLIC FITTINGS AS PER CITY OF

- OTTAWA W40 AND W42.
- 7. ALL WATERMAIN BENDS, JOINTS, TEES AND PLUGS SHALL BE MECHANICALLY RESTRAINED IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS.
- . WATERMAIN TO HAVE MIN. 2.4m COVER. WHERE WATERMAIN COVER IS LESS THAN 2.4m, INSULATION TO BE SUPPLIED IN ACCORDANCE WITH CITY STANDARD
- WATERMAINS MUST COMPLY WITH MINIMUM HORIZONTAL AND VERTICAL CLEARANCES IN ACCORDANCE WITH LOCAL PROVINCIAL GUIDELINES AND THE APPLICABLE BUILDING AND PLUMBING CODE. WHERE HORIZONTAL SEPARATIONS CANNOT BE ACHIEVED, APPROVAL FROM THE ENGINEER MUST BE OBTAINED AND A MINIMUM 500mm VERTICAL SEPARATION MUST BE MAINTAINED.
- 10. WATERMAIN CROSSINGS ABOVE AND BELOW SEWERS TO BE INSTALLED AS PER CITY OF OTTAWA STANDARD W25 AND W25.2.
- PRESSURE REDUCING VALVES (PRV'S) IF REQUIRED, TO BE INSTALLED AS PER ONTARIO PLUMBING CODE.
- 12. ALL WATERMAINS SHALL BE HYDROSTATICALLY TESTED IN ACCORDANCE WITH THE CITY OF OTTAWA AND ONTARIO GUIDELINES UNLESS OTHERWISE DIRECTED. PROVISIONS FOR FLUSHING WATER LINE PRIOR TO TESTING, ETC. MUST BE
- 13. ALL WATERMAINS SHALL BE BACTERIALOGICALLY TESTED IN ACCORDANCE WITH THE CITY OF OTTAWA AND ONTARIO GUIDELINES. ALL CHLORINATED WATER TO BE DISCHARGED AND PRETREATED TO ACCEPTABLE LEVELS PRIOR TO DISCHARGE. ALL DISCHARGED WATER MUST BE CONTROLLED AND TREATED SO AS NOT TO ADVERSELY EFFECT THE ENVIRONMENT. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ENSURE THAT ALL MUNICIPAL AND/OR PROVINCIAL REQUIREMENTS ARE FOLLOWED

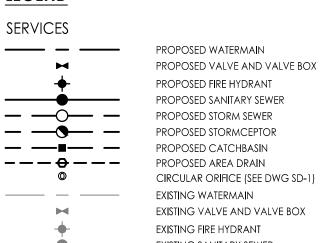
STORM AND SANITARY SEWERS

- SEWERS 375mm DIA. OR SMALLER SHALL BE PVC SDR35. SEWERS LARGER THAN 375mm SHALL BE CONCRETE CSA A 257.2 CLASS 100D AS PER OPSD 807.010.
- ALL STORM AND SANITARY SEWER BEDDING SHALL BE INSTALLED AS PER CITY OF OTTAWA STANDARDS S6 AND S7, CLASS "B" BEDDING, UNLESS OTHERWISE NOTED. SUITABLE BEDDING AND COVER MATERIAL TO BE SPECIFIED BY GEOTECHNICAL
- 3. STORM AND SANITARY MANHOLES SHALL BE 1200mm DIAMETER IN ACCORDANCE WITH OPSD-701.01 (UNLESS OTHERWISE NOTED) c/w FRAME AND COVER AS PER CITY OF OTTAWA \$24, \$24.1, AND \$25 WHERE APPLICABLE. CATCH BASIN MANHOLE FRAME AND COVERS PER \$19, \$28, AND \$28.1 WHERE APPLICABLE, ALL STORM MANHOLES WITH SEWERS 900mm DIA SEWERS AND OVER IN SIZE SHALL BE BENCHED. ALL OTHER STORM MANHOLES SHALL BE COMPLETED WITH 300mm SUMPS AS PER CITY STANDARDS. SANITARY MANHOLES
- 4. ALL SEWERS CONSTRUCTED WITH GRADES 0.50% OR LESS, TO BE INSTALLED WITH LASER AND CHECKED WITH LEVEL INSTRUMENT PRIOR TO BACKFILLING.
- 5. FOR STORM SEWER INSTALLATION (EXCLUDING CB LEADS) THE MINIMUM DEPTH OF COVER OVER THE CROWN OF THE SEWER IS 2.0m. FOR SANITARY SEWERS THE MINIMUM DEPTH OF COVER IS 2.5m OVER PIPE OBVERT.
- 6. ALL STORM SERVICES TO BE EQUIPPED WITH APPROVED BACKWATER VALVES AS PER CITY STANDARD \$14. ALL SANITARY SERVICES TO BE EQUIPPED WITH APPROVED BACKWATER VALVES AS PER CITY STANDARD \$14.2.
- 7. STORM AND SANITARY SERVICE LATERALS TO BE SDR 28 INSTALLED AT MIN. 1.0% SLOPE. SINGLE STORM SERVICES TO BE 100mmØ, SINGLE SANITARY SERVICES TO BE 135mmØ. (SERVICES TO BE CAPPED 1.0m OFF BUILDING FACE)
- CATCH BASINS SHALL BE INSTALLED IN ACCORDANCE WITH CITY STANDARDS S1, S2, S3 c/w FRAME AND GRATE AS PER S19.1, CURB INLET FRAME AND GRATE PER S22 AND S23, PROVIDE 150mm ADJUSTED SPACERS, ALL CATCH BASINS SHALL HAVE SUMPS (600mm DEEP). STREET CATCH BASIN LEADS SHALL BE 200mm DIA.(MIN) PVC DR 35 AT 1.0% GRADE WHERE NOT OTHERWISE SHOWN ON PLAN. CATCH BASINS WILL BE INSTALLED WITH INLET CONTROL DEVICES (ICD) AS PER ICD SCHEDULE ON STORM DRAINAGE PLAN.
- 9. STREET CATCH BASINS TO BE INSTALLED C/W SUBDRAINS 3m LONG IN FOUR ORTHOGONAL DIRECTIONS OR LONGITUDINALLY WHEN PLACED ALONG A CURB, AND AT AN ELEVATION OF 300mm BELOW SUBGRADE LEVEL.
- 10. CLAY SEALS TO BE INSTALLED AS PER CITY STANDARD DRAWING S8. THE SEALS SHOULD BE AT LEAST 1.5m LONG AND SHOULD EXTEND FROM TRENCH WALL TO TRENCH WALL. GENERALLY, THE SEALS SHOULD EXTEND FROM THE FROST LINE AND FULLY PENETRATE THE BEDDING, SUBBEDDING AND COVER MATERIAL. THE BARRIERS SHOULD CONSIST OF RELATIVELY DRY AND COMPACTABLE BROWN SILTY CLAY PLACED IN MAXIMUM 225mm THICK LOOSE LAYERS AND COMPACTED TO A MINIMUM OF 95% OF THE MATERIAL'S SPMDD. THE CLAY SEALS SHOULD BE PLACED AT THE SITE BOUNDARIES AND AT STRATEGIC LOCATIONS AT NO MORE THAN 60 M INTERVALS IN THE SERVICE TRENCHES.
- 11. GRANULAR "A" SHALL BE PLACED TO A MINIMUM THICKNESS OF 300 mm AROUND ALL STRUCTURES WITHIN PAVEMENT AREA AND COMPACTED TO A MINIMUM OF 95% STANDARD PROCTOR DENSITY.
- 12. CONTRACTOR SHALL PERFORM LEAKAGE TESTING. IN THE PRESENCE OF THE CONSULTANT, FOR SANITARY SEWERS IN ACCORDANCE WITH OPSS 410 AND OPSS 407. CONTRACTOR SHALL PERFORM VIDEO INSPECTION OF ALL STORM AND SANITARY SEWERS. A COPY OF THE VIDEO AND INSPECTION REPORT SHALL BE SUBMITTED TO THE CONSULTANT FOR REVIEW.
- 13. ANY SEWER ABANDONMENT TO BE CONDUCTED ACCORDING TO CITY OF OTTAWA STANDARD S11.4
- 14. SEWERS WITH LESS THAN 2.0m COVER TO BE INSULATED IN ACCORDANCE WITH CITY STANDARD W22.

