

Riverside South Development Corporation

Design Brief Phase 1

3700 Twin Falls Place, Riverside South

September 2023 Revised February 2024 Revised April 2, 2024 Revised April 25, 2024

Design Brief Phase 1

3700 Twin Falls Place, Riverside South

September 2023, Revised February 2024, Revised April 2, 2024, Revised April 25, 2024

Prepared By:

Arcadis Professional Services (Canada) Inc. 333 Preston Street, Suite 500 Ottawa, Ontario K1S 5N4 Canada

Phone: 613 225 1311

Our Ref: 136974

Lance Erion, P. Eng, Associate

Peter Spal, P. Eng, Associate Principal

Prepared For:

Riverside South Development Corporation

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

1	Intro	oduction	1
	1.1	Purpose	1
	1.2	Background	1
	1.3	Previous Studies	1
	1.4	Subject Property	2
	1.5	Phasing	2
	1.6	Existing Infrastructure	2
	1.7	Pre-Consultation	2
	1.8	Geotechnical Considerations	3
2	Wat	er Supply	4
	2.1	Existing Conditions	4
	2.2	Assessment of Adequacy of Public Services 3700 Twin Falls Place Riverside South (IBI Group,	
	•	t 2023)	
	2.3	Design Criteria	
	2.3.1		
	2.3.2	• • • • • • • • • • • • • • • • • • • •	
	2.3.3		
	2.3.4		
	2.3.5	•	
	2.4	Proposed Water Plan	
	2.4.1	· · · · · · · · · · · · · · · · · · ·	
	2.4.2	• • • • • • • • • • • • • • • • • • • •	
3	Was	tewater Collection	
	3.1	Existing Conditions	
		Assessment of Adequacy of Public Services 3700 Twin Falls Place Riverside South (IBI Group,	
	•	t 2023)	
	3.3	Design Criteria	
	3.4	Recommended Sanitary Plan	
4		mwater Management	
	4.1	Existing Conditions	1
	4.2 Augus	Assessment of Adequacy of Public Services 3700 Twin Falls Place Riverside South (IBI Group, t 2023)	1

	4.3	Storm Servicing Concept	11
	4.4	Regulatory Requirements and Design Targets	12
	4.4.1	Right-of-Way Water Quality	13
	4.5	Hydrological and Hydraulic Evaluation	13
	4.5.1	Hydrological Evaluation	13
	4.5.2	Results of Hydrological Evaluation	15
	4.5.3	Hydraulic Evaluation	16
	4.5.4	Results of Hydraulic Evaluation	17
5	Eros	sion and Sedimentation Control Plan	19
	5.1	General	19
	5.2	Trench Dewatering	19
	5.3	Seepage Barriers	19
	5.4	Surface Structure Filters	19
6	Con	clusions and Recommendations	20
Ī	abl	es	
Tá	able 2-1	Water Supply Boundary Conditions	6
Tá	able 2-2	Hydraulic model results	7
Tá	able 3-1	Minimum Sanitary Pipe Slopes per OSDG	10
Tá	able 4-1	Summary of subcatchment input parameters – Phase 1 3700 Twin Falls Place	15
Ta	able 4-2	Summary of subcatchment input parameters – External lands tributary to Phase 1 works	16
Tá	able 4-3	Summary of flow and water levels through proposed culverts	17
F	iau	ras	

Figures

- 1.1 Location Plan
- 1.2 Draft Plan
- 1.3 Location of Existing Infrastructure
- 1.4 Phasing

Appendices

- A Background Information and Figures
- **B Water Supply Supporting Information**
- **C Wastewater Collection Supporting Information**
- **D Stormwater Management Supporting Information**
- **E Erosion and Sedimentation Control Plan**

1 Introduction

1.1 Purpose

The purpose of this Design Brief is to provide stakeholder regulators with the project background together with the design philosophy and criteria for municipal roadway and site plan approvals. This report will provide logical framework to assist reviewers with evaluation of the design of the development.

1.2 Background

The Riverside South Community, formerly known as South Urban Community (SUC), is a part of the former City of Gloucester. The Council of the City of Gloucester adopted the first Official Plan for the community in September 1990. The original concept plan for the community served as the basis for both a Gloucester and a Regional OPA. A Master Drainage Plan (MDP) for the community was formulated in June 1992 based on the preliminary land use plan prepared by J. Bousfields and Associates Ltd. in December 1991.

The South Urban Community became a part of the City of Ottawa through amalgamation in 2001 and the new Official Plan of the City of Ottawa designated the areas as "General Urban Area" and "Employment Area" with some adjustments to the urban boundaries. In 2003, the City of Ottawa initiated a Community Design Plan (CDP) for the Riverside South area. The basis of the CDP is the land use plan for the community, which has evolved over the time and has changed significantly since the original plan prepared in early 1990's.

The South Urban Community River Ridge Master Infrastructure Plan (SUC RR MIP) prepared by Ainley Graham and Associates in 1994 presented a preferred servicing strategy for potable water, sanitary and storm infrastructure in the Riverside South community. The Riverside South Infrastructure Servicing Study Update (ISSU) was issued in 2008 as an update to the SUC RR MIP, to account for modifications to the MDP and CDP since 1994.

There have been significant revisions to the CDP, MDP and City of Ottawa Design Guidelines since 2008 so in June 2017, Stantec helped the City of Ottawa complete an update to the 2008 ISSU for a portion of the Riverside Community called Rideau River Area and which includes the lands proposed to be tributary to Pond 5. The 2017 Riverside South Community Infrastructure Servicing Study Update – Rideau River Area (2017 ISSU) report recognized the approved 2016 CDP which considers changes in land use planning and development densities in accordance with Official Plan objectives. For reference a copy of the 2016 Riverside South Community Design Plan – Land use Plan is included in **Appendix A**. The infrastructure analyses also accounted for existing sewer and infrastructure and the stormwater management pond within the study area.

1.3 Previous Studies

Since the South Urban Community and Riverside South Community have been planned and developed for over twenty five years, there have been numerous background studies dealing with major municipal infrastructure. The following reports, however, were referenced prior to completing this assessment:

Assessment of Adequacy of Public Services 3700 Twin Falls Place Riverside South – by IBI
 Group, August 2022. This report reviews and makes recommendations for water supply, wastewater

- collection provides a macro level servicing plan of the Mosquito Creek area of the Riverside South Community area. The study is currently under review.
- Riverside South Community Infrastructure Servicing Study Update Phase 1 Mosquito Creek Study
 Area by IBI, Stantec, GHD, Paterson Group and GEO Morphix, August 18, 2023. The report
 provides a macro level servicing plan of the Mosquito Creek area of the Riverside South Community area,
 building on the conclusions of the MDP Update.
- Riverside South Community Master Drainage Plan Update Mosquito Creek Study Area: Volume 1
 Existing Conditions Report (2020) and Volume 2 Master Drainage Plan Update (August 18, 2023) –
 by IBI, GHD, Paterson Group and GEO Morphix. The report provides the conceptual stormwater management infrastructure for the Mosquito Creek area.

1.4 Subject Property

The site is located north of Spratt Road and west of Limebank Road as shown on **Figure 1.1** Location Plan. The current draft plan of subdivision for the subject property is shown on **Figure 1.2** which consists of 20 blocks with 3 local roads and the Leitrim Road realignment. Leitrim Road will be a fully urbanized roadway while the local streets will have a rural road section with sidewalks on one side. There is an existing high tension power line running in a northeast direction from the Spratt/Limebank intersection.

1.5 Phasing

Phase 1 of the 3700 Twin Falls development includes Street No. 1 (Gastops Street), the Re-alignment of Leitrim Road and a small portion of Street No. 3 at the northwest corner including the SWM outlet in Block 18 as shown on **Figure 1.4** Phasing Plan. The Leitrim Re-alignment is being constructed on interim basis as a 2 lane rural road with a sidewalk per the local sections, the interim road is named Mosquito Drive. Phase 1-A consists of Block 2 adjacent to Limebank Road with an area of 2.79 hectares. Development of Block 2 requires the construction of the Mosquito Drive from Limebank Road to Gastops Street and Gastops Street along the Block 2 frontage with a turning circle at the north end. As part of Phase 1-A the ditches need to be extended in the remainder of the Phase 1 lands, referred as Phase 1-B, and the SWM outlet in Block 18 will be constructed, access roads will be constructed adjacent to the ditches and the SWM outlet.

1.6 Existing Infrastructure

Figure 1.3 shows the location of existing infrastructure in the vicinity of the site. There is a 375 mm sanitary sewer and a 305 mm watermain on Limebank Road. A 375 mm sanitary stub and 300 mm watermain stub has been provided to service the 3700 Twin Falls development however they are located approximately 75 meters north of the proposed Limebank/Leitrim intersection and will need to be decommissioned. While there is a storm sewer on Limebank Road, all the stormwater runoff from the site will be directed to Mosquito Creek.

1.7 Pre-Consultation

There was a pre-consultation meeting with the City of Ottawa for the employment lands on February 18, 2020 however, no notes were issued.

1.8 Geotechnical Considerations

The subject lands are included in the:

 Report No. PG4958-2, Revision 3 July 28, 2023 Geotechnical Investigation Proposed Commercial Development, Employment Lands – Riverside South Development Corporation by Paterson Group.

Generally, the site is relatively flat sloping in the south and west direction. The subsurface profile includes a topsoil layer underlain by a deep silty clay deposit. The reports give a permissible grade raise of 2 meters for the 3700 Twin Falls development including Block 2. Drawing PG4958-9 Remissible Grade Raise Plan ids included in **Appendix A**.

2 Water Supply

2.1 Existing Conditions

As noted in **Section 1.5** there is an existing 305 mm watermain on Limebank Road, an existing 305mm stub was provided for the development however it is located approximately 75 meters north of the proposed Limebank/Leitrim intersection and will need to be decommissioned. **Figure 1.3** shows the location of the existing watermains.

2.2 Assessment of Adequacy of Public Services 3700 Twin Falls Place Riverside South (IBI Group, August 2023)

A hydraulic model of the water system for 3700 Twin Falls Place was conducted in the Assessment of Adequacy of Public Services report using boundary conditions provided by the City of Ottawa. A 305 mm watermain is proposed on Leitrim Road Re-alignment with connection to the existing 305 mm watermain on Limebank Road in accordance with the 2022 Infrastructure Servicing Update Phase 1 for the Mosquito Creek Area. In order to provide two watermain feeds to the 3700 Twin Falls Place development, a second watermain on Limebank Road is proposed that will be installed on the west side of the road paralleling the existing 305 mm watermain on the east side of the road and connecting to an existing watermain on Spratt Road. **Figure 2.1** Conceptual Water Services from the Assessment of Adequacy of Public Services report is included in **Appendix B**.

2.3 Design Criteria

2.3.1 Water Demands

Water demands for the site are based on per unit population density and consumption rates taken from Tables 4.1 and 4.2 of the City of Ottawa Design Guidelines – Water Distribution and are summarized as follows:

•	Single Family	3.4 person per unit
•	Townhouse and Semi-Detached	2.7 person per unit
•	Average Apartment	1.8 person per unit
•	Residential Average Day Demand	280 l/cap/day
•	Residential Peak Daily Demand	700 l/cap/day
•	Residential Peak Hour Demand	1540 l/cap/day
•	Light Industrial Day Demand	35,000 l/ha/day
•	Light Industrial Peak Daily Demand	52,500 l/ha/day
•	Light Industrial Peak Hour Demand	94,500 l/ha/day

A water demand for Phase 1 was calculated using the Concept Plan per Figure 1.3 in Appendix A and using a light industrial rate for the commercial and office building.

•	Average Day	11.04 l/s
•	Maximum Day	16.56 l/s
•	Peak Hour	29.81 l/s

For Phase 1-A an average water demand for Block 2 would be 1.1 l/s based on a light industrial area of 2.79 hectares however Section 4.3.1 of the City of Ottawa Design Guidelines – Water Distribution requires two feedermains for a service area with a basic demand of 50 m³/day (0.58 l/s) or greater. As it is not proposed to construct the second watermain on Limebank Road as outlined in **Section 2.2** the Phase 1 development will be limited to a basic day demand of 0.58 l/s. The water demands for Phase 1 are summarized as follows;

•	Average Day	0.58 l/s
•	Maximum Day	0.87 l/s
•	Peak Hour	1.57 l/s

2.3.2 System Pressure

The Ottawa Design Guidelines – Water Distribution (WDG001), July 2010, City of Ottawa, Clause 4.2.2 states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in Clause 4.2.2 of the guidelines are as follows:

Minimum Pressure	Minimum system pre	essure under peak hour	r demand conditions s	shall not be less than 276

kPa (40 psi)

Fire Flow During the period of maximum day demand, the system pressure shall not be less than

140 kPa (20 psi) during a fire flow event.

Maximum Pressure Maximum pressure at any point in the distribution system shall not exceed 689 kPa (100

psi). In accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls will be required for buildings where it is not possible/feasible to maintain the system pressure below 552

kPa.

Water Age A total travel time of 5 days or less during basic day demand is reasonable. A residence

time of 8 days should not be exceeded.

2.3.3 Fire Flow Rates

There are no proposed building layouts for the subject lands at this time. The boundary conditions in **Section 2.3.4** have conditions for a 10,000 l/min and a 13,000 l/min fire demand to evaluate the fire flow rates that can be accommodated on the site.

2.3.4 Boundary Conditions

The City of Ottawa has provided two boundary conditions at the watermain connection locations for the 300 mm diameter Limebank Road at Spratt Road and on the existing watermain on Spratt Road west of the Limebank intersection. Boundary conditions are provided for the existing pressure zone and for the SUC Zone

Reconstruction. A copy of the boundary condition is included in **Appendix B** and summarized as follows for the two adjacent locations.

Table 2-1 Water Supply Boundary Conditions

	Connection 1 Existing Zone	Connection 1 SUC Zone	Connection 2 Existing Zone	Connection 2 SUC Zone
Max HGL (Basic Day)	131.8 m	148.4 m	131.8 m	148.4 m
Peak Hour	125.3 m	145.7 m	125.3 m	145.8 m
Max Day + Fire (10,000 l/min Fire Flow)	126.4 m	145.1 m	127.4 m	146.2 m
Max Day + Fire (13,000 l/min Fire Flow)	125.3 m	144.2 m	126.8 m	145.8 m

2.3.5 Hydraulic Model

A computer model has been created for the subject site using the InfoWater 12.4 program. The model includes the hydraulic boundary condition at the connection to the existing watermain on Limebank Road which is identified as Connection 2 in section 2.3.4.

2.4 Proposed Water Plan

2.4.1 Watermain Layout

For Phase 1-A a 305 mm watermain is proposed on Mosquito Drive per the RSCISSU-Phase 1 Mosquito Creek Area, the watermain connects to the existing 305 mm watermain on Limebank Road and is extended west to Gastops Street. On Gastops Street a 203 mm watermain will be extended north along the frontage of Block 2, a temporary flusher unit per Detail W3.2 at the north end. For the remainder of Phase 1 (Phase 1-B) the watermain on Mosquito Drive will be extended to the north limit of the site and the 203mm watermain on Gastops will be extended west to Mosquito Drive. A connection to the second watermain feed is proposed south of Mosquito Drive running adjacent to the Hydro One corridor and running along the south limit of the future block. The watermain is capped at the Limebank Road ROW and a gravel access road will be constructed over the main. As Phase 1-B is not planned to be constructed in the near future it is not proposed to construct the second watermain along Limebank Road to Spratt Road at this time as another developer may construct it for development east of Limebank Road. It is acknowledged that Phase 1-B cannot be constructed without the second watermain feed in place.

2.4.2 Modeling Results

The hydraulic model was run under basic day, maximum day with fire flows and under peak hour conditions for both the overall Phase 1 and Phase 1-A. Water pipes are sized to provide sufficient pressure and to deliver the required fire flows.

Results of the hydraulic model are included in **Appendix B**, and summarized as follows:

Table 2-2 Hydraulic model results

Phase	Scenario	Existing Zone	SUC Zone Reconfiguration
Phase 1	Basic Day (Max HGL) Pressure Range	381.8 to 395.8 kPa	544.5 to 558.0 kPa
	Basic Day Water Age	N/A	N/A
	Peak Hour Pressure Range	316.3 to 328.9 kPa	517.0 to 529.5 kPa
	Max Day + 10,000 l/min Fire Flow Minimum Design Flow Available @ 140 kPa Residual Pressure	155.4 l/s	N/A
	Max Day + 13,000 l/min Fire Flow Minimum Design Flow Available @ 140 kPa Residual Pressure	152.1 l/s	221.5 l/s
Phase 1A	Basic Day (Max HGL) Pressure Range	382.2 to 393.9 kPa	544.8 to 550.7 kPa
	Basic Day Water Age	27.2 hours	27.2 hours
	Peak Hour Pressure Range	318.5 to 330.2 kPa	519.3 to 531.1 kPa
	Max Day + 10,000 l/min Fire Flow Minimum Design Flow Available @ 140 kPa Residual Pressure	100.3 l/s	142.5 l/s

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure Under existing conditions and under the SUC Zone Reconfiguration all nodes in Phase 1

including Phase 1-A have basic day pressures less than 552 kPa. Pressure reducing

control will not be required for Phase 1.

Minimum Pressure All nodes under both scenarios exceed the minimum value of 276 kPa (40 psi).

Fire Flow For Phase 1 under the existing boundary conditions with the 10,000 l/min (167.7 l/s) fire

there are 3 nodes on Gastops which do not meet the design fire flow, the maximum fire flow available @ 140 kPa residual pressure is 155.4 l/s. There are 6 nodes that do not meet the design flow under the 13,000 l/min (216.7 l/s) design flow scenario with the maximum fire flow of 152.1 l/s available @ 140 kPa residual pressure. Under the SUC zone reconfiguration all nodes can meet the design fire flow with a residual system pressure of

140 kPa therefore under existing conditions the building type will need to match the fire flows available.

For Phase 1-A under the existing boundary conditions with the 10,000 l/min (167.7 l/s) fire, the design fire flow available @ 140 kPa residual pressure varies from 100.3 l/s at the most northerly hydrant location on Gastops Street to 222.4 l/s at the hydrant adjacent to Limebank Road. As Phase 1-A is a serviced from a single watermain feed an analysis using the methodology of Technical Bulletin ISTB-2018-02 Appendix I - Guideline on Coordination of Hydrant Placement with Required Fire Flow has been undertaken. Under existing conditions, a fire flow of 5,700 l/min is applied to the hydrant node H2 on Leitrim Road which represents a hydrant within 75 meters from a building and a flow of 3,800 l/min is applied to hydrant node H3 on the south end of Gastops Street which represents a hydrant between 75 to 150 meters from a building. The water model is run with the two flows added and the minimum residual pressure is 197.4 kPa which is greater than the required minimum pressure of 140 kPa per Section 2.3.2. Based on this result a building within 100 m from the hydrants on Leitrim Road and within 150 meters from the southern hydrant on Gastops Street a combined fire flow of 9,500 l/min (158.3 l/s) is available under existing conditions. A building located further than 100 m north of Leitrim would have a lower fire flow, undertaking the same analysis for hydrant nodes H4 and H5 at the north end of Gastops a flow of 3,800 l/min is applied to node H4 however a flow of 2,910 l/min can only be applied to node H5 to maintain a residual pressure of 140 kPa so that a building situated at the north end of the site may have only a 6,720 l/min fire flow available under existing conditions. Under the SUC Zone Reconfiguration the analysis is conducted at hydrant nodes H4 and H5 which results in a residual pressure of 146.7 kPa for the 9,500 I/min fire flow, therefore after the SUC Zone Reconfiguration a building situated at the south end of Block 2 will have an available fire flow of 9,500 l/min (158.3 l/s). When the second watermain feed on Limebank Road is constructed and the watermain on Gastops Street is looped the fire flows will increase substantially, in the Assessment of Adequacy of Public Services 3700 Twin Falls Place a fireflow of 13,000 I/min (216.7 I/s) is available at Block 2 under the SUC Zone Reconfiguration. The location, size and type of future building will determine the fire flow demand, using fire resistive building materials, sprinkler systems and possible firewalls the fire demand for a large building can be lower than 10,000 l/min.

Water Age

Phase 1 has two water connections from Limeback Road and is a looped system so water age was not analyzed. In Phase 1-A with one watermain connection under existing and future conditions the water age for the northerly node on Gastops Street is 27.2 hours from the boundary condition at Limebank and Spratt Roads with a demand of 0.58 l/s. A lower demand for Block 2 will result in a longer water age, a flushing unit per City Detail W3.2 is proposed at the end of the Phase 1-A watermain on Gastops Street.

3 Wastewater Collection

3.1 Existing Conditions

As noted in **Section 1.5**, there is an existing 375 mm sanitary sewer on Limebank Road, an existing 375 mm stub was provided for the development however it is located approximately 75 meters north of the proposed Limebank/Leitrim intersection and will need to be decommissioned. **Figure 1.3** shows the location of the existing watermains.

3.2 Assessment of Adequacy of Public Services 3700 Twin Falls Place Riverside South (IBI Group, August 2023)

As stated in the Assessment of Adequacy report the 2022 Infrastructure Servicing Update Phase 1 for the Mosquito Creek Area Infrastructure Servicing Study Update provided a macro level wastewater servicing plan for the 3700 Twin Falls Place development known as the Employment Lands in the Study Update. Major sanitary sewers are shown on Figure 400 Sanitary Drainage Area Plan, a copy of the drainage plan and the Sanitary Sewer Design Sheet is included in **Appendix C** with the Employment Lands areas highlighted on the design sheet. The Employment Lands is represented by Area 136A in the Phase 1 ISSU, the site outlets to the existing 375 mm sanitary sewer on Limebank Road via a 375 mm sanitary sewer on the Leitrim Road Re-alignment. **Figure 3.1** in **Appendix C** shows the Conceptual Sanitary Plan for the 3700 Twin Falls Place development.

3.3 Design Criteria

The estimated wastewater flows from the subject site are based on the revised City of Ottawa design criteria. Among other items, these include:

Average residential flow = 280 l/c/d

Peak residential flow factor
 = (Harmon Formula) x 0.80

Average commercial flow = 28,000 l/s/ha
 Average institutional flow = 28,000 l/s/ha
 Average Industrial flow = 35,000 l/s/ha

Peak ICI flow factor = 1.0 if ICI area is ≤ 20% total area

= 1.5 if ICI area is > 20% total area

Inflow and Infiltration Rate = 0.33 l/s/ha
 Minimum Full Flow Velocity = 0.60 m/s
 Maximum Full Flow Velocity = 3.0 m/s

Minimum Pipe Size = 200 mm diameter

In accordance with the City of Ottawa Sewer Design Guidelines Table 4.2, the following density rates are estimated for the subject site:

Single units = 3.4Semi units = 2.7

Design Brief Phase 1 3700 Twin Falls Place, Riverside South

Townhouse and back to back units = 2.7

• Apartment units = 1.8

Minimum allowable pipe slopes are presented in the below table.

Table 3-1 Minimum Sanitary Pipe Slopes per OSDG

Pipe Diameter (mm)	Slope (%)
200	0.320
250	0.240
300	0.186
375	0.140
450	0.111
525 and larger	0.100

3.4 Recommended Sanitary Plan

For Phase 1 a 375 mm sanitary sewer is proposed on Mosquito Drive connecting to the existing 375 mm sanitary sewer on Limebank Road per the RSCISSU-Phase 1 Mosquito Creek Area. After the stub to Future Street No. 2 the pipe sizes are reduced based on the design flows. A 200 mm sanitary sewer is proposed on the north/south and west/east legs of Gastops Street connecting to the Mosquito Drive sewer at both ends. A copy of the sanitary sewer design sheet and sanitary drainage area plan is included in **Appendix C**

During construction, a temporary inlet control device (ICD) will be placed in MH 120A which is the first MH upstream of the outlet to prevent excessive groundwater from entering the existing system during construction. The ICD will remain in place until preliminary acceptance at which time it will be removed. Calculations are included in **Appendix C** in which the size of the ICD is based on the allotted flow for the full development with the hydraulic head set at finished grade.

4 Stormwater Management

4.1 Existing Conditions

Runoff from Phase 1 drains to Mosquito Creek, either via Tributary 3 or 4.

4.2 Assessment of Adequacy of Public Services 3700 Twin Falls Place Riverside South (IBI Group, August 2023)

The storm servicing of 3700 Twin Falls Place was outlined in the Assessment of Adequacy of Public Services Report, including a PCSWMM evaluation to support the conceptual design of the on-site SWM measures, the ditch network and the dual drainage of the ultimate build out of Leitrim Road.

The 2023 Phase 1 ISSU and Assessment of Adequacy of Public Services Report built upon the recommendations of the 2021 MDP Update, with a refinement to the future ultimate Leitrim Road right-of-way (ROW) to an urbanized cross-section complete with storm sewer, following input from the City. Otherwise, the drainage system for the subject site is comprised of a ditch conveyance network. Local streets are provided with one sidewalk. Catch basins will be installed on the side of the street provided with the sidewalk, outletting to the road-side ditch. The drainage system (the ditch network and associated culverts) was designed assuming that the infiltration component of the development block's on-site SWM measure was fully saturated with groundwater and therefore no benefit was applied in the sizing of the SWM measure itself or the conveyance network.

Refer to Drawing 500 Storm Drainage Area Plan from the Phase 1 ISSU enclosed in **Appendix D** which outlines the proposed conveyance network.

4.3 Storm Servicing Concept

The storm servicing concept for Phase 1 3700 Twin Falls Place remains generally consistent with that outlined in the Phase 1 ISSU and APSR; however, given that the timing for the overall realignment of Leitrim Road, now referred to as Mosquito Drive, is unknown, an interim cross-section is being proposed (refer to **Drawing 136974-011**). The interim cross-section is provided with ditches on the southwestern side and a sidewalk on the northeastern side. The ditch extends within the ultimate Mosquito Drive right-of-way to Tributary 4. Ditches on Gastops Street tie-in to the interim Mosquito Drive ditch at two locations. The location of the ditch tie-in to Tributary 4 is the same as that proposed under ultimate build out conditions in the Phase 1 ISSU and APSR. Frequent flows in the ditch will be diverted to an oil-grit separator, prior to tying-in to Tributary 4, a refinement from the ISSU and APSR. Whereas the Phase 1 Mosquito Drive right-of-way is interim, Phase 1 of Gastops Street is being provided with the ultimate right-of-way and the ditches are considered permanent.

Per the Phase 1 ISSU and APSR, water quality treatment for the development blocks is being provided via on-site SWM measures at each block. For further information on the proposed on-site SWM measures at each block, which include water quantity, quality and LID features, please refer to the conceptual design outlined in the Phase 1 ISSU and APSR. Detailed design of the measures will be completed for the individual site plans supporting each development block.

