

1Door4Care: CHEO Integrated Treatment Centre - Geotechnical Investigation Report (1Door4Care)

Children's Hospital of Eastern Ontario Campus, 401 and 407 Smyth Road, Ottawa, Ontario

Infrastructure Ontario Project # 182-OCTC

25 October 2022

Executive summary

GHD Limited (GHD) has been retained by Ontario Infrastructure and Lands Corporation ("IO") to carry out a preliminary geotechnical investigation for the proposed development at the Children's Hospital of Eastern Ontario (CHEO) Campus located at 401 and 407 Smyth Road in Ottawa, Ontario. The proposed development will consist of constructing the 1Door4Care building that would be located in the southwestern portion of the CHEO's Campus. The Site is currently developed with a parking lot and landscaped areas. The gross floor area of the proposed Children's Treatment Centre building is approximatively 219,600 square-feet (20,401.5 square-meters). The preliminary development concept of the proposed development includes a six (6) storey building (L2 to L6 and Penthouse and Roof) with an underground basement (L1). An underground tunnel connection may also connect the new 1D4C building to the existing hospital building based on the concept plan. The anticipated development surrounding the building footprint may include parking, internal road network and underground utilities.

The geotechnical investigation was undertaken concurrently with an environmental and hydrogeological investigation. The previous drilling work was completed between 2019 and 2021 consisted of advancing a total of fourteen (14) exploratory geotechnical boreholes and installing ten (10) shallow and deep monitoring wells. Select soil and rock core samples were collected and submitted for geotechnical laboratory testing. An additional geotechnical investigation was completed in 2022 and composed of ten (10) supplementary boreholes, four (4) monitoring wells, and laboratory testing was also carried out in support of the updated development concept.

One level of underground basement is anticipated for the proposed building. This would result in the foundation subgrade being approximately 3.0 m below existing grade. Based on the boreholes data, the founding subgrade for the building at this depth will generally consist of dense silty/gravelly sand or completely weathered shale bedrock. The proposed building can be supported on conventional spread and strip footings placed within the native silty/gravelly sand or weathered shale bedrock. It is recommended that the building foundations be extended to the shale bedrock in order to avoid supporting the building foundations on two different types of materials (i.e., soil and bedrock) which could consequently result in excessive differential settlement. Raft (Mat) foundation may also be considered a feasible foundation option for this project, depending on the structural loads and the tolerable settlement. Depending on the structural loads, deep foundations such as cast-in-place concrete piles (caissons) socketed into the sound bedrock could be considered the foundation type best suited for supporting large structural loads due to the high load carrying capacity of the bedrock.

Swelling of the Georgian Bay shale bedrock is well documented and should be expected during and after construction. Any structures such as foundation walls and slabs that will be placed directly on the shale bedrock, should be designed for the full loads imparted by the swelling of the shale over the design life of the structures. Alternatively, the design for the foundation walls and slabs should incorporate measures to accommodate swelling such as a sufficient delay period after excavation or placement of compressible materials to mitigate the impact of the expected deformations.

The amount of seepage into excavations will depend on the depth of excavation relative to the groundwater level at the time of construction and the hydraulic conductivity of the excavated soils/bedrock. The measured groundwater levels within the installed monitoring wells were found to range from approximately 1.5 to 5.3 mBGS. It is expected that seepage rate into the excavation within the native silty/gravelly sand deposits will be moderate to high. If the excavation is to be above the groundwater table, minor to moderate groundwater ingress can readily be handled by using installation of sumps and pumps at strategic locations at the base of excavation. If the excavation is to be extended to a greater depth and below local groundwater table, an active pre-construction dewatering system such as well points may be required depending on the depth and size of excavations. Please refer to the Hydrogeological Assessment Report prepared by GHD for this project under separate cover.

The possible presence of cobbles and boulders at this Site and their impact on the excavation should be clearly stated in the project agreement.

Footings subject to frost action should have a minimum soil cover of at least 1.8 m according to OPSD 3090.101 for Southern Ontario or be protected using equivalent insulation.

Based on the results of this investigation and the results of an MASW survey conducted by GHD, the Site can be classified as Class 'B' for seismic load calculations.

Qualified geotechnical personnel should inspect all stages of the proposed development. Specifically, they should ensure that the materials and conditions comply with this geotechnical investigation report. In addition, qualified geotechnical personnel should provide material testing services prior to and during foundation preparation and construction.

2

Contents

1.	Introd	duction		5
2.	Field	and Labo	pratory Work Procedures	6
	2.1	Safety	Planning and Utility Clearances	6
	2.2	Boreho	ble Advancement and Field Testing	6
	2.3	Monito	ring Well Installation	8
	2.4		prrosivity Testing	8
	2.5	Organie	c Content Testing	8
	2.6	Multi-cl	hannel Analysis of Surface Waves (MASW)	8
	2.7		ysical Survey	8
	2.8		chnical Laboratory Testing	8
3.	Site C	Seology a	nd Subsurface Conditions	9
	3.1		al Geology	9
	3.2	•	ratigraphy	9
		3.2.1	Ground Cover	10
		3.2.2		10
		3.2.3		10
		3.2.4	Shale Bedrock	11
	3.3		chnical Laboratory Test Results	12
		3.3.1	Grain Size Distribution	12
		3.3.2	Atterberg Limits	13
		3.3.3 3.3.4	Proctor Test	14 14
		3.3.4 3.3.5	Uniaxial Compressive Strength of Intact Rock Core Free Swell Test	14
		3.3.6	Organic Content	15
	3.4		dwater Conditions	15
4.	Engir	neerina Di	iscussion and Assessment	16
	4.1	-	al Geotechnical Evaluation	16
	4.2		eparation and Grading	17
	4.3	Founda		17
			Conventional Spread/Strip Footings	18
		4.3.2	Raft (Mat) Foundation	18
		4.3.3	Deep Foundation	18
	4.4	Time D	Dependent Rock Deformation	19
	4.5	Underg	ground Basement and Tunnel Slab	19
	4.6	Founda	ation Wall	20
	4.7	Lateral	Earth Pressures	20
	4.8	Seismi	c Site Classification	21
	4.9	Pavem	ent Design	21
		4.9.1	Subgrade Preparation	21
		4.9.2	Recommended Pavement Structure	22

		4.9.3 Drainage	22
5.	Cons	truction Considerations	23
	5.1	Excavation and Temporary Shoring	23
	5.2	Temporary Ground Water Control	24
	5.3	Suitability of On-Site Soils	24
	5.4	Site Servicing	25
	5.5	Soil Corrosivity Potential	25
6.	Limit	ations of the Investigation	27

Figure index

Figure 2 Site Plan and Investigative Locations

Table index

Table 1B Groundwater Levels (mBGS)

Appendices

Appendix A	Record of Boreholes					
Appendix B	Geotechnical L	aboratory Test Results				
	Appendix B1	Grain Size Distribution Results				
	Appendix B2	Atterberg Limits Results				
	Appendix B3	Proctor Test Results				
	Appendix B4	Uniaxial Compression Strength Test Results of Rock				
	Appendix B5	Free Swell Test Results of Rock				
Appendix C	Rock Core Pho	otographs				
Appendix D	Multi-Channel	Analysis of Surface Waves (MASW)				
Appendix E	Geophysical S	urvey Reports and Supplemental Geophysical Investigation				
Appendix F	Laboratory Ce	rtificates of Analysis				

4

1. Introduction

GHD Limited (GHD) has been retained by Ontario Infrastructure and Lands Corporation ("IO") to carry out a geotechnical investigation for the proposed development at the Children's Hospital of Eastern Ontario (CHEO) Campus located at 401 and 407 Smyth Road in Ottawa, Ontario (hereafter referred to as the Site). A Site Location Map is provided on Figure 1.

The proposed development will consist of constructing the 1Door4Care building that would be located in the southwestern portion of the CHEO's Campus. The Site is currently developed with parking lot and landscaped areas. The gross floor area of the proposed building, as a Children's Treatment Centre, is approximatively 219,600 square-feet (20,401.5 square-meters). The updated preliminary development concept for the 1Door4Care building includes a six (6) storey building (L2 to L6 and Penthouse and Roof) with an underground basement (L1). An underground tunnel connection may also connect the new 1Door4Care building to the existing hospital building. The anticipated development surrounding the building footprint may include parking, internal road network and underground utilities. The location of the proposed development is shown in Figure 2.

A preliminary geotechnical investigation was carried out in accordance with GHD's work plan dated November 4, 2019, in response to a Request for Services issued by IO. The scope of work for the previous investigation included the advancement of fourteen (14) geotechnical exploratory boreholes. The borehole locations are presented on Figure 2. Additionally, Multi-Channel Analysis of Surface Waves (MASW) analysis and a geophysical survey. The geotechnical investigation was undertaken concurrently with the environmental and hydrogeological investigations.

Additional geotechnical investigation was proposed to assess the geotechnical requirements at the Site in support of the updated proposed development concept.

This report comprises of the geotechnical investigation, the geophysical survey and the results of the MASW analysis completed at the Site previously, as well as the additional geotechnical work completed for the 1Door4Care building. The findings of the hydrogeological and environmental investigations will be presented under separate covers.

The additional geotechnical investigation for this Site included advancing ten (10) geotechnical exploratory boreholes. The borehole locations are presented on Figure 2. In general, the objectives of the 2019 and 2022 geotechnical investigations are as follows:

- Assess the subsurface soil/rock and groundwater at the borehole locations.
- Carry out laboratory testing on selected soil and rock core samples to assess geotechnical properties.
- Conduct multichannel analysis of surface waves (MASW) to evaluate soil shear wave velocity and define Site classification for seismic site response.
- Carry out laboratory chemical analysis on selected soil samples to assess soil potential for sulphate attack on construction concrete (class of exposure) and soil corrosivity on ductile cast iron elements.
- Complete geophysical Survey to determine the location of buried infrastructure, objects/elements or obstructions within the development area.
- Provide professional opinions and recommendations regarding the design and construction of proposed building foundations, floor slab, pavements, and to assess the anticipated construction conditions pertaining to excavation, backfilling, and groundwater control.

The additional geotechnical investigation was carried out in accordance with GHD's work plan dated June 3, 2022, in response to a Request for Services issued by IO.

This report summarizes the activities and findings of the previous and current geotechnical investigation.

2. Field and Laboratory Work Procedures

2.1 Safety Planning and Utility Clearances

Upon project initiation, a Site-specific Health and Safety Plan (HASP) was prepared for implementation during the field investigation program. The HASP presented the visually observed Site conditions and identified potential physical hazards to field personnel. Required personal protective equipment was also listed in the HASP. The HASP was reviewed by GHD's field personnel prior to undertaking field activities and a copy of the HASP was maintained at the Site for the duration of the investigative work. Health and Safety requirements in the HASP were implemented during the field investigation program.

Prior to initiating the subsurface investigation activities, all applicable utility companies (gas, hydro, bell, network cables, pipeline and municipal sewers, etc.) were contacted. In addition, a private utility locator (Multiview Locates Inc.) was utilized to demarcate the location of the privately owned utilities within the area of the boreholes.

2.2 Borehole Advancement and Field Testing

Drilling activities for the preliminary geotechnical investigation were conducted during the period between November 26 and December 4, 2019 under the full-time supervision of an experienced GHD technical representative. The drilling activities consisted of the advancement of fourteen (14) exploratory geotechnical boreholes (denoted as MW1 to MW5, BH6 to BH8, MW9, MW10 and BH11 to BH14) to approximate depths varying between 2.3 m and 11.4 m below ground surface (mBGS). In addition, ten (10) shallow and deep monitoring wells were installed in some of the completed boreholes.

Drilling activities for the supplementary geotechnical investigation was conducted between July 5 and July 16, 2022, under the full-time supervision of an experienced GHD technical representative. The drilling activities consisted of the advancement of ten (10) exploratory geotechnical boreholes (denoted as MW14, BH15, BH16, MW17, MW18, BH19 to BH22, and MW23) to approximate depths varying between 1.3 m and 11.1 mBGS. In addition, four (4) shallow and deep monitoring wells were installed in some of the completed boreholes.

The approximate locations of the drilled boreholes and monitoring wells are shown on Figure 2.

The drilling activities were conducted utilizing a track mounted conventional drilling rig, supplied and operated by a Ministry of the Environment, Conservation and Parks (MECP) licensed well driller (Profile Drilling Inc. and Aardvark Drilling Inc.).

Soil samples were generally collected every 0.75 m depth intervals and into the completely weathered shale bedrock. All sampling was conducted using a 50 millimetre (mm) outside diameter split spoon sampler in general accordance with the specifications of the Standard Penetration Test Method (ASTM D1586). The relative density or consistency of the subsurface soil layers were measured using the Standard Penetration Test (SPT) method, by counting the number of blows ('N') required to drive a conventional split barrel soil sampler 0.3 m depth.

Rock coring was subsequently carried out in six boreholes (MW2, MW3, MW4, MW14, BH21, MW23) using diamonddrilling methods to confirm the presence of bedrock and to assess bedrock quality. Rock coring was carried out and extended to depths varying between approximately 5.7 and 8.9 m into the bedrock. Rock cores were obtained using a HQ sized core barrel, placed in core boxes, and visually examined and logged.

The supervising technician logged the borings and examined the soil/rock samples as they were obtained. The soil and rock core samples were transported to GHD's geotechnical laboratory where they were further reviewed by a senior geotechnical engineer. The detailed results of the examination are recorded on the boreholes presented in **Appendix A**.

Upon completion of drilling activities, the ground elevations at the borehole locations were surveyed by J.D.Barnes Limited using a geodetic benchmark (BM) and the UTM Coordinate System

(UTM-18 NAD83). A summary of the survey information is presented in the table below.

Table 2-1: Summary of Advanced Boreholes in the 1Door4Care Building Area

Borehole	Location – UTM	Coordinate System	Total	Ground	Length of	Monitoring
Identification	Northing	Easting	Borehole Depth, including rock coring (mBGS)	Surface Elevation (mAMSL)	Rock Coring (m)	Well Installation Tip Depth (m
MW1	5027668.5	448937.0	5.5	82.5	-	5.5
MW2	5027646.0	448956.6	11.3	82.4	7.2	11.3
MW3	5027642.1	448935.6	11.4	81.6	7.3	11.4
MW4	5027622.0	448917.9	8.4	80.3	5.7	8.0
MW5	5027605.0	448917.8	3.1	80.5	-	3.1
BH6	5027626.3	448896.3	2.4	80.0	-	-
BH7	5027643.8	448912.5	2.4	80.4	-	-
BH8	5027623.4	448936.6	3.1	80.8	-	-
MW9	5027678.6	448898.5	3.8	80.5	-	1.8
MW10	5027644.6	448886.3	3.8	79.7	-	3.8
BH11	5027617.5	448987.2	2.5	81.3	-	-
BH12	5027580.9	448954.0	3.8	81.3	-	-
BH13	5027562.9	448996.6	2.4	81.4	-	-
BH14	5027560.9	448919.4	2.3	81.2	-	-
MW14	5027581.3	448971.5	11	81.2	8.9	7.6
BH15	5027585.6	448950.5	1,8	81.2	-	-
BH16	5027602.7	448967.8	1.6	81	-	-
MW17	5027603.8	448944.2	1.8	80.9	-	1.8
MW18	5027616.5	448962.1	2.1	81.0	-	2.1
BH19	5027647.2	448901.1	1.4	80.3	-	-
BH20	5027660.3	448923.8	2.6	81.2	-	-
BH21	5027675.7	448916.2	11	81.0	8.4	-
BH22	5027664.6	448897.9	1.4	80.4	-	-
MW23	5027676.3	448955.6	11.1	82.9	7.6	9.2

These elevations should not be used for construction purposes.

2.3 Monitoring Well Installation

Fourteen (14) shallow and deep monitoring wells were installed in eleven (11) select boreholes (MW1 to MW5, MW9, MW10, MW14, MW17, MW18, and MW23) for long term groundwater level monitoring and for the hydrological study. In Boreholes MW2, MW3 and MW4 shallow and deep wells were installed in separate borings located adjacent to each other.

Each monitoring well was instrumented with a 50 mm diameter, Schedule 40 PVC screen and completed with 50 mm diameter PVC riser pipe and J-plug. A silica sand pack was placed in the annular space between the PVC screen pipe and the borehole annulus to approximately 0.3 m above the top of the screen. A bentonite seal and hole plug was installed in the remaining borehole annulus above the sand pack. A protective flushmount casing with a concrete collar was placed around each monitoring well. The well completion details for each monitoring well is presented on the borehole records provided in Appendix A.

2.4 Soil Corrosivity Testing

Corrosivity testing was conducted on fifteen (15) selected samples extracted from the drilled boreholes in accordance with ASTM and CSA Standards to assess the corrosion potential against ductile iron pipes and sulphate attack on concrete. The certificates of analysis associated with the corrosivity test results are provided in Appendix F and results are discussed in Section 5.5.

2.5 Organic Content Testing

An organic matter content test was carried out on eight (8) samples extracted from the drilled boreholes. The certificates of analysis associated with the organic content test results are provided in Appendix F and the results are discussed in Section 3.3.6.

2.6 Multi-channel Analysis of Surface Waves (MASW)

In order to measure the ground shear wave velocity at the proposed building location and define the Site classification for seismic site response, a multi-channel analysis of surface waves (MASW) was carried out by GHD along two (2) select investigated lines within the Site. The purpose of the MASW survey was to assess the seismic site class in accordance with the Ontario Building Code (OBC 2012) by measuring the average shear wave velocity within the upper 30+ m of the soil/rock profile directly under the assumed founding level of the proposed building.

The findings and the obtained results of the MASW survey are discussed in Section 4.8 and the related MASW report is provided in Appendix D.

2.7 Geophysical Survey

A geophysical survey was completed between November 2019 and January 2020, by Multiview Locates Inc. at the Site. The objective of this survey was to detect and map the presence of potential underground storage tanks or any buried metallic objects within the development area. The geophysical work consisted of an electromagnetic (EM31) survey and ground penetration radar (GPR). The geophysical survey reports are provided in Appendix E.

Additional investigation was conducted by GHD to investigate the reported anomalies by advancement of seven test pits at the Site. Details of GHD's observations and related field work is presented in Appendix E.

2.8 Geotechnical Laboratory Testing

All geotechnical laboratory testing was completed in accordance with the latest editions of the ASTM standards. Geotechnical laboratory testing consisted of moisture content tests on all recovered soil samples, as well as grain size distribution analysis (sieve and hydrometer) on 23 select soil samples. Atterberg Limit testing was also conducted on

8

sixteen (16) soil samples selected for grain size analysis that exhibited plasticity to assess soil plasticity properties. Standard Proctor compaction test was conducted on ten (10) bulk samples collected from the auger cuttings obtained from the fill layers within the boreholes.

Laboratory uniaxial compressive strength (UCS) test was carried out on ten (10) select rock core samples. In addition, four (4) rock core samples were submitted to Western University for free swell test. The free swell tests were carried out in an unconfined state such that the shale bedrock is free to swell in all directions. Two (2) additional samples were submitted for free swell testing from the current investigation; the testing is currently ongoing and due to testing time, the results will be presented in an addendum once available.

Unit weight test was not carried out on soil samples due to the difficulty to obtain intact soil samples for testing. The collected soil samples were classified/described in general accordance with the ASTM D2487 - Standard Practice for Classification of Soils for engineering purposes (Unified Soil Classification System-USCS).

Geotechnical laboratory test results are discussed in Section 3.3. The results of moisture content determination tests, grain size analyses and Atterberg Limits are provided on the borehole records in Appendix A. The gradation curves, plasticity charts, standard proctor, uniaxial compressive strength (UCS) test, and previously completed free swell tests results are provided in Appendix B.

3. Site Geology and Subsurface Conditions

3.1 Regional Geology

Based on the Quaternary Geology of Ontario map¹, the site is situated in an area of fluvial deposits consisting of gravel, sand, silt and clay deposited on modern flood plains. The Bedrock Geology of Ontario map², indicates the Site is underlain by the upper Ordovician aged shale of the Georgian Bay Formation and Billings and Carlsbad Formations. The Georgian Bay Formation consists of interbedded grey to dark grey shale and fossiliferous calcareous siltstone to limestone. In eastern Ontario the Billings Formation and consists of dark blue-grey to brown to black shale with thin interbeds of limestone or calcareous siltstone. Review of the bedrock topography map and MECP well records for the Site, the depth to the bedrock surface is anticipated to range from 0.8 m to 3.6 m below ground surface or at elevations between 75 m and 80 m.

In general, based on the above geological mapping, the subject Site is situated in an area of fluvial deposits consisting of gravel, sand, silt and clay soils followed by shale bedrock.

3.2 Site Stratigraphy

It should be noted that the subsurface conditions are confirmed at the borehole locations only, and may vary at other locations. The boundaries shown on the borehole records represent an inferred transition between the various strata, rather than a precise plane of geological change. It must be understood that actual contacts between deposits will typically be gradational as a result of neutral geologic processes. Variation in the deposit boundaries from those described in the borehole records must be anticipated. Therefore, design and construction equipment and procedures must be selected to accommodate significant variations in the deposit boundaries. Details of the subsurface conditions are provided on the borehole records presented in Appendix A.

The soil conditions observed in the boreholes advanced for this geotechnical investigation are generally consistent with the described geology of the region as presented in Section 3.1 of this report. The general stratigraphy at the Site consists of fill/disturbed soils underlain by silty sand/gravelly sand/sand and silt/sandy gravel/clayey silty sand deposits followed by bedrock. A brief description of each soil stratum is summarized below:

9

¹ Ministry of Northern Development and Mines – Quaternary Geology of Ontario – Southern Sheet – Map 2556.

² Ministry of Northern Development and Mines – Bedrock Geology of Ontario – Southern Sheet – Map 2544

3.2.1 Ground Cover

<u>Topsoil</u>

A surficial layer of topsoil was encountered at the ground surface of boreholes MW1, MW2, MW3, MW4, BH20, and BH21 which were advanced within grassed areas. The thickness of the topsoil layer ranged from approximately 50 mm to 100 mm. Classification of this material was based solely on visual and textural examination. It should be noted that the thickness of topsoil can vary between borehole locations.

<u>Asphalt</u>

Boreholes MW5, BH11, BH12, BH13, BH14, MW14, BH15, BH16, MW17, MW18, and BH23 have been drilled on the existing pavement of the parking areas and encountered an asphalt surface layer. The thickness of the asphalt ranged between 50 to 75 mm.

3.2.2 Fill / Disturbed Soil

Earth fill / disturbed soil was encountered in all boreholes at the ground surface or below the topsoil/asphalt, and extended to a depth varying from approximately 0.4 to 3.2 mBGS. The fill composition is in general heterogeneous, consisting of gravelly sand/silty sand/sandy silt or sand and gravel. Rootlets, wood pieces and asphalt fragments were observed within the fill layer. Also, the upper portion of the fill layer was observed to be frozen.

SPT 'N' values obtained within the earth fill layer varied between 4 and 98 blows per 0.3 m of penetration, indicating a variable degree of compaction. The elevated blow counts is likely due the presence of gravel and cobbles within the fill layer or the frozen ground. Water content measurements obtained from extracted fill samples varied between 2 and 25 percent by weight. The low moisture content is likely due to the presence of gravel and cobble fragments within the tested fill samples and the high moisture content is likely due to the presence of clay and/or ice lenses within the tested fill samples.

Gradation analysis was completed on eight selected samples of the fill layer. The results are presented on the borehole records and are tabulated in Section 3.3.1. The gradation analysis curve is presented in Appendix B.

It is possible that the thickness and quality of the fill (presence of deleterious materials or organics) can vary between borehole locations.

3.2.3 Native Soil

Underneath the fill layer, a deposit varying in composition from silty sand/gravelly sand/sand and silt/sandy gravel/clayey silty was encountered and extended to depths of approximately 1.2 m to 3.5 m bgs. Borehole BH15, MW18, BH19 and BH22 were terminated within the granular deposit at depths varying from 1.4m to 2.1mBGS, all remaining boreholes extended to the bedrock surface.

SPT 'N' values obtained within this deposit varied between 5 blows per 0.3 m of penetration and greater than 50 blows per 0.075 m of penetration (refusal), indicating a loose to very dense relative density, but generally compact to dense condition. The elevated blow counts/refusal is generally occurring near the bedrock surface.

The moisture content of the samples collected varied generally between 3 and 30 percent by weight. The low moisture content is likely due to the presence of gravel or shale and cobble fragments within the tested sand samples, and the high moisture content of 28 and 30 percent is likely due to the high percentage of clay within the silty sand deposit.

Gradation analysis was completed on fifteen selected samples of the sandy deposit. The results are presented in the borehole records and are tabulated in Section 3.3.1. The gradation analysis curves are presented in Appendix B. Atterberg limits tests were also performed on sixteen soil samples selected for grain size analysis that exhibited plasticity. The results are presented in the borehole records and are tabulated in Section 3.3.2. The plasticity charts are presented in Appendix B.

3.2.4 Shale Bedrock

Bedrock was encountered in all boreholes at a depth of 0.9 to 3.8 mBGS with the exception of Borehole BH15, MW18, BH19 and BH22. The shale bedrock was cored in six boreholes (MW2, MW3, MW4, MW14, BH21, and MW23) to verify the presence of bedrock and assess the bedrock quality. The boreholes within the completely weathered zones were advanced by auguring and SPT sampling for variable thicknesses, but generally less than 2 m before reaching auger refusal. From the recovered rock cores, the bedrock was visually identified as the Georgian Bay Formation. The shale was generally observed to be dark grey in color, thinly laminated, completely weathered at its surface and became gradually fresh with depth. This formation consists generally of a dark grey weak to moderately strong shale interbedded with light grey color strong to very strong limestone and siltstone layer.

Due to the method of investigation and the presence of completely weathered shale at the bedrock surface, the top of the bedrock profile cannot be accurately determined. However, the estimated depths to the completely weathered shale bedrock surface from augering and coring is listed in the following table:

Borehole Identification Number	Estimated Depth/Elevations of Bedrock Surface (mBGS/mAMSL)
MW1	3.8 / 78.7
MW2	3.8 / 78.6
MW3	3.1 / 78.6
MW4	1.5 / 78.8
MW5	1.7 / 78.8
BH6	0.9 / 79.2
BH7	1.5 / 78.9
BH8	1.5 / 79.3
MW9	2.0 / 78.5
MW10	2.3 / 77.6
BH11	1.5 / 79.8
BH12	2.3 / 79.0
BH13	1.1 / 80.3
BH14	1.0 / 80.1
MW14	1.6 / 79.6
BH16	1.2 / 79.8
MW17	1.3 / 79.6
BH20	2.2 / 79.0
BH21	2.6 / 78.4
MW23	3.5 / 79.4
Notes:	
mBGS: metres Below Ground Surface	
mAMSL metres Above Mean Sea Leve	

Table 3-1 Depth / Elevation of Bedrock Surface

The Total Core Recovery (TCR) achieved with the HQ size core bit ranged from approximately 64 to 100% and the Solid Core Recovery (SCR) ranged from 59 to 100%. The Rock Quality Designation (RQD) ranged from 0 to 100% with the lower values of RQD observed near the surface of the rock and percentages generally increased with depth.

The RQD values are a general indicator of rock mass quality; however, in horizontally laminated sedimentary rock formation such as the Georgian Bay Formation, the RQD values may likely underestimate the quality of the rock.

Photographs of the Rock Core samples are presented in Appendix C.

Ten (10) rock core samples were submitted to the GHD geotechnical laboratory for Uniaxial Compressive Strength (UCS) testing. The results of UCS testing are tabulated in Section 3.3.4 and are also presented in Appendix B.

Time dependent deformation (i.e. swelling) of the Georgian Bay shale bedrock is well documented and should be expected during and after construction. Four (4) rock core samples were submitted to Western University for free swell test. The free swell tests are carried out in an unconfined state such that the shale bedrock is free to swell in all directions. Based on the data from the laboratory testing, the horizontal swelling potential ranges from 0 to 0.05 % log cycle of time, while vertical swelling potential ranges from 0.1 to 0.2 % log cycle of time.

Rock at depth is subjected to stresses resulting from the weight of the overlying strata and from locked in stresses of tectonic origin. If the stresses within the rock exceeded the strength of the rock, it will likely impact the behavior and stability of the excavation within the rock. It is well documented that the sedimentary rock formations in Southern Ontario, including the Georgian Bay Formation possess high horizontal stresses which generally exceed the vertical stress.

Based on previous experience, the Georgian Bay Formation could contain pockets of combustible gas. Even though during the present investigation there were no physical indications (e.g. bubbles in the drill water, odor in the rock cores) of the presence of gas in the boreholes advanced into the bedrock, monitoring of the gas should be carried out during construction.

3.3 Geotechnical Laboratory Test Results

3.3.1 Grain Size Distribution

Grain size analyses consisting of sieve and hydrometer testing were carried out on twenty-three (23) select soil samples extracted from the boreholes. The obtained results are reported in the borehole records and are tabulated in the table on the next page. The gradation analysis curves are presented in Appendix B.

Borehole Identification	Depth (mBGS)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Fines Silt & Clay (%)
MW1	1.5-2.1 & 2.3-2.9	26	58	11	5	16
MW2	1.5-2.1 & 2.3-2.9	32	48	13	7	20
MW3	0.8-1.4	43	52	5		5
MW3	2.3-2.9	16	59	17	8	25
MW4	0.8-1.4	11	59	20	10	30
MW5	0.9-1.2 & 1.5-1.7	8	62	20	10	30
MW7	0.8-1.4	3	54	30	13	43
BH8	0.8-1.4	8	59	22	11	33
MW9	0.8-1.4 & 1.5-2.0	14	53	20	13	33
MW10	0.8-1.4	26	47	18	9	27
BH12	0.8-1.4 & 1.5-2.1	18	52	19	11	30
BH15	0.1-0.6	43	47	8	2	10
	0.6-1.8	25	46	19	10	29

 Table 3-2
 Grain Size Distribution Test Results

Borehole Identification	Depth (mBGS)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Fines Silt & Clay (%)
BH16	0.1-0.6	33	56	8	3	11
MW17	0.1-0.6	22	53	16	9	25
MW18	0.1-0.6	49	44	5	2	7
	0.8-2.1	35	50	11	4	15
BH19	0-0.6	39	47	9	5	14
	0.6-1.4	37	40	13	10	23
BH20	0.1-0.6	15	55	11	19	30
	0.6-2.2	6	42	31	21	52
MW23	0.1-3.2	34	48	13	5	18
	3.2-3.5	49	32	13	6	19

Based on the gradation test results, the tested soil sample of fill/disturbed layer can be classified as gravelly sand/silty sand/sandy silt or sand, and the tested soil samples of the native deposit can be classified as silty sand/gravelly sand/sand and silt/sandy gravel/clayey silty.

3.3.2 Atterberg Limits

Atterberg limits test was conducted on sixteen (16) of the soil samples selected for grain size analysis. The obtained results are reported in the borehole records and are tabulated in the following table. The test results are presented in the plasticity chart in Appendix B.

Borehole Identification	Depth (mBGS)	W	LL	PL	PI	Soil Description and Classification
MW3	2.3-2.9	11	31	21	10	Low Plasticity Inorganic Clay (CL)
MW4	0.8-1.4	15	20	20	9	Low Plasticity Inorganic Clay (CL)
MW5	0.9-1.7	9	29	17	12	Low Plasticity Inorganic Clay (CL)
BH7	0.8-1.4	7	30	22	8	Low Plasticity Inorganic Clay (CL)
BH8	0.8-1.4	10	24	19	5	Low Plasticity Inorganic Clay (CL-ML)
MW9	0.8-2.0	9	27	20	7	Low Plasticity Inorganic Clay (CL-ML)
MW10	0.8-1.4	9	24	21	3	Inorganic Silt (ML)
BH12	0.8-2.1	4	26	20	6	Low Plasticity Inorganic Clay (CL-ML)
BH15	0.6-1.2	-	-	-	-	Non-Plastic
BH16	0.6-1.2	-	-	-	-	Non-Plastic
BH19	0.8-1.4	-	-	-	-	Non-Plastic
BH20	1.2-1.8	-	-	-	-	Non-Plastic
BH21	0.6-1.2	-	-	-	-	Non-Plastic
MW14	0.6-1.2	-	-	-	-	Non-Plastic
MW17	0.1-0.6	-	-	-	-	Non-Plastic
MW23	3.2-3.9	-	-	-	-	Non-Plastic
Notes:						

Table 3-3 Atterberg Limits Test Results

Boreh Identi	ole fication	Depth (mBGS)	w	LL	PL	PI	Soil Description and Classification	
W:	Natural water content in percent							
LL:	Liquid limit							
PL:	Plastic limit							
PI:	Plasticity index							

Based on the gradation and Atterberg test results, the tested soil samples of the native deposit can be generally classified as silty sand that generally contains low plasticity clay.

3.3.3 Proctor Test

Ten (10) laboratory Standard Proctor compaction tests were conducted on bulk samples of the auger cuttings extracted from the surficial fill at the Site to determine the maximum dry density and optimum moisture content of the fill. The purpose of the testing was to assess the compactability during construction. The results are summarized below and are also provided in Appendix B.

Borehole Identification Number	Depth (mBGS)	Maximum Dry Density (kg/m³)	Optimum Moisture Content (%)
MW1	0.0-0.6	2,067	9.5
MW3	0.0-0.6	2,062	8.4
MW5	0.0-0.6	2,057	10
BH6	0.0-0.6	2,086	7.1
BH12	0.0-0.6	2,250	6.8
BH13	0.0-0.6	2,143	8.7
BH14	0.0-0.6	2,178	7.6
MW14	0.0-0.6	2,253	6.5
MW17	0.0-0.6	2,214	7.2
BH22	0.0-0.6	2,191	6.1

Table 3-4 Proctor Test Results

The tested samples maximum dry density ranged between 2,057 and 2,253 kg/m³ and the optimum moisture contents varied between 6.1 and 10 percent by weight. The measured in-situ moisture content of the tested samples varied between 2 and 12 percent indicating the fill material are generally within +/- 3 percent of the laboratory optimum for compaction.

3.3.4 Uniaxial Compressive Strength of Intact Rock Core

Laboratory uniaxial compressive strength (UCS) test was carried out on 10 (10) selected rock samples extracted from the cores. The results of these tests are summarized below and are also presented in Appendix B.

Borehole Identification	Rock Type	Sample Depth (mBGS)	UCS (MPa)				
MW2	Shale	5.13	35.9				
MW2	Shale	7.67	31.4				
MW2	Shale	9.70	24.4				

Table 3-5 UCS Test Results

Borehole Identification	Rock Type	Sample Depth (mBGS)	UCS (MPa)	
MW3	Shale	6.28	28.4	
MW3	Shale	7.83	33.5	
MW3	Shale	10.27	35.4	
MW4	Shale	3.26	41.8	
MW4	Shale	6.38	28.5	
MW4	Shale	7.58	30.5	
BH21	Shale	8.2	70.2	
Note: MPa: Megapasca	al			

Based on the results of the unconfined compressive strength test, the tested rock core samples may be generally classified in accordance with ISRM (International Society of Rock Mechanics) guidelines as moderately strong to strong.

3.3.5 Free Swell Test

In order to estimate the time dependent horizontal and vertical free swell rates, four (4) rock core samples were submitted to Western University for free swell test. The free swell tests are carried out in an unconfined state such that the shale bedrock is free to swell in all directions. Based on the data from the laboratory testing, the horizontal swelling potential ranges from 0 to 0.05 % log cycle of time, while vertical swelling potential ranges from 0.1 to 0.2 % log cycle of time. The results of the free swell tests are presented in Appendix B.

Testing for additional two (2) samples are currently being conducted; results will be presented in an addendum once completed.

3.3.6 Organic Content

The organic matter content test was carried out on eight (8) shallow samples from the fill layer and within the upper 0.6 m of boreholes. The results of these tests are summarized in the table below.

Borehole Number	MW1	MW2	MW3	MW5	BH6	BH12	BH13	BH14
Depth (mBGS)	0-0.6	0-0.6	0-0.6	0-0.6	0-0.6	0-0.6	0-0.6	0-0.6
Organic Matter by loss on ignition (%)	1.09	2.97	1.22	2.52	2.04	3.30	2.28	2.46

Table 3-6 Organic Content Test Results

The organic content of the tested soil samples from the fill layer ranged between 1.09 and 3.30 percent by weight. The values are considered to be low and will not impact the reuse of this material as engineered fill or backfill in settlement sensitive areas provided it is free of deleterious materials.

The certificates of analysis associated with the soil samples organic content test results are provided in Appendix F.

3.4 Groundwater Conditions

As part of this geotechnical investigation, night (9) shallow monitoring wells (MW1 to MW5, MW9, MW10, MW17 and MW18) were installed in select completed boreholes. Additionally, five (5) deep monitoring wells were installed adjacent to the shallow monitoring wells (MW2, MW3, MW4, MW14, and MW23). All boreholes appeared to be dry upon completion to their respective limits of investigation. The groundwater depths/elevations were measured on

several occasions. A summary of the groundwater level measurements collected within the monitoring wells are presented on the borehole records provided in Appendix A. The depth to the groundwater table at this Site ranged between 1.5 m to 5.3 mBGS and the elevation of the groundwater table varied between 77.1 m and 79.3 m.

In the long term, seasonal fluctuations of the groundwater level should be expected. Perched water table condition could develop in the fill after heavy precipitation and/or during spring thaw.

4. Engineering Discussion and Assessment

Recommendations provided below are based on boreholes advanced and geophysical tests completed during the previous and recently completed boreholes from the supplementary investigation.

4.1 General Geotechnical Evaluation

It is understood that the development will consist of constructing the proposed 1Door4Care building in the southwestern portion of the CHEO's Campus. The Site is currently developed with parking lot and landscaped areas. The preliminary development concept for the 1Door4Care building includes a six-storey building with one level of underground basement with the updated concept to potentially include an underground tunnel connection between the new 1Door4Care building to the existing hospital building. The surrounding area of the building footprint may include parking, internal road network and underground utilities. Further details of the proposed development activities at the Site are unknown to GHD and specific information with regard to founding depths below the ground surface, and footing/slab loading conditions were not available at the time of preparation of this report.

One level of underground basement is anticipated for the proposed building. This would result in the foundation subgrade being approximately 3.0 m below existing grade. Based on the borehole data, the founding subgrade for the building at this depth will generally consist of generally dense silty or gravelly sand or completely weathered shale bedrock. The proposed building can be supported on conventional spread and strip footings placed within the native silty/gravelly sand or weathered shale bedrock. It is recommended that the building foundations be extended to the shale bedrock in order to avoid supporting the building foundations on two different types of materials (i.e., soil and bedrock) which could consequently result in excessive differential settlement. Raft (Mat) foundation may also be considered a feasible foundation option for this project, depending on the structural loads and the tolerable settlement. Depending on the structural loads, deep foundations such as cast-in-place concrete piles (caissons) socketed into the sound bedrock. For preliminary design purposes, recommendations are provided for spread and strip footings, raft foundation and cast-in-place concrete piles (caissons) to support the proposed structures. Please refer to Section 4.3 for more details.

Swelling of the Georgian Bay shale bedrock is well documented and should be expected during and after construction. Therefore, any structures such as foundation walls and slabs that will be placed directly on the shale bedrock, should be designed for the full loads imparted by the swelling of the shale over the design life of the structures. The design for the foundation walls and slabs should incorporate measures to accommodate swelling such as a sufficient delay period and/or after excavation placement of a compressible material in order to mitigate the impact of the expected deformations. If the construction schedule permits, the construction of foundation walls and slabs that will be in direct contact with the shale bedrock could be delayed to allow the majority of the rock swell to occur (typically four to six months between excavation and installation of the foundations wall or slabs).

The amount of seepage into excavations will depend on the depth of excavation relative to the groundwater level at the time of construction and the hydraulic conductivity of the excavated soils/bedrock. The measured groundwater levels within the installed monitoring wells were found to range from approximately 1.5 to 5.3 mBGS. It is expected that seepage rate into the excavation within the native silty/gravelly sand deposits will be moderate to high. If the excavation is to be above the groundwater table, minor to moderate groundwater ingress can readily be handled by

using installation of sumps and pumps at strategic locations at the base of excavation. If the excavation is to be extended to a greater depth and below local groundwater table, an active pre-construction dewatering system such as well points may be required depending on the depth and size of excavations. Please refer to the Hydrogeological Assessment Report prepared by GHD for this project under separate cover.

The possible presence of cobbles and boulders at this Site and their impact on the excavation should be clearly stated in the project agreement.

Footings subject to frost action should have a minimum soil cover of at least 1.8 m according to Ontario Provincial Standard Drawing (OPSD) 3090.101 Frost Penetration Depths for Southern Ontario, or be protected using equivalent insulation.

The following sections provide additional comments and recommendations on the above topics as well as other geotechnical related design and construction issues.

4.2 Site Preparation and Grading

The ground cover and fill/disturbed materials at this Site extended to depths varying between approximately 0.4 m and 3.2 mBGS. The fill/disturbed materials generally have low shear strength and observed to contain rootlets, wood pieces, and asphalt fragments. Also, the upper portion of the fill was observed to be in a frozen state during the 2019 investigation.

The ground cover and any earth fill materials found to contain significant amounts of organics or deleterious materials should be removed prior to site grading activities and should not be used as backfill in settlement sensitive areas. The subgrade exposed after the removal of the unsuitable fill material will consist generally of native silty or gravelly sand soils. The subgrade soils should be visually inspected, compacted if required, and proof rolled using heavy equipment. Any soft, or unacceptable areas should be sub-excavated, removed as directed by the Geotechnical Engineer and replaced with suitable clean earth fill materials or imported granular materials placed in thin layers (150 mm thick or less) and compacted to a minimum of 98 percent Standard Proctor Maximum Dry Density (SPMDD).

The clean earth fill/disturbed soils and native soils encountered at the Site may be suitable for reuse as backfill to raise site grades (where required) or to be used as backfill against foundations or as trench backfill during installation of buried services, provided the material is free of deleterious materials and is within the optimum moisture content. Based on the standard proctor testing results, the fill soils are generally near their optimum water content for compaction. If the fill and native soils are to be reused as structural fill, it should be anticipated that reworking of the soils will be necessary to facilitate compaction through drying or slight wetting, and use of sheep's-foot roller compactors. It is believed that any bedrock generated during excavation may not be suitable for reuse as a backfill, because of the difficulties associated with breaking the rock fragments down, moisture conditioning and compaction.

Installation of engineered fill, where required, must be continuously monitored on a full-time basis by qualified geotechnical personnel.

4.3 Foundations

Structural foundation at the Site can consist of conventional spread/strip footings or mat foundation founded on native soils or weathered shale bedrock or deep foundations supported on sound bedrock. The common practice for the Serviceability Limit State (SLS) design of most structure and building foundations is to limit the total and differential foundation settlements to 25 mm and 15 mm, respectively. Other serviceability criteria for the proposed building may be determined by the structural engineer considering tolerable settlement that would not restrict the use or operation of the facilities.

The foundation design options are presented in more detail below:

4.3.1 Conventional Spread/Strip Footings

One level of underground parking is anticipated for the proposed building. This would result in the foundation subgrade being approximately 3.0 m below existing grade. Based on the boreholes data, the founding subgrade for the building at this depth will generally consist of dense silty/gravelly sand or weathered shale bedrock. It is recommended that the building foundations be extended to the shale bedrock in order to avoid supporting the building foundations on two different types of materials (i.e., soil and bedrock) which could consequently result in excessive differential settlement. For the purpose of preliminary design, spread and strip foundations placed on the weathered shale bedrock at depths between 0.9 m and 3.8 mBGS can be designed for a factored geotechnical resistance at Ultimate Limit State (ULS) of 800 kPa, and a geotechnical reaction at Serviceability Limit State (SLS) of 600 kPa. The recommended bearing capacity is for footing dimension of less than 3.0 m and subject to an engineering inspection and approval by qualified geotechnical engineer for all bearing surfaces. If larger footing dimensions are required, the geotechnical engineer should be consulted.

Footings subject to frost action should have a minimum soil cover of at least 1.8 m according to OPSD 3090.101 for Southern Ontario, or equivalent insulation.

During construction, the foundation subgrade should be protected from inclement weather, excessive drying, and ingress of free water.

The contractor should be prepared to deal with cobbles and boulders that may exist within the overburden during construction.

4.3.2 Raft (Mat) Foundation

A raft/mat foundation (concrete pad/structural slab) can be considered to support the proposed structure with attention to the following recommendations. The structural slab (mat/raft) should be extended to minimum depths between 0.9 m and 3.8 mBGS to be placed within the weathered shale bedrock.

For the design of a raft foundation placed on weathered shale bedrock, the modulus of vertical subgrade reaction can be taken as $k_v = 80$ MPa/m for a 0.3 m x 0.3 m square plate. For the design of a rectangular mat foundation of width "b" (m), the modulus of subgrade reaction (k_{vb}) can be calculated using the following equation:

$$K_{vb} = k_v/b [(m + 0.15)/1.5m]$$

where;

 k_{vb} = modulus of subgrade reaction for actual footing dimension b k_v = modulus of subgrade reaction (for a 0.3m x 0.3m square plate) b= width of the raft (m) L= length of raft (m) m= L/b

The modulus of subgrade reaction will be used by the structural engineers to model the deformation and stiffness response of the raft on soil to assess the suitability of this foundation option.

The exposed foundation grade on which the proposed mat will be supported should be inspected and approved by a geotechnical engineer prior to the construction of the foundations.

4.3.3 Deep Foundation

As an alternative foundation option, the proposed building can be supported on deep foundations (cast-in-place concrete caissons) that transfer the foundation loads to the sound bedrock. The caissons should be socketed at least 0.3 m into the sound bedrock. The bedrock was cored at sixth boreholes (MW2, MW3, and MW4, MW14, BH21, and MW23) within the proposed building footprint. Based on the data obtained from the cored boreholes, the estimated depth to sound bedrock at this Site is approximately 5.0 m to 6.0 mBGS or between elevation of 75 m and 76 m. For

caissons socketed nominally (0.3 m) into sound bedrock, preliminary design may be based on an end-bearing factored axial geotechnical resistance at ULS of 4.0 Megapascal (MPa). SLS resistances do not apply, since the SLS resistance for 25 mm of settlement is greater than the factored axial geotechnical resistance at ULS.

It should be noted that the base of any caisson excavations must be cleaned of loose rock or soil debris prior to concreting.

Temporary casing will be required when drilling through the wet overburden (wet sandy soils) to prevent sloughing and groundwater infiltration. The Contractor should determine the appropriate groundwater control measures in accordance with their equipment and methods to facilitate the caisson installations.

The caisson installation should be carried out under full time inspection by a geotechnical engineer from the ground surface, to verify that a competent bearing surface has been established at each caisson unit. The bearing surface of each caisson should be evaluated by visual examination of the auger cuttings during auguring, particularly at the caisson base, observation of the progress of drilling operations and comparison of the observations and depth/elevation of each caisson with the information presented on the borehole reports.

All pile caps and other structure foundations should be provided with a minimum of 1.8 m of soil cover for frost protection.

The deep foundations should be constructed in accordance with Ontario Provincial Standard Specification (OPSS).PROV 903 (*Deep Foundations*).

4.4 Time Dependent Rock Deformation

Rock deformation around any excavation extending into the bedrock will occur as both an initial elastic relaxation and as a time dependent deformation. Typically, the initial elastic movement will begin to occur immediately upon excavation. The time dependent deformation is composed of two phenomena (creep/stress relaxation and swelling).

Creep/stress relaxation will start to occur as soon as the stresses are relaxed around the excavation and continue over time. The swelling potential is highly variable since it depends on the stress state within the rock mass, groundwater conditions, calcite content and rock composition.

Swelling of the Georgian Bay shale bedrock is well documented and should be expected during and after excavation/construction. In order to estimate the time dependent horizontal and vertical free swell rates, four (4) rock core samples were submitted to Western University for free swell test. Based on the data from the laboratory testing, the underground basement slab and the foundation wall, and any structure in direct contact with the shale bedrock should be designed for horizontal free swell rates of approximately 0 to 0.05 % log cycle of time and vertical free swell rates of approximately 0.1 to 0.2 % log cycle of time.

If sufficient delays (typically four to six months) between excavation and the construction of foundation walls or slab on grade that will be in direct contact with shale bedrock are not possible, then the foundation walls and the slab on grade will need to be designed for the full loads imparted by the swelling of the shale over the design life of the structures or a compressible materials would need to be incorporated into the foundation walls and slab design. The results of the free swell tests will give an indication of the maximum swell rates in vertical and horizontal directions that can be used for the design.

4.5 Underground Basement and Tunnel Slab

The underground basement and tunnel slab for the one level basement are expected to be founded at approximately 3.0 mBGS. The founding soils at this depth are expected to comprise of dense sandy deposits and/or weathered shale bedrock. As mentioned above in Section 4.4, the bedrock at this site has a potential to swell which could consequently cause the slab to heave unevenly. Therefore, the slab should be designed as a structural slab (connected to the footings) to resist the full loads imparted by the swelling of the shale over the design life of the slab. Alternatively, the design for the slab should incorporate measures to accommodate swelling such as a sufficient delay period and/or

placing compressible materials between the bedrock and granular base for the slab in order to mitigate the impact of the expected deformations.

A qualified geotechnical engineer should review the condition of the subgrade beneath the proposed underground parking slab at the time of construction.

The floor slab should be placed on a 200 mm thick layer of well-graded granular base material consisting of 19 mm clear stone or crusher run limestone (or equivalent). For the structural design of the concrete slab-on-grade, a combined modulus of subgrade / granular base reaction coefficient (k) of 25 MPa/m can be used.

Due to the anticipated relatively shallow groundwater table at this Site, a subfloor drainage system and waterproofing membrane will be required beneath the slab. Recommendations for subfloor drainage can be provided on review of building plans. The purpose of the subfloor drainage system is primarily to prevent a build-up of hydrostatic pressure below the floor slab so that the slab does not need to be designed to resist hydrostatic load. The drainage system must be designed to collect and dispose of groundwater at a rate sufficient to prevent build-up of hydrostatic pressure. The purpose of placing a waterproofing membrane below the slab is to minimize potential for seepage of groundwater through the slab and keep the underground basement dry. If a permanent subfloor drainage system is provided, then the slab does not need to be designed to resist hydrostatic pressure.

As an alternative to a permanent subfloor drainage system, the basement can be supported on raft (mat) foundation (structural slab) and designed as a water tight tank. This will eliminate the need to install and maintain the subfloor drains, but is otherwise likely to be more costly. This will also protect the slab from uneven heave that may occur as a result of bedrock swelling.

4.6 Foundation Wall

As mentioned above in Section 4.4, the bedrock at this site has a potential to swell which could consequently result in additional stresses on the foundation wall. Therefore, the portion of the wall extending into the bedrock should be designed to resist the full loads imparted by the swelling of the shale over the design life of the foundation wall. Alternatively, the design for the wall should incorporate measures to accommodate swelling such as a sufficient delay period and/or placing compressible materials between the bedrock and the wall in order to mitigate the impact of the expected deformations.

A perimeter wall drainage system will need to be installed for the proposed building, where a basement is to be constructed (below grade space), to collect groundwater from within the surficial earth fill and native soil layers. A perimeter drainage system consisting of Terrafix Terradrain[™] 200, Mirafi Miradrain[™] 5000, and/or similar products is recommended. A waterproofing membrane such as Mirafi Miradri[™] and/or similar product compatible with the drainage system is also recommended. The perimeter drainage system should be provided with a collector pipe at the base of the foundation wall that drains to a sump pit and discharges to a positive outlet such as the municipal storm sewer. If a perimeter drainage system is provided, then the basement walls will not need to be designed to resist hydrostatic pressures.

The grade surrounding the foundation walls should be sloped (minimum of 3%) to minimize ponding of water on the ground surface and to provide positive drainage away from the foundation wall.

4.7 Lateral Earth Pressures

Structures subject to unbalanced earth pressures such as foundation walls, shoring systems, retaining walls and other similar structures should be designed to resist the lateral earth pressures. If required and depending on the type of shoring used during construction, the temporary shoring system for excavation support can be designed for the lateral earth pressures given in Sections 26.8, 26.9, and 26.10 of the Canadian Foundation Engineering Manual (CFEM) - 4th Edition. Surcharge loads and hydrostatic pressures should be considered as appropriate. The following table below summarizes the recommended soil parameters to be used for lateral earth pressure calculations at this Site:

Table 4-1 Lateral Earth Pressures

Soil Type	Bulk Unit Weight	Effective Angle of Internal Friction (°)	Coefficient of L	ateral Earth Pressure			
	γ (kN/m³)	φ'	Ka	Ko	Kp		
Fill / disturbed soil	18	25°	0.40	0.58	2.46		
Silty / Sand	20	30°	0.33	0.50	3.00		
Gravelly Sand	20	32°	0.31	0.47	3.25		
Bedrock	26	N/A	N/A	N/A			

If movement sensitive services exist close to the shoring, the lateral pressure should be computed using the coefficient of earth pressure at rest, $K_{0.}$

4.8 Seismic Site Classification

The latest Ontario Building Code (OBC) requires the assignment of a Seismic Site Class for calculations of earthquake design forces and the structural design based on a two percent probability of exceedance in 50 years. According to the latest OBC, the Seismic Site Class is a function of soil profile, and is based on the average properties of the subsoil strata to a depth of 30 m below the ground surface. The OBC provides the following three methods to obtain the average properties for the top 30 m of the subsoil strata:

- Average shear wave velocity.
- Average Standard Penetration Test (SPT) values (uncorrected for overburden).
- Average undrained shear strength.

Based on the results of this investigation and MASW report provided in Appendix D, the Site can be classified as **Class 'B'** for seismic load calculations subjected to code requirements.

4.9 Pavement Design

The following pavement design recommendations are provided for the on-grade parking facilities and access/driveways for the proposed 1Door4Care facility.

4.9.1 Subgrade Preparation

Earth fill consisting of silty sand to sandy silt, silty clay, and sand and gravel mixture was encountered at the ground surface or immediately beneath the ground cover (i.e., asphalt, topsoil) in all boreholes. The ground earth fill extended to depths between 0.4 m and 3.2 mBGS. The existing earth fill materials should be suitable to support the access/driveway and parking lot pavements. The excavated fill materials can be reused as engineered fill provided it is free of any deleterious materials and within optimal moisture content.

It is recommended that any subgrade comprising of existing fill be inspected for obvious soft/loose areas and presence of deleterious materials during construction. Should such areas be found, GHD can provide appropriate advice for replacement of the material and addressing local weak areas at that time.

Engineered fill to raise the grade can consist of select excavated fill provided it is free of any deleterious materials. The fill should be placed in large areas where it can be compacted by a heavy roller. Any fill placed to increase or level the grade must be compacted to a minimum 98 percent of its SPMDD in lifts not exceeding 150 mm. In-situ density testing to monitor the effectiveness of the compaction equipment in achieving the required densities is also recommended.

The most severe loading conditions on pavement areas and the subgrade may occur during construction. Consequently, special provisions such as end dumping and forward spreading of sub-base fills, restricted construction lanes, and half-loads during paving may be required, especially if construction is carried out during inclement weather conditions.

4.9.2 Recommended Pavement Structure

The following table summarizes the flexible pavement structures recommended for the design the design of the potential driveways and at grade parking areas should a flexible pavement structure design be preferred. The pavement designs include a Heavy Duty for the access/driveways and a Light Duty for parking areas.

Pavement Layer	Compaction Requirements	Light Duty Pavement Design (Parking Lot)	Heavy Duty Pavement Design (Driveway)
Surface Course Asphaltic Concrete HL3 (OPSS 1150)	91% to 96.5% Maximum Relative Density (OPSS 310)	40 mm	40 mm
Base Course Asphaltic Concrete HL8 (OPSS 1150)	92% to 97.5% Maximum Relative Density (OPSS 310)	50 mm	80 mm
Base Course: Granular 'A' or 19mm Crusher Run (OPSS1010)	100% Standard Proctor Maximum Dry Density	150 mm	150 mm
Sub-base Course: Granular B or 50mm Crusher Run (OPSS1010)	98% Standard Proctor Maximum Dry Density	250 mm	350 mm

Table 4-2 Flexible Pavement Design

It is recommended that a tack coat be applied on the asphalt base course to ensure proper bonding of the asphalt surface and base courses.

The following table summarizes the rigid pavement structures recommended for the design of the potential access/driveways and at grade parking areas, should a rigid pavement structure design be preferred. The rigid pavement design is applicable for use for both access/driveways and at grade parking areas.

Table 4-3 Rigid Pavement Design

Pavement Layer	Compaction Requirements	Rigid Pavement Design
Jointed Plan Concrete Pavement	N/A	200 mm
Base Course: Granular 'A' or 19mm Crusher Run (OPSS1010)	100% Standard Proctor Maximum Dry Density	150 mm
Sub-base Course: Granular B or 50mm Crusher Run (OPSS1010)	98% Standard Proctor Maximum Dry Density	250 mm

The flexible and rigid pavement designs considers that construction will be carried out during dry months, at the appropriate above-freezing temperatures, and that the subgrade is stable under construction equipment loadings. If construction is carried out during wet weather, additional thickness of granular materials, geo-grid reinforcement or a combination of the two may be required. The requirement for additional granular materials and/or utilization of geo-grids is best determined during construction under the direction of the geotechnical engineer of record.

4.9.3 Drainage

Grading adjacent to pavement areas should be designed so that water is not allowed to pond adjacent to the outside edges of the pavement. Also, the pavement subgrade should be free of depressions and sloped (preferably at a

minimum grade of two percent) to provide effective drainage toward the edge of pavement and toward catch-basins. A subdrain should be placed in the up-gradient direction of all catch-basins to allow for any water ponded on the subgrade surface to drain. The subdrain should be a 150 mm diameter perforated pipe, 3 m long, placed in a 0.3 m by 0.3 m trench notched into the subgrade, and backfilled with granular materials.

5. Construction Considerations

5.1 Excavation and Temporary Shoring

The Occupational Health and Safety Act (OHSA) regulations require that if workmen must enter an unsupported excavation deeper than 1.2 m, the excavation must be suitably sloped and/or braced in accordance with the OHSA requirements. OHSA specifies maximum slope of the excavations for four broad soil types as summarized in the following table:

Soil Type	Base of Slope	Maximum Slope Inclination
1	Within 1.2 m of bottom	1 horizontal to 1 vertical
2	Within 1.2 m of bottom of trench	1 horizontal to 1 vertical
3	From bottom of excavation	1 horizontal to 1 vertical
4	From bottom of excavation	3 horizontal to 1 vertical

Table 5-1 OHSA Excavation Recommendations

Trench and basement excavations should be carried out in strict conformance to the current Occupational Health and Safety Act (OHSA). For the purpose of interpreting the act, the fill and native soils within the Site above the groundwater table can be classified as Type 3 soils. If affected by groundwater seepage, the fill and native soils can be considered as Type 4 soils. The highest number soil type identified in an excavation must govern the excavation slopes from top to bottom of the excavation.

If the above recommended excavation side slopes cannot be maintained due to lack of space or any other reason, the excavation side walls must be supported by an engineered shoring system. The shoring system should be designed in accordance with Canadian Engineering Foundation Manual (4th Edition) and the OHSA Regulations for Construction Projects.

If a shoring system is selected to support the excavation walls, it is recommended that the expertise of an experienced shoring contractor be retained during selection of a shoring approach. It is also recommended that the shoring system required to stabilize the excavation sidewalls during construction be developed by the general and shoring contractors. Further recommendations for shoring may be required depending on the type of shoring system selected for this project.

It is anticipated that shallow foundation and utility excavations within the overburden can be made with conventional equipment. Cobbles and boulders should be expected within the overburden, and the contract should allow for the removal of construction cobbles and boulders.

If the excavation extends to the underlying shale bedrock, the bedrock may be removed with a larger excavator equipped with a 'V' shaped bucket equipped with a ripper and/or hoe ram. Excavation into the bedrock can be carried out at or near vertical faces. The bedrock exposed in the excavation may degrade as it is exposed or if it becomes wet. As such, the bedrock may ravel over time if it is not protected. It recommended that exposed bedrock be protected (i.e., applying shotcrete) from weathering or deterioration if the excavation is to be left open for a long period of time. The selection of the excavation equipment to be used into the bedrock is the contractor's responsibility.

