

Interim Geotechnical Investigation and Phase II Environmental Site Assessment Proposed New Riverside South Secondary School 675 Borbridge Avenue Ottawa, Ontario

Client:

Conseil des écoles catholiques du Centre-Est (CECCE) 4000 rue Labelle, Ottawa, Ontario K1J 1A1

Type of Document:

DRAFT REPORT

Project Number:

OTT-24010349-A0

Prepared By:

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 Canada

Date Submitted:

January 20, 2025

Project Name: Interim Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

Table of Contents

Execu	itive Sun	nmary	1
1.	Introd	luction	4
2.	Site D	escription	6
3.	Geolo	gy of the Site	7
	3.1	Surficial Geology Map	7
	3.2	Bedrock Geology Map	7
4.	Proce	dure	8
	4.1	Fieldwork	8
	4.2	Geotechnical Laboratory Testing Program	8
	4.3	Seismic Shear Wave Velocity Sounding Survey	8
	4.4	Environmental Procedure	9
5.	Subsu	rface Conditions and Groundwater Levels	10
	5.1	Topsoil	10
	5.2	Sandy Silt	10
	5.3	Silty Clay	10
	5.4	Glacial Till	11
	5.5	Inferred Bedrock	12
	5.6	Groundwater Level Measurements	12
6.	Phase	II Environmental Site Assessment	13
	6.1	Environmental Site Condition Standards	13
	6.2	Environmental Results	14
	6.3	Environmental Recommendations	14
7.	Site C	lassification for Seismic Site Response and Liquefaction Potential of Soils	15
	7.1	Site Classification for Seismic Site Response	15
	7.2	Liquefaction Potential of Soils	15
8.	Grade	Raise Restrictions	16
9.	Site G	rading	17
10.	Found	lation Considerations - Proposed School Building	18

Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0

January 20,2025

11.	Floor S	lab and Drainage Requirements	19
12.	Excava	tion and De-Watering Requirements	20
	12.1	Excavation	20
	12.2	De-Watering Requirements	20
13.	Pipe Be	edding Requirements	22
14.	Backfill	ing Requirements and Suitability of On-Site Soils for Backfilling Purposes	23
15.	Pavem	ent Structures	24
16.	Corrosi	on Potential	26
17.	Tree Pl	anting Restrictions	27
18.	Additio	nal Geotechnical Investigation	28
19.	Genera	ll Comments	29
List o	of Tab	les	
Table I			
	: Summa	ry of Laboratory Testing Program	8
Table I		ary of Laboratory Testing Programary of Results from Grain-Size Analysis and Atterberg Limit Determination	
	l: Summ		Sandy Silt 10
Table I	I: Summ	ary of Results from Grain-Size Analysis and Atterberg Limit Determination	Sandy Silt 10 Silty Clay 11
Table I Table I	I: Summ II: Summ V: Consc	ary of Results from Grain-Size Analysis and Atterberg Limit Determination stary of Results from Grain-Size Analysis and Atterberg Limit Determination	Sandy Silt 10 Silty Clay 11
Table I Table I	I: Summ II: Summ V: Consc /: Summ	ary of Results from Grain-Size Analysis and Atterberg Limit Determination stary of Results from Grain-Size Analysis and Atterberg Limit Determination blidation Test Results	Sandy Silt 10 Silty Clay 1111
Table I Table I Table \	I: Summ II: Summ V: Consc /: Summ _Glacial	ary of Results from Grain-Size Analysis and Atterberg Limit Determination stary of Results from Grain-Size Analysis and Atterberg Limit Determination blidation Test Resultsary of Results from Grain-Size Analysis and Atterberg Limit Determination ary of Results from Grain-Size Analysis and Atterberg Limit Determination	Sandy Silt 10 Silty Clay 1111
Table I Table I Table \ Table \	I: Summ II: Summ V: Consc /: Summ _Glacial /I: Summ	ary of Results from Grain-Size Analysis and Atterberg Limit Determination Stary of Results from Grain-Size Analysis and Atterberg Limit Determination solidation Test Results	Sandy Silt 10 Silty Clay 11

List of Figures

Figure 1 Site Location Plan

Figure 2 Borehole Location Plan

Figures 3 to 16 Borehole Logs

Figures 17 to 22 **Grain-size Distribution Curves**

Proposed New Riverside South Secondary School

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

List of Appendices

Appendix A – Seismic Shear Wave Velocity Sounding Survey Report by GPR

Appendix B - Consolidation Test Results

Appendix C – Environmental Laboratory Certificates of Analysis

Appendix D – Environmental Soil Analytical Tables

Legal Notification

List of Distribution

> 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

Executive Summary

Introduction

EXP Services Inc. (EXP) is pleased to present the results of the interim geotechnical investigation completed for the proposed New Riverside South Secondary School to be located at 675 Borbridge Avenue, Ottawa, ON (Figure 1). The terms and conditions of this assignment were outlined in EXP's proposal number: OTT-24010349-A0 dated June 12,2024 and authorized by the Conseil des écoles catholiques du Centre-Est (CECCE) on June 26, 2024.