Runoff from roads will be collected directly and treated via filtration by the typical roadside ditches, with further treatment provided by the end-of-ditch oil-grit separator (OGS). A high point is proposed in the outlet ditch that will divert frequent runoff (corresponding to the 25 mm storm event, considered the water quality event) to the OGS unit for water quality treatment. Treated runoff will outlet to the ditch approximately 20 m downstream. Flow greater than the 25 mm event cascades over a high point in the ditch, bypassing the OGS unit. Refer to **Drawing 136974-105** for the plan and profile of the end-of-ditch configuration, with further details on **Drawing 136974-203** and **710**.

It should be noted that under full build out conditions of the 3700 Twin Falls site, presented in the APSR, an OGS is proposed for water quality treatment of the runoff conveyed by the future pipe in Mosquito Drive. At the time of the design of such conditions, the configuration of the two OGS units can be reviewed, with the opportunity to combine the units explored. The configuration of the OGS unit servicing the ditch proposed in this report will allow for the installation of the pipe and OGS as outlined in the APSR.

The proposed works tie-in to a southeasterly reach of Tributary 4. Rip rap protection of the Phase 1 ditch is proposed at its downstream end and as it ties-in to the existing reach (refer to **Drawings 136974-105** and **203**). Based on similar project experience, the outside bends within this receiving reach may be prone to erosion, and a vegetated rip rap treatment is proposed on the side slopes of these locations. The potential locations and the proposed treatment are presented on **Drawing 136974-710**. Given the banks of the reach are maturely vegetated, it is recommended that following construction and spring freshet conditions, these locations be field assessed by the fluvial geomorphologist, and the proposed erosion mitigation measures be adjusted accordingly.

4.4 Regulatory Requirements and Design Targets

The 2021 MDP Update outlined regulatory requirements and design targets for proposed development tributary to Mosquito Creek within the existing CDP lands. This section discusses regulatory requirements with respect to erosion control, water budget and water quality control.

The MDP Update was completed and approved with LIDs incorporated in the erosion analysis. This was reviewed and updated in the Phase 1 ISSU; during the review process the City of Ottawa expressed reservation related to LIDs that rely on infiltration in clay soils and the LIDs were then removed from the Phase 1 ISSU analysis for the infrastructure sizing and erosion analysis. The latter indicated that no erosion mitigation measures are required for the Phase 1 build out, which includes 3700 Twin Falls Place.

The water balance established in the MDP Update reflected a scenario without LIDs and a scenario with LIDs. The water budget concluded that across the entire MDP study area, the runoff volume is anticipated to increase by 101%. With the implementation of LIDs, that increase would be 66%. The water budget was refined for the Phase 1 ISSU and APSR, based on the advancement of the Phase 1 design, including that of 3700 Twin Falls. The LIDs considered within 3700 Twin Falls Place were those on the development blocks. Referring to Appendix D of the APSR, the updated water budget indicates that, accounting for LIDs, the overall increase in runoff volume is 62%.

In terms of quality control, the target is that an Enhanced Level of Protection be provided, which corresponds to long term 80% TSS removal. As noted above, across 3700 Twin Falls Place, it is proposed that water quality control be provided for the blocks via the on-site SWM measures; for the right-of-way via roadside ditches and an end-of-ditch oil grit separator; and ultimately the storm sewer servicing urbanized Mosquito Drive would be provided with an end-of-pipe oil grit separator.

4.4.1 Right-of-Way Water Quality

Water quality treatment for the right-of-way is proposed to be provided via the roadside ditches and an end-of-ditch oil grit separator. The latter has been sized to provide treatment of the rights-of-way for the full 3700 Twin Falls development under long-term interim conditions (that is, prior to the construction of urbanized Mosquito Drive and accompanying storm sewer), considered to be the most conservative development conditions. It assumes that any contributing runoff from external lands, such as development east of Limebank Road, is treated. The unit has been sized for 80% TSS removal, acknowledging that there is also treatment provided in the upstream ditches. Refer to manufacturer OGS sizing report in **Appendix D**. Per the manufacturer's website, the unit "removes oil, trash and TSS (suspended solids and their associated metals, nutrients, bacteria), from stormwater runoff".

4.5 Hydrological and Hydraulic Evaluation

The PCSWMM modeling completed to reflect the Phase 1 development is based on the modeling completed for the Phase 1 ISSU. The boundary condition at the confluence of Tributary 4 in Mosquito Creek has been considered as a fixed elevation as determined in the ISSU modeling.

Mosquito Drive, Gastops Street, a portion of Street 3 as well as blocks fronting them have been considered as developed in this evaluation for conservatism in ditch sizing. External areas flowing to Tributary 4 have been extracted from the City of Ottawa's existing conditions PCSWMM model and included in the evaluation. Under existing conditions, it should be noted that lands east of Limebank Road do not drain to the subject site. The storm drainage area plan supporting the PCSWMM modeling is provided on **Drawing 136974-500** in **Appendix D**

An additional scenario supporting the sizing of the OGS unit was considered. In this scenario, Street 3 and the blocks fronting it (all of which are external to Phase 1) have been considered as developed and have been modeled, consistent with the APSR. A schematic of the PCSWMM model is included in **Appendix D**. Refer to the APSR for modeling details.

4.5.1 Hydrological Evaluation

Selected modeling routines and input parameters are discussed in the following sections. Model files are included in the digital submission.

Storm and Drainage Area Parameters

The main hydrological parameters are presented in Table 4-1 for Phase 1 drainage areas and Table 4-2 for external lands tributary to Phase 1 works.

- Design Storms: The following storms were applied in the evaluation:
 - 13 mm 4 hour Chicago and 25 mm 4 hour Chicago for performance of on-site SWM measures
 - o 100 year 3 hour Chicago storm events (10 minute time step); and
 - 100 year 24 hour SCS Type II storm events.
- Area: Phase 1 was divided into sub-drainage areas based on the proposed drainage scheme. Development blocks, runoff from which will be intercepted by the Phase 1 ditches along Gastops Street, have been delineated based on the latest draft plan. Lands external to Phase 1 that will have runoff

intercepted by the associated ditches have been delineated per available LiDAR. Refer to the storm drainage area plan supporting the PCSWMM modeling on **Drawing 136974-500** in **Appendix D**.

It should be noted that given that the ditches proposed for Phase 1 works are intended to be permanent, development blocks that could be serviced by the proposed ditches have been considered under post-development conditions.

- **Imperviousness**: PCSWMM provides an opportunity to specify the imperviousness of subcatchments. For this evaluation, an imperviousness of 93% and 70% for developed blocks and roadways respectively have been carried (consistent with the Phase 1 ISSU and APSR). For undeveloped lands, imperviousness consistent with the City's existing conditions PCSWMM model has been used.
- Infiltration: Infiltration losses were selected to be consistent with the OSDG. The Horton values are as follows: Max. infiltration rate = 76.2 mm/h, Min. infiltration rate = 13.2 mm/h, Decay constant = 4.14 1/hr. For undeveloped subcatchments, values consistent with the City of Ottawa's existing conditions model have been used.
- **Subcatchment Width:** The catchment width was based on the estimated conveyance route length of the drainage area and multiplied by two. The multiplier of two was only used if the drainage area had runoff contribution from both sides of the drainage area. This approach is consistent with the OSDG.
- **Slope:** The average surface slope was based upon the average slope for both impervious and pervious area. An average slope of 1% has been used for subcatchment flow routing.
- Initial Abstraction (Detention Storage): Detention storage depths of 1.57 mm and 4.67 mm were used for impervious and pervious areas, respectively. These values are consistent with the OSDG. For undeveloped subcatchments, values consistent with the City of Ottawa's existing conditions model have been used.
- Manning's Roughness: Manning's roughness coefficients of 0.013 and 0.250 are being applied for impervious and pervious areas, respectively.
- Baseflow: No baseflow components were assumed for any of the areas contributing runoff to the minor system within the PCSWMM model.
- Combined SWM Measures: The conceptual combined SWM measures were evaluated in the Phase 1 ISSU and carried forward to the APSR and the Phase 1 detailed design. On-site storage in the proposed SWM measures proposed at the development blocks has been considered at 600 cu-m/ha. The measures are provided with an overland outlet through a shallow depression tying-in to the proposed roadside ditch network, which itself outlets to Tributary 4. Flow connectivity is indicated on **Drawing 136974-500**. Further details on the conceptual design of the measures are provided in the Phase 1 ISSU and APSR and detailed design will be completed for the individual site plans supporting each development block.

Summary of Modeling Files

The following is a reference list of the PCSWMM files enclosed in digital submission.

- 13 mm 4 hour Chicago EMP-RSDC-PH1 4H13MM V03-NOLID.PCZ
- 25 mm 4 hour Chicago EMP-RSDC-PH1_4H25MM_V03-NOLID.PCZ
- 100 year 3 hour Chicago EMP-RSDC-PH1 3H100CHI V03-NOLID.PCZ
- 100 year 24 hour SCS EMP-RSDC-PH1 24H100SCS V03-NOLID.PCZ

The file supporting the OGS sizing:

25 mm 4 hour Chicago – EMP-RSDC-PH1_4H25MM_V03WQ-NOLID.PCZ

4.5.2 Results of Hydrological Evaluation

A summary of input parameters and 100 year flows from drainage areas to the conveyance network is presented in the below table.

No ponding is expected during the 2 year storm on the proposed roads. The flow of the largest roadway drainage area serviced by a catch basin during the 2 year storm is 17 l/s. The capture of the catch basin is restricted by the lead which has a capacity of 85 l/s, refer to supporting calculations in **Appendix D**.

Table 4-1 Summary of subcatchment input parameters – Phase 1 3700 Twin Falls Place

Catchment ID	Land Use	Area (ha)	Imp (%)	Width (m)	Available Surface Storage for Development Areas ⁽¹⁾ (cu-m/ha)	100 year Flow to Conveyance Network (I/s) (3 hour Chicago Storm)
4_B1	IL	3.70	93	180	600	72
4_B2	IL	2.75	93	200	600	54
4_B3	IL	5.11	93	420	600	100
4_B4	IL	2.81	93	250	600	55
4_B5	IL	1.16	93	180	600	23
4_B6	IL	1.67	93	200	600	33
4_R1_3-1	RD	0.15	70	138	N/A	71
4_R1_3-2	RD	0.20	70	179	N/A	92
4_R1_4-1	RD	0.15	70	140	N/A	72
4_R1_4-2	RD	0.18	70	159	N/A	82
4_R4_1	RD	0.46	70	286	N/A	211
4_R4_2	RD	0.89	70	558	N/A	410
4_R4_3	RD	0.90	70	562	N/A	413
4_R4_4	RD	0.36	70	224	N/A	400

⁽¹⁾ Within the Industrial and Logistics (IL) land use tributary to Tributary 4, this storage is proposed to be provided in the on-site SWM measure.

Table 4-2 Summary of subcatchment input parameters – External lands tributary to Phase 1 works

Catchment ID	Land Use	Area (ha)	Imp (%)	Width (m)	Available Surface Storage for Development Areas ⁽¹⁾ (cu-m/ha)	100 year Flow to Conveyance Network (I/s) (3 hour Chicago Storm)
4_B7	IL	0.82	93	200	600	16
4_B8	IL	1.04	93	200	600	21
4_B9	IL	1.38	93	260	600	27
4_B10	IL	1.31	93	200	600	26
4_S15	IL	3.43	93	320	600	67
4_R1_1-1	RD	0.15	70	140	N/A	72
4_R1_1-2	RD	0.18	70	162	N/A	83
4_R1_2-1	RD	0.21	70	189	N/A	97
4_R1_2-2	RD	0.24	70	217	N/A	111
4_R3_1-1	RD	0.14	70	128	N/A	66
4_R3_1-2	RD	0.18	70	162	N/A	83
4_R4_5	RD	0.76	70	478	N/A	352
1	Existing	0.15	0.11 ⁽²⁾	70	N/A	71
2	Existing	0.63	0.11 ⁽²⁾	126	N/A	66
3	Existing	0.31	0.11 ⁽²⁾	9	N/A	7

⁽¹⁾ Within the Industrial and Logistics (IL) land use tributary to Tributary 4, this storage is proposed to be provided in the on-site SWM measure. (2) Per City of Ottawa existing conditions model.

4.5.3 Hydraulic Evaluation

Runoff from the roads and outflow from the on-site SWM measures cascade to a ditch network that outlets to Tributary 4. There are two culverts crossing Mosquito Drive, and four culverts crossing service roads. The proposed network is presented schematically on **Drawing 136974-500** and in detail on **Drawings 136974-100-105**.

The elevation of the ditches generally follows existing terrain. The overall longitudinal slope of the subdivision ditches ranges from 0.1% to 0.5%. Ditches are proposed with a v-notch geometry with 3H:1V. The ditches are located within the Phase 1 right-of-way.

4.5.4 Results of Hydraulic Evaluation

Resulting water levels are contained within the Phase 1 right of way. Should individual site plans incorporate building elements such as depressed loading a corresponding minimum building elevation 0.3 m above adjacent 100 year surface elevation should be considered.

Flow and water levels through culverts for the 100-year storm event are tabulated in Table 4-3 below. Water surface elevations are also indicated on the ditch profiles on **Drawings 136974-100-105**. The 100 year depth of flow throughout the subdivision ditch network ranges from 0.29 m to 1.06 m, with an average depth of 0.69 m. Through Block 18 (the outlet), the 100 year water level falls from 89.66 m to 88.74 m at the tie-in to Tributary 4. Adequate freeboard to the top of bank is maintained through the outlet block, with the top of bank ranging from 90.00 m to 90.25 m.

During the 100-year storm event, culverts 4C-30-1, 4C-28-1, 4C-24-1, 4C-10-1, and 4C-05-2 are surcharged; however, there are no locations where road overtopping occurs.

Table 4-3 Summary of flow and water levels through proposed culverts

Location	PCSWMM Conduit		Geometry		100 Year Peak Flow	Proposed Centerline	100 Year Water Surface Elevation (m)	
	Conduit				(l/s)	Grade (m)	U/S	D/S
Crossing Mosquito Drive, just west of Limebank	4C-33	CSP	Circular	0.6 m	238	92.10	91.22	91.00
On Mosquito Drive, in vicinity of hydro corridor	4C-30-1	CSP	Circular	0.6 m	263	91.75	91.00	90.88
On Mosquito Drive, at future Street 2	4C-28-1	CSP	Circular	0.6 m	342	91.55	90.87	90.70
Crossing Gastops at Mosquito Drive	4C-24-1	CSP	Circular	0.6 m	445	91.15	90.68	90.42
Crossing Mosquito Drive at Gastops	4C-10-1	CSP	Circular	0.6 m	269	91.10	90.67	90.42

Design Brief Phase 1 3700 Twin Falls Place, Riverside South

Location	PCSWMM Conduit	Material	aterial Geometry Peak Centerline		Proposed Centerline	100 Year Water Surface Elevation (m)		
	Conduit				Flow (I/s)	Grade (m)	U/S	D/S
On Mosquito Drive upstream of outlet	4C-05-2	CSP	Circular	0.8 m	877	91.00	90.39	89.81

5 Erosion and Sedimentation Control Plan

5.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- Until the local storm sewers are constructed, groundwater in trenches will be pumped into a filter
 mechanism prior to release to the environment. After sewer construction any construction dewatering will
 be routed to the nearest storm sewer;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches;
- sediment capture filter socks will remain on open surface structures such as maintenance holes and catchbasins until these structures are commissioned and put into use; and
- silt fence on the site perimeter.

5.2 Trench Dewatering

Any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed, including sediment removal and disposal and material replacement as needed.

A Permit to Take Water (PTTW) is in place for this project and adjacent projects. The contractor will be required to meet all the requirements of the PTTW.

5.3 Seepage Barriers

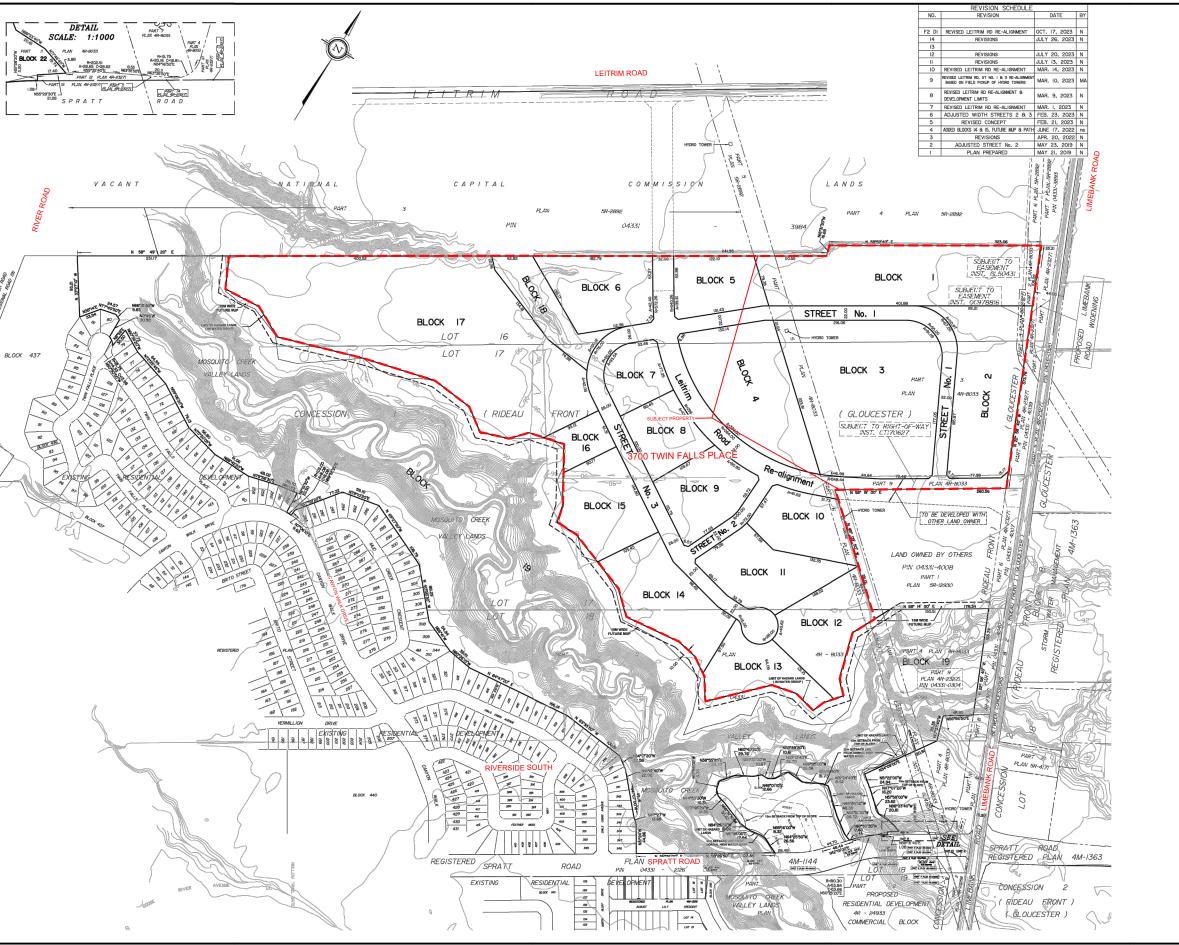
In order to further reduce sediment loading to the stormwater management facility and existing watercourses, seepage barriers will be installed on any surface water courses at appropriate locations that may become evident during construction. These barriers will be Light Duty Straw Bale Barriers per OPSD 219.100 and Heavy Duty Silt Fence Barriers per OPSD 219.130; locations are shown on the Sediment and Erosion Control Plan included in **Appendix E**. They are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

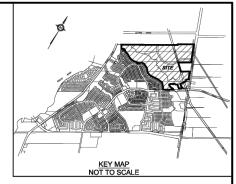
5.4 Surface Structure Filters

All catchbasins convey surface water to ditches. Until streets are asphalted and curbed where required, all catchbasins will be constructed with sediment capture filter socks located between the structure frame and cover. These will stay in place and be maintained during construction and build until it is appropriate to remove same

6 Conclusions and Recommendations

This report has demonstrated that watermains, ditches and sanitary sewers can be extended to service the subject site in accordance with the Assessment of Adequacy of Public Services Report and the Phase 1 ISSU.




Project Title
RIVERSIDE SOUTH
3700 TWIN FALLS PLACE
PHASE 1

Drawing Title

Sheet No.

ARCADIS

DRAFT PLAN OF SUBDIVISION OF

PART OF LOTS 16, 17 And **18 CONCESSION 1 (RIDEAU FRONT)** Geographic Township of Gloucester CITY OF OTTAWA

Prepared by ANNIS, O'SULLIVAN, VOLLEBEKK LTD.

SURVEYOR'S CERTIFICATE

OWNER'S CERTIFICATE

ADDITIONAL INFORMATION REQUIRED UNDER

- ADDITIONAL INFORMATION REQUIRED UNDER SECTION 51-17 OF THE PLANNING ACT

 (a) see plan
 (b) see plan
 (c) see plan
 (d) Business Park, Institutional, Valley Lands, and Storm Water Management Area
 (e) see plan
- (e) see plan
 (f) see plan
 (g) see plan
 (h) City of Ottawa
 (i) see soils report

- (i) see plan
 (k) sanitary, storm sewers, municipal water, bell, hydro, cable and gas to be available
 (i) see plan

	AREA SCHEDULE				
	BLOCK	AREA Ha / Ac			
	1	3.701 / 9.15			
	2	2.750 / 6.80			
	3	5.112 / 12.63			
	4	2.813 / 6.95			
	5	1.157 / 2.86			
	6	1.667 / 4.12			
	7	0.817 / 2.02			
	8	1.043 / 2.58			
Г	9	1.375 / 3.40			
	10	1.305 / 3.22			

BLOCK	AREA Ha / Ac
11	1.655 / 4.09
12	1.626 / 4.02
13	1.224 / 3.02
14	1.944 / 4.80
15	1.612 / 3.98
16	0.494 / 1.22
17	8.736 / 21.59
18	1.014 / 2.51
19	34.178 / 84.45
STREETS	5.532 / 13.67
TOTAL	79.755 / 197.08

AREA SCHEDULE

O'Sullivan, Vollebekk Ltd., 2023. "THIS PLAN IS PROTECTED BY COPYRIGHT"

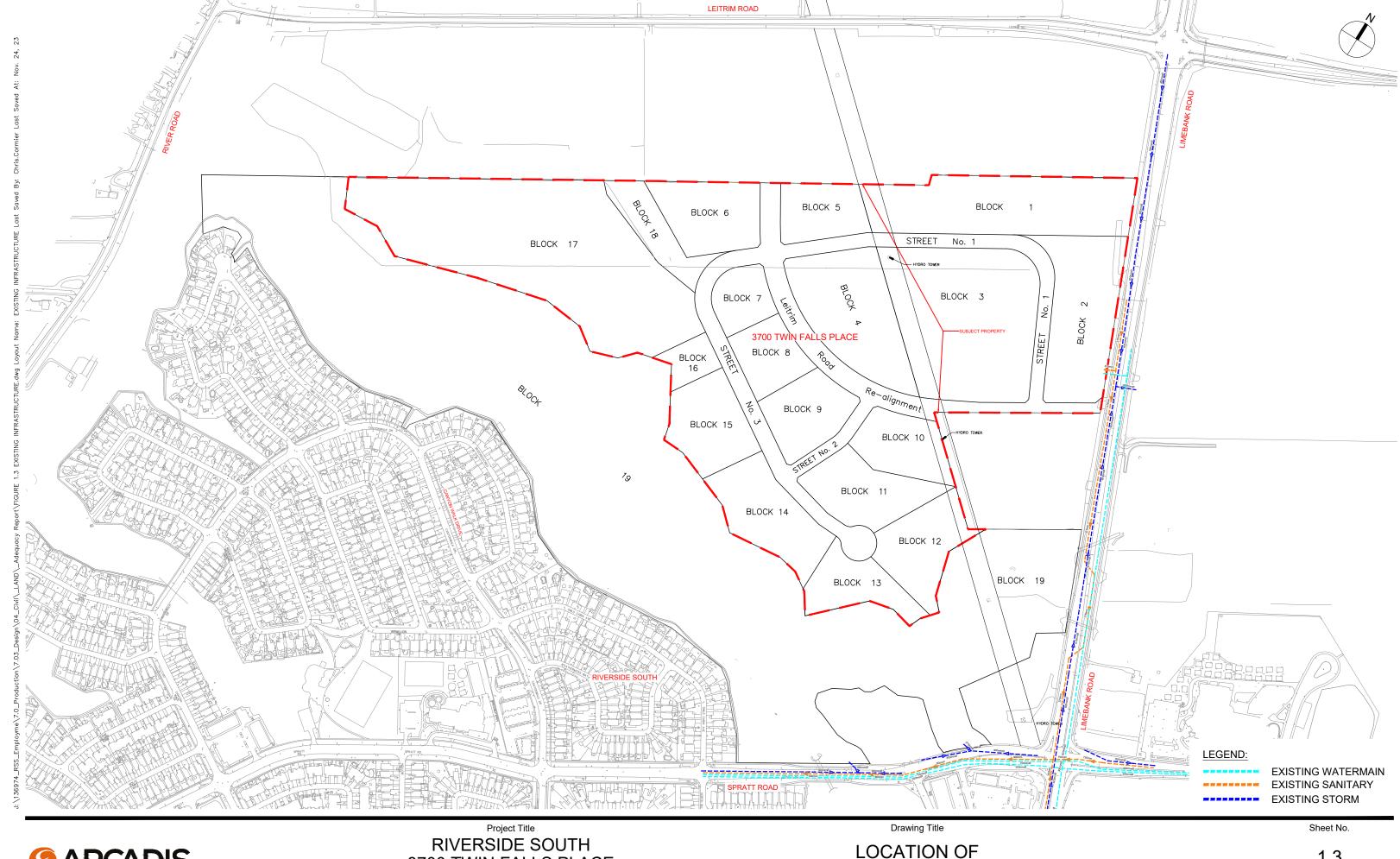
ANNIS, O'SULLIVAN, VOLLEBEKK LTD.