Blasting may not be permitted by the municipality and rock excavation may be carried out using mechanical equipment as stated above. However, blasting may be carried out in compliance with existing provincial environmental

guideline limits with respect to ground and air vibration. The blasting operations should be carried out by an experienced contractor and ensuring that the ground and air vibration levels produced during blasting operations are within the recommended provincial guideline limits. The selection and implementation of this excavation option (blasting) is the contractor's responsibility. Vibration monitoring of the adjacent utilities and structures is recommended during excavation, if blasting option is selected.

5.2 Temporary Ground Water Control

The amount of seepage into excavations will depend on the depth of excavation relative to the groundwater level at the time of construction and the hydraulic conductivity of the excavated soils. The measured groundwater levels within the installed monitoring wells were found to range from approximately 1.5 m to 5.3 mBGS. It is expected that seepage rate into the excavation within the native deposit (i.e., sandy deposits) will be moderate to high. If the excavation is to be above the groundwater table, minor to moderate groundwater ingress can readily be handled by using installation of sumps and pumps at strategic locations at the base of excavation. If the excavation is to be extended to a greater depth and below local groundwater table, an active pre-construction dewatering system such as well points may be required depending on the depth and size of excavations. It is noted that groundwater seepage into the excavation may be most pronounced near the interface between the overburden and the bedrock and through the upper fractured zone of the bedrock. Vertical excavations through the bedrock may require some kind of protection (i.e., shotcrete) to assure safety and stability of the walls that may also greatly reduce the rates of water seepage into the excavations. Please refer to the Hydrogeological Assessment Report prepared by GHD for this project under separate cover.

It is recommended that the groundwater level be maintained at least 0.5 m below the base of excavation to provide dry and stable/safe condition. A dewatering specialist should be consulted to determine the most appropriate measures to be undertaken to sufficiently lower the groundwater table below the lowest excavation depth. The possibility of settlement from the dewatering should be part of the methodology considerations. The contract document should indicate that the selection of dewatering measures is the sole responsibility of the contactor.

5.3 Suitability of On-Site Soils

The ground cover and any earth fill materials found to contain significant amounts of organics or deleterious materials should be removed and should not be used as backfill materials.

The earth fill/disturbed soils and native soils encountered at the Site may be suitable for reuse as backfill to raise site grades (where required) or to be used as backfill against foundations or as trench backfill during installation of buried services, provided the material is free of organic material or other deleterious materials and is within the optimum moisture content. Based on the standard proctor testing results, the fill soils are generally near their optimum water content for compaction.

Based on the organic test results, it should be expected that some of the fill materials at this site will contain variable amounts of organic matter. Topsoil and organic materials should not be used as a backfill but can be used for landscaping purposes or removed off-site. Also, all oversized cobbles and boulders should be removed from the backfill materials.

It should be anticipated that reworking of the soils will be necessary to facilitate compaction through drying, wetting and use of smooth roller compactors. Control of moisture content during placement and compaction will also be essential for maintaining adequate compaction. If any materials are found to be wet, they may be left aside to dry, or mixed with drier material that is to be used as backfill. All backfill materials should be placed in thin layers (150 mm thick or less) and compacted by a heavy smooth type roller to 98 percent SPMDD.

It is believed that the bedrock generated at the Site may not be reused as a backfill, because of the difficulties associated with breaking the rock fragments down, moisture conditioning and compaction.

All backfill operations and materials should be inspected and tested by qualified geotechnical personnel to confirm that proper material is utilized and that adequate compaction is attained.

5.4 Site Servicing

The native soils encountered at the Site are considered suitable to support proposed Site services. Consideration could also be given to installing Site services within the existing fill, subject to an engineering inspection and approval by qualified geotechnical engineer for all bearing surfaces. The suitability of the subgrade to provide adequate support for buried services must be verified and confirmed on site by qualified geotechnical personnel experienced in such works.

The subgrade soils used to support the service pipes, should be visually inspected. Wet, loose or otherwise unsuitable fills should be sub-excavated and replaced with bedding materials or clean fills compacted to minimum of 95% SPMDD.

The bedding for trenched (open cut) services should consist of well graded materials meeting City of Ottawa specifications. The bedding should have a minimum thickness of 150 mm below the pipe and 300 mm above and adjacent to the pipe and should comply with the City of Ottawa Standards. The bedding and cover materials should be compacted to a minimum of 95 percent SPMDD to provide support and protection to the service pipes.

Where wet conditions are encountered, the use of 'clear stone' bedding (such as 19 mm clear stone, OPSS 1004) may be considered, only in conjunction with a suitable geotextile filter. Without proper filtering, there may be entry of fines from the existing fill or native soils and trench backfill into the bedding. This loss of fine soil particles could result in loss of support to the pipes and possible surface settlements.

5.5 Soil Corrosivity Potential

Corrosivity testing was conducted on fifteen (15) select samples extracted from boreholes MW1, MW2, MW3, MW4, MW4, MW5, BH6, BH7, BH8, MW9, and BH12 in accordance with ASTM and CSA Standards during the previous investigation. The results were compared with CSA A23.1 Standards to determine the potential of sulphate attack on concrete and with the American Water Works Association (AWWA) C105 to assess soil corrosivity potential of ductile iron pipes and fittings. Corrosivity testing as described by the American Water Works Association (AWWA) includes soil resistivity, pH, sulphide indication, redox potential, and moisture content. Points are assigned to the sample based on the results of the test. A soil that has a total point score of 10 or more is considered to be potentially corrosive to ductile iron pipe. The potential for sulphate attack on concrete (class of exposure) is determined using Table 3 provided in CSA A23.1. All samples were placed into laboratory-supplied containers, labeled and submitted under chain-of-custody protocol to AGAT. Analytical results received from the laboratory are provided in Appendix F.

The following table summarizes the laboratory test results for the fifteen (15 soil samples collected from the boreholes to assess soil potential for sulphate attack on concrete structures:

Borehole No.	Sample Depth (m)	Sulphate (%)	Class of Exposure (Ref. Table 3 of CSA A23.1)	Potential for Sulphate Attack (Ref. Table 3 of CSA A23.1)	Cementing Materials to be used (Ref. Table 3 of CSA A23.1)
MW1	0.8 - 2.1	0.02	Below S-3	Negligible	Not specified
MW1	3.8 - 4.4	0.1	S-3	Moderate	MS or HS
MW2	2.3 – 2.9	0.013	Below S-3	Negligible	Not specified
MW3	2.3 -2.9	0.0286	Below S-3	Negligible	Not specified
MW4	0.8 - 1.4	0.0096	Below S-3	Negligible	Not specified
MW5	2.3 – 2.6	0.0337	Below S-3	Negligible	Not specified
BH6	0.8 – 1.6	0.0272	Below S-3	Negligible	Not specified

 Table 5-2
 Soil Corrosivity Test Results

Borehole No.	Sample Depth (m)	Sulphate (%)	Class of Exposure (Ref. Table 3 of CSA A23.1)	Potential for Sulphate Attack (Ref. Table 3 of CSA A23.1)	Cementing Materials to be used (Ref. Table 3 of CSA A23.1)
BH7	1.5 – 1.7	0.0365	Below S-3	Negligible	Not specified
BH8	1.5 – 1.7	0.0225	Below S-3	Negligible	Not specified
MW9	1.5 – 2.4	0.0124	Below S-3	Negligible	Not specified
BH12	1.5 – 2.4	0.0130	Below S-3	Negligible	Not specified
BH16	0.6 - 1.2	0.0498	Below S-3	Negligible	Not specified
MW17	0.1 – 0.6	0.0054	Below S-3	Negligible	Not specified
MW18	1.2 – 1.8	0.0216	Below S-3	Negligible	Not specified
BH20	0.6 - 1.2	0.0173	Below S-3	Negligible	Not specified

In general, the results of sulphate ion content analysis indicate that the majority of the tested soil/rock samples contain low levels of sulphate ion, which are below the class of exposure levels outlined in CSA A23.1 with the exception of one sample (MW1) from the weathered shale bedrock. Based on the results, special cement mixtures such as moderate sulphate-resistant cement (MS) or high-sulphate cement (HS) will likely be required to provide protection against sulphate attack.

In regards to soil corrosivity potential against ductile iron pipes and fittings, it is noted that sulphide analysis presented in AWWA is a qualitative test where a positive, trace, or negative determination is based on the presence of bubbles as a result of a chemical reaction. Such testing has not been conducted as AGAT defines sulfides concentration that is unrelated to the scale provided by AWWA. As a result, it was assumed that the result was positive and a maximum score of 3.5 was selected (most conservative assumption). Also, for moisture content determination, the value obtained from the conducted laboratory tests were used for this analysis and soil poor drainage condition has been considered to obtain more conservative values. The table below summarizes the ANSI/AWWA rating of the tested soil/rock samples on their potential for corrosion towards buried ductile cast iron pipes/fittings. A score of ten (10) points or more indicates the soil is corrosive to ductile iron pipes and protection will be needed.

Borehole No.	Sample	Parameters				Total Points	Corrosivity	
	Depth (m)	Resistivity (ohm/cm)	рН	Redox Potential (mV)	Moisture (%)		Potential	
MW1	0.8 - 2.1	2240	7.87	269	9	7.5	No	
MW1	3.8 - 4.4	746	7.78	241	6	15.5	Yes	
MW2	2.3 – 2.9	1310	7.78	223	30	15.5	Yes	
MW3	2.3 -2.9	625	7.88	234	11	15.5	Yes	
MW4	0.8 – 1.4	2170	8.29	179	15	7.5	No	
MW5	2.3 - 2.6	649	9.21	173	5	18.5	Yes	
BH6	0.8 – 1.6	855	8.54	180	6	18.5	Yes	
BH7	1.5 – 1.7	1370	8.01	203	4	15.5	Yes	
BH8	1.5 – 1.7	893	8.62	206	5	18.5	Yes	
MW9	1.5 – 2.4	1750	7.95	205	9	16.5	Yes	
BH12	1.5 – 2.4	709	8.81	212	11	18.5	Yes	

Table 5-3 Corrosion Potential

Based on the results obtained for the samples submitted, the total points ranged from 7.5 to 18.5. These results indicate that special provisions will be required for corrosion protection of any metallic pipe components at this Site.

6. Limitations of the Investigation

This report is intended solely for Ontario Infrastructure and Lands Corporation and their designer and is prohibited for use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevation and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of geotechnical engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

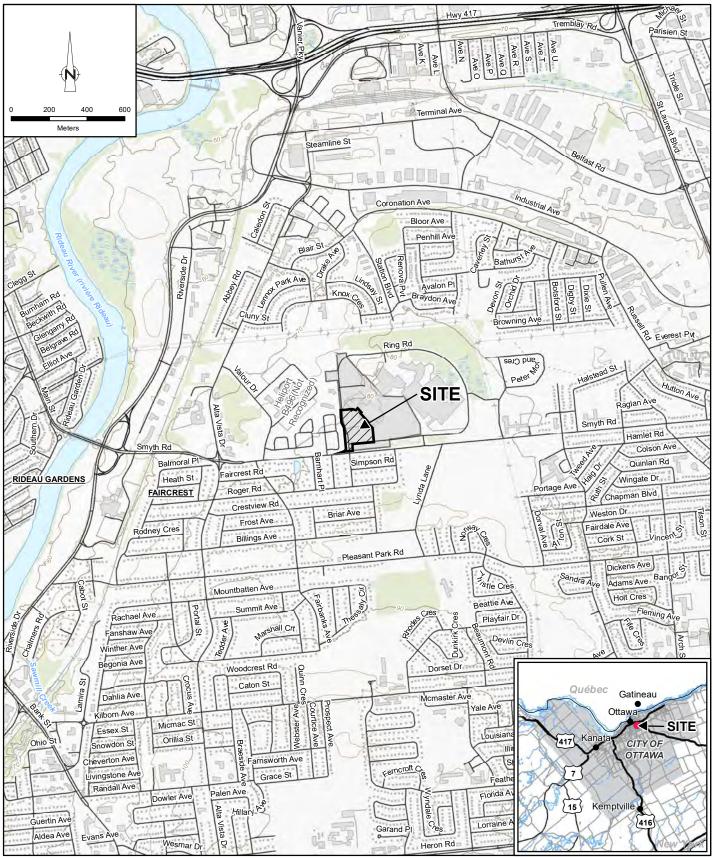
All details of design and construction are rarely known at the time of completion of a geotechnical study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

By issuing this report, GHD is the geotechnical engineer of record. It is recommended that GHD be retained during construction of all foundations and during earthwork operations to confirm the conditions of the subsoil are actually similar to those observed during our study. The intent of this requirement is to verify that conditions encountered during construction are consistent with the findings in the report and that inherent knowledge developed as part of our study is correctly carried forward to the construction phases.

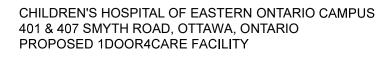
It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments included in this report are based on the results obtained at the test locations only. The subsurface conditions confirmed at the test locations may vary at other locations. The subsurface conditions can also be significantly modified by the construction activities on site (e.g., excavation, dewatering and drainage, blasting, pile driving, etc.). These conditions can also be modified by exposure of soils or bedrock to humidity, dry periods or frost. Soil and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations and conditions may become apparent during construction which could not be detected or anticipated at the time of our investigation. Should any conditions at the site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations. If changed conditions are identified during construction, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by GHD is completed. All of Which is Respectfully Submitted,

GHD

Brice Zanne, M.Eng., EIT

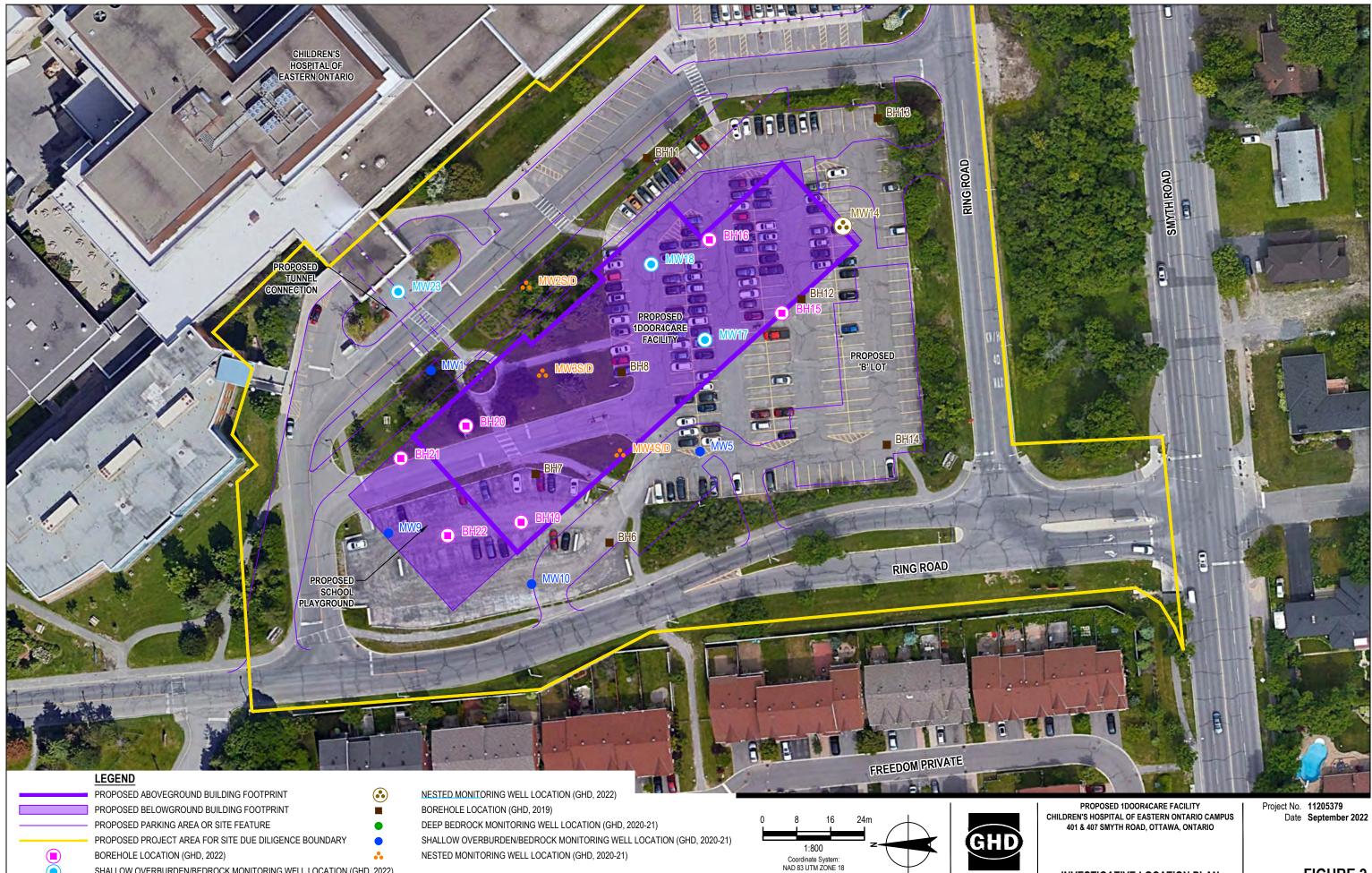

Lewis Wong, M.Sc., P. Eng.

Niel +


Nikol Kochmanova, Ph.D., P. Eng., PMP

Figures

Source: MNRF NRVIS, 2018. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2019


11205379-14 Sept 2, 2022

SITE LOCATION MAP

FIGURE 1

GIS File: Q:\GIS\PROJECTS\11205000s\11205379\Layouts\001\11205379-01(001)GIS-WA001.mxd

METRES

SHALLOW OVERBURDEN/BEDROCK MONITORING WELL LOCATION (GHD, 2022)

INVESTIGATIVE LOCATION PLAN

Data Sources: SURVEY BY J.D. BARNES LIMITED, DECEMBER 19, 2019. (UTM18-NAD83), CHEO, 1DOORFOR4CARE (1D4C), SITE PLAN - PHASE 1A, Solic. No: 2111095, Date: 02/20/22. Image ©2022 Google (Imagery Date 6/8/2018).

Tables

Table 1(A)

Groundwater Elevations (mAMSL) Preliminary Geotechnical Investigation 401 Smyth Road, Ottawa, Ontario Children's Hospital of Eastern Ontario Campus

	MW1	MW2S	MW2D	MW3S	MW3D	MW4S	MW4D	MW5	MW9	MW10	MW14S	MW14D	MW17	MW18	MW23
Top of Riser (mAMSL)	82.40	82.34	82.33	81.53	81.50	80.13	80.20	80.41	80.37	79.75	81	81	80.70	80.80	82.7
Ground Surface (mAMSL)	82.53	82.43	82.43	81.58	81.58	80.34	80.34	80.54	80.52	79.86	81.20	81.20	80.90	81.00	82.9
5-Dec-19	77.49	-	77.46	77.82	77.30	-	77.25	-	-	77.41					
13-Dec-19	77.47	77.82	77.44	77.75	77.21	78.83	77.23	78.12	-	77.37					
15-Jan-20	77.39	77.80	77.38	77.82	77.13	-	-	78.57	-	-					
26-Feb-20	77.43	77.84	77.47	77.71	77.15	-	-	78.04	-	-					
8-Apr-20	77.55	78.06	77.58	77.92	77.36	78.78	77.41	78.44	78.54	77.53					
9-Jul-20	77.38	77.79	77.41	77.67	77.10	-	77.16	78.17	-	77.07					
5-Oct-20	77.37	77.77	77.39	77.67	77.11	78.79	77.16	78.19	78.52	77.12					
5-Jul-22											79.70	78.30	-	-	-
13-Jul-22											-	-	-	-	77.72
21-Jul-22											-	78.30	-	-	-
22-Jul-22											79.57	-	79.27	79.45	-
25-Jul-22											-	-	-	-	77.61
27-Jul-22											-	78.30	-	-	-
28-Jul-22											79.55	-	79.27	-	-
3-Aug-22											-	-	-	-	77.72

Notes:

- No data available mBGS metres below ground surface

mAMSL metres above mean sea level

GHD 11205379-MASTER WATER LEVELS.xlsx

Table 1(B)

Groundwater Levels (mBGS) Preliminary Geotechnical Investigation 401 Smyth Road, Ottawa, Ontario Children's Hospital of Eastern Ontario Campus

	MW1	MW2S	MW2D	MW3S	MW3D	MW4S	MW4D	MW5	MW9	MW10	MW14S	MW14D	MW17	MW18	MW23
Top of Riser (mAMSL)	82.40	82.34	82.33	81.53	81.50	80.13	80.20	80.41	80.37	79.75	81	81	80.70	80.80	82.7
Ground Surface (mAMSL)	82.53	82.43	82.43	81.58	81.58	80.34	80.34	80.54	80.52	79.86	81.20	81.20	80.90	81.00	82.9
5-Dec-19	5.04	-	4.97	3.76	4.28	-	3.09	-	-	2.45					
13-Dec-19	5.06	4.61	4.99	3.83	4.37	1.51	3.12	2.42	-	2.49					
15-Jan-20	5.14	4.63	5.05	3.76	4.45	-	-	1.97	-	-					
26-Feb-20	5.10	4.59	4.96	3.87	4.43	-	-	2.50	-	-					
8-Apr-20	4.98	4.37	4.85	3.66	4.22	1.56	2.93	2.10	1.98	2.33					
9-Jul-20	5.15	4.64	5.03	3.91	4.48	-	3.18	2.38	-	2.79					
5-Oct-20	5.16	4.66	5.04	3.91	4.47	1.55	3.18	2.35	2.00	2.74					
5-Jul-22											1.50	2.9	-	-	-
13-Jul-22											-	-	-	-	5.2
21-Jul-22											-	2.87	-	-	-
22-Jul-22											1.63	-	1.64	1.52	
25-Jul-22											-	-	-	-	5.3
27-Jul-22												2.90	-	-	-
28-Jul-22											1.65		1.64	-	-
3-Aug-22											-	-	-	-	5.20

Notes:

No data available

mBGS metres below ground surface

mAMSL metres above mean sea level

Appendices

Appendix A Record of Boreholes

Notes on Borehole and Test Pit Reports

Soil description :

GHD PS-020.01 - Notes on Borehole and Test Pit Reports - Rev.0 - 07/01/2015

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

		(Unified system)			Termin	ology					
Clay	< 0.002 mm										
Silt	0.002 to 0.075 mm			"trac	ce"	1-10%					
Sand	0.075 to 4.75 mm	fine 0.075 to 4.25 mm		"sor	ne"	10-20%					
		medium 0.425 to 2.0 mm		adje	ective (silty, san	.,					
		coarse 2.0 to 4.75 mm		"and	d"	35-50%					
Gravel	4.75 to 75 mm	fine 4.75 to 19 mm coarse 19 to 75 mm									
Cobbles Boulders	75 to 300 mm >300 mm										
	ve density of nular soils	Standard penetration index "N" value			istency of sive soils	Undraine streng	ed shear th (Cu)				
		(BLOWS/ft – 300 mm)				(P.S.F)	(kPa)				
				Ve	ery soft	<250	<12				
Ve	ery loose	0-4			Soft	250-500	12-25				
	Loose	4-10		l	Firm	500-1000	25-50				
C	Compact	10-30			Stiff	1000-2000	50-100				
	Dense	30-50		Ve	ery stiff	2000-4000	100-200				
Ve	ery dense	>50		I	Hard	>4000	>200				
	Rock quality	designation] [STRATIGRA	PHIC LEGEND					
"RQE	D" (%) Value	Quality		[accorded]		•					
	<25	Very poor			00	20					
	25-50	Poor		Sand	Gravel	Cobbles& boulders	Bedrock				
	50-75	Fair		Sanu			Deurock				
	75-90	Good			1777	$\sim \sim$					
					1111	$\sim \sim$					
	>90	Excellent			111A	-	An encoura de				
	>90	Excellent		Silt	Clay	Organic soil	Fill				
S: Split spoon SE, GSE, AGE	ber	on the log by the abbreviation listed he ST: S	reafter. The num helby tube iston sample (Ost	pering of samples is	sequential for ea		Fill				
ype and Numl he type of sam S: Split spoon SE, GSE, AGE Recovery	ber nple recovered is shown o E: Environmental samplir	on the log by the abbreviation listed he ST: S	helby tube iston sample (Ost	pering of samples is erberg)	sequential for ea	ch type of sample. AG: Auger RC: Rock core GS: Grab sample	Fill				
ype and Numl he type of sam S: Split spoon SE, GSE, AGE Recovery	ber nple recovered is shown o E: Environmental samplir	on the log by the abbreviation listed he ST: S Ig PS: P	helby tube iston sample (Ost	pering of samples is erberg)	sequential for ea	ch type of sample. AG: Auger RC: Rock core GS: Grab sample	Fill				
ype and Numl he type of sam S: Split spoon SE, GSE, AGE Recovery he recovery, sh	ber iple recovered is shown of E: Environmental samplin hown as a percentage, is	on the log by the abbreviation listed he ST: S Ig PS: P	helby tube iston sample (Ost ned to the distanc	pering of samples is erberg) e the sampler was d	sequential for ea	ch type of sample. AG: Auger RC: Rock core GS: Grab sample the soil					
ype and Numl he type of sam S: Split spoon SE, GSE, AGE Recovery he recovery, sh RCD he "Rock Quali	ber aple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD	on the log by the abbreviation listed he ST: S Ig PS: P	helby tube iston sample (Ost ned to the distanc	pering of samples is erberg) e the sampler was d	sequential for ea	ch type of sample. AG: Auger RC: Rock core GS: Grab sample the soil					
ype and Numl he type of sam S: Split spoon SE, GSE, AGE Recovery he recovery, sh RQD he "Rock Qualities run.	ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD IS:	on the log by the abbreviation listed he ST: S Ig PS: P	helby tube iston sample (Ost ned to the distanc he ratio of the tota	pering of samples is erberg) e the sampler was d	sequential for ea Iriven/pushed into agments of 4 inch	ch type of sample. AG: Auger RC: Rock core GS: Grab sample the soil	he total lengt				
ype and Numl he type of sam S: Split spoon SE, GSE, AGE Recovery he recovery, sh RQD he "Rock Quali he run. N-SITU TEST	ber nple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index	on the log by the abbreviation listed he ST: S Ig PS: P	helby tube iston sample (Ost ned to the distanc he ratio of the tota N _c : Dynamic Cu: Undra	pering of samples is erberg) e the sampler was d I length of all core fr	sequential for ea Iriven/pushed into agments of 4 inch	ch type of sample. AG: Auger RC: Rock core GS: Grab sample the soil hes (10 cm) or more to t	he total lengt				
ype and Numl he type of sam S: Split spoon SE, GSE, AGE Recovery he recovery, sh RQD he "Rock Quali he run. N-SITU TEST : Standard per : Refusal to pe	ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index enetration	on the log by the abbreviation listed he ST: S Ig PS: P	helby tube iston sample (Ost ned to the distanc he ratio of the tota N _c : Dynamic Cu: Undra	pering of samples is erberg) e the sampler was d I length of all core fr cone penetration ind ined shear strength	sequential for ea Iriven/pushed into agments of 4 inch	ch type of sample. AG: Auger RC: Rock core GS: Grab sample the soil hes (10 cm) or more to t k: Permeat	he total lengt bility Packer test)				
ype and Numl he type of sam S: Split spoon SE, GSE, AGE Recovery he recovery, sh RQD he "Rock Quali- he run. N-SITU TEST I: Standard per I: Refusal to pe ABORATOR	ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: hetration index enetration RY TESTS:	on the log by the abbreviation listed he ST: S ig PS: P s the ratio of length of the sample obtai " value, expressed as percentage, is th	helby tube iston sample (Ost ned to the distanc he ratio of the tota N _c : Dynamic Cu: Undra Pr: F	pering of samples is erberg) e the sampler was d I length of all core fr cone penetration ind sined shear strength Pressure meter	sequential for ea	ch type of sample. AG: Auger RC: Rock core GS: Grab sample the soil hes (10 cm) or more to t k: Permeat ABS: Absorption (I	he total lengt bility Packer test) O.V.: Organ				
ype and Numl he type of sam S: Split spoon SE, GSE, AGE Recovery he recovery, sh RQD he "Rock Quali he run. N-SITU TEST I: Standard per I: Refusal to pe	ber pple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: hetration index enetration RY TESTS:	on the log by the abbreviation listed he ST: S Ig PS: P	helby tube iston sample (Ost ned to the distanc he ratio of the tota N _c : Dynamic Cu: Undra	pering of samples is erberg) e the sampler was d I length of all core fr cone penetration ind sined shear strength Pressure meter	sequential for ea Iriven/pushed into agments of 4 inch	ch type of sample. AG: Auger RC: Rock core GS: Grab sample the soil hes (10 cm) or more to t k: Permeat ABS: Absorption (I	he total lengt				

Explanation of Terms Used in the Bedrock Core Log

Strength (ISRM)

Terms	Grade	Description	Unconfii Compressive St (MPa)	
Extremely Weak Rock	RQ	Indented by thumbnail	0.25-1.0	36-145
Very Weak	R1	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife.	1.0-5.0	145-725
Weak Rock	R2	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer.	5.0-25	725-3625
Medium Strong	R3	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer.	25-50	3625-7250
Strong Rock	R4	Specimen requires more than one blow of geological hammer to fracture it.	50-100	7250-14500
Very strong Rock	R5	Specimen requires many blows of geological hammer to fracture it.	100-250	14500-36250
Extremely Strong Rock	R6	Specimen can only be chipped with geological hammer.	>250	>36250

Bedding (Geological Society Eng. Group Working Party, 1970, Q.J. of Eng. Geol. Vol 3)

Term	Bed Thickness	
Very thickly bedded	>2 m	>6.5 ft.
Thickly bedded	600 mm-2 m	2.00-6.50 ft.
Medium bedded	200 mm-600 mm	0.65-2.00 ft.
Thinly bedded	60 mm-200 mm	0.20-0.65 ft.
Very thinly bedded	20 mm-60 mm	0.06-0.20 ft.
Laminated	6 mm-20 mm	0.02-0.06 ft.
Thinly laminated	<6 mm	<0.02 ft.

TCR (Total Core Recovery)

Sum of lengths of rock core recovered from a core run, divided by the length of the core rum and expressed as a percentage

SCR (Solid Core Recover)

Sum length of solid full diameter drill core recovered expressed as a percentage of the total length of the core run.

Explanation of Terms Used in the Bedrock Core Log

Weathering (ISRM)

Terms	Grade	Description
Fresh	W1	No visible sign of rock material weathering.
Slightly	W2	Discolouration indicates weathering of rock weathered material and discontinuity surfaces. All the rock material may be discoloured by weathering and may be somewhat weaker than in its fresh condition.
Moderately	W3	Less than half of the rock material is weathered decomposed and/or disintegrated a soil. Fresh or discoloured rock is present either as a corestone.
Highly Weathered	W4	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.
Completely Weathered	W5	All rock material is decomposed and/or disintegrated to a soil. The original mass structure is still largely intact.
Residual Soil	W6	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has been significantly transported.

ROD (Rock Quality Designation, after Deere, 1968)

Sum of lengths of pieces of rock core measured along centerline of core equal to or greater than 100 mm from a core run, divided by the length of the core run and expressed as a percentage. Core fractured by drilling is considered intact. RQD normally quoted for N-Size core.

RQD (%)	Rock Quality
90-100	Excellent
75-90	Good
50-75	Fair
25-50	Poor
0-25	Very Poor

(FI) Fracture Index

Expressed as the number of discontinuities per 300 mm (1 ft.) Excluded drill-induced fractures and fragmented zones. Reported as ">>25" if frequency exceeds 25 fractures/0.3 m.

Broken Zone

Zone where core diameter core of very low RQD which may include some drill-induced fractures.

Fragmented Zone

Zone where core is less than full diameter and RQD = 0.

Discontinuity Spacing (ISRM)

Term	Average Spacing							
Extremely widely spaced	>6 m	>20.00 ft.						
Very widely spaced	2 m-6 m	6.50-20.00 ft.						
Widely spaced	600 mm-2 m	2.00-6.50 ft.						
Moderately spaced	200 mm-600 mm	0.65-2.00 ft.						
Closely spaced	60 mm-200 mm	0.20-0.65 ft.						
Very closely spaced	20 mm-60 mm	0.06-0.20 ft.						
Extremely closely spaced	<20 mm	>0.06 ft.						
Note: Excludes drill-induced frac	ctures and fragmented rocl	k.						

Note: Excludes drill-induced fractures and fragmented rock.

Discontinuity Orientation

Discontinuity, fracture, and bedding plane orientations are cited as the acute angle measured with respect to the core axis. Fractures perpendicular to the core axis are at 90 degrees and those parallel to the core axis are at 0 degrees.

-	REFERENCE	No.:	11205379								ENCI	_050	RE No	D.: _		1	
		CHD		BOREHOLE No.:			MW	1		В	OR	EH	OLE	E R	EP	OF	۲۶
		Cint		ELEVATION:		82.	<u>53 m</u>				F	Page:	_1_	of	_1	-	
	CLIENT:	Prel	astructure Ontario (I. iminary Geotechnica ario Campus	O.) al Investigation - Childrei	ו's	Hospital	of Ea	astern			GENI SS		PLIT S	POC	N		
Date: 11/17/20	LOCATION:	401	Smyth Road, Ottaw	a, Ontario							ST	- Sł	HELB	' TUI	ЗE		
ate: 1	DESCRIBED E	BY: <u>R. V</u>	′. Tillaart	CHECKED BY:						∎ ¥	AU		JGER ATER				
	DATE (START	.): <u>Nov</u>	ember 26, 2019	DATE (FINISH):	_	Novem	ber 2	6, 201	9								
₩+Hď	NORTHING:	502	7668.515	EASTING:		448936	6.947										
SOIL LOG WITH GRA	Depth Elevation	(m) BGS Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shea Sena W _p W ₁	"N" Va	(S) conter erg lim		— •	-ield _ab	
Ë	Feet Metres 82.			D SURFACE			%			Ν	10 :	20 30	40 50	60 7	0 80 9	0	
V02.GLB Rep	0 <u>-</u> 0.08 82. 1 <u>-</u> 2 <u>-</u>	46	• •	/		SS1	58	16	1-1-3-10	4	• c)		0.	31 m		
D_GEOTECH	$\begin{array}{c} 3 \\ - \\ 4 \\ - \\ 5 \\ - \\ 1.52 \\ 81. \end{array}$		loose cobble fragments		X	SS2	50	9	4-4-4-6	8				-Ben	tonite	, , ,	
rary File: GHI	6 - 2.0 7 - 2.0		fragments, grey, m Gravel : 26%, San	with gravel, cobble noist, compact d : 58%, Silt : 11%,	M	SS3	62	6	5-4-7-32	11					10 m		
ED.GPJ Lib	8 – 9 – 10 – – 3.0		Clay : 5% cobble fragments		X	SS4	67	7	22-16-14-11	30	-0			_#2	Sand		
05379 - REVIS			very dense		X	SS5	67	8	6-17-33-23	50							
11205379/1120	+ 3.81 78. 13 - 4.0 14 - 4.0		SHALE, complete	y weathered, grey	X	SS6	75	6	17-32-50/ 100mm	50+	0		•	S	creen		
0\112053\	15 — 16 — 17 — 17 —				X	SS7	55	4	39-50/ 125mm	50+	0		•				
R\11\112	18 <u>-</u> 5.47 77. 19 <u>-</u>	06	END OF BOREHO	LE :	×	SS8	20	2	50/ 125mm	50+			•	5.	47 m		
FIIe: NACAMISSISSAUGA - 111 BRUNELILEGEOYLOG DATABASEB-CHARN1/1120/112053-0/11205379/1205379. REVISED.GPJ LIDRAPH-WELL	$\begin{array}{c} 20 & - & 6.0 \\ 21 & - & \\ 22 & - & \\ 23 & - & 7.0 \\ 24 & - & \\ 25 & - & \\ 26 & - & 8.0 \\ 27 & - & \\ 28 & - & \\ 29 & - & 9.0 \\ 30 & - & \\ 31 & - & \\ 32 & - & \end{array}$		bgs on December - Groundwater lev- bgs on December - Groundwater lev- bgs on January 15 - Groundwater lev- bgs on February 2 - Groundwater lev- bgs on April 08, 20 - Groundwater lev- bgs on July 09, 20 - Groundwater lev- bgs on October 05	y upon completion monitoring well bgs el measured at 5.04 m 5, 2019 el measured at 5.06 m 13, 2019 el measured at 5.14 m 5, 2020 el measured at 5.10 m 6, 2020 el measured at 4.98 m 020 el measured at 5.15 m 20 el measured at 5.15 m													

,	REFEREN	CE No.	:	11205379								ENCLOSURE No.: 2							
		G	HD		BOREHOLE No.:			MW	2		В	OREHOLE REPORT							
					ELEVATION:		82.	43 m				Page: <u>1</u> of <u>2</u>							
	CLIENT:		Infra	astructure Ontario (I.	O.) al Investigation - Childre	<u>n'a</u>	Hoopito	l of E	actorn		LEGEND								
Ŋ	PROJECT	:	Onta	ario Campus	ar investigation - Childre	ns	nospila		astern		SS - SPLIT SPOON								
77 L/L L	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario						AU - AUGER PROBE								
Date:					CHECKED BY:						Ţ	- WATER LEVEL							
WELL	DATE (ST/	ART):	Nov	ember 26, 2019	DATE (FINISH)	:	Novem	ber 2	7, 201	9									
+HTHF	NORTHIN	G:	502	7646.036	EASTING:	-	448956		1		1								
	Depth	Elevation (m) BGS	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) ↓ Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)							
Ë	Feet Metres				D SURFACE			%			Ν	10 20 30 40 50 60 70 80 90							
UZ.GLB Kep	0 0.08 1 2	82.35		TOPSOIL : 75 mm FILL : SANDY SILT, som moist, compact	,		SS1	54	6	4-5-5-7	10	• 0.31 m-							
	$\begin{array}{c} 3 & -1 \\ -1 & -1 \\ 4 & -1 \\ -1 \\ -1 \\ -1 \end{array}$			loose			SS2	67	12	4-2-3-3	5	● ○ Bentonite							
<u>у гие:</u> GHU	5 - 1.52 6 - 2.0	80.91		fragments, brown,	with gravel, cobble moist, compact		SS3	67	7	6-6-8-6	14	1.52 m— • •							
GPJ LIDIAL	/ 8 9			Clay : 7% clay pocket	ld : 48%, Silt : 13%,		SS4	67	30	13-5-8-8	13								
9 - KEVISEU.	10 <u>-</u> 3.0 11 <u>-</u>			very dense			SS5	75	10	26-50/ 150mm	50+								
1200211/8/20	13 <u>4.0</u> 4.12	78.62 78.31		Auger refusal	ly weathered, grey		SS6	17	5	50/ 100mm	50+	O ● Screen							
1ZU2311/20	14 — 15 — 16 —				K, clay seams, ds of e (hard layers), highly n, weak to moderately		RC1	90		15									
L/07	10 <u>-</u> 5.0 17 -			strong, grey		Ŧ	RC2	80		0									
8-CHAR/11/112	$ \begin{array}{c} 18 & \\ 19 & \\ 19 & \\ 20 & \\ 6.0 \\ \\ \\ $						RC3	97		79		5.34 m 1 1 1 1 1 1 1 _							
LUG UA IADASE	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											Bentonite							
	24 - 25 - 26 - 8.0						RC4	98		98		7.93 m							
NGA - 111 BK	27 – – 28 – –						DOF	00		00									
AVINUSUISA	29 <u>-</u> <u>-</u> 30 <u>-</u> 31 <u>-</u>						RC5	99		99									
	32 -											Screen							

	REFERENCE No	.:	11205379								ENC	CLOS	UR	E No	<u>.: </u>	2	
	0	HD		BOREHOLE No.:	_		MW	12		В	OF	REH	10	LE	R	EPC	RT
				ELEVATION:		82.	43 m					Page	э: _	2	of	2	
0	CLIENT: PROJECT:	Pre	astructure Ontario (I. liminary Geotechnica ario Campus	.O.) al Investigation - Childrer	ı's	Hospita	of E	asterr	1	\boxtimes			SPL	IT SF	200N	1	
1/17/2	LOCATION:	401	Smyth Road, Ottaw	/a, Ontario							ST				TUBI PROE		
ate:)	DESCRIBED BY:	R. \	/. Tillaart	CHECKED BY:		A. Soro	our			Ţ	70				LEVE		
ELL D	DATE (START):	Nov	vember 26, 2019	DATE (FINISH):		Novem	ber 2	7, 201	19								
APH+V	NORTHING:	502	7646.036	EASTING:		448956	593										
SOIL LOG WITH GR.	Depth Elevation (m) BGS	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Se O Wp V	Atte	ty (S ter co rbero Value) ontent g limit	s (%)	∆ Fiel □ Lab	
;;;o	Feet Metres 82.43		GROUN	ID SURFACE			%			N	10	20 3	60 40	50 6	30 70	80 90	
GEOTECH_V02.GLB Re	34					RC6	95		88						11.2	8 m—	
File: N:\CAMISSISSAUGA - 111 BRUNELLEGACYLOG DATABASE18-CHAR(11/112053-01120537911205	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11.28 m bgs respe Shallow Monitorir - Borehole was dr - Groundwater lev bgs on December - Groundwater lev bgs on January 15 - Groundwater lev bgs on April 08, 22 - Groundwater lev bgs on April 09, 20 - Groundwater lev bgs on October 05 Deep Monitoring V - Groundwater lev bgs on December - Groundwater lev bgs on December - Groundwater lev bgs on December - Groundwater lev bgs on January 15 - Groundwater lev bgs on Jecember - Groundwater lev bgs on Jecember - Groundwater lev bgs on Jecember - Groundwater lev bgs on Jecember - Groundwater lev bgs on April 08, 22 - Groundwater lev bgs on April 08, 20 - Groundwater lev bgs on July 09, 20 - Groundwater lev bgs on October 05 - bgs donates 'bel - shallow and dee installed in separa each other	at 11.28 m bgs y upon completion 14.12 m bgs shallow and deep nstalled at 5.34 m and ectively g Well y on December 5, 2019 el measured at 4.61 m 13, 2019 el measured at 4.64 m 5, 2020 el measured at 4.59 m 26, 2020 el measured at 4.59 m 20 el measured at 4.64 m 20 el measured at 4.66 m 5, 2020 Nell el measured at 4.97 m 5, 2019 el measured at 4.97 m 5, 2019 el measured at 4.97 m 5, 2020 Nell el measured at 4.95 m 26, 2020 el measured at 4.95 m 5, 2020 el measured at 4.96 m 26, 2020 el measured at 4.85 m 200 el measured at 5.03 m 200 el measured at 5.04 m 5, 2020 ow ground surface'													

	REFERENCE N	0.:	11205379								ENCLOSURE No.: 3
				BOREHOLE No.:	_		MW	3		В	OREHOLE REPORT
		GHD		ELEVATION:		81.	58 m			_	Page: <u>1</u> of <u>2</u>
20	CLIENT: PROJECT:	Pre	astructure Ontario (l. liminary Geotechnic ario Campus	O.) al Investigation - Childrei	ı's	Hospita	of Ea	astern		\boxtimes	
11/17	LOCATION:	401	Smyth Road, Ottaw	a, Ontario							ST - SHELBY TUBE AU - AUGER PROBE
Date:	DESCRIBED BY	∕: <u>R.\</u>	/. Tillaart	CHECKED BY:		A. Sord	our			Ţ	- WATER LEVEL
VELL	DATE (START):	Nov	vember 28, 2019	DATE (FINISH):	_	Novem	ber 29	9, 201	9		
V+H4X	NORTHING:	502	7642.051	EASTING:	_	448935			1		
SOIL LOG WITH GF	Depth Elevation (m) RGS	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	$ \begin{array}{l} \text{Shear test (Cu)} & \bigtriangleup \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
;;;	Feet Metres 81.5			ID SURFACE			%			Ν	10 20 30 40 50 60 70 80 90
V02.GLB Rep	$\begin{array}{c} 0 & - & 0.10 \\ 1 & - & \\ 2 & - \\ - & 0.76 \\ \end{array} \begin{array}{c} 80.83 \\ \end{array}$			m/ e gravel, trace rootlets, /brown, frozen, loose	X	SS1	50	12	5-3-4-4	7	• 0.31 m-
D_GEOTECH_	3 <u>-</u> 1.0 4 <u>-</u> 5 <u>-</u>		SAND and GRAV compact Gravel : 43%, Sar (Fines) : 5%	EL, brown, moist, Id : 52%, Clay & Silt	\mathbb{X}	SS2	46	5	5-9-9-5	18	0.90 m 0 ● Bentonite 1.21 m #2 Sand
rary File: GH	$\begin{array}{c} & - & - & - \\ 6 & - & - & - \\ 6 & - & - & 2.0 \\ 7 & - & - & - \end{array}$	3 💥	fragments, brown/	with gravel, cobble grey, moist, loose to	X	SS3	50	10	3-2-4-4	6	
ED.GPJ LIB	8 – 9 – 10 – 3.0 78.5		compact Gravel : 16%, Sar Clay : 8%	ld : 59%, Silt : 17%,	X	SS4	42	11	5-5-9-14	14	
5379 - REVIS	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SHALE, complete	ly weathered, grey	X	SS5	33	5	14-17-28-20	45	O Screen
79\1120			no recovery		-	SS6	0		50/ 25mm	50+	
File: N/CAMISSISSAUGA - 111 BRUNEL/LEGACYLOG DATABASE/B-CHAR/11/1120:/112053-11205379.1205	14 - 4.11 77.4 15 - 15 - 16 - 5.0 17 - 18 - 1 18 - 1		SHALE-BEDROC of limestone/siltsto highly weathered moderately strong	to fresh, weak to		RC1	80		71		4.57 m Bentonite 5.03 m
OG DATABASE\8-CHAR\11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					RC2	99		86		
A - 111 BRUNEL/LEGACY/L	24 25 26 8.0 27 28					RC3	100		96		Screen
File: N:\CA\MISSISSAUG	29 - 9.0 30 - 9.0 31 - 32 - 9					RC4	100		100		

	REFERENCE N	0.:	11205379								ENC	CLOS	SUR	E No).: _		3	
		CHD		BOREHOLE No.:	_		MW	13		В	OF	REF	HC)LE	ΞF	RE	PC	RT
		unu		ELEVATION:		81.	58 m					Page						
17/20		Pre Ont	astructure Ontario (I. liminary Geotechnica ario Campus Smyth Road, Ottaw	al Investigation - Childrer		· ·					SS			.IT S ELBY				
Date: 11/17/20				va, Ontario CHECKED BY:						I AU - AUGER PROBE▼ - WATER LEVEL								
			vember 28, 2019							Ţ		-	VVA	IER	LE	/EL		
H+WEL					-			3, 201	19									
BRAPH	NORTHING:		7642.051	EASTING:		448935		<u> </u>		_	Sh	ear te	st (C	20)			∆ Fiel	
SOIL LOG WITH C	Depth Elevation (m) BGS	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraior Index	Se O Wp V	Nsitivi Wa Atte	ity (S ter c erber Value	s) onter g limi	its (%)	∃ Lab	
ä	Feet Metres 81.5	3	GROUN	ID SURFACE			%			N	10	20 3	80 40	0 50	60 7	08	0 90	1
GHD_GEOTECH_V02.GLB R	34	5	END OF BOREHO	LE :		RC5	100		86						-11	.43		
FIIe: NACAMISSISSAUGA - 111 BRUNEL/LEGACYLOG DATABASE/8-CHAR/14/11203/1120339/1120339/1120339/1120379 - REVISED/GPJ LIbrary FIIe: GHD_GEOTECH_V02.GLB Report: SOIL LOG WITH GRAPH+WELL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11.43 m bgs respe Shallow Monitorin - Groundwater lev bgs on December - Groundwater lev bgs on December - Groundwater lev bgs on January 15 - Groundwater lev bgs on February 2 - Groundwater lev bgs on April 08, 20 - Groundwater lev bgs on October 05 Deep Monitoring V - Groundwater lev bgs on December - Groundwater lev bgs on December - Groundwater lev bgs on December - Groundwater lev bgs on December - Groundwater lev bgs on Jecember - Groundwater lev bgs on Jenuary 15 - Groundwater lev bgs on April 08, 20 - Groundwater lev bgs on April 08, 20 - Groundwater lev bgs on July 09, 20 - Groundwater lev bgs on October 05 - bgs donates 'bel- - shallow and deej installed in separa each other	at 11.43 m bgs y upon completion 14.11 m bgs shallow and deep nstalled at 4.57 m and ectively ng Well el measured at 3.76 m 5, 2019 el measured at 3.83 m 13, 2019 el measured at 3.87 m 26, 2020 el measured at 3.87 m 26, 2020 el measured at 3.87 m 20 el measured at 3.91 m 20 el measured at 3.91 m 5, 2020 Vell el measured at 4.28 m 5, 2019 el measured at 4.37 m 13, 2019 el measured at 4.45 m 5, 2020 el measured at 4.47 m 20 el measured at 4.47 m 5, 2020 ow ground surface'														

	REFEREN	CE No.	:	11205379						<u> </u>		ENC	LOSU	IRE	No.:			4	
		G			BOREHOLE No.:	_		MW	4		BOREHOLE REPORT								
					ELEVATION:		80.	34 m				F	Page:	_1	_ (of _	2		
_	CLIENT:		Prel	astructure Ontario (I. iminary Geotechnica ario Campus	O.) al Investigation - Childre	n's	Hospita	l of Ea	astern			<mark>GENI</mark> SS		PLIT	SPC	ON			
1111	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario						ST - SHELBY TUBE								
ate:	DESCRIBE	ED BY:	R. V	. Tillaart	CHECKED BY:		A. Sord	our			⊥⊔ Ţ	AU			R LE				
	DATE (ST	ART):	Dec	ember 2, 2019	DATE (FINISH):	:	Decem	ber 3,	2019)									
א+ דעל	NORTHIN	G:	5027	7621.964	EASTING:		448917	.848											
	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Sen	ar test sitivity Water Atterb "N" Va ws / 12	(S) r cont erg li	ent (% mits (6) %)	∆ Fi∈ □ La		
100	Feet Metres				D SURFACE			%			Ν	10	20 30	40 5	0 60	70	80 90	1 0.11	
	$\begin{array}{c} & - & 0.08 \\ 1 & - & - \\ 2 & - & - \\ - & - & 0.76 \end{array}$	80.26		<u> TOPSOIL : 75 mm</u> FILL : SILTY CLAY, trace brown, frozen, firm	e sand and gravel,		SS1	50	25	4-3-4-4	7	•	0		—Be	ento	l m- nite-		Ĩ
קבטובט_	$\begin{array}{c} 3 & -1 \\ -1 & -1 \\ 4 & -1 \\ -1 \\ -1 \\ -1 \end{array}$			brown, moist, com Gravel : 11%, San	some clay and gravel, pact d : 59%, Sllt : 20%,	X	SS2	58	15	4-7-10-25	17				#	2 S	∂m ⁼ and- een		
ary rue: Gn	$5 - \frac{1}{1.52}$ $6 - \frac{1}{1.52}$ $6 - \frac{1}{1.52}$ $7 - \frac{1}{1.52}$	78.82		[_] \Clay : 10% SHALE, completel	/ y weathered, grey	X	SS3	100	5	50/ 100mm	50+					+			
סבט.טרט בוט ר		77.65		of limestone/siltsto	K, laminated, interbeds ne (hard layers),														
9/11/2000/9 - REVIS	10 - 10 - 10 - 11 - 12 - 12 - 13 - 4.0			highly weathered t moderately strong	o fresh, weak to , grey		RC1	88		39									
2007111-0007111-	14 -1 15 -1 16 -1 5.0						RC2	100		78						Scr	een		
AR\1 \1 ZU	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
	20 <u>-</u> 21 <u>-</u> 22 <u>-</u> 22 <u>-</u>						RC3	99		83									
LILEGAUT ILUG	23 - 7.0 24 - 1 25 - 1 25 - 1						RC4	100		100									
	26 – 8.0 27 –																3 m-		
11 - AəU	28 – 8.38	71.96		END OF BOREHO	<u>LE :</u>											8.38	3 m=		
AUDUA	29 9.0 30			NOTE : - End of Borehole	at 8.38 m bos														
	31 <u>-</u> 32 <u>-</u> +			 Borehole was dry Rock coring from 50 mm diameter 	upon completion 2.69 m bgs														

_	REFEREN	ICE No.		11205379								EN	CLO	SUF	KE N	0.: _		_4	
		G			BOREHOLE No.:			MW	4		В	OI	RE	нс	DL	ER	REP	OF	₹T
					ELEVATION:		80.	34 m					Pag	je:	2	of	_2		
20	CLIENT:		Prel	astructure Ontario (I. iminary Geotechnica ario Campus	O.) al Investigation - Childrer	า's	Hospital	of Ea	astern	· · · · · ·		SS	-			SPOC			
11/17/	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario											Y TU R PRC			
ate:	DESCRIBE	ED BY:	<u>R.</u> V	/. Tillaart	CHECKED BY:		A. Sorc	our			Ţ					RLEV			
/ELL D	DATE (ST	ART):	Dec	ember 2, 2019	DATE (FINISH):		Decem	ber 3	, 2019)									
APH+V	NORTHIN	G:	502	7621.964	EASTING:		448917				-								
File: N.)CAMISSISSAUGA - 111 BRUNEL/LEGACYLOG DATABASE/8-CHAR/11/12063-11206379/1206379/1206379/1206379/1206379/1206379/1206379/120671204	Depth	Elevation (m) BGS	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Se O Wp	hear t ensitiv Wa A A A A tt N N Iows	vity (: ater o erbe ' Valu	S) ´ conte rg lin le	nt (%) nits (%) cm)		Field _ab	
Ë	Feet Metres	80.34		GROUN	D SURFACE			%			Ν	1(0 20	30 4	0 50	60 7	0 80 9	i 0	
Rep	33 —			7.93 m bgs respect Shallow Monitorin	ctively a Well												_		
2.GLB	34 —			- Borehole was dry	on December 5, 2019														
н 20	35 —			bgs on December	el measured at 0.07 m 13, 2019							$\left \right $					_		
OTEC	36			 Frozen/Iced cond 2020 	dition on January 15,														
GE	37 —			- Frozen/iced conc 2020	lition on February 26,							$ \vdash $					_		
HD ::	38				el measured at 1.56 m														
ry File	³⁹ – 12.0			- Borehole was dry	y on July 09, 2020							$\left \right $			$\left \right $		-	\square	
Libraı	40 —			bgs on October 05	el measured at 1.55 m 5, 2020														
Ъ	41 —			Deep Monitoring V	Vell el measured at 3.09 m											_	_	\square	
SED.G	42			bgs on December	5, 2019														
REVIS	43			bgs on December								\square					-	\square	
379 -	44 —			- Frozen/Iced cond 2020	dition on January 15,														
11205	45				lition on February 26,												_	\square	
5379\	46 — 14.0			- Groundwater leve	el measured at 2.93 m														
\1120	47 —			bgs on April 08, 20 - Groundwater leve)20 el measured at 3.18 m							\vdash			$\left \right $		-	\square	
2053	48 —			bgs on July 09, 20 - Groundwater leve	20 el measured at 3.18 m														
-/11	4915.0			bgs on October 05								\square						\square	
\1120	50			- shallow and deep	o monitoring wells														
-	51 —			each other	te holes adjacent to							\vdash			$\left \right $		+	\vdash	
HAR/	52 <u>-</u> 			- No methane gas drilling/coring	was detected during														
E\8-C	53 -																		
ABAS	54 —																_		
DAT	55 – 56 – 17.0																		
Y/LOG																	_		
GAC	57																		
EL/LE	58											П					-	\square	
BRUN	59 - 18.0											⊢							
- 111	60 —											H					+	$\left \right $	
NGA	61 —																		
SISSA	⁶² 19.0											H					+	$\left \right $	
4\MIS	63 —																		
N:/C/	64 —											\vdash	_	_	\mathbb{H}	+	_	H	
File:	65																		

r	REFEREN	ICE NO.		11205379								ENCLOSURE No.: 5	
		6			BOREHOLE No.:	_		MW	5		В	OREHOLE REPORT	
		9	m		ELEVATION:		80.	54 m			_	Page: <u>1</u> of <u>1</u>	
	CLIENT:		Preli	istructure Ontario (I. iminary Geotechnica ario Campus	O.) Il Investigation - Childre	n's	Hospita	ofEa	astern			EGEND SS - SPLIT SPOON	
Date: 11/17/20	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							ST - SHELBY TUBE	
ate: 1	DESCRIB	ED BY:	R. V	. Tillaart	CHECKED BY:						∐L ▼	AU - AUGER PROBE - WATER LEVEL	
Ŭ	DATE (ST	ART):	Dece	ember 4, 2019	DATE (FINISH):	: _	Decem	ber 4	, 2019)	_		
PH+WE	NORTHIN	G:	5027	7604.917	EASTING:		448917	.805					
SOIL LOG WITH GR	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shear test (Cu) \triangle Field Sensitivity (S) \square Lab \bigcirc Water content (%) $\stackrel{\blacksquare}{\Psi_{p}}$ Atterberg limits (%) \bullet "N" Value (blows / 12 in30 cm)	
5 Tio	Feet Metres				D SURFACE			%			Ν	10 20 30 40 50 60 70 80 90	
V02.GLB Rep	0 <u>1</u> 0.05 1 1 2 -	80.49		ASPHALT : 50 mm FILL : SAND and GRAVE very dense	n/ EL, grey/brown, frozen,		SS1	67	7	65-85-13-16	98	0 0.31 m	
GEOTECH	3 0.91 1.0 4	79.63		NATIVE : SM-SILTY SAND, very dense		-X	SS2	46	9	16-50/ 125mm	50+		
IN FILE: GHD	5 - 1.70 6 - 2.0 7 - 2.0	78.84		Gravel : 8%, Sand <u>: 10%</u> SHALE, completel	: 62%, Silt : 20%, Clay y weathered, grey	-X	SS3	41	6	25-50/ 100mm	50+		
D.GPJ Libra	8 8 9					X	SS4	40	5	9-50/ 100mm	50+		
- REVISEI	10 <u>-</u> 3.0 <u>-</u> 3.10 11 <u>-</u>	77.44		no recovery	LE :	×	SS5	0		50/ 50mm	50+	• 3.05 m 3.10 m	
File: N/CAMISSISSAUGA - 111 BRUNEL/LEGACYLOG DATABASEB/CHAR/11/1120/11205379/11205379.12053	$\begin{array}{c} 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 15 \\ 16 \\ 17 \\ 16 \\ 17 \\ 18 \\ 19 \\ 19 \\ 10 \\ 17 \\ 10 \\ 17 \\ 10 \\ 17 \\ 10 \\ 17 \\ 10 \\ 17 \\ 10 \\ 10$			NOTE : - End of Borehole - Borehole was dry - 50 mm diameter installed at 3.05 m - Borehole was dry - Groundwater leve bgs on December - Groundwater leve bgs on January 15 - Groundwater leve bgs on February 2 - Groundwater leve bgs on April 08, 20 - Groundwater leve bgs on July 09, 20	at 3.10 m bgs y upon completion monitoring well bgs y on December 5, 2019 el measured at 2.42 m 13, 2019 el measured at 1.97 m , 2020 el measured at 2.50 m 6, 2020 el measured at 2.10 m 200 el measured at 2.38 m 200 el measured at 2.35 m , 2020								