- 1. ALL GRANULAR BASE & SUB BASE COURSE MATERIALS SHALL BE COMPACTED TO 98% STANDARD PROCTOR MAX. DRY DENSITY.
- 2. SUB-EXCAVATE SOFT AREAS & FILL WITH GRANULAR 'B' COMPACTED IN 0.30m
- 3. ALL DISTURBED GRASSED AREAS SHALL BE RESTORED TO ORIGINAL CONDITION OR BETTER, WITH SOD ON MIN. 100mm TOPSOIL. THE RELOCATION OF TREES AND SHRUBS SHALL BE SUBJECT TO APPROVAL BY THE PROJECT LANDSCAPE ARCHITECT OR ENGINEER.
- 4. EMBANKMENTS TO BE SLOPED AT MIN. 3:1, UNLESS OTHERWISE SPECIFIED.
- 5. ALL SWALES TO BE MIN. 0.15m DEEP WITH MIN. 3:1 SIDE SLOPES UNLESS OTHERWISE NOTED. THE MINIMUM LONGITUDINAL SLOPE TO BE 1.5% OR 1.0% WHEN PERFORATED SUBDRAIN IS INSTALLED.
- 6. ALL ROOF DRAINS TO DISCHARGE TO THE INTERNAL STORMWATER PLUMBING AND NOT BE DIRECTED TO THE BUILDING FOUNDATION DRAIN.
- 7. TOP OF GRATE (T/G) ELEVATIONS FOR ALL STREET CATCHBASINS SHOWN ON PLANS. REFER TO THE ELEVATION AT EDGE OF PAVEMENT, OR GUTTERLINE WHERE
- 8. ALL RETAINING WALLS GREATER THAN 1.0m IN HEIGHT ARE TO BE DESIGNED, APPROVED, AND STAMPED BY STRUCTURAL ENGINEER LICENSED IN THE PROVINCE OF ONTARIO.
- 9. FENCES OR RAILINGS ARE REQUIRED FOR RETAINING WALLS GREATER THAN 0.60m IN HEIGHT.
- 10. EXCESS EXCAVATED MATERIAL SHALL BE REMOVED FROM THE SITE.
- 11. ALL NECESSARY CLEARING AND GRUBBING SHALL BE COMPLETED BY THE CONTRACTOR. REVIEW WITH CONTRACT ADMINISTRATOR AND THE CITY OF OTTAWA PRIOR TO TREE CUTTING.
- 12. REFER TO DRAWING EC DS-1 FOR EROSION AND SEDIMENT CONTROL DETAILS.

Best Management Practices

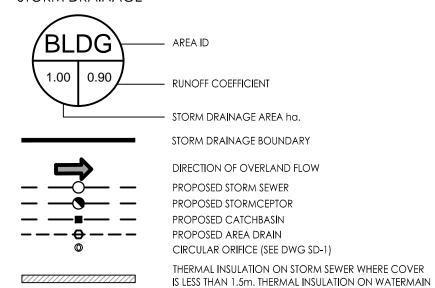
CONTRACTOR TO PROVIDE EROSION AND SEDIMENT CONTROLS (BEST MANAGEMENT PRACTICES) DURING CONSTRUCTION OF THIS PROJECT


EROSION MUST BE MINIMIZED AND SEDIMENTS MUST BE REMOVED FROM CONSTRUCTION SITE RUN-OFF IN ORDER TO PROTECT DOWNSTREAM AREAS. DURING ALL CONSTRUCTION, EROSION AND SEDIMENTATION SHOULD BE CONTROLLED BY THE FOLLOWING TECHNIQUES:

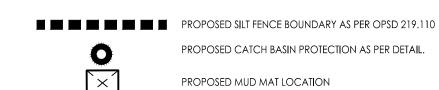
- 1. LIMIT THE EXTENT OF EXPOSED SOILS AT ANY GIVEN TIME.
- 2. REVEGETATE EXPOSED AREAS AND SLOPES AS SOON AS POSSIBLE.

PROTECT EXPOSED SLOPES WITH PLASTIC OR SYNTHETIC MULCHES.

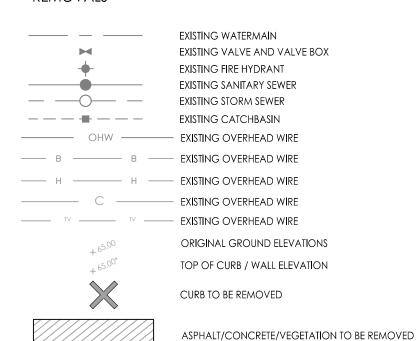
- MINIMIZE AREA TO BE CLEARED AND GRUBBED.
- INSTALL CATCH BASIN INSERTS OR EQUIVALENT IN ALL PROPOSED CATCH BASINS AND CATCH BASIN MANHOLES AND IN ALL EXISTING CATCH BASINS THAT WILL RECEIVE RUN-OFF FROM THE SITE.
- A SILT FENCE SHALL BE INSTALLED AROUND THE PERIMETER OF ALL AND ANY STOCKPILES OF MATERIAL TO BE USED OR REMOVED FROM SITE. (LOCATION TO BE DETERMINED)
- A VISUAL INSPECTION SHALL BE DONE DAILY ON SEDIMENT CONTROL MEASURES AND CLEANED OF ANY ACCUMULATED SILT AS REQUIRED. THE DEPOSITS WILL BE DISPOSED OFF SITE AS PER THE REQUIREMENTS OF THE CONTRACT.
- SEDIMENT CONTROL BARRIERS MAY ONLY BE REMOVED TEMPORARILY WITH APPROVAL OF CONTRACT ADMINISTRATOR TO ACCOMMODATE CONSTRUCTION OPERATIONS, ALL AFFECTED BARRIERS MUST BE REINSTATED AT NIGHT WHEN CONSTRUCTION IS COMPLETED. NO REMOVAL WILL OCCUR IF THERE IS A SIGNIFICANT RAINFALL EVENT ANTICIPATED (>10mm) UNLESS A NEW DEVICE HAS BEEN INSTALLED TO PROTECT EXISTING STORM AND SANITARY SEWER SYSTEMS. OR DOWNSTREAM WATERCOURSES.
- NO REFUELING OR CLEANING OF EQUIPMENT IS PERMITTED NEAR ANY EXISTING
- CONTRACTOR SHALL REMOVE SEDIMENT CONTROL MEASURES WHEN, IN THE OPINION OF THE CONTRACT ADMINISTRATOR, THE MEASURE(S) IS NO LONGER REQUIRED. NO CONTROL MEASURES SHALL BE PERMANENTLEY REMOVED WITHOUT PRIOR WRITTEN AUTHORIZATION FROM THE CONTRACT ADMINISTRATOR.
- THE CONTRACTOR SHALL PERIODICALLY, OR WHEN REQUESTED BY THE CONTRACT ADMINISTRATOR, CLEAN OUT ACCUMULATED SEDIMENTS AS
- THE CONTRACTOR SHALL IMMEDIATELY REPORT TO THE ENGINEER ANY ACCIDENTAL DISCHARGES OF SEDIMENT MATERIAL INTO THE WATERCOURSE. APPROPRIATE RESPONSE MEASURES, INCLUDING ANY REPAIRS TO EXISTING CONTROL MEASURES OR THE IMPLEMENTATION OF ADDITIONAL CONTROL MEASURES, SHALL BE CARRIED OUT BY THE CONTRACTOR WITHOUT DELAY
- 13. CONTRACTOR SHALL INSTALL MUD MATS AT ENTRANCE TO THE SITE.
- 14. STORMWATER SWALES TO BE COVERED WITH HYDRO-SEED AND MULCH.