In conjunction with this interim geotechnical investigation, EXP has carried out a Phase II Environmental Site Assessment (Phase II ESA) and retained Kilgour & Associates Ltd. (KAL) to carry out an Environmental Impact Study (EIS) and a Tree Conservation Report (TCR). The results of the Phase II ESA have been included in this report. The EIS and TCR will be provided in separate reports. EXP previously completed a Phase I Environmental Site Assessment (Phase I ESA) of the site, dated August 26, 2022, and the results are provided in a separate report. EXP is also undertaking civil design for this project and the design will be provided in separate documents.

Due to the dense tree cover across the site, tree clearing was required and limited to providing access to the borehole locations at the proposed building location. Further, additional boreholes and test pits are to be carried out in the remaining portion of the site at a later date. Therefore, this geotechnical report is to be considered an interim geotechnical report, to be updated when further subsurface information is available from the additional boreholes and/or test pits.

The proposed school building will be two (2) storeys with no basement. Based a proposed site plan provided by GRC Architects, Option 1, the proposed school development will include the school building located in the northwest corner of the site next to the Brian Good Avenue and Borbridge Avenue intersection. The development will also include future portables to the south of the school building, an outdoor sports field in the east portion of the site, bus loop south of the proposed school building, a bus loading and unloading area north of the proposed school building and an access road and parking lot in the northeast portion of the site. The development will be serviced by municipal underground services. The proposed Finished Floor Elevation for the proposed school building will be Elevation 91.5 m resulting in a maximum design site grade raise of 1.0 m for the proposed school building.

Proposed Development

a car drop-off temporary parking north of the site

The proposed school building will be two (2) storeys with no basement. Based a proposed site plan provided by GRC Architects, Option 1, the proposed school development will include the school building ocated in the northwest corner of the site next to the Brian Good Avenue and Borbridge Avenue intersection. The development will also include future portables to the south of the school building, an outdoon sports field in the east portion of the sixte, bus loop south of the proposed school building, a bus loading and unloading area north of the proposed school building and an access road and parking lot in the northeast portion of the site. The development will be serviced by municipal underground services. The proposed Finished Floor Elevation for the proposed school building will be Elevation 91.5 m resulting in a maximum design site grade raise of 1.0 m for the proposed school building.

Borehole Fieldwork Program

The fieldwork for this geotechnical investigation was undertaken between December 3 and 6, 2024 and consists of fourteen (14) boreholes (Borehole Nos. 24-1 to 24-4 and Nos. 24-6 to 24-15) advanced to auger refusal, cone refusal and termination depths ranging from 4.9 m to 10.9 m depths below existing grade. Borehole 24-5 was not drilled. Monitoring wells and piezometers were installed in selected boreholes for long-term monitoring of the groundwater table.

Subsurface Conditions

The borehole information indicates the subsurface conditions consist of a surficial topsoil layer underlain by very loose to compact sandy silt, firm to very stiff silty clay and loose to very dense glacial till. Refusal to auger and DCPT cone refusal were encountered in 4.9 m to 10.9 m depths (Elevation 86.2 m to Elevation 80.7 m) on inferred cobbles or boulders within the glacial

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

till or on bedrock. The groundwater level was found to range from 4.5 m to 5.1 m depths (Elevation 86.6 m to Elevation 86.3 m) based on the January 9,2025 measurement.

Phase II Environmental comments and Recommendations

Three environmental samples and one duplicate sample were submitted to a certified laboratory for analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC) inorganics (pH, electrical conductivity (EC), sodium adsorption ratio (SAR)) and metals.

For the purpose of this investigation, analytical results obtained from the soil samples were assessed against the generic Excess Soil Quality Standards (ESQS) as established under the Environmental Protection Act and regulated under O. Reg 406/19.

Based on the laboratory results of the three samples that were analyzed, all parameter concentrations were found to meet MECP Table 1 SCS for all land uses with the exception of BH24-14-SS4 and its duplicate (DUP), which exceeded MECP Table 1 SCS for barium, chromium and vanadium.

The laboratory results of the three samples which were analyzed, all parameter concentrations were found to meet MECP Tables 2.1 for residential/parkland/institutional and industrial/commercial/community land uses with the exception of BH24-14-SS4 and its duplicate (DUP), which exceeds MECP Table 2.1 ESQS for vanadium.

The laboratory results of the three samples which were analyzed, all parameter concentrations were found to meet MECP Table 3.1 for residential/parkland/institutional and industrial/commercial/community land uses with the exception of BH24-14-SS4 and its duplicate (DUP), which exceeds MECP Table 3.1 ESQS for vanadium.

According to Section 49.1 of O. Reg 153/04, if a contaminant exceeds the applicable SCS but does not exceed the naturally occurring range of that contaminant in that area, then the contaminant is considered to meet the applicable SCS. Native soils consisting of Champlain Sea Deposits can have higher concentrations of barium, chromium and vanadium. The Site is located within an area consisting of Champlain Sea Deposits and the exceedances of barium, chromium and vanadium do not exceed the naturally occurring range. Therefore, these parameters are not considered to exceed and meet the applicable SCS and ESQS.

Based on the Section 2.(3).15. of the "Rules for Soil Management and Excess Soil Quality Standards" (MECP 2019) document, a minimum of three samples must be analyzed if less than 600 cubic metres of soil will be excavated. Three samples were collected and submitted to be analyzed as part of this investigation, therefore up to 600 cubic metres of soil can be excavated and disposed of without restrictions. If additional soil is to be removed from the Site then additional soil samples will need to be collected and submitted for laboratory analysis.