	REFEREN	CE No.	:	11205379								ENCLO	SURE	No.: _	6	
		6			BOREHOLE No.	:		BH	6		B	ORE	HOL	.E R	EPC	DRT
					ELEVATION:		80.	04 m						of		
1	CLIENT:		Prel	astructure Ontario (I. iminary Geotechnica ario Campus	O.) al Investigation - Childre	en's	Hospita	l of Ea	astern		LEC	<mark>GEND</mark> SS -	SPLIT	SPOC	N	
7//L/L	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							ST - AU -				
ate:	DESCRIBE	ED BY:	R. V	′. Tillaart	CHECKED BY:		A. Sord	bur			⊥⊔ Ţ			RLEV		
	DATE (STA	ART):	Dec	ember 2, 2019	DATE (FINISH)	: _	Decem	ber 2	, 2019)						
APH+W	NORTHIN	G:	502	7626.342	EASTING:		448896	6.247								
SUL LUG WITH GR	Depth	Elevation (m) BGS	Stratigraphy		LIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shear t Sensitiv O Wa W _p W ₁ Att (blows)	vity (S) ater con erberg li Value	tent (%) mits (%	△ Fie □ Lat	
:100	Feet Metres	80.04			D SURFACE			%			N	10 20	30 40 5	60 60 7	0 80 90	-
UZ.GLB Kel	1 <u>-</u> 1 <u>-</u> 0.40 2 <u>-</u>	79.64		FILL : SAND and GRAVE ∖dense NATIVE :	EL, grey, frozen, very /	4	SS1	75	8	49-50-18-6	68	0				_
	3 0.86 1.0 4	79.18		SM-SILTY SAND, grey/brown, moist, SHALE, completel	very dense	7	SS2	50	6	12-46-50/ 75mm	50+	0				-
FIIE: GHU_(5 6 2.0		իկիկիկի			X	SS3	20	3	50/ 125mm	50+	0		•		
U LIDIALY	7	77.61	111111			×	SS4	20	3	50/ 125mm	50+	0				-
ZUD3/9 - KEVISED.GP	9			END OF BOREHO NOTE : - End of Borehole - Borehole was dry - bgs donates 'belo	at 2.43 m bgs / upon completion											-
11/8/00/211/00	13 4.0 14 15															-
11ZU02TT	16 5.0 17															-
CHAR/TI	$ \begin{array}{c} 18 \\ -19 \\ -19 \\ -10 \\$															-
JA I ABASE/8-	$21 - \frac{1}{1}$ $22 - \frac{1}{1}$															_
J DOJ VOG L	23 <u>-</u> 7.0 24 <u>-</u> 															-
	25 <u>-</u> 26 <u>-</u> 8.0															
1 L L - AOU	27 28 20															
AVINUSUSSA	29 9.0 30															
	31 <u></u> + 32 <u>-</u> -															
E	+															

,	REFEREN	CE No.	:	11205379								ENCLO	DSUR	E No.:		7	
					BOREHOLE No.			BH	7		B	ORE	нс) F	RFF	DC	RT
		9	HD		ELEVATION:		80.	40 m			2			1			
0	CLIENT:		Prel	astructure Ontario (l. iminary Geotechnica ario Campus	0.) Il Investigation - Childre	n's	Hospita	l of Ea	astern		\boxtimes			IT SP			
7//L/LI	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario									ELBY T GER PI			
ate:	DESCRIBE	ED BY:	R. V	′. Tillaart	CHECKED BY:		A. Sord	bur			Ţ			TER LI			
	DATE (STA	ART):	Nov	ember 29, 2019	DATE (FINISH)	: _	Novem	ber 2	9, 201	9							
N+H-APH+W	NORTHING	G:	502	7643.798	EASTING:		448912										
SUL LUG WITH GK	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index		tivity (S /ater co tterber /" Value	5) ontent (g limits	∞ (%) (%)	Field Lab	
Ë	Feet Metres	80.40			D SURFACE			%			Ν	10 20	30 40	50 60	70 80	90	
VUZ.GLB Kep		70.04		FILL : SAND and GRAVE grey, moist, compa	EL, cobble fragments, act	X	SS1	58	2	5-7-8-5	15						
GEOLECH	$\begin{array}{c} 3 & \\ & \\ 4 & \\ \\ \\ \end{array}$	79.64		NATIVE : SM-SILTY SAND, grey/brown, moist, Gravel : 3%. Sand		X	SS2	55	7	4-15-22-50/ 75mm	37	0					
V FIIE: GHU	6 <u>-</u> 2.0	78.88		<u>∖: 13%</u> SHALE, completel			SS3	46	4	38-50/ 125mm	50+	0		•			
JPJ LIDIAL	7 2.43 8 2.43 9	77.97		END OF BOREHO		×	SS4	21	3	50/ 125mm	50+	0		•			
ELILEGACYLOG DA I ABASE/8-CHARVI1/1120/112093-/112093/9/112093/9 - REVISEL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			NOTE : - End of Borehole : - Borehole was dry - bgs donates 'belo	upon completion												
FIIE: N:\CA\MISSISSAUGA - 111 BKUNEL\LEGAC	26 8.0 27 8.0 28 29 9.0 30 9.0 31 32 32																

REFERENCE No	.:11205379								ENC	LOSU	IRE No	o.:	8	
		BOREHOLE No.:	_		BH	8		B	OR	EH	OLE	E RI	EPO	RT
		ELEVATION:		80.	32 m						_1_			
CLIENT: PROJECT:	Preliminary Geotechnic	.O.) al Investigation - Childre	n's	Hospital	of Ea	astern		\boxtimes			PLIT S	POON	1	
	401 Smyth Road, Ottaw	/a, Ontario									HELBY JGER			
DESCRIBED BY:	R. V. Tillaart	CHECKED BY:		A. Sord	ur			Ţ	70		ATER			
DATE (START):	December 2, 2019	DATE (FINISH):	:	Decem	ber 2	, 2019)							
	5027623.431	EASTING:		448936	.551									
Depth Elevation (m) BGS	SOIL AN	RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Ser	"N" Va	(S) r conter berg limi		∆ Fiel □ Lab	
Feet Metres 80.82		ID SURFACE			%			N	10	20 30	40 50	60 70	80 90	-
	moist, compact	, trace organics, grey,	M	SS1	50	9	6-4-5-6	9	•					-
$\begin{array}{c} & - & - & 0.76 \\ & 3 & - & 1.0 \\ & 3 & - & 1.0 \\ & - & - & - \\ & - & - & - \end{array}$	SM-SILTY SAND, compact	grey/brown, moist, I : 59%, Silt : 22%, Clay	X	SS2	75	10	2-5-6-45	11		H				-
1.52 79.30 1.52 79.30 1.52 79.30 1.52 79.30 1.52 79.30 1.52 79.30 1.52 79.30 1.52 79.30 1.52 79.30	<u></u> 11%	ly weathered, grey	X	SS3	41	5	40-50/ 100mm	50+	0		•			-
			X	SS4	12	2	50/ 75mm	50+	0		•			-
	END OF BOREHO	<u>LE :</u>	X	SS5	12	5	50/ 75mm	50+	0		•			-
12 13 4.0	NOTE : - End of Borehole - Borehole was dr	y upon completion												-
	- bgs donates 'bel	ow ground surface'												-
														-
														_
									\square	++	++	++	++	
26 <u>-</u> 8.0													\ddagger	1
														_
									\vdash	+ +	+ +	+ +	++	-
30 <u>+</u> 9.0										++		++	\ddagger	-
										++			\pm	-
32 —														_

_	REFEREN	ICE No.	:	11205379								ENC	LOSL	JRE N	0.:		9	
		G			BOREHOLE No.:	_		MW	9		В	OR	EH	OL	ΕF	REF	0 0	RT
					ELEVATION:		80.	52 m					Page:					
0	CLIENT:		Prel	astructure Ontario (I. iminary Geotechnica ario Campus	O.) al Investigation - Childre	n's	Hospita	l of Ea	astern		\boxtimes			PLIT	SPO	NC		
7/71/1	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							ST AU		HELB UGEF				
ate:	DESCRIBE	ED BY:	R. V	/. Tillaart	CHECKED BY:		A. Sor	bur			Ţ	/ 10		ATE				
VELL VELL	DATE (ST	ART):	Dec	ember 3, 2019	DATE (FINISH)	: _	Decem	ber 3	, 2019)								
V+H'A	NORTHIN	G:	502	7678.629	EASTING:		448898	8.487										
	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Ser ⊖ ₩ _p w	ear test sitivity Wate Atterk "N" Va	(S) r conte berg lin	nits (%	, 🗆	Field Lab	
Ë	Feet Metres	80.52			D SURFACE			%			Ν	10	20 30	40 50	60	70 80	90	
UZ.GLB Kep				FILL : SAND and GRAVI compact	EL, grey, moist,		SS1	58	3	24-18-6-4	24	0	•			.31 r .31 r		
	3 - 0.76 3 - 1.0 4 - 5 - 1.0	79.76		cobble fragments, to dense	some clay and gravel, brown, moist, compact d : 53%, Silt : 20%,		SS2	58	6	4-8-7-17	15	0			1	.11 r San	n_ d	
y FIIE: GH	6 <u>198</u> 7 <u>2.0</u>	78.54		Clay : 13% SHALE, completel		X	SS3	76	9	7-8-26-50/ 75mm	34					Scree 83 r		
FU LIDIA	/ 8 9		իկկկկկ		,,	X	SS4	100	5	49-50/ 50mm	50+	0						
- KEVISED.G	10 <u>-</u> 3.0			no recovery		×	SS5	0		50/ 50mm	50+			•	E	3ackf		
- 6/20211V	$ \begin{array}{c} $	76.71					SS6	0		50/ 0mm	50+			•	3	.81 r	n —	
	14			END OF BOREHO														
-5GUZT 1/	16 <u>-</u> 16 <u>-</u> 17 <u>-</u> 17 <u>-</u> 5.0			 End of Borehole Borehole was dry 50mm diameter r installed at 1.83 m 	vupon completion													
071.L\L	18			- Borehole was dry - Borehole was dry 2019	on December 5, 2019 on December 13,													
=\8-CHAK/1	19 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -																	
DATABASI	21 <u>+</u> 22 <u>+</u> -				el measured at 2.00 m , 2020													
ACYLOG	23 <u>-</u> 7.0 24 <u>-</u>				-													
NEL/LEG	25 — 26 — 0																	
111 BKU	²⁶ – 8.0 27 – 8.0																	
AUGA -	28 — — 29 — —																+	
221221	29 <u>-</u> 9.0 30 <u>-</u> 9.0																	
N:/CA/M	31												+	+			+	
	32 —																	

,	REFEREN	ICE No.	:	11205379								ENC	LOSL	JRE N	lo.: _		10		
		G			BOREHOLE No.:	_		MW	10		В	OR	EH	OL	ER	REP	OF	٦٢	
					ELEVATION:		79.	86 m				I	Page:	_1	_ of	_1	-		
0	CLIENT:		Preli	structure Ontario (I. iminary Geotechnica ario Campus	D.) I Investigation - Childre	n's	Hospita	l of Ea	astern			GEN SS		PLIT	SPOC) N			
Date: 11/17/20	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario										y tu R Pro				
ate: 1	DESCRIBE	ED BY:	R. V	. Tillaart	CHECKED BY:	_	A. Sord	bur			Ţ	70			RLEV				
/ELL D	DATE (ST	ART):	Dec	ember 2, 2019	DATE (FINISH):		Decem	ber 2	, 2019)									
N+Hd⊳	NORTHIN	G:	5027	7644.571	EASTING:		448886	6.323											
SOIL LOG WITH GR	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Ser	ear test nsitivity Wate Attert "N" Va ws / 12	r (S) r conte perg lir alue			-ield .ab		
ï	Feet Metres	79.86			D SURFACE			%			Ν	10	20 30	40 50	60 7	0 80 9	0		N-74
V02.GLB Rep	$ \begin{array}{c} $	79.10		FILL : SAND and GRAVE	EL, grey, frozen, dense	X	SS1	58	3	24-37-11-3	48	0			0.	31 m			
GEOTECH	$\begin{array}{c} 3 & -+ \\ & \\ 4 & -+ \\ \\ \end{array}$	73.10				X	SS2	42	9	5-3-7-10	10		H			90 m			
ary File: GHD	5 6 7 2.0			Clay : 9% clay pocket			SS3	42	28	2-3-5-7	8					98 m Sand			
D.GPJ Libra		77.57		SHALE, completel	y weathered, grey	X	SS4	57	6	45-6-37-50/ 125mm	43	0							
79 - REVISEI	10 3.0					×	SS5	16	3	50/ 100mm	50+	0			s	creen			
05379\112053	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76.05		END OF BOREHO	<u>.E :</u>		SS6	0		50/ 50mm	50+			•	3.	81 m			
File: N:/CAMISSISSAUGA - 111 BRUNEL/LEGACYLOG DATABASE/8-CHAR/11/12053-/112053-0112053791120537911205379 - REVISED.GPJ LIDrary File: GHD_GEOTECH_V02.GLB Report: SOIL LOG WITH GRAPH+WELL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			NOTE : - End of Borehole : - Borehole was dry - 50mm diameter r installed at 3.81 m - Groundwater leve bgs on December - Groundwater leve bgs on December - Groundwater leve bgs on April 08, 20 - Groundwater leve bgs on July 09, 20	at 3.81 m bgs upon completion nonitoring well bgs el measured at 2.45 m 5, 2019 el measured at 2.49 m 13, 2019 el measured at 2.33 m 20 el measured at 2.79 m 20 el measured at 2.74 m , 2020														

	REFEREN	ICE No.	:	11205379								ENCLOSURE No.: 11
		6			BOREHOLE No.	:		BH1	1		B	OREHOLE REPORT
					ELEVATION:		81.	<u>32 m</u>			_	Page: <u>1</u> of <u>1</u>
	CLIENT:		Infra	astructure Ontario (I.	0.)						LEC	GEND
	PROJECT	:	Prel Onta	iminary Geotechnica ario Campus	I Investigation - Childre	en's	Hospita	of Ea	astern	l	\boxtimes	
1/1/2/	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							ST - SHELBY TUBE AU - AUGER PROBE
ate:	DESCRIBE	ED BY:	<u>R.</u> V	′. Tillaart	CHECKED BY	:	A. Soro	our			LLI ▼	- WATER LEVEL
	DATE (ST	ART):	Dec	ember 4, 2019	DATE (FINISH): _	Decem	ber 4	, 2019)		
N+H-1	NORTHIN	G:	502	7617.468	EASTING:		448987	.177				
	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) \blacksquare Atterberg limits (%) \blacksquare "N" Value (blows / 12 in30 cm)
Ë	Feet Metres				D SURFACE			%			N	10 20 30 40 50 60 70 80 90
IZ.GLB Rep	0 0.08 1 2	81.24		ASPHALT : 75 mn FILL : SAND and GRAVE		\mathbb{Z}	SS1	67	8	16-17-7-5	24	
	² <u>-</u> 0.76 3 <u>-</u> 1.0 4 <u>-</u>	80.56		compact NATIVE : SM-SILTY SAND, brown/grey, moist,	some clay,	X	SS2	55	8	16-17-24-32	41	
י פאח פד	5 <u>-</u> 5 <u>-</u> 6 <u>-</u> 1.52	79.80		SHALE, completel			SS3	36	9	2050/ 125mm	50+	
orary FII6	7 - 2.0		կկկկ									
	8 <u>-</u> 2.49 9 <u>-</u>	78.83		END OF BOREHO	E.		SS4	33	2	30-50/ 50mm	50+	
	10 3.0			NOTE :								
/ A - KE	11 -			 End of Borehole Borehole was dry 	upon completion							
	12 — 13 — 4 0			- bgs donates 'belo	ow ground surface'							
18/5002	13 <u>-</u> 4.0 14 <u>-</u>											
11/5C	15 —											
NZI I/	16 - 5.0											
-11/	17 — 18 —											
L L/Y	19 —											
N-CHA	20 6.0											
ABASE	21 <u>-</u> 22 <u>-</u>											
ואח פע	23 - 7.0											
ACYLL	24 –											
9 = L/LEG	25 —											
BRUNE	²⁶ – 8.0 27 –											
	27											
SAUG	29 —											
NISSIM	30 - 9.0											
N:/CA/	31											
Г.	32 —											

REFERENCE No.:	11205379								ENCLOSURE No.: 12
6		BOREHOLE No.:			BH1	2		B	OREHOLE REPORT
5		ELEVATION:		81.	27 m			_	Page: <u>1</u> of <u>1</u>
CLIENT:	Infrastructure Ontario (I. Preliminary Geotechnica Ontario Campus	O.) al Investigation - Childre	n's I	Hospital	of Ea	astern	I	LEC	<u>SEND</u> SS - SPLIT SPOON
LOCATION:	401 Smyth Road, Ottaw	a, Ontario							
DESCRIBED BY:	R. V. Tillaart	CHECKED BY:		A. Sord	ur			Ţ	- WATER LEVEL
DATE (START): _	December 4, 2019	DATE (FINISH)		Decem	ber 4,	2019)		
NORTHING:	5027580.895	EASTING:		448953	.963				
Depth Elevation (m) BGS		RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shear test (Cu) Sensitivity (S) ○ Water content (%) ↓ Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
Feet Metres 81.27		D SURFACE			%			N	10 20 30 40 50 60 70 80 90
	ASPHALT : 75 mr FILL : SAND and GRAVI dense		\mathbb{N}	SS1	58	5	25-30-14-8	44	
$\begin{array}{c} 3 & -2 & 0.84 \\ 3 & -4 & -1.0 \\ 4 & -4 \\ 5 & -4 \end{array}$	brown/grey, moist	with gravel, some clay, compact to dense d : 52%, Silt : 19%,		SS2	75	4	3-5-15-33	20	
	Clay : 11%		M	SS3	76	11	7-15-17-50/ 75mm	32	
8 – 2.29 78.98 8 – – – – – – – – – – – – – – – – – –	SHALE, complete	y weathered, grey	X	SS4	38	7	38-50/ 75mm	50+	
10 <u>-</u> 3.0			-	SS5	0		50/ 25mm	50+	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	END OF BOREHO	<u>LE :</u>		SS6	0		50/ 0mm	50+	→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NOTE : - End of Borehole - Borehole was dr - bgs donates 'bel								
$ \begin{array}{c} 19 \\ - \\ 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$									
$ \begin{array}{c} 21 \\ 22 \\ 23 - 7.0 \end{array} $									
26 – – 8.0 27 –									
28 29 									
30									
32 -									

REFERENCE No.: 11205379								ENCLOSURE No.: 13
CUID	BOREHOLE No.:	:		BH1	3		В	OREHOLE REPORT
GHD	ELEVATION:		81.	<u>37 m</u>				Page: <u>1</u> of <u>1</u>
CLIENT: Infrastructure Ontario	(I.O.) ical Investigation - Childre	n'c	Hospital	ofE	actorn		LEC	GEND
PROJECT: Ontario Campus	ical investigation - Childre		nospital		astern		\boxtimes	
LOCATION:401 Smyth Road, Ott	awa, Ontario							ST - SHELBY TUBE AU - AUGER PROBE
DESCRIBED BY: <u>R. V. Tillaart</u>	CHECKED BY:		A. Sorc	our			Ţ	- WATER LEVEL
DATE (START):December 4, 2019	DATE (FINISH)	: _	Decem	ber 4	, 2019)		
NORTHING: 5027562.877	EASTING:		448996			1	1	
	CRIPTION OF ND BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shear test (Cu)
	JND SURFACE			%			N	10 20 30 40 50 60 70 80 90
0 0.08 81.29 ASPHALT : 75 1 FILL : SAND and GR/	mm/ WEL, brown, frozen,	\mathbb{N}	SS1	83	6	16-12-12-9	24	· •
0.76 80.61 compact	D, some clay,	$\overline{\mathbb{X}}$	SS2	71	7	10-12-50/ 125mm	50+	
SM-SILTY SAN	ist, very dense/ itely weathered, grey		SS3	33	4	1250/	50+	0
						100mm		
8 _ 2.37 79.00 _		×	SS4	12		50/ 75mm	50+	
9								
10 - - End of Boreho 11 - - Borehole was	le at 2.37 m bgs dry upon completion							
2 + bgs donates 'b	elow ground surface'							
$19 - \frac{1}{20} - 6.0$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
28								
29								
3 30								

,	REFEREN	CE No.	:	11205379								ENCLOSURE No.: 15
		6			BOREHOLE No.			BH1	4		B	OREHOLE REPORT
					ELEVATION:		81.	<u>17 m</u>				Page: <u>1</u> of <u>1</u>
n	CLIENT: _		Prel	astructure Ontario (I. iminary Geotechnica ario Campus	O.) al Investigation - Childre	en's	Hospita	l of Ea	astern	1	\boxtimes	
7//1/1	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							ST - SHELBY TUBE AU - AUGER PROBE
ate:	DESCRIBE	ED BY:	<u>R.</u> V	′. Tillaart	CHECKED BY:		A. Sord	bur			⊥⊔ Ţ	- WATER LEVEL
	DATE (STA	ART):	Dec	ember 4, 2019	DATE (FINISH)	: _	Decem	ber 4	, 2019)		
N+H-1-	NORTHING	G:	5027	7560.884	EASTING:		448919	.434				
OIL LUG WITH GR	Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) $\blacksquare_{w_p} W_i$ Atterberg limits (%) \blacksquare "N" Value (blows / 12 in30 cm)
Ë	Feet Metres				D SURFACE			%			Ν	10 20 30 40 50 60 70 80 90
VUZ.GLB Kep	$\begin{array}{c} 0 & - & 0.08 \\ 1 & - & - \\ 2 & - & - \\ 2 & - & - \end{array}$			ASPHALT : 75 mn FILL : SAND and GRAVI compact		\mathbb{Z}	SS1	83	6	29-14-6-2	20	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80.36 80.16		NATIVE : SM-SILTY SAND, brown/grey, moist,	very dense	Ā	SS2	100	9	15-36-50/ 25mm	50+	
FIIE: GHU	5 — — 6 — — _ — — 2.0			SHALE, completel	y weathered, grey	X	SS3	45	7	36-50/ 125mm	50+	○ ●
J LIDFALY	7 <u>-</u> 2.32 8 <u>-</u> 2.32	78.85				-	SS4	0		50/ 25mm	50+	• • • • • • • • • • • • • • • • • • •
ICAIMISSISSAUGA - 111 BRUNELILEGACTICUG DATABASE(8-CHARITT1120112093-1112093-1112093/9112093/9112093/9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			END OF BOREHO NOTE : - End of Borehole - Borehole was dry - bgs donates 'beld	at 2.32 m bqs							
LIE. N	32 —											

ſ	REFERENCE N	No.:	11205379								ENCLOSURE No.: 14	
				BOREHOLE No.:	_		MW	14		B	OREHOLE REPORT	
				ELEVATION:		81	.2 m				Page: <u>1</u> of <u>2</u>	
				PROJECT: _P	reli	minary (Geote	chnica	al Investigat	ion	LEGEND	
	LOCATION:	401	Smyth Road, Ottaw	a, Ontario							SS - SPLIT SPOON	
	DRILLING RIG	: Trac	ck Drill Rig	DRILLING MET	HO	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	s 🖾 ST - SHELBY TUBE	
	DESCRIBED B	SY: <u>S. V</u>	Vallis	CHECKED BY:	_	A. Kha	ndeka	ır			▼ - WATER LEVEL	
771	DATE (START)): <u>5 Ju</u>	ıly 2022	DATE (FINISH)	_	5 July 2	2022					
316: 1/5	NORTHING:	502	7581.3 m	EASTING:	_	448971	l.5 m			1		
GRAPH+WELL US	Depth	(m) Stratigraphy		LIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) W _µ , Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)	
	Feet Metres 81.			D SURFACE				%			10 20 30 40 50 60 70 80 90	To (
S/ & SUIL LUG	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ASPHALT : 75 mn FILL : SW-SM-SAND an moist, compact	n/ d GRAVEL, brown,	X	SS1	100	4	3-8-9-8	17	0.2 m - 3 m	
	$\begin{array}{c} 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	4	NATIVE : SM-SILTY SAND, brown/black, mois	some clay, t, loose to very dense	X	SS2	100	8	3-2-4-8	6	©screen	
פרפ	6 <u>-</u> 1.6 79.	6	SHALE-BEDROCI	K, weathered, grey		SS3	100	10	50/ 100mm	50+	1.5 m - ¥	
	7 - 2:0 79. 8 9 3.0 11		shale partings, ver with calcites, mode weathered, thinly b	K, shattered limestone, tical fractures infilled erately to highly bedded, highly to ed, grey, very weak to		RC1	77		0			
KEA.GPJ LIDIARY FILE: 1	$ \begin{array}{c} 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$					RC2	65		43		4.6 m=	
ABASE/112033/9 - 1040 AF	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					RC3	100		57			
	$22 - \frac{1}{23} - 7.0$ $24 - \frac{1}{25} - \frac{1}{26}$ $26 - 8 0$		shale layers			RC4	87		67		7.6 m=	
IN.ICAN UNUNI UN NUTER I 3/00	27					RC5	100		98		8.2 m	
	32 —											

REFERENCE No.: 11205379								ENC	LOS	JRE	No.:		14	ł
	BOREHOLE No.:			MW	14		B	OR	EF	101	_E F	RE	PO	RT
GHD	ELEVATION:		81	.2 m			_				<u> </u>			
CLIENT: Infrastructure Ontario (I.O.)	PROJECT: Pr	relir	ninary	Geote	chnica	al Investigat	ion	LE	GEI	ND				
LOCATION:401 Smyth Road, Otta	wa, Ontario								SS		SPLI	T SF	voon	1
DRILLING RIG: Track Drill Rig	DRILLING METH	ноі	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers		ST RC		SHEL			Ξ
DESCRIBED BY: <u>S. Wallis</u>	CHECKED BY:		A. Kha	ndeka	ar			Ţ			WAT			L
DATE (START):5 July 2022	_ DATE (FINISH):		5 July	2022										
NORTHING: 5027581.3 m	EASTING:		44897 <i>^</i>	1.5 m		I								
	RIPTION OF ND BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)		sitivit Wate Atter	alue) itent (% limits (% 30 cm)	5) %)	∆ Fielo ⊒ Lab	
	ND SURFACE				%			10	20 30	0 40 9	50 60	708	0 90	
			RC6	100		88			+	+	++			
														-
36 – 11:8 70.2												1.0		-
2 37 END OF BOREH	<u>DLE :</u>									-		+		+
8														1
39	m 2.08 m bgs									-				-
5 40 - Ceep and Shall	ow monitoring well n and 1.52 m bgs													
41 - respectively - bgs donates 'be	low ground surface'									_			\square	-
42 + Groundwater lev	el measurements									+				
$\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ -1$	epth (m) Elev (m)													
	2.87 78.36 2.90 78.33													
	el measurements									_				+
47 -	epth (m) Elev (m)													1
	.63 79.58 .65 79.56									+				
										-			_	+
										_			\square	1
														-
53 – 16.0														
										-				+
										+				
56 <u>1</u> 17.0														1
										-				-
										_				-
⁸ 59 - 18.0										+				1
														1
										-				-
5 ⁶²										+				1
										+	$\left \right $		\square	+

DORTHOLE No:	_	REFEREN	ICE No.	:	11205379								ENC	LOS	URE	No.: _		15	
ELEVATION: B12m Page: 1 1 CULENT: Infrastructure Ontatic (LO.) PROJECT: Preliminary Gaotachnical Investigation IECEND LOCATION: 401 Smyth Road, Ottavia, Ontavia DRILLING RIC: 100 Status S						BOREHOLE No.			BH1	5		B	OF	REF	IOL	E F	REP	POF	۲۲
LOCATION: 401 Smyth Road, Ottawa, Ontanio St. 11 SPOON DRLLING RIG: Track Drill Rig ORLLING METHOD: 203mm OD Hollow Stem Auges St SPLIT SPOON DeSCRIBED BY: D.Adh OHECKED BY: A. Khandekar WATER LEVEL DATE (START): 15.July 2022 DATE (FINISH): 16.July 2022 St SPLIT SPOON MORTHINS: 902 St. 56 m EASTING: 44890.5 m St SPLIT SPOON 1 501.AND EEDROCK 10 10 St SPLIT SPOON Constitution 1 0.1 91.1 St SPLIT SPOON St SPLIT SPOON Constitution Constitution Constitution St SPLIT SPOON 1 0.01 91.1 St SPLIT SPOON St SPLIT SPOON Constitution Constitution St SPLIT SPOON Constitution Constitutio						ELEVATION:		81	.2 m			_							•••
DRILLING RG: Track Drill Rig DRILLING METHOD_203mm OD Hollow Stem Auger Discription Steal BY TUBE DESCRIBED BY: D.Ash CHECKED BY: A Khandekar		CLIENT:	Infrast	tructur	re Ontario (I.O.)	PROJECT: _F	reli	minary	Geote	chnica	al Investigat	ion	L	EGEI	ND				
Bit Control Toto: Direct Children Minited Children		LOCATIO	N:	401	Smyth Road, Ottaw	a, Ontario							\geq] ss	- :	SPLIT	SPO	ON	
DESCRIBED BY: D. Ash CHECKED BY: A. Khandekar • WATER LEVEL DATE (START) 16. July 2022 DATE (FINISH) 16. July 2022 OATE (START) 6. July 2022 OATE (START) 0. Start (DRILLING	RIG:	Trac	ck Drill Rig	DRILLING MET	ΉО	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers							
NORTHING: 5027585.6 m EASTING: 448950.5 m is		DESCRIBI	ED BY:	<u>D.</u> A	Ash	CHECKED BY:	_	A. Kha	ndeka	ar									
End End DESCRIPTION OF SOIL AND BEDROCK Bit Soil AND BEDROCK Soil AND BEDROCK	77	DATE (ST	ART):	16 J	July 2022	DATE (FINISH)	: _	16 July	2022	2									
E S DESCRIPTION OF SOL AND BEDROCK Bit Sol AND BEDROCK Bit Sol AND BEDROCK Sol Bit Sol AND BEDROCK Sol Bit Sol AND Sol Bit Sol AN	1/8/L	NORTHIN	G:	502	7585.6 m	EASTING:		448950).5 m		I	1							
0 0.1 81.1 ASPHALT: 75 mm 1 -	GRAPH+WELL UA	Depth	Elevation (m)	Stratigraphy			State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)		Nsitivit Wate Atter	y (S) er cont berg li alue	ent (%) mits (%			
1 - 5.5 - 1.5 - <td></td> <td>Feet Metres</td> <td>81.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>%</td> <td></td> <td></td> <td>10</td> <td>20 30</td> <td>0 40 5</td> <td>0 60 7</td> <td>0 80 9</td> <td>90</td> <td></td>		Feet Metres	81.2							%			10	20 30	0 40 5	0 60 7	0 80 9	90	
2 0.6 80.6 e.e.day, brown, most, compact Gravel: 43%, Sant :47%, Clay 3 1.0 80.6 2.2.4.5 6 4 - SS2 42 6 2.2.4.5 6 5 - 1.0 9 9.14-11-50/ 100mm 25 0 0 6 - 2.2.4.5 6 0 0 0 0 7 - . Borehole terminated due to spoon and auger refusal SS3 100 9 9.14-11-50/ 100mm 25 0 0 0 8 - 2.5 . END OF BOREHOLE : NTTE: . . SS3 100 9 9.14-11-50/ 100mm 25 0 0 0 9 - .	L L UG	0.1 	81.1		FILL :	/	1//												
2 0.6 80.6 2% 2% 3 -1.0 NTTVE: SS2 42 6 2.24-5 6 4 -1.0 -1.0 SS2 42 6 2.24-5 6 5 -1.5 -1.5 SS3 100 9 9-14-11-50/ 25 0 0 6 -1.8 79.4 -1.8 Borehole terminated due to spoon and auger refusal SS3 100 9 9-14-11-50/ 25 0 0 7 -2.0 -2.0 -1.8 79.4 -1.8 FDO F BOREHOLE : NOTE : -1.6 -1.0 <td>03/9 201</td> <td>-</td> <td></td> <td></td> <td>trace clay, brown,</td> <td>moist, compact</td> <td>Ŵ</td> <td>SS1</td> <td>71</td> <td>3</td> <td>10-7-8-5</td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	03/9 201	-			trace clay, brown,	moist, compact	Ŵ	SS1	71	3	10-7-8-5	15							
3 1.0 Clay. brown, molet, loose to compact Gravel. 256%, Sand: 46%, Silt: 19%, Clay: 10% SS2 42 6 2.24-5 6 5 1.5 Borehole terminated due to spoon and auger refusal SS3 100 9 9-14:11-50' 100mm 25 6 2.2.5 Borehole terminated due to spoon and auger refusal SS3 100 9 9-14:11-50' 100mm 26 9 - - NOTE: - - - - - 10 - 3.0 - - - - 11 - - - - - - 13 - 4.0 - - - - 14 - - - - - - 15 - - - - - - 16 - - - - - - 16 - - - - - - 18 - 5.5 - - - - - 18 <td< td=""><td></td><td></td><td>80.6</td><td></td><td>2% NATIVE :</td><td>/</td><td>\int</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			80.6		2% NATIVE :	/	\int												
4 - 1.5 - 1.5 - <td>C Kepo</td> <td>3</td> <td></td> <td></td> <td>clay, brown, moist,</td> <td>loose to compact</td> <td>X</td> <td>SS2</td> <td>42</td> <td>6</td> <td>2-2-4-5</td> <td>6</td> <td>┥</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	C Kepo	3			clay, brown, moist,	loose to compact	X	SS2	42	6	2-2-4-5	6	┥						
6 1.8 78.4 Borehole terminated due to spoon and auger refusal END of BOREHOLE : 8 2.5 9 - 10 - 9 - 10 - 10 - 10 - 10 - 10 - 11 - - - 11 - - - 11 - - - 12 - 13 - 4.0 - 14 - 15 - 16 - 5.5 -	ND.GLE	-				a : 46%, Silt : 19%,	\square												
6 1.8 78.4 Borehole terminated due to spoon and auger refusal END of BOREHOLE : 8 2.5 9 - 10 - 9 - 10 - 10 - 10 - 10 - 10 - 11 - - - 11 - - - 11 - - - 12 - 13 - 4.0 - 14 - 15 - 16 - 5.5 -	> E 2	- 					N							$\mathbf{\lambda}$					
Borehole terminate due to spoon and auger returnate due to spoon and auger returnate auger returnate B 2.5 B 5 B 5 B 5.5		5 1.5					Ŵ	SS3	100	9		25		•				$\left \right $	
7	ה פער	6 - 1.8	79.4			ed due to spoon and													
NOTE : - 2.5 9 - 3.0 10 - 3.0 11 - 3.5 12 - 4.0 14 - 4.5 15 - 5.5	12021					F.												\square	
 8 - 2.5 9 10 - 3.0 11 3.5 12 13 - 4.0 14 15 - 4.5 16 - 5.0 17 18 - 5.5 18 - 5.5 	LIE:					<u></u>													
$\begin{array}{c} 9 \\ - \\ 10 \\ - \\ 3.0 \\ 11 \\ - \\ - \\ 3.5 \\ 12 \\ - \\ - \\ 13 \\ - \\ 4.0 \\ 14 \\ - \\ - \\ - \\ 5.0 \\ 17 \\ - \\ 18 \\ - \\ 5.5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	LIDIALY	8 2.5			- Borehole was dry	upon completion													
$ \begin{array}{c} 10 \\ - \\ 11 \\ - \\ 3.5 \\ 12 \\ - \\ 13 \\ - \\ 4.5 \\ 16 \\ - \\ - \\ 5.0 \\ 17 \\ - \\ 18 \\ - \\ 5.5 \\ - \\ - \\ - \\ - \\ 5.5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	- 657	9 —			- bgs donates 'belo	ow ground surface'													
$ \begin{array}{c} -3.5 \\ 12 \\ - \\ 13 - 4.0 \\ 14 - \\ - \\ 15 - 4.5 \\ 16 - \\ - \\ - 5.0 \\ 17 - \\ 18 - 5.5 \\ \end{array} $	AKEA	10 3.0																+	
$ \begin{array}{c} -3.5 \\ 12 \\ - \\ 13 - 4.0 \\ 14 - \\ - \\ 15 - 4.5 \\ 16 - \\ - \\ - 5.0 \\ 17 - \\ 18 - 5.5 \\ \end{array} $	- 1D4C	+																+	
$ \begin{array}{c} 13 \\ -4.0 \\ 14 \\ -4.5 \\ 15 \\ -4.5 \\ 16 \\ -5.0 \\ 17 \\ -18 \\ -5.5 \\ 18 \\ -5.5 \\ 18 \\ -5.5 \\ 18 \\ -5.5 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	3/2GUZ																	\square	
$ \begin{array}{c} 14 \\\\ 14 \\\\\\\\\\\\\\\\\\\\ -$	SASE/1	12 —																	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ 15 \\ - \\ - \\ 16 \\ - \\ - \\ 5.0 \\ 17 \\ - \\ 18 \\ - \\ 5.5 \\ \end{array} $	5 DA IAE	13 - 4.0																	
$ \begin{array}{c} 15 \\ -1 \\ 16 \\ -1 \\ -1 \\ 5.0 \\ 17 \\ -1 \\ 18 \\ -1 \\ 5.5 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$		-+ - 14																$\left \right $	
$ \begin{array}{c} $	19379/1E												$\left \right $					+	
$ \begin{array}{c} 5.0 \\ 17 \\ \\ 18 5.5 \\ \\ \\ \\ $	171.170	2 -																	
	EC IS/6													\parallel					
	IL NHON	-												+					
													$\left - \right $	+				+	
		- 5.5											\vdash	+				+	
		19											$\left \right $					+	

REFERENCE N	o.: <u>11205379</u>								ENCLOSURE No.: 16
		BOREHOLE No.:			BH1	6		B	OREHOLE REPORT
	GHD	ELEVATION:		81	.0 m				Page: <u>1</u> of <u>1</u>
CLIENT: Infra	astructure Ontario (I.O.)		relir	ninary (Geote	chnica	al Investigat	ion	<u>LEGEND</u>
LOCATION:	401 Smyth Road, Ottaw	a, Ontario							SS - SPLIT SPOON
DRILLING RIG:	Track Drill Rig	DRILLING MET	HOI	D: <u>203</u>	mm C	D Ho	llow Stem A	lugers	ST - SHELBY TUBE
	/: <u>D. Ash</u>								
DATE (START):	12 July 2022	DATE (FINISH):		17 Dec	embe	er 202	2		
NORTHING:	5027602.7 m	EASTING:		448967					Shear test (Cu) △ Field
Depth Elevation	Stratigraphy SUL AN	RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Sensitivity (S) \Box Lab O Water content (%) $W_p W_l$ Atterberg limits (%) • "N" Value (blows / 12 in30 cm)
Feet Metres 81.0		D SURFACE				%			10 20 30 40 50 60 70 80 90
	FILL : SW-SM-GRAVEL trace clay, brown,	LY SAND, trace silt,		SS1	71	3	7-13-6-4	19	0 •
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NATIVE :	some gravel, trace , loose	$\left \right\rangle$	SS2	71	7	4-4-4-6	8	
4 1.2 79.8 5 1.5	SHALE-BEDROC brown	K, weathered, light	\mathbb{N}	SS3	100	6	39-42-50/ 100mm	92/ 254mn	
	Borehole terminat	ed due to spoon and	Ť						
	END OF BOREHO	<u>LE :</u>							
- 2.0 7	NOTE : - End of Borehole	at 1.62 m bgs / upon completion							
	- bgs donates 'bel	ow ground surface'							
+ 3.5 12 -									

	REFERENC	CE No.	:	11205379								ENCLOSU	RE No.:	1	7
					BOREHOLE No	.: _		MW	17		В	OREH	OLE F	REPC	RT
					ELEVATION:		80	.9 m			_		<u>1</u> c		
	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT:	Preli	minary	Geote	chnica	al Investigat	ion	LEGEN	<u>2</u>		
	LOCATION	l:	401	Smyth Road, Ottaw	a, Ontario							🖂 ss	- SPLI		1
	DRILLING F	RIG:	Trac	k Drill Rig	DRILLING ME	тнс	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	j ⊠ ST ∏ RC		.BY TUBI < CORE	Ξ
	DESCRIBE	D BY:	D. A	sh	CHECKED BY	:	A. Kha	ndeka	ar			⊥ KU I		ER LEVE	L
77	DATE (STA	ART):	11 J	uly 2022	DATE (FINISH): _	11 July	/ 2022	2						
te: 1/9/	NORTHING	G:	5027	7603.8 m	EASTING:		44894	4.2 m							
GKAPH+WELL Ua	Depth	Elevation (m)	Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test Sensitivity (Water Mathematical Wp, Wi Atterber (blows / 12	S) content (% erg limits (%	△ Fiel □ Lab) %)	
HIN	Feet Metres	80.9			D SURFACE				%			10 20 30	40 50 60	70 80 90	
P C C	0.1	80.8	\bigotimes	_ ASPHALT : 75 mm FILL :	1	+								0.2 m_	
102878 20IL	1			SM-GRAVELLY S clay, brown, moist, Gravel : 22%, San	AND, some silt, trace compact to loose d : 53%, Silt : 16%,	X	SS1	54	2	8-6-4-2	10			 ntonite 0.6 m—	-
eport: 112	2 0.6 	80.3			some gravel, trace	$\overline{\mathbb{N}}$	SS2	71	9	1-3-5-4	8				
DD.GLB Report:	4 1.0			clay, brown, moist,	loose	\bigwedge				1004					
UIECH_V(1.3 5 1.5	79.6		SHALE-BEDROCH	K, weathered, brown	×	SS3A SS3B	100	 8	 5-50/ 75mm	 50+			screen	
J GHU_GE	6 - 1.8	79.1			ed due to spoon and	_								1.8 m=	
2053/	2.0 7			auger refusal	-										-
FIIe: 11				END OF BOREHO											-
LIDIALY	8 2.5 2.5 9			NOTE : - End of Borehole : - Borehole was dry - Monitoring well ir - bgs donates 'belo	upon completion stalled at 1.78 m bgs										-
1D4C AKEA.GPJ	10 3.0			Groundwater leve Date Dep	oth (m) Elev (m)										-
- 679				07/22/2022 1.0 07/28/2022 1.0	64 79.27 64 79.27										-
ABASE/11205	+ 3.5 12 -														
-CH/LOG DATA	13 - 4.0														-
9/IECH/L	14 —														
2/112023/	15 — 4.5 														-
09\SIC	16 — _ 5.0														
JUPROJE	5.0 17														-
ORONIC	 18 — 5.5														
9: N:\CA\I	19 —														
FIIE:	-														

1	REFERENCE	E No.:	11205379								ENCLOSURE No.: 18
				BOREHOLE No.:			MW	18		B	OREHOLE REPORT
			2	ELEVATION:		81	.0 m				Page: <u>1</u> of <u>1</u>
	CLIENT: Ir	nfrastruc	cture Ontario (I.O.)	PROJECT: Pr	elir	minary	Geote	chnica	al Investigat	ion	LEGEND
	LOCATION:	4	01 Smyth Road, Ottaw	a, Ontario							SS - SPLIT SPOON
	DRILLING RI	IG: <u> </u>	rack Drill Rig	DRILLING METH	ю	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	ST - SHELBY TUBE
	DESCRIBED) BY:). Ash	CHECKED BY:		A. Kha	ndeka	ır			▼ - WATER LEVEL
7716	DATE (STAR	RT): <u>1</u>	6 July 2022	DATE (FINISH):		16 July	2022				
3/I: :)/S	NORTHING:	5	027616.5 m	EASTING:		448962	2.0 m			1	
GKAPPH+WELL US	Depth	Elevation (m)		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) \bigvee_{P} W ₁ Atterberg limits (%) \bigcirc "N" Value (blows / 12 in30 cm)
	0	81.0		D SURFACE				%			10 20 30 40 50 60 70 80 90
11203379 SUIL LUG	1	80.9	trace clay, brown,	d GRAVEL, trace silt,	M	SS1	79	3	5-9-8-8	17	0.2 m 0 •bentonite 0.6 m
VUD.GLB REPORT		80.2	 clay.brown.moist SM-GRAVELLY S clay.brown.moist very dense 	AND, trace silt, trace to wet, compact to	X	SS2	71	13	3-10-10-6	20	
	5 1.5		Gravel : 35%, San Clay : 4%	d : 50%, Silt : 11%,	X	SS3	62	9	6-4-7-4	11	screen
112023/9 GH	6 2.0 7 2.1 7	78.9	Rorobolo terminat	ed due to spoon and		SS4	100		50/ 0mm	50/ 0mm	2.1 m-
FII6:			auger refusal	ed due to spool and							
Library	8 2.5		END OF BOREHO	<u>LE :</u>							
ID4C AREA.GPJ	9 <u>-</u> 10 <u>-</u> 3.0										
- 6/50	11 —		Groundwater leve Date Der	el measurements oth (m) Elev (m)							
EVIIZU	- 3.5 12 -			52 79.45							
IABAS											
DG DA	¹³ — 4.0										
ECHL	14 —										
1/8/500211/2											
15/002	16 —										
KUJEC	_— 5.0 17 —										
-INI CI-											
ANI UKC	18 — 5.5 _										
	19 —										
E											

REFERENCE No.:	11205379								ENCLOSURE No.: 19
		BOREHOLE No.:			BH1	9		B	OREHOLE REPORT
G		ELEVATION:		80	.3 m			_	Page: <u>1</u> of <u>1</u>
		PROJECT: _P	relir	ninary (Geote	chnica	al Investigat	ion	LEGEND
LOCATION: 40	1 Smyth Road, Ottaw	a, Ontario							SS - SPLIT SPOON
DRILLING RIG: Tra	ack Drill Rig	DRILLING MET	HOI	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	ST - SHELBY TUBE
DESCRIBED BY: D.	Ash	CHECKED BY:		A. Kha	ndeka	ır			▼ - WATER LEVEL
DATE (START): <u>14</u>	July 2022	DATE (FINISH)	: <u> </u>	14 July	2022				
NORTHING: 502	27647.2 m	EASTING:		448901	.1 m				
Depth Elevation (m) Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) \blacksquare Atterberg limits (%) \blacksquare "N" Value (blows / 12 in30 cm)
Feet Metres 80.3		D SURFACE				%			10 20 30 40 50 60 70 80 90
	clay, grey, moist, c Gravel : 39%, San : 5%	AND, trace silt, trace ompact d : 47%, Silt : 9%, Clay	$\left \right\rangle$	SS1	42		23-7-3-2	10	
	clay, grey/brown, n	AVEL, some silt, trace noist, compact d : 40%, Silt : 13%,	\mathbb{N}	SS2	100		3-4-9-8	13	
	Borehole terminate auger refusal	ed due to spoon and							
6	NOTE : - End of Borehole - Borehole was dry - bgs donates 'belo	at 1.37 m bgs / upon completion							
10 <u>-</u> 3.0 + 11 <u>-</u> + 3.5									
- 4.5									

REFERENCE No.: 1120	5379		ENCLOSURE No.: 20
	BOREHOLE No.:	BH20	BOREHOLE REPORT
GHD	ELEVATION:	81.2 m	Page: <u>1</u> of <u>1</u>
CLIENT: Infrastructure Ontario	(I.O.) PROJECT: Pr	reliminary Geotechnical Investi	igation LEGEND
LOCATION: 401 Smyth R	oad, Ottawa, Ontario		SS - SPLIT SPOON
DRILLING RIG:	DRILLING METH	HOD: 203mm OD Hollow Ster	m Augers
DESCRIBED BY: D. Ash	CHECKED BY:	A. Khandekar	▼ - WATER LEVEL
DATE (START): <u>14 July 2022</u>	DATE (FINISH):	14 July 2022	
NORTHING: 5027660.3 m	EASTING:	448923.8 m	
Depth Elevation (m) Stratigraphy	DESCRIPTION OF SOIL AND BEDROCK	State Type and Number Recovery/ Moisture Content	per Shear test (Cu) △ Field N/ Sensitivity (S) □ Lab N/ > Water content (%) N/ > Nater berg limits (%) N/ • "N" Value (blows / 12 in30 cm)
Feet Metres 81.2	GROUND SURFACE	%	10 20 30 40 50 60 70 80 90
1 - FILL: SM-SIL clay, br	IL/SOD : 100 mm TY SAND, some gravel, some pwn, moist, compact 15%, Sand : 55%, Clay : 11%,	SS1 50 5 2-7-8-	6 15 0 •
3 1.0 SC-SM gravel,	% / : :CLAYEY SILTY SAND, trace brown, moist, loose to very dense	SS2 83 5 2-3-3-	3 6
Gravel 5	6%, Sand : 42%, Silt : 31%, Clay	SS3 79 3-6-7-	8 13
	BEDROCK, weathered	SS4 100 6-27-5 125mr	
9 - 2.6 78.6 Boreho auger r	e terminated due to spoon and efusal		
10 NOTE : 11	Borehole at 2.59 m bgs ble was dry upon completion bnates 'below ground surface'		
16			

_	REFEREN	ICE No.	:	11205379								ENCLOSURE No.: 21
					BOREHOLE No.	:		BH2	21		B	OREHOLE REPORT
		ſ			ELEVATION:		81	.0 m				Page: <u>1</u> of <u>2</u>
Γ	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: _F	Preli	minary	Geote	chnica	al Investigat	ion	LEGEND
	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario							SS - SPLIT SPOON
	DRILLING	RIG:	Trac	k Drill Rig	DRILLING MET	ΉО	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	ST - SHELBY TUBE
	DESCRIB	ED BY:	<u>S.</u> V	Vallis	CHECKED BY:		A. Kha	ndeka	ar			▼ - WATER LEVEL
771	DATE (ST	ART):	6 Ju	ly 2022	DATE (FINISH)	: _	6 July	2022				
3/I	NORTHIN	G:	502	7675.7 m	EASTING:		448916	6.2 m			1	
GRAPH+WELL US	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test (Cu) Sensitivity (S) ○ Water content (%) ↓ Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
	Feet Metres				D SURFACE				%			10 20 30 40 50 60 70 80 90
SUL LUG	$\begin{array}{c} 0 & - & 0.1 \\ 1 & - & - \\ 2 & - & 0.6 \end{array}$	81.0			d GRAVEL, trace silt,		SS1	37	8	5-5-8-7	13	
R/SCUZIT	3 <u>-</u> 1.0	00.4		∖grey/brown, moist, NATIVE : SM-SILTY SAND, grey/black, moist,	trace gravel, brown to	ĺ	SS2	67	3	4-3-6-6	9	
LB Report:				grey/black, moist,	ouse to compact	X	SS3	50	6	4-8-10-5	18	
9.00 H	7 2.0					X	SS4	75	13	3-5-6-10	11	
	8	78.4			ζ, shattered limestone,		SS5	100		30	30	
	9 <u>-</u> 10 <u>-</u> 3.0				tical fractures infilled erately to highly		RC1	100		0		
N	11 — <u> </u>			moderately fractures strong	ed, grey, very weak to							
IDLARY FIIG	13 <u>4</u> 4.0						RC2	100		9		
AREA.GFJ L	15 —											
D4C AKE	16 - 5.0 17 - 5.0											
L - 6/2002	18 — 19 —						RC3	100		43		
ž	20 <u>-</u> 6.0 21 <u>-</u>											
2	21 —		1111									
2	23 <u>-</u> 7.0 24 <u>-</u>		իկկկկ				RC4	64		71		
	25											
2	²⁶ 8.0											
ú	27 — 28 —						RC5	95		77		
τ	29 —											
Ξ	30 - 9.0											
:/CA/I	31 —											
	32 —											

_	RE	FEREN	CE No.:		11205379								ENC	LOS	URE	E No.:		21	
						BOREHOLE No.:	_		BH2	21		B	OF	SEł	-10		REF	PORT	
			9	i HL		ELEVATION:		81	.0 m							2 0			
	CL	IENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: _P	reli	minary	Geote	chnica	al Investigat	ion	L	EGE	ND				
	LO	CATION	N:	401	Smyth Road, Ottaw	a, Ontario								ss		- SPLI	T SPC	ON	
	DR	ILLING	RIG: _	Trac	k Drill Rig	DRILLING MET	но	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers] ST] R(- SHEI - ROC			
	DE	SCRIBE	ED BY:	<u>S.</u> W	/allis	CHECKED BY:		A. Kha	ndeka	ar			ļ	_		- WAT			
77	DA	TE (ST	ART): _	6 Ju	ly 2022	DATE (FINISH)	:	6 July	2022										
e: 1/9/	NC	RTHIN	G:	5027	7675.7 m	EASTING:		448916	6.2 m										
GKAPH+WELL Ua	4+C	nebru	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)		, Atte	ty (S) ter co erberg Value) ontent (% g limits ('	∽□ %) %)	Field Lab	
H N		Metres	81.0		GROUN	D SURFACE				%			10	20 3	0 40	50 60	70 80	90	
POG.	33 — - 34 —							RC6	100		88				$\left \right $		++	+	
a sol	35 —			1111			I											\square	
120021	- 36 —	-11:8	70.1				μ												
:::0	37 —				END OF BOREHO	<u>LE :</u>													
n Kep	38 —				NOTE : - End of Borehole	at 10.95 m bas												+	
09.GL	39 —				 Borehole was dry Rock coring from 	upon completion													
> E I I I I	40 —				- bgs donates 'belo	ow ground surface'													
EC E	41 -																	+	
	42 — 43 —	-13.0																	
93/9 (43 -																		
112(45 —																	+	
가면	46 —	-14.0																\square	
LIDrary	47 —																		
GPJ.	48 —																	+	
AKEA.GPJ	49 —	-15.0																\square	
1D4C	50 —																		
- 6/20	51 -																		
1120	52 —	-16.0																	
ABASI	53 — 54 —																		
G DAI	55 —																		
UH/LO	- 56 —	-17.0																	
/9/IE(- 57 —																		
12053	58 —																		
1/2001	59 —	-18.0												_				+	
	60 —																	\square	
UPRO'	61 —																		
CNIC	62 —	-19.0																\square	
A/I UK	63 —																		
N:C	64 -													+	\vdash	+		+	
File:	65 —	F																11	

	REFER	INCE N	0.:	11205379								ENCLOSU	JRE No	.:	22
					BOREHOLE No.:	:		BH2	22		B	OREH	OLE		ORT
			Gil		ELEVATION:		80	.4 m						of <u>1</u>	
	CLIENT	Infra			PROJECT: _P	reli	minary	Geote	chnica	al Investigat	ion	LEGEN	ID		
	LOCATI	ON:	401	Smyth Road, Ottaw	a, Ontario							🖂 ss		LIT SPC	
	DRILLIN	G RIG:	Tra	ck Drill Rig	DRILLING MET	ΉО	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers	⊠ ST ∎ RC		IELBY TI OCK COF	
	DESCR	BED B)	′: <u>D.</u>	Ash	CHECKED BY:		A. Kha	ndeka	ar			Ţ		ATER LE	
7716	DATE (S	START):	14 、	July 2022	DATE (FINISH)	:	14 July	/ 2022	2						
ate: 1/8	NORTH	NG:	502	27664.6 m	EASTING:		448897	7.9 m		I			(2.)		
GRAPH+WELL US	Depth	Elevation (m)	Stratigraphy	DESCF SOIL AN	RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear test Sensitivity Wate Market Sensitivity Sensitivity Wate Market Sensitivity Market Sensitivity Market Market Market Shear test	r (S) r content berg limit	□ :(%) s (%)	Field Lab
	Feet Metr	es 80.4			D SURFACE				%			10 20 30	40 50 6	60 70 80	90
L LOG	0.	1 80.3			d GRAVEL, trace silt,	\mathbb{A}									
19 501	1 —			\grey/brown, moist NATIVE :		X	SS1	50	12	6-2-3-4	5	•ρ			
PGNZLL	- 0.	5		SM-SILTY SAND, grey/brown, moist	trace gravel, , loose	\mathbb{N}									
:Lode	2														
2 LB	3 _					\mathbb{N}									
	1. -	0				IX	SS2	79	12	5-4-5-6	9	•			
	4 —														
ביפו	- 1. 5 - 1.				ed due to spoon and										
3/9 6	51.	5		auger refusal											
GUZTT	6 -			END OF BOREHO	<u>LC .</u>										+
y FIIE:	- 2.	o		- End of Borehole - Borehole was dry											
LIDIAL	7 –			- bgs donates 'bel	ow ground surface'										
KEA.GPJ															
	8 - 2.	5													
- 1D4(9 -														
ZU33/	+														
ASE/11	10 - 3.	0													
DALAB															
1/206	11 – – 3.	5													
	12 -														
120021	÷														
1/200/0	13 - 4.	D													\square
しててい	14 —														
NON	15 - 4.	5													
SICAN C	ł														
LIIE: N	16 —														

r	REFEREN	CE No.	:	11205379								ENCLO	JSUF		D.: _		23	
					BOREHOLE No.	: _		MW2	23		В	ORE	ЕНС	DLE	ER	REP	OF	RL
					ELEVATION:		82	.9 m			_					2		
	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT:	Preli	minary (Geote	chnica	al Investigati	on	LEG	GEND	<u>)</u>				
	LOCATION	1:	401	Smyth Road, Ottaw	a, Ontario							\boxtimes	SS	- SI	PLIT	SPO	ON	
	DRILLING	RIG:	Trac	k Drill Rig	DRILLING ME	тно	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers					3Y TU COR		
	DESCRIBE	ED BY:	<u>D.</u> A	sh	CHECKED BY	:	A. Kha	ndeka	r			Ţ				RLE		
22	DATE (STA	ART):	13 J	uly 2022	DATE (FINISH): _	13 July	2022										
e: 1/9/	NORTHING	G:	502	7676.3 m	EASTING:		448955	5.6 m										
GRAPH+WELL Dat	Depth	Elevation (m)	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear Sensit O V M _{wp} W ₁ A • "h (blows	tivity (i Vater o tterbe \transformed v	S) conter rg limi ie	its (%		Field Lab	
HIM	Feet Metres	82.9			D SURFACE				%			10 20	0 30 4	0 50	_	0 80 9	h#	71 N 1 1
9 SOIL LOG	0 0.1 1 2	82.8		ASPHALT : 75 mm FILL : SM-GRAVELLY S clay, brown, moist.	AND, some silt, trace	\mathbb{Z}	SS1	67	3	10-18-18-14	36	0	•		().2 ['] m		<1KX2
rt: 1120537	3 1.0 4						SS2	100	5	10-20-26-15	46	0)				
GLB Repo	5 6 2.0			Gravel : 34%, San Clay : 5%	d : 48%, Silt : 13%,		SS3	75	6	15-26-15-28	41	0						
DIECH_V05	7 2.0						SS4	83	6	17-40-30-37	70	0			_ber	Itonite	, ,	
HD_GE(9 <u>-</u> 10 <u>-</u> 3.0					X	SS5	79	7	15-28-28-22	56	0		9				
1205379 G	10 - 3.2 11 - 3.5	79.7 79.4			/EL, some silt, trace	Ŕ	SS6	100		6-50/ 125mm	+50							
ıry File: 1	12 — 13 — - - - 4.0			Clay : 6%	d : 32%, Silt : 13%,		SS7	100		50/ 0mm	+50			•				
SPJ Libra	14 — [SHALE-BEDROCH	<, weathered, grey		SS8	100		50/ 0mm	+50			•				
1D4C AREA.C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.9		infilled with clay in	K, occasional fractures fills, highly to slightly	\mathbf{T}										4.9 m		¥
11205379 -	$19 - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} - 6.0$			weathered, highly fractured, grey, ve strong	ry weak to medium		RC1	80		6								_
AIABASE	21 <u>-</u> 22 <u>-</u>			occasional clay an	d silt seams													
CH/LOG L	23 <u>-</u> 7.0 24 <u>-</u>						RC2	100		48								
205379/1E	25 —						102	100		40					s	creer		
IS\662\11.	26 <u>-</u> 8.0 27 <u>-</u>																	
KOJEC	28 —						DOG	100		4-								
HOIN	29 <u>-</u> <u>-</u> 9.0						RC3	100		45			-			9.2 m	\square	
OKON	30 — — 31 —															9.2 m 		
N:/CA/I	32 -					╂										9.8 m	<u>⊢</u> ∦	
File: 7	3310.0		111														+	