LEGEND

EXISTING SANITARY SEWER EXISTING STORM SEWER ---EXISTING CATCHBASIN THERMAL INSULATION ON STORM SEWER WHERE COVER IS LESS THAN 1.5m. THERMAL INSULATION ON WATERMAIN WHERE COVER IS LESS THAN 2.4m AS PER W22. PROPOSED WATER METER


PROPOSED REMOTE WATER METER

STORM DRAINAGE



WHERE COVER IS LESS THAN 2.4m AS PER W22.

EROSION CONTROL

REMOVALS

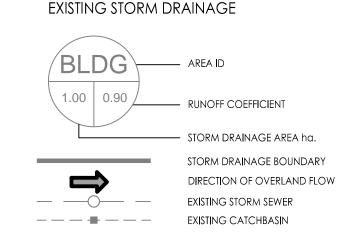
SCHEDULE OF ROOF RELEASE RATES 100 YEAR RELEAS 100 YEAR HEAD (m) RATE (L/s) 0.142 (25% OPEN) VATTS R1100 ACCUTE BLDGB 0.141 7.3 (25% OPEN) VATTS R1100 ACCUTRO 0.142

SCHEDULE OF INLET CONTROL DEVICES								
CATCHBASIN I D	TRIBUTARY AREA ID	I IUUYR HEAL) (M) I		ICD TYPE				
CB 200	L102A	1.66	7.4	IPEX TEMPEST LMF 80				
CB 201	L103A	1.63	18.7	83mmØ ORIFICE				
CB 203	L103B	1.63	10.2	IPEX TEMPEST LMF 95				
AREA DRAIN 303	L303A	1.62	18.6	83mmØ ORIFICE				
AREA DRAIN 300	L300A	1.56	42.8	127mmØ ORIFICE				
AREA DRAIN 301	L301A	1.56	42.8	127mmØ ORIFICE				

GRADING

EXISTING TOP OF CURB / WALL ELEVATION × 99.99 PROPOSED ELEVATION PROPOSED TOP OF CURB ELEVATION PROPOSED ELEVATION EXISTING ELEVATION 2.0% FLOW DIRECTION AND GRADE FF=99.99 FINISHED FIRST FLOOR ELEVATION TF=99 99 TOP OF FOUNDATION ELEVATION USF=99.99 UNDERSIDE OF FOOTING ELEVATION TERRACING 3:1 SLOPE MAXIMUM (UNLESS OTHERWISE SHOWN) PROPOSED SWALE DIRECTION OF OVERLAND FLOW PROPOSED VALVE BOX PROPOSED SANITARY SEWER MANHOLE PROPOSED STORM SEWER MANHOLE PROPOSED CATCHBASIN PROPOSED DEPRESSED CURB LOCATIONS EXISTING VALVE AND VALVE BOX EXISTING FIRE HYDRANT EXISTING SANITARY SEWER EXISTING STORM SEWER EXISTING CATCHBASIN PROPOSED TRANSFORMER LOCATION PROPOSED HEAVY DUTY ASPHALT PROPOSED LIGHT DUTY ASPHALT

MAXIMUM 100-YR PONDING LIMITS


PROPOSED RETAINING WALL, RETAINING WALLS GREATER

REQUIRED WHEN WALL IS 0.6m IN HEIGHT OR GREATER.