Geotechnical Engineering Comments and Recommendations

A seismic shear wave velocity sounding survey (seismic shear wave survey) was conducted by GPR on December 5, 2024, and the results are shown in Appendix A. The results of the seismic shear wave velocity sounding survey indicates an average seismic shear wave velocity was 479 m/s. Table 4.1.8.4.A of the 2012 Ontario Buildings Code (as amended January 2022) indicates that for a seismic shear velocity value of 479 m/s, the site classification for seismic site response is **Class C**. The subsurface soils are not susceptible to liquefaction during a seismic event.

Based on a review of the borehole information and the consolidation test results and to maintain settlements within normally tolerable limits, it is considered that the maximum permissible site grade raise using soil fill is 1.0 m in conjunction with the footings designed in accordance with Section 10 of the attached interim report.

Based on a review of the borehole information, it is considered feasible to support the proposed school building by footings founded on an engineered fill pad constructed on the silty clay. The sandy silt will have to be excavated and removed from within the proposed building area. The engineered fill pad should be constructed in accordance with the procedure below. Strip footings having a maximum width of 1.5 m and square pad footings having a maximum width and length of 3.0 m founded at a maximum depth of 1.5 m below existing grade on the properly constructed engineered fill pad constructed on the native silty clay may be designed for a bearing pressure at serviceability limit state (SLS) of 120 kPa and factored geotechnical resistance at ultimate limit state (ULS) of 180 kPa. The factored ULS value includes a geotechnical resistance value of 0.5. The SLS and factored ULS values

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 January 20,2025

are valid provided the maximum permissible site grade raise of 1.0 m using approved soil fill is respected. The settlement of the proposed school building designed for the above SLS value and properly constructed are expected to be within the normally tolerable limits of 25 mm total settlement and 19 mm differential settlement.

The ground floor of the proposed school building may be designed as a slab-on-grade placed on a well packed 200 mm thick 19 mm sized clear stone bed placed on a minimum 300 mm thick engineered fill pad set on the approved silty clay subgrade constructed in accordance with Sections 9 and 10 of the attached interim geotechnical report. The proposed school building should have a perimeter drainage system. Underfloor drainage is not required.

Excavations for the construction of the foundations and installation the underground services for the proposed school development are expected to extend to a maximum depth of 3.0 m below the existing grade into the sandy silt and silty clay. Based on groundwater level measurements from January 9,2025 excavations are anticipated to be above the groundwater level.

The excavations may be undertaken by conventional heavy equipment capable of removing cobbles and boulders.

All excavations must be undertaken in accordance with the Occupational Health and Safety Act (OHSA), Ontario Reg. 213/91. Based on the definitions provided in OHSA, the subsurface soils on site are considered to be Type 3 and as such must be cut back at 1H:1V from the bottom of the excavation. Within zones of seepage, the excavation side slopes are expected to slough and eventually stabilize at 2H:1V to 3H:1V from the bottom of the excavation. Seepage of surface and subsurface water into the excavations is anticipated and it should be possible to remove any water entering the excavations by pumping from sumps. In areas of high infiltration or in areas where more permeable soil layers may exist, a higher seepage rate should be anticipated requiring high-capacity pumps to keep the excavation dry.

It is anticipated that the majority of the material required for engineered fill construction and backfilling purposes will have to be imported and should preferably conform to the specifications stated in the attached interim report.

Pavement structure for light duty traffic areas should consist of 65 mm thick asphaltic concrete, 150 mm thick OPSS Granular A base and 300 mm thick OPSS Granular B Type II subbase. Pavement structure for heavy duty traffic areas should consist of 110 mm thick asphaltic concrete, 150 mm thick OPSS Granular A base and 450 mm thick OPSS Granular B Type II subbase.

The site is underlain by marine silty clay. The Atterberg limit test results of the silty clay were compared with the document titled, *Tree Planting in Sensitive Marine Clay Soils – 2017 City of Ottawa Guidelines (2017 Guidelines)* and indicate the silty clay has a low/medium potential for soil volume change

The comments and recommendations given in the attached report are based on the above design concept and are considered interim in nature. These interim comments and recommendations must be verified by a more detailed geotechnical and environmental investigation consisting of additional boreholes and test pits.

The above and other related considerations are discussed in greater detail in the main body of the attached interim report.

This executive summary is a brief synopsis of the attached interim geotechnical report and should not be read in lieu of reading the attached interim report in tis entirety.

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

1. Introduction

EXP Services Inc. (EXP) is pleased to present the results of the interim geotechnical investigation completed for the proposed New Riverside South Secondary School to be located at 675 Borbridge Avenue, Ottawa, ON (Figure 1). The terms and conditions of this assignment were outlined in EXP's proposal number: OTT-24010349-A0 dated June 12,2024 and authorized by the Conseil des écoles catholiques du Centre-Est (CECCE) on June 26, 2024.

In conjunction with this interim geotechnical investigation, EXP has carried out a Phase II Environmental Site Assessment (Phase II ESA) and retained Kilgour & Associates Ltd. (KAL) to carry out an Environmental Impact Study (EIS) and Tree Conservation Report (TCR). The results of the Phase II ESA have been included in this report. The EIS and TCR will be provided in separate reports. EXP previously completed a Phase One Environmental Site Assessment (Phase I ESA) of the site, dated August 26, 2022, and the results are provided in a separate report. EXP is also undertaking civil design for this project and the design will be provided in separate documents.

