

Site Servicing & Stormwater Management Report CECCE Secondary School – Riverside South – 675 Borbridge Avenue, Manotick, Ontario

Client: Provencher Roy Associés Architectes Inc.

Project Number: OTT-24005530-A0

Application Stage: Site Plan Control

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6

Date Submitted: April 4, 2025

Site Servicing & Stormwater Management Report CECCE Secondary School – Riverside South – 675 Borbridge Avenue, Manotick, Ontario

Type of Document: Stormwater Management & Site Servicing Report

Client: Provencher Roy Associés Architectes Inc.

Project Number: OTT-24005530-A0

Application Stage: Site Plan Control

Prepared By: EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 Canada T: 613 688-1899 F: 613 225-7337 www.exp.com

Prepared By :

alexander johnson

Alexander Johnson, EIT. Engineering Designer Infrastructure Services

Reviewed By :

Aaditya Jariwala, M.Eng, P.Eng. Project Manager Infrastructure Services

Date Submitted: April 4, 2025

Legal Notification

This report was prepared by **EXP** Services Inc. for the account of the Client. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **EXP** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

EXP Services Inc. CECCE Secondary School – Riverside South 675 Borbridge Avenue, Ottawa, ON OTT-24005530-A0 April 4, 2025

Table of Contents

1	Introduction1								
2	Existing Conditions1								
3	References								
4	Watermain Design								
	4.1	Requir	ed Fire Flow	2					
	4.2	Waterr	nain Design	2					
	4.3	Pressu	Ire Check	3					
	4.4	Review	v of Hydrant Spacing	4					
5	Sani	tary Se	ary Sewer Design						
	5.1	Peak [Design Flow	5					
6	Stor	mwate	r Management	6					
	6.1	Storm	Design Criteria	6					
	6.2	Pre-De	evelopment Conditions	6					
	6.3	Allowa	ble Release Rate	6					
	6.4	Post-D	evelopment Conditions	7					
		6.4.1	Storage Requirements and Allocation	7					
		6.4.2	Flow Control Device Sizing	7					
	6.5	Storm	Sewer Design	8					
7	Eros	ion an	d Sediment Control	9					
8	Cond	clusior	18	9					

List of Appendices

Appendix A – Figures	
Appendix B – Water Servicing	
Appendix C – Sanitary Sewer Design Sheet	
Appendix D – Stormwater Management Design She	et
Appendix E – Additional Information	
Appendix F – Drawings	

1 Introduction

EXP Services Inc. (EXP) was retained by Provencher Roy Associés Architectes Inc. to provide Site Servicing and Stormwater Management report for the proposed Conseil des écoles catholiques du Centre-Est (CECCE) Secondary School.

The site is 6.01 hectares and located at 675 Borbridge Avenue in Manotick, Ontario. The site is bound by Borbridge Avenue along the north property line, by Brian Good Avenue along the west property line, and by existing residential streets Elder Street and Atrium Ridge along the east and south property lines respectively. Refer to **Figure A1** in **Appendix A** for the site location.

This servicing design report will address the Servicing requirements for the proposed development including the domestic and fire water, sanitary and storm servicing. The report will also cover the storm water management requirements and proposed methods to meet those requirements.

2 Existing Conditions

The subject property is currently vacant with dense vegetation cover throughout. The topography of the site generally slopes from its highpoint located at the southeast property corner and tapers down to each of Borbridge Avenue and Brian Good Avenue with a low point at their intersection corresponding to the northwest property corner.

There is no known services or infrastructure within the property. The existing municipal infrastructure near the property within Borbridge Avenue and Brian Good Avenue are noted below:

Borbridge Avenue:

o <u>Storm:</u>

- 2400mm Ø Concrete CL 65-D Storm Sewer
- 2550mm Ø Concrete CL 65-D Storm Sewer

o Sanitary:

525mm Ø Concrete CL 100-D Sanitary Sewer

o Water:

- 300mm Ø PVC DR18 CL-150 Watermain
- Brian Good Avenue:

o <u>Storm:</u>

2700mm Ø Concrete CL 65-D Storm Sewer

Sanitary:

525mm Ø Concrete CL 100-D Sanitary Sewer

o Water:

300mm Ø PVC DR18 CL-150 Watermain

3 References

Various documents were referred to in preparing the current report including:

- Sewer Design Guidelines, Second Edition, Document SDG002, October 2012, City of Ottawa (Guidelines) including:
 - Technical Bulletin ISDTB-2012-4 (20 June 2012)
 - Technical Bulletin ISDTB-2014-01 (05 February 2014)
 - Technical Bulletin PIEDTB-2016-01 (September 6, 2016)
 - Technical Bulletin ISDTB-2018-01 (21 March 2018)
 - Technical Bulletin ISDTB-2018-04 (27 June 2018)
 - Technical Bulletin ISDTB-2019-02 (08 July 2019)
- Ottawa Design Guidelines Water Distribution, July 2010 (WDG001), including:
 - Technical Bulletin ISDTB-2014-02 (May 27, 2014)
 - Technical Bulletin ISTB-2018-02 (21 March 2018)
 - Technical Bulletin ISTB-2021-03 (18 August, 2021)
- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM).
- Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS).
- Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 2020
- Ontario Building Code 2012, Ministry of Municipal Affairs and Housing
- Geotechnical Investigation Report Prepared by Exp. Services Inc, Dated Jan 20, 2025.

4 Watermain Design

4.1 Required Fire Flow

The fire flow demand calculations were prepared based on the Fire Underwriters Survey (FUS, 2020) criteria. The construction type for the proposed school is classified as non-combustible based on the response received from the Architect (Included in **Appendix B**). The building will have a fully supervised sprinkler system based on the correspondence with the Architect and limited combustible contents based on the occupancy type specified by the architect. The required fire flow was determined to be 116.7 L/s (7,000 L/min). Refer to **Table B2** in **Appendix B** for detailed fire flow demand calculations.

4.2 Watermain Design

The domestic water demands for the proposed building were calculated per the City of Ottawa Water Design Guidelines (July 2010). The proposed development is considered as an institutional building with an average demand of 70 L/student/day per ISD-2010-02. Staff were included in the total population. The

EXP Services Inc. CECCE Secondary School – Riverside South 675 Borbridge Avenue, Ottawa, ON OTT-24005530-A0 April 4, 2025

demands are inclusive of the currently proposed development and future expansion. The peaking factors were considered as 1.5 and 1.8 for the max. day and peak hour demands, respectively. Refer to **Table B1** in **Appendix B** for detailed calculations. The proposed building's domestic demands based on 1286 students + staff, were calculated as follows:

Water Demands:

Average daily demand = 1.04 L/s Maximum daily demand = 1.56 L/s Maximum hourly daily demand = 2.81 L/s

There is an existing 300mm diameter municipal watermain on Borbridge Avenue. The estimated average daily demand of the proposed development is greater than 50 m³/day. Therefore, two 150mm diameter water services separated by an isolation valve are proposed for domestic and sprinkler demands. The proposed water services are to be connected to the 300mm diameter municipal watermain on Borbridge Avenue.

4.3 Pressure Check

The City of Ottawa provided boundary conditions based on the domestic and fire flow demands, calculated during early design stages as shown in the table below:

Scenario	Demand				
	L/min	L/s			
Average Daily Demand	71	1.19			
Maximum Daily Demand	107	1.79			
Peak Hour	193	3.22			
Fire Flow Demand #1	7,000	116.67			

The boundary conditions provided by the City are as follows:

Existing Condition Connection 1 - Borbridge Ave							
Demand Scenario	Head (m)	Pressure ¹ (psi)					
Maximum HGL	132.3	58.4					
Peak Hour	124.9	47.9					
Max Day plus Fire Flow #1	124.9	47.9					
¹ Ground Elevation =	91.2	m					

Future Condition								
Connection 1 - Borbridge Ave								
Demand Scenario	Head (m)	Pressure ¹ (psi)						
Maximum HGL	146.8	79						
Peak Hour	143.7	74.6						
Max Day plus Fire Flow #1	144.1	75.1						
¹ Ground Elevation =	91.2	m						

As the design progressed, occupancy numbers were confirmed by the client and domestic demands were adjusted accordingly as noted in Section 4.2 above. The revised demands are similar to the original demands submitted to request the water boundary conditions. Therefore, the water boundary conditions noted above should still suffice. The fire flow demands remain unchanged.

Based on these boundary conditions the residual pressure at the building FFE during existing conditions will be 57.2 psi during average day demand, 46.7 psi during max. daily demand, and 46.7 psi during peak hour demands.

During future conditions the residual pressure at the building FFE will be 77.8 psi during average day demands, 73.4 psi during max. daily demands, and 73.4 psi during peak hour demands.

During existing and future conditions, the residual pressures at building FFE will be between 40 psi and 80 psi, as required by the City of Ottawa Water Design Guidelines. Therefore, no pressure reducing or boosting measures will be required.

The residual pressure in the municipal watermain along Borbridge Avenue during max Day + Fire Flow demands was noted as 47.9 psi during existing conditions and 75.1 psi during future conditions. Which are more than the minimum required pressure of 20 psi.

Based on the above noted analysis, the existing water supply system and the proposed services will have adequate capacity to meet the domestic and fire demands for the proposed building. Refer to **Table B3** and **Table B4** in **Appendix B** for detailed pressure calculations.

4.4 Review of Hydrant Spacing

A review of the hydrant spacing was completed to ensure compliance with Appendix I of Technical Bulletin ISTB-2018-02. As per Section 3 of Appendix I all hydrants within 150 meters were reviewed to assess the total possible contribution of flow from these contributing hydrants. For each hydrant, the distance along a fire route was measured and assigned contributing flows. A review of the available fire hydrant within 150m distance along the fire route from the building was carried out which is summarized in the table below. A new hydrant will be added within the school parking lot as part of the proposed work to comply with the minimum distance required between a hydrant and the building Siamese connection.

Hydrant #	Location	City / Private	Color Code	Distance from the Building (m)	Fire Flow Contribution for Class AA Hydrant (L/min)
368013H014	Borbridge Avenue	City	Blue	84.5	3,800
368013H015	Borbridge Avenue	City	Blue	56.0	5,700
368013H034	Brian Good Avenue	City	Blue	51.7	5,700
368013H033	Brian Good Avenue	City	Blue	85.4	3,800
New Hydrant	New Parking Lot	Private	Blue	40	5,700
				Total:	24,700

Table 4-1: Summary of Nearby Municipal Hydrants

As noted in the table above, there are total four (4) existing municipal fire hydrants within 150m distance along a fire route and a new private hydrant within the school parking lot; which equates to a total accessible fire flow of 24,700 L/min. This is well above the required fire flow of 7,000 L/min. Refer to **Figure A2** in **Appendix A** for the hydrant location plan.

Based on the boundary conditions received from the city and review of the available municipal hydrants as noted above, the proposed development can be serviced for the required fire flow.

5 Sanitary Sewer Design

5.1 Peak Design Flow

There is an existing municipal 525mm diameter sanitary sewer on Borbridge Avenue flowing west towards Spratt Road. The anticipated peak sanitary flows from the proposed industrial site have been calculated as per the City of Ottawa Sewer Design Guidelines (October 2012). The anticipated peak sanitary flows for currently proposed development and future expansion are calculated as follows:

Design Flows (Proposed + Future)

Institutional Design Flow	:	90 L/person/day
Development Area:		6.01 hectares
Peak Factor:		1.5
Extraneous Flow:		0.33 L/s/ha
Total Flow:	=	(90L/person/day)*(1286 persons)*(1/86400)*(1.5)+(6.01ha)*(0.33L/s/ha)
	=	<u>3.99 L/s</u>

The proposed high school will be serviced by a new 250mm diameter sanitary service installed at a minimum slope of 2.0%. At this slope, the 250mm diameter sanitary services will have a capacity of 85.4 L/s and a full flow velocity of 1.7 m/s, which will be sufficient to service proposed development. The proposed sanitary service will connect to 525mm dia. municipal sanitary sewer on Borbridge Ave. City had confirmed that the

municipal sanitary sewer has sufficient capacity to accommodate the sanitary flows from the proposed development. Refer to Site Servicing plan and the sanitary sewer design sheet **Table C1** and email correspondence with the City in **Appendix C**.

6 Stormwater Management

6.1 Storm Design Criteria

The storm sewer system and stormwater management for the proposed development were designed in conformance with the City of Ottawa Sewer Design Guidelines (October 2012). The stormwater servicing design criteria for the proposed development are as follows:

- The proposed on-site storm sewer network / minor system is designed using Rational Method and Manning's Equation to convey runoff under free flow conditions for the 5-year return period.
- Post-development peak run-off during 100-year storm event to be controlled to 915 L/sec as identified in the "*Design Brief Riverside South phase 15-2, 4 & Spratt Road*", prepared by IBI Group dated August 2019.
- Maximum allowable ponding depth is 300 mm for surface ponding and 150mm for roof ponding.
- Flows from storm events greater than 100-year return period to be directed overland, away from the building towards Borbridge Avenue and Brian Good Avenue.
- Minimum freeboard of 300mm between the 100-year overland spill elevation and finished floor elevation. Minimum freeboard of 150mm between the 100-year overland spill elevation and lowest grades against the building foundation.
- Quality control measures are not required on site as downstream quality treatment is provided by an end-of-pipe stormwater management wet pond per the reports "*Riverside South Community Infrastructure Servicing Study Update*", prepared by Stantec dated June 21, 2017 and "*Design Brief Riverside South phase 15-2, 4 & Spratt Road*", prepared by IBI Group dated August, 2019. It is noted that Pond 5 (end of pipe wet pond facility) was designed to provide enhanced level of quality control for the upstream catchments.

6.2 Pre-Development Conditions

The 6.01-hectare site at 675 Borbridge Avenue The subject property is currently vacant with dense vegetation cover throughout. The topography of the site generally slopes from its highpoint located at the southeast property corner and tapers down to each of Borbridge Avenue and Brian Good Avenue with a low point at their intersection corresponding to the northwest property corner.

Under post development conditions changes are proposed in the city right of way. The changes consist of additional curb line for the proposed bus layup and student drop off areas and their associated concrete areas. Therefore, the pre-development conditions of this off-site area denoted POS-1 have been considered. The pre-development runoff coefficient of the catchment is 0.44. The Pre-development runoff rate for this catchment for the 100-year storm event is 84.4 L/s.

6.3 Allowable Release Rate

The allowable release rate for the site was identified in the report "*Design Brief - Riverside South phase 15-2, 4 & Spratt Road*", prepared by IBI Group dated August 2019. Therefore, the allowable release rate for up-to 100-year storm for the proposed development is considered as 915 L/sec.

6.4 **Post-Development Conditions**

Stormwater from the 6.01 ha drainage area will be controlled and released at a rate less than the allowable release rate for storms up to and including the 100-year storm event. An overland flow route is provided for storms greater than the 100-year event. In the post-development conditions, the stormwater run-off coefficients for the hard surfaces (concrete, asphalt, roof, pavers etc.), gravel, and soft landscaping (grass etc.) are considered as 0.9, 0.7 and 0.2, respectively. The estimated post-development average run-off coefficient is 0.37. Time of concentration of 10 mins was used for the post-development storm calculations as per the City of Ottawa Sewer Design Guidelines.

During post-development conditions, the uncontrolled flowrates during 2-year, 5-year and 100-year storm events were calculated as 474.3 L/sec, 643.4 L/sec and 1330.2 L/sec, respectively. Controlled flowrates during 2-year, 5-year and 100-year storm events will be 389.2 L/sec, 522.4 L/sec and 904.2 L/sec, respectively.

As noted previously changes within the City right of way are proposed. The post-development runoff coefficient of the catchment is 0.51. The post-development runoff rate for this catchment for the 100-year storm event is 97.7 L/s.

6.4.1 Storage Requirements and Allocation

Post development runoff will be detained on-site for storms up to and including the 100-year storm events. The required SWM storage volumes will be achieved using surface ponding in the landscaped areas, parking area, and ponding on the roof of the new building for up to 100-year storm event.

Surface ponding volumes over catch basins and roof drains were determined by the conic volume method. Ponding depths for the subject site must be equal to or less than 300 mm for the landscape and parking surfaces and 150mm for the roof during a 100-year storm event.

Refer to drawing #C500 in **Appendix F** for post development drainage areas, associated ponding limits, ponding depth and control methods and refer to **Appendix D** for the detailed stormwater management calculations. **Table 6-1** in the following section summarizes the release rates and storage requirements for the proposed drainage areas within the subject site.

The proposed 100-year controlled release rate is 904.2 L/s, which complies with the allowable release rate of 915 L/s noted in section 6.1 above. The total available storage volume within the site will be 613.1 m³ which is more than the required volume of 301.1 m³.

6.4.2 Flow Control Device Sizing

Stormwater runoff from the proposed development will be detained using inlet control devices (ICDs) and flow control roof drains. ICDs in the catchbasins were sized based on the required storage volume and associated head of water during 100-year storm events, using the orifice equation shown below:

$$Q_{ORIFICE} = CA\sqrt{2gH}$$

Where,

QORIFICE = Flow Through the Orifice

C = Orifice Coefficient = 0.61

A = Area of the Orifice

g = Gravitational Acceleration = 9.81 m/s²

H = Head of Water over the Center of the Orifice

The proposed ICD size and/or models are summarized in Table 6-1 below. The required flow control from the roof will be achieved by mounting Watts Accutrol flow control weirs on the roof drains. The required flow control from parking lot cathbasins and landscape area catchbasins will be achieved by mounting circular orifice plates on the outlets. Further details regarding the ICDs and roof drains are provided in **Appendix D**. The 5-year and 100-year ponding limits, total ponding depth and location of the flow control measures are provided on drawing #C500 in **Appendix F**.

Area ID	Outlet Location	Area (ha)	Runoff Coefficient 'C'	100 Year Release (L/s)	100 Year Storage Required (m3)	Max. Surface Storage Provided (m3)	Control Method	Storage Method
P-1	CB 307	0.126	0.59	30.0	9.7		90mmØ Orifice Plate	Surface Ponding
P-2	CB 305	0.203	0.84	78.0	17.7	134.3	150mmØ Orifice Plate	Surface Ponding
P-3	CB 304	0.179	0.84	72.0	14.7		145mmØ Orifice Plate	Surface Ponding
P-4	DCB 306	1.903	0.24	177.0	66.9	161.95	228mmØ Orifice Plate	Surface Ponding
P-5	DCB 309	0.804	0.28	138.7	-	-	Uncontrolled	-
P-6	DCB 303	0.859	0.25	132.5	-	-	Uncontrolled	-
P-7	DCB 308	0.730	0.21	95.1	-	-	Uncontrolled	-
P-8	CB 301, 302	0.150	0.65	60.1	-	-	Uncontrolled	-
P-9	ROW	0.420	0.25	65.2	-	-	Uncontrolled	-
P-R	STMMH 106	0.634	0.90	55.7	193.4	316.8	WATTS Accutrol Roof Drains	Surface Ponding
675 Borbridge Totals		6.007		905.5	301.3	613.1		

Table 6-1: Summary of SWM Storage Requirements

*Bold flows are controlled.

6.5 Storm Sewer Design

Proposed building foundation drain will discharge into a 150mm dia. storm service lateral at 2.0% slope, having the Manning's full flow capacity of 23.5 L/sec. Proposed building roof drains will discharge into a separate 375mm dia. storm service lateral at 3.5%, having Manning's full flow

capacity of 308.4 L/sec. All stormwater runoff captured by the minor system on-site and storm service lateral from the proposed building will ultimately discharge to the 2550 mm diameter municipal storm sewer on Borbridge Avenue from a 525mm diameter storm service lateral at 2.5% slope. All storm sewers were sized for the 5-year peak flow with no overcapacity. Refer to **Appendix D** for detailed storm sewer sizing calculations.

7 Erosion and Sediment Control

During all construction activities, erosion and sedimentation shall be controlled by the following techniques:

- Extent of exposed soils shall be limited at any given time;
- Exposed areas shall be re-vegetated as soon as possible;
- Minimize the area to be cleared and disruption of adjacent areas;
- Siltsack or approved equivalent shall be installed inside all catch basins, catch basin manholes, and storm manholes as identified on the erosion and sediment control plan;
- Visual inspection shall be completed daily on sediment control barriers and any damage will be repaired immediately. Care will be taken to prevent damage during construction operations;
- In some cases, barriers may be removed temporarily to accommodate the construction operations. The affected barriers will be reinstated at night when construction is completed;
- Sediment control devices will be cleaned of accumulated silt as required. The deposits will be disposed of as per the requirements of the contract;
- During construction, if the engineer believes that additional prevention methods are required to control erosion and sedimentation, the contractor will install additional silt fences or other methods as required to the satisfaction of the engineer; and,
- Construction and maintenance requirements for erosion and sediment controls are to comply with Ontario Provincial Standard Specification (OPSS) 805.

8 Conclusions

This report addresses the site servicing and stormwater management requirements for the site plan control application for the proposed development. Based on the analysis provided in this report, the conclusions are as follows:

- The proposed highschool building will be serviced by 150mm diameter dual watermains, which will adequately service the proposed development for the domestic and fire flow demands. Additionally, water boundary conditions from the City suggests sufficient flow and pressure availability in the municipal watermain on Borbridge Ave. to service the new highschool building for domestic and fire demands.
- The proposed building will be serviced by a 250mm diameter sanitary sewer, which will have adequate capacity to service the new building for the sanitary flows. No capacity constraints were noted in the municipal sanitary sewer on Borbridge Ave by the City.

- Stormwater Management criteria for the proposed development will be achieved by restricting the postdevelopment stormwater discharge rates up to and including the 100-year to the allowable release rates.
- Required on-site SWM storage volumes will be achieved using the surface storage in the landscaped areas, parking areas and roof storage using the flow control orifice plate ICD's and flow control roof drains.
- The stormwater quality control for the proposed site is provided by the existing end-of-pipe stormwater management facility (wet pond). Therefore, no additional quality control measures are proposed.
- Temporary erosion and sediment control measures for the subject site have been identified.