THAN 1.0m IN HEIGHT TO BE DESIGN BY A PROFESSIONAL

ENGINEER LICENSED IN THE PROVINCE OF ONTARIO. RAILINGS

ORIGINAL GROUND ELEVATIONS

Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON Tel. 613.722.4420

Copyright Reserved

www.stantec.com

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Legend

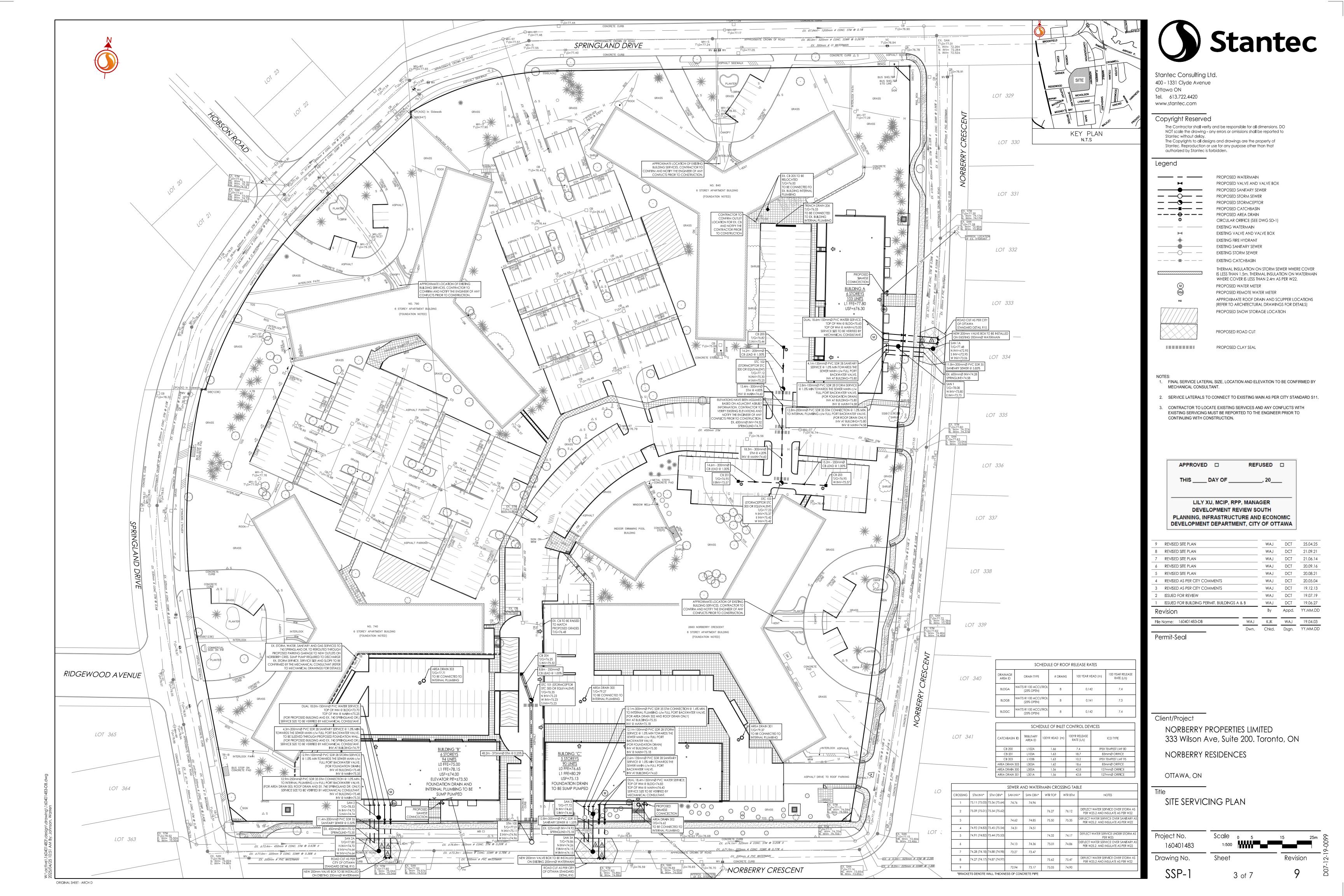
APPROVED REFUSED THIS _____, 20_____ LILY XU, MCIP, RPP, MANAGER DEVELOPMENT REVIEW SOUTH PLANNING, INFRASTRUCTURE AND ECONOMIC