Due to the dense tree cover across the site, tree clearing was required and limited to providing access to the borehole locations at the proposed building location. Further, additional boreholes and test pits are to be carried out in the remaining portion of the site at a later date. Therefore, this geotechnical report is to be considered an interim geotechnical report, to be updated when further subsurface information is available from the additional boreholes and/or test pits.

The proposed school building will be two (2) storeys with no basement. Based a proposed site plan provided by GRC Architects, Option 1, the proposed school development will include the school building located in the northwest corner of the site next to the Brian Good Avenue and Borbridge Avenue intersection. The development will also include future portables to the south of the school building, an outdoor sports field in the east portion of the site, bus loop south of the proposed school building, a bus loading and unloading area north of the proposed school building and an access road and parking lot in the northeast portion of the site. The development will be serviced by municipal underground services. The proposed Finished Floor Elevation for the proposed school building will be Elevation 91.5 m resulting in a maximum design site grade raise of 1.0 m for the proposed school building.

The interim geotechnical investigation was undertaken to:

- a) Establish the subsurface soil and groundwater conditions at fourteen (14) boreholes located on the site,
- b) Classify the site for seismic site response in accordance with the requirements of the 2012 Ontario Building Code (as amended January 1, 2022) and assess the potential for liquefaction of the subsurface soils during a seismic event,
- c) Carry out a Phase II Environmental Site Assessment concurrent to the geotechnical investigation,
- d) Comment on grade-raise restrictions,
- e) Make recommendations regarding the most suitable type of foundations, founding depth and bearing pressure at serviceability limit state (SLS) and factored geotechnical resistance at ultimate limit state (ULS) of the founding strata and comment on the anticipated total and differential settlements of the recommended foundation type,
- f) Provide comments regarding slab-on-grade construction and the requirement for perimeter and underfloor drainage systems,
- g) Comment on excavation conditions and de-watering requirements during construction,
- h) Provide pipe bedding requirements for underground services,
- i) Discuss backfilling requirements and suitability of on-site soils for backfilling purposes,
- j) Recommend pavement structure thicknesses for the access road, parking lot, bus loading and unloading area and bus loop; and
- k) Comment on subsurface concrete requirements and corrosion potential of subsurface soils to buried metal structures/members.

EXP Services Inc.

Project Name: Interim Geotechnical Investigation and Phase II ESA

Proposed New Riverside South Secondary School

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

The comments and recommendations given in this report are based on the above design concept and are considered interim in nature. These interim comments and recommendations are to be verified by a more detailed geotechnical investigation consisting of additional boreholes and test pits.

Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0

January 20,2025

6.007

2. Site Description

The site is located in the southeast corner of the Brian Good Avenue and Borbridge Avenue intersection at the municipal addless of 675 Borbridge Avenue, Ottawa, Ontario. The site is approximately square in shape with an approximate area of 5.8 hectares. The site is bounded to the south and to the west by residential developments. At the time of this interim geotechnical investigation, the majority of the site was covered with dense trees.

The EXP Phase 1 ESA identified that small stockpiles of soil and granular material are present on the site, generated from residential construction activities.

A black ash tree cluster to be preserved was also identified by KAL and the location is shown on Figure 2.

The ground surface elevation of the boreholes drilled within the proposed building footprint range from Elevation 91.64 m to Elevation 90.84 m.

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 January 20,2025

Janua

3. Geology of the Site

3.1 Surficial Geology Map

The surficial geology was reviewed via the Google Earth application using the map published by the Ontario Ministry of Energy, Northern Development and Mines available via www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth/surficial-geology and was last modified on May 23, 2017. The map indicates the site is underlain by fine textured glaciomarine deposits consisting of silt and clay with minor sand and gravel as well as coarse textured glaciomarine deposits consisting of sand and gravel with minor silt and clay. Underlying the glaciomarine deposits is a deposit of stone-poor, sandy silt to silt and sand-textured glacial till. The surficial deposits are shown in Image 1 below.

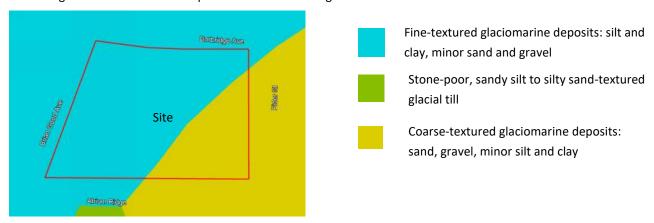


Image 1 - Surficial Geology

3.2 Bedrock Geology Map

The bedrock geology was reviewed via the Google Earth application using the map published by the Ontario Ministry of Energy, Northern Development and Mines available via http://www.geologyontario.mndm.gov.on.ca/mines/data/google/MRD219/geology/doc.kml and publish in 2007. The map indicates the site is underlain by dolostone with minor shale and sandstone of the Beekmantown Group, Oxford formation. The bedrock geology is show in Image 2 below.