14 Concourse Gate, Suite 500

Nepean, Ont. KZE 756

Phone: (61 3), 727-0850 / Fax: (613), 727-1079

Emiliary Concourse Control of the Control of the Concourse Control of the Cont


RIVERSIDE SOUTH 3700 TWIN FALLS PLACE PHASE 1

Project Title

Drawing Title

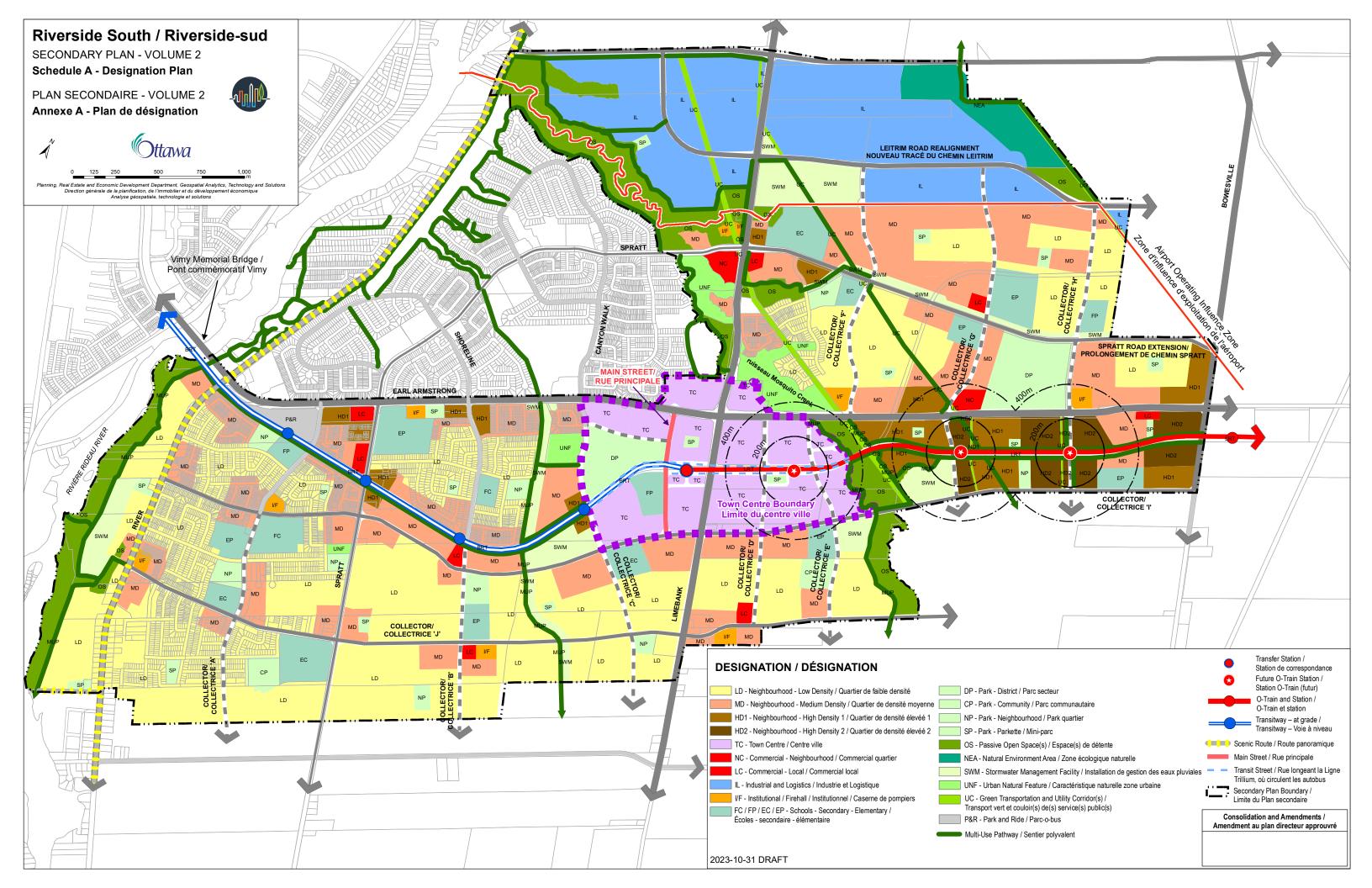
Sheet No.

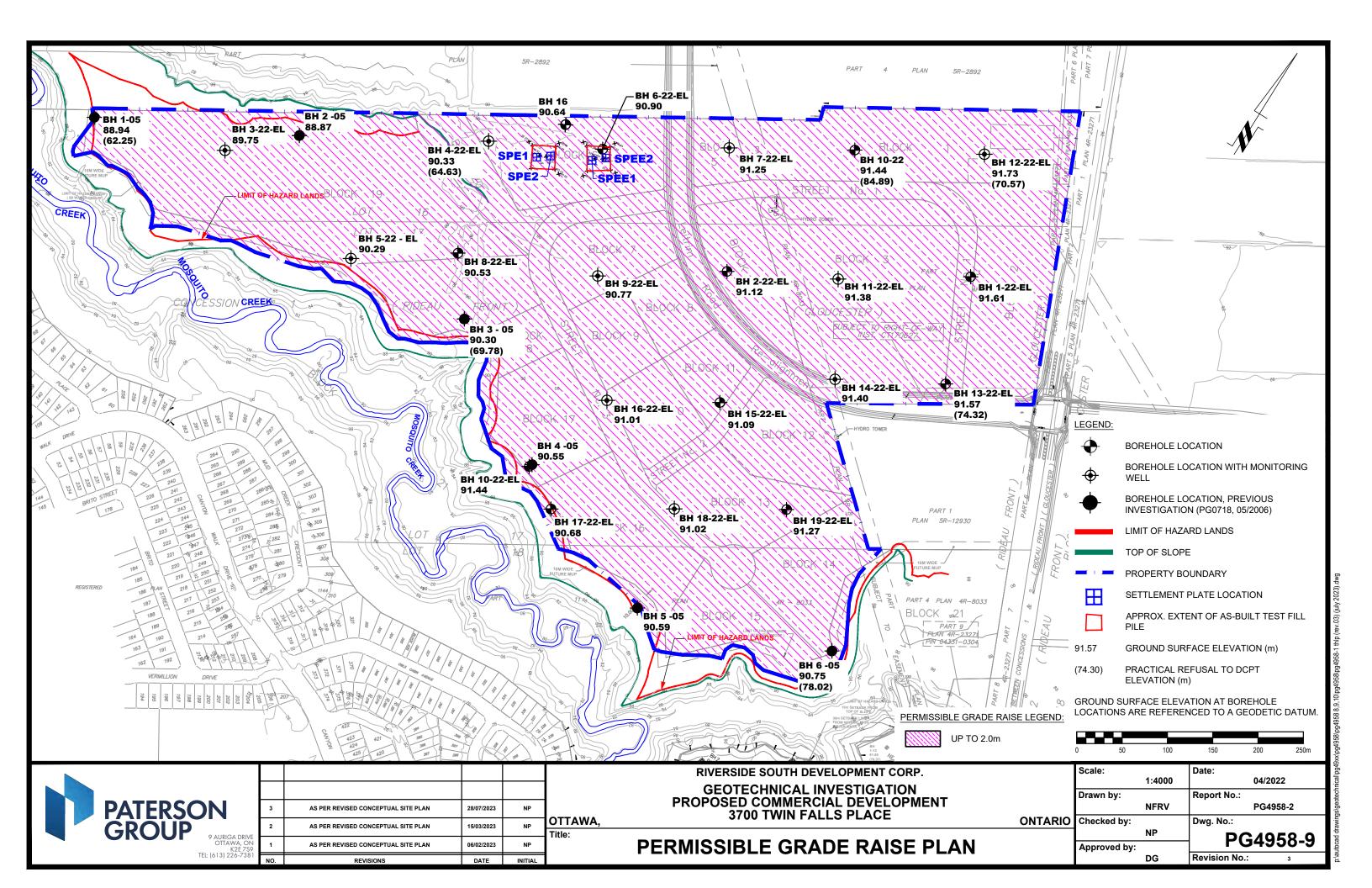
RIVERSIDE SOUTH 3700 TWIN FALLS PLACE PHASE 1

LOCATION OF EXISTING INFRASTRUCTURE

1.3

2023-11-24

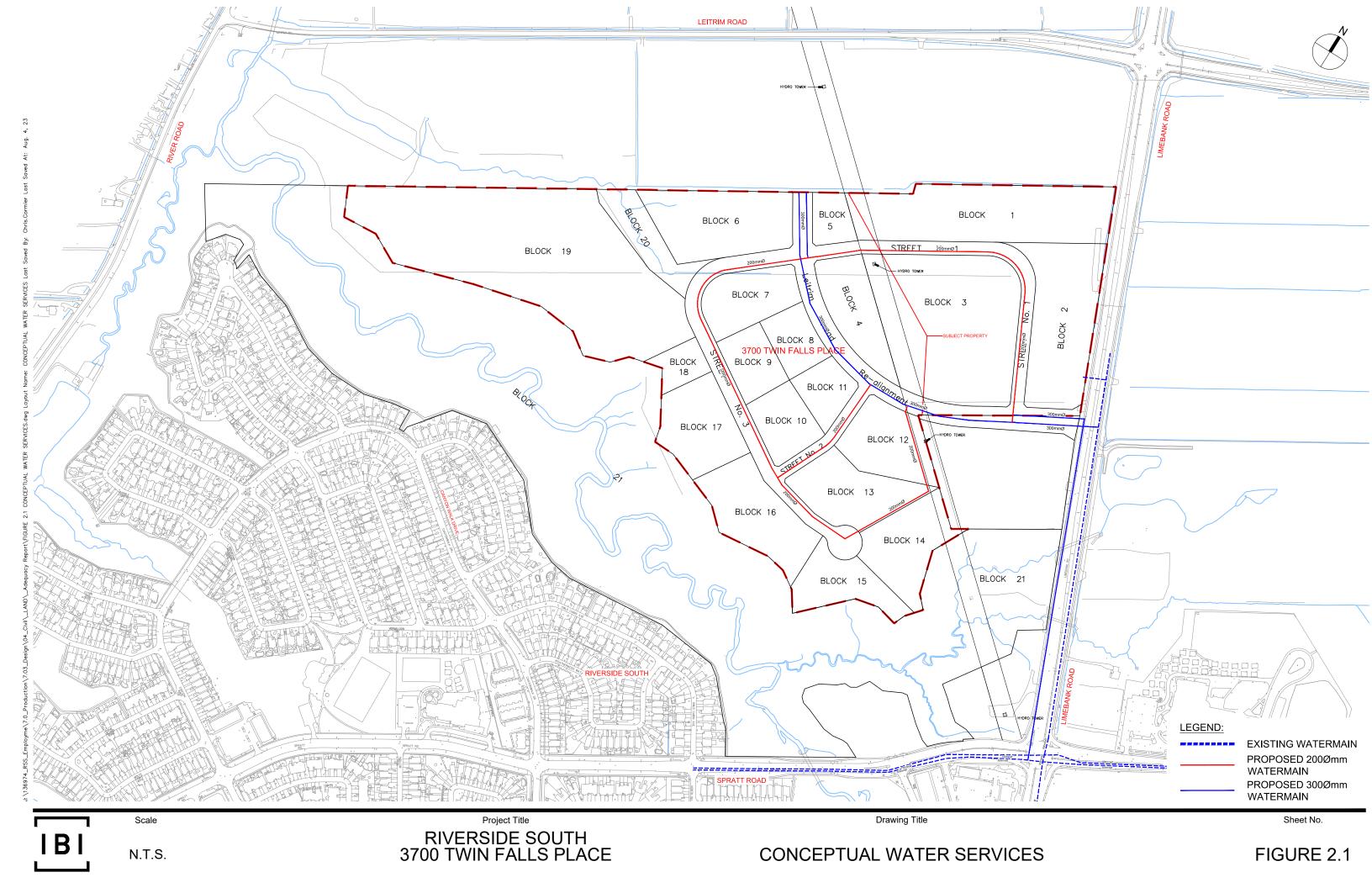




Appendix

A Background Information and Figures

- Riverside South Secondary Plan Schedule A Designation Plan
- Drawing PG4958-3 Initial Permissible Grade Raise Limits, Paterson Group



Appendix

B Water Supply Supporting Information

- Figure 2.1 Conceptual Water Plan
- City of Ottawa Boundary Conditions
- Watermain Demand Calculation Sheet
- Modeling Output Files

Boundary Conditions Employment Lands

Provided Information

Scenario	Demand		
Scenario	L/min	L/s	
Average Daily Demand	786	13.10	
Maximum Daily Demand	1,968	32.80	
Peak Hour	4,332	72.20	
Fire Flow Demand #1	10,000	166.67	
Fire Flow Demand #2	13,000	216.67	

Location

Results - Existing Conditions

Connection 1 – Spratt Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	131.8	56.9
Peak Hour	125.3	47.7
Max Day plus Fire 1	126.4	49.3
Max Day plus Fire 2	125.3	47.7

Ground Elevation = 91.7 m

Connection 2 - Limebank Rd. / Spratt Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	131.8	56.9
Peak Hour	125.3	47.7
Max Day plus Fire 1	127.4	50.7
Max Day plus Fire 2	126.8	49.9

Ground Elevation = 91.8 m

Results - SUC Zone Reconfiguration

Connection 1 – Spratt Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	148.4	80.5
Peak Hour	145.7	76.7
Max Day plus Fire 1	145.1	75.9
Max Day plus Fire 2	144.2	74.6

Ground Elevation = 91.7 m

Connection 2 - Limebank Rd. / Spratt Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	148.4	80.5
Peak Hour	145.8	76.8
Max Day plus Fire 1	146.2	77.4
Max Day plus Fire 2	145.8	76.9

Ground Elevation = 91.8 m

Notes

- 1. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a. If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - b. Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

IBI GROUP 333 PRESTON STREET OTTAWA, ON K1S 5N4

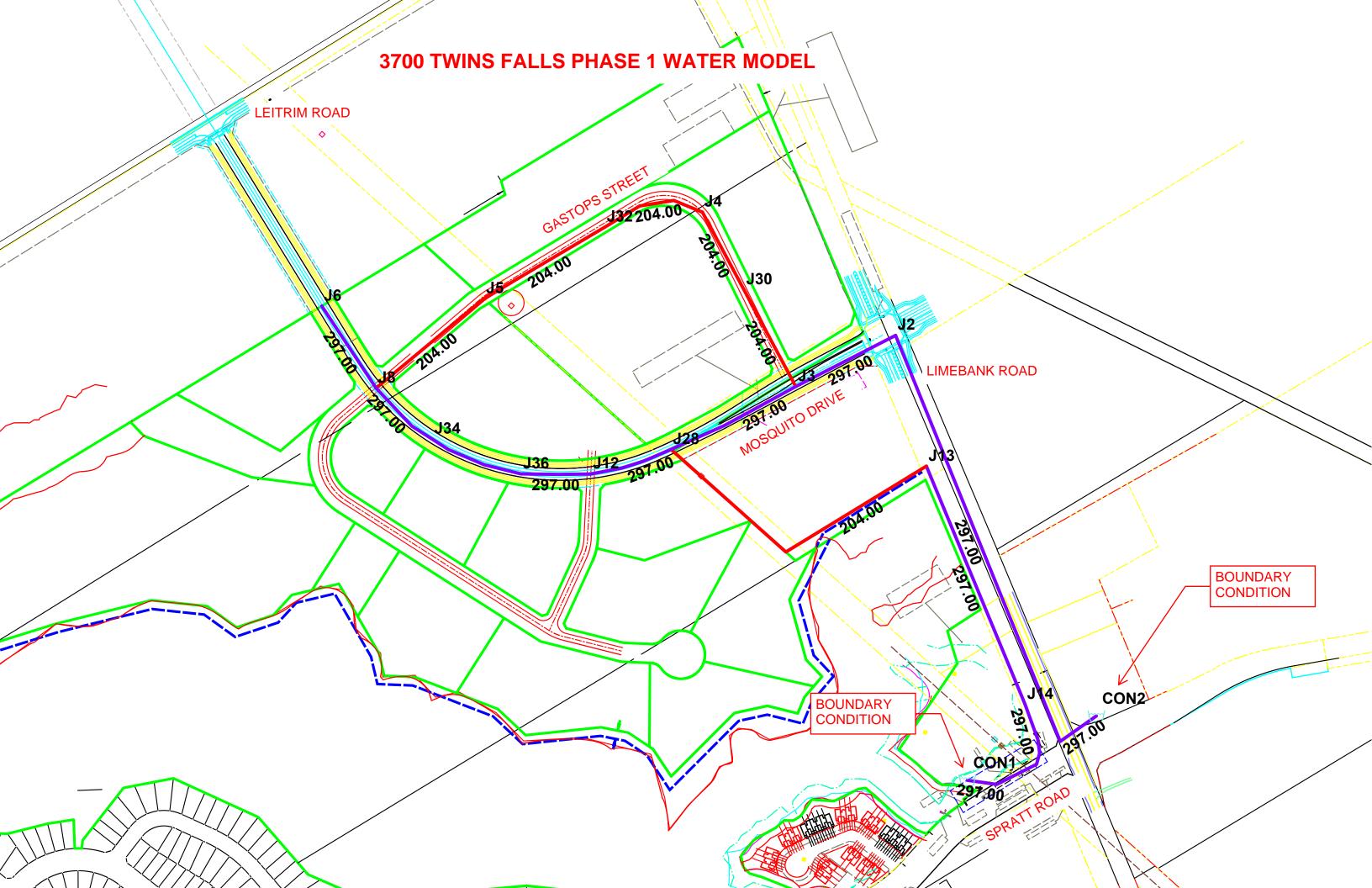
WATERMAIN DEMAND CALCULATION SHEET

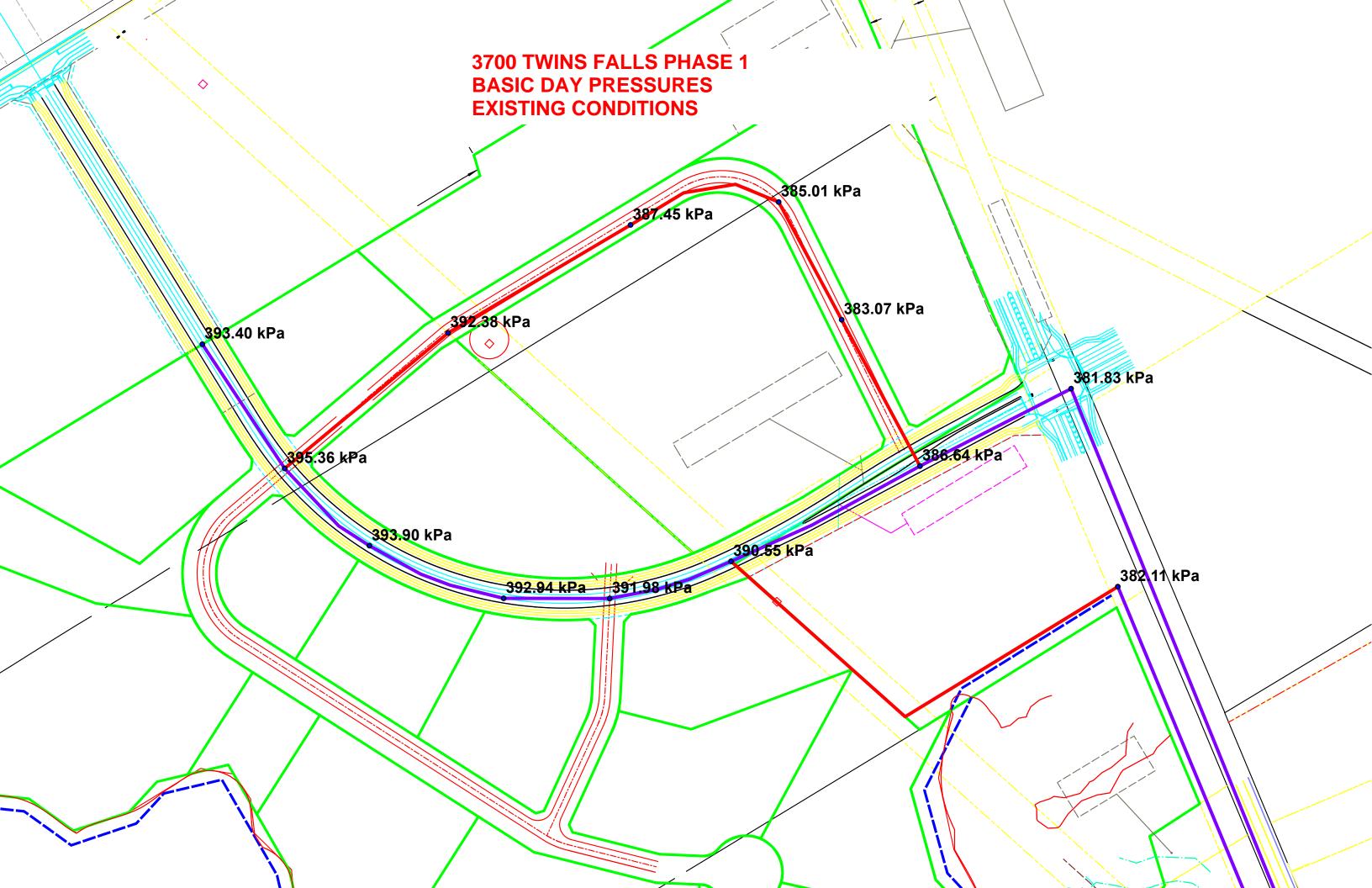
PROJECT: RIVERSIDE SOUTH - 3700 TWIN FALLS PLACE - PHASE 1

LOCATION: **CITY OF OTTAWA** DESIGN: LE PAGE: 1 OF 1

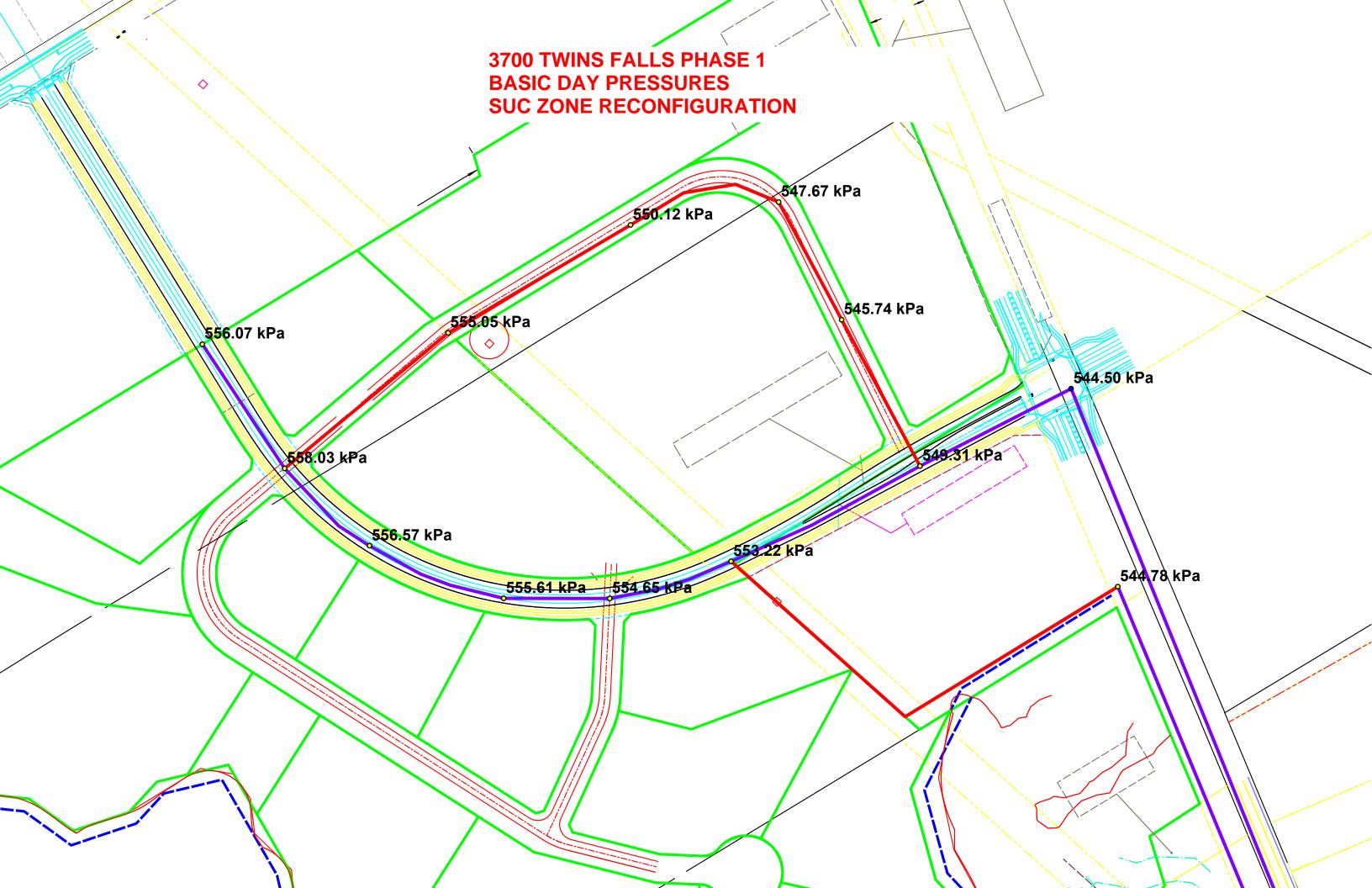
FILE:

DATE PRINTED:

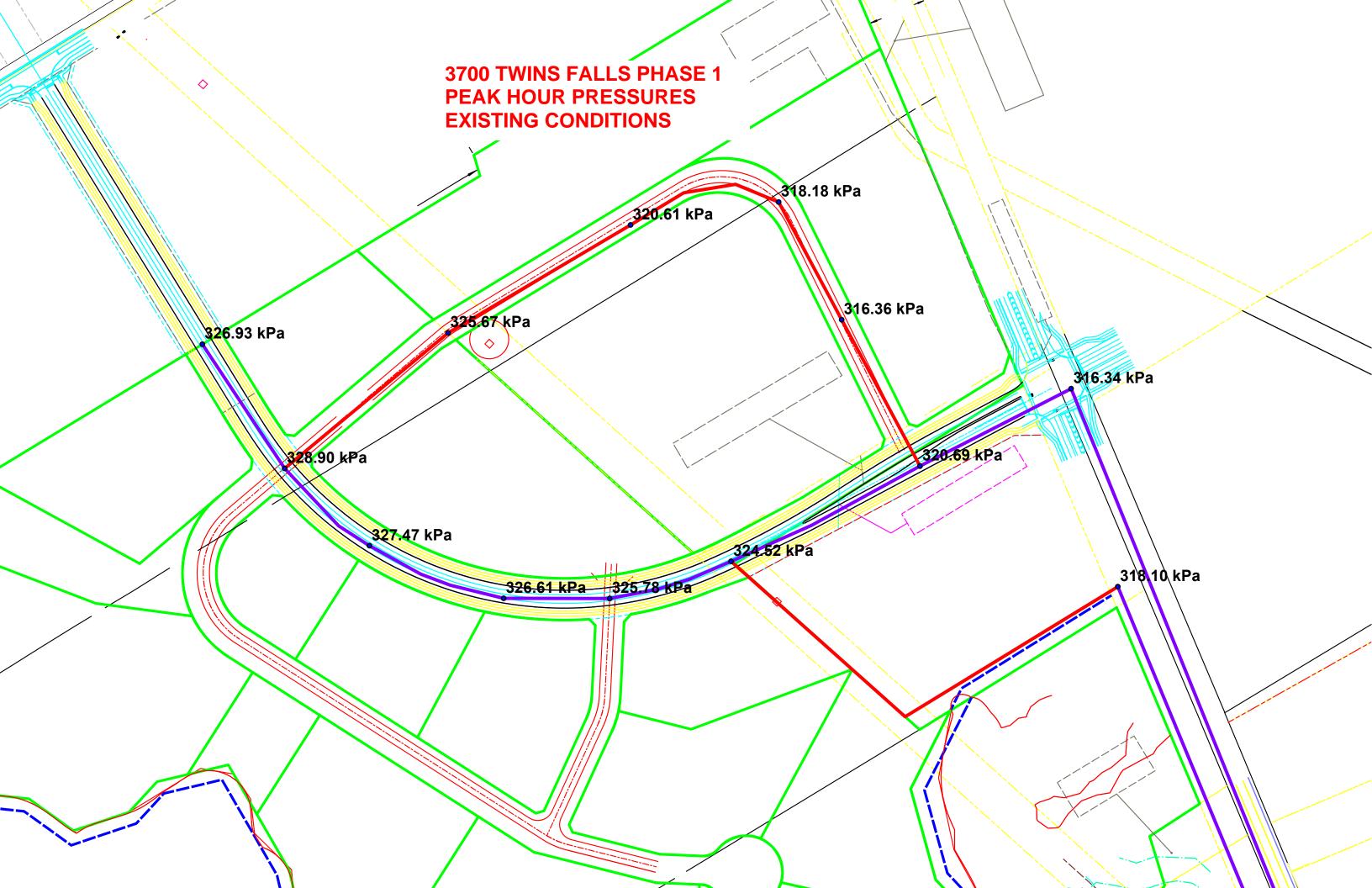

136974


02-Apr-24

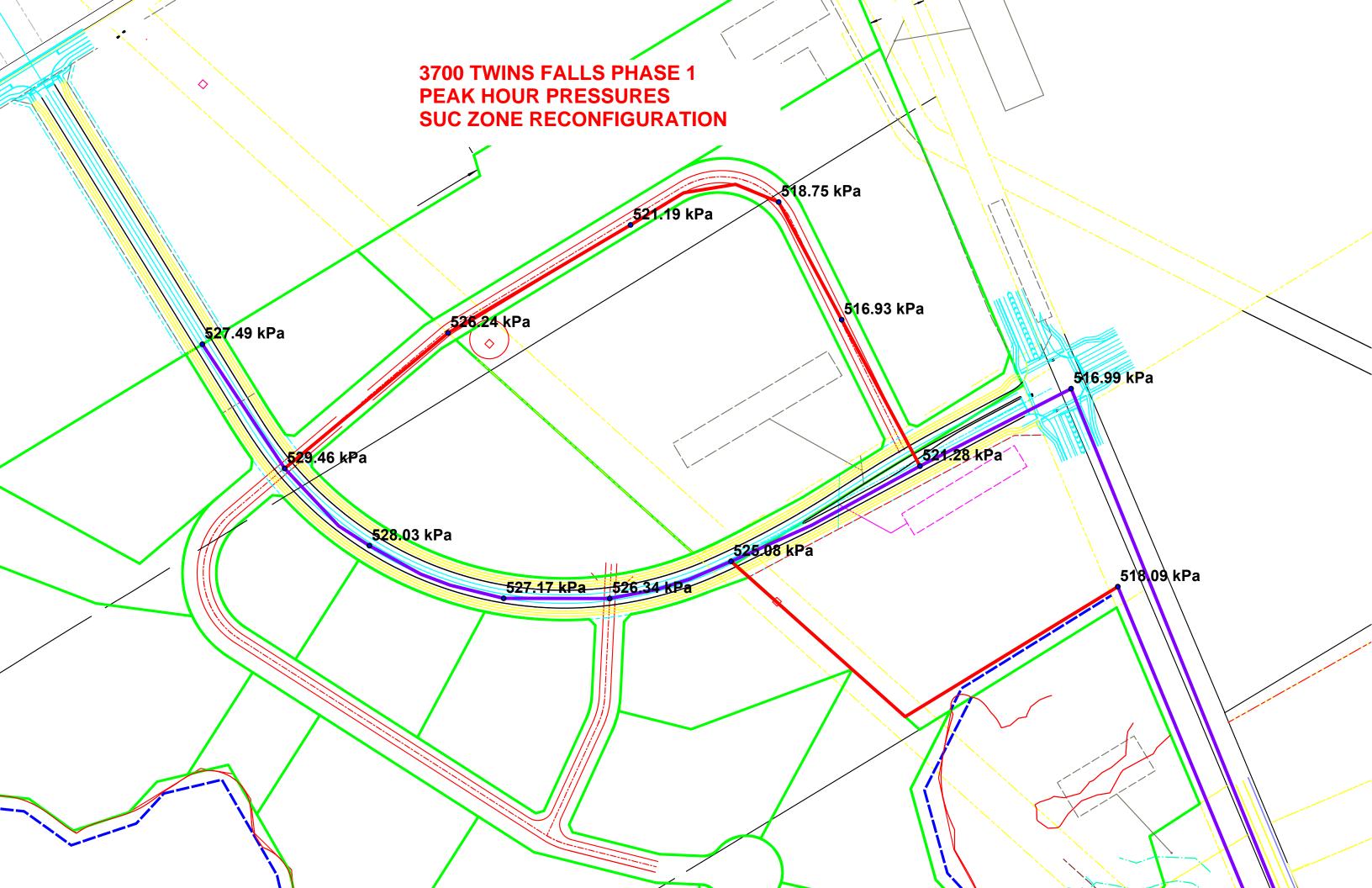
DEVELOPER: RIVERSIDE SOUTH DEVELOPMENT CORPORATION


			RESID	ENTIAL		NON	-RESIDEN	ITIAL	AVERAGE DAILY		MAXIMUM DAILY			MAXIMUM HOURLY			FIRE	
NODE	BLOCK		UNITS			INDTRL	COMM.	INST.		DEMAND	(l/s)	D	EMAND (I	/s)	D	EMAND (I	/s)	DEMAND
NOBE	BEOOK	SF	SD & TH	MD (ha)	POP'N	(ha.)	(ha.)	(ha.)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(l/min)
PHASE	1 LANDS																	
J3	OTHER					3.90			0.00	1.58	1.58	0.00	2.37	2.37	0.00	4.27	4.27	13,000
J4 J5	5					2.79 1.16			0.00	1.13 0.47	1.13 0.47	0.00	1.70 0.71	1.70 0.71	0.00	3.05 1.27	3.05 1.27	13,000
J6	6					1.67			0.00	0.68	0.68	0.00	1.02	1.02	0.00	1.84	1.84	13,000
J12 J28	9					1.38			0.00	0.56 0.53	0.56 0.53	0.00	0.84	0.84	0.00	1.51 1.43	1.51 1.43	13,000
J30	3					5.11			0.00	2.07	2.07	0.00	3.11	3.11	0.00	5.59	5.59	13,000
J32	1					3.70			0.00	1.50	1.50	0.00	2.25	2.25	0.00	4.05	4.05	13,000
J34	4, 7					3.63			0.00	1.47	1.47	0.00	2.21	2.21	0.00	3.97	3.97	13,000
J36	8					2.58			0.00	1.05	1.05	0.00	1.58	1.58	0.00	2.84	2.84	13,000
TOTALS											11.04			16.56			29.81	
PHASE 1	IA LANDS																	
H5	2					1.43			0.00	0.58	0.58	0.00	0.87	0.87	0.00	1.57	1.57	10,000
	<u> </u>	l <u>L</u>	1															

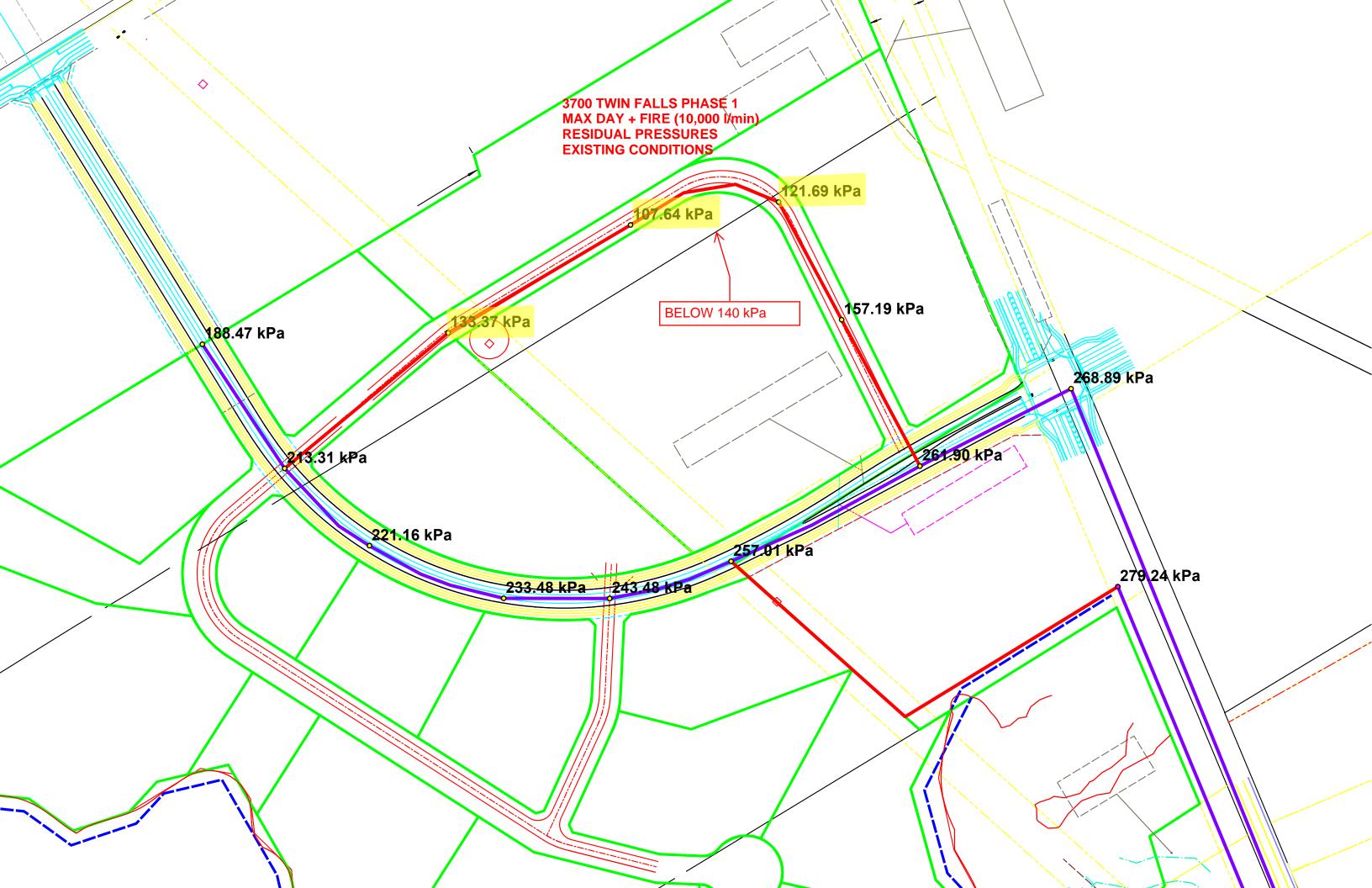
		ASSUMPTIONS			
RESIDENTIAL DENSITIES		AVG. DAILY DEMAND		MAX. HOURLY DEMAND	
- Single Family (SF)	<u>3.4</u> p/p/u	- Residential	<u>280</u> I / cap / day	- Residential	<u>1,540</u> I / cap / day
		- Light Industrial	<u>35,000</u> I / ha / day	- Light Industrial	94,500 I / ha / day
- Semi Detached (SD) & Townhouse (TH)	<u>2.7</u> p/p/u				
				FIRE FLOW	
- Apartment (APT)	<u>1.8</u> p/p/u	MAX. DAILY DEMAND		- SF, SD, TH & ST	10,000 I / min
		- Residential	<u>700</u> I / cap / day		I / min
-Medium Density Area (MD)	<u>130</u> p / p / ha	- Light Industrial	<u>52,500</u> I / ha / day	- ICI	13,000 I / min



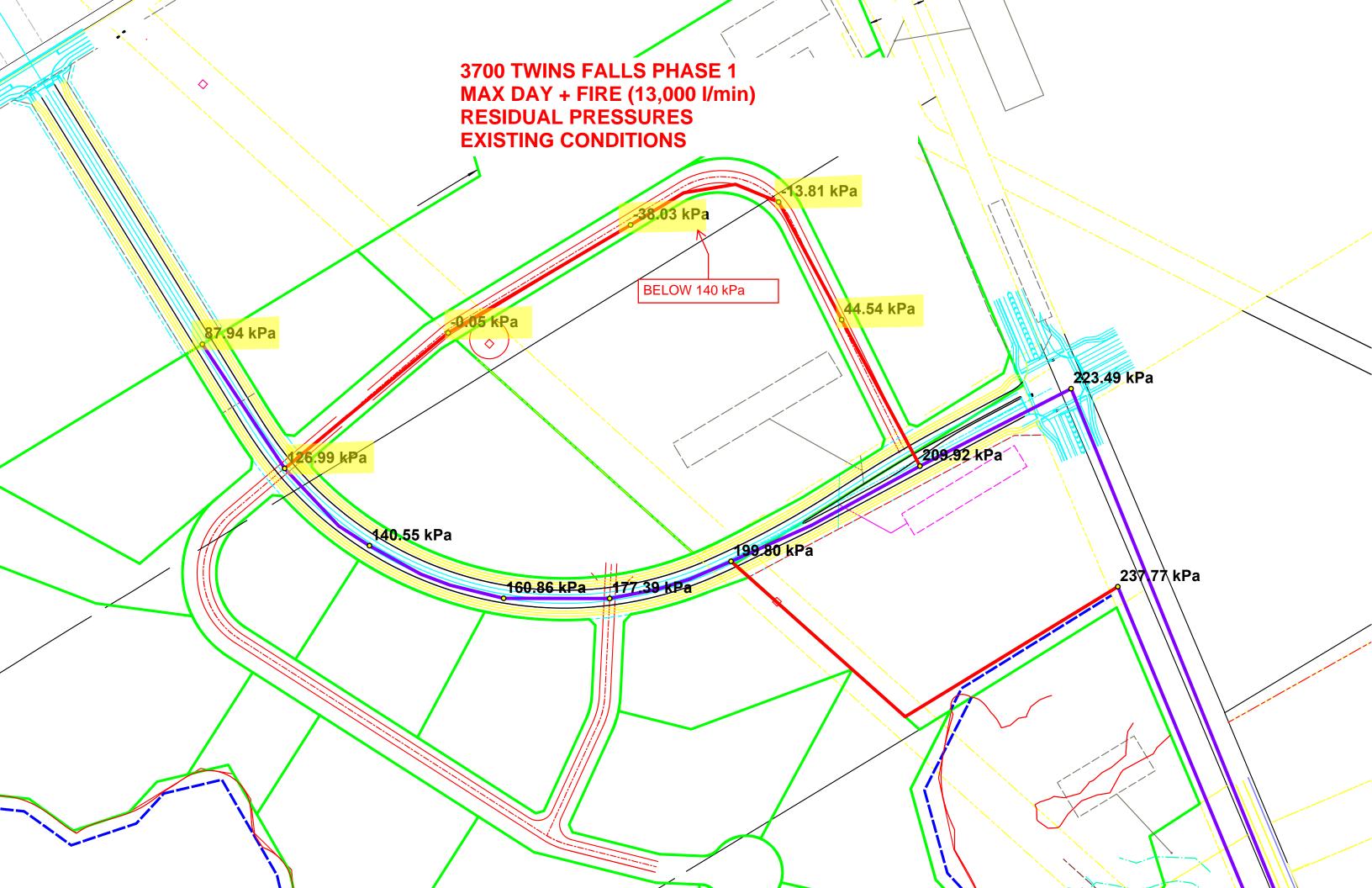
	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	J1	0.00	91.60	131.80	393.93
2	J12	0.56	91.75	131.75	391.98
3	J13	0.00	92.80	131.79	382.11
4	J14	0.00	91.50	131.80	394.89
5	J15	0.00	91.60	131.80	393.93
6	J2	0.00	92.80	131.77	381.83
7	J28	0.53	91.90	131.76	390.55
8	J3	1.58	92.30	131.76	386.64
9	J30	2.07	92.65	131.74	383.07
10	J32	1.50	92.20	131.74	387.45
11	J34	1.47	91.55	131.75	393.90
12	J36	1.05	91.65	131.75	392.94
13	J4	1.11	92.45	131.74	385.01
14	J5	0.47	91.70	131.74	392.38
15	J6	0.68	91.60	131.75	393.40
16	J8	0.00	91.40	131.75	395.36



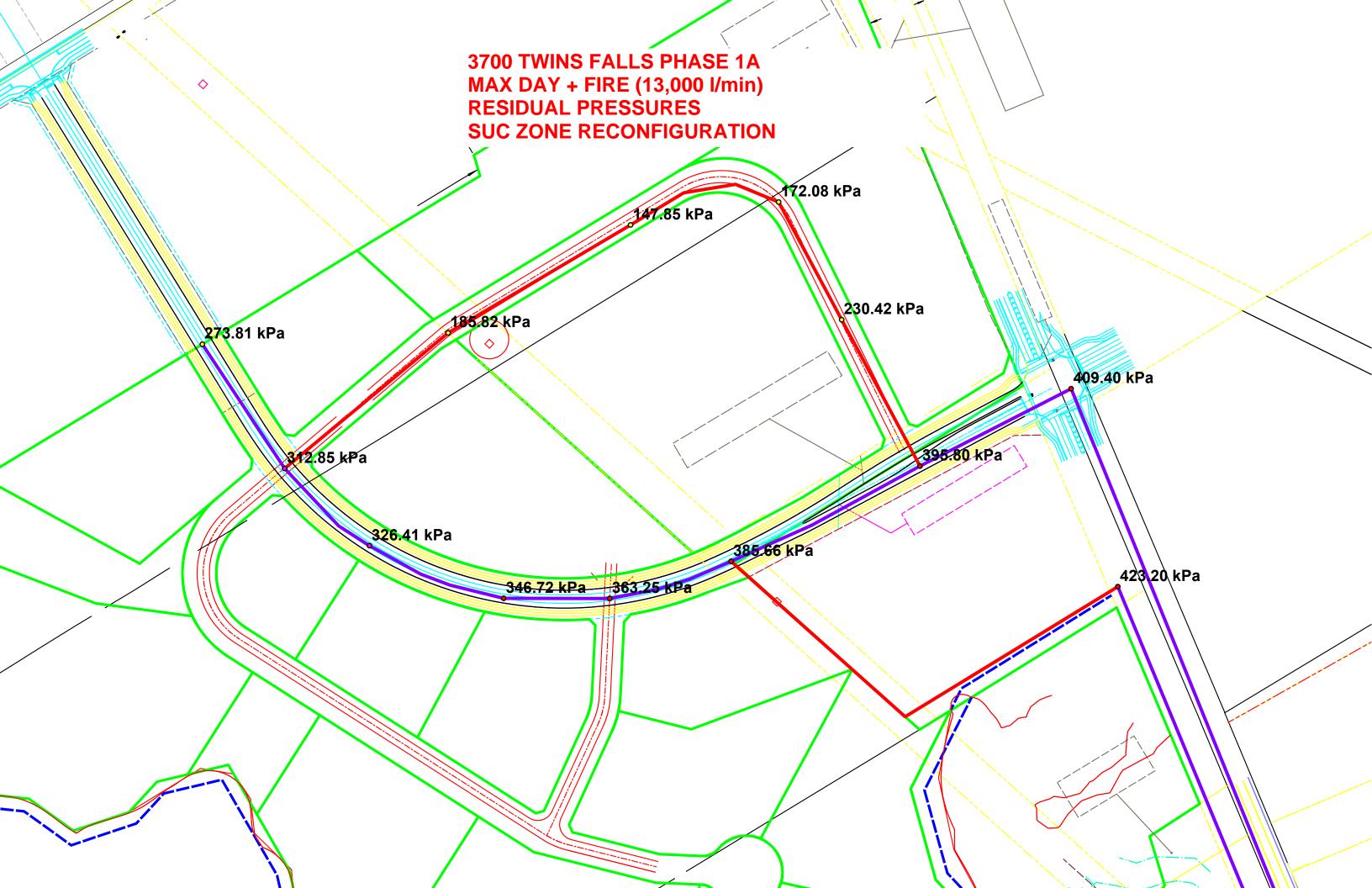
	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	J1	0.00	91.60	148.40	556.59
2	J12	0.56	91.75	148.35	554.65
3	J13	0.00	92.80	148.39	544.78
4	J14	0.00	91.50	148.40	557.56
5	J15	0.00	91.60	148.40	556.60
6	J2	0.00	92.80	148.37	544.50
7	J28	0.53	91.90	148.36	553.22
8	J3	1.58	92.30	148.36	549.31
9	J30	2.07	92.65	148.34	545.74
10	J32	1.50	92.20	148.34	550.12
11	J34	1.47	91.55	148.35	556.57
12	J36	1.05	91.65	148.35	555.61
13	J4	1.11	92.45	148.34	547.67
14	J5	0.47	91.70	148.34	555.05
15	J6	0.68	91.60	148.35	556.07
16	J8	0.00	91.40	148.35	558.03

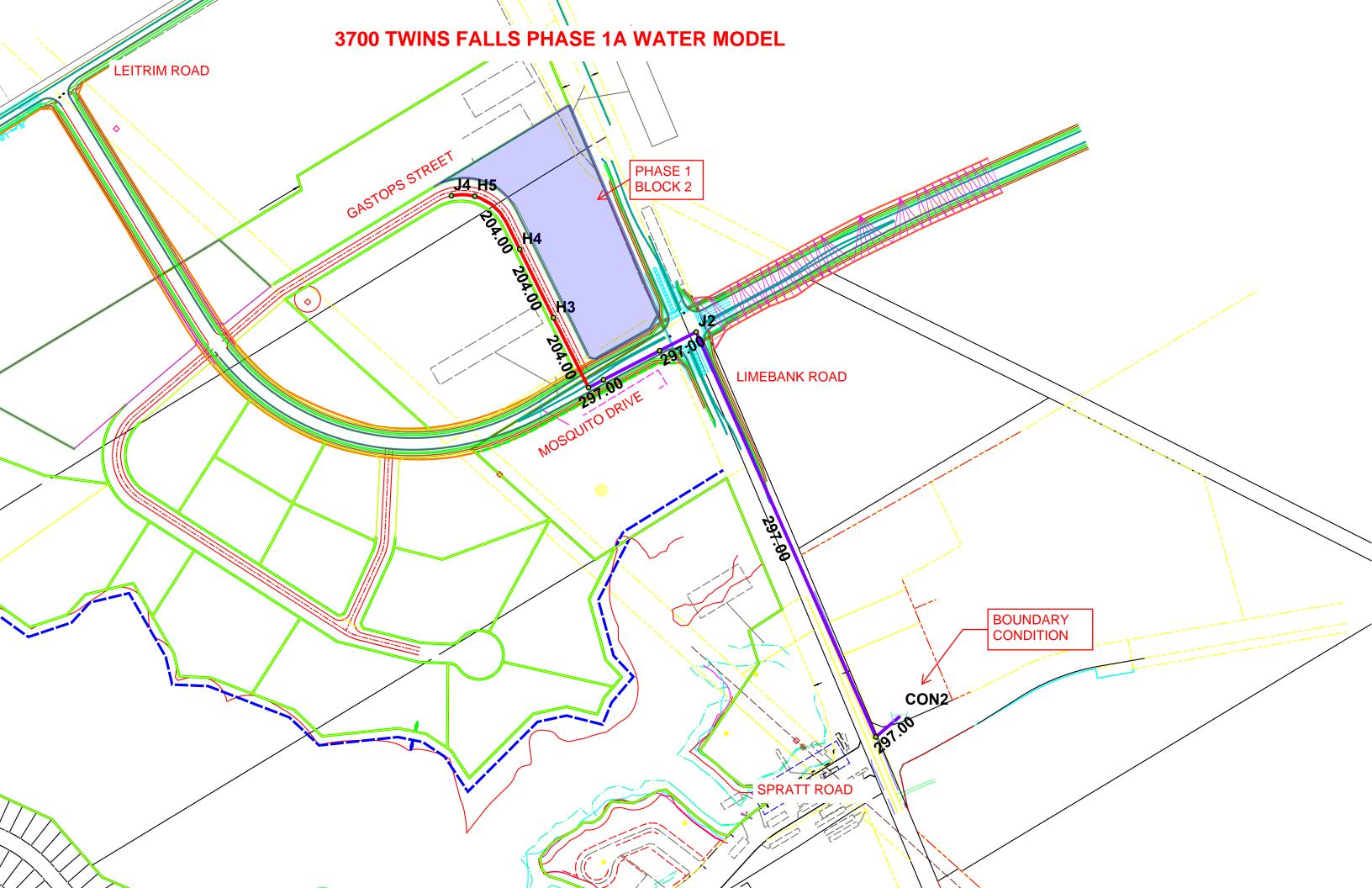

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	J1	0.00	91.60	125.30	330.23
2	J12	1.51	91.75	125.00	325.78
3	J13	0.00	92.80	125.26	318.10
4	J14	0.00	91.50	125.29	331.10
5	J15	0.00	91.60	125.30	330.23
6	J2	0.00	92.80	125.08	316.34
7	J28	1.43	91.90	125.02	324.52
8	J3	4.27	92.30	125.03	320.69
9	J30	5.59	92.65	124.93	316.36
10	J32	4.05	92.20	124.92	320.61
11	J34	3.97	91.55	124.97	327.47
12	J36	2.82	91.65	124.98	326.61
13	J4	3.01	92.45	124.92	318.18
14	J5	1.27	91.70	124.93	325.67
15	J6	1.83	91.60	124.96	326.93
16	J8	0.00	91.40	124.96	328.90