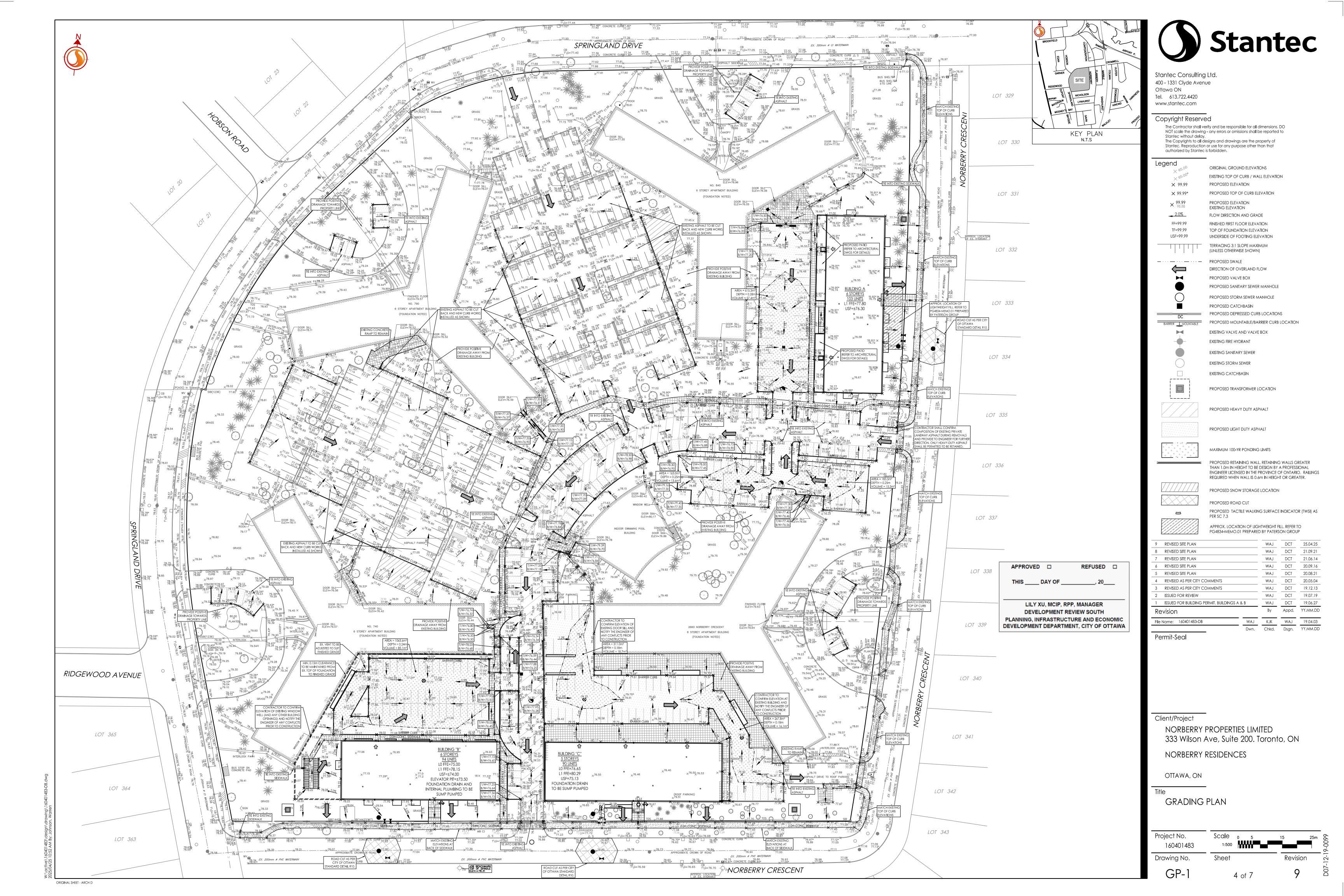
DEVELOPMENT DEPARTMENT, CITY OF OTTAWA

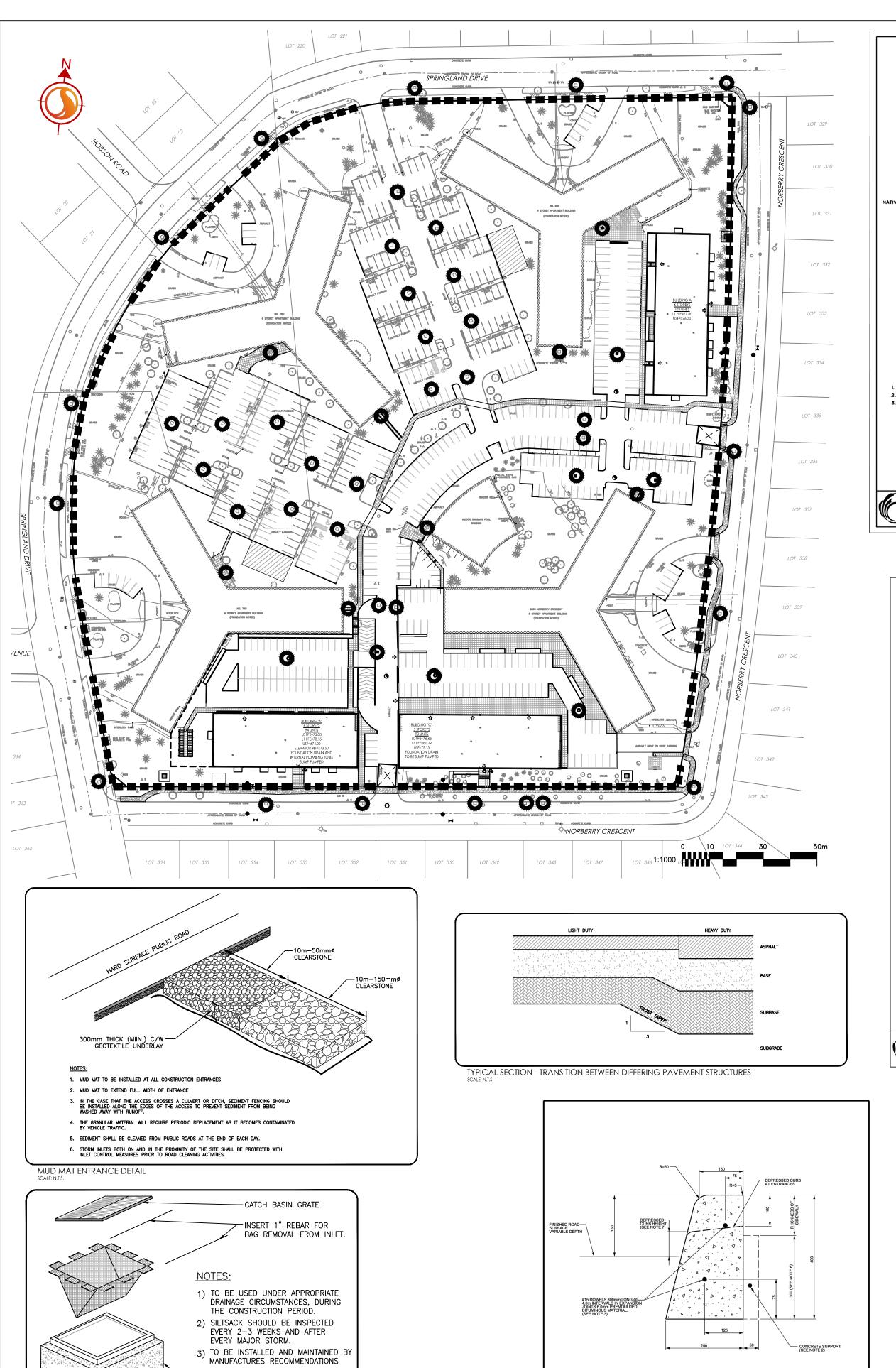
REVISED SITE PLAN WAJ DCT 25.04.25 REVISED SITE PLAN WAJ DCT 21.09.21 REVISED SITE PLAN DCT 21.06.14 REVISED SITE PLAN DCT 20.09.16 REVISED SITE PLAN 20.08.21 LAW DCT REVISED AS PER CITY COMMENTS DCT 20.05.04 REVISED AS PER CITY COMMENTS DCT 19.12.13 ISSUED FOR REVIEW DCT 19.07.19 ISSUED FOR BUILDING PERMIT, BUILDINGS A & B WAJ DCT 19.06.27 By Appd. YY.MM.DD Revision File Name: 160401483-DB KJK WAJ 19.04.03 Dwn. Chkd. Dsgn. YY.MM.DD

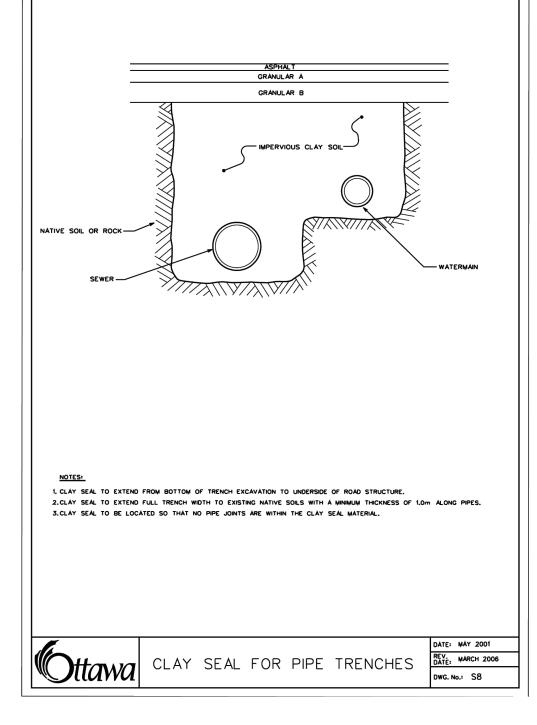
Client/Project

Permit-Seal


NORBERRY PROPERTIES LIMITED 333 Wilson Ave, Suite 200. Toronto, ON


OTTAWA, ON


NOTES AND LEGEND PLAN


NORBERRY RESIDENCES

Project No. Scale 160401483 Sheet Drawing No. Revision 1 of 7

_____ WATERMAIN

SECTION A - A

2. IN PROXIMITY OF MAINTENANCE HOLES, CULVERTS, CATCHBASINS, ETC., INSULATION SHALL BE PLACED PER DETAIL W23

THERMAL INSULATION FOR

WATERMAINS IN SHALLOW

TRENCHES

DATE: MAY 2001

DWG. No.: W22

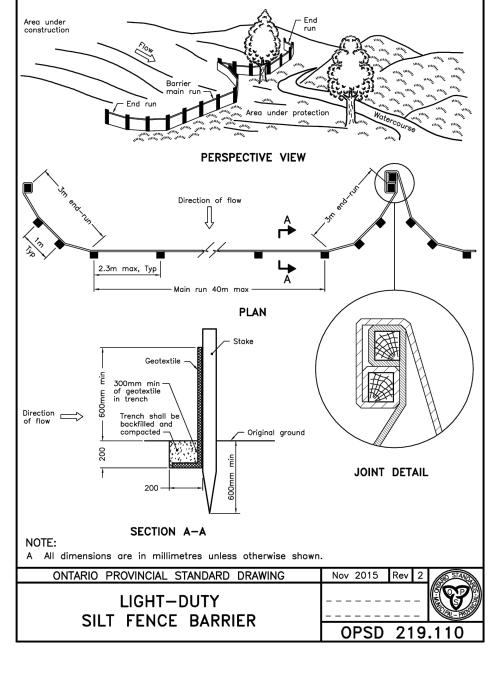
REV. MARCH 2013

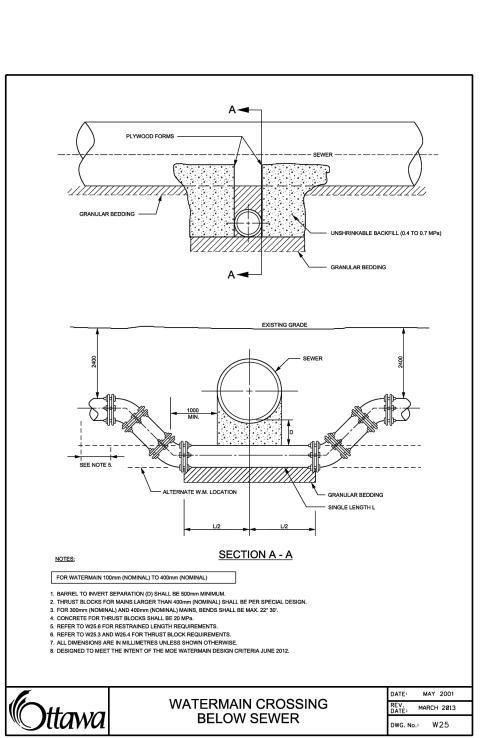
FOR 150 - 400mm (NOMINAL DIAMETER) WATERMAINS, WHERE THE DEPTH OF COVER IS LESS THAN 2400mm