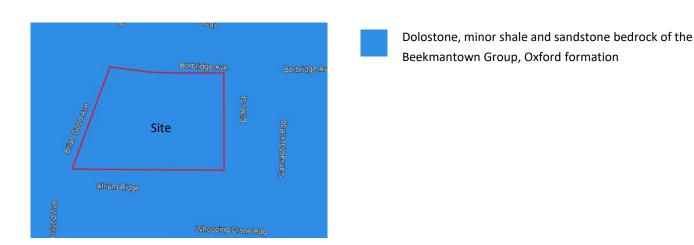


Image 2 - Bedrock Geology

Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

4. Procedure

4.1 Fieldwork

The fieldwork for this geotechnical investigation was undertaken from December 3 to 6, 2024 and consists of fourteen (14) boreholes (Borehole Nos. 24-1 to 24-4 and Nos. 24-6 to 24-15) advanced to auger refusal, cone refusal and termination depths ranging from 4.9 m to 10.9 m depths below existing grade. Borehole 24-5 was not drilled. The fieldwork was supervised on a full-time basis by EXP.

The boreholes were drilled using a CME-55 track-mounted drill rig equipped with continuous flight hollow-stem auger equipment operated by a drilling contractor subcontracted to EXP. Standard penetration tests (SPTs) were performed in all the boreholes at 0.75 m to 1.5 m depth intervals and soil samples were retrieved by the split-spoon sampler. Relatively undisturbed Shelby tube samples were retrieved from two (2) boreholes. The undrained shear strength of the silty clay was measured by conducting in-situ vane tests at selected depths in the boreholes. Dynamic cone penetration tests (DCPT) were conducted in Borehole Nos. 24-3, 24-10 and 24-12.

Fifty (50) mm diameter monitoring wells and nineteen (19) mm standpipes were installed in selected boreholes for long-term monitoring of the groundwater table. The monitoring the wells were also used for sampling of the groundwater as part of the Phase II ESA. The monitoring wells and standpipes were installed in accordance with EXP standard practice, and the installation configuration is documented on the respective borehole log. The boreholes were backfilled upon completion of drilling and installation of the monitoring wells.

4.2 Geotechnical Laboratory Testing Program

On completion of the borehole fieldwork, the soil samples were transported to the EXP laboratory in Ottawa and borehole logs prepared. The soils are classified by their main constituents in accordance with the Unified Soil Classification System (USCS) using the soil group name and symbol and by the modified Burmister soil classification method for the classification of the minor constituents using adjectives and modifiers such as trace and some.

A summary of the laboratory testing program for the soil samples is shown in Table I.

Table I: Summary of Laboratory Testing Program							
Type of Test	Number of Tests Completed						
Moisture Content Determination	127						
Unit Weight Determination	7						
Grain Size Analysis	6						
Atterberg Limit Determination	6						
Consolidation Test	1						
Corrosion Analysis (pH, sulphate, chloride and resistivity)	2						

4.3 Seismic Shear Wave Velocity Sounding Survey

A seismic shear wave velocity sounding survey was conducted at the site on December 5, 2024, by Geophysics GPR International Inc. (GPR). The survey line is located along Brian Good Avenue to the southwest of the site as shown in Figure 2. The survey was

Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

undertaken using the multi-channel analysis of surface waves (MASW), spatial auto correlation (SPAC) and seismic refraction methods. The seismic shear wave velocity sounding survey report is shown in Appendix A.

4.4 Environmental Procedure

A total of three representative soil samples and one duplicate sample were collected from three boreholes (Borehole Nos. 24-1, 24-4 and 24-14) and were submitted to a certified laboratory for analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC) inorganics (pH, electrical conductivity (EC), sodium adsorption ratio (SAR)) and metals.

675 Borbridge Avenue, Ottawa, ON
Project Number: OTT-24010349-A0

January 20,2025

5. Subsurface Conditions and Groundwater Levels

A detailed description of the subsurface conditions and groundwater levels from the boreholes are given on the attached Borehole Logs, Figure Nos. 3 to 16. The borehole logs and related information depict subsurface conditions only at the specific locations and times indicated. Subsurface conditions and water levels at other locations may differ from conditions at the locations where sampling was conducted. The passage of time also may result in changes in the conditions interpreted to exist at the locations where sampling was conducted.

It should be noted that the soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling operations. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Note on Sample Descriptions" preceding the borehole logs form an integral part of this report and should be read in conjunction with this report.

Reference is made to Section 6 of this interim report and to the Phase I ESA reports regarding the environmental condition of the subsurface soils and groundwater.

A review of the borehole logs indicates the following subsurface conditions with depth and groundwater level measurements.

5.1 Topsoil

A 150 mm to 400 mm thick surficial topsoil layer was encountered in all the boreholes.

5.2 Sandy Silt

A sandy silt was encountered beneath the topsoil in all the boreholes and extends to depths ranging from 1.4 m to 2.6 m (Elevation 89.6 m to Elevation 88.4 m). The sandy silt contains silty clay seams. The SPT N-values of the sandy silt range from 3 to 26 indicating the sandy silt is in a very loose to compact state. The natural moisture content and unit weight of the sandy silt is 11 percent to 40 percent and 18.7 kN/m³ to 20.2 kN/m³, respectively.

The results from the grain-size analysis and Atterberg limit determination conducted on two (2) samples of the soil are summarized in Table II. The grain-size distribution curves are shown in Figures 17 and 18.