EXP Services Inc. CECCE Secondary School – Riverside South 675 Borbridge Avenue, Ottawa, ON OTT-24005530-A0 April 4, 2025

Appendix A – Figures

Figure A1 – Site Location Plan Figure A2 – Hydrant Location Plan

Figure A1: Site Location Plan

Figure A2: Hydrant Location Plan

EXP Services Inc. CECCE Secondary School – Riverside South 675 Borbridge Avenue, Ottawa, ON OTT-24005530-A0 April 4, 2025

Appendix B – Water Servicing

Table B1 - Water Demand ChartTable B2 - FUS Fire Flow Demand CalculationsTable B3 - Estimated Water Pressure at Proposed Building FFE (Existing)Table B4 - Estimated Water Pressure at Proposed Building FFE (Future Scenario)Correspondence from Architect Re Fire Flow RequirementsWater Boundary Conditions from the City

TABLE B1: Water Demand Chart

Location:		CECCE Riverside South - New Secondary School OTT-24005530-A0 A. Jariwala A. Jariwala March 2025										
Project No:	OTT-24005530-A0							~~~				
Designed by:	A. Jariwala		-				•• C	SXL)			
Checked By:	A. Jariwala		-				Ŭ	́ `Г				
Date Revised:	March 2025		-					- 1				
Water Consumption												
School	=	70	L/Student/	′day								
Max. Day Peaking Factor	=	1.50	x Avg. Day									
Peak Hour Peaking Factor	=	1.80	x Max. Day	1								
			No. of Resi	dential Uni	ts		Total	Demano	ls (L/sec)			
Proposed	Population	Avg. Day Demands (L/day)	Max. Day Peaking Factor	Max. Day Demands (L/day)	Peak Hour Peaking Factor	Peak Hour Deamnds (L/day)	Avg Day (L/s)	Max Day (L/s)	Peak Hour (L/s)			
New CECCE School	906	63420	1.50	95130	1.80	171234	0.73	1.10	1.98			
Future Expansion	380	26600	1.50	39900	1.80	71820	0.31	0.46	0.83			
	1,286	90,020				243,054	1.04	1.56	2.81			

TABLE B2: FIRE FLOW REQURIEMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 2020 PROJECT: OTT-24005530-A0 Building: CECCE Riverside South - New Secondary School

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)					
	Wood Frame 1.5									
Choose Building	Ordinary Construction	1								
Frame (C)	Non-combustible Construction	0.8	Non-combustible Construction	0.8						
	Fire Resistive Construction	0.6								
	Second Floor		3163							
	First Floor		6368	9531.0 m²						
	Basement (At least 50% belo	ow grade, not included)	0							
Fire Flow (F)	F = 220 * C * SQRT(A)				17,182					
Fire Flow (F)	Rounded to nearest 1,000	tounded to nearest 1,000								

Reductions/Increases Due to Factors Effecting Burning

Task	Options		Multipli	ier			Ir	iput			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)		
	Non-combustible	-25%													
Choose	Limited Combustible		-15%												
Combustibility of	Combustible		0%				Limited C	ombustible			-15%	-2,550	14,450		
Building Contents	Free Burning		15%												
	Rapid Burning	25%													
	Adequate Sprinkler Conforms to NFPA13	-30%			,	Adequate	Sprinkler	Conforms to	o NFPA13		-30%	-4,335	10,115		
	No Sprinkler		0%												
Choose Reduction Due to Sprinkler	tandard Water Supply for ire Department Hose Line -1 nd for Sprinkler System				Standard Water Supply for Fire Department Hose Line and for Sprinkler System					-10%	-1,445	8,670			
	Not Standard Water Supply or Unavailable	0%													
	Fully Supervised Sprinkler System	-10%		Fully Supervised Sprinkler System						-10%	-1,445	7,225			
	Not Fully Supervised or N/A	0%				· · · · · · · · · · · · · · · · · · ·					10 /0	.,	1,220		
							E	xposed Wall	Length						
Choose Structure Exposure Distance	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Length- Height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)			
	West	40	5	30.1 to 45	Type V	123	2	246	6	0%					
	East	170	5	30.1 to 45	Type V	200	2	400	6	0%	0%	0	7 005		
	South	116	5	30.1 to 45	Type V	323	2	646	6	0%	0%	U	7,225		
	North	66	5	30.1 to 45	Type V	134	2	268	6	0%					
Obtain Required Fire Flow							Тс	tal Required	Required Total Required Fire Flow, Rounded to the Nearest 1,000 L/min =						

 Exposure Charges for Exposing Walls of Wood Frame Construciton (from Table G5)

 Type V
 Wood Frame

 Type IV-III (U)
 Mass Timber or Ordinary with Unprotected Openings

 Type IV-III (P)
 Mass Timber or Ordinary with Protected Openings

Type II-I (U) Noncombustible or Fire Resistive with Unprotected Openings

Type II-I (P) Noncombustible or Fire Resistive with Protected Openings

Conditons for Separation Separation Dist Condition

0m to 3m	1	
3.1m to 10m	2	
10.1m to 20m	3	
20.1m to 30m	4	
> 30.1m	5	

[%]exp.

TABLE B3 ESTIMATED WATER PRESSURE AT PROPOSED BUILDING FFE (EXISTING)

				Pipe	Pipe	1					Slope of	llaad	Elev							Pressu
			Demand		Dia			Area		Vel			-	Elev To	*Elev					Drop
	From	то		(m)		Dia (m)		(m2)	~	(m/s)			(m)				re From			
Description	FIOIN	10	(L/Sec)	(11)	(mm)	Dia (m)	(ms/sec)	(m2)	L	(11/5)	(11711)	(111)	(11)	(11)	Diff (m)	кРа	(psi)	kPa	(psi)	(psi)
																	_			
Avg Day Conditons																				
Single 150mm water service	Main	Building	1.04	24 m	150	0.150	0.0010	0.017671	110	0.059	5.5E-05	0.0013	91.20	92.10	-0.9	403.2	(58.5)	394.3	(57.2)	1.3
Max Day Conditons			_							-										
Single 150mm watermain	Main	Building	1.56	24 m	150	0.150	0.0016	0.017671	110	0.0884	0.00012	0.0028	91.20	92.10	-0.9	330.6	(47.9)	321.7	(46.7)	1.3
Peak Hour Conditons		_	-																	
Single 150mm watermain	Main	Building	2.81	24 m	150	0.150	0.0028	0.017671	110	0.1592	0.00034	0.0084	91.20	92.10	-0.9	330.6	(47.9)	321.7	(46.7)	1.3
																	. ,		, ,	
Max Day plus Sprinkler Demands																				
Single 150mm watermain	Main	Building	31.56	24 m	150	0.150	0.0316	0.017671	110	1.7861	0.03022	0.7374	91.20	92.10	-0.9	330.6	(47.9)	314.5	(45.6)	2.3
																	-		-	
Water Demand Info Average Demand =	1.04	L/sec				Pipe Length							24 m							
Max Day Demand =	1.56	L/sec				From waterm Hazen Williar				Dina C	_		110							
Peak Hr Deamand =	2.81	L/sec				Hazen willa	IS C Factor		LUSS III	ripe, C=	-		110							
Peak Hr Deamand =	2.81	L/Sec																		
Fireflow Requriement =	116.7	L/sec																		
Max Day Plus FF Demand =	118.2	L/sec																		
Assumed Sprinkler Demands =	30.0	L/sec																		
Boundary Conditon																				
	Min HGL	Max HGL	Max Day	+ Fireflow	<u>.</u>	Max Day + Fi	reFlow (OB	<u>C)</u>												
HGL (m)	124.9	132.3	124.9			124.9				(From C	City of Otta	wa)								
Approx Ground Elev (m) =	91.20	91.20	91.20		91.20 92.10															
Approx Bldg FF Elev (m) =	92.10	92.10	92.10																	
Pressure (m) =	33.7	41.1	33.7			33.7														
						330,597														
Pressure (Pa) =	330.597	403.191	330.597			330.597														
Pressure (Pa) = Pressure (psi) =	330,597 47.9	403,191 58.5	330,597 47.9			330,597 47.9														

TABLE B4 ESTIMATED WATER PRESSURE AT PROPOSED BUILDING FFE (FUTURE SCENARIO)

Description	From	То	Demand (L/sec)	Pipe Length (m)	Pipe Dia (mm)	Dia (m)	Q (m3/sec)	Area (m2)	с	Vel (m/s)	Slope of HGL (m/m)	Loss		Elev To (m)	*Elev Diff (m)		re From (psi)	Pressu kPa	re To	Pressure Drop (psi)
Avg Day Conditons																			┣──	
Single 150mm water service	Main	Building	1.04	24 m	150	0.150	0.0010	0.017671	110	0.059	5.5E-05	0.0013	91.20	92.10	-0.9	545.4	(79.1)	536.6	(77.8)	1.3
			1		1	1									1				1	
Max Day Conditons					1														1	
Single 150mm watermain	Main	Building	1.56	24 m	150	0.150	0.0016	0.017671	110	0.0884	0.00012	0.0028	91.20	92.10	-0.9	515.0	(74.7)	506.2	(73.4)	1.3
Peak Hour Conditons																				
Single 150mm watermain	Main	Building	2.81	24 m	150	0.150	0.0028	0.017671	110	0.1592	0.00034	0.0084	91.20	92.10	-0.9	515.0	(74.7)	506.1	(73.4)	1.3
Max Day plus Sprinkler Demands																				
Single 150mm watermain	Main	Building	31.56	24 m	150	0.150	0.0316	0.017671	110	1.7861	0.03022	0.7374	91.20	92.10	-0.9	518.9	(75.3)	502.9	(72.9)	2.3
Water Demand Info Average Demand = Max Day Demand = Peak Hr Deamand = Fireflow Requriement = Max Day Plus FF Demand =	1.04 1.56 2.81 116.7 118 2	L/sec L/sec L/sec				<u>Pipe Lengths</u> From watermain to building = Hazen Williams C Factor for Friction Loss in Pipe, C=							24 m 110							
Assumed Sprinkler Demands = Boundary Conditon	ssumed Sprinkler Demands = 30.0 L/sec																			
HGL (m) Approx Ground Elev (m) = Approx Bldg FF Elev (m) = Pressure (m) = Pressure (Pa) = Pressure (psi) =	143.7 91.20 92.10 52.5 515,025 74.7	146.8 91.20 92.10 55.6 545,436 79.1	144.1 91.20 92.10 52.9 518,949 75.3	<u>, nenow</u>		Max Day + FireFlow (OBC) 144.1 (From City of Ottawa) 91.20 92.10 52.9 518,949 75.3 75.3														

Alexander Johnson

From:	Pamela Reid <preid@provencherroy.ca></preid@provencherroy.ca>
Sent:	Thursday, November 7, 2024 5:21 PM
То:	Aaditya Jariwala
Subject:	RE: CECCE Riverside South: FUS Calculations

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Aaditya,

Please see my responses below.

Thank you,

PAMELA REID CANDIDATE À LA PROFESSION D'ARCHITECTE / INTERN ARCHITECT 613-686-6339,2284 | C 438-492-6781

PROVENCHER_ROY

47 RUE CLARENCE, BUREAU 440 OTTAWA, ONTARIO, CANADA K1N 9K1

Avertissement / Disclaimer

Ce message ainsi que tout fichier qui y est joint peut contenir de l'information privilégiée ou confidentielle. Si ce message ne vous est pas destiné ou si vous l'avez reçu par erreur, nous vous saurions gré d'en aviser l'expéditeur immédiatement et d'effacer l'original ainsi que tout fichier joint, sans en tirer de copie ni en dévoiler le contenu. This message and any file attached to it may contain privileged or confidential information. If this message is not intended for you or if you received it in error, we would be grateful if you would notify the sender immediately and delete the original and any attached files without making a copy or sending it or reveal the content.

From: Aaditya Jariwala <Aaditya.Jariwala@exp.com>
Sent: 7 novembre 2024 16:29
To: Pamela Reid <preid@provencherroy.ca>
Subject: CECCE Riverside South: FUS Calculations

Hi Pam,

To calculate the Required Fire Flow based on Fire Underwriter's Survey, can you please provide answers for the following items:

1. What will be the GFA for each storey.

With the latest plans, here are the areas.

GROSS BUILDING AREA									
LEVEL	AREA (m ²)	Level							
RDC	6368 m²	T/O GROUND FLOOR							
NIVEAU 02	3163 m²	T/O 2nd FLOOR							
Total GFA	9531 m²	÷							

2. What will be the construction type of the building. See the list of construction type below. I can elaborate more as per FUS 2020, if needed.

None apply. I would say this: Non-Combustible Construction, where floors, mezzanines and structural elements have min. 1-hour fire rating.

- Wood Frame Construction
- Mass Timber Construction
- Ordinary or Joisted Masonry Construction, where exterior wall have min. 1-hour fire rating but interior partitions do not have min. 1-hour fire rating.
- Non-Combustible Construction, where and interior walls, arches, floors, roofs and structural elements have min. 1-hour fire rating.
- Fire Resistive Construction, where exterior and interior walls, arches, floors, roofs and structural elements have min. 2-hour fire rating.
- 3. Will the vertical and horizontal (if any) opening be protected as per NBC?

No

4. Will there be any fire separations with min. 2-hour fire rating?

No. Only 1hr.

5. What is the building occupancy group and division based on OBC.

3.2.2.24. Group A, Division 2, up to 6 Storeys, Any Area, Sprinklered

6. Will the building be fully equipped with an automatic sprinkler system? Yes, as required by code.

Let me know if you need further clarification or information.

Thanks,

*exp

Aaditya Jariwala, M.Eng, P.Eng.

EXP | Project Manager t:+1.613.688.1899, 63240 | m:+1.613.816.5961 | e:aaditya.jariwala@exp.com 2650 Queensview Drive Suite 100 Ottawa, ON K2B 8H6 CANADA exp.com | legal disclaimer

keep it green, read from the screen

Boundary Conditions 675 Borbridge Ave.

Provided Information

Scenario	Demand						
Scenario	L/min	L/s					
Average Daily Demand	71	1.19					
Maximum Daily Demand	107	1.79					
Peak Hour	193	3.22					
Fire Flow Demand #1	7,000	116.67					

Location

Results

Existing Condition

Connection 1 – Borbridge Ave.

Head (m)	Pressure ¹ (psi)
132.3	58.4
124.9	47.9
124.9	47.9
-	132.3 124.9

m

Future SUC

Connection 1 – Borbridge Ave.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	146.8	79.0
Peak Hour	143.7	74.6
Max Day plus Fire Flow #1	144.1	75.1
	•	

¹ Ground Elevation = 91.2 m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

EXP Services Inc. CECCE Secondary School – Riverside South 675 Borbridge Avenue, Ottawa, ON OTT-24005530-A0 April 4, 2025

Appendix C – Sanitary Sewer Design Sheet

C1 - Sanitary Sewer Design Sheet

Email Confirmation from the City on Municipal Sanitary Sewer Capacity

TABLE C1 - SANITARY SEWER CALCULATION SHEET

		LOCATION				INSTITUTION	AL		IN	IFILTRATI	ON					SEWER	DATA			
									ARE	A (ha)										
Street	U/S MH	D/S MH				TOTAL					INFILT		Nom	Actual	Slope	Length	Capacity	Q/Q _{CAP}		
Street			Desc	STUDENT	STAFF	POPULATION	ACCU POPULATION	Peak Flow	INDIV	ACCU	FLOW	TOTAL FLOW	Dia	Dia	(%)	(m)	(L/sec)	(%)	Full Velocity	
				POPULATION	POPULATION	(Persons)	(Persons)	(L/sec)			(L/s)	(L/s)	(mm)	(mm)					(m/s)	
	BLDG	SANMH 201	Proposed	826	80	906	906	1.42	6.01	6.01	1.98	3.40	250	251.46	2.00	3.80	85.4	4.0%	1.7	
	BEDG	SANWIT 201	Future	360	20	380	1286	2.01	6.01	6.01	1.98	3.99	250	251.46	2.00	3.80	85.4	4.7%	1.7	
Borbridge Ave																				
	SANMH 201	SANMH 202										3.99	250	251.46	2.00	9.74	85.4	4.7%	1.7	
	SANMH 202	525 MUNI SAN										3.99	250	251.46	2.00	14.46	85.4	4.7%	1.7	
Totals							1286			6.01		3.99								
Notes:											Designed	1:			Project:					
gross site area (ha	a)		6.07								A. Jariwa	ala., M.Eng., P.I	Eng.		CECCE Riverside South - New Secondary School					
population - new	school		906																	
population - futur			380								Checked				Location:					
Total population p	post future expan	nsion	1,286																	
Manning N =			0.013								A. Jariwa	ariwala., M.Eng., P.Eng.			675 Borb	ridge Ave.,	Ottawa, Ol	N.		
		Guidelines - 2012:																		
Avg. Daily Flow (S		n/day) =	90.00								File Refe				Page No:					
Institutional Peak			1.50								24005530 - SAN - Sanitary Design			1 of 1						
Peak extraneous f	flow, I(L/s/ha):	=	0.33								Sheet.xls	SX								

From:	Giovannitti, Terenzo <terenzo.giovannitti@ottawa.ca></terenzo.giovannitti@ottawa.ca>
Sent:	Friday, November 22, 2024 9:21 AM
То:	Aaditya Jariwala
Cc:	Pamela Reid
Subject:	RE: 675 Borbridge Ave - Water Boundary Conditions and Sanitary Capacity Check

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Aaditya,

This is just a brief follow up for the downstream sanitary check. The proposed peak flow you provided seems to be in line with what was allocated in the subdivision design and is therefore acceptable. There are no downstream capacity concerns for this proposed design at this time.

Regards, **Terenzo Giovannitti** Project Manager Development Review – All Wards (DRAW) Planning, Development and Building Services Department City of Ottawa 110 Laurier Ave W. Ottawa, ON 613-580-2424 (ext. 23436) terenzo.giovannitti@ottawa.ca

From: Giovannitti, Terenzo
Sent: November 14, 2024 9:27 AM
To: Aaditya Jariwala <<u>Aaditya.Jariwala@exp.com</u>>
Cc: Pamela Reid <<u>preid@provencherroy.ca</u>>
Subject: RE: 675 Borbridge Ave - Water Boundary Conditions and Sanitary Capacity Check

Good morning Aaditya,

Please see attached Boundary conditions result.

I am still waiting for a response about the downstream sanitary capacity. I will provide you with a response as soon as I get it.

If you have any questions, let me know. Thanks,

Terenzo Giovannitti

Project Manager Development Review – All Wards (DRAW) Planning, Development and Building Services Department City of Ottawa 110 Laurier Ave W. Ottawa, ON 613-580-2424 (ext. 23436)

terenzo.giovannitti@ottawa.ca

From: Aaditya Jariwala <<u>Aaditya.Jariwala@exp.com</u>> Sent: November 11, 2024 3:27 PM To: Giovannitti, Terenzo <<u>terenzo.giovannitti@ottawa.ca</u>> Cc: Pamela Reid <<u>preid@provencherroy.ca</u>> Subject: 675 Borbridge Ave - Water Boundary Conditions and Sanitary Capacity Check Importance: High

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Terenzo,

Sending the request for water boundary condition and sanitary sewer capacity check as per the notes from PH1 feedback form on the above mentioned SPA.

Please see attached figure for the location of anticipated new water connection. Domestic and fire demands are as follows:

Avg. Day Demands: 1.19 L/sec Max. Day Demands: 1.79 L/sec Peak Hour Demands: 3.22 L/sec RFF as per FUS (2020): 116.7 L/sec

Associated calculation sheets are attached to the email for your reference.

Additionally, the anticipated sanitary flows including infiltration allowances will be 4.9 L/sec. Please confirm if there are any capacity constraints in the receiving sanitary sewer on Borbridge Ave.

Let me know if you have any questions or concerns regarding this.

Best regards,

exp.

Aaditya Jariwala, M.Eng, P.Eng. EXP | Project Manager t : +1.613.688.1899, 63240 | m : +1.613.816.5961 | e : aaditya.jariwala@exp.com 2650 Queensview Drive Suite 100

Ottawa, ON K2B 8H6 CANADA

ı.

exp.com | legal disclaimer keep it green, read from the screen

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

EXP Services Inc. CECCE Secondary School – Riverside South 675 Borbridge Avenue, Ottawa, ON OTT-24005530-A0 April 4, 2025

Appendix D – Stormwater Management Design Sheet

- Table D1 Stormwater Management Summary
- Table D2 Calculation of Average Runoff Coefficient City Row (Pre-Development)
- Table D3 Pre-Development Runoff City Row
- Table D4 Calculation of Average Runoff Coefficient City Row (Post-Development)
- Table D5 Post-Development Runoff City Row
- Table D6 Calculation of Average Runoff Coefficients 675 Borbridge (Post-Development)
- Table D7 SWM Post-Development Runoff 675 Borbridge (Uncontrolled And Controlled)
- Table D8 2-Year, 5-Year & 100-Year Roof Drains Design Sheet Using Flow Controlled Roof

 Drains
- Table D9 P-1 Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)
- Table D10 P-2 Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)
- Table D11 P-3 Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)
- Table D12 P-4 Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)
- Table D13 5-Year Storm Sewer Calculation Sheet
- Table D14 Flow Through Inlet Control Device CB 307 (Catchment P-1)
- Table D15 Flow Through Inlet Control Device CB 305 (Catchment P-2)
- Table D16 Flow Through Inlet Control Device CB 304 (Catchment P-3)
- Table D17 Flow Through Inlet Control Device CB 306 (Catchment P-4)

Area ID	Outlet Location	Area (ha)	Runoff Coefficient 'C'	100 Year Release (L/s)	100 Year Storage Required (m ³)	Max. Surface Storage Provided (m3)	Control Method	Storage Method		
P-1	CB 307	0.126	0.59	30.0	9.7		ICD	Surface Ponding		
P-2	CB 305	0.203	0.84	78.0	17.7	134.3	ICD	Surface Ponding		
P-3	CB 304	0.179	0.84	72.0	14.7		ICD	Surface Ponding		
P-4	DCB 306	1.903	0.24	177.0	66.9	161.95	ICD	Surface Ponding		
P-5	DCB 309	0.804	0.28	138.7	-	-	Uncontrolled	-		
P-6	DCB 303	0.859	0.25	132.5	-	-	Uncontrolled	-		
P-7	DCB 308	0.730	0.21	95.1	-	-	Uncontrolled	-		
P-8	CB 301, 302	0.150	0.65	60.1	-	-	Uncontrolled	-		
P-9	Brian Good/Borebridge	0.420	0.25	65.2	-	-	Uncontrolled	-		
P-R	STMMH 106	0.634	0.90	55.7	193.4	316.8	Flow Control Roof Drains	Surface Ponding		
675 Borbrid	ge Totals	6.007		904.2	302.4	613.1				
POS-1	Brian Good/Borebridge ROW	0.309	0.51	97.7	-	-	Uncontrolled	-		
Total Allowable Release Rate for 675 Borbridge (L/s): 915.0 (From Design Brief - Riverside South phase 15-2, 4 & Spratt Road, prepared by IBI Group dated August, 2019)										

TABLE D2 - CALCULATION OF AVERAGE RUNOFF COEFFICIENT CITY ROW (PRE-DEVELOPMENT)

		Asphalt/Concrete		Roof		Pavers		Gravel		Soft Landscaping			Total Area	
Area No.	Outlet Location	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Sum AC	(m²)	C _{AVG}
		C=0.90		C=0.90		C=0.90		C=0.70		C=0.20				
POS-1	Brian Good/Borebridge ROW	1060.57	954.5	0.00	0.0	0.00	0.0	0.00	0.00	2029.95	405.99	1360.5	3090.52	0.44

TABLE D3 PRE-DEVELOPMENT RUNOFF CITY ROW

Area No	Outlet Location		Time of Conc. T _c (min)		Storm :	= 2-year			Storm	= 5-year		Storm = 100-year				
		Area (ha)		C _{AVG}	l ₂ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG}	I₅ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG-100Yr}	l ₁₀₀ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	
POS-1	Brian Good/Borebridge ROW	0.309	10	0.44	76.81	29.0	29.0	0.44	104.19	39.4	39.4	0.55	178.56	84.4	84.4	
Notes																

1) Intensity, I₂ = 732.951/(Tc+6.199)^{0.810} (2-year, City of Ottawa)

2) Intensity, $I_5 = 998.071/(Tc+6.035)^{0.814}$ (5-year, City of Ottawa) 3) Intensity, $I_{100} = 1735.688/(Tc+6.014)^{0.820}$ (100-year, City of Ottawa)

4) Time of Concentration: T_c=10min

TABLE D4 - CALCULATION OF AVERAGE RUNOFF COEFFICIENT CITY ROW (POST-DEVELOPMENT)