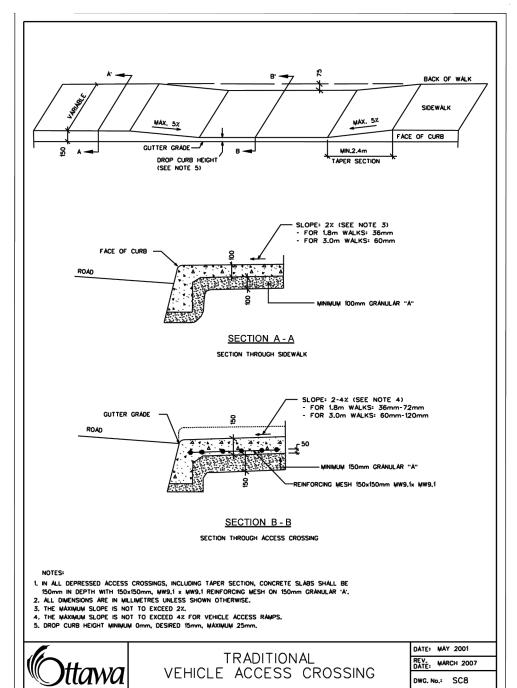
1. INCREMENTS OF THICKNESS SHALL BE ADJUSTABLE TO 25mm.

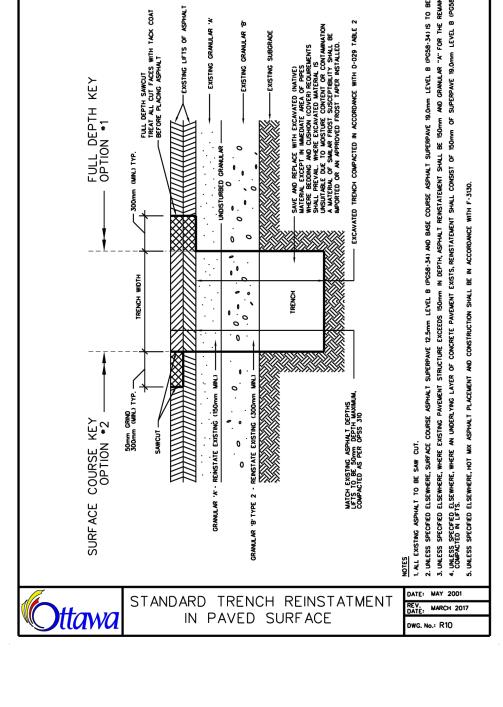
4. STAGGER JOINTS OF MULTIPLE SHEETS

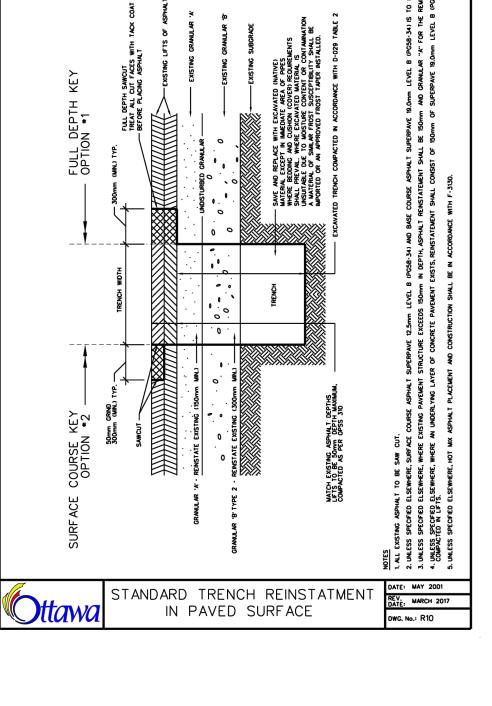
3. DEPTH OF COVER LESS THAN 1200mm REQUIRES SPECIAL DESIGN

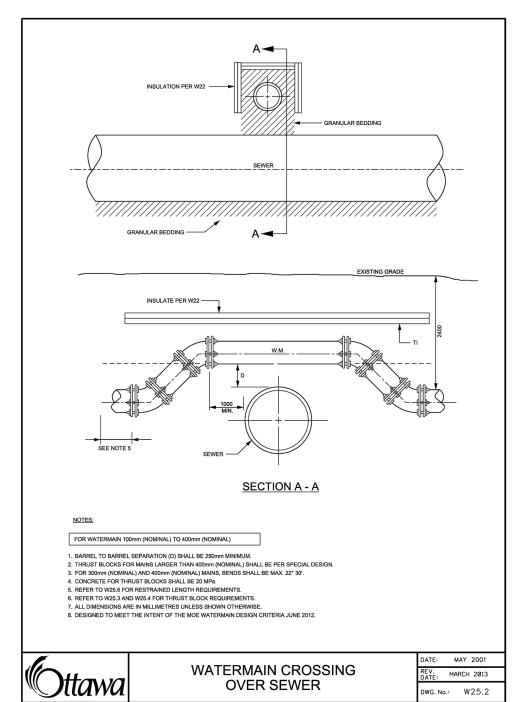

5. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS SHOWN OTHERWISE.

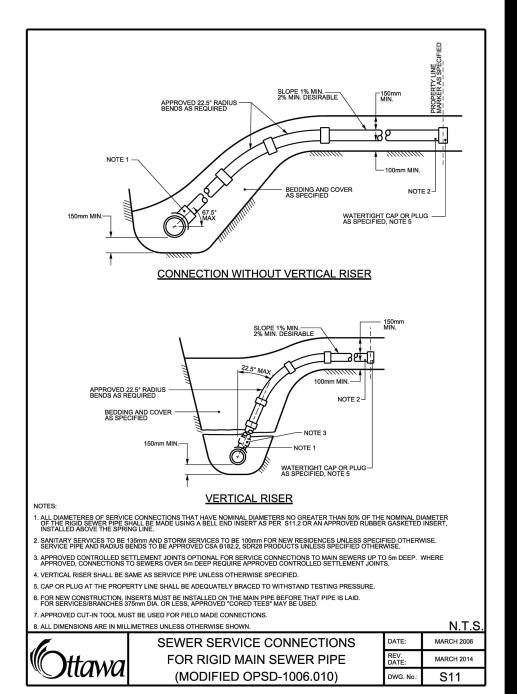

TI = (2400 - H) MINIMUM 50mm


TI = THICKNESS OF INSULATION (mm)


H = DEPTH OF COVER


D = O.D. OF PIPE (mm)





Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON

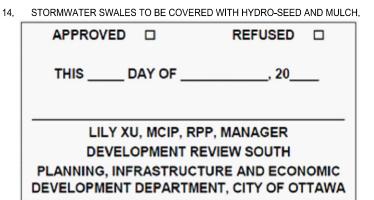
Tel. 613.722.4420 www.stantec.com

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that

PROPOSED SILT FENCE BOUNDARY AS PER OPSD 219.110 PROPOSED CATCH BASIN PROTECTION AS PER DETAIL.