Table II: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination Sandy Silt										
Borehole No.		Grain-Size Analysis (%) and Atterberg Limit Determination (%)								
(BH) — Sample No. (SS)	Depth (m)	Gravel	Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Soil Classification	
BH24-1 SS3	1.5 - 2.1	0	21	43	36	28	15	13	Clayey Sandy Silt (ML) with Silty Clay Seams of Low Plasticity	
BH24-14 SS3	1.5 - 2.1	0	45	37	18	Non-Plastic			Sandy Silt (ML) - Some Clay	

Based on a review of the results of the grain-size analysis, the soil may be classified as a clayey sandy silt (ML) with silty clay seams of low plasticity to a non-plastic sandy silt (ML) with some clay.

5.3 Silty Clay

The sandy silt is underlain by a sensitive marine silty clay contacted in all boreholes that extends to depths ranging from 4.1 m to 6.5 m (Elevation 87.5 m to Elevation 84.5 m). The undrained shear strength of the silty clay ranges from 38 kPa to greater than 120 kPa indicating a firm to very stiff consistency. The natural moisture content and unit weight of the silty clay is 20 percent to 68 percent and 15.9 kN/m3 to 16.5 kN/m3, respectively.

New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

The results from the grain-size analysis and Atterberg limit determination conducted on three (3) selected samples of the silty clay are summarized in Table III. The grain-size distribution curves are shown in Figures 19 to 21.

Table III: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination Silty Clay												
Borehole No.		Grain-Size Anal	Grain-Size Analysis (%) and Atterberg Limit Determination (%)									
(BH) – Sample No. (SS)	Depth (m)	Gravel	Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Soil Classification			
BH24-1 SS6	3.8 - 4.4	2	7	45	46	35	16	19	Silty Clay of Medium Plasticity (CI) - Trace Sand, Trace Gravel			
BH24-3 SS5	3.8 - 4.4	1	5	61	33	31	14	17	Silty Clay of Medium Plasticity (CI) - Trace Sand, Trace Gravel			
BH24-15 SS4	3.0 - 3.6	0	1	41	58	53	14	39	Silty Clay of High Plasticity (CH) – Trace Sand			

Based on a review of the results of the grain-size analysis and Atterberg limits, the soil may be classified as a silty clay of medium to high plasticity (CI to CH) with trace sand and trace gravel.

A consolidation test was performed on one (1) Shelby tube sample of the silty clay. The test results and estimated soil parameters are summarized in Table IV. The consolidation test results are shown in Appendix B.

Table IV: Consolidation Test Results									
Borehole No. (BH)-Sample No. (ST)	Sample Depth (Elevation) (m)	σ′νο (kPa)	Wc (%)	γ (kN/m³)	σ' _p (kPa)	e _o	Cr	Cc	OCR
BH24-12 - ST1	3.8 - 4.4 (87.0 - 86.4)	69	62.5	15.9	96	1.757	0.049	0.844	1.4

 σ'_{v0} = calculated effective overburden pressure (kPa); W_c : natural moisture content (%), γ : estimated natural unit weight σ'_p = pre-consolidation pressure (kPa), e_0 = initial void ratio; C_r = re-compression index; C_c = compression index; OCR - Over-Consolidation Ratio

Based on a review of the consolidation test result, the pre-consolidation pressure of the silty clay sample is 96 kPa and the silty clay is slightly over-consolidated with an over-consolidation ratio of 1.4 indicating the silty clay is over-consolidated by 27 kPa.

5.4 Glacial Till

A glacial till was contacted beneath the silty clay at depths of 4.1 m to 6.5 m (Elevation 87.5 m to Elevation 84.5) The glacial till contains varying amounts of gravel, sand, silt and clay within the soil matrix as well as cobbles and boulders. The standard penetration test (SPT) N-values of the glacial till ranges from 5 to 54 indicating the glacial till is in a loose to very dense state. A high N value with low sampler penetration such as N equal to 50 for 25 mm sampler penetration is likely a result of the sampler making contact with a cobble or boulder within the glacial till. The moisture content of the glacial till is 4 percent to 35 percent.

The results from the grain-size analysis conducted on one (1) sample of the glacial till are summarized in Table V. The grain-size distribution curves are shown in Figure 22.

New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

Table V: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination Glacial Till								
Borehole No. (BH No. — Sample (SS) No. — Sample (SS) No. Grain-Size Analysis (%) and Atterberg Limit Determination (%) — Clay Plasticity Index Soil Classif							nit Determination (%) Soil Classification	
BH24-2 SS6	4.6-5.1	22	50	24	4	Non-Plastic	Gravelly Silty Sand (SM) - Trace Clay	

Based on a review of the results of the grain-size analysis and Atterberg limits, the glacial till is a gravelly silty sand (SM) with trace clay. The glacial till contains cobbles and boulders.

5.5 Inferred Bedrock

Auger refusal and dynamic cone penetration test (DCPT) cone refusal were encountered in Borehole Nos. 24-1 to 24-3, 24-10 and 24-12 at a 4.9 m to 10.9 m depths (Elevation 86.2 m to Elevation 80.7 m) on inferred cobbles or boulders within the glacial till or on bedrock.

In Borehole No. 24-3 auger refusal was encountered at a 7.4 m depth (Elevation 84.1 m) on inferred cobbles or boulders within the glacial till.

5.6 Groundwater Level Measurements

A summary of the groundwater level measurements taken in the boreholes equipped with monitoring wells and standpipes are shown in Table VI.