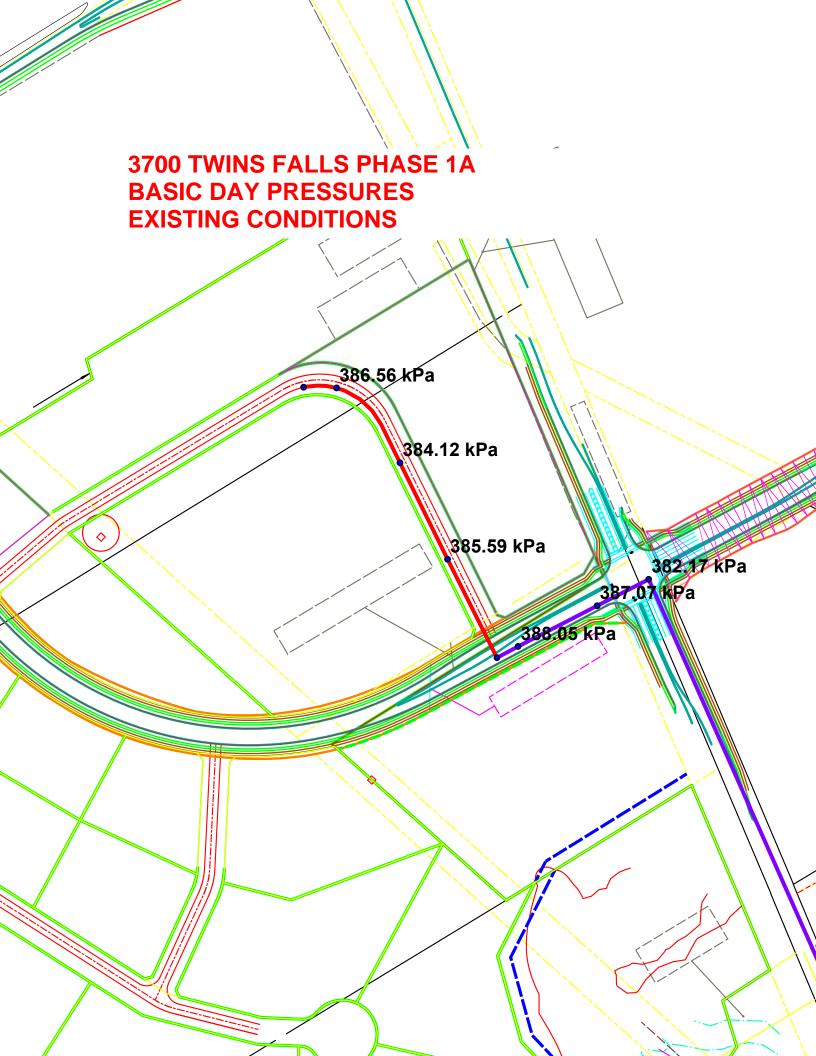
	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
1	P11	J1	J2	509.64	297.00	120.00	20.78	0.30	0.22	0.43	Open	0
2	P13	J3	J2	130.60	297.00	120.00	-20.78	0.30	0.06	0.43	Open	0
3	P15	J3	J30	127.57	204.00	110.00	9.46	0.29	0.09	0.73	Open	0
4	P17	J5	J32	163.11	204.00	110.00	3.19	0.10	0.02	0.10	Open	0
5	P21	J5	J8	163.27	204.00	110.00	-4.46	0.14	0.03	0.18	Open	0
6	P25	J8	J6	114.50	297.00	120.00	1.83	0.03	0.00	0.00	Open	0
7	P33	J12	J36	81.59	297.00	120.00	13.08	0.19	0.01	0.18	Open	0
8	P35	J28	J12	98.15	297.00	120.00	14.59	0.21	0.02	0.22	Open	0
9	P37	J13	J14	299.74	297.00	120.00	-8.97	0.13	0.03	0.09	Open	0
10	P39	J14	J15	124.95	297.00	120.00	-8.97	0.13	0.01	0.09	Open	0
11	P43	J15	CON1	1.00	297.00	120.00	-8.97	0.13	0.00	0.08	Open	0
12	P45	J1	CON2	1.00	297.00	120.00	-20.78	0.30	0.00	0.43	Open	0
13	P63	J13	J28	371.11	204.00	110.00	8.97	0.27	0.24	0.66	Open	0
14	P65	J28	J3	162.89	297.00	120.00	-7.05	0.10	0.01	0.06	Open	0
15	P67	J30	J4	102.54	204.00	110.00	3.87	0.12	0.01	0.14	Open	0
16	P69	J32	J4	124.10	204.00	110.00	-0.86	0.03	0.00	0.01	Open	0
17	P71	J34	J8	88.79	297.00	120.00	6.29	0.09	0.00	0.05	Open	0
18	P73	J36	J34	111.66	297.00	120.00	10.26	0.15	0.01	0.12	Open	0



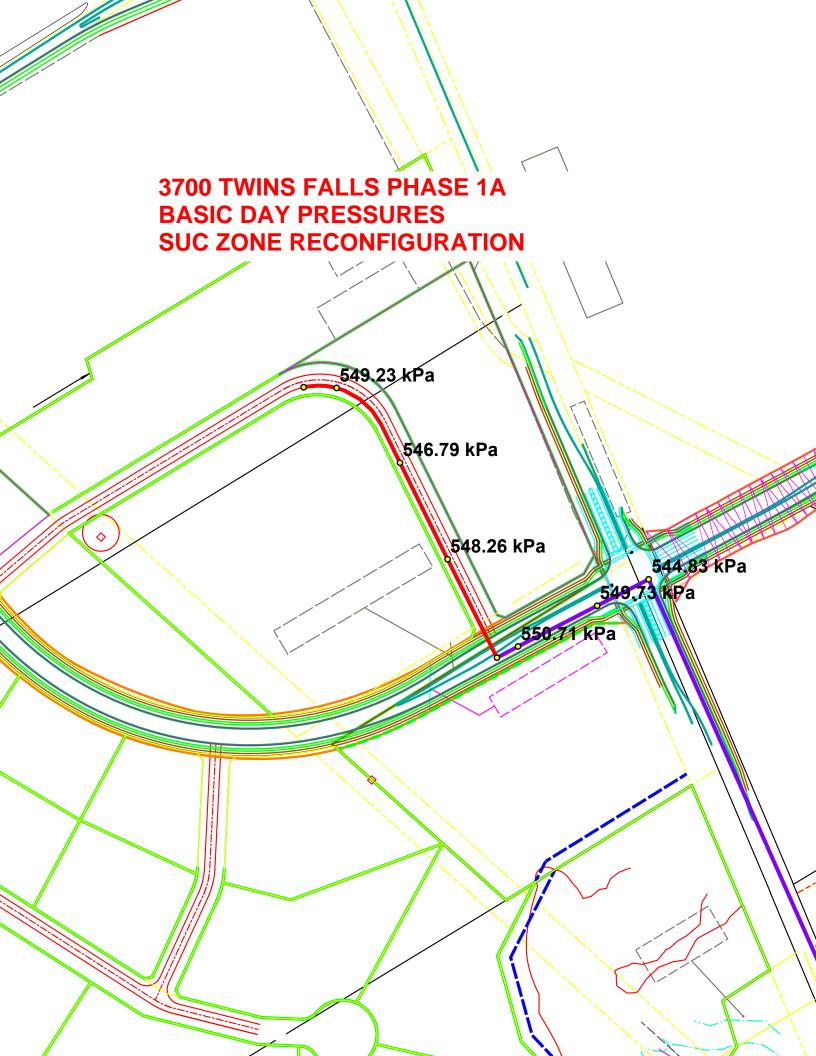
	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	J1	0.00	91.60	145.80	531.11
2	J12	1.51	91.75	145.46	526.34
3	J13	0.00	92.80	145.67	518.09
4	J14	0.00	91.50	145.69	531.03
5	J15	0.00	91.60	145.70	530.14
6	J2	0.00	92.80	145.56	516.99
7	J28	1.43	91.90	145.48	525.08
8	J3	4.27	92.30	145.50	521.28
9	J30	5.59	92.65	145.40	516.93
10	J32	4.05	92.20	145.39	521.19
11	J34	3.97	91.55	145.43	528.03
12	J36	2.82	91.65	145.45	527.17
13	J4	3.01	92.45	145.39	518.75
14	J5	1.27	91.70	145.40	526.24
15	J6	1.83	91.60	145.43	527.49
16	J8	0.00	91.40	145.43	529.46


	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count
1	P11	J1	J2	509.64	297.00	120.00	21.99	0.32	0.24	0.47	Open	0
2	P13	J3	J2	130.60	297.00	120.00	-21.99	0.32	0.06	0.47	Open	0
3	P15	J3	J30	127.57	204.00	110.00	9.52	0.29	0.09	0.74	Open	0
4	P17	J5	J32	163.11	204.00	110.00	3.13	0.10	0.02	0.09	Open	0
5	P21	J5	J8	163.27	204.00	110.00	-4.40	0.13	0.03	0.18	Open	0
6	P25	J8	J6	114.50	297.00	120.00	1.83	0.03	0.00	0.00	Open	0
7	P33	J12	J36	81.59	297.00	120.00	13.02	0.19	0.01	0.18	Open	0
8	P35	J28	J12	98.15	297.00	120.00	14.53	0.21	0.02	0.22	Open	0
9	P37	J13	J14	299.74	297.00	120.00	-7.76	0.11	0.02	0.07	Open	0
10	P39	J14	J15	124.95	297.00	120.00	-7.76	0.11	0.01	0.07	Open	0
11	P43	J15	CON1	1.00	297.00	120.00	-7.76	0.11	0.00	0.07	Open	0
12	P45	J1	CON2	1.00	297.00	120.00	-21.99	0.32	0.00	0.47	Open	0
13	P63	J13	J28	371.11	204.00	110.00	7.76	0.24	0.19	0.50	Open	0
14	P65	J28	J3	162.89	297.00	120.00	-8.20	0.12	0.01	0.08	Open	0
15	P67	J30	J4	102.54	204.00	110.00	3.93	0.12	0.01	0.14	Open	0
16	P69	J32	J4	124.10	204.00	110.00	-0.92	0.03	0.00	0.01	Open	0
17	P71	J34	J8	88.79	297.00	120.00	6.23	0.09	0.00	0.05	Open	0
18	P73	J36	J34	111.66	297.00	120.00	10.20	0.15	0.01	0.11	Open	0

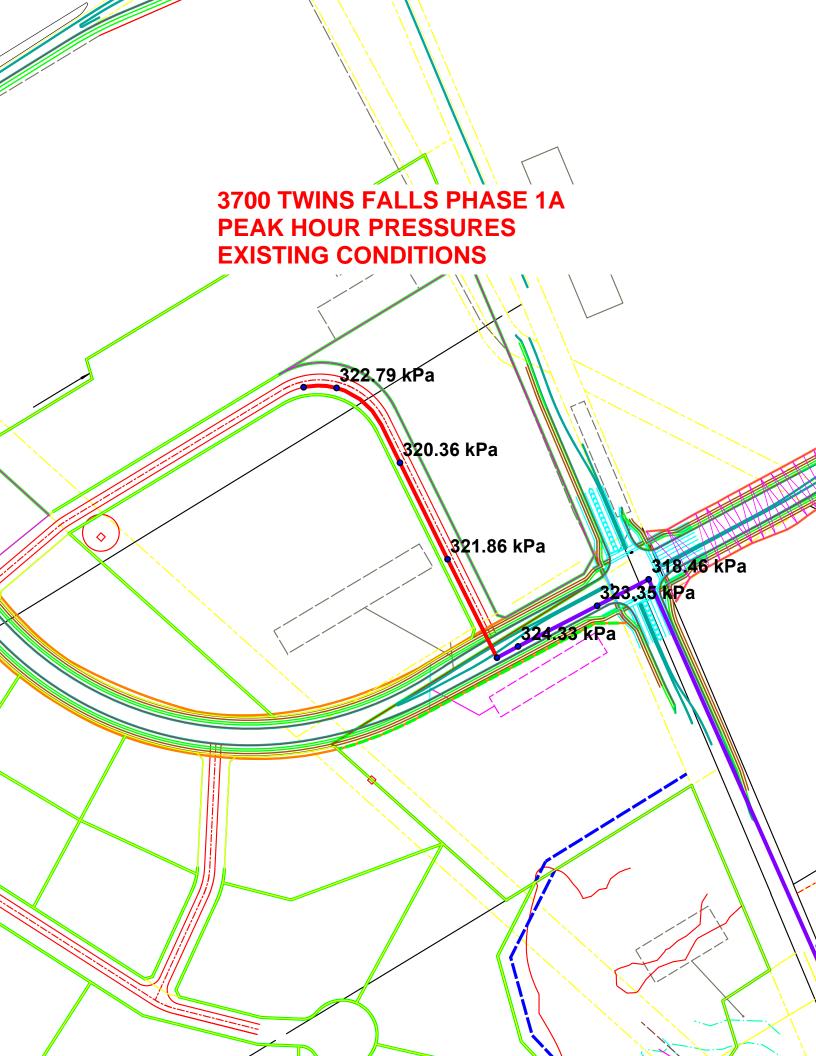

	ID	Total Demand (L/s)	Available Flow at Hydrant (L/s)	Critical Node ID	Critical Node Pressure (kPa)	Critical Node Head (m)	Design Flow (L/s)	Design Pressure (kPa)	Design Fire Node Pressure (kPa)
1	J12	167.51	250.25	J12	139.96	106.03	250.25	139.96	140.02
2	J13	166.67	340.03	J13	139.96	107.08	340.03	139.96	139.65
3	J2	166.67	309.08	J2	139.96	107.08	309.08	139.96	140.11
4	J28	167.47	273.21	J28	139.96	106.18	273.21	139.96	140.05
5	J3	169.04	288.84	J30	136.77	106.61	286.23	139.96	143.25
6	J30	169.78	178.74	J30	139.96	106.93	178.74	139.96	139.96
7	J32	168.92	155.38	J32	139.96	106.48	155.38	139.96	139.96
8	J34	168.88	223.81	J34	139.96	105.83	223.81	139.96	139.98
9	J36	168.24	237.29	J36	139.96	105.93	237.29	139.96	140.00
10	J4	168.34	160.19	J4	139.96	106.73	160.19	139.96	139.96
11	J5	167.37	164.42	J5	139.96	105.98	164.42	139.96	139.72
12	J6	167.68	195.04	J6	139.96	105.88	195.04	139.96	139.97
13	J8	166.67	213.48	J6	138.00	105.68	212.33	139.96	141.95



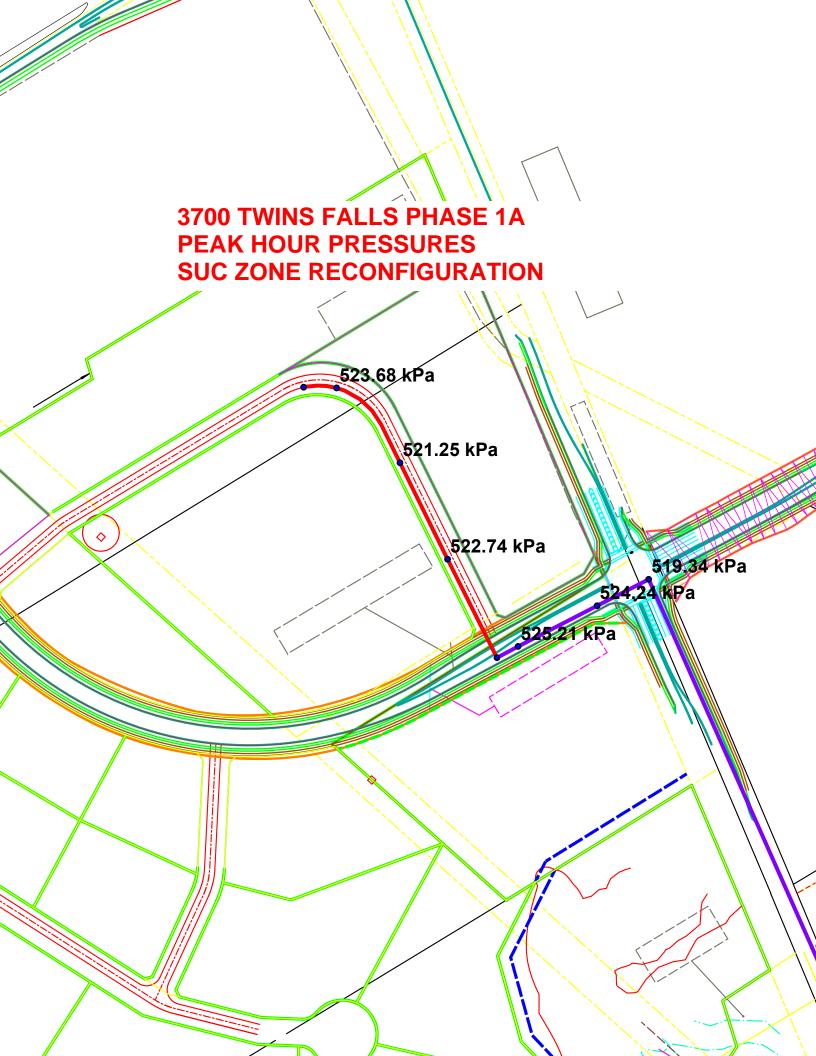
	ID	Total Demand (L/s)	Available Flow at Hydrant (L/s)	Critical Node ID	Critical Node Pressure (kPa)	Critical Node Head (m)	Design Flow (L/s)	Design Pressure (kPa)	Design Fire Node Pressure (kPa)
1	J12	217.51	245.06	J12	139.96	106.03	245.06	139.96	139.97
2	J13	216.67	330.60	J13	139.96	107.08	330.60	139.96	139.96
3	J2	216.67	302.59	J2	139.96	107.08	302.59	139.96	140.00
4	J28	217.47	267.49	J28	139.96	106.18	267.49	139.96	139.98
5	J3	219.04	282.82	J30	136.74	106.60	280.14	139.96	143.21
6	J30	219.78	174.93	J30	139.96	106.93	174.93	139.96	139.97
7	J32	218.92	152.13	J32	139.96	106.48	152.13	139.96	139.98
8	J34	218.88	219.24	J34	139.96	105.83	219.24	139.96	139.98
9	J36	218.24	232.40	J36	139.96	105.93	232.40	139.96	139.96
10	J4	218.34	156.78	J4	139.96	106.73	156.78	139.96	139.99
11	J5	217.37	161.03	J5	139.96	105.98	161.03	139.96	139.98
12	J6	217.68	191.04	J6	139.96	105.88	191.04	139.96	139.97
13	J8	216.67	209.11	J6	138.00	105.68	207.95	139.96	141.92



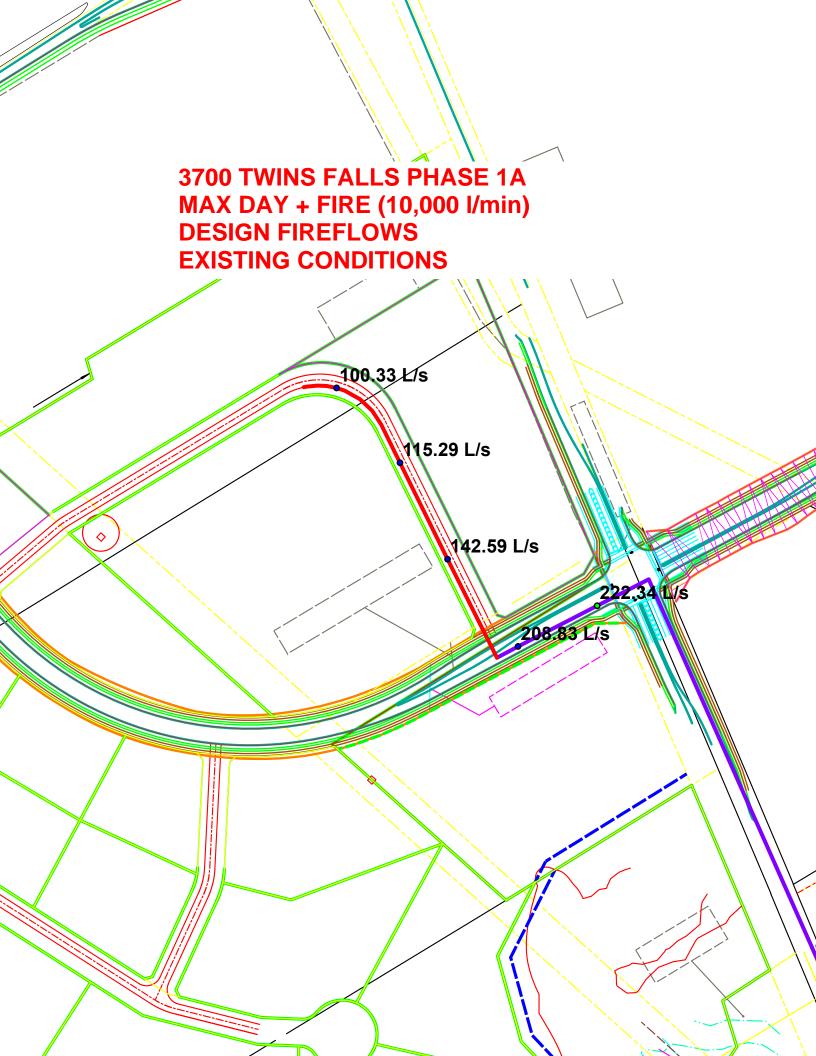
	ID	Total Demand (L/s)	Available Flow at Hydrant (L/s)	Critical Node ID	Critical Node Pressure (kPa)	Critical Node Head (m)	Design Flow (L/s)	Design Pressure (kPa)	Design Fire Node Pressure (kPa)
1	J12	217.51	355.78	J12	139.96	106.03	355.78	139.96	140.06
2	J13	216.67	484.84	J13	139.96	107.08	484.84	139.96	139.96
3	J2	216.67	444.88	J2	139.96	107.08	444.88	139.96	140.18
4	J28	217.47	389.07	J28	139.96	106.18	389.07	139.96	140.10
5	J3	219.04	412.77	J30	137.45	106.68	411.24	139.96	142.63
6	J30	219.78	256.20	J30	139.96	106.93	256.20	139.96	139.97
7	J32	218.92	221.49	J32	139.96	106.48	221.49	139.96	140.15
8	J34	218.88	316.84	J34	139.96	105.83	316.84	139.96	140.00
9	J36	218.24	336.66	J36	139.96	105.93	336.66	139.96	140.03
10	J4	218.34	229.45	J4	139.96	106.73	229.45	139.96	139.96
11	J5	217.37	233.35	J5	139.96	105.98	233.35	139.96	139.96
12	J6	217.68	276.36	J6	139.96	105.88	276.36	139.96	139.98
13	J8	216.67	302.46	J6	138.00	105.68	301.60	139.96	141.97



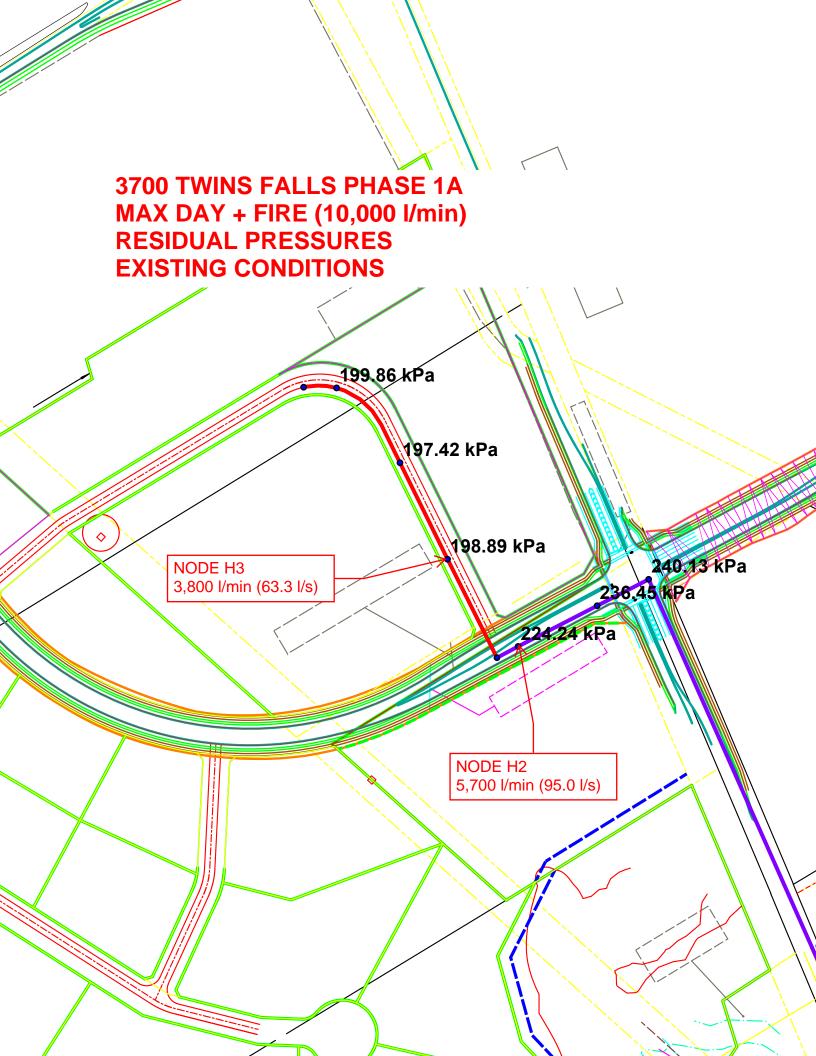
	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	H1	0.00	92.30	131.80	387.07	19.66
2	H2	0.00	92.20	131.80	388.05	22.07
3	Н3	0.00	92.45	131.80	385.59	24.13
4	H4	0.00	92.60	131.80	384.12	25.50
5	H5	0.00	92.35	131.80	386.56	26.80
6	J1	0.00	91.60	131.80	393.93	1.18
7	J2	0.00	92.80	131.80	382.17	18.09
8	J3	0.00	92.30	131.80	387.07	22.72
9	J4	0.58	92.20	131.80	388.03	27.23



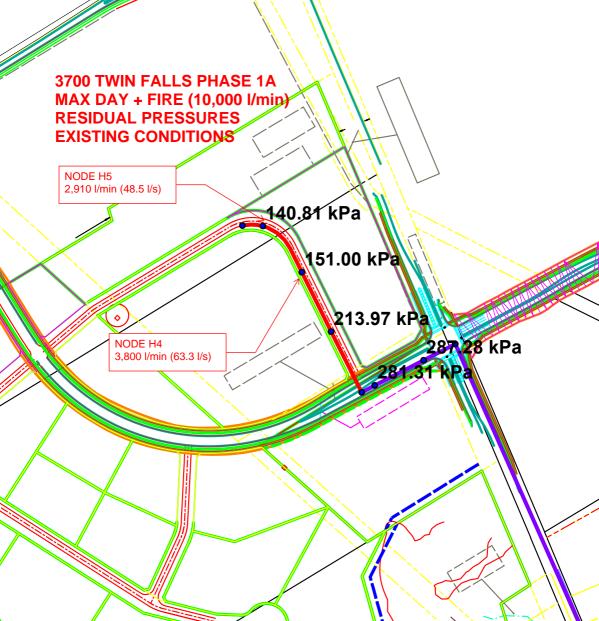
	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	H1	0.00	92.30	148.40	549.73	19.66
2	H2	0.00	92.20	148.40	550.71	22.07
3	Н3	0.00	92.45	148.40	548.26	24.13
4	H4	0.00	92.60	148.40	546.79	25.50
5	H5	0.00	92.35	148.40	549.23	26.80
6	J1	0.00	91.60	148.40	556.60	1.18
7	J2	0.00	92.80	148.40	544.83	18.09
8	J3	0.00	92.30	148.40	549.73	22.72
9	J4	0.58	92.20	148.40	550.70	27.23