,	REFEREN	CE No.	:	11205379								EN	CLOS	SURE	E No.:		23	}
					BOREHOLE No.:	_		MW2	23		B	OF	REI	HO	LE	RE	EPO	RT
					ELEVATION:		82	.9 m				•.			2			
	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: P	reli	minary	Geote	chnica	al Investigat	ion	L	EGE	ND				
	LOCATION	N:	401	Smyth Road, Ottaw	a, Ontario								s 🛛		- SPI	LIT S	POON	
	DRILLING	RIG: _	Trac	k Drill Rig	DRILLING MET	но	D: <u>203</u>	mm C	D Ho	llow Stem A	ugers] S1 R(' TUBE ORE	<u>:</u>
	DESCRIBE	ED BY:	D. A	sh	CHECKED BY:	_	A. Kha	ndeka	ır				<u>r</u>				LEVE	L
122	DATE (ST	ART):	13 J	uly 2022	DATE (FINISH)	-	13 July	2022	2									
te: 1/9,	NORTHIN	G:	502	7676.3 m	EASTING:		44895	5.6 m		I								
GRAPH+WELL Da	Depth	Elevation (m)	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Se O w _p \	Atte	ity (S ter co erbero Value) ontent g limits	(%) (%)	∆ Field □ Lab	
WITH	Feet Metres	82.9		GROUN	D SURFACE				%			10	20 3	30 40	50 60	0 70	80 90	
L LOG	34					I	RC4	100		52					bento	nite :	seal	
79 SO	35 - 11 0					I												
112053	36 - 11.0 - 11.1 37 - 11.1	71.8				┦										_11.1 	1 m	-
sport:	38 –			END OF BOREHO	<u>LE :</u>													-
SLB R	³⁹ – 12.0			- End of Borehole - Rock coring from	at 11.13 m bgs													-
_V05.0	40 — 41 —			- Monitoring well in	nstalled at 9.15 m bgs ow ground surface'													-
DTECH	41			Groundwater leve	-													-
ID_GE(43 - 13.0			Date Dep	oth (m) Elev (m) 29 77.61													-
379 GF	44 —				18 77.72													-
11205	45																	-
brary File:	46 — 14.0 47 —																	-
Librar	48 -																	+
EA.GPJ	49																	-
S AREA	50 —																	-
- 1D4C	51																	-
205379	52 <u>-</u> 53 <u>-</u> 16.0																	
\SE\11	54 —												_					-
ATABA	55 -																	-
LOG D	5617.0																	-
VTECH'	57 — 58 —																	-
205379	50 <u>–</u> 59 – 18.0																	+
362\112	60 -																	-
ECTS/	61															_		
PROJ	⁶² – 19.0											\square						-
RONTC	63 <u>–</u> 64 –												-	\square				ļ
CANTOF	65 —																	+
le: N:\C	66 - 20.0													\square				-
É	-																	

Appendix B Geotechnical Laboratory Test Results

Appendix B₋₁ Grain Size Distribution Results

Clie	ent:					ucture													Lab	No.:				G22	256						
Pro	oject, S	Site:	Ge Ea	otec sterr	hni 1 O	ical li ntari	nvest o, Ot	igati tawa	on , O	- C N	hilo	drer	ns H	losp	ital	of			Proje	ect	No.	:		112	053	79					
	Boreh	ole No.:						Ν	۸M	1									Samp	ole N	lo.:			SS3	+ S	S4					
	Depth	1:					1.5m-	2.1m	1/2	.3m	1 - 2	2.9m	ı				_		Enclo	sure	e:										
	¹⁰⁰ T																								7					0	
	90 -																													- 10	
	80 —																													20	
	70 -																													- 30	
sing	60 —																													40	ained
Percent Passing																															Percent Retained
Perce	50 50 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50																													- 50	Perce
																		$\left \right $												60	
	30 —						_									/													++++	70	
	20 —												/																	80	
							_	-	-	┥			~																		
	10 —	•	-	•																										- 90	
	0 L 0.00	1			0	0.01					(D.1	Diam	eter	(mm))		1						10					1	L 100 00	D
	Γ			Sil	ty C	lav										Sa									Gra	vel					
				•	., .	,		P	artic	le-S	Size		Fine nits	as p	er U	scs	Mee (AS		n D-2487		arse	•	F	ine			Coar	se			
	ſ			s	oil	Desc	riptic	on							Gra	vel	(%)		s	Sand	I (%)			Cla	ay &	Silt	(%)			
				Sand	wit	h Gra	ivel, 1	race	e Cla	ay						26				5	8					1	6				
Re	marks	narks: Silt-size particles (0.074 to 0.002 mm): 11%, 0 Gravel 26%, Sand 58%, Silt 11%, Clay 5%						%, C	lay-	size	part	ticles	s (<0	0.00)2 mm)): 5%	6		_												
		Gra	vel 2	6%,	Sa	nd 5	8%, \$	Silt 1	1%	, C	lay	/ 5%	, D																		
Pei	forme	ed by:						Rid	dhe	e F	Par	ncha	al						-	Dat	e:			De	ecer	mbe	er 16	6, 20)19		
Vei	Performed by: Verified by:							Raj	Ka	dia	, C	.E.T	Γ.						-	Dat	e:			De	ecer	mbe	er 27	, 20)19		

Clie	ent:			structure C							Lab No.:	G2256				
Pro	oject, S	ite:		hnical Inv Ontario,			hildrens	Hospita	al of		Project No.:	112053	79			
	Boreho	ole No.:			М	IW2					Sample No.:	SS3 + S	S4			
	Depth:			1.5	im-2.1m	/ 2.3m	- 2.9m				Enclosure:					
	100 90 80														0 10 20	
Percent Passing	70 60														+ 30 + 40	Percent Retained
Percei	50 40 30														50 60	Perce
	30					-										
	10	•													90	
	0 0.001			0.01			0.1 Dia	meter (mr	n)	1		10			∐ ₁₀₀ 100	0
			Silt	y Clay					San	d		Grav	vel			
				y oluy	Pa	rticle-S	Fin Size Limits			Mediu ASTM		Fine	Coar	se		
	Γ		S	oil Descrip	otion			Gr	avel (%	%)	Sand (%)	Cla	y & Silt	(%)		
			Silty Sand	with Grave	el, Trace	Clay			32		48		20			
Re	narks:	311-3	size particl vel 32%, 3					/-size pa	articles	(<0.00	02 mm): 7%					
Pei	formed	d by:			Rido	lhee P	anchal				Date:	Decer	nber 16	6, 2019		
Vei	ified b	y :			Raj I	Kadia,	C.E.T.				Date:	Decer	nber 27	7, 2019		

Clie	ent:	Infrastructure Ontario (IO)		Lab No.:	G2256	
Pro	ject, Site:	Geotechnical Investigation - Ch Eastern Ontario, Ottawa, ON	ildrens Hospital of	Project No.:	11205379	
	Borehole No.:	MW3		Sample No.:	SS2	
	Depth:	0.8m - 1.4m		Enclosure:		
	90					0
	80					20
Percent Passing	60					Generation Percent Retained
Percent	50					50 50 Bercent 60
	30					70
	10					90
	0.001	0.01	0.1 1 Diameter (mm)		10	100 100
		Silty Clay	Sand		Gravel	
			Fine Mediu ze Limits as per USCS (ASTM		Fine Coarse	
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)	
		Sand with Gravel and Silt	43	52	5	
Rei	marks: Gra	avel 43%, Sand 52%, Silt 5%				
Per	formed by:	Riddhee Pa	anchal	Date:	December 16, 2019	9
Ver	ified by:	Raj Kadia, (C.E.T.	Date:	December 31, 2019	9

Clien	t:	Infrastructure Ontario (IO)		Lab No.:	G2256		_
Proje	ect, Site:	Geotechnical Investigation - Childre Eastern Ontario, Ottawa, ON	ns Hospital of	Project No.:	11205379		_
E	orehole No.:	MW3		Sample No.:	SS4		
0	epth:	2.3m - 2.9m		Enclosure:			
Percent Passing							00 02 04 04 05 05 06 06 07 07 07 07 07
	10						30 90
	0.001	0.01 0.1	Diameter (mm)		10		100
			Sand		Gravel		
		Silty Clay	Fine Mediu		Fine C	Coarse	
		Particle-Size Li	mits as per USCS (ASTM	D-2487)			
		Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)	
		Silty Sand with Gravel, Trace Clay	16	59	2	5	
Rem	011-	size particles (0.074 to 0.002 mm): 17%, vel 16%, Sand 59%, Silt 17%, Clay 8		02 mm): 8%			-
Perfo	ormed by:	Riddhee Panch	al	Date:	Decembe	r 16, 2019	_
Verif	ied by:	Raj Kadia, C.E	Т.	Date:	December	r 27, 2019	_

Clie	nt:	Infrastructure Ontario (IO)		Lab No.:	G2256		_
Pro	ject, Site:	Geotechnical Investigation - Childrens Eastern Ontario, Ottawa, ON	Hospital of	Project No.:	11205379		_
	Borehole No.:	MW4		Sample No.:	SS2		_
	Depth:	0.8m-1.4m		Enclosure:			_
	90						0 10
	80						20
61	70						30
Percent Passing	50						Percent Retained
	40						60
	30						70
	20						80
	10						90
	0.001	0.01 0.1 D	ameter (mm)		10	100	100
			Sand		Gravel		
			ne Mediur ts as per USCS (ASTM		Fine (Coarse	
		Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)]
	Ş	Silty Sand, Some Gravel, Trace Clay	11	59	3	0	
Ren		-size particles (0.074 to 0.002 mm): 20%, Cla avel 11%, Sand 59%, Silt 20%, Clay 10%		02 mm): 10%			-
Per	formed by:	Riddhee Panchal		Date:	Decembe	r 16, 2019	_
Ver	fied by:	Raj Kadia, C.E.T.		Date:	Decembe	r 27, 2019	_

Clie	ent:	Infrastructure Ontario (IO)		Lab No.:	G2256		_
Pro	ject, Site:	Geotechnical Investigation - Childr Eastern Ontario, Ottawa, ON	ns Hospital of	Project No.:	11205379		-
	Borehole N	No.: MW5-19		Sample No.:	SS2 + SS3		_
	Depth:	0.9m-1.2m / 1.5m-1.7	1	Enclosure:			_
	100						
	90						0
	80					2	:0
	70					3	0
Percent Passing	60					4	Percent Retained
ercent	50						ercent
ď.	40						
	30					7	0
	20					8	0
	10					9	0
	0 L 0.001	0.01 0.1	Diameter (mm)		10	1 100	00
		Silty Clay	Sand		Gravel		
			Fine Mediu mits as per USCS (ASTM		Fine C	Coarse	
		Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)]
		Silty Sand, Trace Gravel, Trace Clay	8	62	3	0	
							3
Rei		Silt-size particles (0.074 to 0.002 mm): 20%,		02 mm): 10%			-
		Gravel 8%, Sand 62%, Silt 20%, Clay 10	%				-
Per	formed by	Riddhee Panc	al	Date:	Decembe	r 16, 2019	-
Ver	ified by:	Raj Kadia, C.E	Т.	Date:	Decembe	r 27, 2019	-

Clie	ent:	Infrastructure Ontario (IO)		Lab No.:	G2256	
Pro	ject, Site:	Geotechnical Investigation - Childrens Eastern Ontario, Ottawa, ON	Hospital of	Project No.:	11205379	
	Borehole No	.: MW7		Sample No.:	SS2	
	Depth:	0.8m - 1.4m		Enclosure:		
Percent Passing	100 90 80 70 60 50 40 30 20					0 10 20 30 40 50 50 60 70 80
	10					90
	0.001	0.01 0.1 Dia	meter (mm)		10	100 <u>100</u>
			Sand		Gravel	
		Silty Clay Fin	e Mediur as per USCS (ASTM		Fine Coarse	_
				D-2407)		
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)
		Silty Sand, Some Clay , Trace Gravel	3	54	43	
Rer		ilt-size particles (0.074 to 0.002 mm): 30%, Clay Gravel 3%, Sand 54%, Silt 30%, Clay 13%	-size particles (<0.00	02 mm): 13%		
Per	formed by:	Riddhee Panchal		Date:	December 16, 2	019
Ver	ified by:	Raj Kadia, C.E.T.		Date:	December 27, 2	019

Clie	nt:	Infrastructure Ontario (IO)		Lab No.:	G2256		_
Proj	ect, Site:	Geotechnical Investigation - Childrens Eastern Ontario, Ottawa, ON	s Hospital of	Project No.:	11205379		-
I	Borehole No.:	BH8		Sample No.:	SS2		_
	Depth:	0.8m - 1.4m		Enclosure:			_
Percent Passing	00					0 1 2 3 	0 0 0 0 nt Retained
							0 0 0
	0.001	0.01 0.1 D	iameter (mm)		10	100	
		Silty Clay	Sand		Gravel		
		Fi	ne Medium ts as per USCS (ASTM		Fine Co	barse	
		Soil Description	Gravel (%)	Sand (%)	Clay & S	Silt (%)	
	S	ilty Sand, Some Clay , Trace Gravel	8	59	33]
Rem		size particles (0.074 to 0.002 mm): 22%, Cla vel 8%, Sand 59%, Silt 22%, Clay 11%	ay-size particles (<0.00	2 mm): 11%			
Perf	ormed by:	Riddhee Panchal		Date:	December	16, 2019	_
Veri	ied by:	Raj Kadia, C.E.T.		Date:	December	27, 2019	-

Clie	ent:	Infrastructure Ontario (IO)		Lab No.:	G2256		-
Pro	ject, Site:	Geotechnical Investigation - Childrens Eastern Ontario, Ottawa, ON	Hospital of	Project No.:	11205379		-
	Borehole No.	MW9		Sample No.:	SS2 + SS3		_
	Depth:	0.8m-1.4m / 1.5m-2.0m		Enclosure:			_
	100						0
							0
	80					2	0
	70					3	
Percent Passing	60						0 0 Percent Retained
Percent	50						Percent
	40						0
	30					7	0
	20					8	0
	10					9	0
	0.001	0.01 0.1 Dia	1 meter (mm)		10	100 III	00
			Sand		Gravel		
		Silty Clay Fir			Fine C	oarse	
		Particle-Size Limit	s as per USCS (ASTM	D-2487)			-
		Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)	
		Silty Sand, Some Gravel, Some Clay	14	53	3	3	
							•
Rei		t-size particles (0.074 to 0.002 mm): 20%, Cla ravel 14%, Sand 53%, Silt 20%, Clay 13%		02 mm): 13%			-
Per	formed by:	Riddhee Panchal		Date:	December	16, 2019	_
Ver	ified by:	Raj Kadia, C.E.T.		Date:	December	27, 2019	-

Client:		Infrastructure Ontario (IO)			Lab No.:	G2253		_
Projec	t, Site:	Geotechnical Investigation - C Eastern Ontario, Ottawa, ON	Childrens H	Hospital of	Project No.:	11205379		_
Во	rehole No.:	MW10			Sample No.:	SS2		_
De	pth:	0.8m-1.4n	n		Enclosure:			_
100 90								D 10
80 70								20 30
Percent Passing								Percent Retained
ස් 40 30								8 50 70
20 10								30 90
0 C	0.001	0.01	0.1 Dian	neter (mm)		10	100	100
		Silty Clay		Sand		Gravel		
			Fine Size Limits	as per USCS (ASTM		Fine	Coarse	
		Soil Description		Gravel (%)	Sand (%)	Clay &	a Silt (%)]
		Silty Sand with Gravel, Trace Clay		26	47		27	
Remar	ke:							
Nemd	511-	size particles (0.074 to 0.002 mm): vel 26%, Sand 47%, Silt 18%, 0		-size particles (<0.00	2 mm): 9%			-
Perfor	med by:	Riddhee	Panchal		Date:	Decembe	er 16, 2019	_
Verifie	d by:	Raj Kadia	a, C.E.T.		Date:	Decembe	er 27, 2019	_

Clie	nt:	Infrastructure Ontario (IO)		Lab No.:	G2253		
Pro	ject, Site:	Geotechnical Investigation - Children Eastern Ontario, Ottawa, ON	s Hospital of	Project No.:	11205379		
	Borehole No.:	BH12		Sample No.:	SS2 + SS3		
	Depth:	0.8m-1.4m / 1.5m-2.1m		Enclosure:			
Percent Passing	100 90 80 70 60 50 40 30					• 0 10 20 30 30 40 50 60 70	Percent Retained
	20					90	
	0.001	0.01 0.1	liameter (mm)		10	100 100	0
		Silty Clay	Sand		Gravel		
			ine Mediur its as per USCS (ASTM		Fine Coa	se	
				,	1		
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt	: (%)	
		Silty Sand with Gravel, Some Clay	18	52	30		
Ren		size particles (0.074 to 0.002 mm): 19%, Cl avel 18%, Sand 52%, Silt 19%, Clay 11%		02 mm): 11%			
Per	ormed by:	Riddhee Pancha		Date:	December 16	6, 2019	
Ver	fied by:	Raj Kadia, C.E.T		Date:	December 27	7, 2019	

Client						Inf	rasti	ructu	ıre	On	taric)					Lab	No.	:				G	-22-(03			_
Projec	t, Site:					(Chilo	dren	Hc	ospi	tal						Proj	ject	No.				112	2053	379			_
Bo	rehole No.:						B	3H-18	5								Sam	iple N	lo.:				;	SS-1				_
De	pth:						0,08	- 0,6	61 n	n					_		Encl	osure	e:					-				-
100																							1	••			Ш,)
90									+	-																+		10
80																												20
70																												30
Dercent Passing	60 50																									Percent Retained		
Bercer Percer											+													+		Percer 05		
40	40																									60		
30	30					_				\parallel			+												$\left \right $	+	;	70
20											_																	30
		•		-+	-	-																						
(0.001			0.	01					0.1	Dian	neter	(mm)		1						10					100	100
			Cla	v &	Silt									Sa	nd								ravel					
							Par	ticle	Siz	e Li	Fir mits		oer U	ISCS		ediu STM	um I D-248		arse		Fi	ne		Coa	rse	_		
																												7
			S	ioil	Desc	riptio	n						Gra	avel	(%)			Sanc	1 (%))			Clay	& Sil	lt (%	6)		
	Sand and Gravel, Traces of Silt and						Cla	у				43				4	7					10						
	Silt-size particles (%) : Clay-size particles (%) (<0.002 m						nm):										8										
	marks: More information is available upon requ							-	-																			
Remai	More information is available upon request.								st.																		-	
Perfor	med by:			_	\sim	~	J	. Lal	on	de							_	Dat	e:			A	ugu	st 3,	202	22		_
Verifie	fied by:														Dat	e:			A	ugu	st 3,	202	22					

Client:	Infrastructure Ontario		Lab No.:	G-22-03								
Project, Site:	Children Hospital		Project No.:	11205379								
Borehole No.:	BH-15		Sample No.:	SS-2								
Depth:	0,61 - 1,22 m		Enclosure:									
100				····	, 10							
90					10							
80					20							
70					30							
					Setained							
Base ind bas					Percent Retained							
<u>م</u> 40					60 6							
30												
20					80							
10					90							
0.001 0.01	0.1 Diam	eter (mm)		10	⊥⊥ ₁₀₀ 100							
		Sand		Gravel								
Clay & Silt	Fin			Fine Coarse								
	Particle-Size Limits		D-2407)] I								
Soil Des	cription	Gravel (%)	Sand (%)	Clay & Silt (%)								
Gravely Sand, with Sor	me Silt and Some Clay	25	46	29								
Silt-size par	rticles (%) : es (%) (<0.002 mm):		19 10									
	es (%) (<0.002 mm).		10									
Remarks: More information is av	vailable upon request.											
Performed by:	J. Lalonde		Date:	August 3, 2022								
Verified by:	bgel		Date:	August 3, 2022								

Client:						Infr	astr	uctu	Ire	Ont	ario						Lab	No.	:				G-	-22-(03			_
Project	, Site:					C	Child	ren	Ho	spit	al						Proj	ject	No.	:			112	2053	879			-
Bor	ehole No.:						В	H-16	6								Sam	ple N	lo.:				ę	SS-1				-
Dep	oth:					(),08	- 0,6	1 m	<u>1</u>							Encl	osure	e:					-				-
100																							/					
90																						1				+	1	0
80																										++-	2	0
70																				1				+		+	3	
Percent Passing																			\mathbb{A}	+						+	4	Dercent Retained
ercent 50								++												+				_		+	5	ercent I
م 40																										\parallel	6	
30																											7	0
20											_															T	8	
10				-	-	-																					9	0
0 0.	001			0.0	1		<u> </u>			0.1	Diam	eter ((mm)		_	1					1	0					100 LLLL	00
			Clay		2114									Sa	nd							G	ravel					
			Glay	, a .	, , , , , , , , , , , , , , , , , , ,		Part	ticle-	Size	e Lir	Fin nits		er U	scs		ediu STM	IM D-248		arse	•	Fi	ne		Coa	rse	\neg		
																	r	-										1
	Soil Description												Gra	vel	(%)			Sand	d (%)		C	lay	& Sil	lt (%	,)		
	Gr	avely S	and,	wit	n Trac	es of	Silt	and	Cla	у				33				5	6					11				
		S Clay-s			partic			02 m	۱m)	:										8								_
				P 4.1 1		(,,,,(-																		
Remark	ks: <u>Mo</u>	re infor	mati	on i	s avai	lable	upor	n req	ues	st.																		-
Perform	ned by:		_	_	$\overline{\ }$		J.	Lal	onc	de							_	Dat	e:			A	ugus	st 3,	202	22		_
Verified	l by:	(\leq	<		20	2	Ż									-	Dat	e:			A	ugus	st 3,	202	22		-

Client:	Infrastructure Or	tario	Lab No.:	G-22-03	
Project, Site:	Children Hosp	tal	Project No.:	11205379	
Borehole No.:	MW-17		Sample No.:	SS-2	
Depth:	0,08 - 0,61 m		Enclosure:	-	
100 90 80 70 60 90 80 70 60 40 40 30 20 10					 0 10 20 30 90
0.001	0.01 0.1	Diameter (mm)		10 10	100 00
		Sand		Gravel	
	Clay & Silt	Fine Medi		Fine Coarse	
	Particle-Size L	mits as per USCS (ASTN	1 D-2487)		
	Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)	
Grave	ly Sand, with Some Silt and Traces of Cla	y 22	53	25	
	Silt-size particles (%) :		16		
	Clay-size particles (%) (<0.002 mm):		9		
Remarks: <u>Mo</u>	re information is available upon request.				
Performed by:	J. Lalonde		Date:	August 3, 2022	
Verified by:	<u>Soch</u>		Date:	August 24, 2022	

Client:	Infrastructure Ontario)	Lab No.:	G-22-03	
Project, Site:	Children Hospital		Project No.:	11205379	
Borehole No.: Depth:	MW-18 0,08 - 0,61 m		Sample No.: Enclosure:	SS-1 -	
C	Clay & Silt Fit	neter (mm) 1 Sand Be Media as per USCS (ASTM Gravel (%) 49		Image: Coarse Image: Coarse <td< th=""><th>0 10 20 30 40 50 50 60 70 80 90 0 100 0 100 0 100 0 100 0 10</th></td<>	0 10 20 30 40 50 50 60 70 80 90 0 100 0 100 0 100 0 100 0 10
Performed by: Verified by:	J. Lalonde		Date:	August 11, 2022 August 24, 2022	

Client:						In	fras	truct	ture	e C	Onta	rio						Lab	No	:					G-	22-(03			
Projec	t, Site:						Chil	drer	n H	los	pita	I						Proj	ject	No	.:	_			112	2053	379			_
	rehole No.:							ЛW-		~								Sam							S	SS-3	}			_
De	pth:						1,22	2 - 1,	,83	m								Encl	osur	e:		_				-				_
001 90 70 60 50 50 40																								/						0 10 20 30 40 50 50 60
30 20 10	•					-						-								70 70 80 90 10						80 90				
0 0	.001			0.	.01					0.	.1 D	liame	eter (I	nm)			1		-				10						100	
			Cla	IV &	Silt										Sa						T				avel					
				_			Pa	articl	e-S	ize		Fine its a		er US	scs		ediu STM	um D-248		oars	e		Fine	•		Coa	arse			
			s	Soil	Desc	riptic	on						(Grav	vel ((%)			San	d (%	6)			с	lay 8	& Si	lt (%	•)		
	Sand ar	id Gra	vel, v	with	n Som	e Silt	and	Trad	ces	s of	Clay	y			35				5	50						15				
		Clay-			e part					<u>س</u> ۱.											11 4									
		Clay-	SIZE	pa		5 (70)	(<0.	002													4								_	
Remar	ks: <u>Mo</u>	e info	rmat	ion	is ava	ailable	e upo	on re	equ	est																				_
Perfor	med by:	_/	_	-				J L L a	aloi	nde	e							_	Da	te:				Au	ugus	st 9,	202	22		_
Verifie	d by:	Ć	Č		k		2	3										-	Da	te:				Au	gust	t 24	, 202	22		_

Client:	Infrastructure Ont	ario	Lab No.:	G-22-03	_
Project, Site:	Children Hospita	al	Project No.:	11205379	_
Borehole No.: Depth:	BH19 0,15 - 0,76 m		Sample No.: Enclosure:	SS-1	-
100 90 80 70 60 40 30 20 10 0.001	Clay & Silt	Diameter (mm)			
c	Silt-size particles (%) : lay-size particles (%) (<0.002 mm):		9 5		
Remarks: <u>More</u>	information is available upon request.				_
Performed by: Verified by:	J. Lalonde		Date:	August 3, 2022 August 24, 2022	

Clier	it:	Inf	rastructure Ontario		Lab No.:	G-22-03					
Proje	ect, Site:	(Children Hospital		Project No.:	11205379					
	Borehole N Depth:	-	BH19 0,76 - 1,37 m		Sample No.: Enclosure:	SS-2	_				
Percent Passing	00 90 80 70 60 50 40 30 20 10 0.001	0.01	0.1 Diar	eter (mm)		10 10	- 10 - 20 - 30 - 40 - 30 - 40 - 50 - 50 - 50 - 60 - 70 - 80 - 90 - 100 - 00				
		Clay & Silt	Fin		ım Coarse	Gravel Fine Coarse					
			Particle-Size Limits								
		Soil Description	n	Gravel (%)	Sand (%)	Clay & Silt (%)					
		Sand and Gravel, with Some	Silt and Clay	37	40	23					
		Silt-size particles (Clay-size particles (%) (13		$\overline{-}$				
Dom			((),))))		10						
Rem	arks:	More information is available	upon request.								
Perfo	ormed by		J. Lalonde		Date:	August 3, 2022					
Verif	ied by:	by: Date: August 24, 2022									

Client:						In	frastr	uctu	ure	Or	ntario)					Lat	o No	o.:					G-2	2-0	3			_
Projec	t, Site:						Chilc	Iren	Ho	osp	ital						_Pro	jec	t N	o.:		 	1	120)537	79			-
Во	rehole No.:						В	H-2(0								San	nple	No	.:				S	S-1				_
De	pth:						0,10	- 0,6	61 r	m						•	Enc	losu	ure:						-				-
100 90 80 70 60 50 40 30 20 10 0 0				0.0	Silt			rticle		0.1	Diar Fii	ne		s	S (A	/ledi STN	ium	187)				10	Gra	(Coar			0 1 2 3 4 5 6 7 8 9 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			s	oil	Desc	riptic	on						Gra	ave	I (%)		Sai	nd ((%)			Cla	ıy &	Silt	(%))		
		Sand,	with S	Som	ne Silt	, Gra	vel a	nd C	lay	,				15	5				55					3	30				
					e parti ticles				nm):)											19 11								
Remar	ks:	-		_			-																						1
	- <u>M</u>	ore info	ormat	ion	is ava	aiiadie	e upo	n reo	que	est.												 							-
Perfor	med by:	-1		-	7		J	-Lal	lon	de							_	Da	ate	:			Aug	gust	9, 2	202:	2		_
Verifie	d by:	_	\geq		k	20	2	5									_	Da	ate	:		 /	Aug	ust	24,	202	22		

Clie	ent:						In	fras	truc	tur	e C	Onta	ario						Lal	b N	o.:					G-2	22-0)3		 	
Pro	oject, S	Site:						Chil	dre	n F	los	spita	al						_Pro	ojeo	ct N	o.:			1	1120	053	79		 	
	Boreh Depth	ole No.: :						1,22	BH- 2 - 1		i m								Sar Enc								S-3 -			 	
Percent Passing				Clay	0.0								Fine	9	(mm)	Si		/ledi			Cozz				Gra					 0 10 20 30 40 50 60 70 80 90 100	Percent Retained
								Pa	artic	le-S	Size	Lim	its :	as p	er U	SC	S (A	STN	/I D-24	487)											
	Soil Description													Gra	vel	(%)		Sa	nd	(%)			Cla	ay &	Silt	t (%	5)			
	Silty and Clayey Sand, with Traces of C								f Gr	rave	el				6					42					į	52					
		Silt-size particles (%) : Clay-size particles (%) (<0.002 mm):									:											31 21									
Rei	marks:	ks: More information is available upon request.																												 	
Per	forme	d by:		_			\		J. L	ala	nd	е								D	ate	:			Auę	gust	t 9, 2	202	22	 	
Vei	ified b	y:		_(\geq		k	\geq	2	X	/)								_	D	ate	:			Aug	just	23,	20	22	 	

Clie	nt:										Ir	nfra	str	uct	ur	e C	Dn	tar	io							Lab	N	0.:							G-2	22-()3				
Pro	ject,	, Sit	e:									Cł	nild	rer	۱ H	los	spi	tal								Pro	jec	t N	lo.:		_			1	12	053	879				
	Bore	ehole	e No	o.:									M١	N-2	23									_		Sam	nple	N	o.:						S	S-3					
	Dep	oth:										1,	37 ·	- 1,	98	m								_		Encl	losı	ure:			-					-					
	100 -					_								-								1	П														•	┝╼┥	•	0	
	90 -																																	/						- 10)
	80 -																																ļ	/						- 20	
																																	/								
	70 -																																							- 30	
Percent Passing	60 -																																							- 40	Percent Retained
Percent	50 -												+																							-				- 50	Percent
	40 -																						60 GO							_											
	30 -																											60)							
	20 -																																							- 80)
													•			1																									
	10 -	•			•	•	-	1																																- 90)
	0 - 0.0	001						0	0.01							().1	Di	ame	eter	(mm	1)			1							1	0						10	- 10 00	00
							<u></u>	v 8	k Sil	+												;	Sar	d										Gra	vel						
								y 0				l	Part	ticle	ə-S	ize	Li		ine s a		er L	JSC				um 1 D-24			irse	•		Fir	e			Coa	irse				
	[_												Т																			_			
							S	oil	De	scr	ipti	on									Gra	ave	el (9	%)			Sa	nd	(%))				Cla	ay 8	Si	lt (%	6)			
			Grav	vely	Sar									ace	es (of (Cla	iy				34	4					48								18					
				c	lay					artio				02	mr	n):	:		-											13 5											
Ren	aark	(e)			-			-				-							_																						
Rei		(5.	N	Nore	e inf	orm	nati	ion	is i	avai	ilab	le u	por	n re	equ	ies	st.																								
Per					}	Ć	~	-					J.		lo	nd	e									_	D	ate	:		-			Aug	gus	t 9,	202	22			
Ver	ified	l by	:			(~	$\langle \rangle$		C	X	X	2	3												_	D	ate	:		_		Α	ug	ust	23	, 20	22			

Client:						I	nfra	Istru	ıctu	ire	Or	ntari	0						Lab	No	.:						G-2	2-0	3			_
Project	, Site:						Cł	nildr	en	Ho	sp	ital							Proj	ect	No	. :				1	120)537	79			_
Bor	ehole No	o.:						M١	N23	3									Sam	ple	No.	:					S	S-6				_
Dep	oth:						3,	20 -	3,8	1 n	n								Enclo	osur	e:							-				-
100																											1			▶	٩ ا	
90																	+										\vdash			+	- 1	0
80						_	_	-	+	+				_	_		-													++	- 2	0
70						_																								_	- 3	0
Percent Passing																															- 4	Percent Retained
50 Bercer																	5 6 6							Percer 0								
40						-																		0								
30						_		-	+		+		_	_			-		60 70							0						
20								-		-	+	_	1												-						- 8	0
10	-	_	-	-																		- 9	0									
0 0.	001				0.01						0.1							1							10					<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00
										_		Dia	ame	ter (n	nm)	6-										0				7		
			CI	ay	& Silt							Fi	ine		Т	Sa		edi	um	С	oar	se		Fi	ne	Gra		Coar	se	-		
								Parti	icle	-Siz	e L	imits.	s as	s pei	rUS	SCS	(AS	STN	/I D-248	37)												
	Soil Description												G	irav	vel (%))		San	d ('	%)				Cla	ıy &	Silt	(%)				
	Sandy Gravel, with Some Silt and Traces of Cl								Cla	ay			2	49				;	32						1	19						
	Silt-size particles (%) : Clay-size particles (%) (<0.002 mm):																			3												
		Clay	/-size	e pa	artici	es (%	₀) (<	0.00)2 n	nm)):		6																			
Remark	ks: <u>N</u>	More information is available upon request.																													-	
Perform	erformed by: J. Lalonde																Da	te:					Aug	gust	9, 2	2022	2		_			
Verified	d by:	I by: Date: August 23, 2022											_																			

Appendix B₋₂ Atterberg Limits Results

Client:		Infr	rastructure Ontai	rio (IO)		Lab no.:	G2256
Project/Site:	Preliminary		Investigation – (ntario, Ottawa, O		pital of Eastern	Project no.:	11205379
Borehole no.:	MW3		Sample no.:		SS4	Depth:	2.3m- 2.9 m
Soil description:		Low Plasti	icity Inorganic Clay	/ (CL)		Date sampled:	28-Nov-19
Apparatus:	Hand		Balance no.:		1	Porcelain bowl no.:	3
Liquid limit device no.: Sieve no.:			Oven no.: Glass plate no.:		2	Spatula no.:	1
	Liquid Limit (I		Oldoo pieto no	Soil Preparati			
	Test No. 1	LL): Test No. 2	Test No. 3	· _	on: Cohesive <425 μm	, D	Deveration
Number of blows	1 est No. 1 35	25	16		Cohesive >425 µm		Dry preparation Wet preparation
	Water Conte		10		Non-cohesive		Wetpreparation
Tare no.	A27	A13	A11			Results	
Wet soil+tare, g	19.30	22.77	20.44	32.5			
Dry soil+tare, g	17.99	20.60	18.71	32.0			
Mass of water, g	1.31	2.17	1.73	-			
Tare, g	13.54	13.55	13.33	31.5 31.0 31.0 30.5			
Mass of soil, g	4.45	7.05	5.38	- to 31.0 O			
Water content %	29.4%	30.8%	32.2%	5.06 Aate			
Plastic Limit (Pl	L) - Water Conte	ent:		30.0			
Tare no.	A26	A52		29.5			
Wet soil+tare, g	19.60	19.51		29.0			
Dry soil+tare, g	18.52	18.47			15 17 19 2	21 23 25 27 Nb Blows	29 31 33 35
Mass of water, g	1.08	1.04			Soil	Plasticity Chart	
Tare, g	13.49	13.47		70		LL 50	
Mass of soil, g	5.03	5.00		60	Low plasticity Inorganic clay	High plastic Inorganic c	ay
Water content %	21.5%	20.8%		^{ld} - 1 50 + −			
Average water content %	21.	.1%					
Natural Wate	r Content (W ⁿ)):		01 <u>ici</u> ty 10	CL		
Tare no.	W21			DIABATICITY 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	Low compressibility		(MH) and (CH)
Wet soil+tare, g	25.7					inor - Inorg	compressibility ganic silt janic day
Dry soil+tare, g	23.3			10		- Medium co norganic si ML and OL - Organic cla	mpressibility lt lv
Mass of water, g	2.40			0 +	10 20 3	0 40 50 60	70 80 90 100
Tare, g	1.30				T	Liquid Limit LL	T
Mass of soil, g	22.00			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	10.9%			31	21	10	11
Remarks:							
Performed by:		Sharif	Hossain		Date:		12/27/2019
Verified by:		Raj Kao	dia, C.E.T.		Date:		12/31/2019

Client:		Infr	rastructure Ontai	rio (IO)		Lab no.:	G2256
Project/Site:	Preliminary		Investigation – (ntario, Ottawa, O		pital of Eastern	Project no.:	11205379
Borehole no.:	MW4		Sample no.:		SS2	Depth:	0.8m- 1.4m
Soil description:		Low Plasti	icity Inorganic Clay	/ (CL)		Date sampled:	28-Nov-19
Apparatus:	Hand	Crank	Balance no.:		1	Porcelain bowl no .:	1
Liquid limit device no.:			Oven no.:			Spatula no.:	1
Sieve no.:			Glass plate no.:		1	-	
	Liquid Limit (Soil Preparati			
	Test No. 1	Test No. 2	Test No. 3	\checkmark	Cohesive <425 µm		Dry preparation
Number of blows	30	29	16		Cohesive >425 µm		Wet preparation
	Water Conte		r		Non-cohesive		
Tare no.	A23	A52	A13	-		Results	
Wet soil+tare, g	23.42	25.76	25.88	30.5			
Dry soil+tare, g	21.39	23.04	23.00	30.0			
Mass of water, g	2.03	2.72	2.88	② 29.5			
Tare, g	13.86	13.47	13.54	29.0			
Mass of soil, g	7.53	9.57	9.46	29.5 29.0 28.5 28.0 28.0 28.0			
Water content %	27.0%	28.4%	30.4%	≶ 28.0			
Plastic Limit (P	L) - Water Conte	ent:		27.5			
Tare no.	A71	A22		27.0			
Wet soil+tare, g	19.51	19.57		26.5			
Dry soil+tare, g	18.49	18.54			15 17 19	21 23 2 Nb Blows	25 27 29 31
Mass of water, g	1.02	1.03		70	Soil	Plasticity Chart	
Tare, g	13.34	13.44		70		LL 50	
Mass of soil, g	5.15	5.10		60 -	Low plasticity Inorganic clay	High plasti Inorganic d	city clay
Water content %	19.8%	20.2%		50			н
Average water content %	20.	.0%		50 — = Id хөри			
Natural Wate	er Content (W ⁿ)):			CL		
Tare no.	A18			DE Lasticit ^A	Low compressibility		(MH) and (CH)
Wet soil+tare, g	51.9					inor	n compressibility rganic silt ganic day
Dry soil+tare, g	45.2			10		- Medium co norganic s	ompressibility ilt
Mass of water, g	6.70			0	10 20 30		
Tare, g	1.30					Liquid Limit LL	
Mass of soil, g	43.90			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	15.3%			29	20	9	15
Remarks:							•
Performed by:					Date:		
r enormed by.		Sharif	Hossain		. Date.		12/27/2019
Verified by:		Raj Kao	dia, C.E.T.		Date:		12/31/2019

Client:		Inf	rastructure Onta	rio (IO)		Lab no.:	G2253	
Project/Site:	Preliminary		l Investigation – ntario, Ottawa, C		pital of Eastern	Project no.:	11205379	
Borehole no.:	MW5		Sample no.:	S	S2+SS3	Depth:	0.9m- 1.7m	
Soil description:		Low Plast	ticity Inorganic Clay	y (CL)		Date sampled:	28-Nov-19	
Apparatus:	Hand	Crank	Balance no.:		1	Porcelain bowl no.:	2	
Liquid limit device no.:		2	Oven no.:		2	Spatula no.:	1	
Sieve no.:		10	Glass plate no.:		1	_		
	Liquid Limit	(LL):	T	Soil Preparat	ion:			
	Test No. 1	Test No. 2	Test No. 3	4	Cohesive <425 µr	n 🗸	Dry preparation	
Number of blows	35	30	25		Cohesive >425 µr	n 🗌	Wet preparation	
	Water Conte	ent:	1		Non-cohesive			
Tare no.	A2	A20	A10			Results		
Wet soil+tare, g	23.83	23.44	25.84	29.5				
Dry soil+tare, g	21.66	21.24	23.07	29.0				
Mass of water, g	2.17	2.20	2.77	8 28.5				
Tare, g	13.40	13.23	13.61	tent 28.0				
Mass of soil, g	8.26	8.01	9.46	er Co				
Water content %	26.3%	27.5%	29.3%	ate 27.5 M				
Plastic Limit (P	L) - Water Cont	ent:		27.0				
Tare no.	A23	A24		26.5	5 -			
Wet soil+tare, g	19.62	20.27		26.0				
Dry soil+tare, g	18.75	19.26			24 26	28 30 Nb Blows	32 34 36	
Mass of water, g	0.87	1.01			Soil	Plasticity Chart		
Tare, g	13.59	13.33		70		LL 50		
Mass of soil, g	5.16	5.93		60 -	Low plasticity	High plastic Inorganic c	city clay	
Water content %	16.9%	17.0%		Б - 50 Б 	Inorganic clay		н)	
Average water content %	16	.9%		اللہ میں ج				
Natural Wate	er Content (W ⁿ):			CL			
Tare no.	W1			olasti	Low compressibility		(MH) and (CH)	
Wet soil+tare, g	24.2]	20 -		- High inor	n compressibility ganic silt ganic day	
Dry soil+tare, g	22.4			10		- Medium co norganic s	mpressibility	
Mass of water, g	1.80			0	10 20 3	ML _{and} (○L) · Organic cla 30 40 50 60	70 80 90 100	
Tare, g	1.30					Liquid Limit LL		
Mass of soil, g	21.10			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W	
Water content %	8.5%		1	29	17	12	9	
Remarks:							1	
Performed by:		Riddhe	ee Panchal		Date:		12/24/2019	
Verified by:		Raj Ka	dia, C.E.T.		Date:		12/31/2019	

Client:		Infr	astructure Onta	rio (IO)		Lab no.:	G2256
Project/Site:	Preliminary		Investigation – (ntario, Ottawa, O		pital of Eastern	Project no.:	11205379
Borehole no.:	BH7		Sample no.:		SS2	Depth:	0.8m- 1.4m
Soil description:		Low Plasti	city Inorganic Clay	(CL)		Date sampled:	28-Nov-19
Apparatus:	Hand		Balance no.:		1	Porcelain bowl no .:	1
Liquid limit device no.: Sieve no.:	2		Oven no.: Glass plate no.:		2	Spatula no.:	1
Sieve no			Glass plate no			-	
	Liquid Limit (Soil Preparati		_	
	Test No. 1	Test No. 2	Test No. 3		Cohesive <425 µm		Dry preparation
Number of blows	35	20	19		Cohesive >425 µm		Wet preparation
-	Water Conte				Non-cohesive		
Tare no.	A9	A16	A23	31.0		Results	
Wet soil+tare, g	19.65	20.31	25.45	- 31.0			
Dry soil+tare, g	18.23	18.73	22.73	30.5			
Mass of water, g	1.42	1.58	2.72	it (%)			
Tare, g	13.33	13.42	13.83	0.00 outen			
Mass of soil, g	4.90	5.31	8.90	0.06 Mater Content (%) 29.62 S			
Water content %	29.0%	29.8%	30.6%	§ 29.5			
Plastic Limit (P	L) - Water Conte	ent:		29.0			
Tare no.	A71	A4					
Wet soil+tare, g	17.55	17.65		28.5			30 32 34 36
Dry soil+tare, g	16.75	16.94			18 20 22	24 26 28 Nb Blows	30 32 34 36
Mass of water, g	0.80	0.71		70	Soil	Plasticity Chart	
Tare, g	13.34	13.62		70		LL 50	
Mass of soil, g	3.41	3.32		60 +	Low plasticity Inorganic clay	High plastic Inorganic d	city slay
Water content %	23.5%	21.4%				(c	н
Average water content %	22.4	4%		لم م 40 -			
Natural Wate	r Content (W ⁿ)	:		<u>io</u> 30	CL		
Tare no.	W89			Diasticity 0 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -	Low compressibility		(MH) and (CH)
Wet soil+tare, g	30.5					inor	n compressibility ganic silt ganic day
Dry soil+tare, g	28.6			10 +		- Medium co norganic s	mpressibility ilt
Mass of water, g	1.90			0	10 20 3	^{ML}) _{and} (^{OL}) - Organic cla 0 40 50 60	70 80 90 100
Tare, g	1.30					Liquid Limit LL	
Mass of soil, g	27.30			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	7.0%			30	22	8	7
Remarks:							•
Performed by:					Date:		
renomed by:		Sharif	Hossain		Date:		12/27/2019
Verified by:		Raj Kao	lia, C.E.T.		Date:		12/31/2019

Client:		Infr	astructure Ontai	rio (IO)		Lab no.:	G2256
Project/Site:	Preliminary		Investigation – (ntario, Ottawa, O		pital of Eastern	Project no.:	11205379
Borehole no.:	BH8		Sample no .:		SS2	Depth:	0.8m- 1.4m
Soil description:		Low Compress	sibiity Inorganic Sil	lt (CL-ML)		Date sampled:	28-Nov-19
Apparatus: Liquid limit device no.:			Balance no.: Oven no.:		1	Porcelain bowl no.: Spatula no.:	
Sieve no.:			Glass plate no.:		1	Spatula no	<u> </u>
	Liquid Limit (Soil Preparati	on:	-	
	Test No. 1	Test No. 2	Test No. 3		Cohesive <425 µm	า โ	Dry preparation
Number of blows	28	27	18		Cohesive >425 µm		Wet preparation
	Water Conte				Non-cohesive		
Tare no.	A11	A9	A16			Results	
Wet soil+tare, g	25.69	27.66	29.73	25.0			
Dry soil+tare, g	23.34	24.96	26.50	24.8			
Mass of water, g	2.35	2.70	3.23	24.6 [®] 24.4			
Tare, g	13.35	13.34	13.43	24.4 %) 24.2 24.0 24.0 24.0 23.8			
Mass of soil, g	9.99	11.62	13.07	ບັບ ບັບ 24.0			
Water content %	23.5%	23.2%	24.7%	-			
Plastic Limit (PL) - Water Content:		23.6 23.4					
Tare no.	A20	A10		23.4			
Wet soil+tare, g	21.21	20.11		23.0			
Dry soil+tare, g	19.94	19.07			17 19	21 23 Nb Blows	25 27 29
Mass of water, g	1.27	1.04		70	Soil	Plasticity Chart	
Tare, g	13.23	13.63		70		LL 50	
Mass of soil, g	6.71	5.44		60 -	Low plasticity Inorganic clay	High plastic Inorgani¢ cl	ity lay
Water content %	18.9%	19.1%		50			
Average water content %	19.	.0%					
Natural Wate	r Content (W ⁿ):		00 International	CL		
Tare no.	C97			Dasticity 20 -	Low compressibilty	_	(MH) and (CH)
Wet soil+tare, g	31.8			10 -		inorg - Inprg	compressibility ganic silt ganic day
Dry soil+tare, g	29.1					- Medium cou inorganid si ML and OL - Organic cla	mpressibility lt lv
Mass of water, g	2.70			0 +	10 20 3		70 80 90 100
Tare, g	1.30	ļ		I found of the local to			1
Mass of soil, g	27.80			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	9.7%			24	19	5	10
Remarks:							
Performed by:		Sharif	Hossain		Date:		12/27/2019
Verified by:		Raj Kac	dia, C.E.T.		Date:		12/31/2019

Client:		Inf	rastructure Onta	rio (IO)		Lab no.:	G2256	
Project/Site:	Preliminary		Investigation – ntario, Ottawa, C		pital of Eastern	Project no.:	11205379	
Borehole no.:	MW9		Sample no.:	S	S2+SS3	Depth:	0.8m- 2.0m	
Soil description:		Low Compres	sibiity Inorganic Si	lt (CL-ML)		Date sampled:	28-Nov-19	
Apparatus:	Hand	Crank	Balance no.:	_	1	Porcelain bowl no .:	1	
Liquid limit device no.:	:	2	Oven no.:		2	Spatula no.:	1	
Sieve no.:	4	10	Glass plate no.:		1	-		
	Liquid Limit ((LL):		Soil Preparat	ion:			
	Test No. 1	Test No. 2	Test No. 3	v	Cohesive <425 µr	n 🗸	Dry preparation	
Number of blows	25	22	16		Cohesive >425 µr	n 🗌	Wet preparation	
	Water Conte	ent:	ſ		Non-cohesive			
Tare no.	A14	A12	A28			Results		
Wet soil+tare, g	23.85	26.05	31.69	28.5				
Dry soil+tare, g	21.68	23.42	27.71	- 28.0				
Mass of water, g	2.17	2.63	3.98					
Tare, g	13.47	13.77	13.53	3.72 Mater (%)				
Mass of soil, g	8.21	9.65	14.18	er Co			•	
Water content %	26.4%	27.3%	28.1%	27.0 Å				
Plastic Limit (P	L) - Water Cont	ent:						
Tare no.	A71	A22		26.5				
Wet soil+tare, g	19.51	19.57		26.0				
Dry soil+tare, g	18.49	18.54			15 17	19 21 Nb Blows	23 25	
Mass of water, g	1.02	1.03			Soil	Plasticity Chart		
Tare, g	13.34	13.44		70		LL 50		
Mass of soil, g	5.15	5.10		60 -	Low plasticity	High plasti Inorganic d	city clay	
Water content %	19.8%	20.2%		- 50 БО 	Inorganic clay		н)	
Average water content %	20	.0%		ä 40 –				
Natural Wate	er Content (W ⁿ):			CL			
Tare no.	W29			olasti	Low compressibility		MH and CH	
Wet soil+tare, g	23.6			20 -	//	- High inor - Inor	n compressibility rganic silt ganic clay	
Dry soil+tare, g	21.7			10		- Medium co norganic s	mpressibility ilt	
Mass of water, g	1.90			0	10 20 3	0 40 50 60	70 80 90 100	
Tare, g	1.30					Liquid Limit LL		
Mass of soil, g	20.40			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W	
Water content %	9.3%			27	20	7	9	
Remarks:	<u> </u>	·	·	•	•	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
Performed by:		Sharit	Hossain		Date:		12/27/2019	
Verified by:		Rai Ka	dia, C.E.T.		Date:		12/31/2019	

Client:		Infr	astructure Onta	rio (IO)		Lab no.:	G2253
Project/Site:	Preliminary		Investigation – (ntario, Ottawa, C		pital of Eastern	Project no.:	11205379
Borehole no.:	MW10		Sample no .:		SS2	Depth:	0.8m- 1.4m
Soil description:		Inc	organic Silt (ML)			Date sampled:	28-Nov-19
Apparatus:	Hand	Crank	Balance no.:		1	Porcelain bowl no.:	3
Liquid limit device no.:			Oven no.:			Spatula no.:	1
Sieve no.:			Glass plate no.:		1	-	
	Liquid Limit (Soil Preparati		_	
	Test No. 1	Test No. 2	Test No. 3		Cohesive <425 µm		Dry preparation
Number of blows	28	21	16		Cohesive >425 µm	n 🗸	Wet preparation
	Water Conte				Non-cohesive		
Tare no.	A4	A26	A24	-		Results	
Wet soil+tare, g	19.22	33.10	27.75	30.5 29.5			
Dry soil+tare, g	18.24	28.82	24.41	29.5			
Mass of water, g	0.98	4.28	3.34				
Tare, g	13.56	13.50	13.34	tuento 26.5			
Mass of soil, g	4.68	15.32	11.07	(%) 27.5 26.5 O 25.5 W 24.5			
Water content %	20.9%	27.9%	30.2%	-			
Plastic Limit (Pl	L) - Water Cont	ent:		23.5 22.5			
Tare no.	A27	A23		21.5			
Wet soil+tare, g	19.22	22.51		20.5			
Dry soil+tare, g	18.24	20.90			15 17 [·]	19 21 23 Nb Blows	25 27 29
Mass of water, g	0.98	1.61		70	Soil	Plasticity Chart	
Tare, g	13.56	13.57		70		LL 50	
Mass of soil, g	4.68	7.33		60 —	Low plasticity Inorganic clay	High plastic Inorganic d	city clay
Water content %	20.9%	22.0%		H-1 50 +			н
Average water content %	21.	.5%		50 — 10- т-ы и 40 —			
Natural Wate	er Content (W ⁿ)):			CL		
Tare no.	E10			Alasticity 20	Low compressibility		MH and CH
Wet soil+tare, g	21.7					inor	n compressibility rganic silt ganic day
Dry soil+tare, g	20.1			10		- Medium co norganic s	ompressibility ilt
Mass of water, g	1.60			0	10 20 30		
Tare, g	1.30					Liquid Limit LL	
Mass of soil, g	18.80			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	8.5%			24	21	3	9
Remarks:							·
Performed by:					Date:		
Ferrornieu by.		Sharit	Hossain				12/27/2019
Verified by:		Raj Kac	dia, C.E.T.		Date:		12/31/2019

Client:		Inf	rastructure Onta	rio (IO)		Lab no.:	G2253
Project/Site:	Preliminary		l Investigation – ntario, Ottawa, C		ital of Eastern	Project no.:	11205379
Borehole no.:	BH12		Sample no.:	SS2	2+SS3	Depth:	0.8m- 2.1m
Soil description:		Low Compres	sibility Inorganic S	ilt (CL-ML)		Date sampled:	28-Nov-19
Apparatus:	Hand	Crank	Balance no.:		1	Porcelain bowl no .:	3
Liquid limit device no.:		2	Oven no.:		2	Spatula no.:	1
Sieve no.:	4	10	Glass plate no.:		1	-	
	Liquid Limit ((LL):	I	Soil Preparation	on:		
	Test No. 1	Test No. 2	Test No. 3	v	Cohesive <425 μm	n 🗸	Dry preparation
Number of blows	34	25	17		Cohesive >425 μm	ו 🗌	Wet preparation
	Water Conte	ent:	1		Non-cohesive		
Tare no.	A7	A17	A21			Results	
Wet soil+tare, g	26.98	27.17	25.65	27.0			
Dry soil+tare, g	24.30	24.30	23.10	26.5			
Mass of water, g	2.68	2.87	2.55	(%)			
Tare, g	13.32	13.35	13.50	(%) 26.0 - 25.5			
Mass of soil, g	10.98	10.95	9.60	Ö 25.5			
Water content %	24.4%	26.2%	26.6%	8 8 25.0			
Plastic Limit (P	L) - Water Cont	ent:		20.0			
Tare no.	A18	A25		24.5			
Wet soil+tare, g	21.35	20.11		24.0			
Dry soil+tare, g	20.07	18.99		1	16 18 20	22 24 26 2 Nb Blows	28 30 32 34
Mass of water, g	1.28	1.12			Soil	Plasticity Chart	
Tare, g	13.64	13.42		70		LL 50	
Mass of soil, g	6.43	5.57			Low plasticity	High plasti Inorganic d	city clay
Water content %	19.9%	20.1%		Б 50 – Б в	Inorganic clay		н)
Average water content %	20	.0%		اللہ میں ال			
Natural Wate	er Content (W ⁿ):			CL		
Tare no.	E6			olasti	Low compressibility		MH and CH
Wet soil+tare, g	32.5		1	20		- High infor	n complessibility rganic silt ganic clay
Dry soil+tare, g	31.2			10		- Medium co norganic s	mpressibility
Mass of water, g	1.30			0	10 20 3	^{ML}) _{and} ^{OL} - Organic cla 0 40 50 60	
Tare, g	1.30			-		Liquid Limit LL	
Mass of soil, g	29.90			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W
Water content %	4.3%		1	26	20	6	4
Remarks:				•		1	•
Performed by:		Shari	f Hossain		Date:		12/27/2019
Verified by:		Doi Ko	dia, C.E.T.		Date:		12/31/2019

Client:			nfrastructure On	tario		Lab no.:	G-22-03
Project/Site:			Children Hospi	tal		Project no.:	11205379
Borehole no.:	BH-15		Sample no.:		SS-2	Depth:	0,61 - 1,22 m
Soil Description:						Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1		
	Liquid Limit	(LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	Z	Cohesive <425 µr	n 🗵	Dry preparation
Number of blows					Cohesive >425 µr	n ⊏	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.						Results	
Wet soil+tare, g				2.0			
Dry soil+tare, g							
Mass of water, g				(%)			
Tare, g				ntent			
Mass of soil, g				Water Content (%)			
Water content %				Wai			
Plastic Limit (Pl	L) - Water Cont	tent:					
Tare no.							
Wet soil+tare, g				0.0	<u> </u>		
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27
Mass of water, g					Soil	Plasticity Chart AST	M D2487
Tare, g				70		LL 50	
Mass of soil, g				60 -	Lean clay (CL)	Fat clay (
Water content %				H- 50 –			
Average water content %		•		Гd-т] = Id + 10		Organic cla	ay On
Natural Wate	r Content (W ⁿ):			Orga	nic clay OL	
Tare no.					ty clay CL ML	7 Eli	astic silt MH
Wet soil+tare, g				20 —		Org:	anic silt OH
Dry soil+tare, g				10		Organic silt	
Mass of water, g				0	10 20 3		70 80 90 100
Tare, g						Liquid Limit LL	
Mass of soil, g				Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %							
Remarks:	Non-Plastic S	Sample					
Performed by:	\frown		alonde		Date:	Sente	ember 13, 2022
Verified by:	$\overline{\langle}$		\mathbf{V}		Dato		ember 13, 2022
	$\overline{}$	\sim)		Date:	3epte	5111DET 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario			

Client:			Infrastructure On	tario		Lab no.:	G-22-03
Project/Site:			Children Hospi	tal		Project no.:	11205379
Borehole no.:	BH-16		Sample no.:		SS-2	Depth:	0,61 - 1,22 m
Soil Description:						Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	3-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1	-	
	Liquid Limit ((LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	7	Cohesive <425 µr	n 🗵	Dry preparation
Number of blows					Cohesive >425 µr	m ⊏	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.						Results	
Wet soil+tare, g				2.0			
Dry soil+tare, g							
Mass of water, g				(%)			
Tare, g				ntent (
Mass of soil, g				Water Content (%)			
Water content %				Wat			
Plastic Limit (Pl	L) - Water Cont	ent:					
Tare no.							
Wet soil+tare, g				0.0			
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27
Mass of water, g					Soil	Plasticity Chart ASTI	M D2487
Tare, g				70		LL 50	
Mass of soil, g				60 -	Lean clay (CL)	Fat clay	
Water content %				ы 50 —			
Average water content %				- 1- 1- 50		Organic cla	ay OH)
Natural Wate	r Content (W ⁿ):			Orga	anic clay OL	
Tare no.					Ity clay (CL (ML)	T EI	astic silt MH
Wet soil+tare, g				20 —		Org	anic silt OH
Dry soil+tare, g			1	10		Organic silt	
Mass of water, g			1		10 20 3	ML OL 60	70 80 90 100
Tare, g			1	ĺ	•	Liquid Limit LL	
Mass of soil, g				Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %			1				
Remarks:	Non-Plastic S	Sample	·			·	·
Performed by:		\frown	alanda -		Date:	0	ambar 12, 2022
	$-\epsilon$	J. L	alonde				ember 13, 2022
Verified by:	\rightarrow	< 0	er_		Date:	Septe	ember 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario			

Client:			Infrastructure On	tario		Lab no.:	G-22-03
Project/Site:			Children Hospi	tal		Project no.:	11205379
Borehole no.:	BH-19		Sample no.:		SS-2	Depth:	0,76 - 1,37 m
Soil Description:						Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	3-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1	-	
	Liquid Limit ((LL):	•	Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	∠	Cohesive <425 µr	n 🗵	Dry preparation
Number of blows					Cohesive >425 µr	^m ⊏	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.						Results	
Wet soil+tare, g				2.0			
Dry soil+tare, g							
Mass of water, g				(%)			
Tare, g				ntent			
Mass of soil, g				Water Content (%)			
Water content %				Wat			
Plastic Limit (Pl	L) - Water Cont	ent:					
Tare no.							
Wet soil+tare, g				0.0			
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27
Mass of water, g					Soil	Plasticity Chart AST	M D2487
Tare, g				70		LL 50	
Mass of soil, g				60 —	Lean clay (CL)	Fat clay (
Water content %				ы 50 —			
Average water content %				- 1- 1- 50		Organic cla	ay OH)
Natural Wate	r Content (W ⁿ):			Orga	anic clay OL	
Tare no.					Ity clay (CL (ML)	7 Eli	astic silt MH
Wet soil+tare, g				20 —		Org;	anic silt OH
Dry soil+tare, g				10		Organic silt	
Mass of water, g					10 20 3	ML OL 60	70 80 90 100
Tare, g						Liquid Limit LL	
Mass of soil, g			1	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %							
Remarks:	Non-Plastic S	Sample		-		· · · · · · · · · · · · · · · · · · ·	
Performed by:		<u> </u>	alonde		Date:	Sont	ember 13, 2022
		-)					
Verified by:	$-\epsilon$		4		Date:	Septe	ember 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario			