Area No. Ou		Asphalt/Concrete		Roof		Pavers		Gravel		Soft Landscaping			Total Area	
	Outlet Location	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Area (m²)	A * C	Sum AC	(m²)	C _{AVG}
		C=0.90		C=0.90		C=0.90		C=0.70		C=0.20				
POS-1	Brian Good/Borebridge ROW	1367.08	1230.4	0.00	0.0	0.00	0.0	0.00	0.00	1723.44	344.69	1575.1	3090.52	0.51

TABLE D5 - POST-DEVELOPMENT RUNOFF CITY ROW

Area No	Outlet Location	Area (ha)	Time of Conc. T _c (min)		Storm =	= 2-year			Storm	= 5-year			Storm = 100-year				
				C _{AVG}	I₂ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG}	I₅ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG-100Yr}	l ₁₀₀ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)		
POS-1	Brian Good/Borebridge ROW	0.309	10	0.51	76.81	33.6	33.6	0.51	104.19	45.6	45.6	0.64	178.56	97.7	97.7		
2) Intensity, I₅ = 998.																	
4) Time of Concentra	ation: T _c =10min																

		Asphalt/	Asphalt/Concrete		Roof		vers	Gra	avel	Soft Lan	dscaping		Total Area	
Area No.	Outlet Location	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Sum AC	(m²)	C _{AVG}
		C=0).90	C=0.90		C=0.90		C=0.70		C=0	.20			
P-1	CB 307	696.71	627.0	0.00	0.0	0.00	0.0	0.00	0.00	560.57	112.11	739.2	1257.28	0.59
P-2	CB 305	1469.66	1322.7	0.00	0.0	380.28	342.3	0.00	0.00	181.85	36.37	1701.3	2031.79	0.84
P-3	CB 304	1600.29	1440.3	0.00	0.0	26.45	23.8	0.00	0.00	164.87	32.97	1497.0	1791.61	0.84
P-4	DCB 306	4.63	4.2	0.00	0.0	0.00	0.0	1682.04	1177.43	17342.32	3468.46	4650.1	19028.98	0.24
P-5	DCB 309	360.96	324.9	0.00	0.0	0.00	0.0	750.81	525.57	6924.97	1384.99	2235.4	8036.74	0.28
P-6	DCB 303	595.24	535.7	0.00	0.0	0.00	0.0	0.00	0.00	7996.61	1599.32	2135.0	8591.86	0.25
P-7	DCB 308	81.12	73.0	0.00	0.0	21.50	19.3	0.00	0.00	7199.01	1439.80	1532.2	7301.63	0.21
P-8	CB 301, 302	71.55	64.4	0.00	0.0	884.59	796.1	0.00	0.00	540.77	108.15	968.7	1496.91	0.65
P-9	Brian Good/Borebridge	82.70	74.4	0.00	0.0	218.57	196.7	0.00	0.00	3896.61	779.32	1050.5	4197.88	0.25
P-R	STMMH 106	0.00	0.0	6335.69	5702.1	0.00	0.0	0.00	0.00	0.00	0.00	5702.1	6335.69	0.90
	Average Runoff Coeff for 675 Borbridge =													= 0.37

TABLE D6 - CALCULATION OF AVERAGE RUNOFF COEFFICIENTS 675 BORBRIDGE (POST-DEVELOPMENT)

			Time of		Storm	= 2-year			Storm = 5	-year			Storm = 10	0-year	
Area No	Outlet Location	Area (ha)	Conc. T _c (min)	C _{AVG}	l ₂ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG}	l₅ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG-100Yr}	l ₁₀₀ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)
P-1	CB 307	0.126	10	0.59	76.81	15.8	15.8	0.59	104.19	21.4	21.4	0.73	178.56	45.9	30.0
P-2	CB 305	0.203	10	0.84	76.81	36.3	36.3	0.84	104.19	49.3	49.3	1.00	178.56	100.9	78.0
P-3	CB 304	0.179	10	0.84	76.81	32.0	32.0	0.84	104.19	43.4	43.4	1.00	178.56	88.9	72.0
P-4	DCB 306	1.903	10	0.24	76.81	99.3	99.3	0.24	104.19	134.7	134.7	0.31	178.56	288.5	177.0
P-5	DCB 309	0.804	10	0.28	76.81	47.7	47.7	0.28	104.19	64.8	64.8	0.35	178.56	138.7	138.7
P-6	DCB 303	0.859	10	0.25	76.81	45.6	45.6	0.25	104.19	61.8	61.8	0.31	178.56	132.5	132.5
P-7	DCB 308	0.730	10	0.21	76.81	32.7	32.7	0.21	104.19	44.4	44.4	0.26	178.56	95.1	95.1
P-8	CB 301, 302	0.150	10	0.65	76.81	20.7	20.7	0.65	104.19	28.1	28.1	0.81	178.56	60.1	60.1
P-9	Brian Good/Borebridge	0.420	10	0.25	76.81	22.4	22.4	0.25	104.19	30.4	30.4	0.31	178.56	65.2	65.2
P-R	STMMH 106	0.634	10	0.90	76.81	121.8	36.7	0.90	104.19	165.2	44.2	1.00	178.56	314.5	55.7
Total for 675 Borbridge		6.007				474.3	389.2			643.4	522.4			1330.2	904.2
$\frac{1}{1} \frac{1}{1} \frac{1}$															

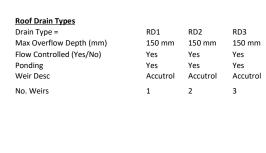
TABLE D7 SWM POST-DEVELOPMENT RUNOFF 675 BORBRIDGE (UNCONTROLLED AND CONTROLLED)

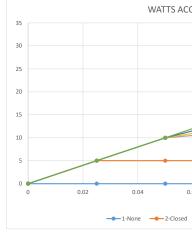
5) Flows under column $Q_{CAP that denotes}$ controlled:

100.00

TABLE D8: 2-year, 5-year & 100-year Roof Drains Design Sheet - Using Flow Controlled Roof Drains Project: 1485 UPPER CANADA STREET

Location: City of Ottawa Date: SEPTEMBER 2023


			noff Coeff (Cavg) Drainage Area			2-year Event				5-year Event					100-year Event					Storag	ge Re							
Area #	Roof Drain Type	No Drains per Area	Total No of Weirs		2-year & 5- year	100- year	m²	ha	Runoff Rate (L/sec)	2yr Ponding Depth (mm)	Roof Drain Capacity Per Weir (gpm)	Roof Drain Capacity Per Drain per weir (gpm)		Total Flow From Roof Drains (L/sec)	Runoff Rate (L/sec)	5yr Ponding Depth (mm)	Roof Drain Capacity Per Weir (gpm)	Roof Drain Capacity Per Drain per weir (gpm)	Roof Drain Capacity Per Drain (L/sec)	Total Flow From Roof Drains (L/sec)	Runoff Rate (L/sec)	100yr Ponding Depth (mm)	1	Roof Drain Capacity Per Drain per weir (gpm)	Roof Drain Capacity Per Drain (L/sec)	Total Flow From Roof Drains (L/sec)	2-year (m³)	5
P-R-1	RD2	1	2	6-Full	0.90	1.00	529.86	0.0530	10.183	89	17.8	35.6	2.246	2.246	13.813	107	21.4	42.8	2.700	2.700	26.302	133	26.6	53.2	3.356	3.356	5.61	1
P-R-2	RD2	1	2	6-Full	0.90	1.00	426.55	0.0427	8.197	86	17.2	34.4	2.170	2.170	11.120	104	20.8	41.6	2.625	2.625	21.174	130	26.0	52.0	3.281	3.281	4.06	
P-R-3	RD2	1	2	6-Full	0.90	1.00	450.29	0.0450	8.654	87	17.4	34.8	2.196	2.196	11.739	104	20.8	41.6	2.625	2.625	22.352	130	26.0	52.0	3.281	3.281	4.40	
P-R-4	RD2	1	2	6-Full	0.90	1.00	586.21	0.0586	11.266	91	18.2	36.4	2.296	2.296	15.282	108	21.6	43.2	2.725	2.725	29.099	135	27.0	54.0	3.407	3.407	6.49	1
P-R-5	RD3	1	2	6-Full	0.90	1.00	282.58	0.0283	5.431	80	16.0	32.0	2.019	2.019	7.367	97	19.4	38.8	2.448	2.448	14.027	122	24.4	48.8	3.079	3.079	2.11	
P-R-6	RD3	1	3	6-Full	0.90	1.00	448.73	0.0449	8.624	81	16.2	48.6	3.066	3.066	11.698	97	19.4	58.2	3.672	3.672	22.275	123	24.6	73.8	4.656	4.656	3.48	
P-R-7	RD3	1	3	6-Full	0.90	1.00	552.38	0.0552	10.616	84	16.8	50.4	3.180	3.180	14.400	101	20.2	60.6	3.823	3.823	27.420	127	25.4	76.2	4.807	4.807	4.82	
P-R-8	RD3	1	3	6-Full	0.90	1.00	488.91	0.0489	9.396	82	16.4	49.2	3.104	3.104	12.745	98	19.6	58.8	3.710	3.710	24.269	125	25.0	75.0	4.732	4.732	4.01	
P-R-9	RD3	1	3	6-Full	0.90	1.00	424.79	0.0425	8.164	80	16.0	48.0	3.028	3.028	11.074	96	19.2	57.6	3.634	3.634	21.086	123	24.6	73.8	4.656	4.656	3.18	
P-R-10	RD3	3	6	6-Full	0.90	1.00	1233.91	0.1234	23.713	86	17.2	103.2	6.511	6.511	32.167	103	20.6	123.6	7.798	7.798	61.251	129	25.8	154.8	9.766	9.766	11.46	1
P-R-11	RD3	1	3	6-Full	0.90	1.00	394.02	0.0394	7.572	78	15.6	46.8	2.953	2.953	10.272	95	19.0	57.0	3.596	3.596	19.559	121	24.2	72.6	4.580	4.580	2.82	<u> </u>
P-R-12	RD3	1	2	6-Full	0.90	1.00	255.38	0.0255	4.908	78	15.6	31.2	1.968	1.968	6.658	95	19.0	38.0	2.397	2.397	12.677	120	24.0	48.0	3.028	3.028	1.78	
P-R-13	RD2	1	1	6-Full	0.90	1.00	132.29	0.0132	2.542	79	15.8	15.8	0.997	0.997	3.449	95	19.0	19.0	1.199	1.199	6.567	121	24.2	24.2	1.527	1.527	0.94	\vdash
P-R-14	RD2	1	1	6-Full	0.90	1.00	129.86	0.0130	2.496	79	15.8	15.8	0.997	0.997	3.385	95	19.0	19.0	1.199	1.199	6.446	121	24.2	24.2	1.527	1.527	0.91	
Totals					0.9	0.9	6,335.8	0.6336	121.76		232.00		36.73	36.73	165.17		279.00		44.15	44.15	314.50		352.00		55.68	55.68	56.09	9
Min										80				•		97				•		122						
Max										91						108						135						


Runoff	Based	on	the	Fol	lowin

Runoff Based on the Follo	wing:		
Storm Frequency (years) =	2	5	100
Time of Conc (mins) =	10	10	10
Storm Intensity (mm/hr) =	76.8	104.2	178.6

Roof Drains have Following Flow Rates per weir: WATTS Flow Controlled Drain
Root Drains have Following Flow Rates per weir: WATTS Flow Controlled Drain

			Max Flow Rate					
Weir Position	0	25	50	75	100	125	150	per Weir
	0	0.025	0.05	0.075	0.1	0.125	0.15	@150mm (L/s)
1-None	0	0	0	0	0	0	0	0.000
2-Closed	0	5	5	5	5	5	5	0.315
3-1/4 open	0	5	10	11	13	14	15	0.946
4-1/2 open	0	5	10	12	15	18	20	1.262
5-3/4 open	0	5	10	14	18	21	25	1.577
6-Full	0	5	10	15	20	25	30	1.890

Storag	e Required	(MRM)	M	aximium S	Storage Pro	vided at S	pill Elevatio	on
			Area	Max Prism	Max Prisim	% Volu	me Used fo	or Ponding
ear ³)	5-year (m³)	100-year (m ³)	Available for Storage (m ²)	Depth (mm)	Volume (m ³)	2-year	5-year	100-year
51 51	9.44	18.51	529.9	150	26.5	21%	36%	70%
)6	6.89	13.70	426.6	150	21.3	19%	32%	64%
10	7.50	14.82	450.3	150	22.5	20%	33%	66%
19	10.91	21.21	586.2	150	29.3	20%	37%	72%
1	3.70	7.62	282.6	150	14.1	15%	26%	54%
18	6.11	12.45	448.7	150	22.4	16%	27%	55%
32	8.36	16.74	552.4	150	27.6	17%	30%	61%
)1	7.01	14.07	488.9	150	24.4	16%	29%	58%
.8	5.61	11.41	424.8	150	21.2	15%	26%	54%
46	19.64	39.14	1,233.9	150	61.7	19%	32%	63%
32	5.00	10.27	394.0	150	19.7	14%	25%	52%
'8	3.18	6.59	255.4	150	12.8	14%	25%	52%
94	1.69	3.46	132.3	150	6.6	14%	26%	52%
91	1.64	3.36	129.9	150	6.5	14%	25%	52%
09	96.67	193.36	6335.8		316.8			
S AC	CUTROL A	DJUSTABLI	E FLOW CON	TROL				
							•	
					-		-	
		•						
		•						
		•						
0	.06	0.08	0.1		0.12	0.14		0.16
	 3-1/4 d							

Storage Volumes Roof Area P-R-1 (2 Year, 5 Year and 100 Year Storms)

C_{AVG} = 0.90 (dimmensionless)

C_{AVG} = 1.00

Time Interval = 5 (mins)

Drainage Area = 0.05299 (hectares)

	Rele	ase Rate =	2.246	(L/sec)		Relea	ase Rate =	2.7003	(L/sec)		Rele	ase Rate =	3.3564	(L/sec)	
	Retur	n Period =	2	(years)		Retur	n Period =	5	(years)		Retur	n Period =	100	(years)	
	IDF Paran	neters, A =	732.951	, B =	0.810	IDF Param	eters, A =	998.071	, B =	0.814	IDF Param	neters, A =	1735.69	, B =	0.820
		(=/	Α∕(T _c +C)	, C =	6.199	(1	$= A/(T_c+C)$, C =	6.053	(1	$= A/(T_c+C)$, C =	6.014
	Rainfall	Peak	Release	Storage		Rainfall	Peak	Release	Storage		Rainfall	Peak	Release	Storage	
Duration	Intensity, I	Flow	Rate	Rate	Storage	Intensity, I	Flow	Rate	Rate	Storage	Intensity, I	Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	22.2	2.25	19.9	0.00	230.5	34.0	2.700	31.3	0.00	398.6	58.7	3.4	55.4	0.00
5	103.6	13.7	2.25	11.5	3.45	141.2	20.8	2.700	18.1	5.43	242.7	35.8	3.4	32.4	9.72
10	76.8	10.2	2.25	7.9	4.76	104.2	15.3	2.700	12.6	7.59	178.6	26.3	3.4	22.9	13.77
15	61.8	8.2	2.25	5.9	5.35	83.6	12.3	2.700	9.6	8.65	142.9	21.0	3.4	17.7	15.92
20	52.0	6.9	2.25	4.7	5.58	70.3	10.3	2.700	7.6	9.18	120.0	17.7	3.4	14.3	17.17
25	45.2	6.0	2.25	3.7	5.61	60.9	9.0	2.700	6.3	9.40	103.8	15.3	3.4	11.9	17.91
30	40.0	5.3	2.25	3.1	5.51	53.9	7.9	2.700	5.2	9.44	91.9	13.5	3.4	10.2	18.32
35	36.1	4.8	2.25	2.5	5.32	48.5	7.1	2.700	4.4	9.34	82.6	12.2	3.4	8.8	18.50
40	32.9	4.4	2.25	2.1	5.07	44.2	6.5	2.700	3.8	9.14	75.1	11.1	3.4	7.7	18.51
45	30.2	4.0	2.25	1.8	4.76	40.6	6.0	2.700	3.3	8.87	69.1	10.2	3.4	6.8	18.40
50	28.0	3.7	2.25	1.5	4.41	37.7	5.5	2.700	2.8	8.54	64.0	9.4	3.4	6.1	18.19
55	26.2	3.5	2.25	1.2	4.04	35.1	5.2	2.700	2.5	8.16	59.6	8.8	3.4	5.4	17.91
60	24.6	3.3	2.25	1.0	3.63	32.9	4.9	2.700	2.2	7.75	55.9	8.2	3.4	4.9	17.56
65	23.2	3.1	2.25	0.8	3.21	31.0	4.6	2.700	1.9	7.30	52.6	7.8	3.4	4.4	17.15
70	21.9	2.9	2.25	0.7	2.77	29.4	4.3	2.700	1.6	6.83	49.8	7.3	3.4	4.0	16.71
75	20.8	2.8	2.25	0.5	2.31	27.9	4.1	2.700	1.4	6.33	47.3	7.0	3.4	3.6	16.22
80	19.8	2.6	2.25	0.4	1.84	26.6	3.9	2.700	1.2	5.82	45.0	6.6	3.4	3.3	15.70
85	18.9	2.5	2.25	0.3	1.35	25.4	3.7	2.700	1.0	5.29	43.0	6.3	3.4	3.0	15.15
90	18.1	2.4	2.25	0.2	0.86	24.3	3.6	2.700	0.9	4.74	41.1	6.1	3.4	2.7	14.58
95	17.4	2.3	2.25	0.1	0.36	23.3	3.4	2.700	0.7	4.18	39.4	5.8	3.4	2.5	13.98
100	16.7	2.2	2.25	0.0	-0.16	22.4	3.3	2.700	0.6	3.60	37.9	5.6	3.4	2.2	13.36
105	16.1	2.1	2.25	-0.1	-0.68	21.6	3.2	2.700	0.5	3.02	36.5	5.4	3.4	2.0	12.72
110	15.6	2.1	2.25	-0.2	-1.20	20.8	3.1	2.700	0.4	2.42	35.2	5.2	3.4	1.8	12.07
115	15.0	2.0	2.25	-0.3	-1.73	20.1	3.0	2.700	0.3	1.82	34.0	5.0	3.4	1.7	11.40
120	14.6	1.9	2.25	-0.3	-2.27	19.5	2.9	2.700	0.2	1.20	32.9	4.8	3.4	1.5	10.72
Max =					5.61					9.44					18.51
Notes											-				

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, $I = A/(Tc+C)^{B}$

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-2 (2 Year, 5 Year and 100 Year Storms)

(dimmensionless)

C_{AVG} = 0.90

C_{AVG} = 1.00

Time Interval =5(mins)Drainage Area =0.04266(hectares)

		ease Rate =					ase Rate =	2.6246	(L/sec)			ase Rate =	3.2807		
	Reti	rn Period =	2.170 2	(L/sec) (years)			n Period =	5	(years)			n Period =	100	(years)	
		meters, A =			0.810		eters, A =			0.814	IDF Param			, B =	0.820
		(I = A/			6.199		$= A/(T_c+C)$	550.071		6.053		$= A/(T_c+C)$	1/00.000		6.014
1 F		(,	(, e	0.135	(.	.,(., .,		, e	0.000	(.	.,(., .,		, e	0.011
	Rainfall		Deleges	Charles		Rainfall	Deals	Deleses	Charman		Rainfall	Deals	Deleges	Charren	
Duration	Intensity, I	Peak Flow	Release Rate	Storage Rate	Storage	Intensity, I	Peak Flow	Release Rate	Storage Rate	Storage	Rainfail Intensity, I	Peak Flow	Release Rate	Storage Rate	Storage
Duration (min)	(mm/hr)	(L/sec)	(L/sec)		(m^3)	(mm/hr)		(L/sec)	(L/sec)	(m^3)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
(min) 0	,	,	(L/sec) 2.17	(L/sec) 15.7		(mm/nr) 230.5	(L/sec) 27.3	(L/sec) 2.625	(L/sec) 24.7	(m) 0.00	(mm/nr) 398.6	(L/sec) 47.3	(L/sec) 3.3	(L/sec) 44.0	
5	167.2	17.8	2.17		0.00	230.5 141.2		2.625		4.23		47.3 28.8	3.3	44.0 25.5	0.00
-	103.6	11.1	2.17	8.9 6.0	3.62		16.7	2.625	14.1 9.7	4.23 5.84	242.7		3.3	25.5 17.9	
10	76.8	8.2				104.2	12.4				178.6	21.2			10.74
15	61.8	6.6	2.17	4.4	3.98	83.6	9.9	2.625	7.3	6.56	142.9	16.9	3.3	13.7	12.30
20	52.0	5.6	2.17	3.4	4.06	70.3	8.3	2.625	5.7	6.85	120.0	14.2	3.3	10.9	13.13
25	45.2	4.8	2.17	2.7	3.98	60.9	7.2	2.625	4.6	6.89	103.8	12.3	3.3	9.0	13.55
30	40.0	4.3	2.17	2.1	3.79	53.9	6.4	2.625	3.8	6.79	91.9	10.9	3.3	7.6	13.70
35	36.1	3.8	2.17	1.7	3.52	48.5	5.8	2.625	3.1	6.57	82.6	9.8	3.3	6.5	13.67
40	32.9	3.5	2.17	1.3	3.21	44.2	5.2	2.625	2.6	6.28	75.1	8.9	3.3	5.6	13.51
45	30.2	3.2	2.17	1.1	2.85	40.6	4.8	2.625	2.2	5.92	69.1	8.2	3.3	4.9	13.25
50	28.0	3.0	2.17	0.8	2.47	37.7	4.5	2.625	1.8	5.52	64.0	7.6	3.3	4.3	12.91
55	26.2	2.8	2.17	0.6	2.05	35.1	4.2	2.625	1.5	5.08	59.6	7.1	3.3	3.8	12.51
60	24.6	2.6	2.17	0.5	1.62	32.9	3.9	2.625	1.3	4.61	55.9	6.6	3.3	3.3	12.05
65	23.2	2.5	2.17	0.3	1.17	31.0	3.7	2.625	1.1	4.12	52.6	6.2	3.3	3.0	11.55
70	21.9	2.3	2.17	0.2	0.71	29.4	3.5	2.625	0.9	3.61	49.8	5.9	3.3	2.6	11.02
75	20.8	2.2	2.17	0.1	0.23	27.9	3.3	2.625	0.7	3.07	47.3	5.6	3.3	2.3	10.45
80	19.8	2.1	2.17	-0.1	-0.26	26.6	3.1	2.625	0.5	2.52	45.0	5.3	3.3	2.1	9.86
85	18.9	2.0	2.17	-0.1	-0.76	25.4	3.0	2.625	0.4	1.96	43.0	5.1	3.3	1.8	9.25
90	18.1	1.9	2.17	-0.2	-1.26	24.3	2.9	2.625	0.3	1.38	41.1	4.9	3.3	1.6	8.61
95	17.4	1.9	2.17	-0.3	-1.78	23.3	2.8	2.625	0.1	0.79	39.4	4.7	3.3	1.4	7.95
100	16.7	1.8	2.17	-0.4	-2.30	22.4	2.7	2.625	0.0	0.20	37.9	4.5	3.3	1.2	7.28
105	16.1	1.7	2.17	-0.4	-2.83	21.6	2.6	2.625	-0.1	-0.41	36.5	4.3	3.3	1.0	6.60
110	15.6	1.7	2.17	-0.5	-3.36	20.8	2.5	2.625	-0.2	-1.03	35.2	4.2	3.3	0.9	5.90
115	15.0	1.6	2.17	-0.6	-3.89	20.1	2.4	2.625	-0.2	-1.65	34.0	4.0	3.3	0.8	5.19
120	14.6	1.6	2.17	-0.6	-4.44	19.5	2.3	2.625	-0.3	-2.28	32.9	3.9	3.3	0.6	4.46
Max =					4.06					6.89					13.70
Notes															
1) Peak flo	w is equal t	o the produc	ct of 2.78 x	(C x I x A											
2) Rainfall I															