PROPOSED MUD MAT LOCATION


authorized by Stantec is forbidden.

Best Management Practices CONTRACTOR TO PROVIDE EROSION AND SEDIMENT CONTROLS (BEST MANAGEMENT PRACTICES) DURING CONSTRUCTION OF THIS PROJECT. EROSION MUST BE MINIMIZED AND SEDIMENTS MUST BE REMOVED FROM CONSTRUCTION SITE RUN-OFF IN ORDER TO PROTECT DOWNSTREAM AREAS. DURING ALL CONSTRUCTION, EROSION AND SEDIMENTATION SHOULD BE CONTROLLED BY THE FOLLOWING TECHNIQUES:

- REVEGETATE EXPOSED AREAS AND SLOPES AS SOON AS POSSIBLE.
- MINIMIZE AREA TO BE CLEARED AND GRUBBED.
- PROTECT EXPOSED SLOPES WITH PLASTIC OR SYNTHETIC MULCHES.

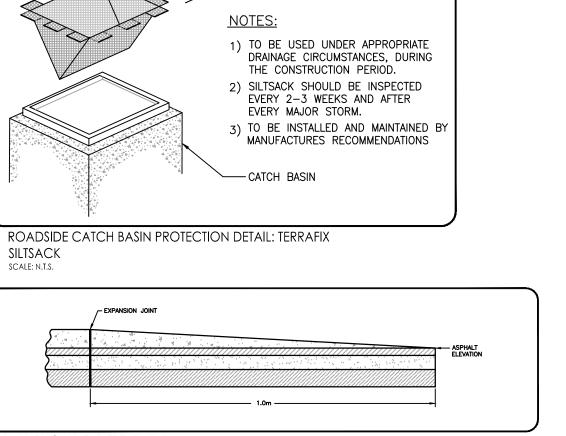
LIMIT THE EXTENT OF EXPOSED SOILS AT ANY GIVEN TIME.

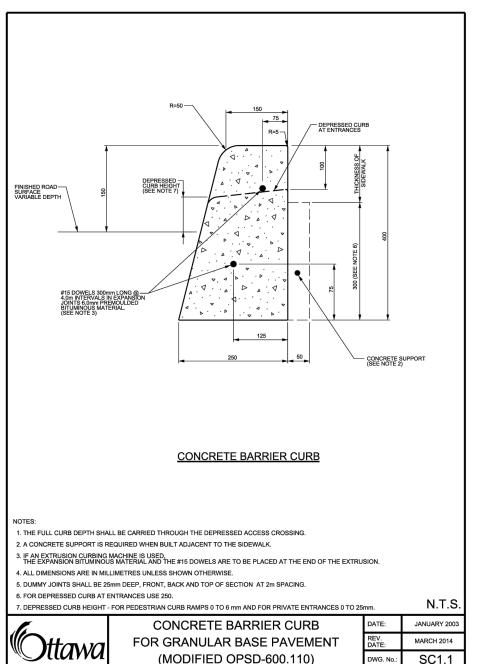
- INSTALL CATCH BASIN INSERTS OR EQUIVALENT IN ALL PROPOSED CATCH BASINS AND CATCH BASIN MANHOLES AND IN ALL EXISTING CATCH BASINS THAT WILL RECEIVE RUN-OFF FROM THE SITE.
- A SILT FENCE SHALL BE INSTALLED AROUND THE PERIMETER OF ALL AND ANY STOCKPILES OF MATERIAL TO BE USED OR REMOVED FROM SITE. (LOCATION TO BE
- A VISUAL INSPECTION SHALL BE DONE DAILY ON SEDIMENT CONTROL MEASURES AND CLEANED OF ANY ACCUMULATED SILT AS REQUIRED. THE DEPOSITS WILL BE DISPOSED OFF SITE AS PER THE REQUIREMENTS OF THE CONTRACT.
- SEDIMENT CONTROL BARRIERS MAY ONLY BE REMOVED TEMPORARILY WITH APPROVAL OF CONTRACT ADMINISTRATOR TO ACCOMMODATE CONSTRUCTION OPERATIONS, ALL AFFECTED BARRIERS MUST BE REINSTATED AT NIGHT WHEN CONSTRUCTION IS COMPLETED. NO REMOVAL WILL OCCUR IF THERE IS A SIGNIFICANT RAINFALL EVENT ANTICIPATED (>10mm) UNLESS A NEW DEVICE HAS BEEN INSTALLED TO PROTECT EXISTING STORM AND SANITARY SEWER SYSTEMS, OR DOWNSTREAM
- NO REFUELING OR CLEANING OF EQUIPMENT IS PERMITTED NEAR ANY EXISTING
- CONTRACTOR SHALL REMOVE SEDIMENT CONTROL MEASURES WHEN, IN THE OPINION OF THE CONTRACT ADMINISTRATOR, THE MEASURE(S) IS NO LONGER REQUIRED. NO CONTROL MEASURES SHALL BE PERMANENTLEY REMOVED WITHOUT PRIOR WRITTEN AUTHORIZATION FROM THE CONTRACT ADMINISTRATOR.
- THE CONTRACTOR SHALL PERIODICALLY, OR WHEN REQUESTED BY THE CONTRACT ADMINISTRATOR, CLEAN OUT ACCUMULATED SEDIMENTS AS REQUIRED.
- THE CONTRACTOR SHALL IMMEDIATELY REPORT TO THE ENGINEER ANY ACCIDENTAL DISCHARGES OF SEDIMENT MATERIAL INTO THE WATERCOURSE, APPROPRIATE RESPONSE MEASURES, INCLUDING ANY REPAIRS TO EXISTING CONTROL MEASURES OR THE IMPLEMENTATION OF ADDITIONAL CONTROL MEASURES, SHALL BE CARRIED OUT BY THE CONTRACTOR WITHOUT DELAY.
- 13. CONTRACTOR SHALL INSTALL MUD MATS AT ENTRANCE TO THE SITE.