Client:			Infrastructure On	tario		Lab no.:	G-22-03
Project/Site:			Children Hospi	ital		Project no.:	11205379
Borehole no.:	BH-20		Sample no.:		SS-3	Depth:	1,22 - 1,83 m
Soil Description:						Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	3-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1	-	
	Liquid Limit	(LL):	•	Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	Σ	Cohesive <425 µr	n 🗷	Dry preparation
Number of blows					Cohesive >425 µr	n ⊏	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.						Results	
Wet soil+tare, g				2.0			
Dry soil+tare, g							
Mass of water, g				(%)			
Tare, g				ntent			
Mass of soil, g				Water Content (%)			
Water content %				Wat			
Plastic Limit (Pl	L) - Water Cont	ent:		-			
Tare no.							
Wet soil+tare, g				0.0			
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27
Mass of water, g					Soil	Plasticity Chart ASTI	M D2487
Tare, g				70		LL 50	
Mass of soil, g				60 -	Lean clay (CL)	Fat clay	
Water content %				H- 1 50 -			
Average water content %						Organic cla	ay OH
Natural Wate	r Content (W ⁿ):			Orga	Inic clay OL	
Tare no.				Last Si	ity clay (CL (ML)-	E	astic silt MH
Wet soil+tare, g				20 —		Org	anic silt OH
Dry soil+tare, g				10		Organic silt	
Mass of water, g					10 20 3	ML OL 60	70 80 90 100
Tare, g				-		Liquid Limit LL	
Mass of soil, g				Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %							
Remarks:	Non-Plastic S	Sample					
Performed by:		<u> </u>	alonde		Date:	Sent	ember 13, 2022
			\mathbf{V}				
Verified by:	-C	<u>S</u>	3		Date:	Septe	ember 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario	·		

Client:		Infrastructure Ontario				Lab no.:	G-22-03
Project/Site:			Children Hospi	tal		Project no.:	11205379
Borehole no.:	BH-21		Sample no.:		SS-2	Depth:	0,61 - 1,22 m
Soil Description:						Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1		
	Liquid Limit	(LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	<u>×</u>	Cohesive <425 µr	n 🗵	Dry preparation
Number of blows					Cohesive >425 µr	n ⊏	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.						Results	
Wet soil+tare, g				2.0			
Dry soil+tare, g							
Mass of water, g				(%)			
Tare, g				ntent			
Mass of soil, g				Water Content (%)			
Water content %				Wat			
Plastic Limit (Pl	L) - Water Cont	ent:					
Tare no.							
Wet soil+tare, g				0.0			
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27
Mass of water, g					Soil	Plasticity Chart AST	M D2487
Tare, g				70		LL 50	
Mass of soil, g				60	Lean clay (CL)	Fat clay (
Water content %				Ы- 1- 50 —			
Average water content %				Гd-т] = Id + 10		Organic cla	ау ОН
Natural Wate	r Content (W ⁿ):			Orga	nic clay OL	
Tare no.					ty clay (CL)(ML)	7 Eli	astic silt MH
Wet soil+tare, g				20 —		Org;	anic silt OH
Dry soil+tare, g				10		Organic silt	
Mass of water, g			1		10 20 3	ML OL 01	70 80 90 100
Tare, g						Liquid Limit LL	
Mass of soil, g			1	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %					. ,		
Remarks:	Non-Plastic S	Sample	·			·	
Performed by:		<u> </u>	alonde		Date:	Sente	ember 13, 2022
			2 2				
Verified by:	-C		5		Date:	Septe	ember 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario			

Client:			Infrastructure On	itario		Lab no.:	G-22-03	
Project/Site:			Children Hospi	ital		Project no.:	11205379	
Borehole no.:	MW-14		Sample no.:		SS-2	Depth:	0,61 - 1,22 m	
Soil Description:						Date sampled:		
Apparatus:	Hand	Crank	Balance no.:	803	3031049	Porcelain bowl no.:	1	
Liquid limit device no.:		1	Oven no.:	B23	3-04645	Spatula no.:	1	
Sieve no.:	015	5690	Glass plate no.:		1	-		
	Liquid Limit	(LL):	-	Soil Preparat	on:			
	Test No. 1	Test No. 2	Test No. 3	¥	Cohesive <425 µ	m 🗵	Dry preparation	
Number of blows					Cohesive >425 µ	m ⊏	Wet preparation	
	Water Conte	ent:			Non-cohesive			
Tare no.						Results		
Wet soil+tare, g				2.0				
Dry soil+tare, g								
Mass of water, g				(%)				
Tare, g				Water Content (%)				
Mass of soil, g				er Col				
Water content %				Wat				
Plastic Limit (Pl	L) - Water Cont	ent:		-				
Tare no.								
Wet soil+tare, g				0.0				
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27	
Mass of water, g			-		Soil	Plasticity Chart ASTI	M D2487	
Tare, g				70		LL 50		
Mass of soil, g				60 —	Lean clay (CL)	Fat clay		
Water content %				립 - 50 -				
Average water content %						Organic cla	ау ОН	
Natural Wate	r Content (W ⁿ):		20 <u>10</u> 30 -	Orga			
Tare no.				E Last	Ity clay (CL (ML)-	E	astic silt MH	
Wet soil+tare, g				20 —		Org	anic silt OH	
Dry soil+tare, g				10		Organic silt		
Mass of water, g				0	10 20 3	ML OL 60	70 80 90 100	
Tare, g				-		Liquid Limit LL		
Mass of soil, g				Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ	
Water content %								
Remarks:	Non-Plastic S	Sample						
Performed by:		JL	alonde		Date:	Septe	ember 13, 2022	
Verified by:	$\langle \rangle$	m	5		Date:		ember 13, 2022	
	170.01			Ontorio	2410.			
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	i, Untario				

Client:		Infrastructure Ontario				Lab no.:	G-22-03
Project/Site:			Children Hospi	ital		Project no.:	11205379
Borehole no.:	MW-17		Sample no.:		SS-2	Depth:	0,08 - 0,61 m
Soil Description:						Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	3-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1	-	
	Liquid Limit ((LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	4	Cohesive <425 µr	n 🗵	Dry preparation
Number of blows					Cohesive >425 µr	^m ⊏	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.						Results	
Wet soil+tare, g				2.0			
Dry soil+tare, g							
Mass of water, g				(%)			
Tare, g				ntent			
Mass of soil, g				Water Content (%)			
Water content %				Wat			
Plastic Limit (Pl	L) - Water Cont	ent:		-			
Tare no.							
Wet soil+tare, g				0.0			
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27
Mass of water, g					Soil	Plasticity Chart ASTI	M D2487
Tare, g				70		LL 50	
Mass of soil, g				60 -	Lean clay (CL)	Fat clay	
Water content %				ы т 50 —			
Average water content %						Organic cla	ay OH)
Natural Wate	r Content (W ⁿ):			Orga	anic clay OL	
Tare no.				Last Si	Ity clay (CL (ML)-	E	astic silt (MH)
Wet soil+tare, g				20 —		Org	anic silt OH
Dry soil+tare, g				10		Organic silt	
Mass of water, g				0	10 20 3	ML OL 60	70 80 90 100
Tare, g				-		Liquid Limit LL	
Mass of soil, g			1	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %							
Remarks:	Non-Plastic S	Sample		-			
Performed by:			alond		Date:	Sont	ember 13, 2022
	$\overline{}$	J. L					
Verified by:	-	= cx	¥		Date:	Septe	ember 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario			

Client:		Infrastructure Ontario				Lab no.:	G-22-03
Project/Site:			Children Hospi	ital		Project no.:	11205379
Borehole no.:	MW-23		Sample no.:		SS-6	Depth:	3,20 - 3,81 m
Soil Description:						Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	8033	3031049	Porcelain bowl no.:	1
Liquid limit device no.:		1	Oven no.:	B23	3-04645	Spatula no.:	1
Sieve no.:	015	5690	Glass plate no.:		1	-	
	Liquid Limit	(LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	⊡.	Cohesive <425 µr	n 🗷	Dry preparation
Number of blows					Cohesive >425 µr	ⁿ ⊏	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.						Results	
Wet soil+tare, g				2.0			
Dry soil+tare, g							
Mass of water, g				(%)			
Tare, g				ntent			
Mass of soil, g				Water Content (%)			
Water content %				Wat			
Plastic Limit (Pl	L) - Water Cont	ent:		-			
Tare no.							
Wet soil+tare, g				0.0			
Dry soil+tare, g					15 17	19 21 Nb Blows	23 25 27
Mass of water, g					Soil	Plasticity Chart ASTI	M D2487
Tare, g				70		LL 50	
Mass of soil, g				60 -	Lean clay (CL)	Fat clay	
Water content %				H- 1 50 -			
Average water content %						Organic cla	ay OH
Natural Wate	r Content (W ⁿ):			Orga	Inic clay OL	
Tare no.				Last Si	ity clay (CL (ML)-	E	astic silt MH
Wet soil+tare, g				20 —		Org	anic silt OH
Dry soil+tare, g				10		Organic silt	
Mass of water, g				0	10 20 3	ML OL 60	70 80 90 100
Tare, g				-		Liquid Limit LL	
Mass of soil, g				Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %							
Remarks:	Non-Plastic S	Sample					
Performed by:		<u> </u>	alonde		Date:	Sent	ember 13, 2022
			<u> </u>				
Verified by:	$-\epsilon$		5		Date:	Septe	ember 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	i, Ontario			

Client:	Infrastructure Ontario				Lab No.:		G-22-03	
Project/Site:	Childro	en's Hospita	I		Project No.	:	1120	5379
Apparatus Used for Testing	Oven No.:	B23-	04645	Scale No.:	80330	031049		
BH No.:	BH21	BH21	BH21	BH21	BH15-22	BH15-22	BH16-22	BH16-22
Sample No.:	SS1	SS2	SS3	SS4	SS1	SS2	SS1	SS2
Depth:	0,0-2,0	2,0-4,0	4,0-6,0	6,0-8,0	0,0-2,0	2,0-3,5	0.0-2,0	2,0-4,0
Container no.	21	14	13	2	18	9	13	23
Mass of container + wet soil (g)	53.50	53.80	61.80	65.50	61.00	62.70	78.90	58.40
Mass of container + dry soil (g)	50.79	52.57	59.01	59.51	59.50	60.20	77.00	55.40
Mass of container (g)	15.10	14.80	14.70	14.50	15.00	14.70	14.80	15.10
Mass of dry soil (g)	35.7	37.8	44.3	45.0	44.5	45.5	62.2	40.3
Mass of water (g)	2.7	1.2	2.8	6.0	1.5	2.5	1.9	3.0
Moisture content (%)	7.6	3.3	6.3	13.3	3.4	5.5	3.1	7.4
BH No.:								
Sample No.:								
Depth:								
Container no.								
Mass of container + wet soil (g)								
Mass of container + dry soil (g)								
Mass of container (g)								
Mass of dry soil (g)								
Mass of water (g)								
Moisture content (%)								
Remarks:								
Performed By:	🦳 J A Ba	aptiste		Date:		Julv 27	7, 2022	
Verified by :		2		Date:	July 27, 2022 August 3, 2022			

Client:	Infrastr	ucture Ontar	io		Lab No.:		G-22-03	
Project/Site:	Childr	en's Hospita	I		Project No	.:	11205379	
Apparatus Used for Testing	Oven No.:	B23-	04645	Scale No.:	80330	031049		
BH No.:	BH15	BH16	BH22	BH22				
Sample No.:	SS3	SS3	SS1	SS2				
Depth:	4,0-6,0	4,0-5,4	0,5-2,5	2,5-4,5				
Container no.	35	11	47	52				
Mass of container + wet soil (g)	45.20	48.30	42.80	49.20				
Mass of container + dry soil (g)	42.40	46.30	39.50	45.20				
Mass of container (g)	11.50	11.40	11.50	11.40				
Mass of dry soil (g)	30.9	34.9	28.0	33.8				
Mass of water (g)	2.8	2.0	3.3	4.0				
Moisture content (%)	9.1	5.7	11.8	11.8				
MW No.:	BH14	BH14	BH14	BH17	BH17	BH17	BH18	BH18
Sample No.:	SS1	SS2	SS3A	SS1	SS2	SS3	SS1	SS2A
Depth:	0,6-2,6	2,6-4,6	4,6-5,4	0,3-2	2,0-4,0	4,0-4,9	0,3-2	2,0-2,7
Container no.	1	25	26	6	8	22	37	16
Mass of container + wet soil (g)	37.30	38.60	46.50	67.70	61.40	39.00	50.00	45.00
Mass of container + dry soil (g)	36.30	36.70	43.20	66.60	57.60	36.90	48.80	41.20
Mass of container (g)	11.20	11.40	11.40	15.00	14.30	11.50	11.30	11.40
Mass of dry soil (g)	25.1	25.3	31.8	51.6	43.3	25.4	37.5	29.8
Mass of water (g)	1.0	1.9	3.3	1.1	3.8	2.1	1.2	3.8
Moisture content (%)	4.0	7.5	10.4	2.1	8.8	8.3	3.2	12.8
Remarks:								
Derformed Dir		ntioto		Data		h.h.o	7 2022	
Performed By: Verified by :	J A Ba			Date:			7, 2022 3, 2022	

Client:	Infrastructu	ure Ontario		Lab No.:	G-22-03
Project/Site:	IO Childrer	's Hospital		Project No.:	11205379
Apparatus Used for Testing	Oven No.:	B23-04645	Scale No.:	8033031049	
MW No.:	BH18				
Sample No.:	SS3				
Depth:	4,0-6,0				
Container no.	4				
Mass of container + wet soil (g)	56.00				
Mass of container + dry soil (g)	52.30				
Mass of container (g)	11.30				
Mass of dry soil (g)	41.0				
Mass of water (g)	3.7				
Moisture content (%)	9.0				
BH No.:					
Sample No.:					
Depth:					
Container no.					
Mass of container + wet soil (g)					
Mass of container + dry soil (g)					
Mass of container (g)					
Mass of dry soil (g)					
Mass of water (g)					
Moisture content (%)					
Remarks:					
Performed By:	J A Baptis	ste	Date:	July	27, 2022
Verified by :	= back)	Date:		ust 3, 2022

Client:	Infrastructure Ontario			Lab No.:			G-22	2-03
Project/Site:	Childr	en's Hospita	I		Project No.:		1120	5379
Apparatus Used for Testing	Oven No.:	B23-(04645	Scale No.:	803303	1049		
MW No.:	BH23	BH23	BH23	BH23	BH23			
Sample No.:	SS1	SS2	SS3	SS4	SS5			
Depth:	0,3-2,0	2,5-4,5	4,5-6,5	6,5-8,5	8,5-10			
Container no.	33	2	13	18	15			
Mass of container + wet soil (g)	70.60	73.50	61.70	62.40	55.50			
Mass of container + dry soil (g)	69.20	70.80	59.20	59.90	52.80			
Mass of container (g)	14.60	14.50	14.70	15.00	14.80			
Mass of dry soil (g)	54.6	56.3	44.5	44.9	38.0			
Mass of water (g)	1.4	2.7	2.5	2.5	2.7			
Moisture content (%)	2.6	4.8	5.6	5.6	7.1			
MW No.:	BH20-22	BH20-22						
Sample No.:	SS1	SS2						
Depth:	0,5-2,5	2,5-4,5						
Container no.	16	28						
Mass of container + wet soil (g)	48.50	58.60						
Mass of container + dry soil (g)	47.00	56.40						
Mass of container (g)	14.90	14.90						
Mass of dry soil (g)	32.1	41.5						
Mass of water (g)	1.5	2.2						
Moisture content (%)	4.7	5.3						
Remarks:								
Performed By:	J A Ba	aptiste		Date:		July 27	, 2022	
Verified by :	bae	<u>X</u>		Date:		August		

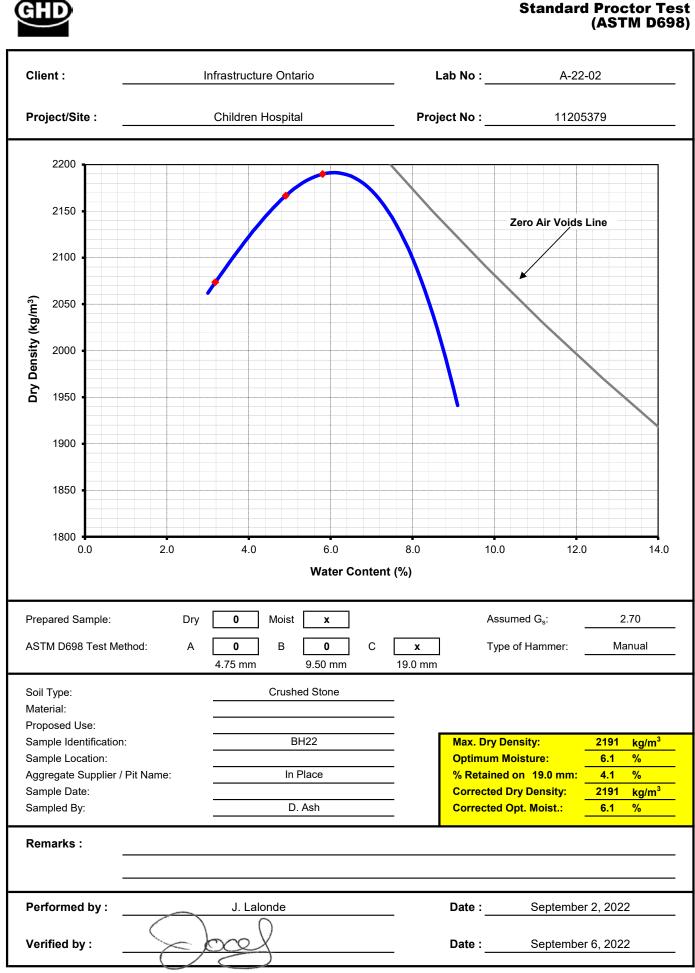
Appendix B₋₃ Proctor Test Results

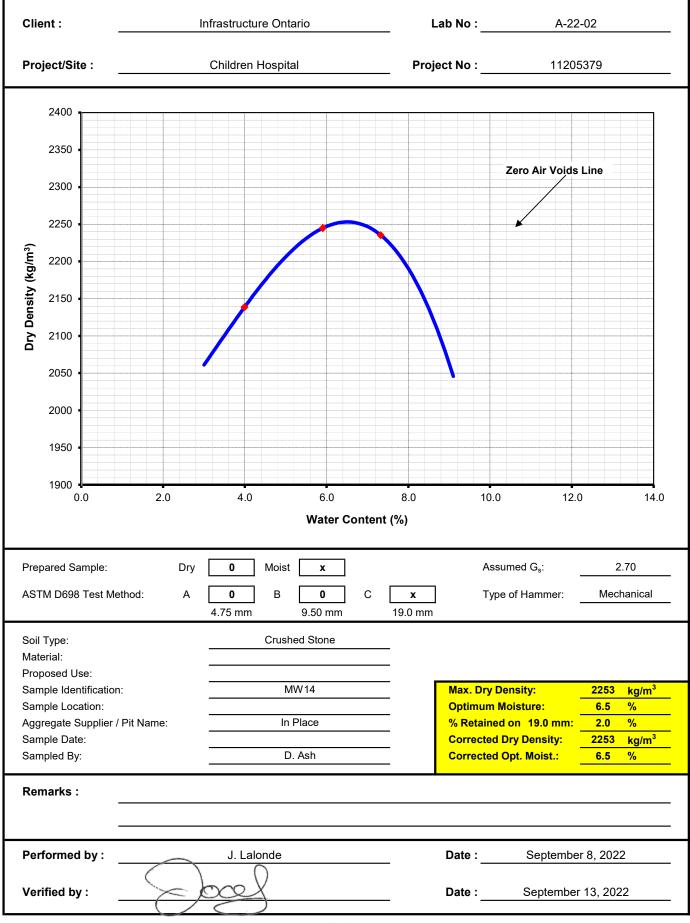
Client :	Infr	astructure Ontario	o (IO)	Lab No :	S19 ⁻	12
Project/Site :		technical Investig of Eastern Ontari	ation – Children's o Campus	Project No :	11205	379
			1			
2090					Zero Air Voids	Line
2070						
ູ ²⁰⁵⁰ . ເມ						
Correction (kg/m ³) (kg/m ³) (kg/m ³) (kg/m ³)						
2010 ·						
1990 •						
1970 •						
1950 - 6.0		8.0	10.0 Water Content (12.0	14.0
Prepared Sample		X Moist			sumed G _s :	2.80
ASTM D698 Test	Method: A	Х В	C	- Iy	pe of Hammer:	Manual
Soil Type: Material: Proposed Use:		Augure	Fill d Material V/A			
Sample Identificat Sample Location:	ion:		IW1 N/A	Max. Dry Optimum	Density: Moisture:	2067 kg/m ³ 9.5 %
Aggregate Supplie Sample Date:	er / Pit Name:		N/A ber 9, 2019		ed on 19.0 mm:	0.0 % 2067 kg/m ³
Sampled By:			S.H		d Opt. Moist.:	9.5 %
Remarks :						
Performed by :		Sharif Hossain		Date :	December	19, 2019
Verified by :		Raj Kadia, C.E.T		Date :	December	31, 2019

Client :	Infra	structure Ontario (IC))	Lab No :	S1916
Project/Site :		echnical Investigation f Eastern Ontario Ca		Project No :	11205379
2150					
2130					Zero Air Voids Line
2110 •					
2090 .					
ш 2070 - Сарана и сар			•		
Dry Density (kg/m ³) 2020 - 702 - 702 -					
2030 ·					
2010					
1990					
1970					
1950 - 5.0		7.0 V	9. Vater Content (%		11.0
Prepared Sample: ASTM D698 Test		X Moist			med G _s : 2.70
Soil Type:		Sandy Silt, Trac		- Type	of Hammer: Manual
Material:	-	Augured Ma			
Proposed Use:	. –	N/A			
Sample Identificat Sample Location:	ion: -	MW3-19 N/A	9	Max. Dry De Optimum M	
Aggregate Supplie	er / Pit Name:	N/A			on 19.0 mm: 0.0 %
Sample Date:	-	December 9,	2019	Corrected D	ory Density: 2062 kg/m ³
Sampled By:	-	S.H		Corrected C	Opt. Moist.: <u>8.4 %</u>
Remarks :					
Performed by :		Sharif Hossain		Date :	December 19, 2019
Verified by :	F	Raj Kadia, C.E.T.		Date :	December 31, 2019

Client :	Infrastructure Ontario (IO)	Lab No : S1914				
Project/Site :	Preliminary Geotechnical Investigation – Children's Hospital of Eastern Ontario Campus	Project No : 11205379				
2100		Zero Air Voids Line				
2050 -						
Dry Density (kg/m ³)						
1950 -						
1900						
1850 - 7.0	9.0 Water Conten	11.0 13.0 t (%)				
Prepared Sample: ASTM D698 Test		Assumed G _s : 2.80 - Type of Hammer: Manual				
Soil Type: Material: Proposed Use:	Fill Augured Sample N/A	-				
Sample Identificat Sample Location: Aggregate Supplie Sample Date: Sampled By:	N/A	Max. Dry Density:2057 kg/m³Optimum Moisture:10.0 %% Retained on 19.0 mm:0.0 %Corrected Dry Density:2057 kg/m³Corrected Opt. Moist.:10.0 %				
Remarks :						
Performed by :	Basharat Ali	Date : December 17, 2019				
Verified by :	Raj Kadia, C.E.T.	December 20, 2019				

Client :	Infr	astructure Ontari	o (IO)	_ Lab N	Lab No : S1913		
Project/Site :		technical Investion of Eastern Ontar	gation – Children's io Campus		lo : 112	205379	
2140				Zero A	ir Voids Line		
2120 •							
				¥			
و 2100 •							
Dry Density (kg/m ³)							
2080 •							
Dens							
2060 ·							
2040							
2020							
2000							
5.0		7.0	Water Content	9.(t (%)	0	11.0	
				(,,,)			
Prepared Sample	: Dry	X Moist	-		Assumed G _s :	2.80	
ASTM D698 Test	Method: A	ХВ	C	-	Type of Hammer:	Manual	
							
Soil Type: Material:			Fill ed Material	-			
Proposed Use:		_	N/A	_			
Sample Identifica			BH6	-	ax. Dry Density:	2086 kg/m ³	
Sample Location: Aggregate Suppli			N/A		otimum Moisture: Retained on 19.0 mm	7.1 % n: 0.0 %	
Sample Date:			ber 9, 2019	Co	orrected Dry Density:	2086 kg/m ³	
Sampled By:			S.H	Co	prrected Opt. Moist.:	7.1 %	
Remarks :							
Performed by :		Sharif Hossain	1	_ Da	te: Decemb	er 17, 2019	
Verified by :		Raj Kadia, C.E. ⁻	T.	Da	te: Decemb	er 31, 2019	
,				_		·	


Client :	Infrastructure Ontario (IO)	Lab No : S1917
Project/Site :	Preliminary Geotechnical Investigation – Children' Hospital of Eastern Ontario Campus	s Project No : 11205379
2290		Zero Air Voids Line
2270		
໌ ເ		
Creative for the second		
2210 ·		
2190		
2170 •		
2150 • 5.0	7.0 Water Conter	9.0 9.0
Prepared Sample: ASTM D698 Test		Assumed G _s : 2.80 - Type of Hammer: Manual
Soil Type: Material: Proposed Use:	Fill Augured Material N/A	
Sample Identificat Sample Location: Aggregate Supplie Sample Date: Sampled By:		Max. Dry Density:2250kg/m³Optimum Moisture:6.8%% Retained on 19.0 mm:0.7%Corrected Dry Density:2250kg/m³Corrected Opt. Moist.:6.8%
Remarks :		
Performed by :	B.Ali	Date : December 14, 2019
Verified by :	Raj Kadia, C.E.T.	Date : December 31, 2019


Client :	Infr	astructure Ontaric	o (IO)	Lab No :	S19	910
Project/Site :		technical Investig of Eastern Ontario			1120	5379
2200					Zero Air Void	s Line
2150 •						
Dry Density (kg/m ³)		/				
2050 -						
2000 -						
1950 4 .0		6.0	8.0 Water Conten	t (%)	10.0	12.0
Prepared Sample ASTM D698 Test		X Moist	C		Assumed G _s : Type of Hammer:	2.80 Manual
Soil Type: Material: Proposed Use:		Augureo	Fill d Material I∕A	-		
Sample Identificat Sample Location: Aggregate Suppli Sample Date: Sampled By:		N Decembe	H13 I/A Pr 12, 2019 mon	Optim % Ret Corre	Dry Density: num Moisture: ained on 19.0mm: cted Dry Density: cted Opt. Moist.:	2143 kg/m³ 8.7 % 0.0 % 2143 kg/m³ 8.7 %
Remarks :						
Performed by :		Sharif Hossain		Date :	Decembe	r 17, 2019
Verified by :		Raj Kadia, C.E.T		_ Date :	December	r 31, 2019

Client :	Infra	astructure Ontario (IO)		Lab No :	S1919
Project/Site :	Preliminary Geo Hospital	technical Investigation of Eastern Ontario Car	– Children's npus	Project No :	11205379
2250				7	ero Air Voids Line
2200 •					
2150 •					
Dry Density (kg/m³) 2020 • 0020 •					
ue 2050 . مرکم					
2000 -					
1950 •					
1900	5		7.0 ater Content (%	9.0 9)	11.0
Prepared Sample: ASTM D698 Test I		X Moist - X B -	c	- Type of	ed G _s : 2.80 Hammer: Manual
Soil Type: Material: Proposed Use:		Fill Augured Mate N/A	ərial		
Sample Identificati Sample Location: Aggregate Supplie Sample Date: Sampled By:		BH14 Depth 0' to N/A December 9, 2 S.H		Max. Dry Dens Optimum Moi % Retained of Corrected Dry Corrected Op	sture: 7.6 % n 19.0 mm: 0.0 % v Density: 2178 kg/m ³
Remarks :					
Performed by :		Sharif Hossain		Date :	December 12, 2019
Verified by :		Raj Kadia, C.E.T.		Date :	December 31, 2019

GHD

GHD

Client :		Infra	astructure C	Ontario		_ L	.ab No :		A-22	-02	
Project/Site :		С	hildren Hos	pital		Project No : 11			11205	379	
2400											
2300 -								Zero A	lir Vojds	Line	
2200 -											
Dry Density (kg/m³)											
Densi											
2000 -											
1900 •											
1800 0.0	2	.0	4.0	6.	0	8.0	10	0.0	12.0)	14.0
				Wat	er Contei	nt (%)					
Prepared Sam	ole:	Dry	0 Mo	oist x			As	ssumed G	s.	2.	70
ASTM D698 Te	est Method:	A	0 E 75 mm	3 0 9.50 r	C	x 19.0 mm	Ту	ype of Har	nmer:	Mech	anical
Soil Type: Material:		_	Cr	ushed Stor	e						
Proposed Use: Sample Identifi				MW17		— — 1	Max Dru	Density:		2214	kg/m ³
Sample Location	on:					_	Optimum	n Moisture	e:	7.2	%
Aggregate Sup Sample Date:	piler / Pit Name	e:		In Place		_	Correcte	ed on 19 d Dry Dei	nsity:		% kg/m ³
Sampled By:				D. Ash		_	Correcte	d Opt. Mo	oist.:	7.2	%
Remarks :											
Performed b	y:		J. Lalonde	9			Date :	Se	eptembe	r 7, 2022	
Verified by :	($\langle \rangle$)			Date :	_	ptember		_

Appendix B₋₄ Uniaxial Compression Strength Test Results of Rock

CLIENT:	Infrastructure Onta	ario	LAB No.:	, WLT 293-1	
PROJECT/ SITE:	Preliminary Geotechnical Investig Road, Ottawa, Ol		PROJECT No.:	11205379	
Borehole No.:	MW2	Sampled ID:	n/a		
Depth:	5.13 m	Date Sampled:	n/a		
Lithologic Descrip	tion: Shale				
	Initial Specime	n Parameters			
Dian	neter, cm	I	6.3		
Heig	ht, cm		12.8		
Heig	ht-to-Diameter Ratio		2.0		
Volu	me, cm ³	3	91.7		
Mas	s, g	10	042.0		
Bulk	Density, kg/m ³	2	2661		
Mois	ture Condition	As R	Received		
Mois	ture Content, %		2.0		
	imum Applied Load, kN		110.3		
Corr	pressive Strength, MPa		35.9		
	WW2D 5.13 m	MW	2D 5.13 m		
REMARKS:					
PERFORMED BY:	M. Mitchell	DATE:	December 3	, 2019	
VERIFIED BY:	Michael Braverman	DATE:	December 16	3, 2019	

CLIENT:	Infrastructure Ont	Infrastructure Ontario		, WLT 293-2	
PROJECT/ SITE:	Preliminary Geotechnical Investig Road, Ottawa, O		PROJECT No.:	11205379	
Borehole No.:	MW2	Sampled ID:	_		
Depth:	7.67 m	Date Sampled:	n/a		
Lithologic Descrip	tion: Shale				
	Initial Specime	n Parameters			
Diar	neter, cm	I	6.2		
Heig	ght, cm		13.1		
Hei	ght-to-Diameter Ratio		2.1		
Volu	ıme, cm ³	4	102.4		
Mas	s, g	1	067.1		
Bulk	c Density, kg/m ³		2652		
Moi	sture Condition	As F	Received		
Moi	sture Content, %		2.3		
		I			
	timum Applied Load, kN		96.2		
Con	npressive Strength, MPa	:	31.4		
	MW2D 7.67 m	M	W2D 7.67 m		
REMARKS:					
PERFORMED BY:	M. Mitchell	DATE:	December 3	3, 2019	
VERIFIED BY:	Michael Braverman	DATE:	December 1	6, 2019	

CLIENT:	Infrastructure Ontario		LAB No.:	WLT 293-3
PROJECT/ SITE:	Preliminary Geotechnical Investig Road, Ottawa	gation: 401 Smyth	PROJECT No.:	11205379
Borehole No.:	MW2	Sampled ID:	-	
Depth:	9.70 m	Date Sampled:	n/a	
Lithologic Descripti	i on: Shale			
	Initial Specime	en Parameters		
Diam	eter, cm		6.2	
Heigh	nt, cm		12.8	
Heigh	nt-to-Diameter Ratio		2.1	
Volun	ne, cm ³	3	393.6	
Mass	, g	1	052.9	
Bulk I	Density, kg/m ³	:	2675	
Moist	ure Condition	As F	Received	
Moist	ure Content, %		2.0	
		T		
	num Applied Load, kN		75.0	
Comp	pressive Strength, MPa		24.4	
	WW2D 9.70 m	MV	V2D 9.70 m	
REMARKS:				
PERFORMED BY:	M. Mitchell	DATE:	December 3	3, 2019
VERIFIED BY:	Michael Braverman	DATE:	December 1	6, 2019

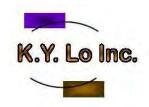
CLIENT:	Infrastructure Onta	ario	LAB No.:	WLT 293-4	
PROJECT/ SITE:	Preliminary Geotechnical Investig Road, Ottawa, Ot		PROJECT No.:	11205379	
Borehole No.: Depth: Lithologic Descrip	MW3 6.28 m tion: Shale	Sampled ID: Date Sampled:	- n/a		
	Initial Specime	n Parameters			
Dian	neter, cm		6.3		
Heig	ht, cm		13.1		
Heig	ht-to-Diameter Ratio		2.1		
Volu	me, cm ³	2	401.6		
Mas		1	067.4		
	Density, kg/m ³		2658		
	sture Condition	As F	Received		
Mois	sture Content, %		2.1		
	imum Applied Load, kN pressive Strength, MPa		87.2 28.4		
	WW3D 6.28 m	M	W3D 6.28 m		
REMARKS:					
PERFORMED BY:	M. Mitchell	DATE:	December 3	3, 2019	
VERIFIED BY:	Michael Braverman	DATE:	December 1	6, 2019	

CLIENT:	Infrastructure Onta	rio	LAB No.:	WLT 293-5	
PROJECT/ SITE:	Preliminary Geotechnical Investiga Road, Ottawa. ON		PROJECT No.:	11205379	
Borehole No.: Depth: Lithologic Descript		Sampled ID:	- n/a		
	Initial Specimer	Parameters			
Diam	neter, cm		6.3		
Heigl	ht, cm		12.8		
Heigl	ht-to-Diameter Ratio		2.0		
Volur	me, cm ³	3	394.0		
Mass	s, g	1	041.1		
Bulk	Density, kg/m ³		2642		
Mois	ture Condition	As F	Received		
Mois	ture Content, %		2.2		
	mum Applied Load, kN		03.2		
Com	pressive Strength, MPa		33.5		
	WW3D 7.83 m	MW3	D 7.83 m		
REMARKS:					
PERFORMED BY:	M. Mitchell	DATE:	December 3	8, 2017	
VERIFIED BY:	Michael Braverman	DATE:	December 1	6, 2019	

CLIENT:	Infrastructure Ont	ario	LAB No.:	WLT 293-6	
PROJECT/ SITE:	Preliminary Geotechnical Investig Road, Ottawa	gation: 401 Smyth	PROJECT No.:	11205379	
Borehole No.:	MW3	Sampled ID:	-		
Depth:	10.27 m	Date Sampled:	n/a		
Lithologic Descrip	tion: Shale				
	Initial Specime	en Parameters			
Dian	neter, cm		6.3		
Heig	ht, cm		12.4		
Heig	ht-to-Diameter Ratio		2.0		
Volu	me, cm ³	:	383.6		
Mas	-		036.8		
	Density, kg/m ³		2703		
	sture Condition	As F	Received		
IVIOIS	sture Content, %		1.8		
Max	imum Applied Load, kN		109.0		
	pressive Strength, MPa		35.4		
W3D 10.27 m			3D 10.27 m		
REMARKS:					
PERFORMED BY:	M. Mitchell	DATE:	December	3 2019	
VERIFIED BY:	Michael Braverman	DATE:	December 1		

CLIENT:	Infrastructure Ont	ario	LAB No.:	WLT 293-7
PROJECT/ SITE:	Preliminary Geotechnical Investig Road, Ottawa	gation: 401 Smyth	PROJECT No.:	11205379
Borehole No.:	MW4	Sampled ID:		
Depth:	3.26 m	Date Sampled:	n/a	
Lithologic Descrip	tion: Shale			
	Initial Specime	en Parameters		
Dia	meter, cm		6.2	
Hei	ght, cm		12.5	
Hei	ght-to-Diameter Ratio		2.0	
Volu	ume, cm ³	;	383.9	
	ss, g		023.1	
	k Density, kg/m ³		2665	
	sture Condition	As F	Received	
Moi	sture Content, %		2.2	
Mo	vimum Applied Lood KN	1 .	128.0	
	kimum Applied Load, kN npressive Strength, MPa		41.8	
	WW4D 3.26M	MW4D 3.	26M	
REMARKS:				
PERFORMED BY:	M. Mitchell	DATE:	December	3, 2019
VERIFIED BY:	Michael Braverman	DATE:	December 1	

CLIENT:	Infrastructure Ont	ario	LAB No.:	WLT 293-8
PROJECT/ SITE:	Preliminary Geotechnical Investig Road, Ottawa	ation: 401 Smyth	PROJECT No.:	11205379
Borehole No.:	MW4	Sampled ID:		
Depth:	6.38 m	Date Sampled:	n/a	
Lithologic Descrip	tion: Shale			
	Initial Specime	n Parameters		
Diar	neter, cm		6.3	
Hei	ght, cm		12.5	
Hei	ght-to-Diameter Ratio		2.0	
	ıme, cm ³		384.0	
	ss, g		020.3	
	C Density, kg/m ³		2657	
	sture Condition	As I	Received 1.8	
INIOIS	sture Content, %		1.0	
Мах	imum Applied Load, kN		87.5	
	npressive Strength, MPa		28.5	
	<image/>	MW4	D 6.38M	
REMARKS:				
PERFORMED BY:	M. Mitchell	DATE:	December	3. 2019
VERIFIED BY:	Michael Braverman	DATE:	December 1	



CLIENT:	Infrastructure Ontario		LAB No.:	WLT 293-9	
PROJECT/ SITE:		Preliminary Geotechnical Investigation: 401 Smyth Road, Ottawa		11205379	
Borehole No.:	MW4	Sampled ID:	_		
Depth:	7.58 m	Date Sampled:	n/a		
Lithologic Descrip	tion: Shale				
	Initial Spec	men Parameters			
Dia	meter, cm		6.2		
Hei	ght, cm		12.7		
Hei	ght-to-Diameter Ratio				
	ume, cm ³	;			
	ss, g	1			
	c Density, kg/m ³		2655 Received		
	sture Condition	As I			
IVIOI	sture Content, %		2.3		
Max	kimum Applied Load, kN		93.5		
	Compressive Strength, MPa		30.5		
	WHAD 7.58M		MW4D 7.58M		
REMARKS:					
PERFORMED BY:	M. Mitchell	DATE:	December	3, 2019	
VERIFIED BY:					

Unconfined Compressive Strength of Intact Rock Core Specimen ASTM D 7012, ASTM D 4543

Client :	Infrastructure C	Ontario				Proje	ct N° :	11205379
Project :	Children Hospit	tal				Sam	nple N°	: BH21-rc5
								8,13 - 8,24 m
						_	•	
							•	
Testing Appara	atus Used :			Loadin	g device N°_9	9130		Caliper Nº _1
			Fechnical Data					View of Specimen
			1		Average			Before Test :
Diameter :		63.37	63.24	63.31	63.31	(mm)		
Length :		111.13	112.75	110.08	111.32	(mm)		
Straightness (0.5mm ma	aximum) (S1) :	0.3	0.3	0.2	0.3	(mm)		
Flatness (25µm maximu	ım) (FP2) :	Ok	Ok	Ok	Ok	(μm)		
Parallelism (0.25 ° maxi	mum) (FP2) :	0.15	0.10	0.20	0.15	(°)		After Test :
Mass :	93	7.9	_(g) Volume:	35	0398	(mm ³)		A DE
Density :			267	7	_(kg/m ³)			
Moisture Conditions :			Dr	у	_			
Loading Rate (0.5 to	1.0 MPa / sec) :		0.9	0	(MPa/sec)			
Type of Fracture :			Along Fo	oliation	_			
Test Duration (2-15 N	/linutes) :		78	3	(seconds)			
Maximum Applied Lo	ad :		220.	86	_(kN)			
Compressive Stre	ngth :		70.	2	_(MPa)			
Remarks :								
Analysed by :	J. Lalonde	\cap				_	Date :	8/12/2022
Verified by :	\rightarrow	<u>poet</u>				_	Date :	9/13/2022

Appendix B -5 Free Swell Test Results of Rock

FINAL REPORT

Results of Free Swell Tests on Shale of Georgian Bay Formation and Blue Mountain/Billings Formations

Children's Hospital of Eastern Ontario Campus – Preliminary Geotechnical Investigation Ottawa, ON

Project No. 11205379

Prepared for:

GHD 111 Brunel Road Suite 200 Mississauga, ON

K. Y. Lo Inc.

July 22, 2020

TABLE OF CONTENT

1.	Introduction	3
2.	Methods of testing	3
2.1	Free swell tests	3
2.2	Calcite content, water content and salinity tests	3
3.	Results of laboratory testing	4
4.	References	5

<u>Appendix</u>

Appendix A:	Results of free swell tests7
-------------	------------------------------

1. Introduction

K.Y. Lo Inc. was retained by GHD to test the swelling characteristics of shale cores of the Georgian Bay Formation and Blue Mountain/Billings Formations for the Children's Hospital of Eastern Ontario Campus – Preliminary Geotechnical Investigation project in Ottawa. Rock cores from boreholes MW2D, MW3D and MW4D were provided for testing. Four (4) free swell tests were requested by GHD to be performed on these rock cores; one from MW2D, one from MW3D and two from MW4D.

This report presents factual laboratory results of four (4) free swell tests completed on the received rock samples. The results of calcite content test, pore water salinity tests and water content tests done on the same rock samples are also included.

2. Methodology of Testing

2.1 Free Swell Test

Free swell test (FST) was performed using the method developed by Lo et al. (1978). In free swell tests, freshly trimmed rock specimen is permitted to deform unrestrictedly in all directions. A typical specimen for a free swell test is shown on Figure 1. The diameter-ratio of the cylindrical sample should be approximately one to one. However, sometimes it is controlled by availability of the rock core.

Three orthogonal dimensional changes of the specimen preserved under constant temperature and 100% relative humidity with direct access to fresh (tap) water, are measured with time. The "UWO deformation gauge" shown on Figure 1 is used to measure the dimensions of the two horizontal (X and Y) and vertical (axial/Z) directions for 100 days. Test data were plotted as strain vs. the logarithm (to the base of 10) of elapsed time.

2.2 Water Content, Salinity and Calcite Content Tests

The gravimetric method was used to measure water content of the rock sample. In this method the measurement of water content is direct, being simply the mass of water lost on drying in a convection oven at a temperature of 105°C until the mass remains constant.

It was experimentally established that shales need 4 days of drying to reach constant dry mass.

The salinity of rock pore fluid was determined by adding distilled water to the powdered rock sample and then centrifuging the mixture. The electrical conductivity of the supernatant of the centrifuged solution was measured using a conductivity meter (WTW TetraCon 325), and then converted to the salinity (salt concentration) expressed in grams per litre of pore water, NaCl equivalent.

Water content and salinity of each swell test specimen were measured before and after the test (after 100 days of swelling). Before a swell test, water content and salinity were measured on rock pieces adjacent to the swell test specimen. After swell test, water content and salinity tests were performed on the actual swell test specimen. The gasometric method using the Chittick apparatus (Dreimanis, 1962) was used to estimate the amount of calcite in the rock samples after swell test.

3. Results of Laboratory Testing

The results of free swell tests are presented on the attached graphs. The results of calcite content, water content and salinity tests performed before and after free swell tests are presented on the insert in each graph.

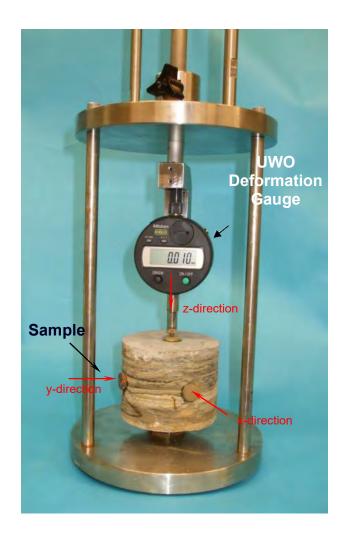
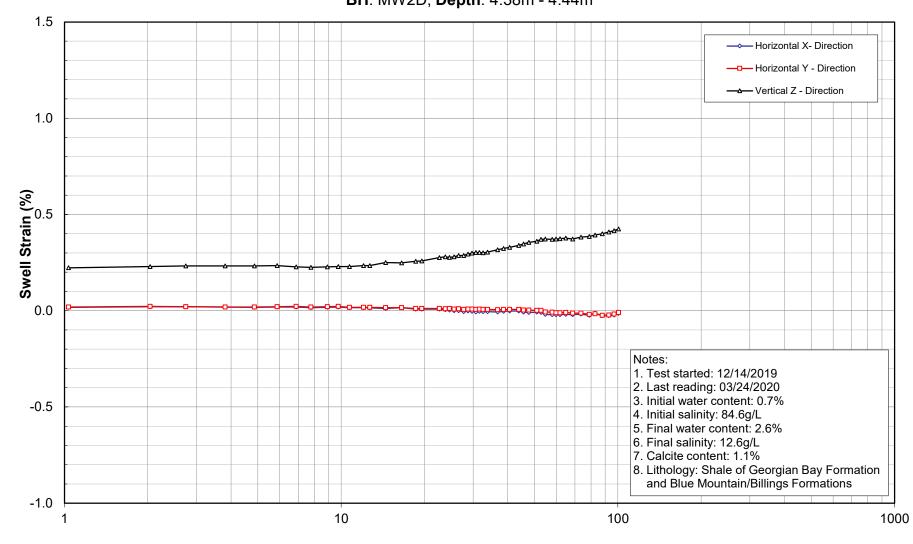
K.Y. Lo Inc.

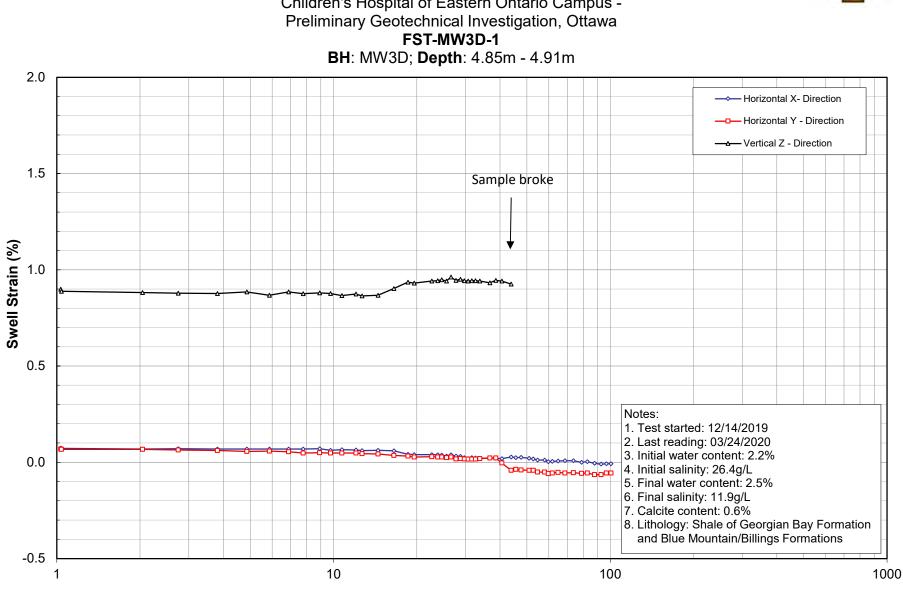
Kwan Yee Lo, Ph.D., P.Eng., FEIC

4. References

Dreimans, A. 1962. Quantitative Gasometric Determination of Calcite and Dolomite Using Chittick Apparatus. Journal of Sedimentary Petrology, Vol. 32, pp. 520-529.

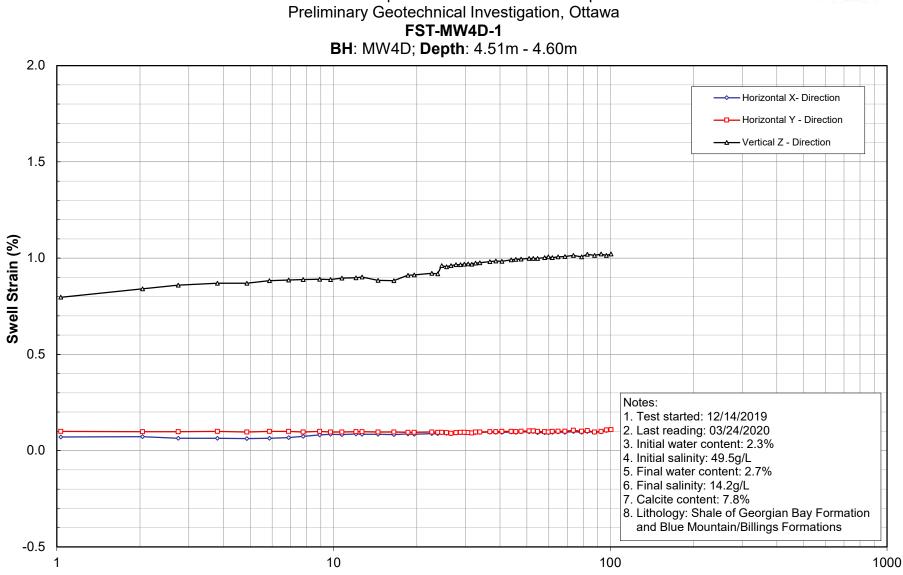
Lo, K.Y., Wai, R.S.C., Palmer, J.H.L. and Quigley, R.M. 1978. Time-dependent Deformation of Shaly Rocks in Southern Ontario. Canadian Geotechnical Journal, Vol. 15, pp. 537-547.


Figure 1. Typical set-up for free swell tests

Appendix A – Results of Free Swell Tests

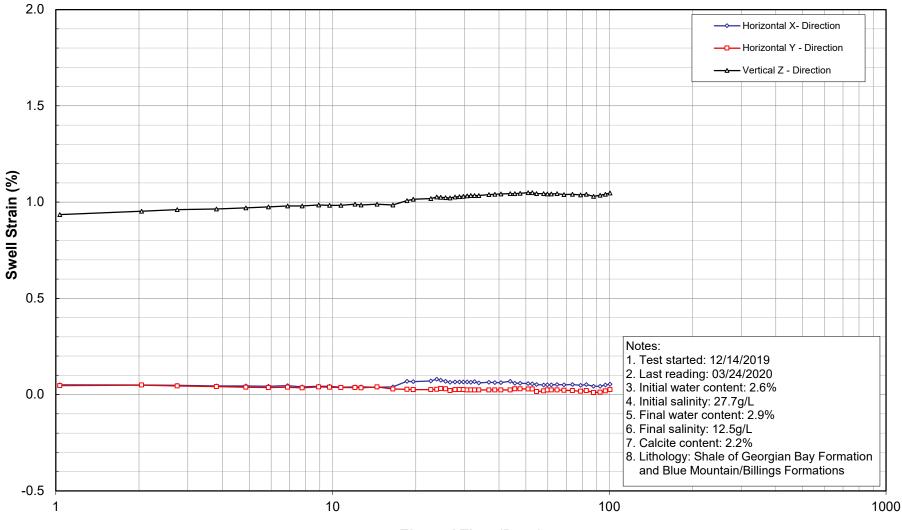
Free Swell Test Children's Hospital of Eastern Ontario Campus -Preliminary Geotechnical Investigation, Ottawa **FST-MW2D-1 BH**: MW2D; **Depth**: 4.38m - 4.44m



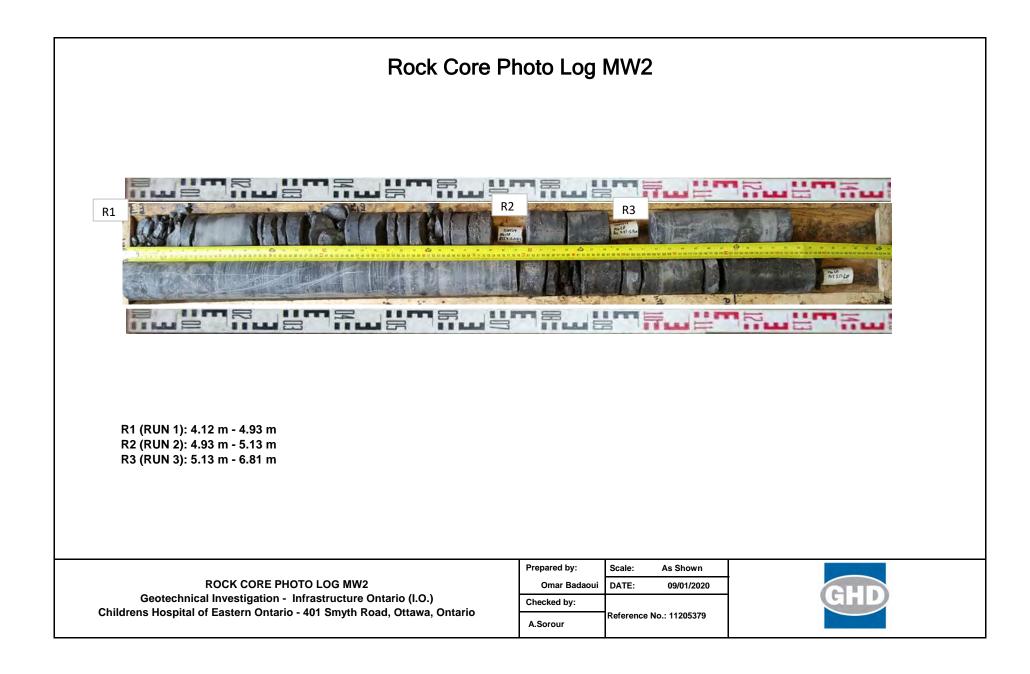
Free Swell Test Children's Hospital of Eastern Ontario Campus -

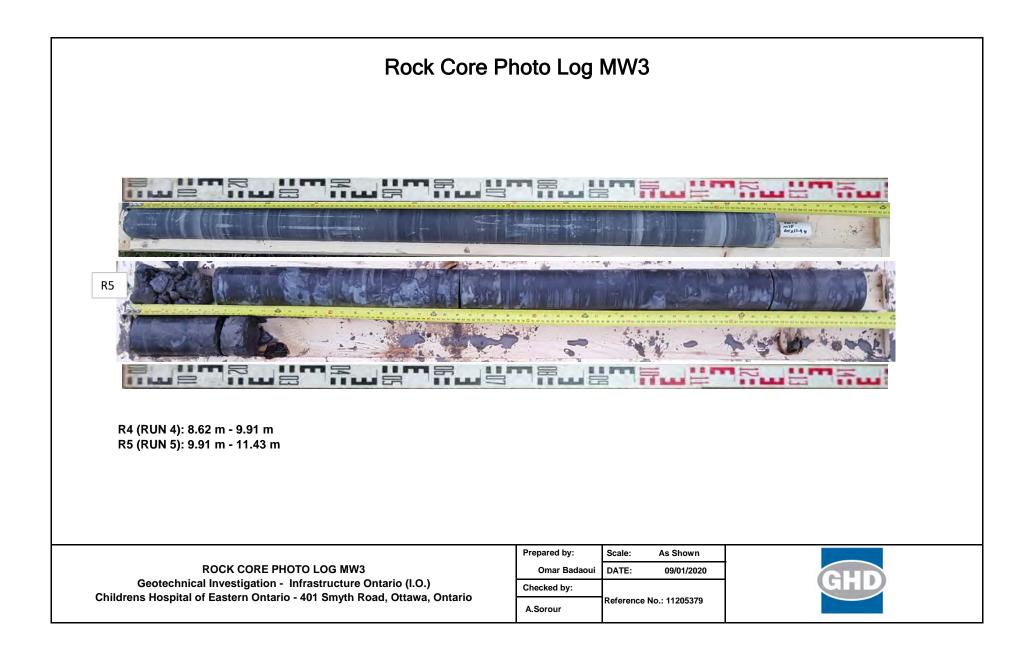
o inc.

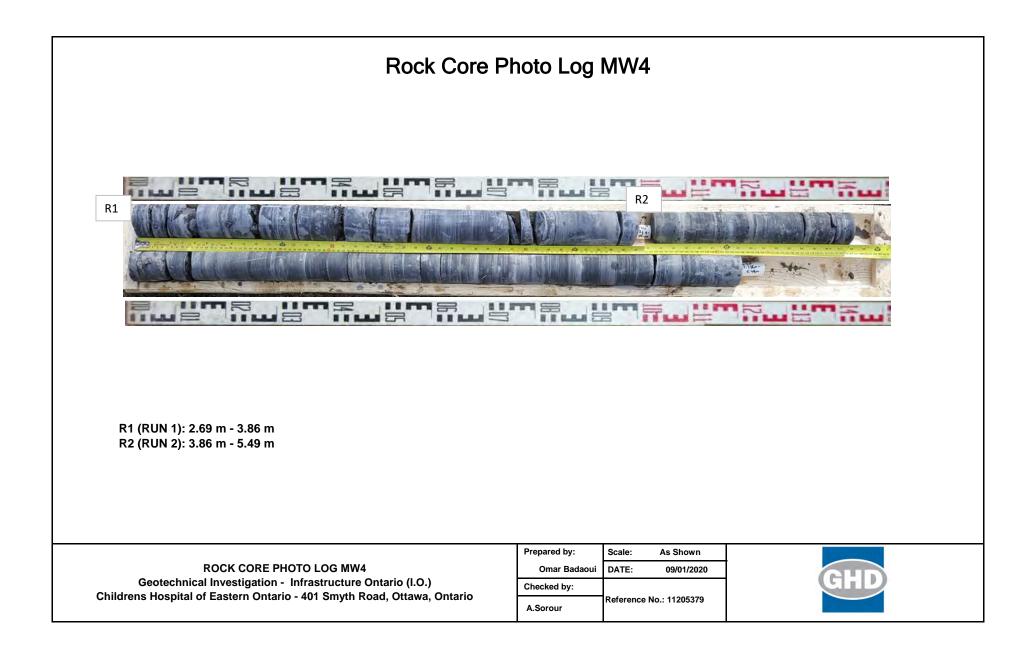
Children's Hospital of Eastern Ontario Campus -

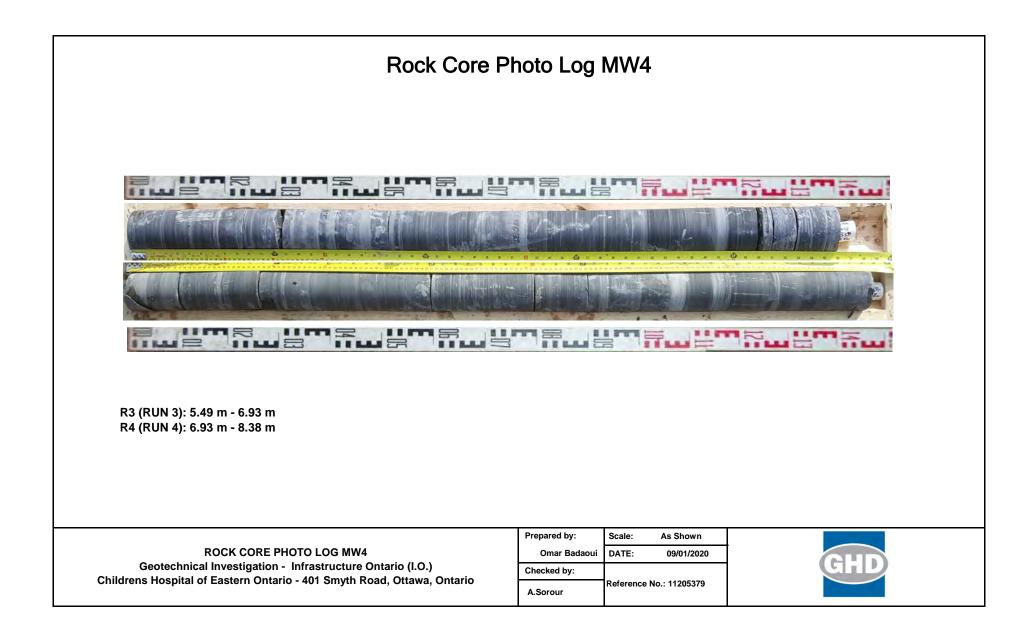

Free Swell Test

o inc.