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-3 (2 Year, 5 Year and 100 Year Storms)

C_{AVG} = 0.90

(dimmensionless) C_{AVG} = 1.00

Time Interval = 5 (mins)

Drainage Area = 0.04503 (hectares)

	Rel	ease Rate =	2.196	(L/sec)		Relea	ase Rate =	2.6246	(L/sec)		Relea	ase Rate =	3.2807	(L/sec)	
	Retu	rn Period =	2	(years)		Retur	n Period =	5	(years)		Returi	n Period =	100	(years)	
	IDF Para	meters, A =	732.951	, B =	0.810	IDF Param	neters, A =	998.071	, B =	0.814	IDF Param	neters, A =	1735.69	, B =	0.820
		(I = A	/(T _c +C)	, C =	6.199	(1	$= A/(T_c+C)$, C =	6.053	(1	$= A/(T_c+C)$, C =	6.014
	Rainfall		Release	Storage		Rainfall	Peak	Release	Storage		Rainfall	Peak	Release	Storage	
Duration	Intensity, I	Peak Flow	Rate	Rate	Storage	Intensity, I	Flow	Rate	Rate	Storage	Intensity, I	Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	18.8	2.20	16.6	0.00	230.5	28.9	2.625	26.2	0.00	398.6	49.9	3.3	46.6	0.00
5	103.6	11.7	2.20	9.5	2.84	141.2	17.7	2.625	15.0	4.51	242.7	30.4	3.3	27.1	8.13
10	76.8	8.7	2.20	6.5	3.87	104.2	13.0	2.625	10.4	6.25	178.6	22.4	3.3	19.1	11.44
15	61.8	7.0	2.20	4.8	4.29	83.6	10.5	2.625	7.8	7.05	142.9	17.9	3.3	14.6	13.15
20	52.0	5.9	2.20	3.7	4.40	70.3	8.8	2.625	6.2	7.40	120.0	15.0	3.3	11.7	14.08
25	45.2	5.1	2.20	2.9	4.34	60.9	7.6	2.625	5.0	7.50	103.8	13.0	3.3	9.7	14.58
30	40.0	4.5	2.20	2.3	4.17	53.9	6.8	2.625	4.1	7.43	91.9	11.5	3.3	8.2	14.79
35	36.1	4.1	2.20	1.9	3.92	48.5	6.1	2.625	3.4	7.24	82.6	10.3	3.3	7.1	14.82
40	32.9	3.7	2.20	1.5	3.62	44.2	5.5	2.625	2.9	6.98	75.1	9.4	3.3	6.1	14.70
45	30.2	3.4	2.20	1.2	3.27	40.6	5.1	2.625	2.5	6.65	69.1	8.6	3.3	5.4	14.48
50	28.0	3.2	2.20	1.0	2.89	37.7	4.7	2.625	2.1	6.27	64.0	8.0	3.3	4.7	14.18
55	26.2	2.9	2.20	0.8	2.48	35.1	4.4	2.625	1.8	5.85	59.6	7.5	3.3	4.2	13.80
60	24.6	2.8	2.20	0.6	2.06	32.9	4.1	2.625	1.5	5.40	55.9	7.0	3.3	3.7	13.38
65	23.2	2.6	2.20	0.4	1.61	31.0	3.9	2.625	1.3	4.92	52.6	6.6	3.3	3.3	12.91
70	21.9	2.5	2.20	0.3	1.15	29.4	3.7	2.625	1.1	4.42	49.8	6.2	3.3	3.0	12.40
75	20.8	2.3	2.20	0.1	0.67	27.9	3.5	2.625	0.9	3.90	47.3	5.9	3.3	2.6	11.86
80	19.8	2.2	2.20	0.0	0.18	26.6	3.3	2.625	0.7	3.36	45.0	5.6	3.3	2.4	11.29
85	18.9	2.1	2.20	-0.1	-0.31	25.4	3.2	2.625	0.6	2.81	43.0	5.4	3.3	2.1	10.69
90	18.1	2.0	2.20	-0.2	-0.82	24.3	3.0	2.625	0.4	2.25	41.1	5.1	3.3	1.9	10.07
95	17.4	2.0	2.20	-0.2	-1.33	23.3	2.9	2.625	0.3	1.67	39.4	4.9	3.3	1.7	9.44
100	16.7	1.9	2.20	-0.3	-1.85	22.4	2.8	2.625	0.2	1.08	37.9	4.7	3.3	1.5	8.78
105	16.1	1.8	2.20	-0.4	-2.38	21.6	2.7	2.625	0.1	0.49	36.5	4.6	3.3	1.3	8.11
110	15.6	1.8	2.20	-0.4	-2.91	20.8	2.6	2.625	0.0	-0.12	35.2	4.4	3.3	1.1	7.43
115	15.0	1.7	2.20	-0.5	-3.45	20.1	2.5	2.625	-0.1	-0.73	34.0	4.3	3.3	1.0	6.74
120	14.6	1.6	2.20	-0.6	-4.00	19.5	2.4	2.625	-0.2	-1.35	32.9	4.1	3.3	0.8	6.03
Max =					4.40					7.50					14.82
Notes															

Notes 1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, $I = A/(Tc+C)^{B}$

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-4 (2 Year, 5 Year and 100 Year Storms)

C_{AVG} = 0.90

(dimmensionless) C_{AVG} = 1.00

Time Interval = 5 (mins)

Drainage Area = 0.05862 (hectares)

	Rel	ease Rate =	2.296	(L/sec)		Relea	ase Rate =	2.7255	(L/sec)		Rele	ase Rate =	3.4069	(L/sec)	
		rn Period =		(years)			n Period =	5	(vears)			n Period =	100	(years)	
		meters, A =		, B =	0.810		neters, A =		., ,	0.814			1735.688	_(, ea. e, , B =	0.820
		,	/(T _c +C)	, C =			$= A/(T_c+C)$		- '	6.053		$= A/(T_c+C)$, C =	
				, e	0.200	```	7(- 7		, .		```	// [, .	0.01
	Rainfall		Release	Ctorage		Rainfall	Peak	Release	Ctorogo		Rainfall	Peak	Release	Ctorogo	
Duration	Intensity, I	Dook Flow	Rate	Storage Rate	Storage	Intensity, I	Flow	Rate	Storage Rate	Storage	Intensity, I	Flow	Rate	Storage Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m^3)
0	167.2	(L/Sec) 24.5	(L/sec) 2.30	(L/Sec) 22.2	0.00	230.5	(L/Sec) 37.6	(L/Sec) 2.725	(L/Sec) 34.8	0.00	398.6	(L/Sec) 65.0	(L/Sec) 3.4	(L/Sec) 61.6	0.00
5	107.2	15.2	2.30	12.2	3.87	141.2	23.0	2.725	20.3	6.08	242.7	39.6	3.4	36.1	10.84
10 15	76.8 61.8	11.3 9.1	2.30 2.30	9.0 6.8	5.38 6.09	104.2 83.6	17.0 13.6	2.725 2.725	14.3 10.9	8.55 9.80	178.6 142.9	29.1	3.4 3.4	25.7 19.9	15.42 17.89
												23.3			
20 25	52.0 45.2	7.6	2.30 2.30	5.3 4.3	6.40	70.3 60.9	11.4 9.9	2.725	8.7 7.2	10.47	120.0	19.5	3.4	16.1 13.5	19.37
		6.6			6.49			2.725		10.80	103.8	16.9	3.4		20.28
30	40.0	5.9	2.30	3.6	6.44	53.9	8.8	2.725	6.1	10.91	91.9	15.0	3.4	11.6	20.82
35	36.1	5.3	2.30	3.0	6.28	48.5	7.9	2.725	5.2	10.88	82.6	13.5	3.4	10.1	21.11
40	32.9	4.8	2.30	2.5	6.06	44.2	7.2	2.725	4.5	10.74	75.1	12.2	3.4	8.8	21.21
45	30.2	4.4	2.30	2.1	5.77	40.6	6.6	2.725	3.9	10.52	69.1	11.3	3.4	7.8	21.18
50	28.0	4.1	2.30	1.8	5.45	37.7	6.1	2.725	3.4	10.23	64.0	10.4	3.4	7.0	21.05
55	26.2	3.8	2.30	1.5	5.09	35.1	5.7	2.725	3.0	9.89	59.6	9.7	3.4	6.3	20.82
60	24.6	3.6	2.30	1.3	4.70	32.9	5.4	2.725	2.6	9.52	55.9	9.1	3.4	5.7	20.53
65	23.2	3.4	2.30	1.1	4.29	31.0	5.1	2.725	2.3	9.10	52.6	8.6	3.4	5.2	20.17
70	21.9	3.2	2.30	0.9	3.85	29.4	4.8	2.725	2.1	8.66	49.8	8.1	3.4	4.7	19.77
75	20.8	3.1	2.30	0.8	3.40	27.9	4.5	2.725	1.8	8.19	47.3	7.7	3.4	4.3	19.32
80	19.8	2.9	2.30	0.6	2.94	26.6	4.3	2.725	1.6	7.70	45.0	7.3	3.4	3.9	18.84
85	18.9	2.8	2.30	0.5	2.46	25.4	4.1	2.725	1.4	7.18	43.0	7.0	3.4	3.6	18.33
90	18.1	2.7	2.30	0.4	1.97	24.3	4.0	2.725	1.2	6.66	41.1	6.7	3.4	3.3	17.78
95	17.4	2.6	2.30	0.3	1.47	23.3	3.8	2.725	1.1	6.11	39.4	6.4	3.4	3.0	17.21
100	16.7	2.5	2.30	0.2	0.96	22.4	3.7	2.725	0.9	5.56	37.9	6.2	3.4	2.8	16.62
105	16.1	2.4	2.30	0.1	0.44	21.6	3.5	2.725	0.8	4.99	36.5	5.9	3.4	2.5	16.01
110	15.6	2.3	2.30	0.0	-0.09	20.8	3.4	2.725	0.7	4.41	35.2	5.7	3.4	2.3	15.38
115	15.0	2.2	2.30	-0.1	-0.62	20.1	3.3	2.725	0.6	3.82	34.0	5.5	3.4	2.1	14.73
120	14.6	2.1	2.30	-0.2	-1.16	19.5	3.2	2.725	0.4	3.22	32.9	5.4	3.4	2.0	14.07
Max =					6.49					10.91					21.21
Notes															

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, $I = A/(Tc+C)^{B}$

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-5 (2 Year, 5 Year and 100 Year Storms)

(dimmensionless)

C_{AVG} =

0.90 C_{AVG} = 1.00

Time Interval = (mins) 5 Drainage Area = 0.02826 (hectares)

				<i>(i, i,</i>)			<u> </u>		(1.1.)					<i>(1,1)</i>	
		ease Rate =		(L/sec)			ase Rate =	2.4479	(L/sec)			ase Rate =		(L/sec)	
		urn Period =	2	(years)			n Period =	5	(years)			n Period =		(years)	
	IDF Para	meters, A =		, B =			neters, A =	998.071	- '	0.814		,	1735.688	- '	
		(I = A	/(T _c +C)	, C =	6.199	()	$= A/(T_c+C)$, C =	6.053	(1	$= A/(T_c+C)$, C =	6.014
															1
	Rainfall		Release	Storage		Rainfall	Peak	Release	Storage		Rainfall	Peak	Release	Storage	1
Duration	Intensity, I	Peak Flow	Rate	Rate	Storage	Intensity,	Flow	Rate	Rate	Storage	Intensity, I	Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	I (mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	11.8	2.02	9.8	0.00	230.5	18.1	2.448	15.7	0.00	398.6	31.3	3.1	28.2	0.00
5	103.6	7.3	2.02	5.3	1.59	141.2	11.1	2.448	8.6	2.59	242.7	19.1	3.1	16.0	4.80
10	76.8	5.4	2.02	3.4	2.05	104.2	8.2	2.448	5.7	3.44	178.6	14.0	3.1	10.9	6.57
15	61.8	4.4	2.02	2.3	2.11	83.6	6.6	2.448	4.1	3.70	142.9	11.2	3.1	8.1	7.33
20	52.0	3.7	2.02	1.7	1.99	70.3	5.5	2.448	3.1	3.69	120.0	9.4	3.1	6.3	7.61
25	45.2	3.2	2.02	1.2	1.76	60.9	4.8	2.448	2.3	3.50	103.8	8.2	3.1	5.1	7.62
30	40.0	2.8	2.02	0.8	1.46	53.9	4.2	2.448	1.8	3.22	91.9	7.2	3.1	4.1	7.45
35	36.1	2.5	2.02	0.5	1.11	48.5	3.8	2.448	1.4	2.86	82.6	6.5	3.1	3.4	7.16
40	32.9	2.3	2.02	0.3	0.73	44.2	3.5	2.448	1.0	2.46	75.1	5.9	3.1	2.8	6.78
45	30.2	2.1	2.02	0.1	0.32	40.6	3.2	2.448	0.7	2.01	69.1	5.4	3.1	2.3	6.33
50	28.0	2.0	2.02	0.0	-0.11	37.7	3.0	2.448	0.5	1.53	64.0	5.0	3.1	1.9	5.84
55	26.2	1.9	2.02	-0.2	-0.56	35.1	2.8	2.448	0.3	1.03	59.6	4.7	3.1	1.6	5.30
60	24.6	1.7	2.02	-0.3	-1.02	32.9	2.6	2.448	0.1	0.50	55.9	4.4	3.1	1.3	4.72
65	23.2	1.6	2.02	-0.4	-1.49	31.0	2.4	2.448	0.0	-0.04	52.6	4.1	3.1	1.1	4.12
70	21.9	1.5	2.02	-0.5	-1.97	29.4	2.3	2.448	-0.1	-0.59	49.8	3.9	3.1	0.8	3.50
75	20.8	1.5	2.02	-0.5	-2.46	27.9	2.2	2.448	-0.3	-1.16	47.3	3.7	3.1	0.6	2.85
80	19.8	1.4	2.02	-0.6	-2.96	26.6	2.1	2.448	-0.4	-1.73	45.0	3.5	3.1	0.5	2.19
85	18.9	1.3	2.02	-0.7	-3.47	25.4	2.0	2.448	-0.5	-2.32	43.0	3.4	3.1	0.3	1.51
90	18.1	1.3	2.02	-0.7	-3.98	24.3	1.9	2.448	-0.5	-2.92	41.1	3.2	3.1	0.2	0.81
95	17.4	1.2	2.02	-0.8	-4.49	23.3	1.8	2.448	-0.6	-3.52	39.4	3.1	3.1	0.0	0.11
100	16.7	1.2	2.02	-0.8	-5.01	22.4	1.8	2.448	-0.7	-4.13	37.9	3.0	3.1	-0.1	-0.61
105	16.1	1.1	2.02	-0.9	-5.53	21.6	1.7	2.448	-0.8	-4.74	36.5	2.9	3.1	-0.2	-1.33
110	15.6	1.1	2.02	-0.9	-6.06	20.8	1.6	2.448	-0.8	-5.36	35.2	2.8	3.1	-0.3	-2.07
115	15.0	1.1	2.02	-1.0	-6.59	20.1	1.6	2.448	-0.9	-5.98	34.0	2.7	3.1	-0.4	-2.81
120	14.6	1.0	2.02	-1.0	-7.12	19.5	1.5	2.448	-0.9	-6.61	32.9	2.6	3.1	-0.5	-3.56
Max =					2.11					3.70					7.62
Notes															
1) Peak fl) Peak flow is equal to the product of 2.78 x C x I x A														

2) Rainfall Intensity, $I = A/(Tc+C)^{B}$

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-6 (2 Year, 5 Year and 100 Year Storms)

C_{AVG} = 0.90 (dimmensionless)

 $C_{AVG} = 1.00$

Time Interval =	5	(mins)
Drainage Area =	0.04487	(hectares)

	Re	ease Rate =	3.066	(L/sec)		Rele	ase Rate =	3.6718	(L/sec)		Relea	ase Rate =	4.6561	(L/sec)	
	Retu	urn Period =	2	(years)		Retur	n Period =	5	(years)		Retur	n Period =	100	(years)	
	IDF Para	meters, A =	732.951	, B =	0.810	IDF Param	neters, A =	998.071	, B =	0.814	IDF Param	neters, A =	1735.688	, B =	0.820
		(I = A	/(T _c +C)	, C =	6.199	(1	$= A/(T_c+C)$, C =	6.053	(1	$= A/(T_c+C)$, C =	6.014
	D · C II						. .								
D	Rainfall		Release	Storage	Storage	Rainfall	Peak	Release	Storage	Storage	Rainfall	Peak	Release	Storage	Storage
Duration	Intensity, I	Peak Flow	Rate	Rate	(m ³)	Intensity,	Flow	Rate	Rate	(m ³)	Intensity, I	Flow	Rate	Rate	(m ³)
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)		I (mm/hr)	(L/sec)	(L/sec)	(L/sec)		(mm/hr)	(L/sec)	(L/sec)	(L/sec)	
0	167.2	18.8	3.07	15.7	0.00	230.5	28.8	3.672	25.1	0.00	398.6	49.7	4.7	45.1	0.00
5	103.6	11.6	3.07	8.6	2.57	141.2	17.6	3.672	13.9	4.18	242.7	30.3	4.7	25.6	7.69
10	76.8	8.6	3.07	5.6	3.33	104.2	13.0	3.672	9.3	5.60	178.6	22.3	4.7	17.6	10.57
15	61.8	6.9	3.07	3.9	3.48	83.6	10.4	3.672	6.8	6.08	142.9	17.8	4.7	13.2	11.85
20	52.0	5.8	3.07	2.8	3.33	70.3	8.8	3.672	5.1	6.11	120.0	15.0	4.7	10.3	12.37
25	45.2	5.1	3.07	2.0	3.01	60.9	7.6	3.672	3.9	5.89	103.8	13.0	4.7	8.3	12.45
30	40.0	4.5	3.07	1.4	2.57	53.9	6.7	3.672	3.1	5.50	91.9	11.5	4.7	6.8	12.25
35	36.1	4.0	3.07	1.0	2.06	48.5	6.1	3.672	2.4	5.00	82.6	10.3	4.7	5.6	11.86
40	32.9	3.7	3.07	0.6	1.50	44.2	5.5	3.672	1.8	4.42	75.1	9.4	4.7	4.7	11.32
45	30.2	3.4	3.07	0.3	0.89	40.6	5.1	3.672	1.4	3.77	69.1	8.6	4.7	4.0	10.69
50	28.0	3.1	3.07	0.1	0.25	37.7	4.7	3.672	1.0	3.08	64.0	8.0	4.7	3.3	9.97
55	26.2	2.9	3.07	-0.1	-0.42	35.1	4.4	3.672	0.7	2.34	59.6	7.4	4.7	2.8	9.18
60	24.6	2.8	3.07	-0.3	-1.11	32.9	4.1	3.672	0.4	1.58	55.9	7.0	4.7	2.3	8.34
65	23.2	2.6	3.07	-0.5	-1.82	31.0	3.9	3.672	0.2	0.78	52.6	6.6	4.7	1.9	7.45
70	21.9	2.5	3.07	-0.6	-2.55	29.4	3.7	3.672	0.0	-0.03	49.8	6.2	4.7	1.6	6.53
75	20.8	2.3	3.07	-0.7	-3.28	27.9	3.5	3.672	-0.2	-0.87	47.3	5.9	4.7	1.2	5.58
80	19.8	2.2	3.07	-0.8	-4.03	26.6	3.3	3.672	-0.4	-1.72	45.0	5.6	4.7	1.0	4.59
85	18.9	2.1	3.07	-0.9	-4.79	25.4	3.2	3.672	-0.5	-2.59	43.0	5.4	4.7	0.7	3.58
90	18.1	2.0	3.07	-1.0	-5.56	24.3	3.0	3.672	-0.6	-3.47	41.1	5.1	4.7	0.5	2.55
95	17.4	2.0	3.07	-1.1	-6.33	23.3	2.9	3.672	-0.8	-4.36	39.4	4.9	4.7	0.3	1.50
100	16.7	1.9	3.07	-1.2	-7.12	22.4	2.8	3.672	-0.9	-5.26	37.9	4.7	4.7	0.1	0.43
105	16.1	1.8	3.07	-1.3	-7.91	21.6	2.7	3.672	-1.0	-6.17	36.5	4.6	4.7	-0.1	-0.65
110	15.6	1.7	3.07	-1.3	-8.70	20.8	2.6	3.672	-1.1	-7.09	35.2	4.4	4.7	-0.3	-1.75
115	15.0	1.7	3.07	-1.4	-9.50	20.1	2.5	3.672	-1.2	-8.02	34.0	4.2	4.7	-0.4	-2.86
120	14.6	1.6	3.07	-1.4	-10.31	19.5	2.4	3.672	-1.2	-8.95	32.9	4.1	4.7	-0.6	-3.98
Max =					3.48					6.11					12.45
2) Rainfall 3) Release	ow is equal t Intensity, I = Rate = Min e Rate = Peal	• A/(Tc+C) ^B (Release Rat	e, Peak Flo												
,															

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-7 (2 Year, 5 Year and 100 Year Storms)

(dimmensionless)

C_{AVG} =

0.90 C_{AVG} = 1.00

(mins) Time Interval = 5 Drainage Area = 0.05524 (hectares)