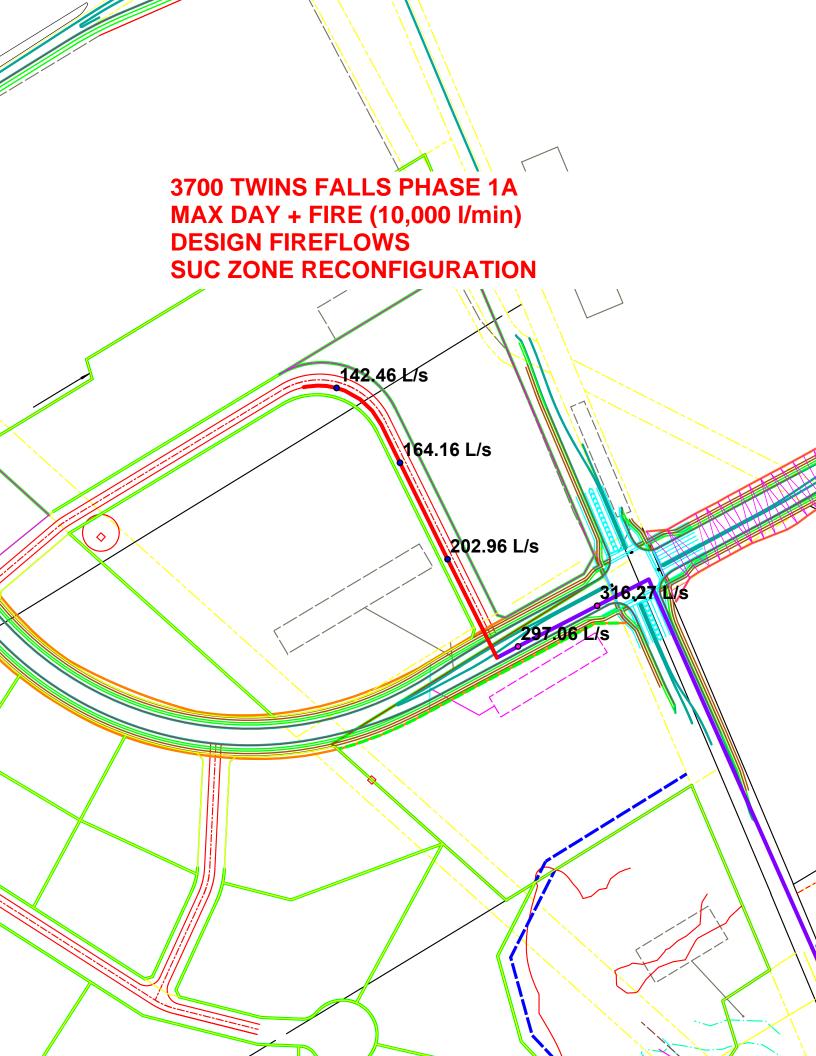

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	H1	0.00	92.30	125.30	323.35	0.00
2	H2	0.00	92.20	125.30	324.33	0.00
3	Н3	0.00	92.45	125.30	321.86	0.00
4	H4	0.00	92.60	125.29	320.36	0.00
5	H5	0.00	92.35	125.29	322.79	0.00
6	J1	0.00	91.60	125.30	330.23	0.00
7	J2	0.00	92.80	125.30	318.46	0.00
8	J3	0.00	92.30	125.30	323.35	0.00
9	J4	1.57	92.20	125.29	324.26	0.00

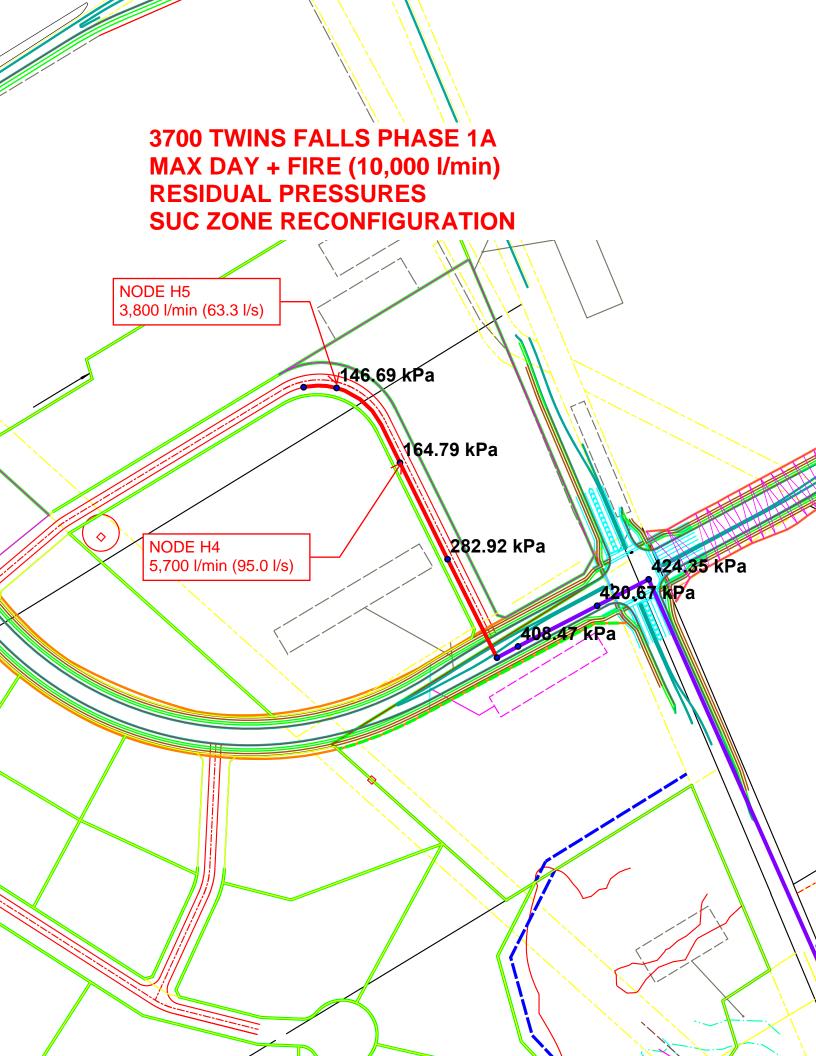
	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count	Water Age (hrs)
1	P11	J1	J2	509.60	297.00	120.00	1.57	0.02	0.00	0.00	Open	0	0.00
2	P13	J3	H2	19.59	297.00	120.00	-1.57	0.02	0.00	0.00	Open	0	0.00
3	P15	J3	H3	89.98	204.00	110.00	1.57	0.05	0.00	0.03	Open	0	0.00
4	P45	J1	CON2	35.56	297.00	120.00	-1.57	0.02	0.00	0.00	Open	0	0.00
5	P67	Н3	H4	87.81	204.00	110.00	1.57	0.05	0.00	0.03	Open	0	0.00
6	P69	H4	H5	83.18	204.00	110.00	1.57	0.05	0.00	0.03	Open	0	0.00
7	P71	H5	J4	27.28	204.00	110.00	1.57	0.05	0.00	0.03	Open	0	0.00
8	P73	H2	H1	72.67	297.00	120.00	-1.57	0.02	0.00	0.00	Open	0	0.00
9	P75	H1	J2	47.30	297.00	120.00	-1.57	0.02	0.00	0.00	Open	0	0.00



	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	H1	0.00	92.30	145.80	524.24	0.00
2	H2	0.00	92.20	145.80	525.21	0.00
3	Н3	0.00	92.45	145.80	522.74	0.00
4	H4	0.00	92.60	145.79	521.25	0.00
5	H5	0.00	92.35	145.79	523.68	0.00
6	J1	0.00	91.60	145.80	531.12	0.00
7	J2	0.00	92.80	145.80	519.34	0.00
8	J3	0.00	92.30	145.80	524.23	0.00
9	J4	1.57	92.20	145.79	525.14	0.00

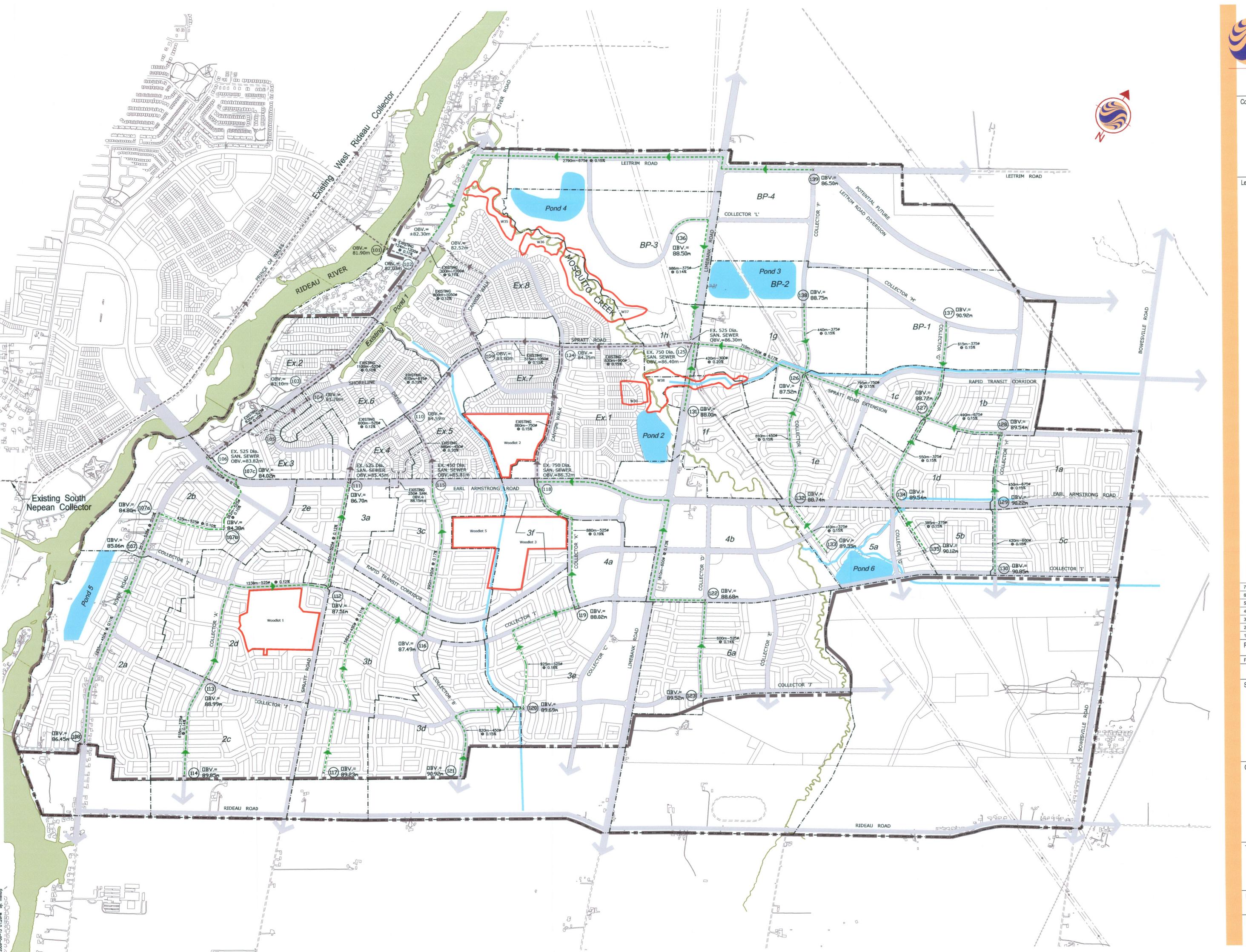

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)	Status	Flow Reversal Count	Water Age (hrs)
1	P11	J1	J2	509.60	297.00	120.00	1.57	0.02	0.00	0.00	Open	0	0.00
2	P13	J3	H2	19.59	297.00	120.00	-1.57	0.02	0.00	0.00	Open	0	0.00
3	P15	J3	H3	89.98	204.00	110.00	1.57	0.05	0.00	0.03	Open	0	0.00
4	P45	J1	CON2	35.56	297.00	120.00	-1.57	0.02	0.00	0.00	Open	0	0.00
5	P67	Н3	H4	87.81	204.00	110.00	1.57	0.05	0.00	0.03	Open	0	0.00
6	P69	H4	H5	83.18	204.00	110.00	1.57	0.05	0.00	0.03	Open	0	0.00
7	P71	H5	J4	27.28	204.00	110.00	1.57	0.05	0.00	0.03	Open	0	0.00
8	P73	H2	H1	72.67	297.00	120.00	-1.57	0.02	0.00	0.00	Open	0	0.00
9	P75	H1	J2	47.30	297.00	120.00	-1.57	0.02	0.00	0.00	Open	0	0.00


	ID	Total Demand (L/s)	Available Flow at Hydrant (L/s)	Critical Node ID	Critical Node Pressure (kPa)	Critical Node Head (m)	Design Flow (L/s)	Design Pressure (kPa)	Design Fire Node Pressure (kPa)
1	H1	166.67	224.11	H4	137.01	106.58	222.34	139.96	142.92
2	H2	166.67	211.03	H4	136.03	106.48	208.83	139.96	143.90
3	Н3	166.67	143.16	H4	138.49	106.73	142.59	139.96	141.12
4	H4	166.67	115.29	H4	139.96	106.88	115.29	139.96	139.96
5	H5	166.67	100.33	H5	139.96	106.63	100.33	139.96	139.96


	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	H1	0.00	92.30	116.43	236.45	0.00
2	H2	95.00	92.20	115.08	224.24	0.00
3	H3	63.33	92.45	112.75	198.89	0.00
4	H4	0.00	92.60	112.75	197.42	0.00
5	H5	0.00	92.35	112.75	199.86	0.00
6	J1	0.00	91.60	126.74	344.36	0.00
7	J2	0.00	92.80	117.30	240.13	0.00
8	J3	0.00	92.30	115.02	222.60	0.00
9	J4	0.87	92.20	112.75	201.33	0.00

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	H1	0.00	92.30	121.62	287.28	0.00
2	H2	0.00	92.20	120.91	281.31	0.00
3	Н3	0.00	92.45	114.29	213.97	0.00
4	H4	63.30	92.60	108.01	151.00	0.00
5	H5	48.50	92.35	106.72	140.81	0.00
6	J1	0.00	91.60	127.05	347.41	0.00
7	J2	0.00	92.80	122.08	286.90	0.00
8	J3	0.00	92.30	120.72	278.45	0.00
9	J4	0.87	92.20	106.72	142.28	0.00

	ID	Total Demand (L/s)	Available Flow at Hydrant (L/s)	Critical Node ID	Critical Node Pressure (kPa)	Critical Node Head (m)	Design Flow (L/s)	Design Pressure (kPa)	Design Fire Node Pressure (kPa)
1	H1	166.67	317.58	H4	137.01	106.58	316.27	139.96	142.92
2	H2	166.67	298.70	H4	136.03	106.48	297.06	139.96	143.90
3	Н3	166.67	203.38	H4	138.49	106.73	202.96	139.96	142.09
4	H4		164.16	H4	139.96	106.88	164.16	139.96	139.91
5	H5	166.67	142.46	H5	139.96	106.63	142.46	139.96	139.34



	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)	Water Age (hrs)
1	H1	0.00	92.30	135.23	420.67	0.00
2	H2	0.00	92.20	133.88	408.47	0.00
3	Н3	0.00	92.45	121.32	282.92	0.00
4	H4	95.00	92.60	109.42	164.79	0.00
5	H5	63.33	92.35	107.32	146.69	0.00
6	J1	0.00	91.60	145.54	528.59	0.00
7	J2	0.00	92.80	136.10	424.35	0.00
8	J3	0.00	92.30	133.52	403.93	0.00
9	J4	0.87	92.20	107.32	148.16	0.00

Appendix

C Wastewater Collection Supporting Information

- Drawing 400 Sanitary Drainage Area Plan (RSCISSU-Phase1 Mosquito Creek Area)
- Sanitary Sewer Design Sheet (RSCISSU-Phase1 Mosquito Creek Area)
- Figure 3.1 Conceptual Sanitary Plan
- Sanitary Sewer Design Sheet
- 136974-400 Sanitary Drainage Area Plan
- Temporary ICD Calculation

Stantec Consulting Ltd. 1505 Laperriere Avenue Ottawa ON Canada K1Z 7T1 Tel. 613.722.4420 Fax. 613.722.2799 www.stantec.com

Stantec

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing — any errors or omissions shall be reported to Stantec without delay.

The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Proposed SWM Facility

Overland Flow Corridor

Riverside South

(Urban Boundary Limit)

Existing Sanitary Sewer Proposed Sanitary Sewer _____

Existing Manhole Node

(15) BV.= 85.77m

Sub-drainage Area Limit

Sanitary Manhole Node

Sub-drainage Area I.D.

Wood Lot

7	REALIGNMENT AT LRT CROSSING		MJS	NG	JUNE 9/09
6	FINAL SUBMISSION		BCB	NG	JULY 30/08
5	FINAL REPORT (DRAFT)		BCB	NG	MAR 5/08
4	GENERAL REVISIONS		BCB	PM	JAN 25/08
3	REVISED TRANSIT ALIGNMENT		DRP	DRP	MAY 17/06
2	REVISED SIZES AND ELEVATIONS		DRP	DRP	NOV 23/05
1	SECOND SUBMISSION		GBU	DFE	MAY 25/05
Rev	vision		Ву	Appd.	YY.MM.DD
File	Name: 163400917	BCB	NG	PM	FEB. 2007
		Dwn.	Chkd.	Dsgn.	YY.MM.DD

Client/Project

CLARIDGE HOMES

Riverside South Community Master Servicing Study Update

Ottawa ON Canada

SANITARY SERVICING PLAN

Project No. 163400917	Scale ₀ ₁₀₀	300 500m
Drawing No.	Sheet	Revision
SAN-1	2 of 3	7

96					nmunity							-	_		SEW													DESI	GN PARAI	METERS					
Stante	_	Date: M Fe by: Di	larch 4, 2 ebruary 1 RP	008	- State		File Num	nber: 604	- 00176						& DENSITIE							Minimum n = Max Pea Min. Pea Peacking	Daily Flow / n Velocity: aking Factor: acking Factor g Factor Indu g Factor Con	: strial:	В	ased on Ap	0.013 4.0 2.0	m/s 3	Commerce Industrial Institution Infiltration Low Dens Medium I High Den	al: al: :: sity: Density:	0.579 0.405 0.579 0.280 @ @	l/s/ha l/s/ha l/s/ha 3.2 2.4	pers/unit pers/unit pers/unit	1	
																														Sanitary Sev	ver Lines				
ID Area	_	To MH			LOW		1	MED		RESIDE	NTIAL HIGH				Total	Peak	Peak	COMN Area	MERCIAL Accum.	Area	JSTRIAL Accum.	Area	Accum.	C+I+I Peak	PARK Area	/ ROAD Accum.	Total	Accum.	Infilt.	Total	Distance	Diameter		Capacity	_
			(ha)	Area (ha)	Pop.	Accum. Pop.	Area (ha)	Pop.	Accum. Pop.	Area (ha)	Pop.	Accum. Pop.	Units	Accum. Units	Accum. Pop.	Factor	Flow (l/s)	(ha)	Area (ha)	(ha)	Area (ha)	(ha)	Area (ha)	Flow (I/s)	(ha)	Area (ha)	Area (ha)	Area (ha)	Flow (I/s)	Flow (I/s)	(m)	(mm)	(%)	(Full)	(Fu
2a 2b	107 1 107a 1 107b 107c	107 07a 07b 07c 106	3.33 34.10 0.00 0.00 0.00	64.83 21.11 0.00 0.00 0.00	3194 1040 0 0	3194 4234 424 4234 4234	3.50 12.99 0.00 0	223 830 0 0	223 1053 1053 1053	0 0 0 0 0	0 0 0 0 0	0 0 0 0	1091 671 0	091 1762 1762 1762 1762	3417 5287 5287 5287 5287 5287	3.4 3.2 3.2 3.2 3.2	47.0 69.0 69.0 69.0 69.0	1.20 0 0.00 0	1.20 1.20 1.20 1.20 1.20	0 0 0	0	1.00 0 0 0 0	1.00 1.00 1.00 1.00 1.00	1.9 1.9 1.9 1.9	5.60 19\$5 0.00 0.00 0.00	5.66 25.01 25.01 25.01 25.01	76.19 53.45 0.00 0.00 0.00	76.19 129.64 129.64 129.64	21.3 36.4 3.3 36.3 36.3 36.3	70.2 107.2 107.2 107.2 107.2	1255 257 636 500 590	450 525 525 525 525	0.12 0.12 0.12 0.15 0.14	103.0 155.4 155.4 173.8 167.9	0.6 0.7 0.7 0.7
Ex3 Ex2			17.90 16.42	10.04 16.42	41	4647 5220	7.86 0	564 0	1617	0	0	0	364 179	2126 2305	6264 6837	3.1	80.0 86.3	5.35 0	6.55 6.55	0	0	0	1.00	6.6	0.00 5.11	25.01 30.12	23.25 21.53	152 9 142	42.8 48.8	129.4 141.7	835 1100	525 525	0.10 0.10	141.9 141.9	0.6
2c 2d 2e-3a Ex4	113	112 111	46.31 44.89 18.65 14.93	44.35 26.13 1.86 13.31	2186 1286 90 90	2186 3472 3562 3652	1.96 18.76 11.60 1.62	125 1198 740 468	125 1323 2063 2531	0 0 5.19	0 0 591 0	0 0 591 591	735 901 647 223	735 1636 2283 2506	2311 4795 6216 6774	3.5 3.3 3.2 3.1	33.1 63.4 79.5 85.6	0 0 2.40 0.91	0 0 2.40 3.31	0 0 0	0 0 0	0 8.69 8.47	0 8.69 17.16 17.16	0.0 7.5 17.0 17.8	6.96 5.13 4.77 0	6.96 12.09 16.86 16.86	53.27 58.71 34.29 15.84	53.27 111.98 146.27 162.11	14.9 31.4 41.0 45.4	48.0 102.3 137.4 148.8	615 1230 680 600	375 525 525 525	0.14 0.12 0.12 0.12	68.4 155.4 155.4 155.4	0.6 0.7 0.7 0.7
3b 3c Ex5		115	60.37 43.75 20.60	43.08 21.27 14.47	2122 1050 480	2122 3172 3652	17.29 19.43 6.13	1104 1241 302	1104 2345 2647	0 3.05 0	0 348 0	0 348 348	1123 1028 276	1123 2151 2427	3226 5865 6647	3.4 3.2 3.1	44.6 75.6 84.2	0.60 0 0.80	0.60 0.60 1.40	0 0 0	0 0 0	2.83 0 3.16	2.83 2.83 5.99	3.0 3.0 6.4	7.17 8.51 2.21	7.17 15.68 17.89	70.97 52.26 26.77	70.97 123.23 150.00	19.9 34.5 42.0	67.5 113.0 132.7	1580 990 480	450 450 450	0.11 0.17 0.20	98.6 122.6 133.0	0.0
Ex6	110	109	25.47	20.32	822	8126	5.15	288	5466	0	0	939	377	5310	14531	2.8	164.4	0	4.71	0	0	2.39	25.54	26.3	2.71	37.46	30.57	342.68	96.0	286.6	675	675	0.12	303.8	0.8
3d 3e 3f-4a	120	119	44.62 45.28 28.00	39.50 36.39 0	1946 1792 0	1946 3738 3738	5.12 8.89 10.30	326 566 658	326 892 1550	0 0 17.70	0 0 1157	0 0 1157	744 796 854	744 1540 2394	2272 4630 6445	3.5 3.3 3.1	32.6 61.4 82.0	0.60 0 0	0.60 0.60 0.60	0 0 0	0 0 0	1.00 10.12 0	1.00 11.12 11.12	1.4 10.2 10.2	6.70 24.79 9.44	6.70 31.49 40.93	52.92 80.19 37.44	52.92 133.11 170.55	14.8 37.3 47.8	48.8 108.9 139.9	820 925 880	450 525 525	0.15 0.18 0.19	115.2 190.3 195.6	0.7 0.8 0.8
6a 4b		122 118	53.24 62	36.74 0	1811 0	1811 1811	16.50 0	1054 0	1054 1054	0 62.45	0 4079	0 4079	1005 2045	1005 3050	2865 6944	3.5 3.1	40.1 87.5	1.20 0	1.20 1.20	0.00 0.00	0	4.15 0	4.15 4.15	4.6 4.6	12.11 16.96	12.11 29.07	70.70 79.41	70.70 150.11	19.8 42.0	64.6 134.2	600 1810	525 600	0.14 0.13	167.9 231.0	0.7 0.7
Ex1	118	124	45.64	22.12	896	6445	23.52	1687	4291	0.00	0	5236	983	6427	15972	2.8	178.0	1.55	3.35	0	0	0	15.27	16.2	0	70.00	47.19	367.85	103.0	297.1	860	750	0.15	449.8	0.9
5c 1a 1b	129	128	24.82 27.43 20.32	19.94 19.41 6.63	982 957 326	982 1939 2265	4.88 8.02 13.69	312 511 874	312 823 1697	0 0 0	0 0 0	0 0 0	437 512 466	437 949 1415	1294 2762 3962	3.7 3.5 3.3	19.5 38.9 53.6	0 0 0	0 0 0	0 0 0	0 0 0	2.83 1.00 2.86	2.83 3.83 6.69	2.5 3.3 5.8	7.38 9.41 3.90	7.38 16.79 20.69	35.03 37.84 27.08	35.03 72.87 99.94	9.8 20.4 28.0	31.8 62.6 87.4	420 450 490	600 675 675	0.15 0.15 0.15	248.1 339.6 339.6	0.85 0.92 0.92
5b 1d			17.36 22.74	9.93 12.34	490 608	490 1098	7.43 10.40	475 665	475 1140	0	0 0	0 0	351 467	351 818	965 2238	3.8 3.5	14.9 32.2	0 3.20	0 3.20	0 0	0	0	0	0.0 2.8	2.46 5.30	2.46 7.76	19.82 31.24	19.82 51.06	5.5 14.3	20.4 49.2	385 550	375 375	0.15 0.15	70.8 70.8	0.6 0.6
BP-1	137	127	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	59	59	51.3	6.90	6.90	66.00	66.00	18.5	69.8	725	375	0.15	70.8	d