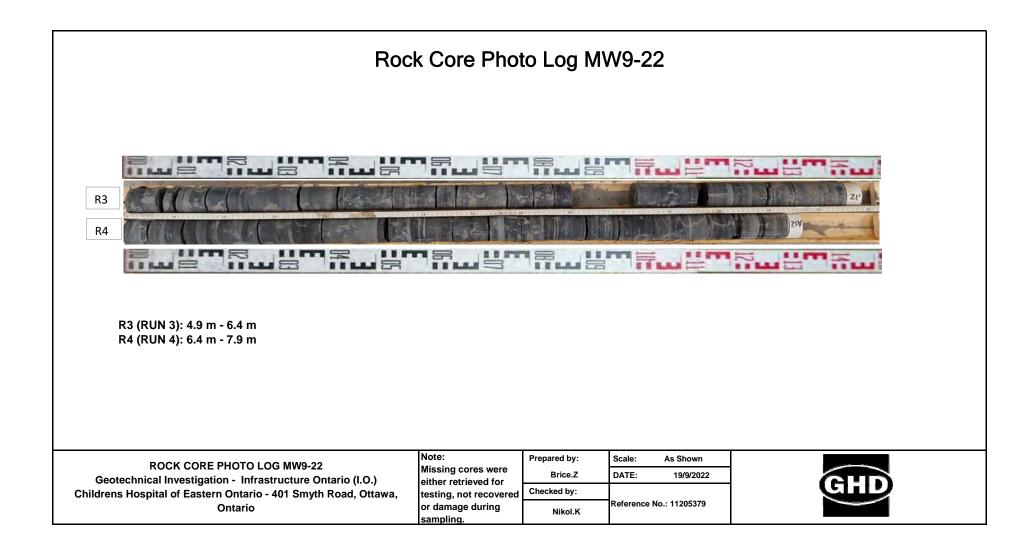

Free Swell Test Children's Hospital of Eastern Ontario Campus -Preliminary Geotechnical Investigation, Ottawa FST-MW4D-2

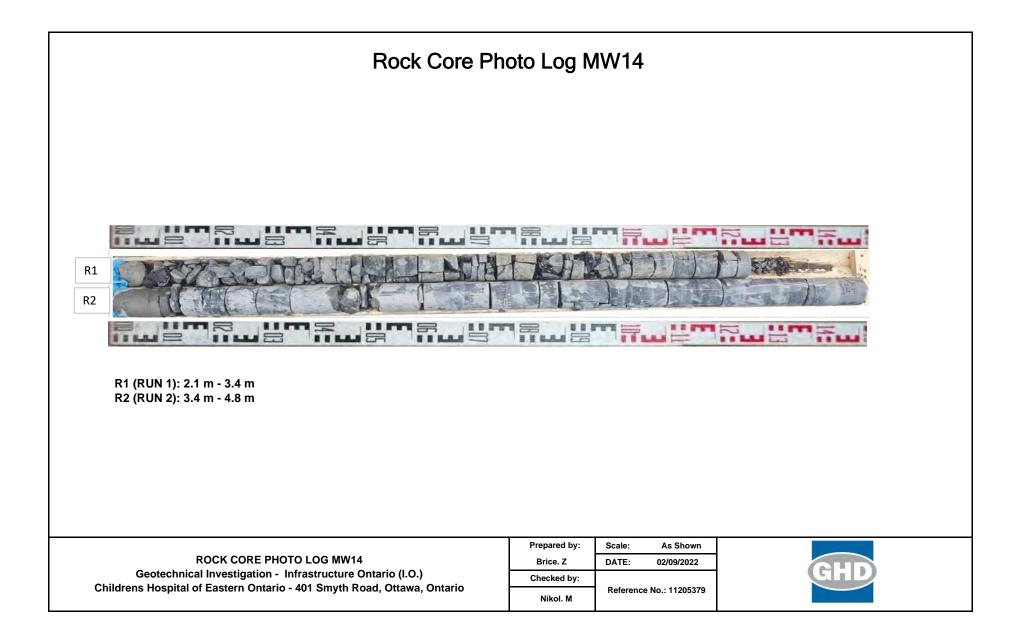

Appendix C Rock Core Photographs

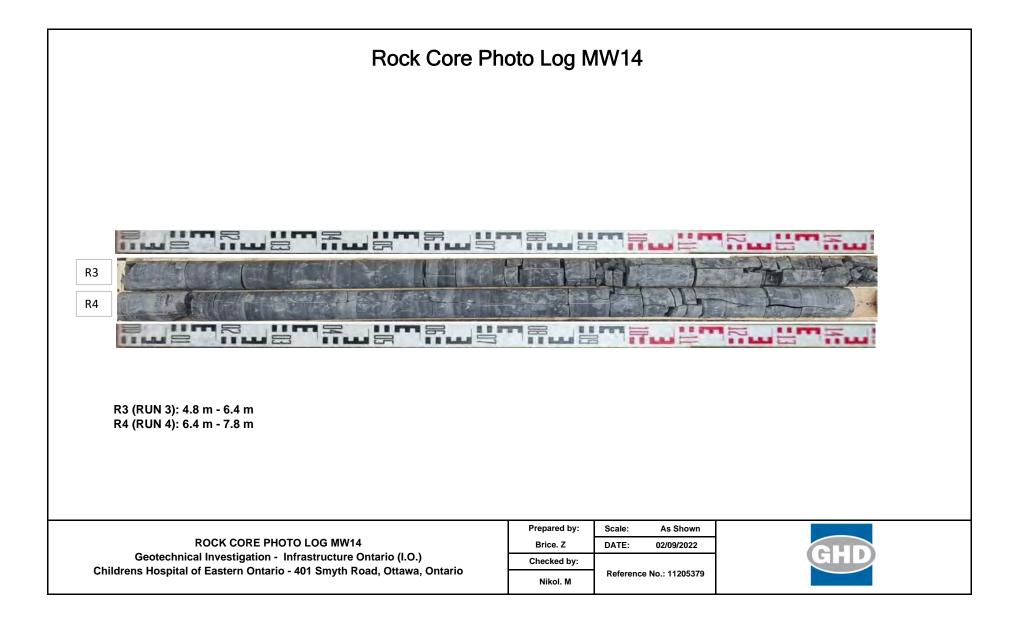



Rock Core Photo Log MW2				
R4 (RUN 4): 6.81 m - 8.08 m R5 (RUN 5): 8.08 m - 9.55 m				
	Prepared by: Sc	ada As Shawa		
ROCK CORE PHOTO LOG MW2	Omar Badaoui	cale: As Shown ATE: 09/01/2020		
Geotechnical Investigation - Infrastructure Ontario (I.O.) Childrens Hospital of Eastern Ontario - 401 Smyth Road, Ottawa, Ontario	Checked by:	forence No : 11205270	GHD	
	A.Sorour	ference No.: 11205379		

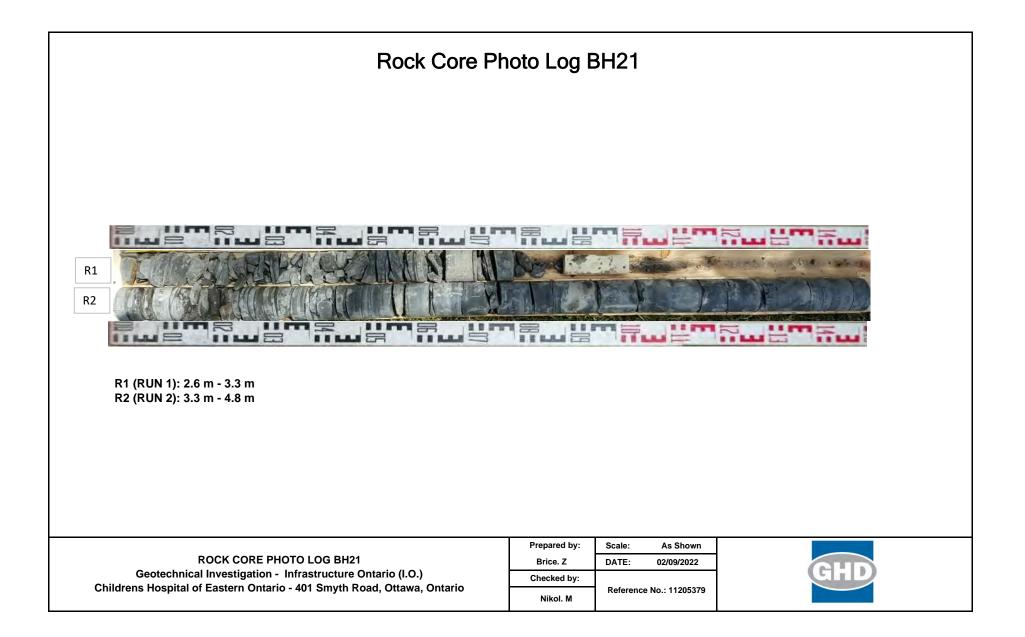
Rock Core Photo Log MW2				
The second side provide a second s	The based of the			
R6 (RUN 6): 9.55 m - 11.28 m				
	Prepared by:	Scale: As Shown		
ROCK CORE PHOTO LOG MW2 Geotechnical Investigation - Infrastructure Ontario (I.O.)	Omar Badaoui Checked by:	DATE: 09/01/2020	GHD	
Childrens Hospital of Eastern Ontario - 401 Smyth Road, Ottawa, Ontario	A.Sorour	Reference No.: 11205379		


Rock Core Photo Log MW3				
	ma			
R1 (RUN 1): 4.11 m - 5.64 m R2 (RUN 2): 5.64 m - 7.13 m R3 (RUN 3): 7.13 m - 8.62 m				
ROCK CORE PHOTO LOG MW3 Geotechnical Investigation - Infrastructure Ontario (I.O.) Childrens Hospital of Fastern Ontario - 401 Smyth Road, Ottawa, Ontario	Prepared by: Omar Badaoui Checked by:		GHD	
Childrens Hospital of Eastern Ontario - 401 Smyth Road, Ottawa, Ontario	A.Sorour	Reference No.: 11205379		

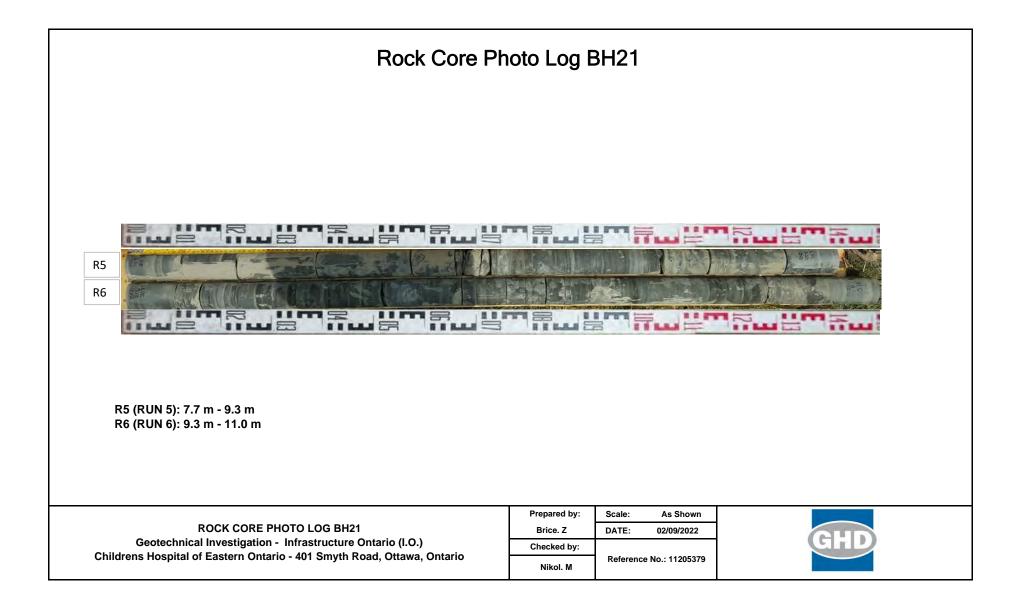


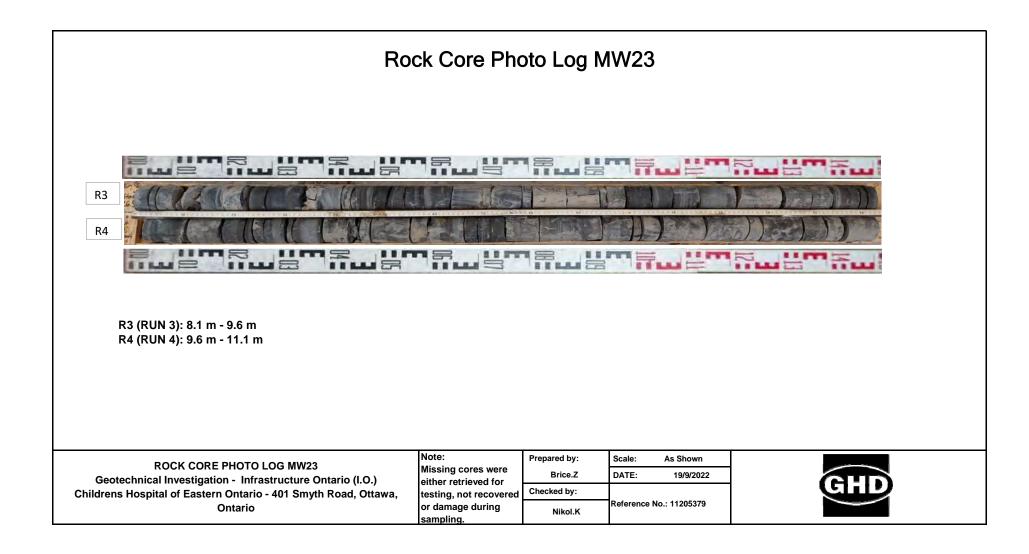




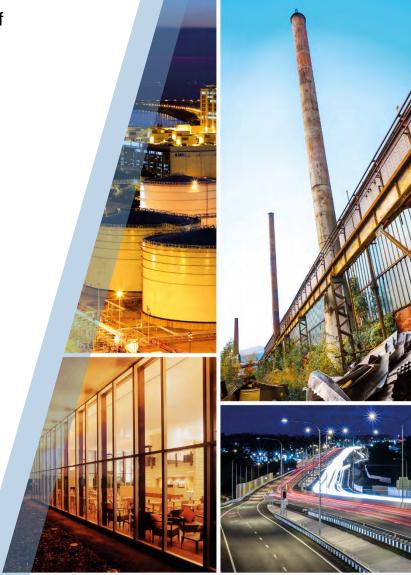

Rock Core Photo Log MW9-22					
R1 (RUN 1): 2.6 m - 3.3 m R2 (RUN 2): 3.3 m - 4.9 m					
ROCK CORE PHOTO LOG MW9-22	Note: Missing cores were	Prepared by: Brice.Z	Scale: As Shown DATE: 19/9/2022		
Geotechnical Investigation - Infrastructure Ontario (I.O.) Childrens Hospital of Eastern Ontario - 401 Smyth Road, Ottawa, Ontario	either retrieved for testing, not recovered or damage during sampling.	Checked by: Nikol.K	Reference No.: 11205379	GHD	







Rock Core Photo Log MW23				
R1 R1 (RUN 1): 5.0 m - 6.5 m R2 (RUN 2): 6.5 m - 8.1 m				
Geotechnical Investigation - Infrastructure Ontario (I.O.) Childrens Hospital of Eastern Ontario - 401 Smyth Road, Ottawa,	Note: Missing cores were either retrieved for testing, not recovered or damage during sampling.	Prepared by: Brice.Z Checked by: Nikol.K	Scale: As Shown DATE: 19/9/2022 Reference No.: 11205379	GHD


Appendix D Multi-Channel Analysis of Surface Waves (MASW)

MASW Investigation Seismic Site Classification

Portion of Children's Hospital of Eastern Ontario 401 and 407 Smyth Road Ottawa, Ontario

Infrastructure Ontario

Y

Table of Contents

1.	Introduction	. 1
2.	MASW Procedure	. 1
3.	Fieldwork	. 2
4.	Data Interpretation	. 3
5.	Closure	. 3

Figure Index

Figure 1	Site Location Map
Figure 2	MASW Survey Investigation Lines Layout
Figure 3	Shearwave velocity vs depth

Table Index

Table 1 Summary of Shear wave velocity measurementsTable 2 Site Classification for Seismic Site Response – Table 4.1.8.4 OBC 2012

Appendix Index

Appendix A Seismic Hazard Values

1. Introduction

GHD was retained by Ontario Infrastructure and Lands Corporation (Client) to conduct a Multichannel Analysis of Surface Waves (MASW) investigation for the proposed 1Door4Care building which will be part of the Children's Hospital of Eastern Ontario (CHEO) Campus in Ottawa, Ontario (Site). The proposed development would be located at the southwestern portion of the CHEO's Campus, which is currently developed with parking lot and landscape areas. A site location map is provided on **Figure 1**.

The purpose of the MASW survey was to assist with the seismic site class determination by measuring the average shear wave velocity approximately within the upper 30 m of the soil/rock profile below the founding elevation of the proposed building at the site. The shear wave velocity measurements were carried out along two MASW survey lines assumed to be representative of the Site. The investigation line locations are shown in the attached **Figure 2**.

Based on the available geotechnical information (GHD Report 3 – Preliminary Geotechnical Investigation, Jan 2020), the Site in general consists of fill materials consisting of sitly sand to sand. The fill is underlain by sandy silty clay deposit which is underlain by bedrock. The thickness of the overburden (fill and native) layer range from 1.0 to 3.81 m. The boreholes were terminated in the bedrock.

The SPT 'N' values within the native layer ranged from 6 to over 50 blows per 0.3 m of penetration. The low 'N' values (less than 15) in some boreholes were obtained at the interface of fill and native layer. The SPT 'N' values (above 15) indicate the stiff to hard consistency of the native deposit.

2. MASW Procedure

To carry out the MASW test, 24 transducers (geophones) are deployed along a line at certain distances from a seismic source. The length of the geophone array determines the deepest investigation depth that can be obtained from the measurements. The source should produce enough seismic energy over the desired test frequency range to allow for detection of Rayleigh waves above background noise (Park et al 1999¹). A common seismic source is either a sledgehammer or a drop weight hitting a metallic or rubber base plate set at ground surface. The existing traffic noise or the noise generated by heavy machinery travelling close to the survey line can also be utilized as a source for investigating deep soil layers. For this site, only active seismic source is used. Figure 2.1 shows a typical MASW setup.

¹ Park, C.B., Miller, R.D., and Xia, J., 1999, Multichannel analysis of surface waves: Geophysics, v. 64, n. 3, pp. 800-808.

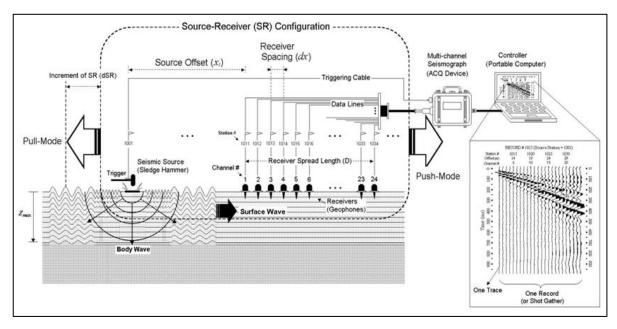


Figure 2.1: Schematic Layout of MASW Test Setup (Park et al 1999 and Xia et al 1999²)

3. Fieldwork

The fieldwork for this MASW investigation program was carried out on December 17, 2019 by GHD professionals. The field data was collected using a 24 channel seismograph (Geometrics Geode 24 consol #3389), twenty-four 4.5 Hz geophones, and one 24 take-out cable with 5 m spacing. A Panasonic Toughbook© laptop was used in the field to record and collect the seismic data utilizing Geometrics single geode OS controller version 9.14.0.0.

The survey was carried out along two survey lines along the north-south and east-west directions in the vicinity of boreholes and monitoring wells MW-9, BH-6, BH-7, BH-8, MW-4S, and MW-2S as shown on **Figure 2**. For all line locations, the geophones were installed 75 mm into the ground by manually pushing them into position.

A multi geometry approach was utilized for data collection along both lines. The active data sets were collected using a 4.5 kg sledge hammer hitting the ground surface at three different offset distances (distance between the source and first geophone) along each survey line. The following table summarizes the geometry for each investigation line.

Line No.	Designation	Geophone Spacing (m)	Array Length (m)	Offset Distances (m)
Line 1 and	Long	2.0	46.0	24.0, 16.0, 8.0
Line 2	Short	1.0	23.0	12.0, 8.0, 4.0

MASW Line Geometry

² Xia, J., Miller, R.D., and Park, C.B., 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, v. 64, n. 3, p. 691-700.

Three sets of data files (active) were collected for each array location/set up. For the active survey measurements, the ground vibrations were recorded for four seconds with one sample per 0.25 ms.

4. Data Interpretation

Data analysis including generation of dispersion curves, inversion of the obtained dispersion curves and development of the 1D shear wave velocity profiles at the Site were carried out using SurfSeis© version 6.0. The dispersion curves were calculated at the middle stations along each line. At each investigation line, the dispersion images obtained from active data at different offsets were stacked to obtain a combined dispersion curve. The data inversion was carried out using a 10-layer soil velocity numerical model to obtain 1D shear wave velocity profiles at the location of each mid station. The calculated 1D velocity profile along the investigation lines are shown on the attached Shear Wave Velocity Profile. **Figure 3** shows the obtained results at the proposed location for the construction of the building.

In accordance with the requirements of Ontario Building Code (OBC 2012) and National Building Code of Canada 2015 (NBC 2015), the variation of the measured shear wave velocity versus depth up to 30 m below the proposed founding level of the building (assumed to be 1.5 m bgs) was obtained along each line and is shown on Tables 1-A and 1-B. The average shear wave velocity within the upper 30 m of the soil/rock profile (Vs₃₀) immediately below the founding level of the building (at 3.0 m bgs) were obtained utilizing the averaging scheme introduced in Sentence 4.1.8.4 (2) of Commentary J of NBC (2010) User's Guide.

Based on the calculations presented in the attached Tables, the lowest average shear wave velocity (from 3.0 m bgs to 33.0 m bgs) along the investigation line is **1302 m/s** (along **Line 1**). Therefore, in accordance Table 4.1.8.4.A of OBC 2012 (Table 2) and based on the measured average shear wave velocity, for seismic load calculations the Site can be classified as Class 'B'.

As per the Geotechnical report (GHD, 2019), the foundation of the structure will be supported on native sandy silt, the Site can be classified as **Class 'C'. As per OBC 2012, Site Class A and B are only applicable if footings are founded on bedrock.**

The seismic site classification provided in this report is based solely on the shear wave velocity values derived from the MASW method and that it can be superseded by other geotechnical information as per requirement from NBC (2010).

The seismic hazards for the site as obtained from Natural Resources Canada (NRC) website are provided as **Appendix A** to this correspondence.

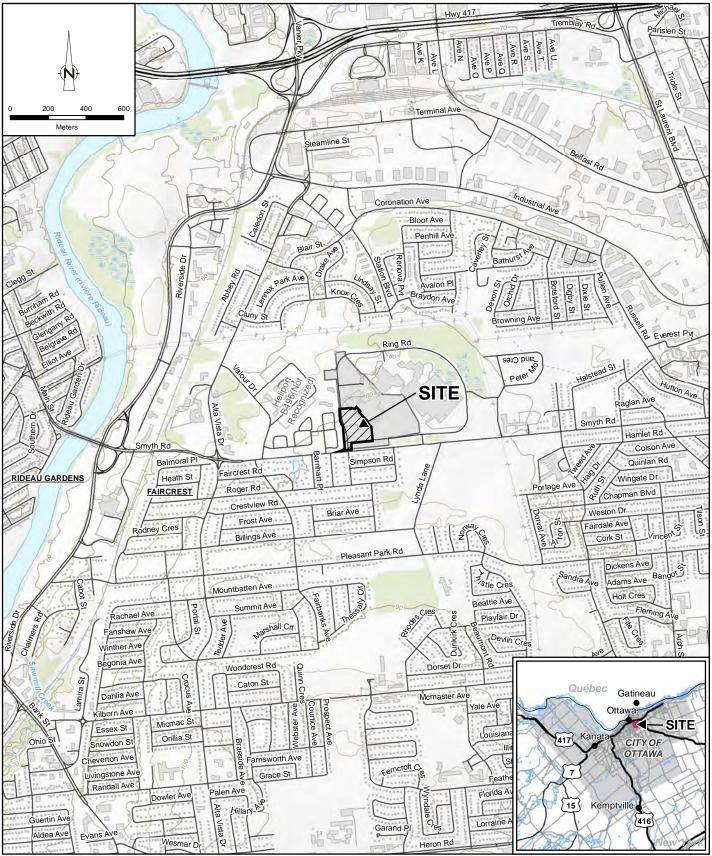
5. Closure

It is important to emphasize that the results and conclusions of the MASW analysis are based on the available geotechnical information and the survey conducted along two investigation lines. Should any conditions at the Site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations.

All of Which is Respectfully Submitted,

GHD

tte

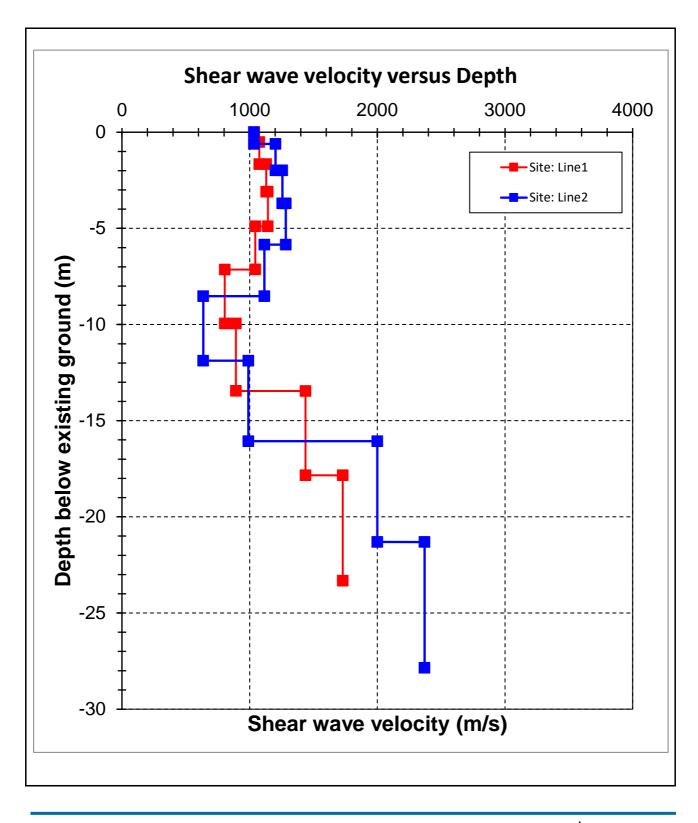

Hassan Ali, Ph.D. P. Eng.

Ali Ghassemi, Ph.D.

Farsheed Bagheri, P. Eng.

Figures

Source: MNRF NRVIS, 2018. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2020


PARKING LOT AND ACCESS ROADS PORTION OF CHILDREN'S HOSPITAL OF EASTERN ONTARIO 401 AND 407 SMYTH ROAD, OTTAWA, ONTARIO 11205379 Jan 14, 2020

SITE LOCATION MAP

FIGURE 1

Source: Microsoft Product Screen Shot(s) Reprinted with permission from Microsoft Corporation, Accessed: 2019

Infrastructure Ontario Proposed 1Door4Care Development Part of Childrens Hospital of Eastern Ontario Campus 401 and 407 Smyth Road, Ottawa Ontario SHEAR WAVE VELOCITY VS DEPTH PROJECT NO. 11205379 DATE 13-Jan-19

FIGURE NO. 3

Tables

GHD | MASW Investigation - 11205379 (2)

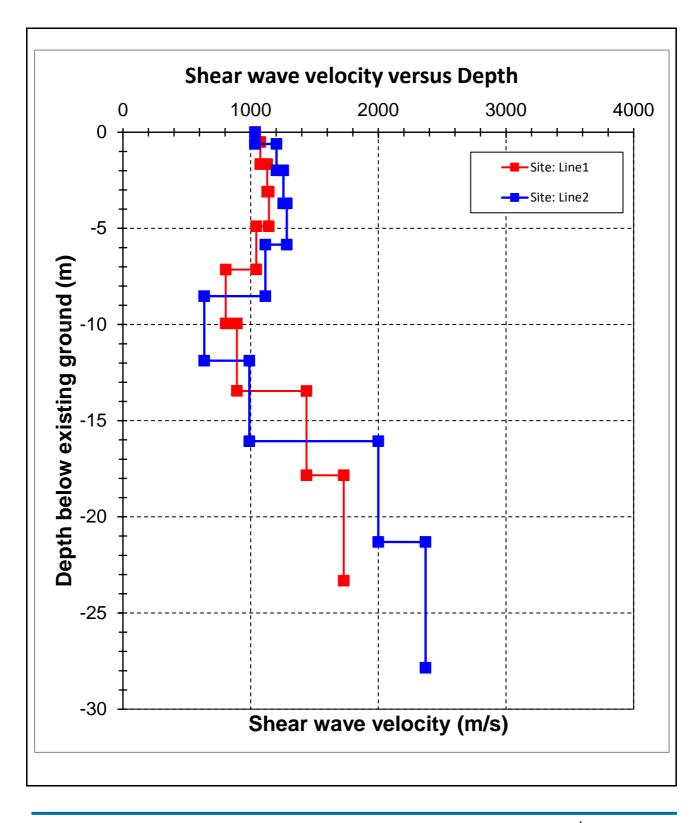
Table 1 Summary of Shear Wave Velocity Measurements Seismic Site Class Determination Proposed 1Door4Care Development Part of Childrens Hospital of Eastern Ontario Campus 401 and 407 Smyth Road, Ottawa Ontario

Table 1-A: Average Shear Wave Velocity (VS ₃₀) (Assumed foundaiton at 3.0 m below existing ground surface)									
			Line 1						
Layer No.	Depth (m bgs)	Thickness	Vs	d _i /V _{si}				
Edycr 10.	From	То	m	m/s	αr • si				
1	3.0	3.1	0.1	1130	0.0001				
2	3.1	4.9	1.8	1143	0.0016				
3	4.9	7.1	2.2	1045	0.0021				
4	7.1	9.9	2.8	805	0.0035				
5	9.9	13.5	3.5	893	0.0039				
6	13.5	17.8	4.4	1438	0.0030				
7	17.8	33.0	15.2	1729	0.0088				
	Total		30.0		0.0230				
Avera	Average Shear Wave Velocity Along the Line (m/s)								

Table 1-B: Average Shear Wave Velocity (VS ₃₀) (Assumed foundaiton at 3.0 m below existing ground surface)										
			Line 2							
Layer No.	Depth (m bgs)	Thickness	Vs	d _i /V _{si}					
Layer NO.	From	То	m	m/s						
1	3.0	3.7	0.7	1256	0.0006					
2	3.7	5.8	2.1	1284	0.0017					
3	5.8	8.5	2.7	1115	0.0024					
4	8.5	11.9	3.4	637	0.0053					
5	11.9	16.1	4.2	990	0.0042					
6	16.1	21.3	5.2	2000	0.0026					
7	21.3	33.0	11.7	2370	0.0049					
	Total		30.0		0.0217					
Avera	1384									

Average VS₃₀ = **Recommended Site Class:** 1343 m/s Subjected to Code requirements

Notes:


1 - The Seismic Site class is recommended in accordance to Table 4.1.8.4.A of the National Building code of Canada 2010 and based on the lowest measured average shear wave velocity measured along the investigated lines.

В

2 - VS30 is calculated based on the average shear wave velocity below the proposed founding elevation.

3 - Site Classes A and B are only applicable if footings are founded on bedrock or there is no more than 3.0 m of soil between founding elevation and bedrock.

4 - The recommended site class is only applicable if site conditions for Site Class F (liquefiable soil/soft soil layers more than 3.0 m thick) are not applicable.

Infrastructure Ontario Proposed 1Door4Care Development Part of Childrens Hospital of Eastern Ontario Campus 401 and 407 Smyth Road, Ottawa Ontario SHEAR WAVE VELOCITY VS DEPTH PROJECT NO. 11205379 DATE 13-Jan-19

FIGURE NO. 3

Table 2Site Classification for Seismic Site ResponseForming Part of Sentences 4.1.8.4. (1) to (3)

		Average Properties in Top 30 m									
	Ground Profile Name	Average Shear Wave Average Standard Velocity, \overline{V} s (m/s) \overline{N}_{60}		Soil Undrained Shear Strength, su							
А	Hard rock	Ūs > 1500	N/A	N/A							
В	Rock	$760 < \overline{V}_{s} \le 1500$	N/A	N/A							
С	Very dense soil and soft rock	$360 < \bar{V}_{s} < 760$	$\overline{N}_{60} > 50$	s _u > 100 kPa							
D	Stiff soil	180 < \bar{V}_{s} < 360	$15 \leq \overline{N}_{60} \leq 50$	50 kPa < s _u ≤ 100 kPa							
		\overline{V}_{s} < 180	$\overline{N}_{60} \leq 15$	s _u < 50 kPa							
E Soft soil Any profile with more than 3m of soil with the following character plasticity index: $PI > 20$ moisture content $w \ge 40\%$, and undrained shear strength: $s_u < 25$ kPa											
F	Other soils	Site-specific evaluation required									

Reference: 2012 Ontario Building Code Compendium, Division B – Part 4, Section 4.1.8.4.

Appendix A Seismic Hazard Values

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Farsheed Bagheri

Farsheed.Bagheri@ghd.com 289.374.3816

www.ghd.com

Appendix E Geophysical Survey Reports and Supplemental Geophysical Investigation

November 11, 2020

Reference No. 11205379

Mr. Muhammad Arshad, P. Eng., PMP Geotechnical Specialist Infrastructure Ontario 1 Dundas Street West, Suite 2000 Toronto, Ontario M5G 1Z3

Dear Mr. Arshad:

Re: Supplemental Geophysical Investigation Proposed 1Door4Care Building, Children's Hospital of Eastern Ontario 401 Smyth Road, Ottawa, Ontario

1. Introduction

GHD was retained by Infrastructure Ontario (IO) to conduct a supplemental geophysical investigation to support the proposed 1Door4Care building within the Children's Hospital of Eastern Ontario (CHEO) Campus located at 401 and 407 Smyth Road in Ottawa, Ontario (hereinafter referred to as "Site").

The purpose of the supplemental geophysical investigation was to investigate the subsurface anomalies identified in the Geophysical Survey performed by multiVIEW Locates Inc. (multiVIEW) between November 2019 and January 2020, summarized in the Geophysical Summary Interpretation Report dated February 19, 2020 and the Geophysical Interpretation Report dated April 16, 2020, both reports by multiVIEW.

The investigation consisted of the advancement of seven test pits (TP1-20 through TP4-20, TP5A-20, TP5B-20, and TP6-20) at the Site to investigate the reported anomalies. The location of the completed test pits is provided on Figure 1. The advancement of test pits TP1-20 and TP4-20 were observed by T2E Utility Engineers (T2E) staff to document the presence of utilities and to update their Subsurface Utility Engineering (SUE) survey.

2. Scope of Work

The field investigation activities completed by GHD consisted of the following tasks.

Prior to initiating the subsurface investigation activities, all applicable utility companies (gas, bell, cable, fiber, hydro, water and wastewater) were contacted through Ontario One-Call to demarcate the location of their respective underground utilities to ensure the lines are not damaged during the investigation work. In addition, multiVIEW identified the previously detected subsurface anomalies using Ground Penetrating Radar (GPR) and also was retained to assist with identifying private utilities in the area of the proposed work.

 A total of seven approximately 0.5 metre (m) diameter test pits were advanced using hydrovac equipment supplied by Badger Daylighting (Badger) and extended to depths ranging from 0.4 metres below ground surface (mbgs) at TP5A-20 to 2.1 mbgs at TP6-20. Hydrovac equipment was used to minimize the area of disruption in travelled portions of the Site, and to prevent damage to subsurface features.

Photographs of the excavated test pits are presented in Attachment A. Logs detailing the subsurface conditions encountered are presented in Attachment B.

3. Field Observations

The field investigation activities were completed by GHD on October 6 and October 7, 2020. The following observations were made in the test pits carried out at the Site.

Investigation of Former Hydro Line and Unusual Soil Conditions

TP1-20 | Test pit TP1-20 was advanced by Badger to a depth of approximately 1.5 mbgs at the expected location of a former hydro line identified on the Hydro Ottawa locates sheet provided through Ontario One-Call and to identify a linear unknown utility mapped in T2 SUE Survey. Additionally, the test pit was advanced in an area mapped by multiVIEW with unusual soil conditions. The stratigraphy at TP1-20 was comprised of fill material consisting of Sandy Silt with traces of gravel overlying a fill consisting of Sand and Gravel. Organics were observed within the upper fill material including a root from the adjacent trees observed running through the test pit. The observed lithology was consistent with the field observations during the drilling program in 2019. No evidence of the former hydro line or visible voids/unusual soil conditions were observed at the location of TP1-20. It appears likely the anomaly identified by multiVIEW may have resulted from elevated conductivity results observed in the area due to the application of road salt for deicing purposes. As confirmed by T2E, additional test pits were not necessary to further identify the linear unknown utility mapped by T2E (refer to TP4-20).

Investigation of the Geophysical Linear Anomalies

TP2-20 and TP6-20 |Test pits TP2-20 and TP6-20 were advanced by Badger to depths of approximately 1.9 mbgs (TP2-20) and 2.1 mbgs (TP6-20) at the location of linear response (LA-2), suspected to be a former abandoned water line.

In this investigation, multiVIEW detected the linear anomaly LA-2 further to the north than previously identified in the Geophysical Survey as shown in Figure 1. GHD advanced test pits TP2-20 and TP6-20 in the area where LA-2 was detected to end. No evidence of the abandoned water line was observed within the investigative locations. The stratigraphy at TP2-20 and TP6-20 was comprised of fill material consisting of Sandy Silt with traces of gravel overlying a fill consisting of Sand and Gravel. No evidence of loose granular backfill was observed in the test pits suggesting the presence of an abandoned water line. The test pits could not be advanced further due to the encountered shale fragments and cobbles, and due to limitations with the hydrovac methodology.

TP4-20 | Test pit TP40-20 was advanced by Badger to a depth of approximately 1.6 mbgs at the location of linear response (LA-9) identified in the Geophysical Survey. Additionally, a continuous linear response was also identified in the same area by T2 SUE Survey. Based on observations, an approximately 50 millimetre (mm) diameter water line oriented in a northeast-southwest direction was observed at approximately 1.4 mbgs, which was inferred to be the source of the linear response at TP4-20 and continued towards the west. As confirmed by T2E, the exposed water line was the unknown T2 SUE unknown utility.

Investigation of Unusual Soil Conditions

TP3-20 | Test pit TP3-20 was advanced to a depth of approximately 1.8 mbgs at the location of unusual soil conditions mapped by multiVIEW. The stratigraphy at TP3-20 was comprised of fill material consisting of Sandy Silt with traces of gravel underlain by the suspected native deposit of Silty Sand. The observed lithology was consistent with the field observations during the drilling program in 2019. It appears likely the anomaly identified by multiVIEW may have resulted from elevated conductivity results observed in the area due to the application of road salt for deicing purposes. No visible voids/unusual soil conditions were observed at the location of TP3-20.

Investigation of Inferred Buried Metal and Foundation of Former Fountain

TP5A-20 | Test pit TP5A-20 was advanced within the foundation of the former fountain to a depth of approximately 0.4 mbgs to investigate the depth of the foundation, and the inferred buried metallic response identified in the Geophysical Survey. The stratigraphy at TP5A-20 was comprised of topsoil and mulch to a depth of 0.4 mbgs. A concrete surface was encountered at 0.4 mbgs, suspected to be the concrete base of the former fountain. GHD advanced a secondary test pit location TP5B-20 outside of the foundation wall to prevent damage to the interior of the fountain.

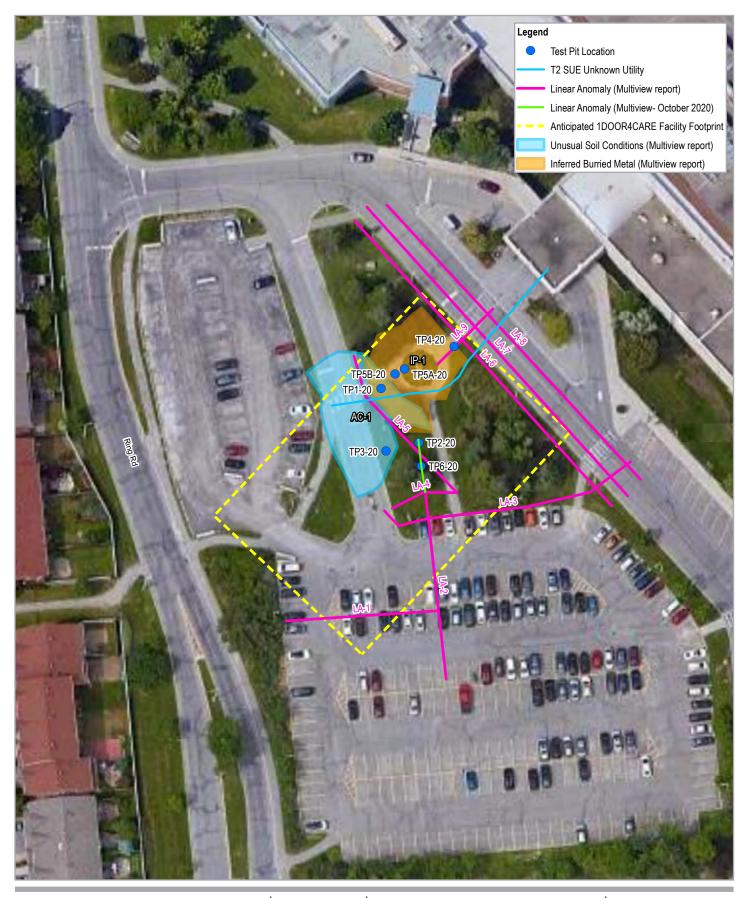
TP5B-20 | Test pit TP5B-20 was advanced adjacent to the foundation of the former fountain to a depth of approximately 2.1 mbgs to investigate the depth of the existing foundation, and the inferred buried metallic response identified in the Geophysical Survey. The stratigraphy at TP5B-20 was comprised of an asphalt surface with an approximate thickness of 90 mm underlain by a Sandy Gravel fill acting as the pavement structure. Underlying the pavement structure was a fill material consisting of Sandy Silt with traces of gravel overlying a fill consisting of Sand and Gravel. Below the fill materials at an approximate depth of 1.8 mBGS was the suspected native deposit of Silty Sand. The observed lithology was consistent with the field observations during the drilling program in 2019. No buried metal structures or utilities were observed at the location of TP5B-20. The total thickness of the concrete foundation of the former fountain was approximately 0.64 m with approximately 0.46 m founded below the ground surface. Metallic rebar was observed within the concrete foundation which are inferred as the response for the buried metal observed in the Geophysical Survey. Additionally, the EM survey equipment used during Geophysical Survey detects metallic response at a distance from the source which explains the metallic response readings extending beyond the foundation area of the former fountain.

4. Site Restoration and Soil Disposal

Following the completion of the field activities test pit TP5A-20 located with the former fountain, was backfilled with the removed topsoil and mulch. All other excavated test pits were backfilled to grade with imported granular fill supplied by Badger. The surface of TP5B-20 was repaired with compacted cold patch asphalt. The recovered soils were disposed off-site by Badger at an MECP approved facility (Tomlinson Waste Disposal) located at 5555 Power Road, Ottawa as non-hazardous waste.

5. Closing

We trust that the information contained in this report is satisfactory. Please contact us if you require further information or clarification.


Sincerely,

PROFESSIONAL GHD R. A. VANDEN TILLAART 100513239 11/11/2020 Ryan Vanden Tillaart, P. Eng. OLINCE OF ONTAP

Warren Croft, P. Eng

RV/vl/5

Encl.

Paper Size ANSI A 0 5.5 11 16.5 22 Meters Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 18N

INFASTRUCTURE ONTARIO (I.O.) PROPOSED 1DOOR4CARE FACILITY 401 & 407 SMYTH ROAD, OTTAWA, ONTARIO

SITE PLAN AND INVESTIGATIVE LOCATIONS

Project No. **11205379** Revision No. -Date **Nov 4, 2020**

FIGURE 1

Q:\GIS\PROJECTS\11205000s\11205379\Layouts\202010_PRES001\11205379_202010_PRES001_GIS001.mxd

Data source: Google Earth Imagery, Date: 06/08/2018

Attachment A Site Photographs

Photo 1: View of Test Pit TP1-20

Photo 2: View of Test Pit TP1-20 Surface facing North

Site Photographs

Photo 3: View of Test Pit TP2-20

Photo 4: View of Test Pit TP2-20 Surface facing Southeast

Site Photographs

Photo 5: View of Test Pit TP3-20

Photo 6: View of Test Pit TP3-20 Surface facing East

Site Photographs

Photo 7: View of Test Pit TP4-20

Photo 8: View of Test Pit TP4-20 water line

Site Photographs

Photo 9: View of Test Pit TP4-20 Surface facing East

Photo 10: View of Test Pit TP5A-20 Concrete Surface facing West

Site Photographs

Photo 11: View of Test Pits TP5A-20 and TP5B-20 Surface facing East

Photo 12: View of Test Pit TP5B-20

Site Photographs

Photo 13: View of Test Pits TP5A-20 and TP5B-20 Surface Repair facing East

Photo 14: View of Test Pit TP6-20

Site Photographs

Photo 15: View of Test Pit TP6-20 facing Southwest

Site Photographs

Attachment B Test Pit Logs

Page 1 of 1

PROJECT NAME: Children's Hospital of Eastern Ontario Campus PROJECT NUMBER: 11205379

CLIENT: Infastructure Ontario

LOCATION: 401 Smyth Road, Ottawa, Ontario

HOLE DESIGNATION: TP1-20 DATE COMPLETED: 7 October 2020

TEST PIT METHOD: Hydrovac

	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	SAMPLE					
	m BGS		m BGS	ËR	VAL	(%	빙		
				NUMBER	INTERVAL	REC (%)	'N' VALUE		
		TOPSOIL: 100 mm thickness							
-		FILL: SANDY SILT, trace gravel, grey/brown, tree root encountered at approximately 0.3 m BGS	0.10						
_	-0.5								
_		FILL: SAND and GRAVEL, brown, shale fragments encountered at bottom of test pit	0.70						
_	- 1.0								
-									
-	-1.5	END OF BOREHOLE @ 1.50m BGS	1.50						
RA_CORP.GDT 3/11/20		-No evidence of buried former Hydro line encountered -No groundwater infiltration observed in open test hole. -Sides of open test holes remained stable. No cave-ins.							
OVERBURDEN LOG 11205379-TEST PIT LOGS.GPJ CRA_CORP.GDT 3/11/20	-2.0								
DEN LOG 11205379-									
OVERBUR		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATIONS	I ABLE						

Page 1 of 1

PROJECT NAME: Children's Hospital of Eastern Ontario Campus PROJECT NUMBER: 11205379

CLIENT: Infastructure Ontario

HOLE DESIGNATION: TP2-20 DATE COMPLETED: 7 October 2020 TEST PIT METHOD: Hydrovac

LOCATION: 401 Smyth Road, Ottawa, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS	SAMPLE						
				NUMBER	INTERVAL	REC (%)	'N' VALUE		
	TOPSOIL: 100 mm thickness	$\frac{\underline{x}^{(1)}}{I_{f} - \underline{x}^{(1)}}$			=	-			
	FILL: SANDY SILT, trace gravel, rootlets, grey/brown		0.10						
0.5									
_	FILL: SAND and GRAVEL, brown, cobbles and shale fragments encountered from 1.1 mbgs to bottom of test pit		0.80						
1.0									
1.5									
	END OF BOREHOLE @ 1.90m BGS		1.90						
2.0	-No evidence of buried abandoned water line encountered No groundwater infiltration observed in open test hole. -Sides of open test holes remained stable. No cave-ins.								
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT EL	EVATIO	N TABLE						

Page 1 of 1

PROJECT NAME: Children's Hospital of Eastern Ontario Campus PROJECT NUMBER: 11205379

CLIENT: Infastructure Ontario

LOCATION: 401 Smyth Road, Ottawa, Ontario

HOLE DESIGNATION: TP3-20 DATE COMPLETED: 7 October 2020 TEST PIT METHOD: Hydrovac FIELD PERSONNEL: R. Vanden Tillaart

DEPTH n BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS	SAMPLE						
				NUMBER	INTERVAL	REC (%)	'N' VALUE		
	TOPSOIL: 100 mm thickness	$\frac{\sqrt{1}}{\sqrt{1}}$							
	FILL: SANDY SILT, trace gravel, rootlets, grey/brown		0.10						
).5									
I.0 —	SUSPECTED NATIVE: SM-SILTY SAND, grey/brown, shale fragments at bottom of test pit		1.00						
	SM-SILTY SAND, grey/brown, snale nagments at bottom of test pit								
1.5									
2.0	END OF BOREHOLE @ 1.80m BGS -No evidence of unusual fill or voids encountered -No groundwater infiltration observed in open test hole. -Sides of open test holes remained stable. No cave-ins.		1.80						
<u>NC</u>	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURREN	LEVAIL	IN IABLE						

Page 1 of 1

PROJECT NAME: Children's Hospital of Eastern Ontario Campus PROJECT NUMBER: 11205379

CLIENT: Infastructure Ontario

HOLE DESIGNATION: TP4-20 DATE COMPLETED: 7 October 2020 TEST PIT METHOD: Hydrovac

LOCATION: 401 Smyth Road, Ottawa, Ontario

	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS			SAMPLE					
	m BGS		m BGS	ER	/AL	(%	Щ.			
				NUMBER	INTERVAL	REC (%)	'N' VALUE			
Ī		TOPSOIL: 75 mm thickness $\left[\frac{\sqrt{3}}{2}\right]$								
	-	FILL: SILTY SAND, some gravel, rootlets, brown, cobbles encountered from 0.3 m to 1.1 mbgs	0.08							
-										
-	-									
-	- 1.0									
	-									
-	-									
-	- 1.5	- Approximately 50 mm diameter water line encountered at 1.40m BGS								
20	-	END OF BOREHOLE @ 1.60m BGS	1.60							
OVERBURDEN LOG 11205379-TEST PIT LOGS.GPJ CRA_CORP.GDT 3/11/20	-	-No groundwater infiltration observed in open test hole. -Sides of open test holes remained stable. No cave-ins.								
EST PIT LOGS.GPJ	- 2.0									
N LOG 11205379-T.	-									
OVERBURDE		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATIONS	N TABLE			·]				

Page 1 of 1

PROJECT NAME: Children's Hospital of Eastern Ontario Campus PROJECT NUMBER: 11205379

CLIENT: Infastructure Ontario

HOLE DESIGNATION: TP5A-20 DATE COMPLETED: 7 October 2020 TEST PIT METHOD: Hydrovac

LOCATION: 401 Smyth Road, Ottawa, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS		SAMPLE				
II BGS		III BGS	NUMBER	INTERVAL	REC (%)	'N' VALUE		
	TOPSOIL / MULCH: 400 mm			_				
	$\frac{\sqrt{C}}{L_{2}}$, $\frac{\sqrt{C}}{\sqrt{2}}$							
	- Concrete encountered (suspected base of former fountain) at 0.40m BGS							
	- Concrete encountered (suspected base of former fountain) at 0.40m BGS	0.40						
0.5	END OF BOREHOLE @ 0.40m BGS							
0.5	-No groundwater infiltration observed in open test hole.							
	-Sides of open test holes remained stable. No cave-ins.							
1.0								
1.5								
2.0								
N	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	N TABLE						

Page 1 of 1

PROJECT NAME: Children's Hospital of Eastern Ontario Campus PROJECT NUMBER: 11205379 CLIENT: Infastructure Ontario

HOLE DESIGNATION: TP5B-20 DATE COMPLETED: 7 October 2020 TEST PIT METHOD: Hydrovac

LOCATION: 401 Smyth Road, Ottawa, Ontario

DEPTH n BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS	ER		SAMI		
				NUMBER	INTERVAL	REC (%)	'N' VALUE
	ASPHALT: 90 mm						
	FILL: SANDY GRAVEL, grey		0.09				
	FILL:		0.39				
0.5	SANDY SILT, trace gravel, grey/brown						
	FILL:		0.80				
1.0	SAND and GRAVEL, brown, shale fragments encountered at bottom of test pit						
1.0							
1.5							
	SUSPECTED NATIVE:		1.80				
	SUSPECTED NATIVE: SM-SILTY SAND, grey/brown, shale fragments at bottom of test pit						
2.0	END OF BOREHOLE @ 2.10m BGS		2.10				
	-No evidence of buried utilities or metal structures encountered -Concrete foundation of fountain was approximately 0.64 m thick with approximately 0.46 m below ground surface No groundwater infiltration observed in open test hole. -Sides of open test holes remained stable. No cave-ins.						
<u></u> <u>NC</u>	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT E	EVATIO	N TABLE				

Page 1 of 1

PROJECT NAME: Children's Hospital of Eastern Ontario Campus PROJECT NUMBER: 11205379

CLIENT: Infastructure Ontario

HOLE DESIGNATION: TP6-20 DATE COMPLETED: 7 October 2020 TEST PIT METHOD: Hydrovac

LOCATION: 401 Smyth Road, Ottawa, Ontario

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS				SAMPLE				
				NUMBER	INTERVAL	REC (%)	'N' VALUE		
	TOPSOIL: 100 mm thickness	<u>xt 1</u> , 1, xt 1,			-		-		
	FILL: SANDY SILT, trace gravel, rootlets, grey/brown		0.10						
0.5									
	FILL: SAND and GRAVEL, brown, cobbles and shale fragments encountered from 1.1 mbgs to bottom of test pit		0.80						
1.0									
1.5									
-2.0			2.10						
	END OF BOREHOLE @ 2.10m BGS -No evidence of buried abandoned water line encountered -No groundwater infiltration observed in open test hole. -Sides of open test holes remained stable. No cave-ins.								
<u></u> <u>N</u> C	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELE	EVATIO	N TABLE	1					

GEOPHYSICAL INTERPRETATION REPORT

REGARDING FREQUENCY DOMAIN ELECTROMAGNETICS FOR DETECTION OF UNDERGROUND STORAGE TANKS

401 SMYTH ROAD, OTTAWA, ON, CANADA

Prepared For: Aditya Khandekar PE, Project Manager GHD 184 Front Street East, Suite 302, Toronto ,Ontario, Canada, M5A 4N3

> Submitted By: Joel Halverson Geophysical Technologist MULTIVIEW LOCATES INC. 325 Matheson Blvd East, Mississauga ON, L4Z 1X8

> > April 16, 2020

TABLE OF CONTENTS

TABLE C	DF COI	NTENTS	1 -
LIST OF	FIGUF	RES	3 -
LIST OF	TABLE	ES	3 -
DIGITAL	ARCH	HIVE CONTENT	4 -
PROJEC	T SPE	CIFICATION LIST	4 -
CONTRA	ACT RE	ELEASE LETTER: 45561	5 -
1	Intro	oduction	6 -
1.1	1	Survey Objectives	6 -
2	Proje	ect Overview	7 -
2.2	1	Site Location and Access	7 -
2.2	2	Weather and Terrain Conditions	8 -
3	Met	hodology	9 -
3.2	1	Survey Grid Installment	9 -
3.2	2	Frequency Domain EM Data Acquisition (EM31)	11 -
3.3	3	Geophysical Data Interpretation and Presentation	12 -
4	Resu	ults	13 -
4.2	1	FDEM Quadrature Contour Grid Map	13 -
4.2	2	FDEM In-Phase Contour Grid Map	13 -
4.3	3	FDEM Interpretation	13 -
5	Cond	clusion	18 -
6	Refe	erences	19 -
Append	lix A		21 -
Append	lix B		23 -
Append	lix C		24 -

110

DID

LIST OF FIGURES

Figure 2-1: Geophysical Survey General Location Map	7-
Figure 3-1: Geophysical Survey Location Map	· 10 -
Figure 3-2: Typical FDEM Acquisition System Setup	· 11 -
Figure 4-1: FDEM Apparent Conductivity	· 15 -
Figure 4-2: FDEM In-Phase Data	- 16 -
Figure 4-3: FDEM Interpretation Map	· 17 -

LIST OF TABLES

Table 1: Digital Archive Content	- 4 -
Table 2: Project Specification List	- 4 -
Table 3: Geophysical Interpretation Summary Table	14 -

DIGITAL ARCHIVE CONTENT

Table 1: Digital Archive Content

Folder	Content
//Deliverables/	Digital copy of the survey results, final documents and maps
//Maps/	Grid and interpretation maps
//Reports/	Geophysical survey report

PROJECT SPECIFICATION LIST

Table 2: Project Specification List

Contract			
MLI Reference Number	45561		
Report Date	April 16, 2020		
Client			
Legal Name	GHD		
Address	184 Front Street East, Suite 302, Toronto ,Ontario, Canada, M5A 4N3		
Phone	416-360-1600		
Contact			
Client Representative:	Aditya Khandekar		
Qualifications:	PE, Project Manager		
Email	aditya.khandekar@ghd.com		
Survey			
Survey Description	Detection of Underground Storage Tanks		
Methodology	Frequency Domain Electromagnetics		
Location	401 Smyth Road, Ottawa, ON, Canada		
Execution Date	21/11/2019		
Contractor			
Survey by:	multiVIEW Locates Inc.		
Responsible	Joel Halverson		
Qualifications	Geophysical Technologist		
Phone	800-363-3116		
Email	jhalverson@multiview.ca		

110

DIDE

CONTRACT RELEASE LETTER: 45561

April 16, 2020

GHD

184 Front Street East, Suite 302, Toronto ,Ontario, Canada, M5A 4N3 Phone: 416-360-1600

Attention to: Mr. Aditya Khandekar, PE, Project Manager

Re: Geophysical Interpretation Report regarding Detection of Underground Storage Tanks at 401 Smyth Road, Ottawa, ON, Canada.

Dear Mr. Aditya Khandekar:

GHD retained multiVIEW Locates Inc. to carry out Frequency Domain Electromagnetics for Detection of Underground Storage Tanks for the site located at 401 Smyth Road, Ottawa, ON, Canada. The geophysical survey was undertaken on 19/11/2019 and was completed on 21/11/2019.

Included, you will find a geophysical survey report describing the data acquisition, methodology, data quality, processing, interpretation results, conclusion and recommendations relevant to survey objectives, including appendices, tables and figures. A digital archive containing the acquired raw data and final processed results, digital maps, presentations and documents is also provided.

This represents the end of our contractual agreement regarding the aforementioned geophysical survey. Contact us if you need any additional material or information.

Thank you,

Signed by:

Joel Halverson, Geophysical Technologist multiVIEW Locates Inc.

April 16, 2020 - 5 -

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

1 INTRODUCTION

GHD retained multiVIEW Locates Inc. (multiVIEW) to carry out a Frequency Domain Electromagnetics for Detection of Underground Storage Tanks for the site located at the Children's Hospital of Eastern Ontario (CHEO), 401 Smyth Road, Ottawa, ON, Canada.

This geophysical interpretation report summarizes the data collection logistics and methodology, processing results and data interpretation associated with the geophysical investigation.

The acquisition, processing and analysis of the data were performed according to professionally regulated industry standards. The geophysical data are presented in screen captured figures and plan maps throughout the sections of the report.

The geophysical interpretation contained in this report is based on the analysis of the Frequency Domain Electromagnetics (FDEM) responses recorded during the field acquisition stage. The images and figures presented in the body of the report are scaled to fit the report page size and should be used for illustration purposes only. Detailed maps and images of the data and results are available in the digital archive supplied along with the interpretation report.