Table VI: Summary of Groundwater level Measurements									
Borehole (BH)	Ground Surface Elevation (m)	Screened Material	Date of Measurement (Elapsed Time in Days from Date of Installation)	Groundwater Depth Below Ground Surface (Elevation), m					
BH24-02	91.44	Silty Clay/ Glacial Till	January 9, 2025 (37 days)	5.1 (86.3)					
BH24-03	91.46	Silty Clay/ Glacial Till	January 9, 2025 (37 days)	5.0 (86.5)					
BH24-08	91.52	Silty Clay/ Glacial Till	January 9, 2025 (36 days)	5.1 (86.4)					
BH24-13	91.14	Sandy Silt/ Silty Clay	January 9, 2025 (35 days)	4.5 (86.6)					

The groundwater level was found to range from 4.5 m to 5.1 m depths (Elevation 86.6 m to Elevation 86.3 m).

The groundwater levels were determined in the boreholes at the time and under the condition stated in this report. Note that fluctuations in the level of groundwater may occur due to a seasonal variation such as precipitation, snowmelt, rainfall activities, and other factors not evident at the time of measurement and therefore may be at a higher level during wet weather periods.

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

6. Phase II Environmental Site Assessment

6.1 Environmental Site Condition Standards

For the purpose of this investigation, analytical results obtained from the soil samples were assessed against the generic Excess Soil Quality Standards (ESQS) as established under the Environmental Protection Act and regulated under O. Reg 406/19, as well as the Agricultural land use standards made under the Canadian Council of Ministers of the Environment (CCME) as per the request of the client. Table 1 provides the "Full Depth Background Site Condition Standards" and contains the same standards as provided in Table 1 of the Soil, Ground Water and Sediment Standards made under Part XV.1 of the EPA and referred to in O. Reg. 153/04 as the full depth background site condition standards ("Soil, Ground Water and Sediment Standards") but has been modified by noting when leachate analysis is required and if the standard is based on the analytical reporting limit or not.

Tabulated background ESQS (Table 1) applicable to environmentally sensitive sites and effects based generic ESQS (Tables 2.1 to 9.1) applicable to non-environmentally sensitive sites are provided in the accompanying "Rules for Soil Management and Excess Soil Quality Standards" (MECP 2019) document. The effects-based ESQS (Tables 2.1 to 9.1) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), and restoration depth (full or stratified).

Tables 1 and 2.1 to 9.1 of MECP (2019) are summarized as follows:

- Table 1 Applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- Table 2.1 Applicable to sites with potable groundwater and full depth restoration;
- Table 3.1 Applicable to sites with non-potable groundwater and full depth restoration;
- Table 4.1 Applicable to sites with potable groundwater and stratified restoration;
- Table 5.1 Applicable to sites with non-potable groundwater and stratified restoration;
- Table 6.1 Applicable to sites with potable groundwater and shallow soils;
- Table 7.1 Applicable to sites with non-potable groundwater and shallow soils;
- Table 8.1 Applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- Table 9.1 Applicable to sites with non-potable groundwater and that are within 30 m of a water body.

Application of the generic or background ESQS to a specific site is based on a consideration of site conditions related to soil pH (i.e., surface and subsurface soil), thickness and extent of overburden material, (i.e., shallow soil conditions), and proximity to an area of environmental sensitivity or of natural significance.

As development is planned for the Site, it is anticipated that excess soil will be generated. The applicable SCS depend on the quantity of soil being disposed of and the applicable SCS to the receiving property. In accordance with Regulation 406/19, excess soil that meets the MECP Table 1 to Table 9 SCS may be disposed of at a property where less than 350 m3 of soil are required, while excess soil that meets the MECP Table 1 or Table 2.1 to 9.1 ESQS may be disposed of at a property where more than 350 m3 of soil are required. The volume of soil to be generated at the site is unknown at this time.

The soil quality was compared to the MECP Table 1 SCS, which are based on background concentrations. Soil with concentrations less than MECP Table 1 can be disposed of without restrictions.

Analytical results were also compared to Table 2.1, which allows for evaluation to any off-site properties that are not municipally serviced with drinking water, and Table 3.1 for off-site properties that are municipally serviced with drinking water. If Tables 4.1 to 9.1 are applicable to the receiving site, then the data should be compared to the receiving site applicable ESQS, at the direction of the receiving site Qualified Person.

The laboratory certificates of analysis for the report are in Appendix C. The analytical results are included in Appendix D.

> 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 January 20,2025

6.2 Environmental Results

The results and findings of the soil characterization investigation are summarized as follows:

- A total of three (3) representative samples and one duplicate sample were collected and were submitted to a certified laboratory for analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC) inorganics (pH, electrical conductivity (EC), sodium adsorption ratio (SAR)) and metals. Refer to the analytical summary Tables 1 to 4 in Appendix D. Laboratory certificates of analysis can be found in Appendix C.
- The soil sample collected from BH24-04 (1.5-2.1 mbgs) consisted of brown, moist, sandy silt with clay. The soil samples collected from BH24-01 and BH24-14 (3.0-3.6 and 2.3-2.9 mbgs, respectively). Fill material was not identified on the Site in the borehole drilling program.
- The MECP SCS criteria are applicable if soil pH is in the range of 5 to 9 for surface soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). The pH across the samples was found to be in an acceptable range (7.13 7.66).
- Based on the laboratory results of the three (3) samples that were analyzed, all parameter concentrations were found to meet MECP Table 1 SCS for all land uses with the exception of BH24-14 SS4 and its duplicate (DUP), which exceeded MECP Table 1 SCS for barium, chromium and vanadium.
- Based on the laboratory results of the three (3) samples were analyzed all parameter concentrations were found to
 meet MECP Tables 2.1 for residential/parkland/institutional and industrial/commercial/community land uses with the
 exception of BH24-14-SS4 and its duplicate (DUP), which exceeds MECP Table 2.1 ESQS for vanadium.
- Based on the laboratory results of the three (3) samples were analyzed all parameter concentrations were found to
 meet MECP Table 3.1 for residential/parkland/institutional and industrial/commercial/community land uses with the
 exception of BH24-14-SS4 and its duplicate (DUP), which exceeds MECP Table 3.1 ESQS for vanadium.