66.1

3.3

8.3

88.3

0.0

22.0

139.4

165.7

129.4

297.0

132.17 122.7

4.57

12.16

4.20

3.53

1.54

15.00

38.40 38.40

0.19 111.70

2.40 184.10

5.45 227.01

0 267.02

15.00

39.92

29 42

43.26

13.80

63.70

164.04

7.56

19.72

4.20

67.37

1.54

26.46 243.46 68.2

29 42

72.68

13.80

17.15

63.70

8.88 464.86 130.2

61.85 1257.54 352.1

164.04

0 1551.22 434.3

31.41 361.34

20.30 853.01

20.3

3.9

101 2

4.8

17.8

238.8

45.9

226.9

12.2

319.3

17.8

39.8

393.2

674.1

947.5

175.4

1201.1

795

410

810

440

710

420

986

830

515

1100

2790

145

750

375

450

375

750

300

375

1050

1050

675

1200

0.15

0.15

0.15

0.15

0.17

0.20

0.14

0.15

0.15

0.15

0.11

900 0.15 731.4

449.8

115.2

70.8

478.9

45.1

68.4

1103.3

1103.3

339.6

1349.0

577

0

363

291

2810

379

936

4109

291

516 11421

728 17459

0 19221

7420

1062

2654

11005

834

29372 2.5

46187 2.3

51474 2.3

78 4478 12055 2.9

3.1

3.8 3.5

2.9

3.8

92.6

16.3

37.5

129 9

13.0

0.0

295.8

429.7

469.8

0.60

0.60

0

0

140.3 4.70 9.10

0

3.80

0.60

0.60

4.40

0

0.64 13.09

0 17.80

0 19.00

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0 0.0

0.0

0

0.0

0

0

0

0

0.0

6.50

1 79

1.40

10

12.19

25

0

0

149

72.29

1.79

3.19

10

97.27

25

147.44

172.98

149

0 323.02

1h

Ex7

Ex8

BP-4

Area BP-4 also accounts for additional 39ha area outside the CDP that was accounted for in calculation of Employment Area

PIPE Capacity (Full) calculated using ACTUAL PIPE SIZE

126

132

126

138 126

126 125

136 125

124 109

109 102

139 102

102 101

131 125

127

14.79

19 47

29.70

0

15.69

15.61

0.00

17.26

56.40

0

125 124 3.99 2.43

0

12 37

0

4.82

11.07

0.00

0

608

1021

237

544

11.40 768 13104

54.40 2150 23380

0

118 5891

3363

608

1629

5229

0

9.29

8.96

10.87

0.00

1.56

593

454

694

290

98

3.00 250 10078

2.00 134 15678

0

3430

454

0

5149

290

0

5537

0

16731

1025

5.50

0

0

627

0

0

0

2.86 327 6190

0 0 7129

0

627

0

627

0

0

7129

627

Limiting Capacity Calculated based on 1200 mm pipe @ 0.11% between Rideau Road and River

Additional sanitary flow of 29.21 L/s from Rideau Carleton Raceway (RCR) is not included in the above calculation

Net Residual Capacity at River Crossing is 118.69 l/s (1349 - 1201.1 -29.21)

Obvert

85.38

84.63

83.81

83.10

88.87

87.39

86.87 86.57 86.05

87.04 **85.81** 85.36

Ex. Obv. @ SAN 86.32 Ex. Inv. @ SAN 85.57 89.00 88.68 88.16 88.08 86.33 85.73

Ex. Obv. @ SAN 86.32 Ex. Inv. @ SAN 85.57

90.22 89.62

87.53 86.78

88.09 87.72

86.31 85.56

87.09 86.72

82.03 81.36

85.07

83.60

82.03

89 54

89.54

89.17 88.72 88.34

88 74

90.92 90.55 89.83 89.46

Ex. Obv. @ SAN 85.45 Ex. Inv. @ SAN 84.93 87.49 87.04

Ex. Obv. @ SAN 85.81 Ex. Inv. @ SAN 85.36

88.02 87.50

85.83

88 87

89.17

88.36

87.07

84.17

82.55

80.98

86.01

85.62

84.86

84.11

83.28

82.58

81.48

88.49

86.87

84.21

Obvert

87.96

86.46

86.15

83.82

83.10

89.73

87.39

87.49

89 69

88.02

89.52

88 68

90.85

90.22 89.54

90.12

88.75

88.50

84.35

83.6

86.31 85.41

89.23 88.78

85.45

0.75

0.82 0.80

0.73

0.74

0.65

0.74

0.79 **0.80**

0.65

0.86

0.94

0.95 0.67

0.88

0.95

0.69

0.82

1.06

0.68

0.74

0.53

0.67

0.72

0.99

0.57

0.71

0.45

1.13

0.57

0.62

1.30

1.39

0.92

1.32

1.11 1.12

0.99

0.62

0.70

0.62

1.05

0.62

0.60

1.23

1.23

0.92

1.16

Invert Elevation

85.62

84.86 84.11

83.30

89.35

90.47

89 16

90.25

89 54

89.75

88.38

88.13

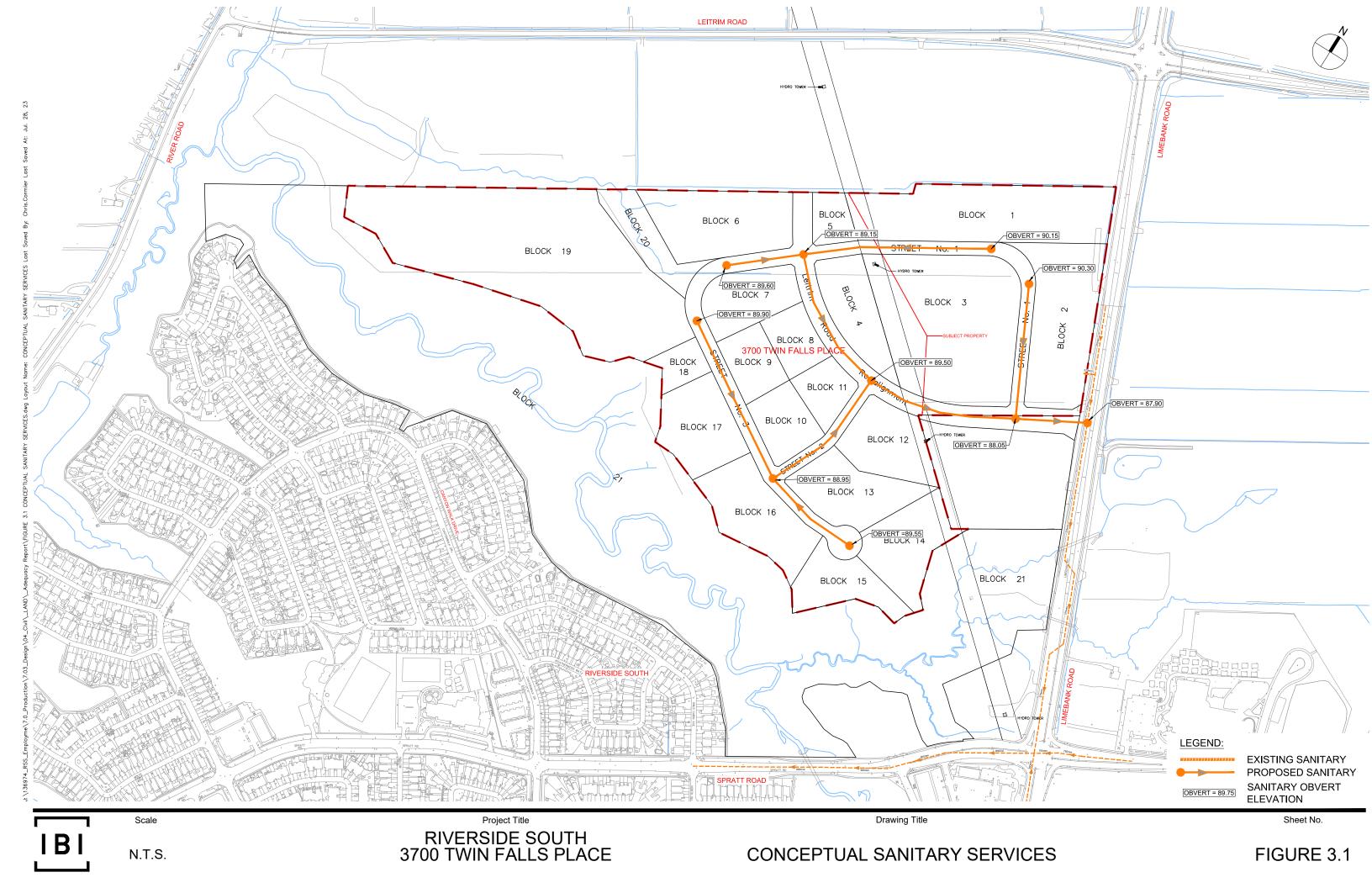
83.30

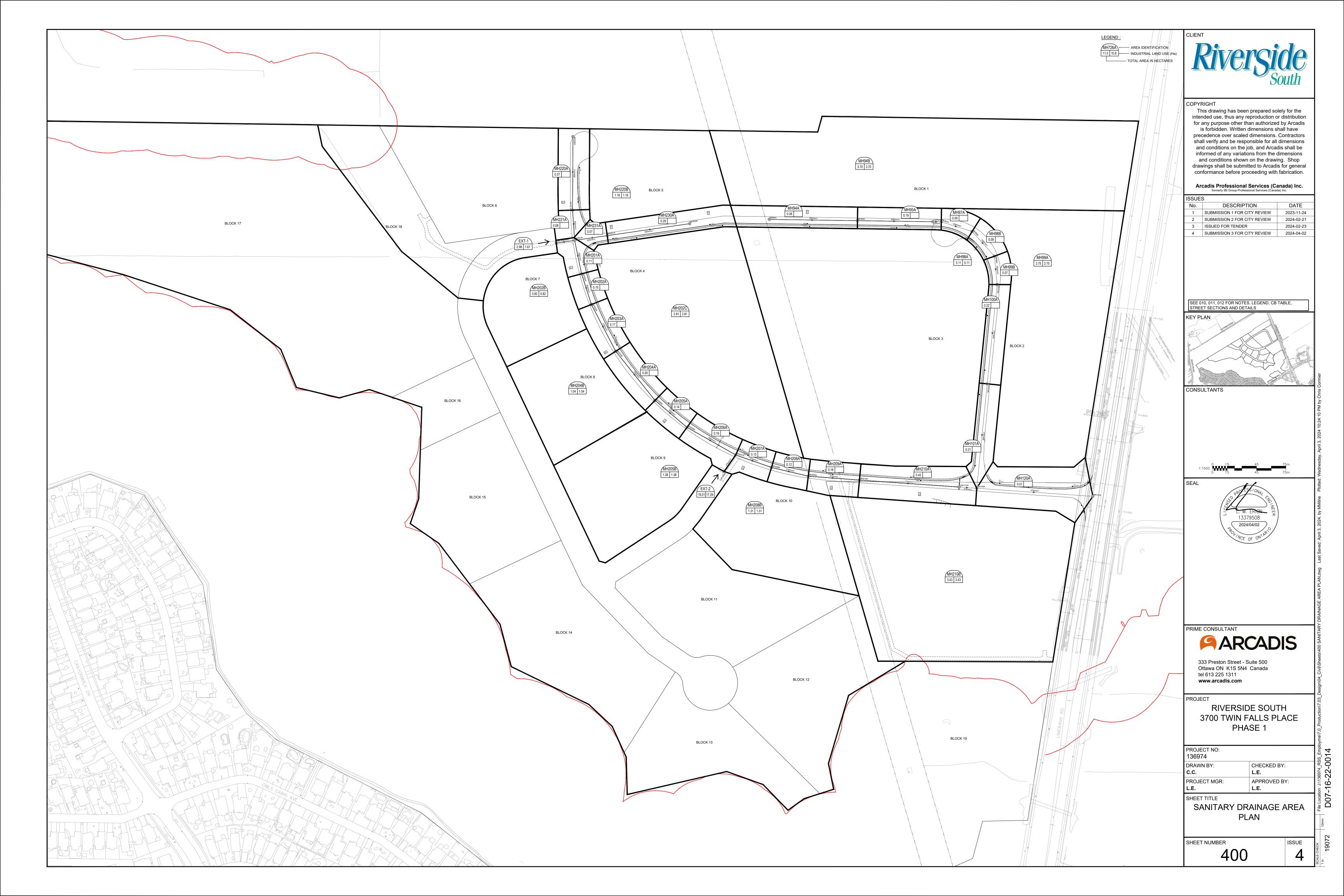
82.55

85.83

82.03 80.83 81.90 80.70

88.72 87.97


82.58 82.00


84.93 84.73

85.36 84.85

87.50 86.35

Ex. Obv. @ SAN 102 Ex. Inv. @ SAN 102 81.00

-400-333 Preston Street

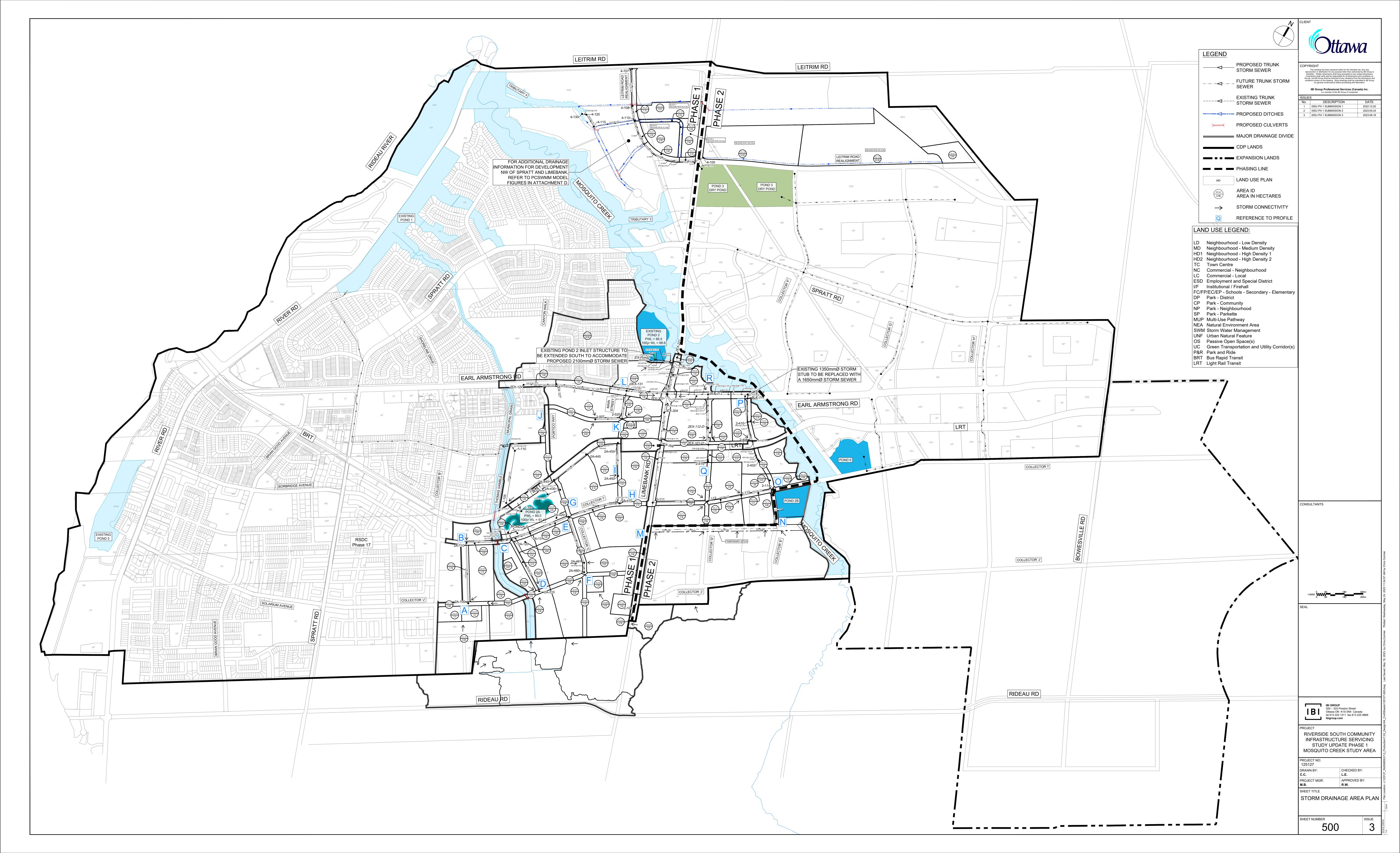
IBI GROUP Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

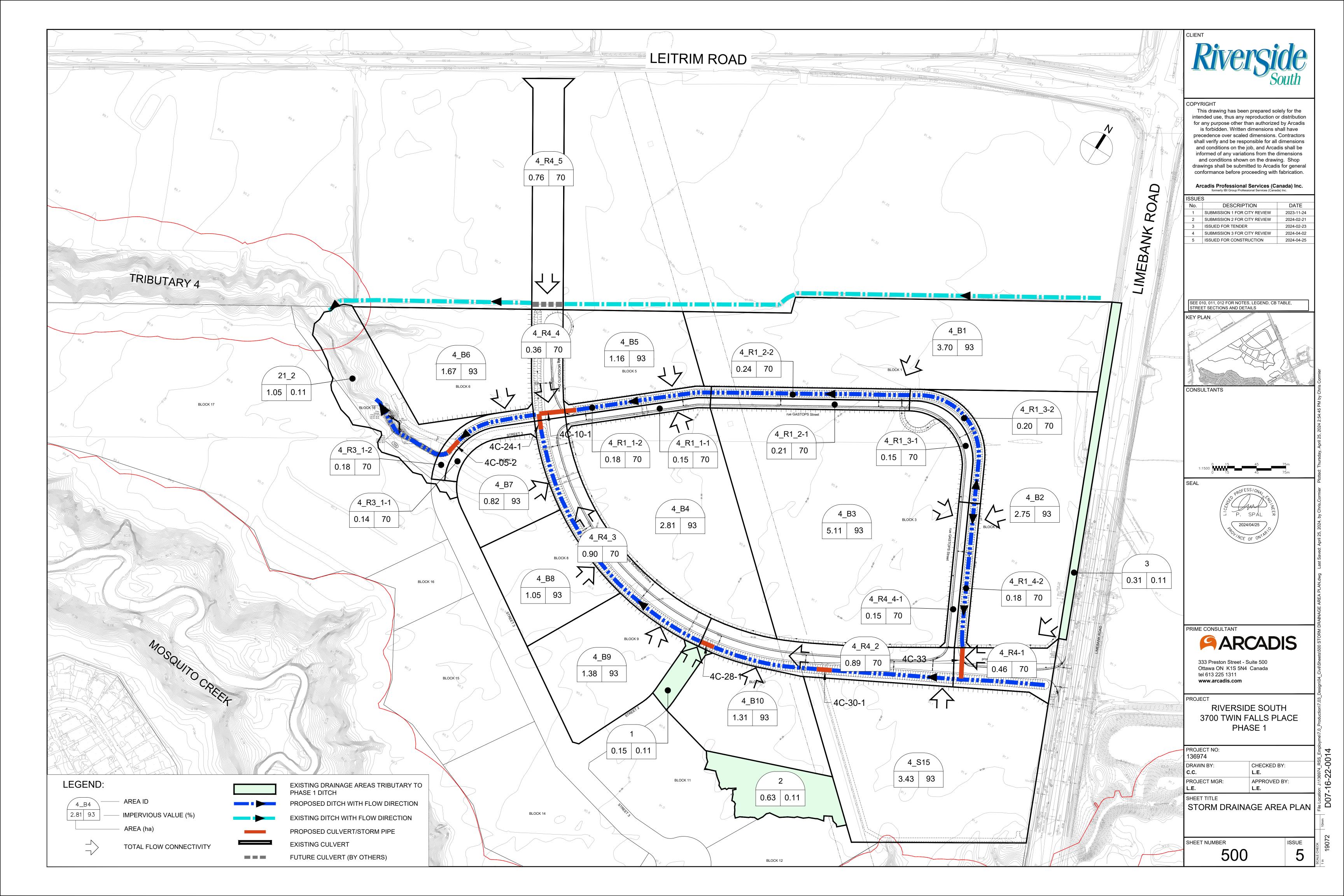
3700 Glen Falls Place - Phase 1 CITY OF OTTAWA Riverside South

	LOCATION							RESIDEN	ITIAL									AREAS				INFILTE	RATION ALL	OWANCE	EIVER	LOW (L/s)	TOTAL			PROPO	SED SEWER	DESIGN		_
	LUCATION	V		AREA		UNIT TY	PES		AREA	POPUL	ATION	RES	PEAK			AREA	A (Ha)			ICI	PEAK	ARE	A (Ha)	FLOW	LIVED L	LOW (L/S)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	AILABLE
STREET	AREA ID	FROM	TO	w/ Units	e E	TH/SD	1 Bed 2	2 Bed	w/o Units	IND	сим	PEAK	FLOW	INSTITU	JTIONAL	COMMI	ERCIAL	INDU	STRIAL	PEAK	FLOW	IND	CUM	(L/s)	IND	сим	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	CAF	PACITY
JIKEET	ANLAID	МН	MH	(Ha)	31	111/30	APT	APT	(Ha)	IND	COM	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)	IND	COM	(L/3)	11415	COW	(L/3)	(13)	(m)	(11111)	(70)	(m/s)	L/s	
Mosquito Drive	Block 5	MH220A	MH221A	1.43						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	1.16	1.16	1.50	0.70	1.43	1.43	0.47		0.0	1.18	20.24	75.00	200	0.35	0.624	19.07	9
Woodulto Drive	DIOCK 3	MH221A	MH201A	0.08					-	0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	1.16	1.50	0.70	0.08	1.51	0.50		0.0	1.20	20.24	28.15	200	0.35	0.624	19.04	
		IVII IZZ I/ (WII IZO I/ C	0.00						0.0	0.0	0.00	0.00	0.00	0.0	0.00	0.0	0.00	1.10	1.00	0.70	0.00	1.01	0.00		0.0	1.20	20.24	20.10	200	0.00	0.024	10.04	+
Street No. 3	EXT-1	CAP240A	MH201A	2.98						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	1.67	1.67	1.50	1.01	2.98	2.98	0.98		0.0	2.00	20.24	18.69	200	0.35	0.624	18.24	
Gastops Street		MH230A	MH231A	0.29						0.0	0.0	3.80	0.00	0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.29	0.29	0.10		0.00	0.10	20.24	85.00	200	0.35	0.62	20.15	+
		MH231A	MH201A	0.07				-		0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.07	0.36	0.12		0.00	0.12	20.24	33.94	200	0.35	0.62	20.12	+
Mosquito Drive		MH201A	MH202A	.0.11						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	2.83	1.50	1.72	.0.11	4.96	1.64		0.0	3.36	20.24	37.73	200	0.35	0.624	16.89	+
mooquito Birro	Block 4. 7		MH203A	3.73						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	3.63	6.46	1.50	3.93	3.73	8.69	2.87		0.0	6.79	31.02	32.83	250	0.25	0.612	24.23	\pm
	,	MH203A	MH204A	0.17						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	6.46	1.50	3.93	0.17	8.86	2.92		0.0	6.85	31.02	53.81	250	0.25	0.612	24.17	\top
	Block 8	MH204A	MH205A	1.24						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	1.04	7.50	1.50	4.56	1.24	10.10	3.33		0.0	7.89	31.02	64.21	250	0.25	0.612	23.13	T
	Block 9	MH205A	MH206A	1.52						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	1.38	8.88	1.50	5.40	1.52	11.62	3.83		0.0	9.23	45.12	42.68	300	0.20	0.618	35.89	
	·	MH206A	MH207A	0.19						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	8.88	1.50	5.40	0.19	11.81	3.90		0.0	9.29	45.12	57.11	300	0.20	0.618	35.82	4
Street No. 2	EXT-2	CAP260A	MUIOOZA	40.04						0.0	0.0	2.00	0.00	0.00	0.0	0.00	0.0	17.00	17.00	1.50	10.20	10.01	10.01	6.07		0.0	10.00	70.04	20.65	275	0.15	0.604	54.18	_
Street No. 2	EAT-2	CAPZOUA	MH207A	19.01						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	17.09	17.09	1.50	10.38	19.01	19.01	6.27		0.0	16.66	70.84	20.65	375	0.15	0.621	54.16	-
Mosquito Drive		MH207A	MH208A	0.13						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	25.97	1.50	15.78	0.13	30.95	10.21		0.0	25.99	70.84	38.73	375	0.15	0.621	44.85	-
	Block 10	MH208A	MH209A	1.43						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	1.31	27.28	1.50	16.58	1.43	32.38	10.69		0.0	27.26	70.84	38.57	375	0.15	0.621	43.58	_
		MH209A	MH210A	0.18						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	27.28	1.50	16.58	0.18	32.56	10.74		0.0	27.32	70.84	52.35	375	0.15	0.621	43.52	_
		MH210A	CAP110A	3.85						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	3.43	30.71	1.50	18.66	3.85	36.41	12.02		0.0	30.68	70.84	102.00	375	0.15	0.621	40.17	_
		CAP110A	MH120A							0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	30.71	1.50	18.66	0.00	36.41	12.02		0.0	30.68	70.84	18.00	375	0.15	0.621	40.17	4
Gastops Street	Block 1	MH94A	MH95A	3.98						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	3.70	3.70	1.50	2.25	3.98	3.98	1.31		0.0	3.56	20.24	90.00	200	0.35	0.624	16.68	-
		MH95A	CAP97B	0.19						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	3.70	1.50	2.25	0.19	4.17	1.38		0.0	3.62	20.24	77.04	200	0.35	0.624	16.62	_
	EXT 1	CAP96A	MH97A	4.17						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	3.70	1.50	2.25	4.17	8.34	2.75		0.0	5.00	20.24	8.49	200	0.35	0.624	15.24	٦
		MH97A	MH98A	0.09						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	3.70	1.50	2.25	0.09	8.43	2.78		0.0	5.03	20.24	32.94	200	0.35	0.624	15.21	
	Block 3	MH98A	MH99A	5.20						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	5.11	8.81	1.50	5.35	5.20	13.63	4.50		0.0	9.85	20.24	29.05	200	0.35	0.624	10.39	
	Block 2	MH99A	MH100A	2.82						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	2.75	11.56	1.50	7.02	2.82	16.45	5.43		0.0	12.45	20.24	34.00	200	0.35	0.624	7.79	_
		MH100A MH101A	MH101A MH120A	0.22				-		0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	11.56 11.56	1.50 1.50	7.02 7.02	0.22	16.67 16.88	5.50 5.57		0.0	12.53 12.59	20.24	101.84 107.09	200	0.35 0.35	0.624 0.624	7.72 7.65	4
		WITTUTA	WITIZUA	0.21						0.0	0.0	3.00	0.00	0.00	0.0	0.00	0.0	0.00	11.50	1.50	7.02	0.21	10.00	5.57		0.0	12.59	20.24	107.09	200	0.33	0.024	7.00	_
Mosquito Drive		MH120A	MH122A	0.51						0.0	0.0	3.80	0.00	0.00	0.0	0.00	0.0	0.00	42.27	1.50	25.68	0.51	53.29	17.59		0.0	43.27	70.84	118.73	375	0.15	0.621	27.57	
																																		_
gn Parameters:				Notes:								Designed:		LME			No.						F	Revision								Date		÷
g urumotoro.					coefficient (n	n) =	0.0	013				2 co.gcu					1.							Submission N	lo. 1							2023-11-23		-
Residential		ICI Areas		2. Demand (280 L/d		200 L/d	day							2						Phase 1 -	Submission N	lo. 2							2024-02-21		Ξ
3.4 p/p/u				3. Infiltration			0.33 L/s	s/Ha				Checked:					3						Phase 1 -	Submission N	lo. 3							2024-04-02		
SD 2.7 p/p/u		,000 L/Ha/day		4. Residentia																														
ed 1.4 p/p/u		,000 L/Ha/day					/(4+(P/1000)^	^0.5))0.8																										_
ed 2.1 p/p/u		,000 L/Ha/day				.8 Correction						Dwg. Refe	rence:	136974-40	0																			_
er 60 p/p/Ha	17	7000 L/Ha/day						ors based	on total area,									File Referen							Date:							Sheet No:		
				 1.5 if are 	ater than 20%	%. otherwise *	1.0					1					1	136974-6.04.	114						2024-04-04							1 of 1		