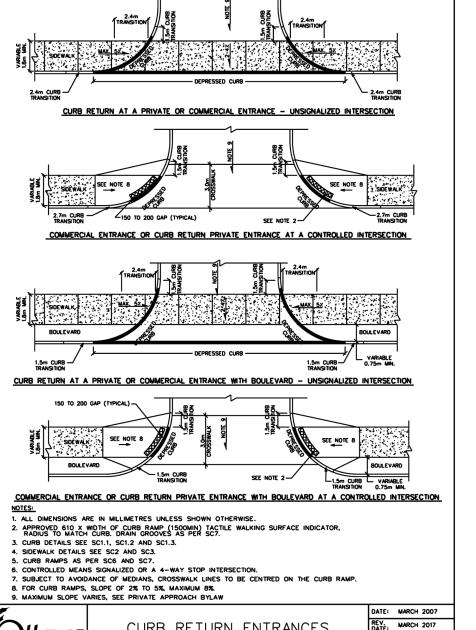
	DEVELOPMENT DEPARTMENT	AVVA			
9	REVISED SITE PLAN		WAJ	DCT	25.04.25
8	REVISED SITE PLAN		WAJ	DCT	21.09.21
7	REVISED SITE PLAN		WAJ	DCT	21.06.14
6	REVISED SITE PLAN		WAJ	DCT	20.09.16
5	REVISED SITE PLAN		WAJ	DCT	20.08.21
4	revised as per city comments		WAJ	DCT	20.05.04
3	revised as per city comments		WAJ	DCT	19.12.13
2	ISSUED FOR REVIEW		WAJ	DCT	19.07.19
1	ISSUED FOR BUILDING PERMIT, BUILDINGS A 8	k B	WAJ	DCT	19.06.27
Re	evision		Ву	Appd.	YY.MM.DE
File	Name: 160401483-DB	WAJ	KJK	WAJ	19.04.03
		Dwn.	Chkd.	Dsan.	YY.MM.DE

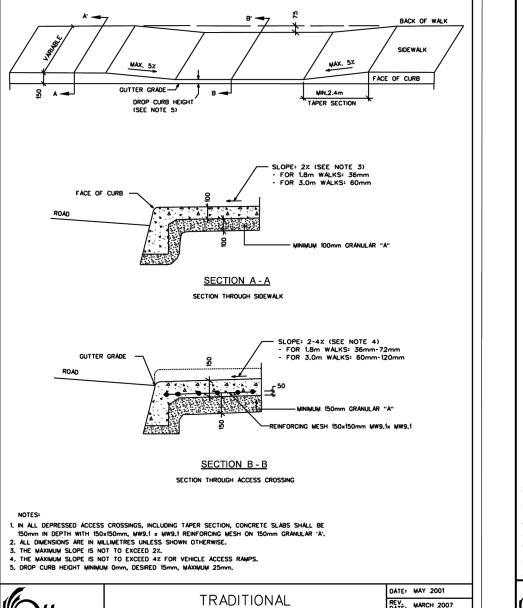
Permit-Seal

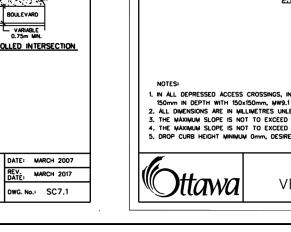
Client/Project

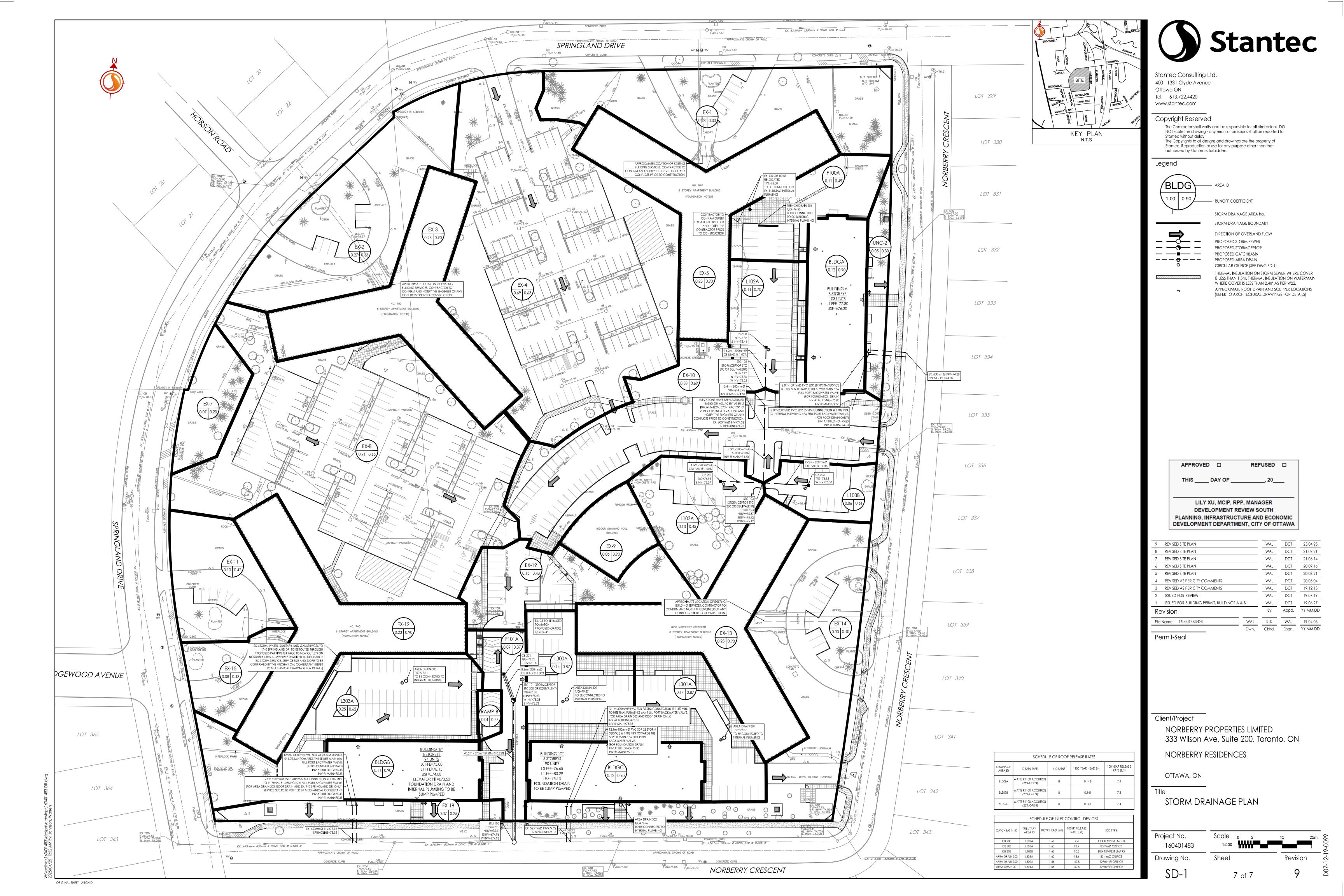

NORBERRY PROPERTIES LIMITED 333 Wilson Ave, Suite 200. Toronto, ON


NORBERRY RESIDENCES


OTTAWA, ON


EROSION CONTROL PLAN AND DETAIL SHEET


Project No. Scale AS SHOWN 160401483 Revision Drawing No.



BARRIER CURB END TREATMENT ORIGINAL SHEET - ARCH D

SILTSACK

SCALE: N.T.S.