	Rel	ease Rate =	3.180	(L/sec)		Rele	ase Rate =	3.8233	(L/sec)		Rele	ase Rate =	4.8075	(L/sec)	
		Irn Period =	2	(years)			n Period =	5	(years)			n Period =		(years)	
		meters, A =			0.810		neters, A =		, ,	0.814			1735.688		0.820
		,	$/(T_c+C)$		6.199		$= A/(T_c+C)$			6.053		$= A/(T_c+C)$			6.014
		, ,		,,,	0.200	```	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, .		,	77 - 7		,,,	
	Rainfall		Release	Storage		Dainfall	Peak	Release	Ctorage		Rainfall	Peak	Delegeo	Storage	
Duration		Peak Flow	Rate	Storage Rate	Storage	Rainfall Intensity,	Flow	Rate	Storage Rate	Storage	Intensity, I	Flow	Release Rate	Storage Rate	Storage
Duration					(m ³)		-			(m ³)		-			(m ³)
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec) 19.9		I (mm/hr)	(L/sec)	(L/sec)	(L/sec)		(mm/hr)	(L/sec)	(L/sec)	(L/sec) 56.4	
0	167.2	23.1	3.18		0.00	230.5	35.4	3.823	31.6	0.00	398.6	61.2	4.8		0.00
5	103.6	14.3	3.18	11.1	3.34	141.2	21.7	3.823	17.9	5.36	242.7	37.3	4.8	32.5	9.74
10	76.8	10.6	3.18	7.4	4.46	104.2	16.0	3.823	12.2	7.31	178.6	27.4	4.8	22.6	13.57
15	61.8	8.5	3.18	5.4	4.82	83.6	12.8	3.823	9.0	8.11	142.9	21.9	4.8	17.1	15.42
20	52.0	7.2	3.18	4.0	4.81	70.3	10.8	3.823	7.0	8.36	120.0	18.4	4.8	13.6	16.33
25	45.2	6.2	3.18	3.1	4.59	60.9	9.4	3.823	5.5	8.29	103.8	15.9	4.8	11.1	16.71
30	40.0	5.5	3.18	2.4	4.24	53.9	8.3	3.823	4.5	8.02	91.9	14.1	4.8	9.3	16.74
35	36.1	5.0	3.18	1.8	3.79	48.5	7.5	3.823	3.6	7.62	82.6	12.7	4.8	7.9	16.53
40	32.9	4.5	3.18	1.4	3.27	44.2	6.8	3.823	3.0	7.11	75.1	11.5	4.8	6.7	16.16
45	30.2	4.2	3.18	1.0	2.70	40.6	6.2	3.823	2.4	6.52	69.1	10.6	4.8	5.8	15.65
50	28.0	3.9	3.18	0.7	2.09	37.7	5.8	3.823	2.0	5.88	64.0	9.8	4.8	5.0	15.04
55	26.2	3.6	3.18	0.4	1.44	35.1	5.4	3.823	1.6	5.18	59.6	9.2	4.8	4.3	14.35
60	24.6	3.4	3.18	0.2	0.77	32.9	5.1	3.823	1.2	4.45	55.9	8.6	4.8	3.8	13.59
65	23.2	3.2	3.18	0.0	0.08	31.0	4.8	3.823	0.9	3.68	52.6	8.1	4.8	3.3	12.78
70	21.9	3.0	3.18	-0.2	-0.64	29.4	4.5	3.823	0.7	2.89	49.8	7.6	4.8	2.8	11.92
75	20.8	2.9	3.18	-0.3	-1.36	27.9	4.3	3.823	0.5	2.07	47.3	7.3	4.8	2.4	11.02
80	19.8	2.7	3.18	-0.4	-2.11	26.6	4.1	3.823	0.3	1.23	45.0	6.9	4.8	2.1	10.09
85	18.9	2.6	3.18	-0.6	-2.86	25.4	3.9	3.823	0.1	0.37	43.0	6.6	4.8	1.8	9.12
90	18.1	2.5	3.18	-0.7	-3.63	24.3	3.7	3.823	-0.1	-0.50	41.1	6.3	4.8	1.5	8.13
95	17.4	2.4	3.18	-0.8	-4.41	23.3	3.6	3.823	-0.2	-1.39	39.4	6.1	4.8	1.2	7.11
100	16.7	2.3	3.18	-0.9	-5.19	22.4	3.4	3.823	-0.4	-2.29	37.9	5.8	4.8	1.0	6.08
105	16.1	2.2	3.18	-0.9	-5.98	21.6	3.3	3.823	-0.5	-3.21	36.5	5.6	4.8	0.8	5.02
110	15.6	2.2	3.18	-1.0	-6.78	20.8	3.2	3.823	-0.6	-4.13	35.2	5.4	4.8	0.6	3.95
115	15.0	2.1	3.18	-1.1	-7.59	20.1	3.1	3.823	-0.7	-5.06	34.0	5.2	4.8	0.4	2.86
120	14.6	2.0	3.18	-1.2	-8.40	19.5	3.0	3.823	-0.8	-6.00	32.9	5.1	4.8	0.2	1.76
Max =					4.82					8.36					16.74
Notes															
1) Peak fl	ow is equal t	o the produc	t of 2.78 x	CxIxA											
2) Rainfall	Intensity, I =	A/(Tc+C) ^B													
3) Release	Rate = Min	Release Rat	e, Peak Flo	w)											

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-8 (2 Year, 5 Year and 100 Year Storms)

(dimmensionless)

C_{AVG} =

0.90 C_{AVG} = 1.00

Time Interval = (mins) 5 Drainage Area = 0.04889 (hectares)

	Rel	ease Rate =	3.104	(L/sec)		Rele	ase Rate =	3.7097	(L/sec)		Rele	ase Rate =	4.7318	(L/sec)	
		Irn Period =	2	(years)			n Period =	5	(years)			n Period =		(years)	
		meters, A =			0.810		neters, A =		, ,	0.814			1735.688		0.820
			/(T _c +C)		6.199		$= A/(T_c+C)$	550.071		6.053		$= A/(T_c+C)$	1755.000		6.014
		(/(,	0.155	, .	.,(,		, c =	0.000	(.	.,(, e =	0.014
	Rainfall		Delesse	Charles		Deinfell	Peak	Delesse	Charman		Rainfall	Deals	Delesse	Charman	
Duration		Peak Flow	Release Rate	Storage Rate	Storage	Rainfall	Flow	Release Rate	Storage Rate	Storage		Peak Flow	Release Rate	Storage Rate	Storage
Duration					(m ³)	Intensity,				(m^3)	Intensity, I	-	(L/sec)	(L/sec)	(m^3)
(min) 0	(mm/hr) 167.2	(L/sec) 20.5	(L/sec) 3.10	(L/sec) 17.4		I (mm/hr)	(L/sec) 31.3	(L/sec) 3.710	(L/sec) 27.6	. ,	(mm/hr)	(L/sec) 54.2	(L/sec) 4.7	(L/sec) 49.4	. ,
-					0.00	230.5				0.00	398.6				0.00
5	103.6	12.7	3.10	9.6	2.87	141.2	19.2	3.710	15.5	4.64	242.7	33.0	4.7	28.3	8.48
10	76.8	9.4	3.10	6.3	3.77	104.2	14.2	3.710	10.5	6.27	178.6	24.3	4.7	19.5	11.72
15	61.8	7.6	3.10	4.5	4.01	83.6	11.4	3.710	7.6	6.88	142.9	19.4	4.7	14.7	13.22
20	52.0	6.4	3.10	3.3	3.91	70.3	9.5	3.710	5.8	7.01	120.0	16.3	4.7	11.6	13.89
25	45.2	5.5	3.10	2.4	3.63	60.9	8.3	3.710	4.6	6.85	103.8	14.1	4.7	9.4	14.07
30	40.0	4.9	3.10	1.8	3.23	53.9	7.3	3.710	3.6	6.52	91.9	12.5	4.7	7.8	13.96
35	36.1	4.4	3.10	1.3	2.74	48.5	6.6	3.710	2.9	6.06	82.6	11.2	4.7	6.5	13.63
40	32.9	4.0	3.10	0.9	2.20	44.2	6.0	3.710	2.3	5.51	75.1	10.2	4.7	5.5	13.16
45	30.2	3.7	3.10	0.6	1.61	40.6	5.5	3.710	1.8	4.89	69.1	9.4	4.7	4.7	12.56
50	28.0	3.4	3.10	0.3	0.98	37.7	5.1	3.710	1.4	4.22	64.0	8.7	4.7	4.0	11.88
55	26.2	3.2	3.10	0.1	0.32	35.1	4.8	3.710	1.1	3.51	59.6	8.1	4.7	3.4	11.13
60	24.6	3.0	3.10	-0.1	-0.36	32.9	4.5	3.710	0.8	2.76	55.9	7.6	4.7	2.9	10.31
65	23.2	2.8	3.10	-0.3	-1.06	31.0	4.2	3.710	0.5	1.99	52.6	7.2	4.7	2.4	9.45
70	21.9	2.7	3.10	-0.4	-1.78	29.4	4.0	3.710	0.3	1.19	49.8	6.8	4.7	2.0	8.55
75	20.8	2.5	3.10	-0.6	-2.51	27.9	3.8	3.710	0.1	0.36	47.3	6.4	4.7	1.7	7.61
80	19.8	2.4	3.10	-0.7	-3.26	26.6	3.6	3.710	-0.1	-0.48	45.0	6.1	4.7	1.4	6.64
85	18.9	2.3	3.10	-0.8	-4.01	25.4	3.4	3.710	-0.3	-1.33	43.0	5.8	4.7	1.1	5.64
90	18.1	2.2	3.10	-0.9	-4.78	24.3	3.3	3.710	-0.4	-2.21	41.1	5.6	4.7	0.9	4.62
95	17.4	2.1	3.10	-1.0	-5.55	23.3	3.2	3.710	-0.5	-3.09	39.4	5.4	4.7	0.6	3.58
100	16.7	2.0	3.10	-1.1	-6.33	22.4	3.0	3.710	-0.7	-3.99	37.9	5.2	4.7	0.4	2.52
105	16.1	2.0	3.10	-1.1	-7.12	21.6	2.9	3.710	-0.8	-4.89	36.5	5.0	4.7	0.2	1.44
110	15.6	1.9	3.10	-1.2	-7.92	20.8	2.8	3.710	-0.9	-5.81	35.2	4.8	4.7	0.1	0.35
115	15.0	1.8	3.10	-1.3	-8.72	20.1	2.7	3.710	-1.0	-6.73	34.0	4.6	4.7	-0.1	-0.76
120	14.6	1.8	3.10	-1.3	-9.52	19.5	2.6	3.710	-1.1	-7.66	32.9	4.5	4.7	-0.3	-1.88
Max =					4.01					7.01					14.07
Notes															
1) Peak fl	ow is equal t	o the produc	ct of 2.78 >	CXIXA											
2) Rainfall	Intensity, I =	A/(Tc+C) ^B													
	Rate = Min I		o Dook Flo	() ()											

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-9 (2 Year, 5 Year and 100 Year Storms)

(dimmensionless)

C_{AVG} = 0.90

C_{AVG} = 1.00

Time Interval =5(mins)Drainage Area =0.04248(hectares)

	Re	ease Rate =	3.028	(L/sec)		Rele	ase Rate =	3.6340	(L/sec)		Rele	ase Rate =	4.6561	(L/sec)	
		urn Period =	2	(years)			n Period =	5	(years)			n Period =		(years)	
		meters, A =			0.810		neters, A =		_(years) , B =	0.814			1735.688	, B =	0.820
		-	/(T _c +C)		6.199		$= A/(T_c+C)$	550.071	_ '	6.053		$= A/(T_c+C)$	1,00.000	, C =	
				,,,	0.200	```	7((- 7		, .		,	7, (,		,,,	
	Rainfall		Release	Storage		Rainfall	Peak	Release	Storago		Rainfall	Peak	Release	Storago	
Duration	Intensity, I	Peak Flow	Rate	Rate	Storage	Intensity,	Flow	Rate	Storage Rate	Storage	Intensity, I	Flow	Rate	Storage Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m^3)	I (mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	17.8	3.03	14.7	0.00	230.5	27.2	3.634	23.6	0.00	398.6	47.1	4.7	42.4	0.00
5	107.2	17.8	3.03	8.0	2.39	141.2	16.7	3.634	13.0	3.91	242.7	28.7	4.7	24.0	7.20
10	76.8	8.2	3.03	5.1	3.08	104.2	10.7	3.634	8.7	5.20	178.6	20.7	4.7	16.4	9.86
15	61.8	6.6	3.03	3.5	3.18	83.6	9.9	3.634	6.2	5.61	142.9	16.9	4.7	12.2	11.00
20	52.0	5.5	3.03	2.5	3.00	70.3	8.3	3.634	4.7	5.59	142.5	14.2	4.7	9.5	11.00
25	45.2	4.8	3.03	1.8	2.66	60.9	7.2	3.634	3.6	5.34	103.8	14.2	4.7	7.6	11.41
30	40.0	4.3	3.03	1.3	2.00	53.9	6.4	3.634	2.7	4.92	91.9	10.8	4.7	6.2	11.41
35	36.1	3.8	3.03	0.8	1.69	48.5	5.7	3.634	2.1	4.40	82.6	9.8	4.7	5.1	10.70
40	32.9	3.5	3.03	0.5	1.05	44.2	5.2	3.634	1.6	3.80	75.1	8.9	4.7	4.2	10.12
45	30.2	3.2	3.03	0.2	0.50	40.6	4.8	3.634	1.2	3.14	69.1	8.2	4.7	3.5	9.45
50	28.0	3.0	3.03	0.0	-0.14	37.7	4.4	3.634	0.8	2.44	64.0	7.6	4.7	2.9	8.69
55	26.2	2.8	3.03	-0.2	-0.81	35.1	4.1	3.634	0.5	1.70	59.6	7.0	4.7	2.4	7.87
60	24.6	2.6	3.03	-0.4	-1.51	32.9	3.9	3.634	0.3	0.92	55.9	6.6	4.7	1.9	7.00
65	23.2	2.5	3.03	-0.6	-2.21	31.0	3.7	3.634	0.0	0.12	52.6	6.2	4.7	1.6	6.09
70	21.9	2.3	3.03	-0.7	-2.94	29.4	3.5	3.634	-0.2	-0.69	49.8	5.9	4.7	1.2	5.14
75	20.8	2.2	3.03	-0.8	-3.67	27.9	3.3	3.634	-0.3	-1.53	47.3	5.6	4.7	0.9	4.16
80	19.8	2.1	3.03	-0.9	-4.42	26.6	3.1	3.634	-0.5	-2.39	45.0	5.3	4.7	0.7	3.15
85	18.9	2.0	3.03	-1.0	-5.18	25.4	3.0	3.634	-0.6	-3.25	43.0	5.1	4.7	0.4	2.12
90	18.1	1.9	3.03	-1.1	-5.94	24.3	2.9	3.634	-0.8	-4.14	41.1	4.9	4.7	0.2	1.07
95	17.4	1.9	3.03	-1.2	-6.71	23.3	2.8	3.634	-0.9	-5.03	39.4	4.7	4.7	0.0	0.00
100	16.7	1.8	3.03	-1.2	-7.49	22.4	2.6	3.634	-1.0	-5.93	37.9	4.5	4.7	-0.2	-1.08
105	16.1	1.7	3.03	-1.3	-8.28	21.6	2.5	3.634	-1.1	-6.84	36.5	4.3	4.7	-0.3	-2.18
110	15.6	1.7	3.03	-1.4	-9.07	20.8	2.5	3.634	-1.2	-7.76	35.2	4.2	4.7	-0.5	-3.29
115	15.0	1.6	3.03	-1.4	-9.86	20.1	2.4	3.634	-1.3	-8.68	34.0	4.0	4.7	-0.6	-4.42
120	14.6	1.5	3.03	-1.5	-10.66	19.5	2.3	3.634	-1.3	-9.61	32.9	3.9	4.7	-0.8	-5.55
Max =					3.18					5.61					11.41
Notes															
1) Peak fl	ow is equal t	o the produ	ct of 2.78 >	(C x I x A											
2) Rainfal	l Intensity, I =	A/(Tc+C) ^B													
2) Poloace	Pato - Min	(Poloaco Pat													

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-10 (2 Year, 5 Year and 100 Year Storms)

(dimmensionless)

C_{AVG} = 0.90

C_{AVG} = 1.00

Time Interval =5(mins)Drainage Area =0.12339(hectares)

	Re	ease Rate =	6.511	(L/sec)		Rele	ase Rate =	7.7979	(L/sec)		Rele	ase Rate =	9.7664	(L/sec)	
		Irn Period =	2	(years)			n Period =	5	(years)			n Period =		(years)	
		meters, A =			0.810		neters, A =		, ,	0.814			1735.688	, B =	0.820
			/(T _c +C)		6.199		$= A/(T_c+C)$	550.071		6.053		$= A/(T_c+C)$	1755.000	, D = , C =	
		(/(,	0.155	(,,	.,()		, c -	0.055	\.	1, (1, 2, 3,		,	0.014
	D - 1 - C - II		Dalaasa			D.1.6.1	Dual	Delesse			Del cul	Deal	Duluuu		
	Rainfall		Release	Storage	Storage	Rainfall	Peak	Release	Storage	Storage	Rainfall	Peak	Release	Storage	Storage
Duration	Intensity, I	Peak Flow	Rate	Rate	(m ³)	Intensity,	Flow	Rate	Rate		Intensity, I	Flow	Rate	Rate	-
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)		I (mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	51.6	6.51	45.1	0.00	230.5	79.1	7.798	71.3	0.00	398.6	136.7	9.8	127.0	0.00
5	103.6	32.0	6.51	25.5	7.64	141.2	48.4	7.798	40.6	12.19	242.7	83.3	9.8	73.5	22.05
10	76.8	23.7	6.51	17.2	10.32	104.2	35.7	7.798	27.9	16.77	178.6	61.3	9.8	51.5	30.89
15	61.8	19.1	6.51	12.6	11.30	83.6	28.7	7.798	20.9	18.78	142.9	49.0	9.8	39.3	35.33
20	52.0	16.1	6.51	9.6	11.46	70.3	24.1	7.798	16.3	19.56	120.0	41.1	9.8	31.4	37.66
25	45.2	13.9	6.51	7.4	11.15	60.9	20.9	7.798	13.1	19.64	103.8	35.6	9.8	25.9	38.78
30	40.0	12.4	6.51	5.9	10.53	53.9	18.5	7.798	10.7	19.26	91.9	31.5	9.8	21.7	39.14
35	36.1	11.1	6.51	4.6	9.71	48.5	16.6	7.798	8.8	18.57	82.6	28.3	9.8	18.6	38.98
40	32.9	10.1	6.51	3.6	8.72	44.2	15.2	7.798	7.4	17.66	75.1	25.8	9.8	16.0	38.43
45	30.2	9.3	6.51	2.8	7.63	40.6	13.9	7.798	6.1	16.57	69.1	23.7	9.8	13.9	37.58
50	28.0	8.7	6.51	2.1	6.44	37.7	12.9	7.798	5.1	15.35	64.0	21.9	9.8	12.2	36.51
55	26.2	8.1	6.51	1.6	5.18	35.1	12.0	7.798	4.3	14.03	59.6	20.5	9.8	10.7	35.26
60	24.6	7.6	6.51	1.1	3.85	32.9	11.3	7.798	3.5	12.61	55.9	19.2	9.8	9.4	33.87
65	23.2	7.1	6.51	0.6	2.48	31.0	10.6	7.798	2.9	11.12	52.6	18.1	9.8	8.3	32.34
70	21.9	6.8	6.51	0.3	1.07	29.4	10.1	7.798	2.3	9.57	49.8	17.1	9.8	7.3	30.71
75	20.8	6.4	6.51	-0.1	-0.38	27.9	9.6	7.798	1.8	7.96	47.3	16.2	9.8	6.4	29.00
80	19.8	6.1	6.51	-0.4	-1.87	26.6	9.1	7.798	1.3	6.31	45.0	15.4	9.8	5.7	27.20
85	18.9	5.8	6.51	-0.7	-3.38	25.4	8.7	7.798	0.9	4.61	43.0	14.7	9.8	5.0	25.34
90	18.1	5.6	6.51	-0.9	-4.91	24.3	8.3	7.798	0.5	2.88	41.1	14.1	9.8	4.3	23.41
95	17.4	5.4	6.51	-1.1	-6.47	23.3	8.0	7.798	0.2	1.12	39.4	13.5	9.8	3.8	21.44
100	16.7	5.2	6.51	-1.3	-8.05	22.4	7.7	7.798	-0.1	-0.67	37.9	13.0	9.8	3.2	19.41
105	16.1	5.0	6.51	-1.5	-9.64	21.6	7.4	7.798	-0.4	-2.49	36.5	12.5	9.8	2.8	17.35
110	15.6	4.8	6.51	-1.7	-11.25	20.8	7.1	7.798	-0.7	-4.32	35.2	12.1	9.8	2.3	15.24
115	15.0	4.6	6.51	-1.9	-12.87	20.1	6.9	7.798	-0.9	-6.19	34.0	11.7	9.8	1.9	13.10
120	14.6	4.5	6.51	-2.0	-14.51	19.5	6.7	7.798	-1.1	-8.06	32.9	11.3	9.8	1.5	10.93
Max =					11.46					19.64					39.14
Notes											-				
1) Peak fl	ow is equal t	o the produc	ct of 2.78 x	CXIXA											
	l Intensity, I =														
		· · · · · ·													

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-11 (2 Year, 5 Year and 100 Year Storms)

(dimmensionless)

C_{AVG} = 0.90

C_{AVG} = 1.00

Time Interval =5(mins)Drainage Area =0.03940(hectares)

	Re	ease Rate =	2.953	(L/sec)		Rele	ase Rate =	3.5961	(L/sec)		Rele	ase Rate =	4.5803	(L/sec)	
	Retu	ırn Period =	2	(years)		Retur	n Period =	5	(years)		Retur	n Period =	100	(years)	
	IDF Para	meters, A =	732.951	, B =	0.810	IDF Param	neters, A =	998.071	, B =	0.814	IDF Param	neters, A =	1735.688	, B =	0.820
		(I = A	/(T _c +C)	, C =	6.199	(1	$= A/(T_c+C)$, C =	6.053	(1	$= A/(T_c+C)$, C =	6.014
	Rainfall		Release	Storage		Rainfall	Peak	Release	Storage		Rainfall	Peak	Release	Storage	
Duration	Intensity, I	Peak Flow	Rate	Rate	Storage	Intensity,	Flow	Rate	Rate	Storage	Intensity, I	Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	I (mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	16.5	2.95	13.5	0.00	230.5	25.2	3.596	21.7	0.00	398.6	43.7	4.6	39.1	0.00
5	103.6	10.2	2.95	7.3	2.18	141.2	15.5	3.596	11.9	3.56	242.7	26.6	4.6	22.0	6.60
10	76.8	7.6	2.95	4.6	2.77	104.2	11.4	3.596	7.8	4.69	178.6	19.6	4.6	15.0	8.99
15	61.8	6.1	2.95	3.1	2.82	83.6	9.2	3.596	5.6	5.00	142.9	15.7	4.6	11.1	9.96
20	52.0	5.1	2.95	2.2	2.61	70.3	7.7	3.596	4.1	4.92	120.0	13.1	4.6	8.6	10.27
25	45.2	4.5	2.95	1.5	2.25	60.9	6.7	3.596	3.1	4.61	103.8	11.4	4.6	6.8	10.19
30	40.0	3.9	2.95	1.0	1.79	53.9	5.9	3.596	2.3	4.16	91.9	10.1	4.6	5.5	9.87
35	36.1	3.6	2.95	0.6	1.26	48.5	5.3	3.596	1.7	3.61	82.6	9.0	4.6	4.5	9.38
40	32.9	3.2	2.95	0.3	0.69	44.2	4.8	3.596	1.2	2.98	75.1	8.2	4.6	3.7	8.76
45	30.2	3.0	2.95	0.0	0.08	40.6	4.5	3.596	0.9	2.31	69.1	7.6	4.6	3.0	8.05
50	28.0	2.8	2.95	-0.2	-0.56	37.7	4.1	3.596	0.5	1.58	64.0	7.0	4.6	2.4	7.28
55	26.2	2.6	2.95	-0.4	-1.23	35.1	3.8	3.596	0.3	0.83	59.6	6.5	4.6	2.0	6.44
60	24.6	2.4	2.95	-0.5	-1.91	32.9	3.6	3.596	0.0	0.04	55.9	6.1	4.6	1.5	5.55
65	23.2	2.3	2.95	-0.7	-2.61	31.0	3.4	3.596	-0.2	-0.76	52.6	5.8	4.6	1.2	4.63
70	21.9	2.2	2.95	-0.8	-3.33	29.4	3.2	3.596	-0.4	-1.59	49.8	5.5	4.6	0.9	3.67
75	20.8	2.1	2.95	-0.9	-4.05	27.9	3.1	3.596	-0.5	-2.44	47.3	5.2	4.6	0.6	2.68
80	19.8	2.0	2.95	-1.0	-4.79	26.6	2.9	3.596	-0.7	-3.30	45.0	4.9	4.6	0.3	1.67
85	18.9	1.9	2.95	-1.1	-5.53	25.4	2.8	3.596	-0.8	-4.17	43.0	4.7	4.6	0.1	0.64
90	18.1	1.8	2.95	-1.2	-6.29	24.3	2.7	3.596	-0.9	-5.05	41.1	4.5	4.6	-0.1	-0.42
95	17.4	1.7	2.95	-1.2	-7.04	23.3	2.6	3.596	-1.0	-5.95	39.4	4.3	4.6	-0.3	-1.49
100	16.7	1.7	2.95	-1.3	-7.81	22.4	2.5	3.596	-1.1	-6.85	37.9	4.2	4.6	-0.4	-2.57
105	16.1	1.6	2.95	-1.4	-8.58	21.6	2.4	3.596	-1.2	-7.76	36.5	4.0	4.6	-0.6	-3.67
110	15.6	1.5	2.95	-1.4	-9.36	20.8	2.3	3.596	-1.3	-8.68	35.2	3.9	4.6	-0.7	-4.78
115	15.0	1.5	2.95	-1.5	-10.14	20.1	2.2	3.596	-1.4	-9.61	34.0	3.7	4.6	-0.9	-5.90
120	14.6	1.4	2.95	-1.5	-10.92	19.5	2.1	3.596	-1.5	-10.54	32.9	3.6	4.6	-1.0	-7.04
Max =					2.82					5.00					10.27
Notes															
	ow is equal t		ct of 2.78 >	CXIXA											
2) Rainfal	l Intensity, I =	A/(Tc+C) ^B													
3) Release	Rate = Min	Release Rat	e Peak Flo	(אור											