Temporary Construction ICDs 3700 Twin Falls Place - Phase 1

Structure	Flow	Grade Elev.	Pipe Invert	Pipe Size	Height	Area	Orific	e Size
	(l/s)	(m)	(m)	(m)	(m)	(Sq m)	Sq. mm	mm dia.
Sanitary								
MH 120A	42.30	92.30	87.70	0.375	4.41	0.0075	86	97


A=(Q/(C*(2*g*h)^.5) C= 0.61 Based On Equation: Where: 2024-02-21


g= 9.81

Appendix

D Stormwater Management Supporting Information

- Drawing 125127-500 Storm Drainage Area Plan (RSCISSU-Phase1 Mosquito Creek Area)
- Drawing 136974-500 Drainage Area Plan
- Supporting calculations
- OGS sizing per manufacturer

STORM SEWER DESIGN SHEET

2 YEAR FLOW FOR LARGEST DRAINAGE AREA SERVICED BY CATCH BASIN

3700 TWIN FALLS PLACE - PHASE 1

	LOCATION							ARE	4 (Ha)						RAT	IONAL DE	SIGN FLOW	1
STREET	AREA ID	FROM	то	C= 0.20	C= 0.25	C= 0.40	C= 0.50	C= 0.57	C= 0.60	C= 0.68	C= 0.70	C= 0.73	C= 0.90	IND 2.78AC	CUM 2.78AC	INLET (min)	i (2) (mm/hr)	2yr PEAK FLOW (L/s)
2 Year Flow at Stree	et Catchbasin																	
Leitrim Road	CICB120 *								0.135					0.23	0.23	10.00	76.81	17.29
* area includes one la	lane, sidewalk and boulv	/ard to Hydro	L Duct															
Street No. 1	CB191 **												0.053	0.13	0.13	10.00	76.81	10.18
** area includes one l	lane and sidewalk																	
Definitions: Q = 2.78CiA, where:																		
Q = Peak Flow in Litr A = Area in Hectares	res per Second (L/s) s (Ha)																	
[i = 732.951 / (TC+		2 YEAR																
[i = 998.071 / (TC+ [i = 1174.184 / (TC [i = 1735.688 / (TC	C+6.014)^0.816]	5 YEAR 10 YEAR 100 YEAR																

Catch Basin Lead Restriction

3700 TWIN FALLS PLACE - PHASE 1

С	Diameter (m)	Head (m)	Area (m ²)	Flow (I/s)
0.61	0.2	1	0.03142	85

 $Q = CA(2gh)^{0.5}$

Rip rap sizing

$$D_{50} = V^{2}$$
 Isbash equation
$$2gC^{2}(S-1)$$

where:

D₅₀ median rip rap diameter (m)

V average channel velocity (m/s)

g acceleration due to gravity, 9.806 m/s²

C Isbash constant, 0.86 for high turbulence flow, 1.20 for low turbulence; assumed high for conservatism

S specific gravity of rip rap, taken as 2.65

Thickness = $1.5 \times D_{50}$

Riprap Design and Construction Guide, British Columbia Ministry of Environment, Lands and Parks, March 2000

100 year flow conditions Culverts from east to west

At CB lead outlets	Crossing Mosquito Drive, just west of	On Mosquito Drive, in vicinity of hydro	On Mosquito Drive, at future Street 2	Crossing Gastops Street at Mosquito
	<u>Limebank</u>	<u>corridor</u>		<u>Drive</u>
Max V in ditch				
network (m/s) = 0.66	V (m/s) = 1.11	V (m/s) = 0.9	V (m/s) = 1.22	V (m/s) = 1.56
$D_{50} (mm) = \frac{V^2 * 1000}{2gC^2 (S-1)}$	D_{50} (mm) = $V^2 * 1000$	$D_{50} \text{ (mm)} = \frac{V^2 * 1000}{2gC^2(S-1)}$	$D_{50} \text{ (mm)} = \frac{V^2 * 1000}{2gC^2(S-1)}$	D_{50} (mm) = $V^2 * 1000$
2gC ² (S-1)	2gC ² (S-1)	2gC ² (S-1)	2gC ² (S-1)	2gC ² (S-1)
D_{50} (mm) = 18	D ₅₀ (mm) = 51	D ₅₀ (mm) = 34	D ₅₀ (mm) = 62	D_{50} (mm) = 102
Dev ODCD	Day ODED	Dow ODED	Day ODED	Per OPSD
Per OPSD 810.010,	Per OPSD 810.010,	Per OPSD 810.010,	Per OPSD 810.010,	810.010,
minimum	minimum	minimum	minimum	minimum
thickness (mm)= 300	thickness (mm)= 300	thickness (mm)= 300	thickness (mm)= 300	thickness (mm)= 300
tilickiless (IIIII) – 500	tilickiless (IIIII)= 500	tilickiess (iiiii)= 500	(IIIII)- 500	thickness (mm)= 500
D ₅₀ (mm) = Thickness/1.5	D_{50} (mm) = Thickness/1.5	D ₅₀ = Thickness/1.5	D_{50} = Thickness/1.5	D ₅₀ = Thickness/1.5
250 (mm) 1 mokness) 1.3	550 ()	550 111101110337 113	550 111101110337 213	550 1110001033/113
D ₅₀ (mm) = 200	D ₅₀ (mm) = 200	D ₅₀ = 200	D ₅₀ = 200	D ₅₀ = 200
Exceeds calculated minimum based on	Exceeds calculated minimum based on	Exceeds calculated minimum based on	Exceeds calculated minimum based on	Exceeds calculated minimum based on
velocity	velocity	velocity	velocity	velocity

Rip rap sizing

$$D_{50} = \frac{V^2}{2gC^2(S-1)}$$
 Isbash equation

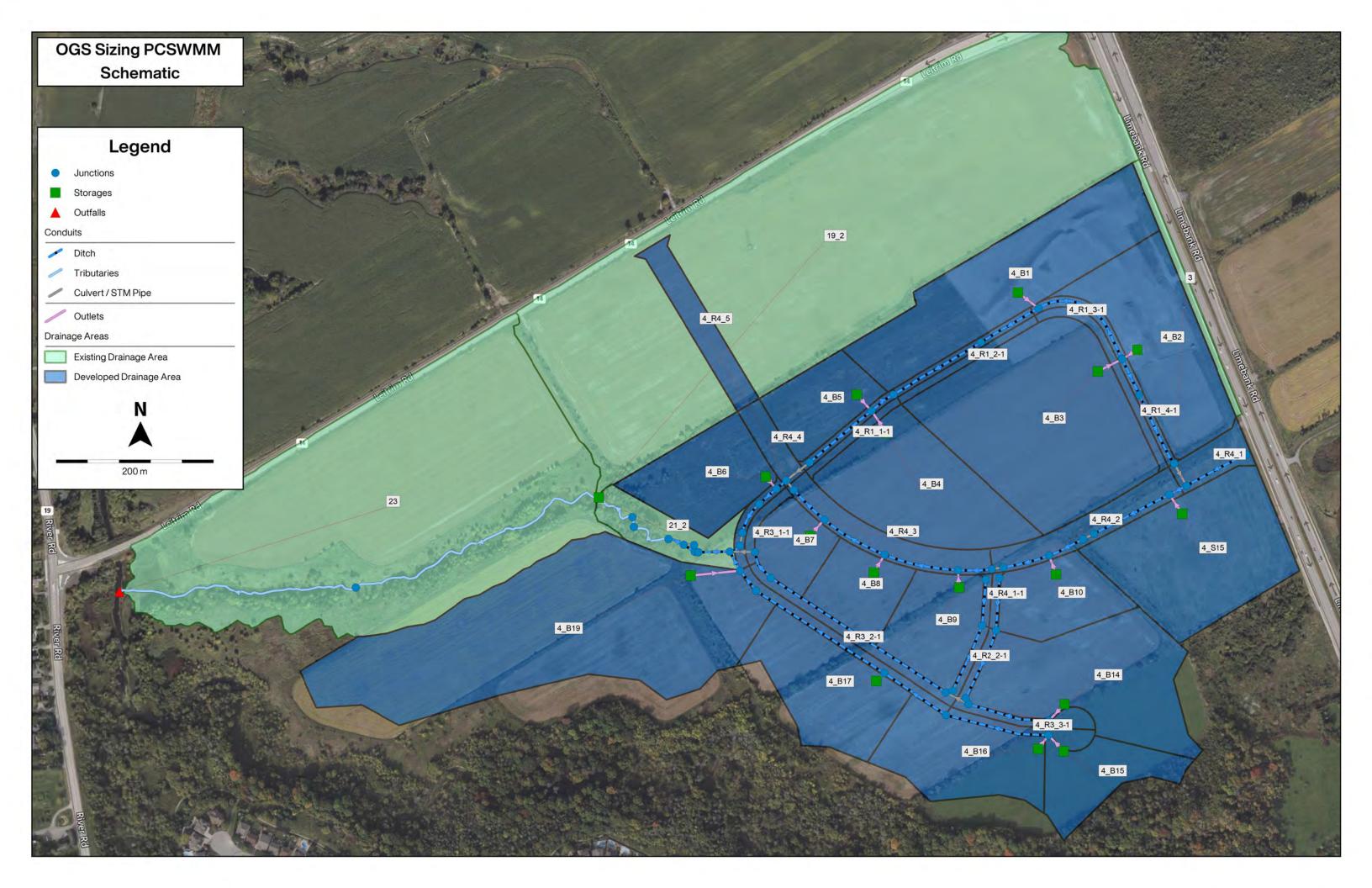
where:

D₅₀ median rip rap diameter (m)

V average channel velocity (m/s)

g acceleration due to gravity, 9.806 m/s²

C Isbash constant, 0.86 for high turbulence flow, 1.20 for low turbulence; assumed high for conservatism


S specific gravity of rip rap, taken as 2.65

Thickness = $1.5 \times D_{50}$

Riprap Design and Construction Guide, British Columbia Ministry of Environment, Lands and Parks, March 2000

100 year flow conditions Culverts from east to west

Crossing Mosquito Drive at Gastops	On Mosquito Drive upstream of outlet	Through outlet channel
<u>Street</u>		
V (m/s) = 0.95	V (m/s) = 1.96	V (m/s) = 1.08
V (111/5) - 0.95	V (111/5) - 1.90	V (111/5) - 1.06
D (22.22) V ² * 1000	$V^2 * 1000$	D (****) V ² * 1000
$D_{50} \text{ (mm)} = \frac{V^2 * 1000}{2gC^2(S-1)}$	$D_{50} \text{ (mm)} = \frac{V^2 * 1000}{2gC^2(S-1)}$	$D_{50} (mm) = \frac{V^2 * 1000}{2gC^2(S-1)}$
2gC²(S-1)	2gC²(S-1)	2gC²(S-1)
	- /	- ()
D ₅₀ (mm) = 38	D ₅₀ (mm) = 161	D ₅₀ (mm) = 49
Per OPSD	Per OPSD	
810.010,	810.010,	
minimum	minimum	
thickness (mm)= 300	thickness (mm)= 300	Cornsing 200 mm D
tilickliess (IIIII) – 300	tilickiless (illiii) – 300	Carrying 200 mm D ₅₀
D. Thisley of 5	D Thisler as /4.5	Thickness (mm) = 4.5 v.D
D ₅₀ = Thickness/1.5	D ₅₀ = Thickness/1.5	Thickness (mm) = $1.5 \times D_{50}$
D ₅₀ = 200	D ₅₀ = 200	Thickness (mm) = 300
Exceeds calculated minimum based on	Exceeds calculated minimum based on	
velocity	velocity	

Hydroworks Sizing Summary

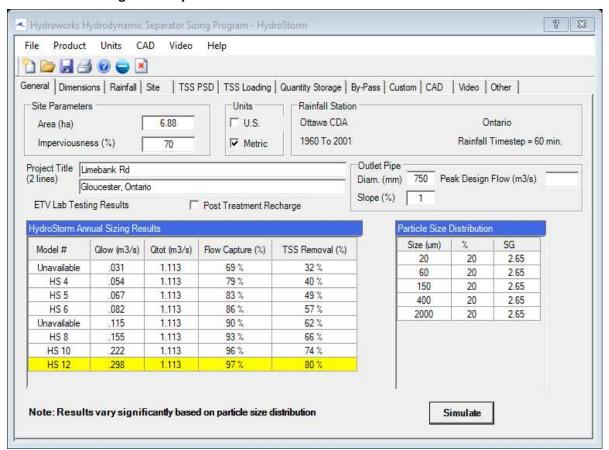
Limebank Rd Gloucester, Ontario

02-13-2024

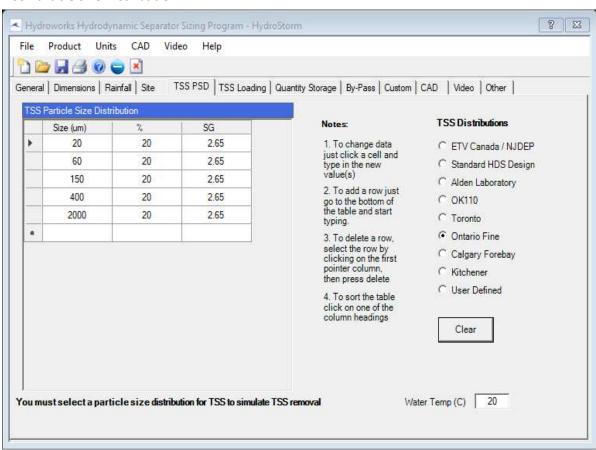
Recommended Size: HydroStorm HS 12

A HydroStorm HS 12 is recommended to provide 80 % annual TSS removal based on a drainage area of 6.88 (ha) with an imperviousness of 70 % and Ottawa CDA, Ontario rainfall for the 20 um to 2000 um particle size distribution.

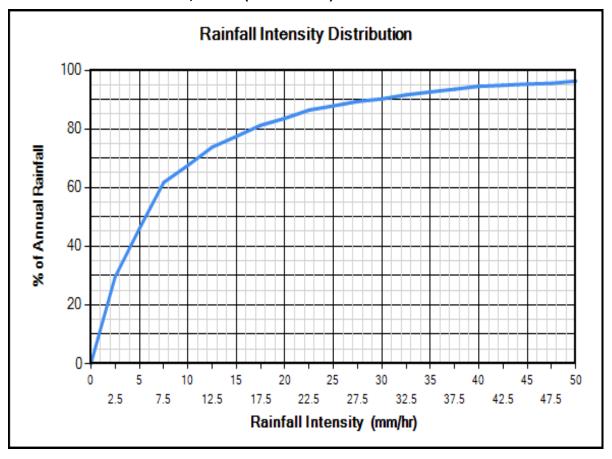
The recommended HydroStorm HS 12 treats 97 % of the annual runoff and provides 80 % annual TSS removal for the Ottawa CDA rainfall records and 20 um to 2000 um particle size distribution.

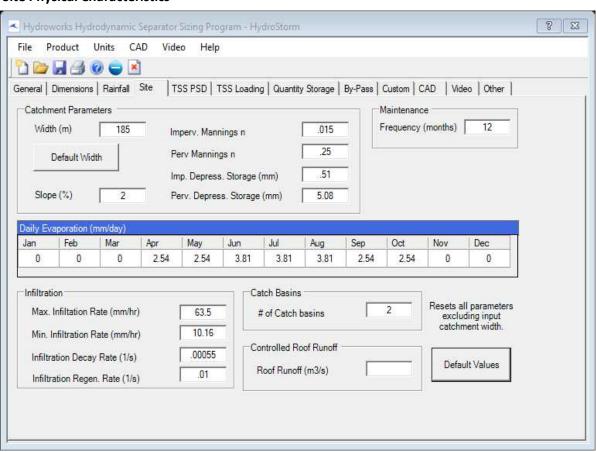

The HydroStorm has a headloss coefficient (K) of 1.04. Since a peak flow was not specified, headloss was calculated using the full pipe flow of 1.11 (m3/s) for the given 750 (mm) pipe diameter at 1% slope. The headloss was calculated to be 337 (mm) based on a flow depth of 750 (mm) (full pipe flow).

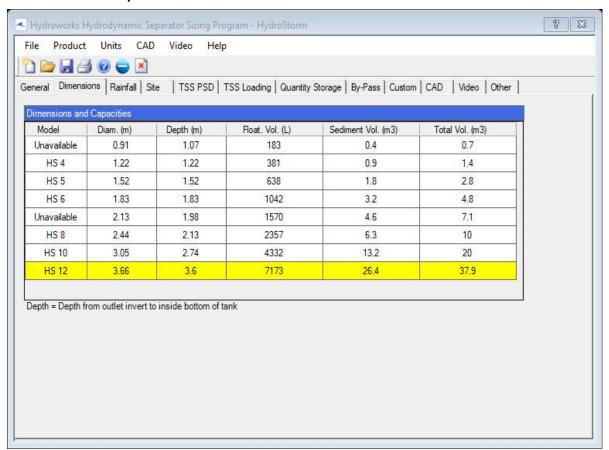
This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

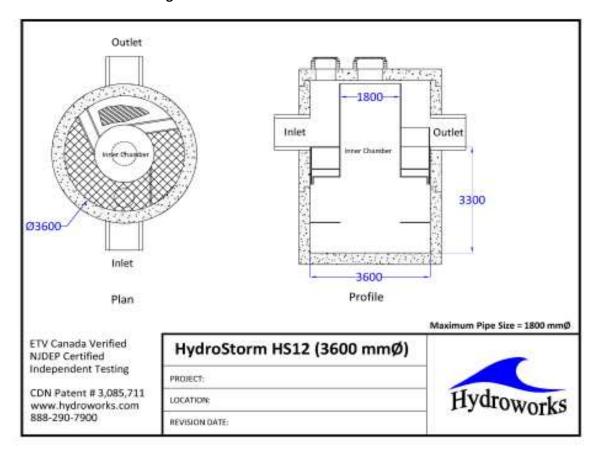

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

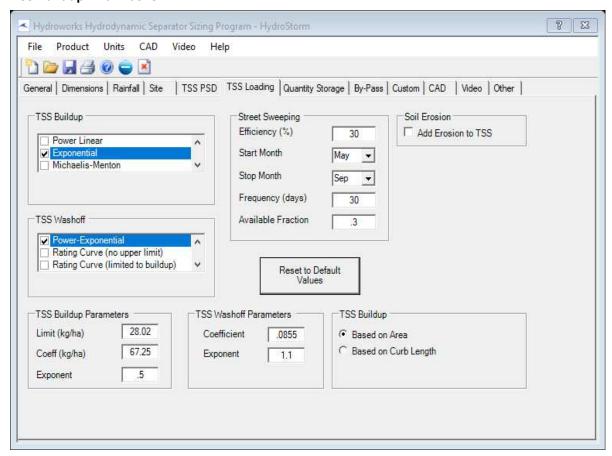
The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroStorm.

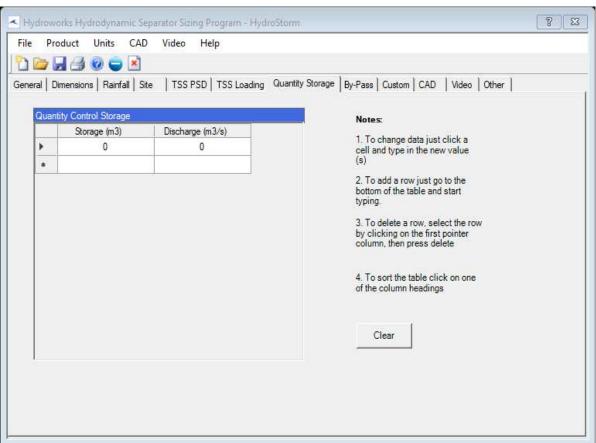

TSS Removal Sizing Summary

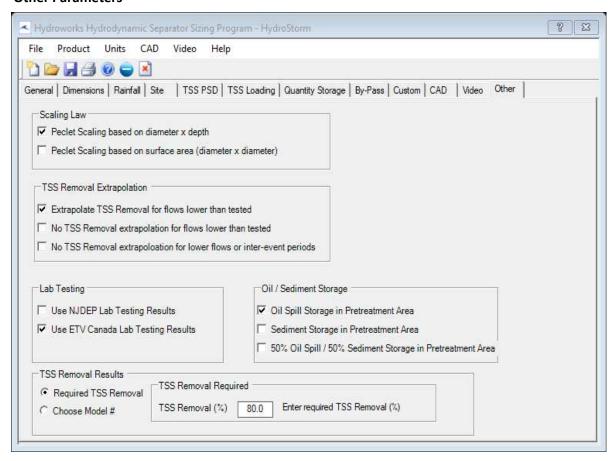

TSS Particle Size Distribution


Rainfall Station - Ottawa CDA, Ontario (1960 To 2001)


Site Physical Characteristics


Dimensions And Capacities

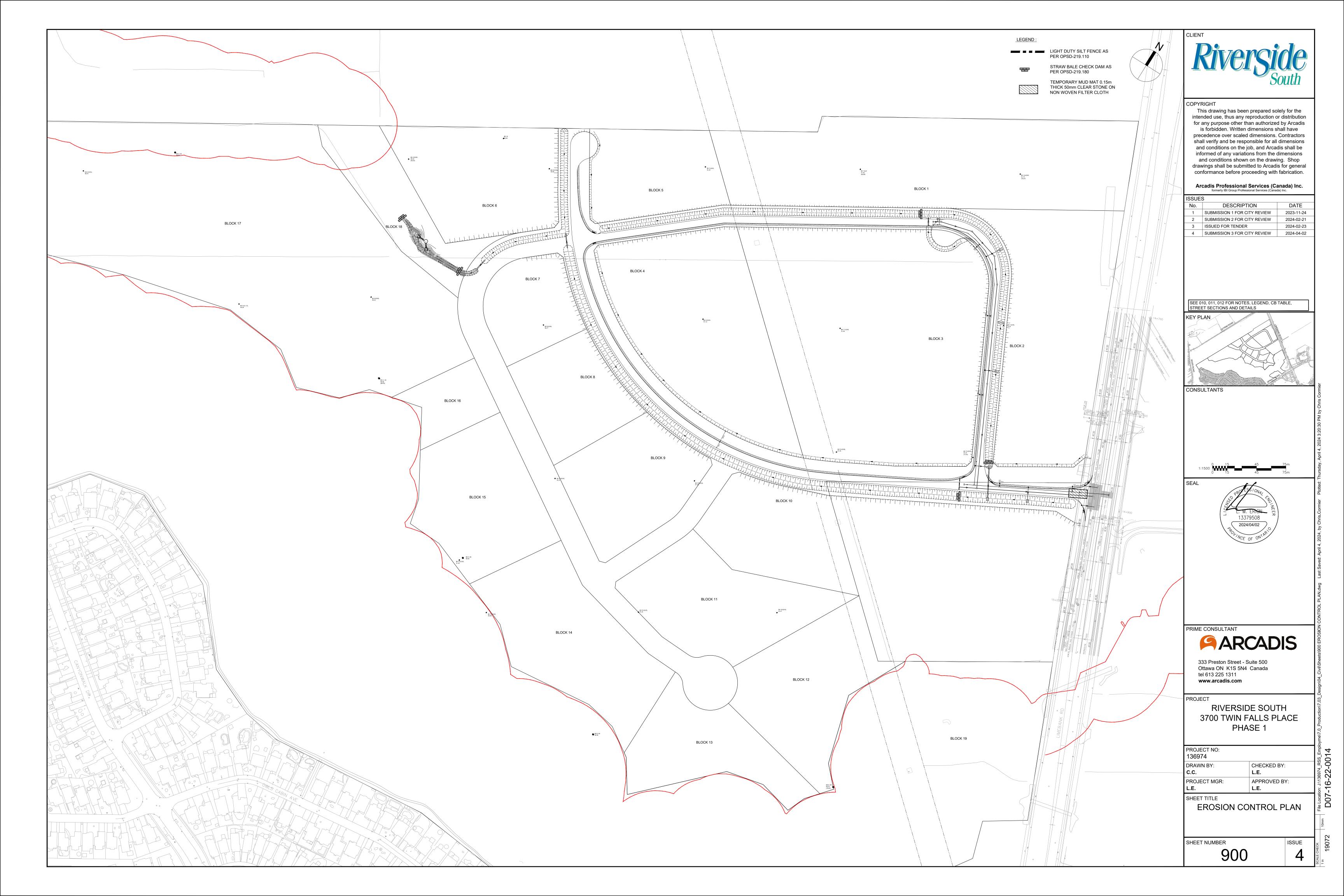

Generic HS 12 CAD Drawing


TSS Buildup And Washoff

Upstream Quantity Storage

Other Parameters

Flagged Issues


None

Hydroworks Sizing Program - Version 5.7 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com

Appendix

E Erosion and Sedimentation Control Plan

• Erosion and Sediment Control Plan

Arcadis Professional Services (Canada) Inc. 333 Preston Street, Suite 500 Ottawa, Ontario K1S 5N4 Canada

Phone: 613 225 1311 www.arcadis.com