The interpretation of the geophysical data obtained during this investigation is intended to provide guidance for any potential intrusive subsurface investigation work. Interpretation of the data used during any subsequent programs is subject to the Law of Physics and Technical limitations of the geophysical techniques used. The criteria and models used for the interpretation of the acquired data are not unique and may not represent the actual objects present on site.

1.1 SURVEY OBJECTIVES

The primary objective of the investigation was to detect and map the presence of potential underground storage tanks in the survey area.

The inferred location of interpreted geophysical signatures was documented and transferred to digital drawings for referencing and assessment.

April 16, 2020 Introduction - 6 -

CCTV Sewer Inspection

Vacuum Excavation

2 PROJECT OVERVIEW

The geophysical study was completed using Frequency Domain Electromagnetics techniques. The exploration and acquisition phase of the survey was completed on 21/11/2019. The raw data and survey results presented as digital plan maps and sections are:

- o Integrated Interpretation Plan Maps depicting the spatial location of interpreted geophysical signatures and subsurface features;
- o Frequency Domain Electromagnetics (FDEM) In-Phase and Quadrature Contour Grids;

2.1 SITE LOCATION AND ACCESS

The geophysical project is located at 401 Smyth Road, Ottawa, ON, Canada, depicted in Figure 2-1. The site is occupied by an active parking lot and garden area located south west of CHEO. The survey area spanned from the eastern curb of the road way located at the entrance of the Hospital and extended 80 meters to the south west to the western limit of the parking lot. An accurate outline of the survey area is displayed in Figure 3-1.

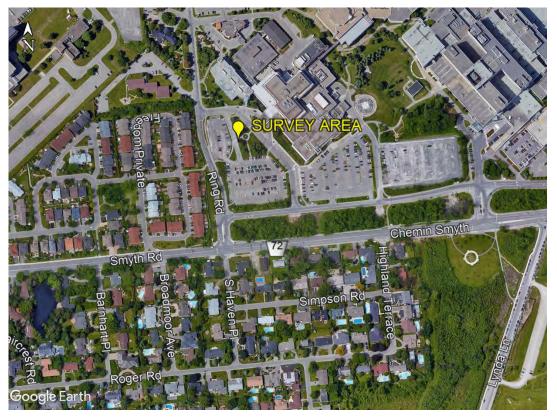


Figure 2-1: Geophysical Survey General Location Map

April 16, 2020 Project Overview - 7 -

Subsurface Utility Engineering

Utility Engineering

Concrete Scanning CCT

CCTV Sewer Inspection

2.2 WEATHER AND TERRAIN CONDITIONS

The geophysical data acquisition was performed at night to avoid traffic and vehicles in the parking lot. Average temperatures fluctuated from ~-7 degrees Celsius to ~3 degrees Celsius.

The parking lots, roads and pathways were clear and plowed clean of snow, however portions along the perimeter of the parking lots and within the garden and grassed areas contained deep snow.

Subsurface Utility Engineering

CCTV Sewer Inspection

Concrete Scanning

April 16, 2020 Project Overview - 8 -

3 METHODOLOGY

The geophysical study was done using Frequency Domain Electromagnetics techniques. The FDEM data acquisition was performed using a terrain conductivity meter from Geonics Limited. The acquisition phase of the survey was completed on 21/11/2019.

Field labor included the following activities:

- o GRID and GPS survey control;
- o FDEM soil conductivity profiling;
- o Site documentation;
- o Data interpretation and results presentation;

3.1 SURVEY GRID INSTALLMENT

A GPS receiver was utilized for the geophysical data acquisition. UTM WGS84/Zone 18N coordinates were acquired for the purpose of grid establishment and positioning during survey. The grid layout was done using commercial measuring tapes and line-of-site positioning. Data referenced to grid coordinates were acquired for the purpose of grid establishment, geophysical data collection, interpretation and map creation.

FDEM data was acquired at a station spacing of roughly 2 meters along survey lines spaced at 2metres. Survey lines and data collection were partially restricted by large surface objects including trees and bushes.

The project area measured approximately 6000 square metres. The extent of the total survey coverage is displayed by the yellow line in Figure 3-1. This map is presented digitally in "DWG-1 Survey Area".

Concrete Scanning

April 16, 2020 Methodology - 9 -

Figure 3-1: Geophysical Survey Location Map

Concrete Scanning

April 16, 2020 Methodology - 10 -

Utility Locating Subsurface Utility Engineering

neering Con

ning CCTV Sewer Inspection

ection V

FREQUENCY DOMAIN EM DATA ACQUISITION (EM31) 3.2

FDEM data acquisition was conducted across the proposed site using an EM31 system manufactured by Geonics Limited Ltd. The EM31 instrumentation provides data for indirect detection of buried metal objects and soil conductivity mapping to 3 to 6 metres depth using a horizontal coplanar coil configuration. A general system configuration is shown in Figure 3-2.

The measurement units of the system are "milli-Siemens per metre" (mS/m) for the Quadrature component and "parts per thousand" (ppt) for the In-phase component of the measured electromagnetic field. The electromagnetic data were acquired at approximate station spacing of 2 metres along lines spaced at 2 metres apart, excluding obstructed areas. GPS data were collected synchronously with the FDEM data using a receiver externally mounted on the EM31 logging system. Following the field survey, the GPS data were integrated with the FDEM data.

Figure 3-2: Typical FDEM Acquisition System Setup

April 16, 2020 Methodology - 11 -

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

3.3 GEOPHYSICAL DATA INTERPRETATION AND PRESENTATION

FDEM interpretation was completed by comparing the characteristics of the acquired profiles and maps to examples and results available at multiVIEW from in-house tests and historic field surveys. The inferred location of all identified features and interpreted anomalous zones was documented and transferred to digital drawings.

Unusual soil conditions and natural subsurface disturbances are expressed as quadrature or conductivity anomalous zones. Generally the soil and materials over these zones have higher porosity and higher water content (including clay and TDS content) than *surrounding* consolidated soil or materials, therefore higher conductivity is reflected in the acquired electromagnetic data. In Arctic locations the permafrost negates the higher conductivity readings as an increase in ice in the soil decreases the soils conductivity. In locations adjacent to bodies of salt water, increased soil conductivity can be observed in the subsurface as salt may infiltrate into the ground water along the shore line of the body of water. The rate of change in conductivity measurements or quadrature is generally greater in the vicinity of non-native materials and slowly varying in areas of native materials. Metallic minerals in the subsoil produce high conductivity responses.

By mapping high conductivity or quadrature electromagnetic anomalies it is possible to infer the location of different fill materials, clay and contamination. The amount and composition of colloids may also contribute to measured conductivity. Bedrock typically has a lower conductivity because of high density and the generally lower porosity present within the rock matrix. The irregular nature of landfilled material and the frequent presence of ferrous metals and high chloride concentration provide for an electromagnetic response that typically contrasts the more homogeneous natural materials in an area.

In-phase responses will have a well-defined positive peak over buried metal objects, greatly facilitating quick and accurate location of a target in the field. In general, positive In-phase anomalies are representative of metallic masses. In-phase responses with high positive values indicate metal objects parallel to the orientation of the instrument coils. Positive anomalous values are commonly associated with buried metal objects. Large positive In-phase responses, in parts per thousand (ppt) of the total field strength are interpreted as metallic objects. Alternatively, strong negative In-phase values are observed when high conductive objects such as iron or steel are oriented perpendicular and near to instrument coils.

By integrating Quadrature in conjunction with the In-phase data, it is possible to discriminate buried metal objects from different types of soils, fill materials, contamination, buried foundation and construction remains. Local areas with high conductivity responses may be interpreted to represent more conductive non-homogeneous fill materials and contamination.

Concrete Scanning

4 RESULTS

4.1 FDEM QUADRATURE CONTOUR GRID MAP

For the Apparent Conductivity (Quadrature) colour contoured map, the background electromagnetic responses (from ~20 mS/m to ~40 mS/m) are represented by green colours; and the anomalous responses (>60 mS/m) are denoted by yellow-orange-red colour contours. Off-scale negative measurements are indicative of near or above surface metallic objects. A Quadrature contour grid map is presented in Figure 4-2.

Scaled Quadrature contour grid map is presented digitally in "DWG-2 Apparent Conductivity".

4.2 FDEM IN-PHASE CONTOUR GRID MAP

For the In-phase colour contoured map, the background electromagnetic responses (from \sim -1 ppt to \sim 3 ppt) are represented by green colours. The anomalous responses (>3 ppt or <-3 ppt) are denoted by yellow orange-red or blue colour contours.

Positive In-phase anomalies (from >3 ppt to 30 ppt) and (from <-3 ppt to -30 ppt) are indicative of metallic buried objects and masses. The In-phase contour grid map for the survey area is presented in Figure 4-3.

Scaled In-phase contour grid map is presented digitally in "DWG-3 In-phase Data".

4.3 **FDEM INTERPRETATION**

All elevated readings were evaluated based on the proximity to know surface objects that could have produced the elevated readings. The readings deemed likely to be caused by surface features were discounted as subsurface responses and were not included in the interpretation figures and not listed as potential targets for further investigation.

A compilation of the interpreted FDEM anomalous responses is presented in Figure 4-3. The plan map illustrates the position and extent of the anomalous responses interpreted as:

- o Potential unusual soil conditions exist in Anomaly AC-1 as seen the Apparent Conductivity data.
- o Potential buried metal objects exist in anomaly IP-1 as seen in the In-Phase data. Much of this area was snow covered and metal surface objects and buried electrical lines servicing the light posts may exist
- o Linear anomalies were detected in the FDEM data. In a previous utility survey by multiVIEW Locates Inc, most of these linear anomalies were identified utilities. These notes are outlined in the interpretation summary table.

Scaled Interpretation map is presented digitally in "DWG-4 Interpretation Map".

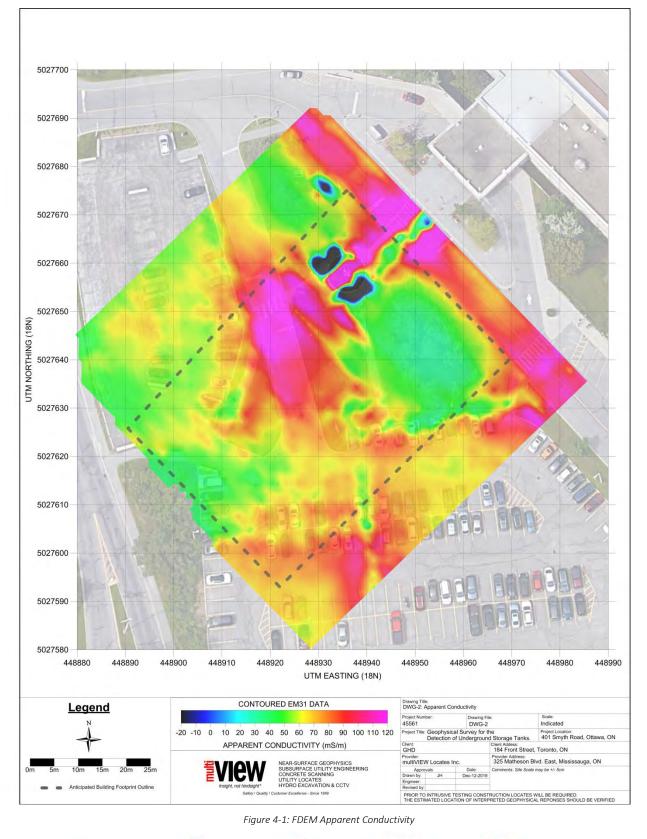
All Anomalies displayed in the interpretation figure are outlined in the Geophysical Interpretation Summary Table, which includes the coordinates and Interpretation Note.

Concrete Scanning

Frequency Domain Electromagnetics for Detection of Underground Storage Tanks, 401 Smyth Road, Ottawa, ON, Canada, GHD, April 16, 2020

Anomaly	EM Data Observed	UTM Easting (18N)	UTM Northing (18N)	Interpretation			
AC-1	Perimeter of Conductivity Anomaly	448912.6189	5027655.15	-			
AC-1	Perimeter of Conductivity Anomaly	448922.8783	5027630.002				
AC-1	Perimeter of Conductivity Anomaly	448931.6364	5027640.262	Zone of elevated apparent conductivity. Unusual soil conditions may exist			
AC-1	Perimeter of Conductivity Anomaly	448929.7597	5027646.642				
AC-1	Perimeter of Conductivity Anomaly	448938.6428	5027644.766				
AC-1	Perimeter of Conductivity Anomaly	448936.3907	5027648.519				
AC-1	Perimeter of Conductivity Anomaly	448924.8802	5027659.529				
IP-1	Perimeter of In-Phase Anomaly	448933.1378	5027644.14				
IP-1	Perimeter of In-Phase Anomaly	448939.0182	5027644.14				
IP-1	Perimeter of In-Phase Anomaly	448937.767	5027650.271	Zone of elevated In-phase data. Buried metal			
IP-1	Perimeter of In-Phase Anomaly	448946.6502	5027658.653	objects may exist. Buried electrical servicing the			
IP-1	Perimeter of In-Phase Anomaly	448937.6419	5027669.163	light posts and metal mesh in the concrete may e surrounding the statue.			
IP-1	Perimeter of In-Phase Anomaly	448927.6327	5027663.158				
IP-1	Perimeter of In-Phase Anomaly	448924.8802	5027658.278				
IP-1	Perimeter of In-Phase Anomaly	448926.3816	5027651.272				
LA-1	Linear In-Phase Anomaly	448906.7385	5027603.728	Linner Anorrely, Dessible Utility			
LA-1	Linear In-Phase Anomaly	448939.0182	5027606.856	Linear Anomaly, Possible Utility			
LA-2	Linear In-Phase Anomaly	448941.1451	5027592.968	Lincor Anomaly, Likely Electrical to Linkto			
LA-2	Linear In-Phase Anomaly	448937.5168	5027630.378	Linear Anomaly, Likely Electrical to Lights			
LA-3	Linear In-Phase Anomaly	448928.0081	5027626.999				
LA-3	Linear In-Phase Anomaly	448931.3862	5027624.122				
LA-3	Linear In-Phase Anomaly	448963.916	5027629.877	Linear Anomaly, Likely Electrical to Lights			
LA-3	Linear In-Phase Anomaly	448974.5508	5027633.255				
LA-3	Linear In-Phase Anomaly	448981.9325	5027638.635				
LA-4	Linear In-Phase Anomaly	448930.135	5027627.75				
LA-4	Linear In-Phase Anomaly	448937.0163	5027631.003	Linear Anomaly, Likely Electrical to Lights			
LA-4	Linear In-Phase Anomaly	448944.1479	5027631.378	1			
LA-5	Linear In-Phase Anomaly	448924.8802	5027650.146				
LA-5	Linear In-Phase Anomaly	448922.6281	5027658.779	Linear Anomaly, Likely Electrical to Lights			
LA-5	Linear In-Phase Anomaly	448944.1479	5027631.378				
LA-6	Linear In-Phase Anomaly	448977.9289	5027629.502	the second se			
LA-6	Linear In-Phase Anomaly	448924.1295	5027686.554	Linear Anomaly, Likely Electrical to Lights			
LA-7	Linear In-Phase Anomaly	448980.8065	5027631.754	Linear Argental, Libela Course Di			
LA-7	Linear In-Phase Anomaly	448926.3816	5027689.682	Linear Anomaly, Likely Sewer Pipes			
LA-8	Linear In-Phase Anomaly	448984.1846	5027635.257				
LA-8	Linear In-Phase Anomaly	448930.6355	5027689.932	Linear Anomaly, Likely Water Pipe			
LA-9	Linear In-Phase Anomaly	448939.7379	5027656.851				
LA-9	Linear In-Phase Anomaly	448952.6453	5027669.759	Linear Anomaly, Possible Utility			

Table 3: Geophysical Interpretation Summary Table



Utility Locating Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

....

Utility Locating Subsurface Utility Engineering

.....

Concrete Scanning

Geophysics

April 16, 2020 Conclusion - 15 -

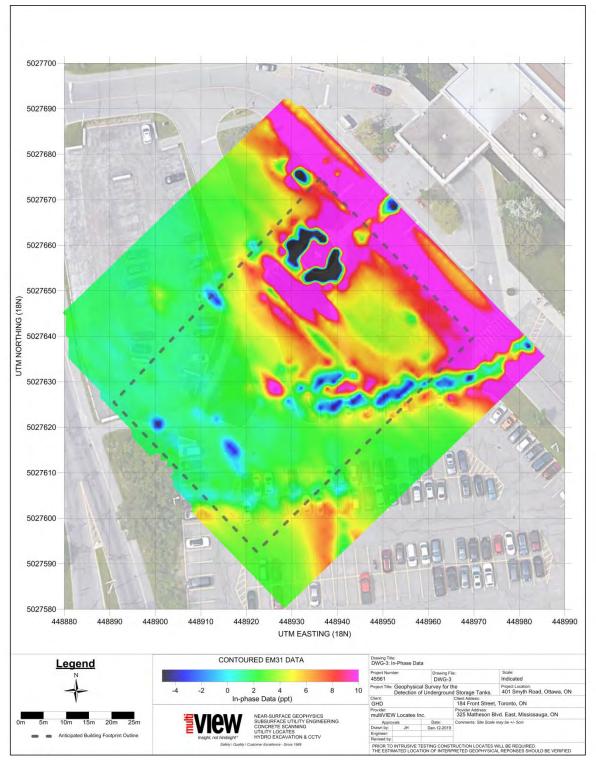


Figure 4-2: FDEM In-Phase Data

April 16, 2020 Conclusion - 16 -

Utility Locating

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

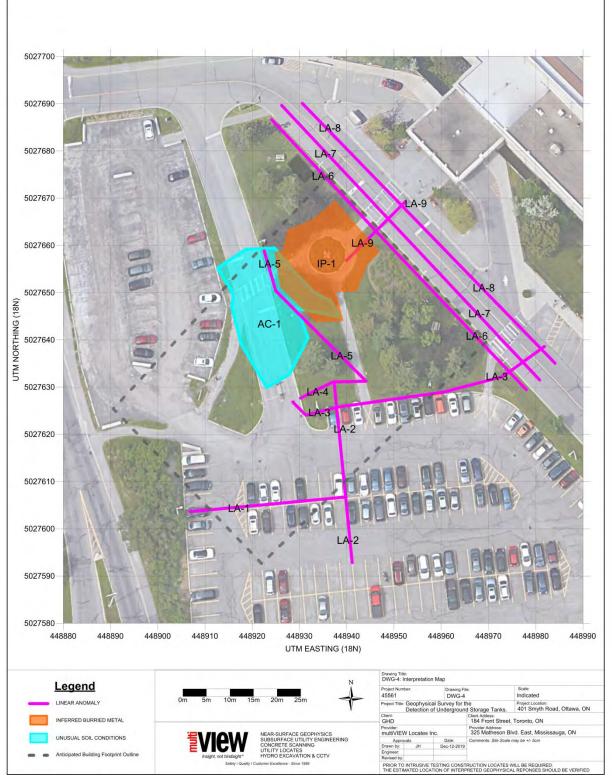


Figure 4-3: FDEM Interpretation Map

Concrete Scanning

April 16, 2020 Conclusion - 17 -

5 CONCLUSION

Frequency Domain Electromagnetics were carried out in the property located at 401 Smyth Road, Ottawa, ON, Canada. The primary objective of the investigation was to map the presence of potential underground storage tanks.

The results of the geophysical survey served to delineate various anomalous zones in the Frequency Domain Electromagnetics data and outlined potential subsurface variance within project area. Localized small area FDEM responses with high positive/negative amplitude observed in the property may represent buried metallic objects. A summary depicting the interpretation of the geophysical responses is provided in the following list:

- Identified 1 zone of elevated apparent conductivity (AC-1), was identified along the staff parking lot access road, which may indicate that unusual soil conditions may exist.
- Identified 1 zone of elevated In-phase data (IP-1) was identified surrounding the statue in the parking area. Buried metal objects may exist. Buried electrical servicing the light posts and metal mesh in the concrete may exist surrounding the statue.
- The electromagnetic responses in immediate vicinity of above ground structures, metal objects produce a fairly broad halo of elevated values around these features. These can include signs, lights, curbs, concrete, manholes, catch basins, picnic tables and any other surface feature on site during the survey.
- Snow covered parts of the site during the survey and ground level surface objects may have been not recorded.
- Elevated apparent conductivity readings were observed in pedestrian pathways, parking areas and roadways and are likely caused by the annual application of high volumes of ice salt.

The geophysical data obtained during this investigation is intended for the guidance of the geotechnical engineering and excavation activities only. Interpretation of the data used during any subsequent programs is subject to the Law of Physics and Technical limitations. Additional information regarding advantages and limitations of this geophysical data is provided in the report appendices.

MultiVIEW services and geophysical technical limitations can be found at <u>http://www.multiview.ca/Services/Terms-and-Conditions</u>.

When physically locating the interpreted geophysical responses over the terrain for intrusive testing, excavation or site rehabilitation, it is recommended to properly correlate the reference grid stations with the stations presented on the digital maps.

Respectfully Submitted,

February 20, 2020

[signature and date] Joel Halverson Geophysical Technologist multiVIEW Locates Inc.

Utility Locating

Englobering

multiVIEW Locates Inc.

April 16, 2020 Conclusion - 18 -

6 REFERENCES

- o Geonics Limited. 2002. Geophysical instrumentation for exploration & the environment. Geonics Limited.
- o Misac N. Nabighian. 2008. Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B. (Society of Exploration Geophysicists). Newmont Exploration Limited, Denver, Colorado, US.
- o Lisa Dojack. 2012. Ground Penetrating Radar Theory, Data Collection, Processing, and Interpretation: A Guide for Archaeologists.
- o Reynolds, J.M. 2011. An Introduction to Applied and Environmental Geophysics. John Wiley & Sons Ltd, Chichester, 712 pp.

April 16, 2020 References - 19 -

Subsurface Utility Engineering Concrete Scanning

CCTV Sewer Inspection

Vacu

vation

APPENDICES

APPENDIX A

Terms and Conditions for Electromagnetic Investigations

Data Presentation

- 1. The electromagnetic point data were acquired at the station spacing and on the date as defined in the survey objectives.
- 2. Colour-contoured maps were created from the collected electromagnetic data and referenced to the survey grid coordinates
- 3. The images of the colour contoured maps presented in the body of the report are for display and review purposes only. The images are scaled to fit page sizes. Data acquired for QC/QA purposes (base station, background or auxiliary data) are available in the digital archive. The raw data and maps in the digital archive are properly referenced to the survey area, using either grid or UTM coordinates. The maps are presented at a scale to facilitate the accompanying interpretation.

Data Interpretation

Interpretation of the electromagnetic data is intended for guidance on environmental engineering and excavation purposes only. The user must be aware of the following interpretive restrictions:

- 4. Features shown on the interpretation map are related to the expression of subsurface man-made objects and other geological features and structures underground. The projection and location of these features on the surface is referenced to the grid coordinate system established at the time of the survey. All detected features are not necessarily shown due to the weak and non-relevance of the observed responses.
- 5. Interpretation of buried features or change in soil conditions cannot be made in areas where data were not collected.
- 6. The electromagnetic data were reviewed with respect to the position of the cultural features (i.e. manmade metallic objects) identified on site. The electromagnetic response observed in proximity to a known cultural feature is attributed to that feature.
- 7. Where known surface or subsurface metallic objects exist within 2 metres of the electromagnetic data observation station, it is possible that other metallic objects or a change in soil conditions may be present but not identified in the interpretation because the electromagnetic response is attributed to, or masked by, the known feature.
- 8. The spatial position of all interpreted electromagnetic anomalies (zones where electromagnetic fields are different than background) inferred to represent buried metallic objects are indicated in red on this figure.
- 9. If red anomalies are not present on this figure, no electromagnetic signatures were identified which could not reasonably be ascribed to known metallic objects and/or no isolated electromagnetic anomalies could be identified.
- 10. The spatial position of all interpreted electromagnetic anomalies inferred to represent unusual soil conditions is indicated in blue on this figure. These anomalies may represent local changes in soil type or geology, changes in soil moisture conditions; fill versus natural soils or contaminated areas.
- 11. If blue anomalies are not present on this figure, no electromagnetic signatures were identified which could not reasonably be ascribed to known changes in soil type or geology, changes in soil moisture conditions, fill versus natural soils or contaminated areas.

Comments for Subsequent Investigations

Concrete Scanning

April 16, 2020 Appendix A- 21 -

- 12. The electromagnetic anomalies identified within the survey area and as potential buried objects relevant to the survey objectives should be excavated to confirm the source of the electromagnetic response. The excavation point and/or area must be referenced to the site survey grid and located in the center of the anomaly.
- 13. The survey grid coordinates were established using survey tapes. The stations and lines were picketed and marked over the ground and left in-place upon completion of the survey. After survey completion, if markings are unclear, the survey grid should be reconstructed prior to excavation activities, using all the information provided in this report and in the digital archive (e.g. GPS locations, photographs and additional location maps).
- 14. In all cases, excavation should be extended to a minimum depth of 2 metres to allow confident identification of the anomaly source.
- 15. It is recommended that this document be retained on site during any excavation activities. Excavation may reveal features not identified in the interpretation process due to the limitations of the technique.

April 16, 2020 Appendix A- 22 -

Utility Locating

Subsurface Utility Engineering

CCTV Sewer Inspection

APPENDIX B

FDEM (EM-31) Instrumentation

GROUND CONDUCTIVITY METERS

EM31-MK2

Using a patented electromagnetic inductive technique that allows measurement without any requirement for either electrodes or ground contact, the EM31-MK2 Ground Conductivity Meter maps soil materials, groundweter contaminants or any subsurface feature associated Wells' https://www.carbier.com/article and asphalt.

Ground conductivity (quad-phase) and magnetic susceptibility (in-phase) measurements are recorded directly onto an integrated Archer field computer. The field computer providea many teatures for enhanced data collection including Bluetooth wireless communication, GPS compatibility, real-time data graphics, and compatibility with Windows Mobile applications.

The effective depth of exploration is about six metres from the instrument, making it ideal for The effective depth of exploration is acoust six merrer from the insument, making index for environmental and engineering site characterization. Important advantages of the EM31-MK2 over conventional resistivity methods include: speed of operation; high-volume, continuous data collection; high spatial resolution of data; and the precision with which small changes in conductivity can be measured. Additionally in in-phase component is particularly useful for the detection of buried metallic structure and waste material.

EM31-SH

The EM31-SH is a "short" version of the standard EM31-MK2 providing an effective depth of exploration of about four metres. With a smaller coil separation (2 m) and lighter weight, the EM31-SH offers improvements in sensitivity to smaller near-surface targets, listeral resolution and portability, while maintaining the high levels of accuracy and stability provided by the standard EM31-MK2. Where field conditions allow, a supporting wheel assembly is an option.

Specifications

MEASURED QUANTITIES	 Apparent conductivity in millisismens per metre (mS/m) In-phase ratio of the secondary to primary magnetic field in parts per thousand (ppt) 	
INTERCOIL SPACING	3.66 metres	
OPERATING FREQUENCY	9.8 kHz	
MEASURING RANGES	Conductivity: 10, 100, 1000 mS/m; In-phase: ± 20 ppt	
MEASUREMENT RESOLUTION	\pm 0.1 % of full scale	
MEASUREMENT ACCURACY	± 5 % at 20 mS/m	
NOISE LEVELS	Conductivity: 0.1 mS/m; In-phase: 0.03 ppt	
DATA STORAGE	512 MB internal disk; SD and CF slats, user accessible	
POWER SOURCE	B disposable "C" cells (approx, 20 h continuous)	
OPERATING TEMPERATURE	Instrument: -40° C to +50° C Field Computer: -30° C to +55° C	
DIMENSIONS	Boom: 4.0 m extended, 1.4 m stored Shipping Case; 145 x 38 x 23 cm	
WEIGHTS	Instrument: 12.4 kg; Shipping: 28 kg	

April 16, 2020 Appendix C - 23 -

Subsurface Utility Engineering

Concrete Scanning CCTV Sewer Inspection

APPENDIX C

Electromagnetic Theory and Application

The EM method is based on the induction of electrical currents in subsurface conductors by electromagnetic waves which are generated on the surface. The EM source is commonly a closed loop (transmitter) in which a controlled alternating current produces a time-varying magnetic field. The time-variant magnetic field induces alternating currents (often called eddy currents) in subsurface conductors which produce a secondary time-variant magnetic field that is measured at the surface with another closed loop of wire (receiver).

The secondary field is often not in phase with the primary (transmitted) field. The secondary field is divided into the portion of the field that is in phase and the portion that is out of phase with the primary field. These quantities may be referred to using a variety of names; in-phase and quadrature components, or real and imaginary components. The quadrature component is linearly related to terrain conductivity under normal subsurface conditions.

Electromagnetic measurements facilitate rapid determination of the average terrain conductivity because they do not require direct electrical contact with the ground. A disadvantage is that unless measurements are taken at different coil spacing, little vertical information is gained. However, EM profiling can be effective in investigations for locating lateral discontinuities such as landfill boundaries, changes in soil composition, or in the search for buried objects.

Terrain conductivity is defined as the conductivity that the instrument would report if located over a homogenous half-space with exactly that conductivity. As the earth is seldom well characterized as a homogenous half-space, the instrument simply integrates the effects of all the subsurface variations and indicates an "apparent conductivity" as terrain conductivity. The units are millisiemens/metre or inverse ohm-metres times 1000.

The conductivity measurement is dependent upon the density, porosity, moisture content, and presence or absence of electrolytes or colloids of the subsurface materials. Typically, clay soils have a high conductivity due to substantial cation exchange capacity. These cations contribute to the electrolyte concentration.

To a lesser extent, the amount and composition of colloids may also contribute to measured conductivity. Bedrock typically has a lower conductivity because of high density and the generally lower porosity present within the rock matrix. The irregular nature of landfilled material and the frequent presence of ferrous metals provide for an electromagnetic response that typically contrasts the more homogeneous natural materials in an area.

Electromagnetic methods (EM) are frequently used in the search for minerals and in shallow geophysical applications related to engineering, groundwater and environmental investigations.

Electrical Properties of Subsurface Materials

Conduction of electricity in materials takes place through electronic or ionic processes. Solid conductive materials can be divided into three classes: metals, electron semiconductors, and solid electrolytes. In the shallow groundwater environment, it is expected that the only metallic conductors are related to man-made objects such as pipes, tanks, and metallic landfill material rather than natural metallic bodies. Nearly all materials which are not true metal are electron semiconductors to some extent. The silicate rock-forming minerals in sedimentary formations are in the class of solid electrolytes.

Porosity, saturation, and pore fluid chemistry are much more important to the bulk electrical properties of a soil or rock than the electrical properties of the solid matrix. Most pore fluids contain some salts in solution and electrolytic conduction is the dominant conduction mechanism. The relative ability of a material to conduct electricity when a voltage is applied is expressed as conductivity in units of Siemens/metre (S/m).

April 16, 2020 Appendix C - 24 -

Concrete Scanning

CCTV Sewer Inspection

Excavation

Frequency Domain Electromagnetic Data (Geonics EM31 Terrain Conductivity Meter)

The EM31 equipment is a simple "Slingram" consisting of a magnetic dipole (a current loop) transmitter (Tx) and a coplanar magnetic dipole receiver (Rx) operating at a fixed frequency of 9.8 kHz and with a fixed distance between Tx and Rx of 3.66 m.

When a current is injected into the Tx coil a primary magnetic field is generated. Assume that the system is oriented with the dipole moments pointing in the vertical z-direction, i.e. the current loops lie in a horizontal plane, then the primary (or vacuum) field at the position of the receiver located with a distance r from the Tx, can be expressed in complex form as:

$$H_z^P = -\frac{m}{4\pi r^3} \exp(i\omega t) = -\frac{m}{4\pi r^3} [\cos(\omega t) + i\sin(\omega t)]$$

where m is the magnetic dipole moment of the transmitter, ω is the cyclic frequency and t is time. By convention the real primary field as measured as a function of time in the receiver is obtained as the real part of the above expression. Notice that the primary field varies strongly with distance. For example if the distance changes by 1 cm from 366 cm to 365 cm (ca 3 per mille) the primary field changes by 9 per mille. Therefore the distance must be kept fixed and well defined in order to avoid that artificial anomalies are introduced.

When the primary magnetic field interacts with the electrical conductors in the earth secondary currents are induced in them. These secondary currents in turn generate a secondary magnetic field that adds to the primary field at the position of the receiver. However, due to the delay in the induction process the secondary field is delayed with respect to the primary field. Thus we can write

$$H_z^s = \exp(-i\varphi)RH_z^P$$

where R is the ratio between the amplitudes of the secondary and primary fields and arphi is the phase angle.

For normal earth materials which are only moderately conductive it turns out that the phase angle is close to 90 degrees. This means that the secondary field is out of phase with the primary field so that the ratio between the secondary field and the primary field can be written as

$$\frac{H_z^s}{H_z^P} = \exp(-i\varphi)R \cong -iR$$

This ratio, which is measured in the instrument, in turn is related to the electrical conductivity of a hypothetical halfspace, the so-called apparent conductivity as follows:

$$\sigma_a = \frac{4}{\omega \mu_0 r^2} \left| \frac{H_z^s}{H_z^P} \right|$$

Subsurface Utility Engineering

The electrical conductivity is measured in units of Siemens/m=[S/m]= 1000 millimmho/m= 1000 [mmho/m].

Earth materials may typically have the following electrical conductivities:

Concrete Scanning

	Dry crystalline rock	Wet crystalline rock	Dry sand	Wet sand	Till	Clay	Sulphides
Electrical conductivity [mmho/m]	0.05	0.2	2	6	20	60	1000

Metals have much higher conductivities than rocks and loose sediments (for example the electrical conductivity of

iron is 10^{10} mmho / m₎. In this case the phase of the secondary field may deviate considerably from -90 degrees. Then both the real and imaginary parts of the secondary field changes. It turns out that the real part is more reliable than the imaginary part for identifying metals.

Vacuum Excavation

CCTV Sewer Inspection

Geophysics

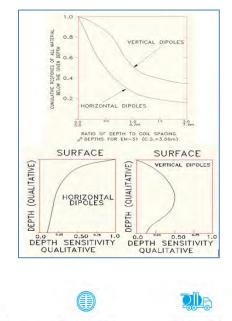
Appendix C - 25 -

Subsurface Utility Engineering

Utility Locating

The electromagnetic data acquisition can be done using horizontal (normal) or vertical coil configurations. With the horizontal configuration, the depth of penetration of the electromagnetic signal can reach up to 6m. With the vertical configuration, the depth of penetration can reach 3m. For both configurations, the quadrature (imaginary) part is used for conductivity mapping and the In-phase part (real) is used for metal detection.

Each measurement of the electromagnetic field taken with the EM31 system represents some average conductivity over a volume with a scale of ca 4 meters. Independent measurements can then be obtained with spacing between measurements of 4 meters. It is advised to use 2 meters in order to get a reasonable overlap.

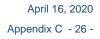

The outputs of an EM-31 survey are the conductivity (quadrature) and In-phase components of the secondary magnetic field. The secondary magnetic field is a complicated function of the intercoil spacing, the operating frequency, and the ground conductivity. The relationship is simplified when certain constraints, technically defined as "operation at low induction number", are met. When the low induction number constraints are not satisfied the measured quadrature and In-phase responses deviate from expected values.

In order to find out if there are strong lateral variations at a given measurement point you can rotate the instrument around a vertical axis by 90 degrees. If conductivities deviate much it means that over a 4 meter scale there are significant lateral variations.

Apparent conductivity measurements from a given area can be contoured and represented in map form like magnetic anomaly data. The data can be filtered like magnetic data in order to enhance deeper features. The maximum depth of investigation is around 6 meters, therefore shallow features will show up as more concentrated anomalies compared to those from deeper features.

Usually the data from EM31 measurements are only qualitatively interpreted. That means the measurements are used to find bumps or anomalous features. It is of course possible to interpret the data using quantitative models. In very conductive terrain, or in the presence of metal, (>300 mS/m) the quadrature component of the received magnetic field is not linearly proportional to the terrain conductivity, so conductivity readings are not accurate. Also at high conductivity, the In-phase portion of the received magnetic field increases in magnitude and, due to the limited dynamic range of the EM-31, the In-phase signal saturates the instrument's amplifiers causing the recorded data to be clipped.

To understand the depth of investigation of the EM-31 it is useful to consider a homogeneous halfspace with the addition of a thin layer at some depth. It is possible to calculate the secondary magnetic field that results from this thin layer as a function of depth. Material located at a depth of 0.4 times the coil spacing gives the most contribution to the response; however deeper layers still contribute a significant amount to the response (figures).



CCTV Sewer Inspection

Vacuum Excavation

Geophysics

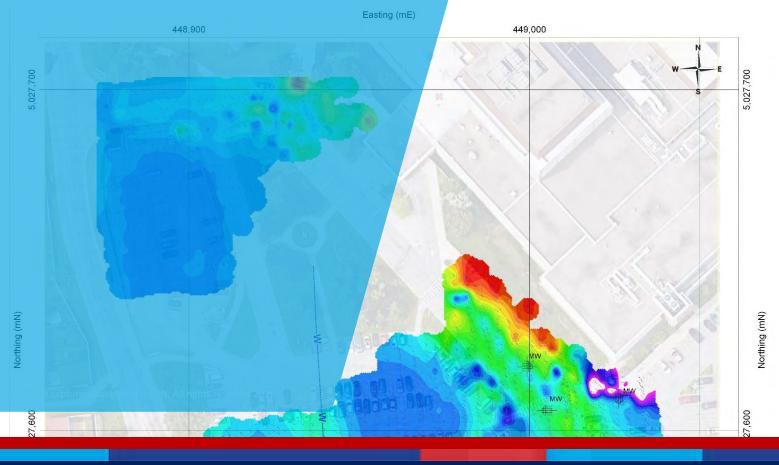
Concrete Scanning

The geometry of an anomalous conductor can be inferred from the size and lateral extent of a feature. A strong Inphase response is expected over highly conductive bodies, such as buried metal. Anisotropic subsurface conductors can often be detected by comparing EM measurements from orthogonal instrument orientations. For example, a conductivity value output by an EM-31 instrument with the boom parallel to a north-south azimuth will be different from the conductivity value obtained with the boom parallel to an east-west azimuth, if the subsurface consists of an anisotropic conductor.

Taking the difference of the north-south measurement from the east-west measurement yields a non-zero number which is a relative indication of the amount of anisotropy. Difference plots also help to enhance lateral conductor boundaries when the boundaries are sharp transitions (landfill boundaries, for example).

It is necessary to integrate any possible external information into the EM interpretation, whether it is in the form of historical information or an interpretation from a different geophysical method. It is important to separate anomalies caused by cultural features such as debris piles, pipes, and buildings from subsurface related anomalies.

Field maps of cultural features enable the identification of cultural EM anomalies and distinguish known features from subsurface targets. One additional rule of thumb that is important in mapping objects is that the station spacing should be less (preferably 50% or so) than the coil spacing.



April 16, 2020 Appendix C - 27 -

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

GEOPHYSICAL SUMMARY INTERPRETATION REPORT

REGARDING GROUND PENETRATING RADAR AND FREQUENCY DOMAIN ELECTROMAGNETIC FOR

UNDERGROUND STORAGE TANK AND UTILITY MAPPING

CHILDREN'S HOSPITAL OF EASTERN ONTARIO 401 SMYTH ROAD, OTTAWA, ONTARIO

Prepared For: Aditya Khandekar, PE., Project Manager GHD 184 Front Street, Suite 302, Toronto, ON, M5A 4N3, Canada

Submitted By: Evelio Martinez del Pino, P.Geo., M.Sc., CESA, Senior Geophysicist multiVIEW Locates Inc. 325 Matheson Blvd East, Mississauga ON, L4Z 1X8

February 19, 2020

C

February 19, 2020

GHD

184 Front Street, Suite 302, Toronto, ON, M5A 4N3, Canada Tel: 416-360-1600 Email: aditya.khandekar@ghd.com

Attention to Mr.: Aditya Khandekar, PE., Project Manager

Re: Geophysical Summary Report regarding Ground Penetrating Radar and Frequency Domain Electromagnetic for Underground Storage Tank and Utility Mapping at Children's Hospital of Eastern Ontario 401 Smyth Road, Ottawa, Ontario.

Dear Mr. Aditya Khandekar, PE.

Included, you will find a field report describing the data acquisition and interpretation results relevant to the survey objectives of the aforementioned geophysical survey (GHD Project No. 11205379). A digital archive containing the acquired data, interpretation maps and supporting documents relevant to the current survey is also provided.

This represents the end of our contractual agreement regarding the geophysical survey. Contact us if you need any additional material or information.

Respectfully Submitted,

Evelio Martinez del Pino, P.Geo., M.Sc., CESA Senior Geophysicist multiVIEW Locates Inc..

Subsurface Utility Engineering

- 2 -

Concrete Scanning

CCTV Sewer Inspection

1 INTRODUCTION

GHD retained multiVIEW Locates Inc. (multiVIEW) to carry out a Ground Penetrating Radar and Frequency Domain Electromagnetic for Underground Storage Tank and Utility Mapping at Children's Hospital of Eastern Ontario 401 Smyth Road, Ottawa, Ontario.

This geophysical interpretation report summarizes the data collection logistics and methodology, processing results and data interpretation associated with the geophysical investigation.

The geophysical interpretation contained in this report is based on the analysis of the Ground Penetrating Radar and Frequency Domain Electromagnetic responses recorded during the field acquisition stage. The images and figures presented in the body of the report are scaled to fit the report page size and should be used for illustration purposes only. Detailed maps and images of the data and results are available in the digital archive supplied along with the interpretation report.

1.1 SURVEY OBJECTIVES

The primary objective of the investigation was to determine the location and extent of potential underground storage tanks on the property project area.

Additionally, the survey should assist on determine presence of general-purpose utilities and piping, buried metallic and non-metallic objects and structures.

2.1 SITE LOCATION AND ACCESS

The geophysical project is located at Children's Hospital of Eastern Ontario 401 Smyth Road, Ottawa, Ontario. The general location of the geophysical project is depicted in Figure 1.

Figure 1: Geophysical Project General Location Map

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

- 3 -

2 METHODOLOGY

The geophysical study was completed using Ground Penetrating Radar and Frequency Domain Electromagnetic techniques. The data acquisition was performed using a Noggin Smart Cart GPR System - 250MHz manufactured by Sensors & Software Inc and EM31 system manufactured by Geonics Limited Ltd. The geophysical data acquisition phase of the survey was completed by Joel Halverson (DPT, Geophysical Technologist), on December 16, 2019; December 17, 2019 and on January 24, 2020.

Field labor included the following activities:

- o Geophysical survey grid installment;
- GPR profile imaging;
- FDEM profiling;
- Site Documentation;
- o Data Interpretation and Results Presentation;

Nine (9) GPR and two (2) FDEM survey grids were established for the project at Children's Hospital of Eastern Ontario 401 Smyth Road, Ottawa, Ontario. Figure 2 shows the general position and reference stations of the survey areas and scanned lines. Starting from the reference position, the grids were installed with parallel and cross lines at 1.0 metre intervals. The grid layout was done using commercial measuring tapes and line-of-site positioning. Additional figures showing the survey area extent, surface features and line location (at the time of the survey) are included in the digital archive.

CCTV Sewer Inspection

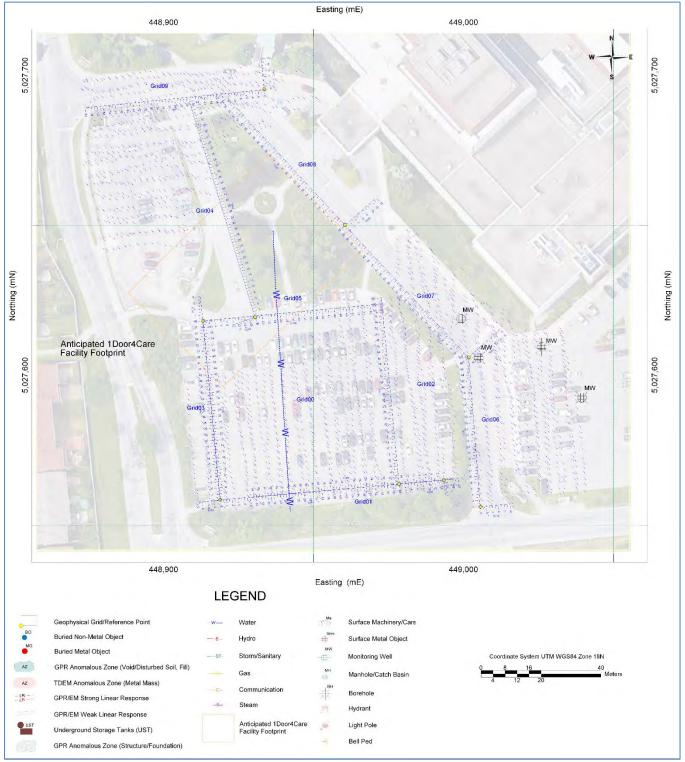


Figure 2: Geophysical Grid Location Map

Subsurface Utility Engineering Concrete Scanning

CCTV Sewer Inspection

2.1 GROUND PENETRATING RADAR DATA ACQUISITION

The GPR survey was completed using a Noggin 250MHz GPR system manufactured by Sensors & Software Inc. A general system configuration is shown in Figure 3. The GPR data were acquired with station spacing of 0.05m along the grid profiles established for the entire survey grid. Over the scanned area, the GPR profiling was run with parallel lines spaced at approximately 1 meter interval as shown in the geophysical line location map.

The ground penetrating radar electromagnetic signal transmitted into the subsurface and reflected by the structures, geological features and buried objects are recorded by Ground Penetrating Radar (GPR) instrumentation permitting real-time interpretation of subsurface features to a depth.

Figure 3: Typical GPR Acquisition System Setup

2.2 FREQUENCY DOMAIN EM DATA ACQUISITION

FDEM data acquisition was conducted across the entire project area using an EM31 system manufactured by Geonics Limited Ltd. The EM31 instrumentation provides data for indirect detection of buried metal objects and soil conductivity mapping to 3 to 6 meters depth using a horizontal coplanar coil configuration. A general system system configuration is shown in Figure 4.

Two components of the electromagnetic field (Quadrature and Inphase) were measured over the survey profiles. The measurement units of the system are "milli-Siemens per meter" (mS/m) for the Quadrature component and "parts per thousand" (ppt) for the Inphase component of the measured electromagnetic field.

The electromagnetic data were acquired at approximate station spacing of 0.2 meters along lines spaced at 1-3 meters apart, excluding obstructed areas.

Concrete Scanning

Figure 4: Photo Illustrating a Typical Frequency Domain EM31 Acquisition System Setup

2.3 DATA INTERPRETATION AND PRESENTATION

GPR uses the physical principles of electromagnetic wave propagation throughout media. The GPR transmitted signal will be reflected, refracted and diffracted from the boundaries between objects with different dielectric properties. Buried object detection and mapping using GPR is possible due to the dielectric contrast between scanned objects the soil matrix.

The GPR anomaly identification was accomplished by examining the subsurface electromagnetic reflection characteristics such as continuous anomalous trending and high amplitude hyperbolic reflection identification. Results of the ground penetrating radar survey (GPR) are presented plan maps and in sectional views (distance versus depth profiles) extracted from the line raw data as required for the interpretation.

The inferred location of all GPR features and interpreted anomalous zones was documented and transferred to digital drawings. Detailed plan maps illustrating the interpreted GPR anomalies associated with underground features are presented in the report. All distance units used throughout this report are in meters unless otherwise noted. GPR interpretation and compilation was completed by comparing the characteristics of the acquired profiles to examples and results available at multiVIEW from in-house tests and historic field surveys.

Unusual soil conditions and natural subsurface disturbances are expressed as Frequency Domain Electromagnetic quadrature or conductivity anomalous zones. Generally, the soil and materials over these zones have higher porosity and higher water content (including clay content) than surrounding consolidated soil or materials, therefore higher conductivity is reflected in the acquired electromagnetic data. The rate of change in conductivity measurements or quadrature is generally greater in the vicinity of non-native materials and slowly varying in areas of native materials. Metallic minerals in the subsoil produce high conductivity responses. By mapping high conductivity or quadrature electromagnetic anomalies it is possible to infer the location of different fill materials and lithology.

Utility Locating

Subsurface Utility Engineering

```
Concrete Scanning
```


Frequency Domain Electromagnetic Inphase responses will show positive responses over buried metal objects. In general, positive Inphase anomalies are representative of metallic objects. Inphase responses with high positive values indicate metal objects parallel to the orientation of the instrument coils. Positive anomalous values are commonly associated with buried metal objects. High amplitude Inphase responses (usually greater than twenty parts per thousand of the total field strength) are interpreted as large metallic objects. Alternatively, strong negative Inphase values are observed when high conductive objects such as iron or steel are oriented perpendicular and near to instrument coils.

By integrating Quadrature in conjunction with the Inphase data, it is possible to discriminate buried metal objects from different types of soils, fill materials and lithology. Local areas with high conductivity responses may be interpreted to represent more conductive non-homogeneous fill materials.

- 8 -

Geophysic

Utility Locating Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

3 RESULTS

GPR and FDEM data for the survey grids were of good quality for providing a comprehensive interpretation of electromagnetic reflective responses and anomalous zones within the scanned areas. The main source of the GPR electromagnetic reflections, diffractions and edge-type responses observed in the acquired raw data are possibly related to buried objects, potential utilities, structures and disturbed soil. The source of the high amplitude FDEM responses are interpreted as buried metallic objects and linear features.

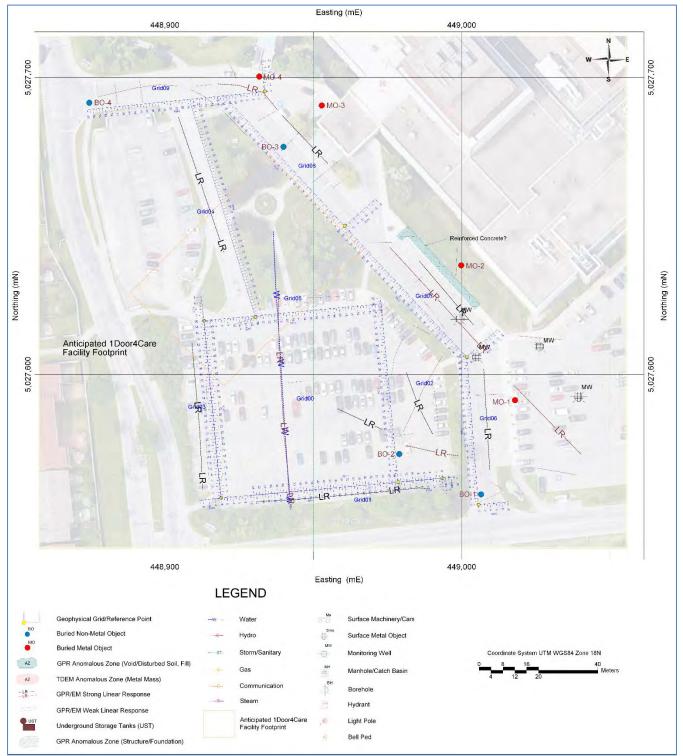
GPR and FDEM anomalous zones suggesting the presence of UST were not observed in the raw data. Alternatively, the interpreted buried features are illustrated in the interpretation compilation map in Figure 5. The following signatures were identified in the project survey area:

- Thirty-two (32) GPR linear responses (LRgpr-1 to LRgpr-32) potentially related to buried utilities and piping;
- Twelve (12) FDEM linear responses (LRem-1 to LRem-12) potentially related to metallic buried utilities and piping;
- Four (4) FDEM responses (MO-1 to MO-4) are potentially related to small buried metallic objects;
- Four (4) GPR responses (BO-1 to BO-4) are potentially related to small buried objects.

GPR depth slice maps at 50cm, 100cm and 150cm depths are provided in Figure 6, Figure 7 and Figure 8 in order to illustrate the size and extent of the interpreted GPR features. Example of sections depicting the GPR responses along the survey profiles are provided in Figure 12 to Figure 23. FDEM Quadrature and Inphase amplitude contour grid maps are presented in Figure 9 and Figure 10.

The following Table 1 summarises the interpreted underground buried features of relevance to the exploration program. The inferred location of the geophysical signatures was documented and transferred to digital drawings for referencing and assessment. For details on location of the responses refer to the geophysical interpretation maps, profiles and tables provided digitally.