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-12 (2 Year, 5 Year and 100 Year Storms)

(dimmensionless)

C_{AVG} =

0.90 C_{AVG} = 1.00

Time Interval = (mins) 5 Drainage Area = 0.02554 (hectares)

	Re	ease Rate =	1.968	(L/sec)		Relea	ase Rate =	2.3974	(L/sec)		Rele	ase Rate =	3.0283	(L/sec)	
		urn Period =	2	(years)			n Period =	5	(years)			n Period =		(years)	
	IDF Para	meters, A =	732.951	, ,	0.810	IDF Param	neters, A =	998.071	, _ ,	0.814	IDF Param	neters. A =	1735.688	, B =	0.820
		,	/(T _c +C)	- '	6.199		$= A/(T_c+C)$		- '	6.053		$= A/(T_c+C)$			6.014
	Rainfall		Release	Storage		Rainfall	Peak	Release	Storage		Rainfall	Peak	Release	Storage	
Duration	Intensity, I	Peak Flow	Rate	Rate	Storage	Intensity,	Flow	Rate	Rate	Storage	Intensity, I	Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	I (mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	10.7	1.97	8.7	0.00	230.5	16.4	2.397	14.0	0.00	398.6	28.3	3.0	25.3	0.00
5	103.6	6.6	1.97	4.6	1.39	141.2	10.0	2.397	7.6	2.29	242.7	17.2	3.0	14.2	4.26
10	76.8	4.9	1.97	2.9	1.76	104.2	7.4	2.397	5.0	3.00	178.6	12.7	3.0	9.6	5.79
15	61.8	3.9	1.97	2.0	1.78	83.6	5.9	2.397	3.5	3.18	142.9	10.1	3.0	7.1	6.40
20	52.0	3.3	1.97	1.4	1.63	70.3	5.0	2.397	2.6	3.11	120.0	8.5	3.0	5.5	6.59
25	45.2	2.9	1.97	0.9	1.38	60.9	4.3	2.397	1.9	2.89	103.8	7.4	3.0	4.3	6.52
30	40.0	2.6	1.97	0.6	1.06	53.9	3.8	2.397	1.4	2.58	91.9	6.5	3.0	3.5	6.29
35	36.1	2.3	1.97	0.3	0.70	48.5	3.4	2.397	1.0	2.20	82.6	5.9	3.0	2.8	5.95
40	32.9	2.1	1.97	0.1	0.32	44.2	3.1	2.397	0.7	1.77	75.1	5.3	3.0	2.3	5.54
45	30.2	1.9	1.97	0.0	-0.10	40.6	2.9	2.397	0.5	1.31	69.1	4.9	3.0	1.9	5.06
50	28.0	1.8	1.97	-0.2	-0.53	37.7	2.7	2.397	0.3	0.83	64.0	4.5	3.0	1.5	4.54
55	26.2	1.7	1.97	-0.3	-0.98	35.1	2.5	2.397	0.1	0.32	59.6	4.2	3.0	1.2	3.98
60	24.6	1.6	1.97	-0.4	-1.44	32.9	2.3	2.397	-0.1	-0.21	55.9	4.0	3.0	0.9	3.38
65	23.2	1.5	1.97	-0.5	-1.91	31.0	2.2	2.397	-0.2	-0.75	52.6	3.7	3.0	0.7	2.77
70	21.9	1.4	1.97	-0.6	-2.39	29.4	2.1	2.397	-0.3	-1.31	49.8	3.5	3.0	0.5	2.13
75	20.8	1.3	1.97	-0.6	-2.87	27.9	2.0	2.397	-0.4	-1.88	47.3	3.4	3.0	0.3	1.47
80	19.8	1.3	1.97	-0.7	-3.37	26.6	1.9	2.397	-0.5	-2.46	45.0	3.2	3.0	0.2	0.80
85	18.9	1.2	1.97	-0.8	-3.87	25.4	1.8	2.397	-0.6	-3.04	43.0	3.0	3.0	0.0	0.11
90	18.1	1.2	1.97	-0.8	-4.37	24.3	1.7	2.397	-0.7	-3.63	41.1	2.9	3.0	-0.1	-0.59
95	17.4	1.1	1.97	-0.9	-4.88	23.3	1.7	2.397	-0.7	-4.23	39.4	2.8	3.0	-0.2	-1.30
100	16.7	1.1	1.97	-0.9	-5.39	22.4	1.6	2.397	-0.8	-4.84	37.9	2.7	3.0	-0.3	-2.02
105	16.1	1.0	1.97	-0.9	-5.91	21.6	1.5	2.397	-0.9	-5.45	36.5	2.6	3.0	-0.4	-2.75
110	15.6	1.0	1.97	-1.0	-6.43	20.8	1.5	2.397	-0.9	-6.07	35.2	2.5	3.0	-0.5	-3.49
115	15.0	1.0	1.97	-1.0	-6.95	20.1	1.4	2.397	-1.0	-6.69	34.0	2.4	3.0	-0.6	-4.24
120	14.6	0.9	1.97	-1.0	-7.47	19.5	1.4	2.397	-1.0	-7.31	32.9	2.3	3.0	-0.7	-4.99
Max =					1.78					3.18					6.59
Notes															
1) Peak fl	ow is equal t	o the produ	ct of 2.78 >	(C x I x A											
2) Rainfall	Intensity, I =	A/(Tc+C) ^B													
3) Release	e Rate = Min	(Release Rat	e. Peak Flo	w)											

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-13 (2 Year, 5 Year and 100 Year Storms)

C_{AVG} =

0.90 (dimmensionless) C_{AVG} = 1.00

(mins) Time Interval = 5 Drainage Area = 0.01323 (hectares)

	Re	ease Rate =	0.997	(L/sec)		Rele	ase Rate =	1.1987	(L/sec)		Rele	ase Rate =	1.5268	(L/sec)	
		Irn Period =	2	(years)			n Period =	5	(years)			n Period =		(years)	
		meters, A =		, B =	0.810		neters, A =		, ,	0.814			1735.688	, B =	0.820
			/(T _c +C)	, C =			$= A/(T_c+C)$			6.053		$= A/(T_c+C)$, C =	
														,	
	Rainfall		Release	Storage		Rainfall	Peak	Release	Storage		Rainfall	Peak	Release	Storage	
Duration		Peak Flow	Rate	Rate	Storage	Intensity,	Flow	Rate	Rate	Storage	Intensity, I	Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	I (mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	5.5	1.00	4.5	0.00	230.5	8.5	1.199	7.3	0.00	398.6	14.7	1.5	13.1	0.00
5	103.6	3.4	1.00	2.4	0.73	141.2	5.2	1.199	4.0	1.20	242.7	8.9	1.5	7.4	2.22
10	76.8	2.5	1.00	1.5	0.93	104.2	3.8	1.199	2.6	1.58	178.6	6.6	1.5	5.0	3.02
15	61.8	2.0	1.00	1.0	0.94	83.6	3.1	1.199	1.9	1.69	142.9	5.3	1.5	3.7	3.36
20	52.0	1.7	1.00	0.7	0.87	70.3	2.6	1.199	1.4	1.66	120.0	4.4	1.5	2.9	3.46
25	45.2	1.5	1.00	0.5	0.75	60.9	2.2	1.199	1.0	1.56	103.8	3.8	1.5	2.3	3.44
30	40.0	1.3	1.00	0.3	0.59	53.9	2.0	1.199	0.8	1.41	91.9	3.4	1.5	1.9	3.33
35	36.1	1.2	1.00	0.2	0.41	48.5	1.8	1.199	0.6	1.23	82.6	3.0	1.5	1.5	3.17
40	32.9	1.1	1.00	0.1	0.22	44.2	1.6	1.199	0.4	1.02	75.1	2.8	1.5	1.2	2.97
45	30.2	1.0	1.00	0.0	0.01	40.6	1.5	1.199	0.3	0.80	69.1	2.5	1.5	1.0	2.73
50	28.0	0.9	1.00	-0.1	-0.21	37.7	1.4	1.199	0.2	0.56	64.0	2.4	1.5	0.8	2.48
55	26.2	0.9	1.00	-0.1	-0.43	35.1	1.3	1.199	0.1	0.31	59.6	2.2	1.5	0.7	2.20
60	24.6	0.8	1.00	-0.2	-0.66	32.9	1.2	1.199	0.0	0.05	55.9	2.1	1.5	0.5	1.90
65	23.2	0.8	1.00	-0.2	-0.90	31.0	1.1	1.199	-0.1	-0.22	52.6	1.9	1.5	0.4	1.60
70	21.9	0.7	1.00	-0.3	-1.14	29.4	1.1	1.199	-0.1	-0.50	49.8	1.8	1.5	0.3	1.28
75	20.8	0.7	1.00	-0.3	-1.39	27.9	1.0	1.199	-0.2	-0.78	47.3	1.7	1.5	0.2	0.95
80	19.8	0.7	1.00	-0.3	-1.63	26.6	1.0	1.199	-0.2	-1.06	45.0	1.7	1.5	0.1	0.61
85	18.9	0.6	1.00	-0.4	-1.89	25.4	0.9	1.199	-0.3	-1.36	43.0	1.6	1.5	0.1	0.27
90	18.1	0.6	1.00	-0.4	-2.14	24.3	0.9	1.199	-0.3	-1.65	41.1	1.5	1.5	0.0	-0.08
95	17.4	0.6	1.00	-0.4	-2.40	23.3	0.9	1.199	-0.3	-1.95	39.4	1.5	1.5	-0.1	-0.44
100	16.7	0.6	1.00	-0.4	-2.66	22.4	0.8	1.199	-0.4	-2.25	37.9	1.4	1.5	-0.1	-0.80
105	16.1	0.5	1.00	-0.5	-2.92	21.6	0.8	1.199	-0.4	-2.55	36.5	1.3	1.5	-0.2	-1.16
110	15.6	0.5	1.00	-0.5	-3.18	20.8	0.8	1.199	-0.4	-2.86	35.2	1.3	1.5	-0.2	-1.53
115	15.0	0.5	1.00	-0.5	-3.44	20.1	0.7	1.199	-0.5	-3.17	34.0	1.3	1.5	-0.3	-1.91
120	14.6	0.5	1.00	-0.5	-3.71	19.5	0.7	1.199	-0.5	-3.48	32.9	1.2	1.5	-0.3	-2.28
Max =					0.94					1.69					3.46
Notes				.											
	ow is equal t		ct of 2.78 >	CXIXA											
	Intensity, I =														
3) Release	e Rate = Min	Release Rat	e, Peak Flo	ow)											

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

Storage Volumes Roof Area P-R-14 (2 Year, 5 Year and 100 Year Storms)

C_{AVG} =

0.90 (dimmensionless) C_{AVG} = 1.00

Time Interval = (mins) 5 Drainage Area = 0.01299 (hectares)

	-														
		lease Rate =		(L/sec)			ase Rate =		(L/sec)			ase Rate =		(L/sec)	
		urn Period =	2	(years)			n Period =	5	(years)			n Period =		(years)	
	IDF Para	meters, A =			0.810		neters, A =	998.071		0.814			1735.688	, B =	
		(I = A	/(T _c +C)	, C =	6.199	(1	$= A/(T_c+C)$, C =	6.053	(1	$= A/(T_c+C)$, C =	6.014
	Rainfall		Release	Storage		Rainfall	Peak	Release	Storage		Rainfall	Peak	Release	Storage	
Duration	Intensity, I	Peak Flow	Rate	Rate	Storage	Intensity,	Flow	Rate	Rate	Storage	Intensity, I	Flow	Rate	Rate	Storage
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	I (mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	5.4	1.00	4.4	0.00	230.5	8.3	1.199	7.1	0.00	398.6	14.4	1.5	12.9	0.00
5	103.6	3.4	1.00	2.4	0.71	141.2	5.1	1.199	3.9	1.17	242.7	8.8	1.5	7.2	2.17
10	76.8	2.5	1.00	1.5	0.90	104.2	3.8	1.199	2.6	1.54	178.6	6.4	1.5	4.9	2.95
15	61.8	2.0	1.00	1.0	0.91	83.6	3.0	1.199	1.8	1.64	142.9	5.2	1.5	3.6	3.27
20	52.0	1.7	1.00	0.7	0.83	70.3	2.5	1.199	1.3	1.60	120.0	4.3	1.5	2.8	3.36
25	45.2	1.5	1.00	0.5	0.71	60.9	2.2	1.199	1.0	1.50	103.8	3.7	1.5	2.2	3.33
30	40.0	1.3	1.00	0.3	0.55	53.9	1.9	1.199	0.7	1.35	91.9	3.3	1.5	1.8	3.22
35	36.1	1.2	1.00	0.2	0.37	48.5	1.8	1.199	0.6	1.16	82.6	3.0	1.5	1.5	3.05
40	32.9	1.1	1.00	0.1	0.17	44.2	1.6	1.199	0.4	0.95	75.1	2.7	1.5	1.2	2.85
45	30.2	1.0	1.00	0.0	-0.04	40.6	1.5	1.199	0.3	0.72	69.1	2.5	1.5	1.0	2.61
50	28.0	0.9	1.00	-0.1	-0.26	37.7	1.4	1.199	0.2	0.48	64.0	2.3	1.5	0.8	2.35
55	26.2	0.9	1.00	-0.1	-0.48	35.1	1.3	1.199	0.1	0.23	59.6	2.2	1.5	0.6	2.06
60	24.6	0.8	1.00	-0.2	-0.72	32.9	1.2	1.199	0.0	-0.03	55.9	2.0	1.5	0.5	1.77
65	23.2	0.8	1.00	-0.2	-0.95	31.0	1.1	1.199	-0.1	-0.30	52.6	1.9	1.5	0.4	1.46
70	21.9	0.7	1.00	-0.3	-1.20	29.4	1.1	1.199	-0.1	-0.58	49.8	1.8	1.5	0.3	1.14
75	20.8	0.7	1.00	-0.3	-1.44	27.9	1.0	1.199	-0.2	-0.86	47.3	1.7	1.5	0.2	0.81
80	19.8	0.6	1.00	-0.4	-1.69	26.6	1.0	1.199	-0.2	-1.15	45.0	1.6	1.5	0.1	0.47
85	18.9	0.6	1.00	-0.4	-1.94	25.4	0.9	1.199	-0.3	-1.44	43.0	1.6	1.5	0.0	0.12
90	18.1	0.6	1.00	-0.4	-2.20	24.3	0.9	1.199	-0.3	-1.74	41.1	1.5	1.5	0.0	-0.23
95	17.4	0.6	1.00	-0.4	-2.46	23.3	0.8	1.199	-0.4	-2.04	39.4	1.4	1.5	-0.1	-0.59
100	16.7	0.5	1.00	-0.5	-2.72	22.4	0.8	1.199	-0.4	-2.34	37.9	1.4	1.5	-0.2	-0.95
105	16.1	0.5	1.00	-0.5	-2.98	21.6	0.8	1.199	-0.4	-2.64	36.5	1.3	1.5	-0.2	-1.32
110	15.6	0.5	1.00	-0.5	-3.24	20.8	0.8	1.199	-0.4	-2.95	35.2	1.3	1.5	-0.3	-1.69
115	15.0	0.5	1.00	-0.5	-3.50	20.1	0.7	1.199	-0.5	-3.26	34.0	1.2	1.5	-0.3	-2.06
120	14.6	0.5	1.00	-0.5	-3.77	19.5	0.7	1.199	-0.5	-3.57	32.9	1.2	1.5	-0.3	-2.44
Max =					0.91					1.64					3.36
Notes															
L) Peak fl	ow is equal t	o the produ	ct of 2.78 x	CxIxA											
2) Rainfall	l Intensity, I =	= A/(Tc+C) ^B													

Rainfall Intensity, I = A/(Tc+C)^E

3) Release Rate = Min (Release Rate, Peak Flow)

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

	,,	1-1 5(0) 8	ige voit		i z-yeai	, 5-Year a														
	Area No:	P-1	_																	
	C _{AVG} =	0.59	(2-yr)																	
	C _{AVG} =	0.59	(5-yr)																	
	C _{AVG} =	0.73	_(100-yr, N	1ax 1.0)					Act	ual Release	e Rate (L/sec) =	30.00								
Tin	ne Interval =	5.00	(mins)				Percentag	e of Actual	Rate (City	of Ottawa ı	equirement) =	100%	(Set to 50%	when U/G s	storage used)					
Dra	nage Area =	0.1257	_ (hectares))		Rele	ase Rate U	sed for Esti	imation of	100-year St	orage (L/sec) =	30.00				Intensity	Incr (%) =	20%	Use 209	
													•						Climate	Change
	F	Release Rate =	15.78	(L/sec)		Rele	ase Rate =	21.41	(L/sec)		Rele	ease Rate =	30.00	(L/sec)			se Rate =		(L/sec)	
		eturn Period =		(years)			n Period =		(years)			rn Period =	100	(years)				100+20%		
Duration	IDF Pa	arameters, A =		, B =			neters, A =	998.1		0.814		meters, A =	1735.7	, B =		IDF Param	,			0.820
(mins)		(I = A/(1 _c +C)	, C =	6.199	(1	= A/(T _c +C)		, C =	6.053	($= A/(T_c+C)$, C =	6.014	(1=	= A/(T _c +C)		, C =	6.014
(-)	Rainfall Intensity, I	Peak Flow	Release Rate	Storage Rate	Storage	Rainfall Intensity, I	Peak Flow	Release Rate	Storage Rate	Storage	Rainfall Intensity, I	Peak Flow	Release Rate	Storage Rate	Storage (m ³)	Rainfall Intensity, I	Peak Flow	Release Rate	Storage Rate	Storage
	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	otoruge (iii)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
0	167.2	34.4	15.8	18.6	0.0	230.5	47.4	21.4	26.0	0.0	398.6	102.4	30.0	72.4	0.0	478.3	122.9	30.0	92.9	0.0
5	103.6	21.3	15.8	5.5	1.7	141.2	29.0	21.4	7.6	2.3	242.7	62.3	30.0	32.3	9.7	291.2	74.8	30.0	44.8	13.4
10	76.8	15.8	15.8	0.0	0.0	104.2	21.4	21.4	0.0	0.0	178.6	45.9	30.0	15.9	9.5	214.3	55.0	30.0	25.0	15.0
15	61.8	12.7	15.8	-3.1	-2.8	83.6	17.2	21.4	-4.2	-3.8	142.9	36.7	30.0	6.7	6.0	171.5	44.0	30.0	14.0	12.6
20	52.0	10.7	15.8	-5.1	-6.1	70.3	14.4	21.4	-7.0	-8.4	120.0	30.8	30.0	0.8	1.0	143.9	37.0	30.0	7.0	8.4
25	45.2	9.3	15.8	-6.5	-9.8	60.9	12.5	21.4	-8.9	-13.3	103.8	26.7	30.0	-3.3	-5.0	124.6	32.0	30.0	2.0	3.0
30 35	40.0 36.1	8.2 7.4	15.8 15.8	-7.6 -8.4	-13.6 -17.6	53.9 48.5	11.1 10.0	21.4 21.4	-10.3 -11.4	-18.6 -24.0	91.9 82.6	23.6 21.2	30.0 30.0	-6.4 -8.8	-11.5 -18.5	110.2 99.1	28.3 25.5	30.0 30.0	-1.7 -4.5	-3.0 -9.5
40	32.9	6.8	15.8	-9.0	-21.7	44.2	9.1	21.4	-11.4	-24.0	75.1	19.3	30.0	-10.7	-25.7	90.2	23.2	30.0	-4.3	-16.4
45	30.2	6.2	15.8	-9.6	-25.8	40.6	8.3	21.4	-13.1	-35.3	69.1	17.7	30.0	-12.3	-33.1	82.9	21.3	30.0	-8.7	-23.5
50	28.0	5.8	15.8	-10.0	-30.1	37.7	7.7	21.4	-13.7	-41.0	64.0	16.4	30.0	-13.6	-40.7	76.7	19.7	30.0	-10.3	-30.9
55	26.2	5.4	15.8	-10.4	-34.3	35.1	7.2	21.4	-14.2	-46.8	59.6	15.3	30.0	-14.7	-48.5	71.5	18.4	30.0	-11.6	-38.4
60	24.6	5.0	15.8	-10.7	-38.6	32.9	6.8	21.4	-14.6	-52.7	55.9	14.4	30.0	-15.6	-56.3	67.1	17.2	30.0	-12.8	-46.0
65	23.2	4.8	15.8	-11.0	-43.0	31.0	6.4	21.4	-15.0	-58.6	52.6	13.5	30.0	-16.5	-64.3	63.2	16.2	30.0	-13.8	-53.7
70	21.9	4.5	15.8	-11.3	-47.4	29.4	6.0	21.4	-15.4	-64.6	49.8	12.8	30.0	-17.2	-72.3	59.7	15.3	30.0	-14.7	-61.5
75 80	20.8 19.8	4.3 4.1	15.8 15.8	-11.5 -11.7	-51.8 -56.2	27.9 26.6	5.7 5.5	21.4 21.4	-15.7 -16.0	-70.6 -76.6	47.3 45.0	12.1 11.6	30.0 30.0	-17.9 -18.4	-80.4 -88.5	56.7 54.0	14.6 13.9	30.0 30.0	-15.4 -16.1	-69.5 -77.4
85	19.8	3.9	15.8	-11.9	-60.6	25.4	5.2	21.4	-16.2	-82.6	43.0	11.0	30.0	-19.0	-96.7	51.5	13.2	30.0	-16.8	-85.5
90	18.1	3.7	15.8	-12.1	-65.1	24.3	5.0	21.4	-16.4	-88.7	41.1	10.6	30.0	-19.4	-105.0	49.3	12.7	30.0	-17.3	-93.6
95	17.4	3.6	15.8	-12.2	-69.6	23.3	4.8	21.4	-16.6	-94.7	39.4	10.1	30.0	-19.9	-113.3	47.3	12.2	30.0	-17.8	-101.7
100	16.7	3.4	15.8	-12.3	-74.0	22.4	4.6	21.4	-16.8	-100.8	37.9	9.7	30.0	-20.3	-121.6	45.5	11.7	30.0	-18.3	-109.9
Max =					1.7					2.3					9.7					15.0
2) Rainfall In 3) Release Ra	tensity, I = A/(ate = Min (Rele	e product of 2.7 Tc+C) ^B ease Rate, Peak w - Release Rat	Flow)								IDF curve equat 100 year Intensity 50 year Intensity	tions (Intens y = 1735. = 1569.	688 / (Time i 580 / (Time i) n min + 6.01 n min + 6.01	4) ^{0.820} 4) ^{0.820}					
5) Storage = 6) Maximium	Duration x Ston Storage = Ma										25 year Intensity 10 year Intensity 5 year Intensity 2 year Intensity	= 1402. = 1174. = 998.0	884 / (Time i 184 / (Time i 71 / (Time in 51 / (Time in	$n \min + 6.01$ $n \min + 6.01$ $\min + 6.053$						

TABLE D9P-1 Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)

I ABLE L		1 2 51014	ige voit		i Z-yeai	r, 5-Year		J-rear J												
	Area No:	P-2	-																	
	C _{AVG} =	0.84	(2-yr)																	
	C _{AVG} =	0.84	(5-yr)																	
	C _{AVG} =	1.00	(100-yr, N	1ax 1.0)							e Rate (L/sec) =		-							
	ne Interval =	5.00	(mins)				-				equirement) =		(Set to 50%	when U/G s	storage used)					
Drai	nage Area =	0.2032	(hectares))		Rele	ase Rate U	sed for Esti	mation of :	100-year St	orage (L/sec) =	78.00	-			Intensity	Incr (%) =	20%	Use 209 Climate	% for Change
		alaasa Data	26.22	(L/sec)		Dala	eee Dete	49.28	(L/sec)		Dela	Dete	70.00	(1 / 2000)		Dalaa	se Rate =	79.00	(L/sec)	
		Release Rate = eturn Period =		(years)			ase Rate = n Period =		(L/Sec) (years)			ease Rate = rn Period =	78.00	(L/sec) (years)				100+20%	· · ·	
		rameters, A =		_(years) , B =	0.810		neters, A =			0.814		meters, A =		(years) , B =	0.820	IDF Param				0.820
Duration		(I = A/(, D = , C =			$= A/(T_c+C)$, C =			$= A/(T_c+C)$	1/35./	, Б = , С =			= A/(T _c +C)		, D =	
(mins)		(1	1	0.155			1	1	0.000		1		1	0.014		1	I	Í	0.011
	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	79.1	36.3	42.8	0.0	230.5	109.0	49.3	59.7	0.0	398.6	225.2	78.0	147.2	0.0	478.3	270.2	78.0	192.2	0.0
5	103.6	49.0	36.3	12.7	3.8	141.2	66.8	49.3	17.5	5.2	242.7	137.1	78.0	59.1	17.7	291.2	164.5	78.0	86.5	26.0
10	76.8	36.3	36.3	0.0	0.0	104.2	49.3	49.3	0.0	0.0	178.6	100.9	78.0	22.9	13.7	214.3	121.0	78.0	43.0	25.8
15	61.8	29.2	36.3	-7.1	-6.4	83.6	39.5	49.3	-9.8	-8.8	142.9	80.7	78.0	2.7	2.4	171.5	96.9	78.0	18.9	17.0
20	52.0	24.6	36.3	-11.7	-14.1	70.3	33.2	49.3	-16.1	-19.3	120.0	67.8	78.0	-10.2	-12.3	143.9	81.3	78.0	3.3	4.0
25	45.2	21.4	36.3	-15.0	-22.4	60.9	28.8	49.3	-20.5	-30.7	103.8	58.7	78.0	-19.3	-29.0	124.6	70.4	78.0	-7.6	-11.4
30	40.0	18.9	36.3	-17.4	-31.3	53.9	25.5	49.3	-23.8	-42.8	91.9	51.9	78.0	-26.1	-47.0	110.2	62.3	78.0	-15.7	-28.3
35 40	36.1 32.9	17.1 15.5	36.3 36.3	-19.3 -20.8	-40.5 -49.9	48.5 44.2	22.9 20.9	49.3 49.3	-26.3 -28.4	-55.3 -68.1	82.6 75.1	46.6 42.4	78.0 78.0	-31.4 -35.6	-65.8 -85.3	99.1 90.2	56.0 50.9	78.0 78.0	-22.0 -27.1	-46.3 -65.0
40	32.9	13.3	36.3	-20.8	-49.9	44.2	19.2	49.3	-28.4	-08.1	69.1	39.0	78.0	-39.0	-105.3	82.9	46.8	78.0	-31.2	-84.2
50	28.0	13.3	36.3	-23.1	-69.2	37.7	17.8	49.3	-31.5	-94.4	64.0	36.1	78.0	-41.9	-125.6	76.7	43.3	78.0	-34.7	-104.0
55	26.2	12.4	36.3	-23.9	-79.0	35.1	16.6	49.3	-32.7	-107.8	59.6	33.7	78.0	-44.3	-146.3	71.5	40.4	78.0	-37.6	-124.0
60	24.6	11.6	36.3	-24.7	-89.0	32.9	15.6	49.3	-33.7	-121.3	55.9	31.6	78.0	-46.4	-167.1	67.1	37.9	78.0	-40.1	-144.4
65	23.2	10.9	36.3	-25.4	-99.0	31.0	14.7	49.3	-34.6	-134.9	52.6	29.7	78.0	-48.3	-188.2	63.2	35.7	78.0	-42.3	-165.0
70	21.9	10.4	36.3	-26.0	-109.0	29.4	13.9	49.3	-35.4	-148.6	49.8	28.1	78.0	-49.9	-209.5	59.7	33.7	78.0	-44.3	-185.9
75	20.8	9.8	36.3	-26.5	-119.2	27.9	13.2	49.3	-36.1	-162.4	47.3	26.7	78.0	-51.3	-230.9	56.7	32.0	78.0	-46.0	-206.9
80	19.8	9.4	36.3	-26.9	-129.3	26.6	12.6	49.3	-36.7	-176.2	45.0	25.4	78.0	-52.6	-252.4	54.0	30.5	78.0	-47.5	-228.0
85	18.9	9.0	36.3	-27.4	-139.6	25.4	12.0	49.3	-37.3	-190.1	43.0	24.3	78.0	-53.7	-274.1	51.5	29.1 27.9	78.0	-48.9 -50.1	-249.3
90 95	18.1 17.4	8.6 8.2	36.3 36.3	-27.7 -28.1	-149.8 -160.1	24.3 23.3	11.5 11.0	49.3 49.3	-37.8 -38.3	-204.1 -218.1	41.1 39.4	23.2 22.3	78.0 78.0	-54.8 -55.7	-295.8 -317.6	49.3 47.3	27.9	78.0 78.0	-50.1	-270.7 -292.2
95 100	17.4	8.2 7.9	36.3	-28.1	-160.1	23.3	11.0	49.3	-38.3	-218.1	39.4	22.3	78.0	-55.7	-317.6	47.3	25.7	78.0	-51.3	-292.2
Max =					3.8					5.2					17.7					26.0
2) Rainfall Int 3) Release Ra 4) Storage R 5) Storage = 5) Maximium	ensity, I = A/(1 te = Min (Rele ate = Peak Flor Duration x Sto Storage = Ma	ease Rate, Peak w - Release Rate	Flow) e								IDF curve equat 100 year Intensity 50 year Intensity 25 year Intensity 10 year Intensity 5 year Intensity 2 year Intensity	tions (Intens y = 1735 = 1569 = 1402 = 1174 = 998.0	tawa IDF D ity in mm/hu 688 / (Time i 580 / (Time i 584 / (Time i 184 / (Time i 51 / (Time in 51 / (Time in) n min + 6.01 n min + 6.01 n min + 6.01 n min + 6.053	$\begin{array}{c} 4) & 0.820 \\ 4) & 0.820 \\ 8) & 0.819 \\ 4) & 0.816 \\ 0) & 0.814 \end{array}$					

TABLE D10 P-2 Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)

	Aron No.	P-3																		
	Area No: C _{AVG} =	0.84	(2-yr)																	
	C _{AVG} =	0.84	(5-yr)																	
	C _{AVG} =	1.00	(100-yr, N	1ax 1.0)					Act	ual Release	e Rate (L/sec) =	72.00								
Tin	ne Interval =	5.00	(mins)				-		• •		equirement) =		(Set to 50%	when U/G s	torage used)					
Dra	inage Area =	0.1792	(hectares)			Rele	ase Rate U	sed for Esti	mation of	100-year St	orage (L/sec) =	72.00				Intensity	Incr (%) =	20%	Use 209	
																			Climate	Change
	F	elease Rate =	31.96	(L/sec)		Rele	ase Rate =	43.36	(L/sec)		Rele	ease Rate =	72.00	(L/sec)		Relea	se Rate =	72.00	(L/sec)	
	Re	eturn Period =		(years)		Retur	n Period =	5	(years)		Retu	rn Period =	100	(years)		Return	n Period =	100+20%	(years)	
Duration	IDF Pa	rameters, A =		, B =			neters, A =	998.1		0.814		neters, A =	1735.7	, B =		IDF Param				0.820
(mins)		(I = A/(T _c +C)	, C =	6.199	(1	= A/(T _c +C)		, C =	6.053	($= A/(T_c+C)$, C =	6.014	(=	A/(T _c +C)		, C =	6.014
(11113)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	69.6	32.0	37.6	0.0	230.5	95.9	43.4	52.6	0.0	398.6	198.5	72.0	126.5	0.0	478.3	238.2	72.0	166.2	0.0
5	107.2	43.1	32.0	11.1	3.3	141.2	58.8	43.4	15.4	4.6	242.7	120.9	72.0	48.9	14.7	291.2	145.1	72.0	73.1	21.9
10	76.8	32.0	32.0	0.0	0.0	104.2	43.4	43.4	0.0	0.0	178.6	88.9	72.0	16.9	10.2	214.3	106.7	72.0	34.7	20.8
15	61.8	25.7	32.0	-6.3	-5.6	83.6	34.8	43.4	-8.6	-7.7	142.9	71.2	72.0	-0.8	-0.7	171.5	85.4	72.0	13.4	12.1
20	52.0	21.7	32.0	-10.3	-12.4	70.3	29.2	43.4	-14.1	-17.0	120.0	59.7	72.0	-12.3	-14.7	143.9	71.7	72.0	-0.3	-0.4
25	45.2	18.8	32.0	-13.2	-19.8	60.9	25.3	43.4	-18.0	-27.0	103.8	51.7	72.0	-20.3	-30.4	124.6	62.1	72.0	-9.9	-14.9
30	40.0	16.7	32.0	-15.3	-27.5	53.9	22.4	43.4	-20.9	-37.7	91.9	45.8	72.0	-26.2	-47.2	110.2	54.9	72.0	-17.1 -22.6	-30.8
35 40	36.1 32.9	15.0 13.7	32.0 32.0	-17.0 -18.3	-35.6 -43.9	48.5 44.2	20.2 18.4	43.4 43.4	-23.2 -25.0	-48.7 -59.9	82.6 75.1	41.1 37.4	72.0 72.0	-30.9 -34.6	-64.8 -83.0	99.1 90.2	49.4 44.9	72.0 72.0	-22.0	-47.6 -65.0
45	30.2	12.6	32.0	-19.4	-52.3	40.6	16.9	43.4	-26.5	-71.4	69.1	34.4	72.0	-37.6	-101.5	82.9	41.3	72.0	-30.7	-83.0
50	28.0	11.7	32.0	-20.3	-60.9	37.7	15.7	43.4	-27.7	-83.1	64.0	31.9	72.0	-40.1	-120.4	76.7	38.2	72.0	-33.8	-101.3
55	26.2	10.9	32.0	-21.1	-69.5	35.1	14.6	43.4	-28.7	-94.9	59.6	29.7	72.0	-42.3	-139.6	71.5	35.6	72.0	-36.4	-120.0
60	24.6	10.2	32.0	-21.7	-78.3	32.9	13.7	43.4	-29.7	-106.7	55.9	27.8	72.0	-44.2	-159.0	67.1	33.4	72.0	-38.6	-138.9
65	23.2	9.6	32.0	-22.3	-87.1	31.0	12.9	43.4	-30.4	-118.7	52.6	26.2	72.0	-45.8	-178.5	63.2	31.5	72.0	-40.5	-158.1
70	21.9	9.1	32.0	-22.8	-95.9	29.4	12.2	43.4	-31.1	-130.8	49.8	24.8	72.0	-47.2	-198.2	59.7	29.8	72.0	-42.2	-177.4
75 80	20.8 19.8	8.7 8.3	32.0 32.0	-23.3 -23.7	-104.9 -113.8	27.9 26.6	11.6 11.1	43.4 43.4	-31.8 -32.3	-142.9 -155.1	47.3	23.5 22.4	72.0 72.0	-48.5 -49.6	-218.1 -238.0	56.7 54.0	28.2 26.9	72.0 72.0	-43.8 -45.1	-196.9 -216.5
85	19.8	7.9	32.0	-23.7	-113.8	25.4	10.6	43.4	-32.8	-167.3	43.0	22.4	72.0	-49.0	-258.0	51.5	20.9	72.0	-46.3	-236.3
90	18.1	7.6	32.0	-24.4	-131.8	24.3	10.1	43.4	-33.3	-179.6	41.1	20.5	72.0	-51.5	-278.2	49.3	24.6	72.0	-47.4	-256.1
95	17.4	7.2	32.0	-24.7	-140.9	23.3	9.7	43.4	-33.7	-191.9	39.4	19.6	72.0	-52.4	-298.4	47.3	23.6	72.0	-48.4	-276.1
100	16.7	7.0	32.0	-25.0	-150.0	22.4	9.3	43.4	-34.0	-204.2	37.9	18.9	72.0	-53.1	-318.7	45.5	22.7	72.0	-49.3	-296.1
Max =					3.3					4.6					14.7					21.9
2) Rainfall In 3) Release Ra 4) Storage R 5) Storage = 6) Maximium	tensity, I = A/(ate = Min (Rele ate = Peak Flo Duration x Sto n Storage = Ma	ease Rate, Peak w - Release Rat	Flow) e								IDF curve equal 100 year Intensity 50 year Intensity 25 year Intensity 10 year Intensity 5 year Intensity 2 year Intensity	$\begin{array}{l} \text{ions (Intens} \\ y &= 1735. \\ = 1569. \\ = 1402. \\ = 1174. \\ = 998.0 \end{array}$	tawa IDF D ity in mm/hu 688 / (Time i 580 / (Time i 884 / (Time i 184 / (Time in 51 / (Time in) n min + 6.01 n min + 6.01 n min + 6.01 min + 6.053	$\begin{array}{c} 4) & 0.820 \\ 4) & 0.820 \\ 8) & 0.819 \\ 4) & 0.816 \\ 0.814 \end{array}$					

TABLE D11 P-3 Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)

TABLE L			<u>Be role</u>		- L year	, 5-Year a														
	Area No:	P-4	-																	
	C _{AVG} =	0.24	_(2-yr)																	
	C _{AVG} =	0.24	_(5-yr)																	
	C _{AVG} =	0.31	_(100-yr, N	/lax 1.0)							e Rate (L/sec) =									
	ne Interval =	5.00	(mins)				-				requirement) =		(Set to 50%	when U/G s	storage used)	1	L (0/)	000/		
Dra	nage Area =	1.9029	_(hectares))		Relea	ase Rate U	sed for Est	mation of .	100-year St	orage (L/sec) =	177.00	-			Intensity	Incr (%) =	20%	Use 209 Climate	% for Change
						1							•							
		elease Rate =		(L/sec)			ase Rate =		(L/sec)			ease Rate =		(L/sec)			se Rate =		(L/sec)	
		eturn Period =		(years)	0.010		n Period =		(years)	0.014		rn Period =		(years)	0.020			100+20%		0.000
Duration	IDF Pa	rameters, A = (I = A/(, B = , C =			neters, A = = A/(T _c +C)	998.1	, B = , C =	0.814		meters, A = = A/(T _c +C)	1735.7	, B = , C =		IDF Param	= A/(T _c +C)		, в = , С =	0.820
(mins)		(1 – А/(1	0.199	(1	– A/(1 _c +C)		, I	0.055	(= A/(1 _c +C)		, L =	0.014		, <u>, ,</u>		Í	0.014
	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	216.2	99.3	116.9	0.0	230.5	297.9	134.7	163.3	0.0	398.6	644.1	177.0	467.1	0.0	478.3	773.0	177.0	596.0	0.0
5	103.6	133.9	99.3	34.6	10.4	141.2	182.5	134.7	47.8	14.3	242.7	392.2	177.0	215.2	64.6	291.2	470.6	177.0	293.6	88.1
10	76.8	99.3	99.3	0.0	0.0	104.2	134.7	134.7	0.0	0.0	178.6	288.5	177.0	111.5	66.9	214.3	346.2	177.0	169.2	101.5
15	61.8	79.8	99.3	-19.4	-17.5	83.6	108.0	134.7	-26.7	-24.0	142.9	230.9	177.0	53.9	48.5	171.5	277.1	177.0	100.1	90.1
20	52.0	67.3	99.3	-32.0	-38.4	70.3	90.8	134.7	-43.9	-52.7	120.0	193.8	177.0	16.8	20.2	143.9	232.6	177.0	55.6	66.7
25	45.2	58.4	99.3	-40.9	-61.3	60.9	78.7	134.7	-56.0	-84.0	103.8	167.8	177.0	-9.2	-13.8	124.6	201.4	177.0	24.4	36.6
30 35	40.0 36.1	51.8 46.6	99.3 99.3	-47.5 -52.7	-85.5 -110.6	53.9 48.5	69.7 62.7	134.7 134.7	-65.0 -72.0	-117.0 -151.1	91.9 82.6	148.4 133.4	177.0 177.0	-28.6 -43.6	-51.4 -91.5	110.2 99.1	178.1 160.1	177.0 177.0	1.1 -16.9	2.1 -35.4
40	32.9	40.0	99.3	-56.8	-110.0	48.3	57.1	134.7	-72.0	-131.1	75.1	133.4	177.0	-43.0	-133.4	90.2	145.7	177.0	-31.3	-75.1
45	30.2	39.1	99.3	-60.2	-162.5	40.6	52.5	134.7	-82.2	-221.9	69.1	111.6	177.0	-65.4	-176.6	82.9	133.9	177.0	-43.1	-116.4
50	28.0	36.2	99.3	-63.0	-189.1	37.7	48.7	134.7	-86.0	-258.1	64.0	103.3	177.0	-73.7	-221.0	76.7	124.0	177.0	-53.0	-159.0
55	26.2	33.8	99.3	-65.5	-216.0	35.1	45.4	134.7	-89.3	-294.6	59.6	96.3	177.0	-80.7	-266.2	71.5	115.6	177.0	-61.4	-202.6
60	24.6	31.7	99.3	-67.5	-243.1	32.9	42.6	134.7	-92.1	-331.6	55.9	90.3	177.0	-86.7	-312.0	67.1	108.4	177.0	-68.6	-247.0
65	23.2	29.9	99.3	-69.4	-270.5	31.0	40.1	134.7	-94.6	-368.8	52.6	85.1	177.0	-91.9	-358.5	63.2	102.1	177.0	-74.9	-292.2
70	21.9	28.3	99.3	-71.0	-298.0	29.4	38.0	134.7	-96.7	-406.2	49.8	80.5	177.0	-96.5	-405.5	59.7	96.5	177.0	-80.5	-337.9
75	20.8	26.9	99.3	-72.4	-325.7	27.9	36.1	134.7	-98.6	-443.9	47.3	76.4	177.0	-100.6	-452.9	56.7	91.6	177.0	-85.4	-384.2
80	19.8	25.6	99.3	-73.7	-353.5	26.6	34.3	134.7	-100.4	-481.7	45.0	72.7	177.0	-104.3	-500.6	54.0	87.2	177.0	-89.8	-430.8
85 90	18.9 18.1	24.5 23.5	99.3 99.3	-74.8 -75.8	-381.5 -409.5	25.4 24.3	32.8 31.4	134.7 134.7	-101.9 -103.3	-519.7 -557.8	43.0	69.4 66.4	177.0 177.0	-107.6 -110.6	-548.7 -597.1	51.5 49.3	83.3 79.7	177.0 177.0	-93.7 -97.3	-477.9 -525.3
90	18.1	23.5	99.3 99.3	-75.8	-409.5	24.5	30.1	134.7	-103.3	-596.0	39.4	63.7	177.0	-110.8	-645.7	49.3	76.5	177.0	-97.3	-525.5
100	17.4	22.5	99.3	-77.6	-465.8	23.3	29.0	134.7	-104.0	-634.4	37.9	61.2	177.0	-115.8	-694.5	45.5	73.5	177.0	-103.5	-621.0
Max =					10.4					14.3					66.9					101.5
2) Rainfall In 3) Release Ra 4) Storage R 5) Storage = 6) Maximium	ensity, I = A/(te = Min (Rele ate = Peak Flo Duration x Sto Storage = Ma	ease Rate, Peak w - Release Rat	Flow) e								IDF curve equat 100 year Intensity 50 year Intensity 25 year Intensity 10 year Intensity 5 year Intensity 2 year Intensity	tions (Intens y = 1735 = 1569 = 1402 = 1174 = 998.0	tawa IDF D ity in mm/hu 688 / (Time i 580 / (Time i 584 / (Time i 71 / (Time in 51 / (Time in) n min + 6.01 n min + 6.01 n min + 6.01 min + 6.053	$\begin{array}{c} 4) & {}^{0.820} \\ 4) & {}^{0.820} \\ 8) & {}^{0.819} \\ 4) & {}^{0.816} \\ 0) & {}^{0.814} \end{array}$					

TABLE D12 P-4 Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)

Table D13 - 5-YEAR STORM SEWER CALCULATION SHEET

Return Period Storm =	5	(5-years, 100-years)
Default Inlet Time=	10	(minutes)
Manning Coefficient =	0.013	(dimensionless)