Subsurface Utility Engineering


Concrete Scanning

Subsurface Utility Engineering

Concrete Scanning

g CCTV Sewer Inspection

spection

Vacuum Excavation Geophysics

ЛЕ

- 10 -

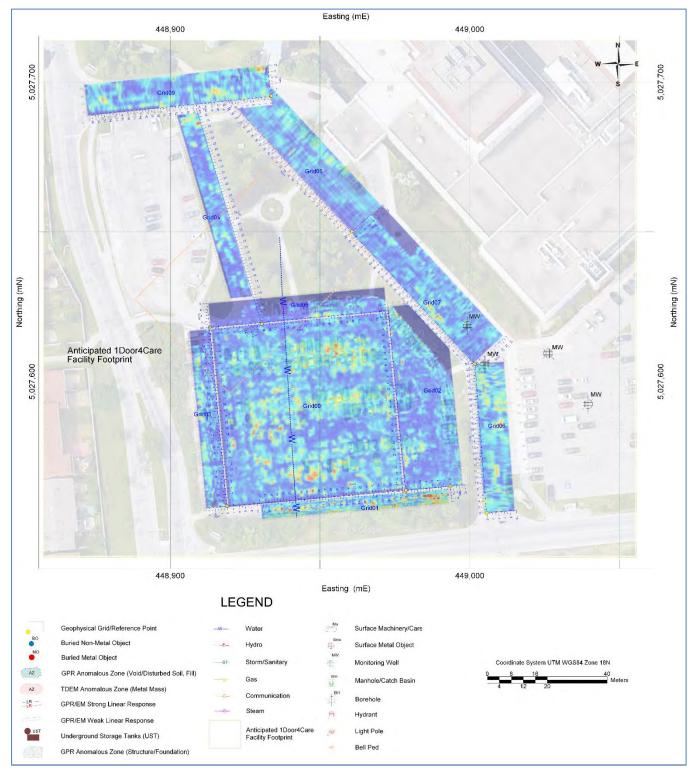


Figure 6: GPR Signal Amplitude at 50cm Depth

Utility Locating Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

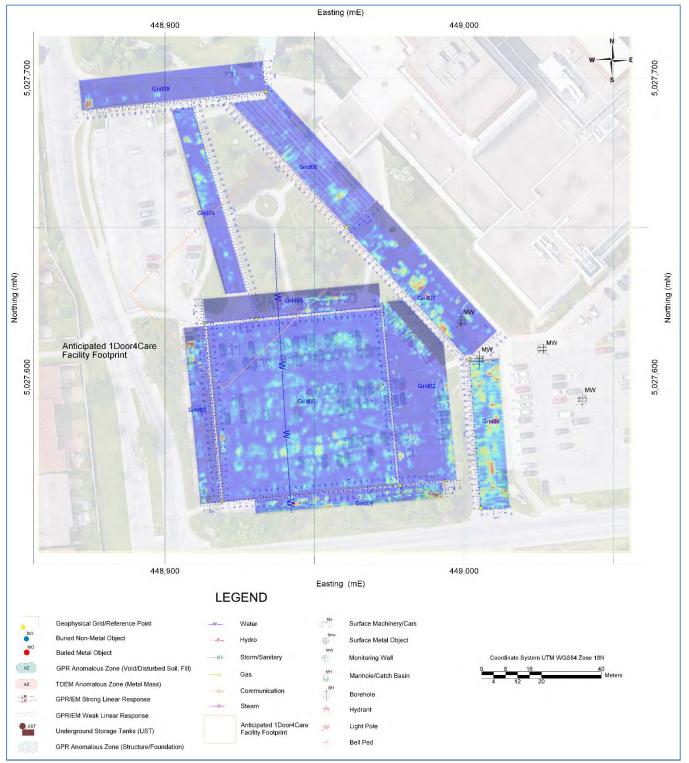
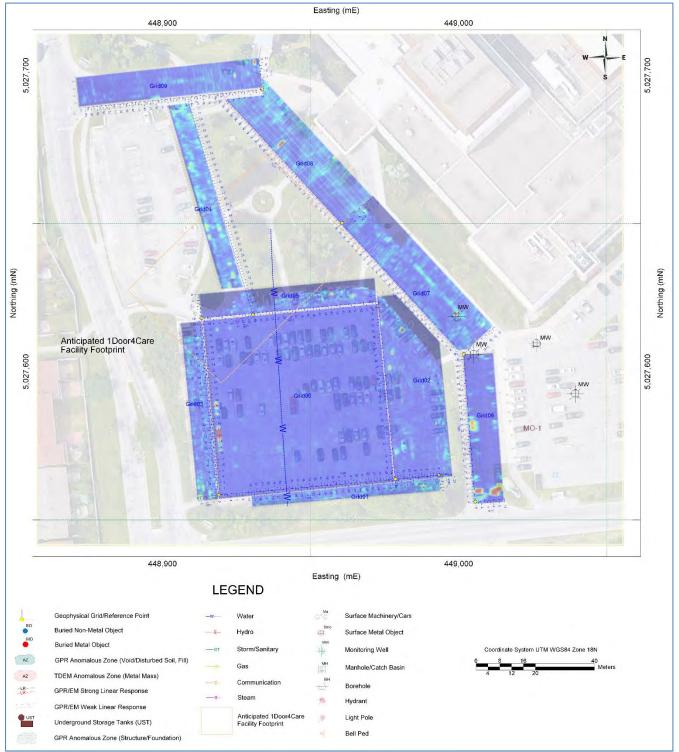


Figure 7: GPR Signal Amplitude at 100cm Depth

Subsurface Utility Engineering

Concrete Scanning

PPTV Se


CCTV Sewer Inspection

Vacuum Excavation

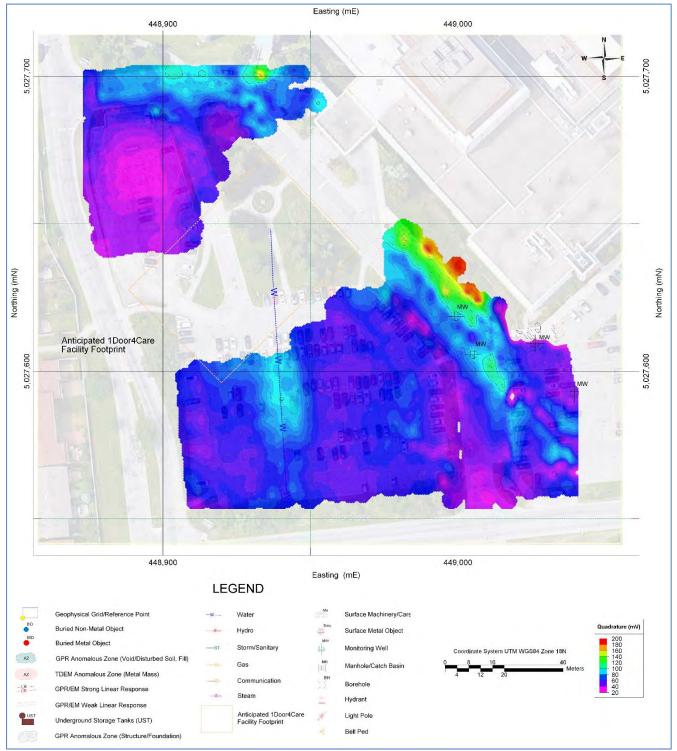
ЛЕ

Geophysics

Utility Locating Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection


tion Vac

Vacuum Excavation

ЛЕ

Geophysics

Utility Locating Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

ЛЕ

÷14 -

Geophysics

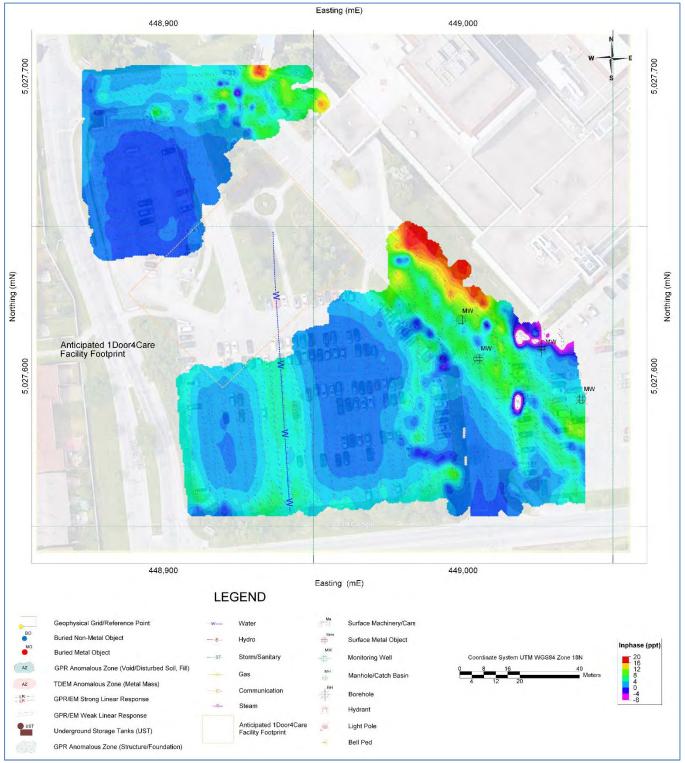


Figure 10: FDEM Inphase Contour Grid Map

Utility Locating Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Ground Penetrating Radar and Frequency Domain Electromagnetic for Underground Storage Tank and Utility Mapping. Children's Hospital of Eastern Ontario 401 Smyth Road, Ottawa, Ontario

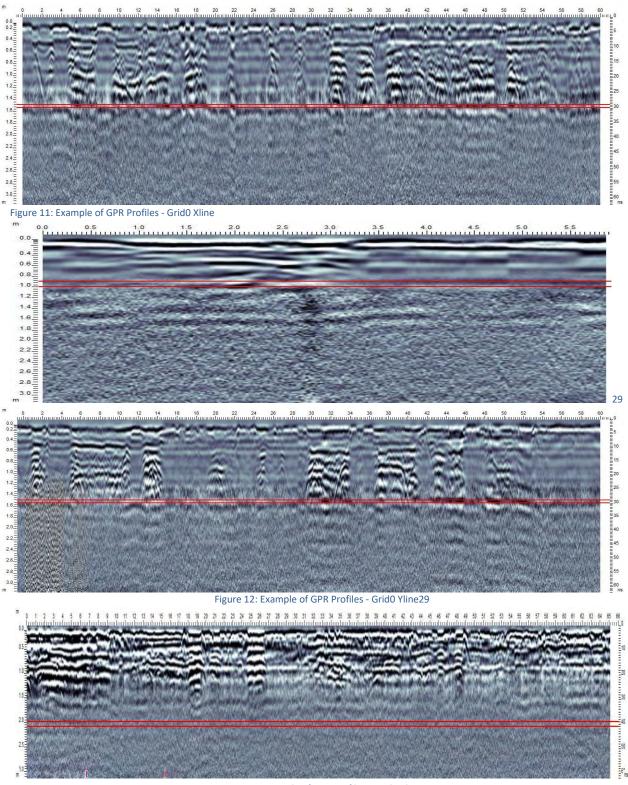


Figure 13: Example of GPR Profiles - Grid1 Xline4

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

Geophysics

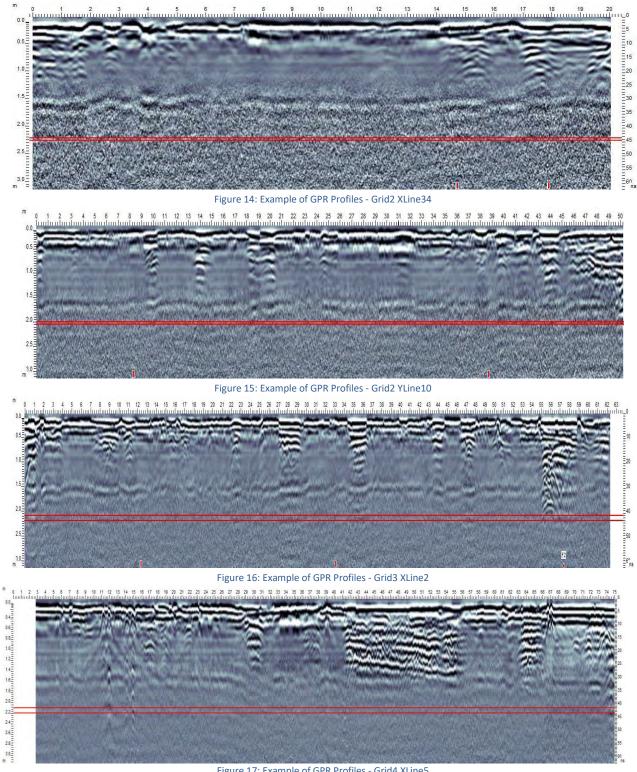
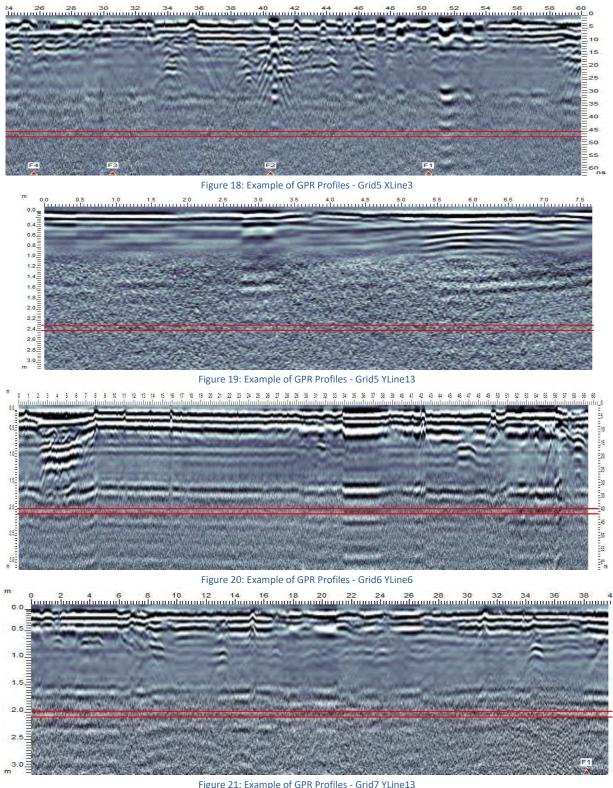


Figure 17: Example of GPR Profiles - Grid4 XLine5


Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

17 -Geophysics

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

Geophysics

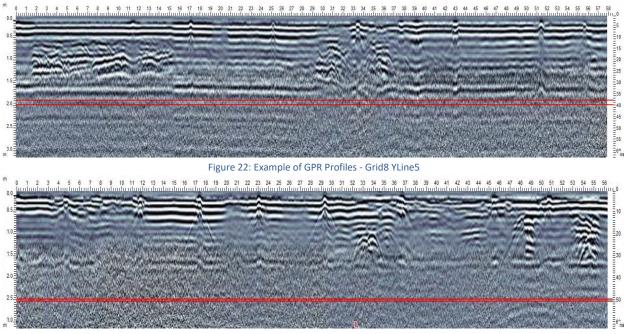


Figure 23: Example of GPR Profiles - Grid9 YLine3

Subsurface Utility Engineering

- 19 -

Utility Locating

Concrete Scanning

CCTV Sewer

CCTV Sewer Inspection

Table 1: Geophysical Interpretation Summary Table

Interpretation	Easting	Northing	Feature ID
GPR Linear Response	448883	5027698	LRgpr-1
GPR Linear Response	448884.1	5027692	LRgpr-1
GPR Linear Response	448891.4	5027698	LRgpr-2
GPR Linear Response	448892.2	5027692	LRgpr-2
GPR Linear Response	448905.4	5027685	LRgpr-3
GPR Linear Response	448919.7	5027663	LRgpr-3
GPR Linear Response	448910.4	5027697	LRgpr-4
GPR Linear Response	448916	5027697	LRgpr-4
GPR Linear Response	448922.2	5027037	LRgpr-4
GPR Linear Response			
•	448924.2 448912.7	5027699 5027562	LRgpr-5
GPR Linear Response			LRgpr-6
GPR Linear Response	448909.3	5027610	LRgpr-6
GPR Linear Response	448914.9	5027565	LRgpr-7
GPR Linear Response	448914.1	5027579	LRgpr-7
GPR Linear Response	448913.8	5027587	LRgpr-8
GPR Linear Response	448913.8	5027598	LRgpr-8
GPR Linear Response	448918.8	5027577	LRgpr-9
GPR Linear Response	448918.3	5027590	LRgpr-9
GPR Linear Response	448931.1	5027686	LRgpr-10
GPR Linear Response	448939.5	5027689	LRgpr-10
GPR Linear Response	448939.8	5027676	LRgpr-11
GPR Linear Response	448946	5027684	LRgpr-11
GPR Linear Response	448949.6	5027665	LRgpr-12
GPR Linear Response	448955.8	5027671	LRgpr-12
GPR Linear Response	448956.9	5027664	LRgpr-13
GPR Linear Response	448962.2	5027666	LRgpr-13
GPR Linear Response	448939.5	5027687	LRgpr-14
GPR Linear Response	448953.8	5027672	LRgpr-14
GPR Linear Response	448967.8	5027645	LRgpr-15
GPR Linear Response	448975.9	5027645	LRgpr-15
GPR Linear Response	448947.7	5027626	LRgpr-16
GPR Linear Response	448961.4	5027626	LRgpr-16
GPR Linear Response	448947.7	5027621	LRgpr-17
GPR Linear Response	448947.7	5027625	LRgpr-17
GPR Linear Response	448940.4	5027597	LRgpr-18
GPR Linear Response	448945.7	5027597	LRgpr-18
GPR Linear Response	448958.9	5027588	LRgpr-19
GPR Linear Response	448972.3	5027582	LRgpr-19
GPR Linear Response	448978.7	5027578	LRgpr-20
GPR Linear Response	448984.3	5027580	LRgpr-20
GPR Linear Response	448932.3	5027557	LRgpr-21
GPR Linear Response	448988.5	5027562	LRgpr-21
GPR Linear Response	448976.5	5027601	LRgpr-22
GPR Linear Response	448980.1	5027613	LRgpr-22
GPR Linear Response	448975.9	5027622	LRgpr-23
GPR Linear Response	448977.3	5027616	LRgpr-23
GPR Linear Response	448981.5	5027610	LRgpr-24
GPR Linear Response	448990.2	5027580	LRgpr-24
GPR Linear Response	448990.8	5027596	LRgpr-25
GPR Linear Response	448992.4	5027550	LRgpr-25
GPR Linear Response	448985.4	5027582	LRgpr-25
GPR Linear Response	448993.8	5027627	LRgpr-26
•	448993.8		0.
GPR Linear Response		5027629	LRgpr-27
GPR Linear Response	448986.8	5027633	LRgpr-27
GPR Linear Response	448985.4	5027638	LRgpr-28
GPR Linear Response	449003.9	5027617	LRgpr-28
GPR Linear Response	449007.8	5027602	LRgpr-29
GPR Linear Response	449009	5027568	LRgpr-29

Subsurface Utility Engineering

Concrete Scanning

CCTV Sewer Inspection

Geophysics

Ground Penetrating Radar and Frequency Domain Electromagnetic for Underground Storage Tank and Utility Mapping. Children's Hospital of Eastern Ontario 401 Smyth Road, Ottawa, Ontario

GPR Linear Response	449004.8	5027594	LRgpr-30
GPR Linear Response	449012.6	5027593	LRgpr-30
GPR Linear Response	449010.1	5027564	LRgpr-31
GPR Linear Response	449014	5027561	LRgpr-31
GPR Linear Response	449006.2	5027557	LRgpr-32
GPR Linear Response	449013.7	5027560	LRgpr-32
FDEM Linear Response	448877.7	5027694	LRem-1
FDEM Linear Response	448903.4	5027697	LRem-1
FDEM Linear Response	448909.3	5027696	LRem-2
FDEM Linear Response	448916.6	5027692	LRem-2
FDEM Linear Response	448919.4	5027689	LRem-3
FDEM Linear Response	448927.5	5027680	LRem-3
FDEM Linear Response	448918.8	5027698	LRem-4
FDEM Linear Response	448936.7	5027691	LRem-4
FDEM Linear Response	448942.9	5027555	LRem-5
FDEM Linear Response	448938.1	5027627	LRem-5
FDEM Linear Response	448981.2	5027576	LRem-6
FDEM Linear Response	448996.9	5027572	LRem-6
FDEM Linear Response	448981	5027582	LRem-7
FDEM Linear Response	448993.8	5027606	LRem-7
FDEM Linear Response	448982.6	5027617	LRem-8
FDEM Linear Response	448988.5	5027613	LRem-8
FDEM Linear Response	448975.9	5027642	LRem-9
FDEM Linear Response	449007.6	5027608	LRem-9
FDEM Linear Response	449025.2	5027568	LRem-10
FDEM Linear Response	449038.6	5027566	LRem-10
FDEM Linear Response	449018.2	5027596	LRem-11
FDEM Linear Response	449040	5027573	LRem-11
FDEM Linear Response	449019.6	5027613	LRem-12
FDEM Linear Response	449033.3	5027611	LRem-12
FDEM Response - Buried Metal Object	449018.2	5027591	MO-1
FDEM Response - Buried Metal Object	448999.4	5027637	MO-2
FDEM Response - Buried Metal Object	448953	5027690	MO-3
FDEM Response - Buried Metal Object	448932	5027700	MO-4
GPR Response - Buried Object	449006.2	5027559	BO-1
GPR Response - Buried Object	448978.7	5027573	BO-2
GPR Response - Buried Object	448939.3	5027677	BO-3
GPR Response - Buried Object	448874.1	5027692	BO-4

Subsurface Utility Engineering

11/

Concrete Scanning

CCTV Sewer Inspection

Vacuum Excavation

Geophysics

4 CONCLUSION AND RECOMMENDATIONS

A ground geophysical investigation was carried out at Children's Hospital of Eastern Ontario 401 Smyth Road, Ottawa, Ontario for Underground Storage Tank and Utility Mapping. The survey was able to delineate distinct anomalous zones and discrete responses in the Ground Penetrating Radar and Frequency Domain Electromagnetic raw data like those responses related to utilities and buried metallic and non-metallic objects.

GPR and FDEM anomalous zones suggesting the presence of UST were not observed in the raw data. Multiple GPR reflections and metallic responses indicating subsurface features were identified throughout the survey area as follow:

- Thirty-two (32) GPR linear responses (LRgpr-1 to LRgpr-32) potentially related to buried utilities and piping;
- Twelve (12) FDEM linear responses (LRem-1 to LRem-12) potentially related to metallic buried utilities and piping;
- Four (4) FDEM responses (MO-1 to MO-4) are potentially related to small buried metallic objects;
- Four (4) GPR responses (BO-1 to BO-4) are potentially related to small buried objects.

Intrusive testing of the interpreted anomalous zone is recommended to verify the source of these responses. The GPR signal penetration averaged at 2.0-3.0 meters throughout the survey area. Geophysical anomalies from subsurface features at greater depths or within 1 meter from any building wall or fix structure would be distorted or not detectable.

GE 83 4 Respectfully Submitted EVELIO MARTINEZ DEL PINO Evelio Martinez del Pino P.Beci, W 058 Senior Geophysicis multiVIEW Locates I

Concrete Scanning

- 22 -

TERMS AND CONDITIONS 5

Further exploration may be considered in order to determine the true nature of the interpreted geophysical anomalies, particularly those representing potential buried objects and liabilities not locatable by using radio detection techniques. Intrusive testing is recommended to determine the source and corroborate/correct the depth of the interpreted responses, particularly where high amplitude anomalies were identified on site.

Interpretation of the data used during any subsequent programs is subject to the Law of Physics and Technical limitations of the used survey techniques. Additional information regarding advantages and technical limitations of geophysical surveys can be found at http://www.multiview.ca/Services/Terms-and-Conditions.

When physically locating the interpreted responses over the terrain for intrusive testing, excavation or rehabilitation activities, it is recommended to properly correlate the reference grid stations with the stations presented on the digital maps. The raw data should also be reviewed for further interpretation and validation of the interpreted responses.

23 -Geophysic

Subsurface Utility Engineering Utility Locating

Concrete Scanning

CCTV Sewer Inspection

Appendix F Laboratory Certificates of Analysis

CLIENT NAME: GHD LIMITED 455 Phillip St WATERLOO, ON N2V1C2 (519) 884-0510

ATTENTION TO: Jennifer Balkwill

PROJECT: 11205379-30 (PO#73518459)

AGAT WORK ORDER: 19T553493

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Supervisor

DATE REPORTED: Jan 08, 2020

PAGES (INCLUDING COVER): 6

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u> VERSION 2:Revised report issued January 08, 2020.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V2)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) AGAT La Western Enviro-Agricultural Laboratory Association (WEALA) scope of Environmental Services Association of Alberta (ESAA) Associat

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 6

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T553493 PROJECT: 11205379-30 (PO#73518459) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GHD LIMITED

SAMPLING SITE:

ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

				L	uss on ignit						
DATE RECEIVED: 2019-12-09								I	DATE REPORT	ED: 2020-01-08	
				SAMPL	E DESCRIPTION:	MW1	BH6	MW5	MW2	MW3	BH12
					SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil
					DATE SAMPLED:	2019-12-07	2019-12-07	2019-12-07	2019-12-07	2019-12-07	2019-12-07
Parameter	Unit	G/S	RDL	Date Prepared	Date Analyzed	783860	783884	783885	783886	783887	783888
Loss on Ignition	%		0.01	2020-01-06	2020-01-07	1.09	2.04	2.52	2.97	1.22	3.30
				SAMPL	E DESCRIPTION:	BH13	BH14				
					SAMPLE TYPE:	Soil	Soil				
					DATE SAMPLED:	2019-12-07	2019-12-07				
Parameter	Unit	G/S	RDL	Date Prepared	Date Analyzed	783889	783890				
Loss on Ignition	%		0.01	2020-01-06	2020-01-07	2.28	2.46				

Loss on Ignition (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

783860-783890 Loss on Ignition is not an accredited analysis. Analysis was performed at 475°C.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Quality Assurance

CLIENT NAME: GHD LIMITED

PROJECT: 11205379-30 (PO#73518459)

SAMPLING SITE:

AGAT WORK ORDER: 19T553493

ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Jan 08, 2020			[DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	eptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Loss on Igniton LOI	783887		11.0	11.0	0.0%	< 0.5									
Loss on Ignition (Soil) Loss on Ignition	783860	783860	1.09	1.06	2.8%	< 0.01									

Certified By:

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 4 of 6

Method Summary

CLIENT NAME: GHD LIMITED

PROJECT: 11205379-30 (PO#73518459)

AGAT WORK ORDER: 19T553493

ATTENTION TO: Jennifer Balkwill

SAMPLING SITE: SAMPLED BY: PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE Soil Analysis Inore 13139 FURNACE Lol INOR-181-6030 ASTM D2974-07a GRAVIMETRIC

Chain of Custody Rec					es inking Water Chain of Custody Form		5.712	sissau .5100 wei	835 Coopi Iga, Ontari Fax: 905 bearth.aga	5 L4Z 712.5 Itlabs	1Y2 5 122		Work	Orde	r #:	19		y 553 1 2.0	349	13	
Report Information: Company:		, and the second s	, oumpro, p	Re	egulatory Requirements:				_		ment		Cust Note			tact:		Yes	⊡No	1	
	- Somme nel Ra anga R 3 352700	oal	L' lon	Soil	Regulation 153/04 Sewa Table Indicate One Ind/Com Sau Agriculture Sto Texture (Check One) Region Coarse Indicate	nitary rm ate One	_		Regulation CCME Prov. Water Objectives Other	Quali PWQ0			Turn Regu	aro Ilar 1 TAT 3 B Day	(Rush S Susine /s	Surchar SS	ges Apply	5 to 7 Busi 2 Business Days vush Surcha	ness Day	Next B Day	3usiness
Project Information: Project: // 0 5 3 Site Location: Sampled By:	79 - Ot	<i>6</i>		R	Is this submission for a ecord of Site Condition?		Cer		Guidelin te of An		s		Fo	*TA	T is ex	clusiv	e of we	lor notificat eekends an please cont	d statuto	ry holida	
Please note: If quotation num Invoice Information: Company: Contact: Address: Email: Company: Compa	ber is not provided, cilent with Lfd Somme LRong - Sanone	Bill To Same:	Yes 🗌 No	B GW	Oil Paint Soil Sediment	Field Filtered - Metals, Hg, CrVI	and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides) □ Hydride Metals □ 153 Metals (Incl. Hydrides)	ORPS: □B-HWS □CI □CN □Cr ^{es} □EC □FOC □Hg □pH □SAR	Full Metals Scan	Regulation/Custom Metals	DN03+Ň02	S: OVOC OBTEX OTHM	+] Total 🛛 🗆 Aroclors		ICLP: LIM& LUVOS LABNS LIB(a)P LIPCBS Sever Use	37 N Standonch		Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals and	All Mel	ORPs: ORPs: D Cr ⁶⁺ [Full Me	Regulation/Cu Nutrients: 11	°on L		ABNs	PAHS	PCBs: Total	Organo	TCLP: LJ M& Sewer Use			Potentia
MWI	Die 07	10:00 00	1	SOIL									_					×	1		
1546	4	(1	1	//		-	-	_			-		_	-	-			V		-	_
MWS	4		1	n			-	-				-	_	-	-	-			1		-
MW2			1	+		1-1	-					-	-	-	-	-			1	-	_
MW3	Ł	V	1	U U		-	-			_	-	-	-	-	-	-		V	1	++	-
BH12	v	v				-			-		-	-	-	-	-		-			-	-
13 H 13 13 H 14	V	v	1	U			-		-		-	-	-	-	-						-
15 H 19	~	U	/	V							-			-							
Samples Roanquished By (Print Name and Sign		Date		2	Samplegeter lives of Print Name and Sign):			to	~		Pate		01	Time	3.3						
Samples Relinquished By (Print Name a) d Sign):		- Ducs	Tim	108 au	Samples Received By (Print Name and Sign):			V	/	-	Date	L	-	Time	5.2	-	-	Page	of		
Samples Relinquished By (Print Name and Sign):	- toffe	Date	Tim	8	(Samples Received By (Print Name and Sign):		_				Date			Time	_		Nº:	T 09	80	54	f ² 6, 2019

CLIENT NAME: GHD LIMITED 455 Phillip St WATERLOO, ON N2V1C2 (519) 884-0510

ATTENTION TO: Jennifer Balkwill

PROJECT: 11205379 (PO#73518459)

AGAT WORK ORDER: 19T555371

MISCELLANEOUS ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

SOIL ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Dec 31, 2019

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOT	TES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 8

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Sepecific tests listed on the scope of accreditation Inc. (CALA) for specific drivinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 19T555371 PROJECT: 11205379 (PO#73518459) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GHD LIMITED

SAMPLING SITE:

ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

				Sulphie	de					
DATE RECEIVED: 2019-12-12							[DATE REPORT	ED: 2019-12-31	
					11205379-MW1	11205379-MW1	11205379-MW2-	11205379-MW3-	11205379-MW4	11205379-MW5
				SAMPLE DESCRIPTION:	(SS2+SS3)	(SS6)	SS4	SS4	(SS2+SS3)	SS4
				SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil
				DATE SAMPLED:	2019-12-11	2019-12-11	2019-12-11	2019-12-11	2019-12-11	2019-12-11
Parameter	Unit	G/S	RDL	Date Prepared Date Analyzed	796593	796645	796646	796647	796648	796649
Sulfide (S2-)	%		0.05		0.18	0.94	0.36	0.31	0.14	0.75
					11205379-BH6	11205379-BH7	11205379-BH8	11205379-BH9	11205379-BH12	
				SAMPLE DESCRIPTION:	(SS2+SS3)	(SS3)	(SS3)	(SS3+SS4)	(SS3+SS4)	
				SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	
				DATE SAMPLED:	2019-12-11	2019-12-11	2019-12-11	2019-12-11	2019-12-11	
Parameter	Unit	G / S	RDL	Date Prepared Date Analyzed	796650	796651	796652	796653	796654	
Sulfide (S2-)	%		0.05		0.60	0.86	0.30	0.09	0.06	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

796593-796654 Analysis performed at AGAT 5623 McAdam.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Inis Verastegui

AGAT WORK ORDER: 19T555371 PROJECT: 11205379 (PO#73518459) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GHD LIMITED

SAMPLING SITE:

ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

				(Jorrosivity P	аскаде					
DATE RECEIVED: 2019-12-12								DA	TE REPOR	TED: 2019-12-31	
						11205379-MW1		11205379-MW1		11205379-MW2-	
				SAMPL	E DESCRIPTION:	(SS2+SS3)		(SS6)		SS4	
					SAMPLE TYPE:	Soil		Soil		Soil	
					DATE SAMPLED:	2019-12-11		2019-12-11		2019-12-11	
Parameter	Unit	G/S	RDL	Date Prepared	Date Analyzed	796593	RDL	796645	RDL	796646	
Chloride (2:1)	µg/g		2	2019-12-19	2019-12-19	60	4	185	2	145	
Sulphate (2:1)	µg/g		2	2019-12-19	2019-12-19	200	4	1000	2	130	
pH (2:1)	pH Units		NA	2019-12-20	2019-12-20	7.87	NA	7.78	NA	7.78	
Electrical Conductivity (2:1)	mS/cm		0.005	2019-12-19	2019-12-19	0.447	0.005	1.34	0.005	0.765	
Resistivity (2:1) (Calculated)	ohm.cm		1	2019-12-19	2019-12-19	2240	1	746	1	1310	
Redox Potential 1	mV		NA	2019-12-19	2019-12-19	269	NA	241	NA	223	
Redox Potential 2	mV		NA	2019-12-19	2019-12-19	268	NA	219	NA	214	
Redox Potential 3	mV		NA	2019-12-19	2019-12-19	271	NA	230	NA	219	
						11205379-MW3-		11205379-MW4		11205379-MW5-	11205379-BH6
				SAMPL	E DESCRIPTION:	SS4		(SS2+SS3)		SS4	(SS2+SS3)
					SAMPLE TYPE:	Soil		Soil		Soil	Soil
					DATE SAMPLED:	2019-12-11		2019-12-11		2019-12-11	2019-12-11
Parameter	Unit	G/S	RDL	Date Prepared	Date Analyzed	796647	RDL	796648	RDL	796649	796650
Chloride (2:1)	µg/g		4	2019-12-19	2019-12-19	736	2	44	4	531	403
Sulphate (2:1)	µg/g		4	2019-12-19	2019-12-19	286	2	96	4	337	272
pH (2:1)	pH Units		NA	2019-12-20	2019-12-20	7.88	NA	8.29	NA	9.21	8.54
Electrical Conductivity (2:1)	mS/cm		0.005	2019-12-19	2019-12-19	1.60	0.005	0.460	0.005	1.54	1.17
Resistivity (2:1) (Calculated)	ohm.cm		1	2019-12-19	2019-12-19	625	1	2170	1	649	855
Redox Potential 1	mV		NA	2019-12-19	2019-12-19	234	NA	179	NA	173	180
Redox Potential 2	mV		NA	2019-12-19	2019-12-19	241	NA	186	NA	173	182
Redox Potential 3	mV		NA	2019-12-19	2019-12-19	246	NA	193	NA	179	186

Corrosivity Package

Certified By:

Iris Verastegui

AGAT WORK ORDER: 19T555371 PROJECT: 11205379 (PO#73518459) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GHD LIMITED

SAMPLING SITE:

ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

				(Corrosivity P	аскаде					
DATE RECEIVED: 2019-12-12								DA	TE REPOR	TED: 2019-12-31	
						11205379-BH7		11205379-BH8		11205379-BH9	
				SAMPL	E DESCRIPTION:	(SS3)		(SS3)		(SS3+SS4)	
					SAMPLE TYPE:	Soil		Soil		Soil	
					DATE SAMPLED:	2019-12-11		2019-12-11		2019-12-11	
Parameter	Unit	G/S	RDL	Date Prepared	Date Analyzed	796651	RDL	796652	RDL	796653	
Chloride (2:1)	hð\d		2	2019-12-19	2019-12-19	117	4	416	2	167	
Sulphate (2:1)	hð/ð		2	2019-12-19	2019-12-19	365	4	225	2	124	
pH (2:1)	pH Units		NA	2019-12-20	2019-12-20	8.01	NA	8.62	NA	7.95	
Electrical Conductivity (2:1)	mS/cm		0.005	2019-12-19	2019-12-19	0.732	0.005	1.12	0.005	0.573	
Resistivity (2:1) (Calculated)	ohm.cm		1	2019-12-19	2019-12-19	1370	1	893	1	1750	
Redox Potential 1	mV		NA	2019-12-19	2019-12-19	203	NA	206	NA	205	
Redox Potential 2	mV		NA	2019-12-19	2019-12-19	206	NA	205	NA	205	
Redox Potential 3	mV		NA	2019-12-19	2019-12-19	205	NA	208	NA	208	
						44005070 DU40					
				CAMPI		11205379-BH12					
				SAMPL	E DESCRIPTION: SAMPLE TYPE:	(SS3+SS4) Soil					
					DATE SAMPLE TYPE:	2019-12-11					
Parameter	Unit	G/S	RDL	Date Prepared	Date Analyzed	796654					
Chloride (2:1)	µg/g	0/0	4	2019-12-19	2019-12-19	665					
Sulphate (2:1)	hð\ð		4	2019-12-19	2019-12-19	130					
pH (2:1)	pH Units		NA	2019-12-20	2019-12-20	8.81					
Electrical Conductivity (2:1)	mS/cm		0.005	2019-12-19	2019-12-19	1.41					
Resistivity (2:1) (Calculated)	ohm.cm		1	2019-12-19	2019-12-19	709					
Redox Potential 1	mV		NA	2019-12-19	2019-12-19	212					
Redox Potential 2	mV		NA	2019-12-19	2019-12-19	225					
Redox Potential 3	mV		NA	2019-12-19	2019-12-19	221					

Corrosivity Package

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

796593-796654 EC, pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter. Redox potential measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry with exposure to oxidative/reduction conditions laboratory results may differ from field measured results.

Elevated RDLs indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range, reduce matrix interference and/or to avoid contaminating the instrument. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Iris Verastegui

Quality Assurance

CLIENT NAME: GHD LIMITED

PROJECT: 11205379 (PO#73518459)

SAMPLING SITE:

AGAT WORK ORDER: 19T555371

ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

			Mis	cella	neou	s An	alysi	S							
RPT Date: Dec 31, 2019			[DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lir	ptable nits	Recovery	Lin	ptable nits
		iù					value	Lower	Upper		Lower	Upper		Lower	Upper
Sulphide Sulfide (S2-)	796593	796593	0.18	0.17	5.7%	< 0.01	97%	80%	120%						

Certified By:

Inis Verastegui

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 8

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GHD LIMITED

PROJECT: 11205379 (PO#73518459)

SAMPLING SITE:

AGAT WORK ORDER: 19T555371

ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

Soil	Ana	lysis
------	-----	-------

RPT Date: Dec 31, 2019			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample				Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits	Recovery	Lie	eptable mits
		lu					value	Lower	Upper		Lower	Upper	-	Lower	Upper
Corrosivity Package															
Chloride (2:1)	796593	796593	60	60	0.0%	< 2	98%	80%	120%	106%	80%	120%	98%	70%	130%
Sulphate (2:1)	796593	796593	200	200	0.0%	< 2	104%	80%	120%	106%	80%	120%	101%	70%	130%
pH (2:1)	796593	796593	7.87	7.86	0.1%	NA	101%	90%	110%						
Electrical Conductivity (2:1)	796593	796593	0.447	0.448	0.2%	< 0.005	100%	90%	110%						
Redox Potential 1	1					NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

Inis Verastegui

Page 6 of 8

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: GHD LIMITED PROJECT: 11205379 (PO#73518459)

AGAT WORK ORDER: 19T555371

ATTENTION TO: Jennifer Balkwill

SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Miscellaneous Analysis		•	•		
Sulfide (S2-)	MIN-200-12025	ASTM E1915-09	GRAVIMETRIC		
Soil Analysis					
Chloride (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH		
Sulphate (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH		
pH (2:1)	INOR 93-6031	MSA part 3 & SM 4500-H+ B	PH METER		
Electrical Conductivity (2:1)	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER		
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION		
Redox Potential 1	INOR-93-6066	G200-09, SM 2580 B	REDOX POTENTIAL ELECTRODE		
Redox Potential 2	INOR-93-6066	G200-09, SM 2580 B	REDOX POTENTIAL ELECTRODE		
Redox Potential 3	INOR-93-6066	G200-09, SM 2580 B	REDOX POTENTIAL ELECTRODE		

Chain of Custody Record				_	TIES Drinking Water Chain of	_		5.712	ssissau 2.5100 wel	835 Coop ga, Ontar Fax: 905 Dearth.ag	io L4; 5.712. atlabs	z 1Y2 5 122		Wor	k Orde	-	10	12	55	53 BlueC	_	14	e);
Report Information: Company:	*				Regulatory Requ			No R	egula	tory Re	quire	mer	ıt	100010		Seal In	tact:		Yes		10]N/A
Contact: Aluned St					Regulation 153/04	Sewei	rlleo	T		egulation	559			Not	_				_		_		
Address:RUN		OAD			Table				_	-	556			Tur	naro	und	Tim	ie (T/	T) Re	quired	:		
hivssussa	ngon	Rolid	5NU		[]Ind/Com	Sani	tary			CME				Reg	ular	TAT		V	5 to 7 B	usiness [Jays		
Phone: 647463	-35Ex2				Res/Park	Stor	m			rov. Wate				Rus	h TA'	(Rush	Surchar	ges Appl	()				
Reports to be sent to: 1. Email: Ahmed · Son		9 hd : co	m	S	oil Texture (Check One)	Region		_		bjectives ther	(PvvQ	0)		_	_ 3	Busine	ess	_	2 Busin	ess	— Ne	ext Busi	iness
		0			Coarse	Indica	te One							L		ays			Days		L Da		
2. Email:				_	Fine	MISA		đ		Indicate	One	_	_11		0	R Date	e Requ	uired (F	lush Sur	charges N	/lay App	ply):	
Project Information:					Is this submissio				-	Guidelii					-			6.1.				TAT	<u>.</u>
Project: Infrastmet	ma	Ontan	1'0	_	Record of Site Co					te of An					*T/					cation for and state			\$
Site Location:			_	-	□ Yes □	No			Yes	E] N	С		F	or 'Sa	me Da	iy' ana	alysis,	please c	ontact yo	our AG		M
Sampled By: Shamf				- =			1		O. Reg	153	1			i i	1	-	1		(0)	at r			
AGAT Quote #:	not provided, client w	vill be billed full price	for analysis	S B	Sample Matrix Leg	jend	Z		es)									_	CPCBs	PACKAG			n (Y/N)
Invoice Information: Company: Contact: Address: Email: Address: Email: Company: Contact: Address: Company: Contact: Address: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company: Contact: Company:	td Schon ZL Ro,	AD, dy	Ssr Sgar	0 P S	Paint		Field Filtered - Metals, Hg, CrVI	s and Inorganics	153 Metals (excl. Hyd s 🗌 153 Metals (Incl.	C C C C C C C C C C C C C C C C C C C	Full Metals Scan	istom Met	Nutrients: DTP DNH, DTKN DNO3 DNO2 DNO3+NO2		F1 - F4		PCBs: Total	rine Pesticides	UVOCS UABNS U	OKKOSOUITY P			Potentially Hazardous or High Concentration
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Commen Special Instru		Y/N	Metals and			Full M	Regula	Nutrie	Volatiles:	PHCs F1 -	PAHS	PCBs:	Organ	TCLP: LI M&I Sewer Use	107	1		Potenti
11805379-MW1 (552+55	3) Diell	Read	1	SOIL						1.11				-						\checkmark			
11205379-MWI(556)	11	5:00pm	/	11																1	in T		
11205379-MW2-554	"	- <i>u</i>	1	n				10												V			
11205379-MW3-554	P1	0	1	9				-												~			
11205379- MW4 (552+553	"		1	ĸ																~		_	
11205379-MW5-584	Y	U	1	v								_	_							V			
(1205379-BH6 (552+553)	V	v	1	V																V			
11205379-BH7 (553)	0			1				1											-	\checkmark			
11205379-1348(553)	U	J	1	0										2						V I			
11205379-1349(553+554)	U	0	(u																	0.		
11205379-13412 (553+554)	<i>v</i>	9	1							11	0									\checkmark			
Samples Relinquished By (Print Name and Sign): Md - Sheard Homme THe Samoles Relinquished By (Print Name and Sign):	. How	Date Date	219 3 Time	-100 -11	Samples Recoved By (Pri Samples Received By (Pri	amou	aiq	12	M	ĮĮ	1	Date Date	20-	12,	Time	4	:0	321) Page		of		
 velinquished By (Print Name and Sign) 		Date	Time		Samples Received By (Pri	nt Name and Sign h	V	_				Date	_		Time	2		_					_
18.1511.016										Pink	Conv -		t Ye	llow C			l Whi	Nº:	- AGAT	98. Date	35 Page		2019

CERTIFICATE OF ANALYSIS

Work Order	: WT2214174	Page	÷ 1 of 5
Client	: GHD Limited	Laboratory	: Waterloo - Environmental
Contact	: Rick Hawthorne	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo ON Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 11205379-100	Date Samples Received	: 14-Sep-2022 10:30
PO	: 735-004287	Date Analysis	: 15-Sep-2022
		Commenced	
C-O-C number	:	Issue Date	: 16-Sep-2022 16:35
Sampler	: CLIENT		
Site	:		
Quote number	11205379-100-SSOW 735-004287		
No. of samples received	: 8		
No. of samples analysed	: 8		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Joseph Scharbach		Centralized Prep, Waterloo, Ontario
Walt Kippenhuck	Team Leader - Inorganics	Inorganics, Waterloo, Ontario

General Comments

for analysis.

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
%	percent
μS/cm	Microsiemens per centimetre
mg/kg	milligrams per kilogram
mV	millivolts
ohm cm	ohm centimetre (resistivity)
pH units	pH units

>: greater than.

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
FR5	As per applicable reference method(s), soil:water ratio for Fixed Ratio Leach was modified to 1:5 due to high soil organic content

Analytical Results

WT2214174-001

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sample ID: 11205379- BH16-SS2 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		2650 FR5,	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		10.4	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		436	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		8.26	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		380	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	1300	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	498	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-002

Sub-Matrix:Soil (Matrix: Soil/Solid) Client sample ID: 11205379- BH20-SS2 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		422 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		10.1	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		419	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.78	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		2370	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	19.6	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	173	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-003 Sub-Matrix: Soil

Client sample ID: 11205379- MW17-SS1 Client sampling date / time: 14-Sep-2022

(Matrix: Soil/Solid)	Client sampling date / time: 14-Sep-2022									
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot		
Physical Tests										
conductivity (1:2 leachate)		231 FR5,	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051		
moisture		<0.25	0.25	%	E144	-	15-Sep-2022	648057		
oxidation-reduction potential [ORP]		419	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056		
pH (1:2 soil:CaCl2-aq)		8.26	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054		
resistivity		4330	100	ohm cm	EC100R	-	16-Sep-2022	-		
Leachable Anions & Nutrients										
chloride, soluble ion content	16887-00-6	8.6	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053		
sulfate, soluble ion content	14808-79-8	54	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052		
Blassa refer to the Conoral Commente costier	for an avalanction of any	, qualifiara dataata	d							

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-004

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sample ID: 11205379- MW18-SS3 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		1310 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		8.45	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		398	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		8.16	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		760	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	734	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	215	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-005

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sample ID: 11205379- BH11-22-SS2

Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		2540 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		6.72	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		393	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.28	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		390	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	1420	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	219	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-006

Sub-Matrix:Soil	
Sub-Matrix.Sull	

(Matrix: Soil/Solid)

Client sample ID: 11205379- BH16-22-SS2

Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		430 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		6.03	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		354	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.85	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		2320	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	83.2	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	116	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-007

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sample ID: 11205379- BH17-22-SS2 Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		622 FR5.	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		7.97	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		350	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.47	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		1610	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	609	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	94	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-008

Sub-Matrix:Soil

(Matrix: Soil/Solid)

Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		5560 FR5.	10.0	µS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		6.16	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		371	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		6.81	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		180	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	611	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	6500	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WT2214174	Page	: 1 of 11
Client	: GHD Limited	Laboratory	: Waterloo - Environmental
Contact	: Rick Hawthorne	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 11205379-100	Date Samples Received	: 14-Sep-2022 10:30
20	: 735-004287	Issue Date	: 16-Sep-2022 16:35
C-O-C number	:		
Sampler	: CLIENT		
Site	:		
Quote number	: 11205379-100-SSOW 735-004287		
No. of samples received	: 8		
No. of samples analysed	: 8		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

RIGHT SOLUTIONS | RIGHT PARTNER

Page	: 3 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	: 11205379-100

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

atrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; 🔹	<pre>< = Within</pre>	Holding T
Inalyte Group	Method	Sampling Date	Extraction / Preparation					Analys	is	
Container / Client Sample ID(s)			Preparation	ration Holding Tir		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH11-22-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH16-22-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH16-SS2	E236.Cl	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	~
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH20-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	1
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E236.Cl	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	1
				days						
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- MW17-SS1	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						

Page	: 4 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	11205379-100

Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Ti
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Leachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap 11205379- MW18-SS3	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	~	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap 11205379- BH11-22-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30 days	3 days	~	16-Sep-2022	28 days	0 days	~
Leachable Anions & Nutrients : Water Extractable Sulfate by IC									1 1	
Glass soil jar/Teflon lined cap 11205379- BH16-22-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30 days	3 days	V	16-Sep-2022	28 days	0 days	4
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap 11205379- BH16-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30 days	3 days	1	16-Sep-2022	28 days	0 days	1
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap 11205379- BH17-22-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30 days	3 days	~	16-Sep-2022	28 days	0 days	~
Leachable Anions & Nutrients : Water Extractable Sulfate by IC				,						
Glass soil jar/Teflon lined cap 11205379- BH20-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30 days	3 days	~	16-Sep-2022	28 days	0 days	1
Leachable Anions & Nutrients : Water Extractable Sulfate by IC									1	
Glass soil jar/Teflon lined cap 11205379- MW09-22	E236.SO4	14-Sep-2022	16-Sep-2022	30 days	3 days	1	16-Sep-2022	28 days	0 days	4
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap 11205379- MW17-SS1	E236.SO4	14-Sep-2022	16-Sep-2022	30 days	3 days	V	16-Sep-2022	28 days	0 days	4
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap 11205379- MW18-SS3	E236.SO4	14-Sep-2022	16-Sep-2022	30 days	3 days	1	16-Sep-2022	28 days	0 days	1

Page	: 5 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	11205379-100

atrix: Soil/Solid						aluation: × =	Holding time exce			
Analyte Group Container / Client Sample ID(s)	Method	Sampling Date	Ext Preparation Date	Holding Rec	eparation g Times Actual	Eval	Analysis Date	Analys Holding Rec	ais g Times Actual	Eval
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- BH11-22-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	~
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- BH16-22-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	1
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- BH16-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	4
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- BH17-22-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	~
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- BH20-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	1
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- MW09-22	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	~
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- MW17-SS1	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	~
hysical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- MW18-SS3	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	✓
hysical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- BH11-22-SS2	E144	14-Sep-2022					15-Sep-2022			

Page	: 6 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	· 11205379-100

Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)		Camping 2 are	Preparation		, g Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
11205379- BH16-22-SS2	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
11205379- BH16-SS2	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap	E144	44.0-= 0000					45 0-5 0000			
11205379- BH17-22-SS2	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- BH20-SS2	E144	14-Sep-2022					15-Sep-2022			
11203379- 6020-332	E 144	14-3ep-2022					13-3ep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- MW09-22	E144	14-Sep-2022					15-Sep-2022			
1205075 110005-22	L177	14 OCP 2022					10-069-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- MW17-SS1	E144	14-Sep-2022					15-Sep-2022			
11205379-100017-551	E 144	14-3ep-2022					13-3ep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- MW18-SS3	E144	14-Sep-2022					15-Sep-2022			
11203379-100010-333	L 144	14-06p-2022					10-0ep-2022			
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap	E125	14 San 2022	15 San 2022				15 San 2022	100	1 days	1
11205379- BH11-22-SS2	E120	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	•
hysical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- BH16-22-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	100	1 days	1
11203319-0010-22-332	EIZU	14-3ep-2022	13-3ep-2022				10-0ep-2022	180	ruays	

Page	: 7 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	11205379-100

Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; 🔹	<pre>/ = Within</pre>	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap										
11205379- BH16-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	✓
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	1
Physical Tests : ORP by Electrode								1		
Glass soil jar/Teflon lined cap										
11205379- BH20-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	~
Physical Tests : ORP by Electrode									II	
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	1
Physical Tests : ORP by Electrode								1		
Glass soil jar/Teflon lined cap										
11205379- MW17-SS1	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	~
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap										
11205379- MW18-SS3	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180 days	1 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received								uajo		
Glass soil jar/Teflon lined cap										
11205379- BH11-22-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap										
11205379- BH16-22-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	~
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap										
11205379- BH16-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	~

Page	: 8 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	11205379-100

Matrix: Soil/Solid					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>< = Within</pre>	Holding Tim
Analyte Group	Method Sampling Date		Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	✓
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap										
11205379- BH20-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap										
11205379- MW17-SS1	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap										
11205379- MW18-SS3	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

trix: Soil/Solid Evaluation: × = QC frequency outside specification; ✓ = QC frequency within sp							hin specificatior
Quality Control Sample Type		·	Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	648051	1	8	12.5	5.0	✓
Moisture Content by Gravimetry	E144	648057	1	8	12.5	5.0	✓
ORP by Electrode	E125	648056	1	8	12.5	5.0	✓
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	648054	1	8	12.5	5.0	✓
Water Extractable Chloride by IC	E236.Cl	648053	1	8	12.5	5.0	✓
Water Extractable Sulfate by IC	E236.SO4	648052	1	8	12.5	5.0	✓
Laboratory Control Samples (LCS)							
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	648051	2	8	25.0	10.0	✓
Moisture Content by Gravimetry	E144	648057	1	8	12.5	5.0	✓
ORP by Electrode	E125	648056	1	8	12.5	5.0	✓
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A	648054	1	8	12.5	5.0	✓
Water Extractable Chloride by IC	E236.Cl	648053	2	8	25.0	10.0	✓
Water Extractable Sulfate by IC	E236.SO4	648052	2	8	25.0	10.0	✓
Method Blanks (MB)							
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L	648051	1	8	12.5	5.0	✓
Moisture Content by Gravimetry	E144	648057	1	8	12.5	5.0	✓
Water Extractable Chloride by IC	E236.Cl	648053	1	8	12.5	5.0	✓
Water Extractable Sulfate by IC	E236.SO4	648052	1	8	12.5	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)	E100-L Waterloo - Environmental	Soil/Solid	CSSS Ch. 15 (mod)/APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Conductance is measured in the fluid that is observed in the upper layer.
pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received	E108A Waterloo - Environmental	Soil/Solid	MOEE E3137A	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C) and is carried out in accordance with procedures described in the Analytical Protocol (prescriptive method). A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil by centrifuging, settling, or decanting and then analyzed using a pH meter and electrode.
ORP by Electrode	E125 Waterloo - Environmental	Soil/Solid	APHA 2580 (mod)	Oxidation Redution Potential (ORP) is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed in the analysis, measured in mV.
Moisture Content by Gravimetry	E144 Waterloo - Environmental	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
Water Extractable Chloride by IC	E236.Cl Waterloo - Environmental	Soil/Solid	EPA 300.1	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection using a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Anions are measured in the fluid that is observed in the upper layer.
Water Extractable Sulfate by IC	E236.SO4 Waterloo - Environmental	Soil/Solid	EPA 300.1	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection using a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Anions are measured in the fluid that is observed in the upper layer.
Resistivity Calculation for Soil Using E100-L	EC100R Waterloo - Environmental	Soil/Solid	APHA 2510 B	Soil Resistivity (calculated) is determined as the inverse of the conductivity of a 2:1 water:soil leachate (dry weight). This method is intended as a rapid approximation for Soil Resistivity. Where high accuracy results are required, direct measurement of Soil Resistivity by the Wenner Four-Electrode Method (ASTM G57) is recommended.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108 Waterloo - Environmental	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.

Page	: 11 of 11
Work Order	: WT2214174
Client	: GHD Limited
Project	: 11205379-100

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil : 0.01CaCl2 - As Received for	EP108A	Soil/Solid	MOEE E3137A	A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M
pН				calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is
	Waterloo -			separated from the soil by centrifuging, settling or decanting and then analyzed using a
	Environmental			pH meter and electrode.
Preparation of ORP by Electrode	EP125	Soil/Solid	APHA 2580 (mod)	Field-moist sample is extracted in a 1:2 ratio with DI water and then analyzed by ORP
				meter.
	Waterloo -			
	Environmental			
Anions Leach 1:10 Soil:Water (Dry)	EP236	Soil/Solid	EPA 300.1	5 grams of dried soil is mixed with 50 grams of distilled water for a minimum of 30
				minutes. The extract is filtered and analyzed by ion chromatography.
	Waterloo -			
	Environmental			
Distillation for Acid Volatile Sulfide in Soil	EP396-L	Soil/Solid	APHA 4500S2J	Acid Volatile Sulfide is determined by colourimetric measurement on a sediment sample
				that has been treated with hydrochloric acid within a purge and trap system, where the
	Waterloo -			evolved hydrogen sulfide gas is carried into a basic solution by argon gas for analysis.
	Environmental			

QUALITY CONTROL REPORT

Work Order	WT2214174	Page	: 1 of 4
Client	: GHD Limited	Laboratory	: Waterloo - Environmental
Contact	: Rick Hawthorne	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 11205379-100	Date Samples Received	: 14-Sep-2022 10:30
PO	: 735-004287	Date Analysis Commenced	: 15-Sep-2022
C-O-C number	:	Issue Date	16-Sep-2022 16:35
Sampler	: CLIENT		
Site	:		
Quote number	: 11205379-100-SSOW 735-004287		
No. of samples received	: 8		
No. of samples analysed	: 8		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Joseph Scharbach		Waterloo Centralized Prep, Waterloo, Ontario
Walt Kippenhuck	Team Leader - Inorganics	Waterloo Inorganics, Waterloo, Ontario

Page	: 2 of 4
Work Order	: WT2214174
Client	: GHD Limited
Project	: 11205379-100

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report										
Laboratory sample ID	Client sample ID	Client sample ID Analyte CAS Number		Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier				
Physical Tests (QC Lot: 648051)															
WT2214174-006	11205379- BH16-22-SS2	conductivity (1:2 leachate)		E100-L	10.0	μS/cm	430	438	1.84%	20%					
Physical Tests (QC Lot: 648054)															
WT2214174-008	11205379- MW09-22	pH (1:2 soil:CaCl2-aq)		E108A	0.10	pH units	6.81	6.82	0.147%	5%					
Physical Tests (QC	Lot: 648056)														
WT2214174-007	11205379- BH17-22-SS2	oxidation-reduction potential [ORP]		E125	0.10	mV	350	430	20.5%	25%					
Physical Tests (QC	Lot: 648057)														
WT2214174-008	11205379- MW09-22	moisture		E144	0.25	%	6.16	6.68	8.05%	20%					
Leachable Anions 8	Nutrients (QC Lot: 648	052)													
WT2214174-006	11205379- BH16-22-SS2	sulfate, soluble ion content	14808-79-8	E236.SO4	20	mg/kg	116	118	1	Diff <2x LOR					
Leachable Anions 8	Nutrients (QC Lot: 648	053)													
WT2214174-006	11205379- BH16-22-SS2	chloride, soluble ion content	16887-00-6	E236.CI	5.0	mg/kg	83.2	83.3	0.136%	30%					

Page	: 3 of 4					
Work Order	der : WT2214174 : GHD Limited					
Client	: GHD Limited					
Project	: 11205379-100					

Method Blank (MB) Report

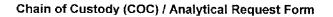
A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier					
Physical Tests (QCLot: 648051)										
conductivity (1:2 leachate)	E100-L	5	μS/cm	<5.00						
Physical Tests (QCLot: 648057)										
moisture	E144	0.25	%	<0.25						
Leachable Anions & Nutrients (QCLot: 6480	952)									
sulfate, soluble ion content	14808-79-8 E236.SO4	20	mg/kg	<20						
Leachable Anions & Nutrients (QCLot: 648053)										
chloride, soluble ion content	16887-00-6 E236.CI	5	mg/kg	<5.0						

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.


Sub-Matrix: Soil/Solid	Laboratory Control Sample (LCS) Report									
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS Low		High	Qualifier	
Physical Tests (QCLot: 648051)										
conductivity (1:2 leachate)		E100-L	5	µS/cm	1409 µS/cm	98.8	90.0	110		
Physical Tests (QCLot: 648054)										
pH (1:2 soil:CaCl2-aq)		E108A		pH units	7 pH units	100	98.0	102		
Physical Tests (QCLot: 648057)										
moisture		E144	0.25	%	50 %	101	90.0	110		
Leachable Anions & Nutrients (QCLot: 64	8052)									
sulfate, soluble ion content	14808-79-8	E236.SO4	20	mg/kg	5000 mg/kg	100	70.0	130		
Leachable Anions & Nutrients (QCLot: 64	8053)									
chloride, soluble ion content	16887-00-6	E236.Cl	5	mg/kg	5000 mg/kg	101	80.0	120		

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:						Reference Material (RM) Report								
				RM Target	Recovery (%)	Recovery L	.imits (%)							
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier					
Physical Tests (QCLot: 648051)														
	RM	conductivity (1:2 leachate)		E100-L	3239 µS/cm	100	70.0	130						
Physical Tests (Physical Tests (QCLot: 648056)													
	RM	oxidation-reduction potential [ORP]		E125	475 mV	102	80.0	120						
Leachable Anio	ns & Nutrients (QCLot: (648052)												
	RM	sulfate, soluble ion content	14808-79-8	E236.SO4	217 mg/kg	98.5	60.0	140						
Leachable Anio	ns & Nutrients (QCLot: (648053)												
	RM	chloride, soluble ion content	16887-00-6	E236.Cl	673 mg/kg	94.1	70.0	130						

COC Number: 22 -

Page of

Canada Toll Free: 1 800 668 9878

			Canada Toll	Free: 1 800 66	8 9878				• ay		01		*			_		n			
(ALS)										Er	viron	men	tal D	ivisio							
Report To	Contact and company name below will appear on the final report	1	Reports / /	Recipients		Turnaround Time (TAT) Requeste					Wateriou										
Company:	GHD Limited	Select Report Fo						Routine [R] if received by 3pm M-F - no surcharges at							WT2214174						
Contact:	Jennifer Balkwill							□ Routine [R] if received by 3pm M-F - 1to surcharges at □ 4 day [P4] if received by 3pm M-F - 20% rush surcharg							12	2.	•			RE	
Phone:	519-340-4286	Compare Results	Compare Results to Criteria on Report - provide details below if box checked				3 day [P3] if received by 3pm M-F - 25% rush surchan									an 16.		1111		RE	
	Company address below will appear on the final report	Select Distributio						if receive													
Street:	455 Phillip Street, Unit 100A	Email 1 or Fax	jennifer.balkwill@	ghd.com		□ 1 day [E] if received by 3pm M-F - 100% rush surcharg □ Same day [E2] if received by 10am M-S - 200% rush su															
City/Province:	Waterloo, Ontario	Email 2				Additional fees may apply to rush requests on wt							1.wt		1111	(1 17	. L			-	
Postal Code:	N2L 3X2	Email 3					Date and Time Required for all E&P TATs:					<u> </u>									
Invoice To	Same as Report To 🛛 YES 🗂 NO		Invoice R	lecipients					For all test	s with ru	sh TATs	requeste	d, ple		111 m)	• 510 f	a 8 6 6910			_	
	Copy of Invoice with Report 🔲 YES 🔲 NO	Select Invoice Di	istribution: []] EM	1AIL 🗌 MAIL [🗍 FAX							Anal	ysis	Teleph	one : +	1 010 -	866 6910			-	
Company:		Email 1 or Fax		- · · · · ·		Ř	Τ	India	ate Filter	ed (F), F	reserve	d (P) or	Filtere.			P) below	,	T	ΠH	ŝ	
Contact:		Email 2	Email 2													T.		-	R.	ğ	
	Project Information	Oil :	and Gas Require	d Fields (client	use)	11												7	ğ	8	
ALS Account #	# / Quote #:	AFE/Cost Center:		PO#		15													N N	ŝ	
Job#:	11205379-100	Major/Minor Code:		Routing Code:		CONTAINER												НОГВ	STORAGE REQUIRE	L H	
PO / AFE:	735-003472-1	Requisitioner:									Í							Ιĭ	R R		
LSD:		Location:												ł				N	STO	Ē	
ALS Lab Worl	k Order # (ALS use only):	ALS Contact: Sampler:			NUMBER	Ą					-						SAMPLES	EXTENDED	SUSPECTED HAZARD (see notes		
ALS Sample #	Sample Identification and/or Coordinates	•••• t	Date	Time	C	1 <u>₹</u>	Corrosivity											μ	E	SP	
(ALS use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ĩ	Š											SA	ШЩ.	SC	
1.44444	11205379 - BH/O - SS 2						x													1	
	11205379 - BH20- SS 2					-	<u> </u>									-		1			
	11205379 - MW17 - SSI				-	_			+		├──- 				\vdash	-+		+	<u></u> <u> </u> <u> </u>	<u> </u>	
	11205379 - MW/18-557			+	+				_		┢──╁	-+				-+		+-	\vdash	<u> </u>	
									_					_	$\left \right $	-+			[]	<u> </u>	
^{الم} ين (مرد الروز). <u>مرد المرد الروز (مرد المرد (مرد المرد (مرد المرد) مرد (مرد المرد) مرد المرد (مرد المرد) مرد المرد (م مرد المرد (مرد المرد (مرد (مرد</u>	<u> </u>					_			_	<u> </u>	\vdash	\rightarrow			<u> </u>		\rightarrow	—		 	
	11205379 - KH 16-27- SS2										\vdash	$ \rightarrow $	\rightarrow							L	
	11205379 - 3417-22-552																				
	11205379 - MW09 - 22											1									
والمعادية مرار																					
													-					1			
							++		_		\vdash	-+						+	┢─┦	┢──	
<u></u>					+	+	+			+	┝		\rightarrow		┝──┦	\rightarrow	<u> </u>		 	┣—	
· · · · · · · · · · · · · · · · · · ·					<u></u>					CANE				AILS (AL	ليبيا					<u> </u>	
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only)					Cool	ling Ma	thod: 🕻									<u></u>			<u></u>		
Are samples tak	en from a Regulated DW System?										,	····	- 	Notificati					ATED	منستسند • • • •	
						·····	tody Sea						imple Cu					<u></u>			
Gre samples for human consumption/ use?							TIAL CO	and the second second	10000						·	TEMPERA	and the second	5 🗆 N	l/A		
T YE	ES 🔲 NO							Section 2	100					27	Ť			.TURES	<u> </u>	نىسىند	
	A SHIPMENT RELEASE (client use)	. IN	ITTAL SHIPMENT	TRECEPTION (ALS use only)	1.00				F	NAL S	LIDM		CEPTIC	<u>I</u>	6				999. je	
Released by:	Date: Time:	and the second	ومناجعة والمحافظ والمسترج	Date:	Station -	Time		Receive	ed by:				Jaté:		2/14 (ML	.0 050	<u>ປແມ່ນ</u> ຕຳ	Tinie			
4	2011-09-13	- Andrese de la companya de la comp									1	M	14	-5	Q	-1	10	\mathcal{U})25	مسك	
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WH	ITE - LABORATOR	RY COPY YEL	LOW-	CLIEN	T COPY								-		the second second	FEB 2c:	22 FROM	

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY, By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ghd.com

\rightarrow The Power of Commitment