	LOCATION			AREA (heo	ctares)			FLOW (UNRESTRIC	TED - RATIO	NAL METHO	D)							SEWER DAT	4				
Location	From Node	To Node	Area No.	Area (ha)	∑ Area (ha)	Average R	Indiv. 2.78*A*R	Accum. 2.78*A*R	Tc (mins)	l (mm/h)	Indiv. Flow (L/sec)	Return Period	Q (L/sec)	Dia (mm) Actual	Dia (mm) Nominal	Туре	Slope (%)	Length (m)	Capacity (L/sec)	Velocit Vf	y (m/s) Va	Time in Pipe, Tt (min)	Hydrauli Qa/Qf	ic Ratios Va/Vf
	CB 301	CB 302	P-8	0.15	0.150	0.65	0.27	0.27	10.00	104.19	28.06	5.00	28.1	299.36	300	PVC	0.35	33.09	56.9	0.81	0.57	0.96	0.49	0.71
	CB 302	STMMH 101			0.150			0.27	10.96	99.36		5.00	26.8	299.36	300	PVC	0.50	30.57	68.0	0.97	0.68	0.74	0.39	0.71
	DCB 308	STMMH 101	P-7	0.7302	0.730	0.21	0.43	0.43	10.00	104.19	44.38	5.00	44.4	299.36	300	PVC	1.00	29.77	96.2	1.37	0.97	0.51	0.46	0.71
	DCB 303	STMMH 101	P-6	0.8592	0.859	0.25	0.59	0.59	10.00	104.19	61.84	5.00	61.8	299.36	300	PVC	1.00	2.72	96.2	1.37	1.26	0.04	0.64	0.92
	STMMH 101	STMMH 102			1.739			1.29	11.71	95.96		5.00	123.7	533	525	CONC	0.30	88.53	245.2	1.09	0.77	1.92	0.50	0.71
	DCB 309	STMMH 102	P-5	0.804	0.804	0.28	0.62	0.62	10.00	104.19	64.75	5.00	64.8	299.36	300	PVC	1.00	2.43	96.2	1.37	1.15	0.04	0.67	0.84
	STMMH 102	STMMH 103			2.543			1.91	13.63	88.27		5.00	168.6	533	525	CONC	0.30	37.79	245.2	1.09	1.02	0.62	0.69	0.94
	CB 304	STMMH 103	P-3	0.179	0.179	0.84	0.42	0.42	10.00	104.19	43.36	5.00	43.4	299.36	300	PVC	1.00	12.13	96.2	1.37	0.97	0.21	0.45	0.71
675 Borbridge Ave.	CB 305	STMMH 103	P-2	0.2032	0.203	0.84	0.47	0.47	10.00	104.19	49.28	5.00	49.3	299.36	300	PVC	1.00	11.88	96.2	1.37	0.97	0.20	0.51	0.71
	STMMH 103	STMMH 104			2.925			2.80	14.24	86.09		5.00	241.0	610	600	CONC	0.30	55.67	351.5	1.19	1.12	0.83	0.69	0.94
	DCB 306	STMMH 104	P-4	1.903	1.903	0.24	1.29	1.29	10.00	104.19	134.69	5.00	134.7	366.42	375	PVC	1.00	24.98	164.8	1.59	1.56	0.27	0.82	0.98
	CB 307	STMMH 104	P-1	0.126	0.126	0.59	0.21	0.21	10.00	104.19	21.41	5.00	21.4	251.46	250	PVC	1.00	3.65	60.4	1.21	0.85	0.07	0.35	0.70
	STMMH 104	STMMH 105			4.954			4.30	15.07	83.32		5.00	358.1	610	600	CONC	0.50	37.93	453.7	1.54	1.50	0.42	0.79	0.98
	STMMH 105	STMMH 107			4.954			4.30	15.49	82.00		5.00	352.4	610	600	CONC	0.50	86.80	453.7	1.54	1.50	0.96	0.78	0.98
	BLDG	STMMH 106	P-R	0.634	0.634	0.90	1.59	1.59	10.00	104.19	165.17	5.00	165.2	366.42	375	PVC	3.50	3.80	308.4	2.97	2.10	0.03	0.54	0.71
	STMMH 106	STMMH 107			0.634			1.59	10.03	104.03		5.00	164.9	366.42	375	PVC	3.00	9.50	285.5	2.75	1.95	0.08	0.58	0.71
	STMMH 107	MUNI STM			5.587			5.88	16.45	79.14		5.00	465.5	533	525	CONC	2.50	21.32	708.0	3.14	2.89	0.12	0.66	0.92
Definitions: Q = 2.78*AIR, where Q = Peak Flow in Litres A = Watershed Area (he I = Rainfall Intensity (mi R = Runoff Coefficients	ectares) m/h)						Notes: Ottawa Rainfall From Sewer De			a = b= c =	<mark>5yr</mark> 998.071 0.814 6.053	<u>100yr</u> 1735.688 0.820 6.014		Checked:	iriwala, M.I iriwala, M.I			Project: 675 Borbrid Location: Ottawa, On File Ref:	-				Sheet No: 1 of 1	

Elev (m)	Head Over Orifice (m)	Orifice Flow (I/s)							
88.48	0.00	0.0							
91.30	2.82	28.9							
91.35	2.87	29.1							
91.40	2.92	29.4							
91.45	2.97	29.6							
91.50	3.02	29.9							
91.54	3.06	30.1							
91.59	3.11	30.3							
$Q_{ORIFICE} = C A (2 g H)^{0.5}$									
Size (mm) =	90.00								
C/L Orifice Elev =	88.48								
Max. Ponding Elev=	91.50								
C = Discharge Coeff =	0.61								
A = Orifice Area (mm^2) =	6,359								
A = Orifice Area (m^2) =	0.0064								
Max head over Orifice =	3.02								

 TABLE D14 - Flow Through Inlet Control Device - CB 307 (Catchment P-1)

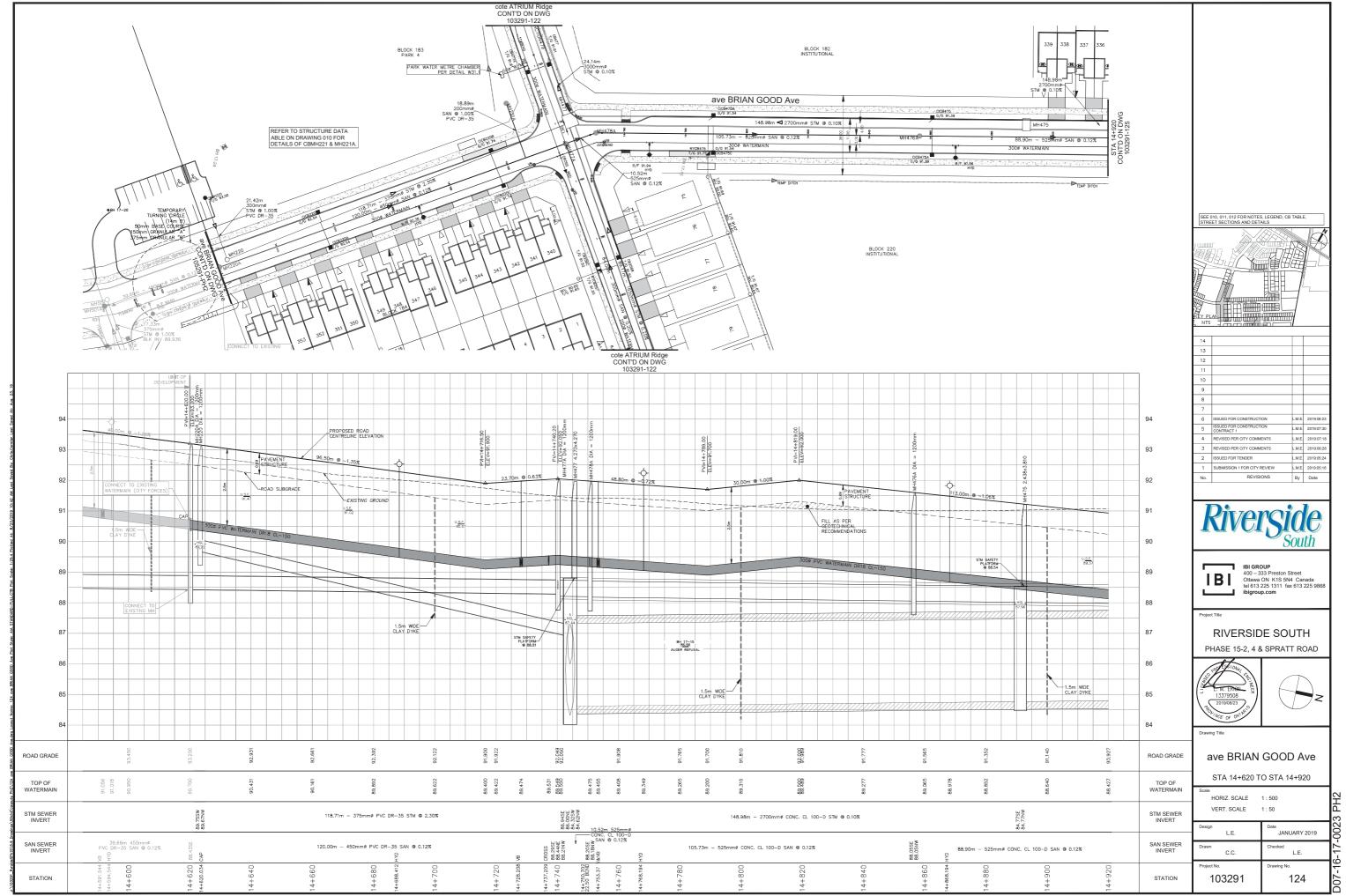
Elev (m)	Head Over Orifice (m)	Orifice Flow (I/s)
88.74	0.00	0.0
91.25	2.51	75.6
91.30	2.56	76.4
91.35	2.61	77.1
91.40	2.66	77.8
91.45	2.71	78.6
91.50	2.76	79.3
91.55	2.81	80.0
91.60	2.86	80.7
$Q_{\text{ORIFICE}} = C \text{ A } (2 \text{ g H})^{0.5}$	-	
Size (mm) =	150.00	
C/L Orifice Elev =	88.74	
Max. Ponding Elev=	91.50	
C = Discharge Coeff =	0.61	
A = Orifice Area (mm2) =	17,663	
A = Orifice Area (m^2) =	0.0177	
Max head over Orifice =	2.76	

TABLE D15 - Flow Through Inlet Control Device - CB 305 (Catchment P-2)

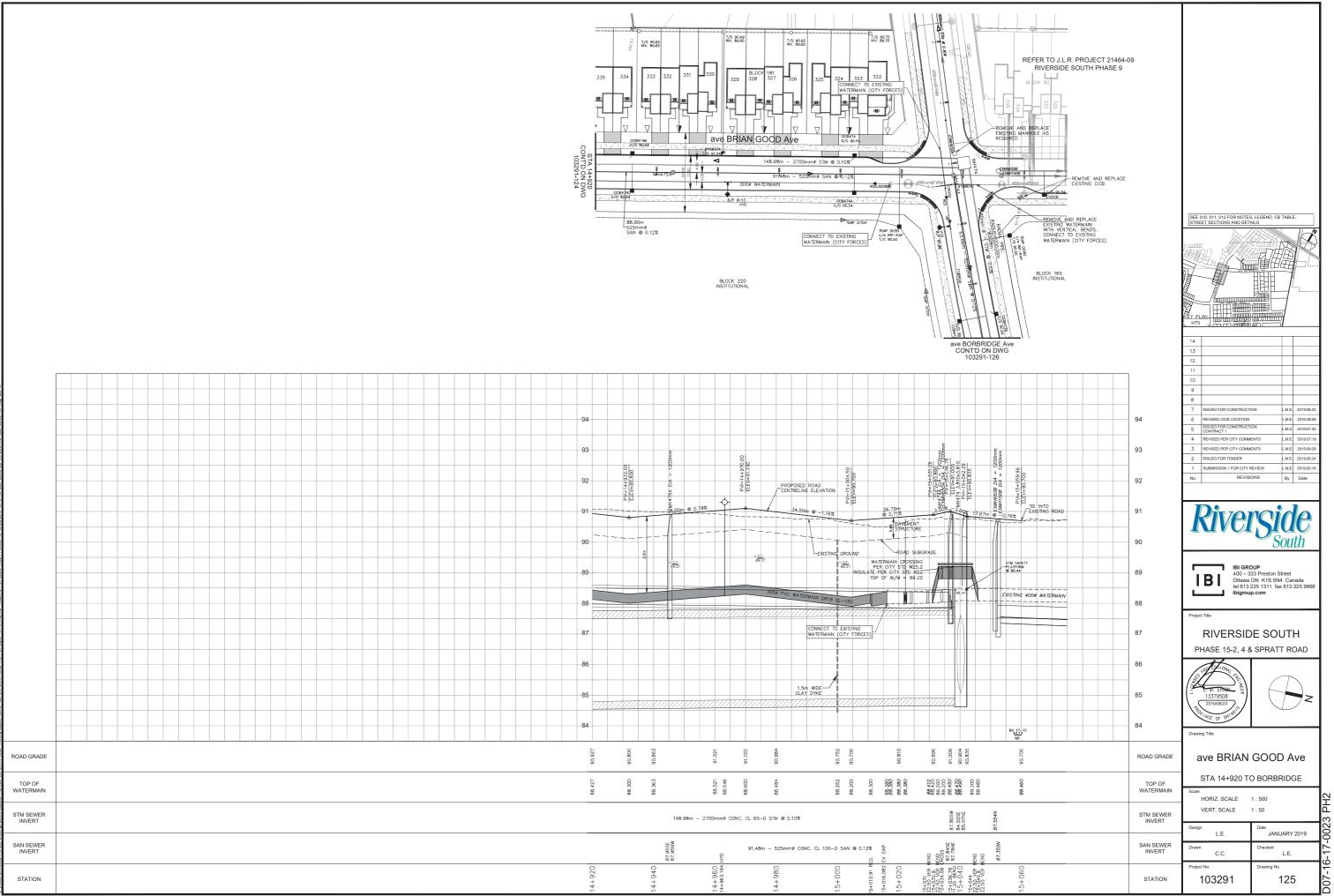
Elev (m)	Head Over Orifice (m)	Orifice Flow (I/s)
88.81	0.00	0.0
91.25	2.44	69.7
91.30	2.49	70.4
91.35	2.54	71.1
91.40	2.59	71.8
91.45	2.64	72.5
91.50	2.69	73.1
91.55	2.74	73.8
91.60	2.79	74.5
$Q_{ORIFICE} = C A (2 g H)^{0.5}$		
Size (mm) =	145.00	
C/L Orifice Elev =	88.81	
Max. Ponding Elev=	91.50	
C = Discharge Coeff =	0.61	
A = Orifice Area (mm2) =	16,505	
A = Orifice Area (m2) =	0.0165	
Max head over Orifice =	2.69	

TABLE D16 - Flow Through Inlet Control Device - CB 304 (Catchment P-3)

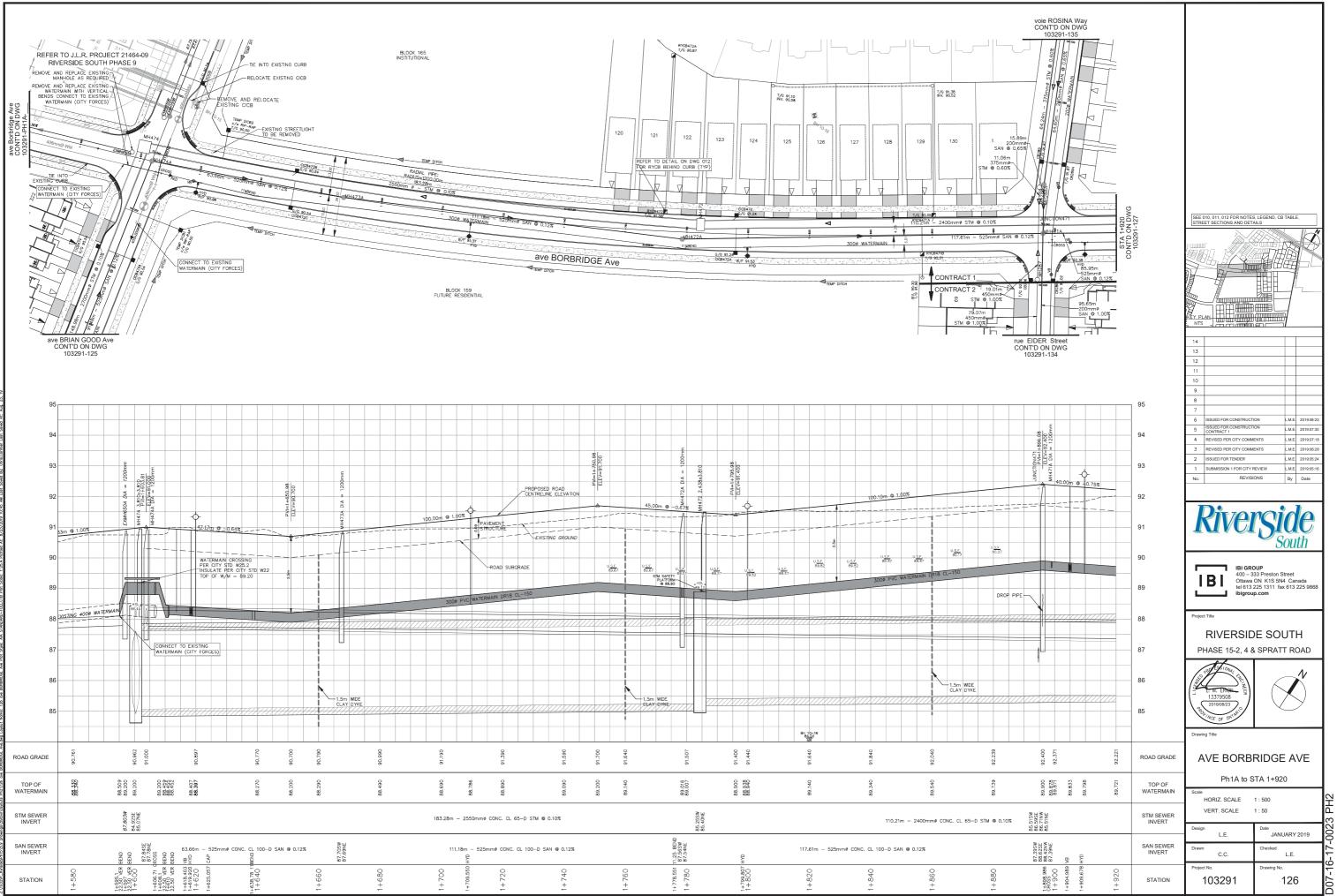
Elev (m)	Head Over Orifice (m)	Orifice Flow (I/s)
88.78	0.00	0.0
91.05	2.27	166.1
91.10	2.32	167.9
91.15	2.37	169.7
91.20	2.42	171.5
91.25	2.47	173.3
91.30	2.52	175.0
91.35	2.57	176.8
91.40	2.62	178.5
$Q_{\text{ORIFICE}} = C A (2 \text{ g H})^{0.5}$	-	
Size (mm) =	228.00	
C/L Orifice Elev =	88.78	
Max. Ponding Elev=	91.40	
C = Discharge Coeff =	0.61	
A = Orifice Area (mm2) =	40,807	
A = Orifice Area (m^2) =	0.0408	
Max head over Orifice =	2.62	

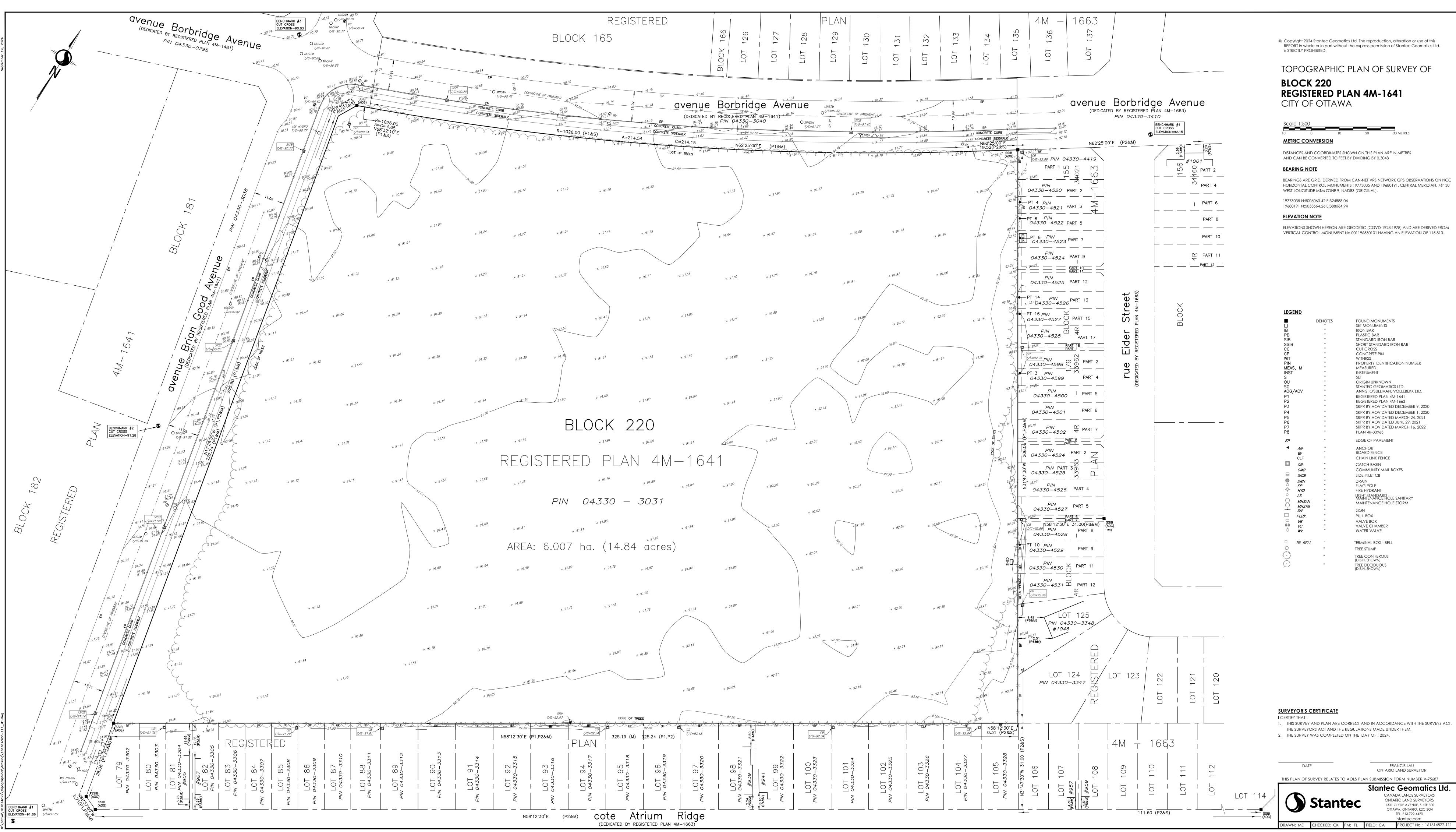

TABLE D17 - Flow Through Inlet Control Device - DCB 306 (Catchment P-4)

EXP Services Inc. CECCE Secondary School – Riverside South 675 Borbridge Avenue, Ottawa, ON OTT-24005530-A0 April 4, 2025


Appendix E – Additional Information

City of Ottawa UCC Drawings Boundary/Topographic Survey




#17743

#17743

#17743

EXP Services Inc. CECCE Secondary School – Riverside South 675 Borbridge Avenue, Ottawa, ON OTT-24005530-A0 April 4, 2025

Appendix F – Drawings

- C000 Notes & Details (Provided Separately)
- C001 Existing Conditions and Removals Plan (Provided Separately)
- C100 Site Servicing Plan (Provided Separately)
- C200-1 Site Grading Plan Interim (Provided Separately)
- C200-2 Site Grading Plan Ultimate (Provided Separately)
- C300 Erosion and Sediment Control Plan (Provided Separately)
- C500 Post-Development Site Catchments (Provided Separately)