6.3 Environmental Recommendations

According to Section 49.1 of O.Reg 153/04, if a contaminant exceeds the applicable SCS but does not exceed the naturally occurring range of that contaminant in that area, then the contaminant is considered to meet the applicable SCS. Native soils consisting of Champlain Sea Deposits can have higher concentrations of barium, chromium and vanadium. The Site is located within an area consisting of Champlain Sea Deposits and the exceedances of barium, chromium and vanadium do not exceed the naturally occurring range. Therefore, these parameters are not considered to exceed and meet the applicable SCS and ESQS.

Based on the Section 2.(3).15. of the "Rules for Soil Management and Excess Soil Quality Standards" (MECP 2019) document, a minimum of three samples must be analyzed if less than 600 cubic metres of soil will be excavated. Three samples were collected and submitted to be analyzed as part of this investigation, therefore up to 600 cubic metres of soil can be excavated and disposed of without restrictions. If additional soil is to be removed from the Site then additional soil samples will need to be collected and submitted for laboratory analysis.

Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0
January 20,2025

7. Site Classification for Seismic Site Response and Liquefaction Potential of Soils

7.1 Site Classification for Seismic Site Response

A seismic shear wave velocity sounding survey (seismic shear wave survey) was conducted by GPR on December 5, 2024, and the results are shown in Appendix A. The results of the seismic shear wave velocity sounding survey indicates an average seismic shear wave velocity was 479 m/s. Table 4.1.8.4.A of the 2012 Ontario Buildings Code (as amended January 2022) indicates that for a seismic shear velocity value of 479 m/s, the site classification for seismic site response is **Class C**.

7.2 Liquefaction Potential of Soils

The subsurface soils are not susceptible to liquefaction during a seismic event.

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

8. Grade Raise Restrictions

The results of the boreholes revealed that the site is underlain by a sensitive marine silty clay that is slightly over-consolidated and prone to consolidation settlement that will exceed normally tolerable limits if overstressed by a combination of the following loads imposed on the silty clay:

- Placement of fill on the site to raise the grades at the site,
- Footing loads applied to the silty clay by the proposed buildings; and
- Post construction permanent lowering of the groundwater table.

For the proposed development, the load stress imposed on the silty clay will include a combination of the first two (2) types of loads listed above. Long-term lowering of the groundwater table is not anticipated since the groundwater level measurements indicate the groundwater level is below the depth of excavation and construction anticipated for the proposed development. The total combined load stress applied to the silty clay should be below the preconsolidation pressure of the silty clay in order to keep consolidation settlement of the proposed school building within normally tolerable limits.

Based on a review of the borehole information and consolidation test results and to maintain settlements within normally tolerable limits, it is considered that the maximum permissible site grade raise using soil fill is 1.0 m in conjunction with the footings designed in accordance with Section 9 of this interim report.

vew Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

9. Site Grading

Site grading within the **proposed school building footprint area** should consist of the removal of the surficial topsoil, organic stained soils and the sandy silt down to the silty clay. The exposed silty clay should be examined by a geotechnician. Once the subgrade has been approved, the grades may be raised to the underside of footing elevation and design elevation of the ground floor by the construction of an engineered fill pad in accordance with the procedure outlined in Section 10 of this interim report.

Site grading within the **proposed portable areas** should consist of the removal of the surficial topsoil layer and organic stained soils down to the sandy silt. The exposed sandy silt should be examined by a geotechnician. Once the exposed sandy silt has been approved, the grades may be raised to the design elevation of the underside of the portables by the construction of an engineered fill pad in accordance with the procedure outlined in Section 10 of this interim report

Site grading within the proposed sports field, access road, parking lot, bus loading and unloading area and the bus loop should consist of the removal of the surficial topsoil layer and organic stained soils down to the native sandy silt. The exposed sandy silt should be examined by a geotechnician. Once the exposed subgrade has been approved, the grades may be raised to the design elevation of the subgrade of the sports field, access road, parking lot, bus loading and unloading area and bus loop by the placement of fill material consisting of Ontario Provincial Standard Specification (OPSS) Select Subgrade Material (SSM) or approved non-organic on-site material that is free of debris, cobbles and boulders compacted to 95 percent standard Proctor maximum dry density (SPMDD). In-place density tests should be undertaken on each lift of the fill material to ensure the material is properly compacted prior to the placement of subsequent lifts.

The above site grading geotechnical comments and recommendations regarding the proposed portables and proposed sports field, access road, parking lot, bus loading and unloading area and the bus loop are to be confirmed once additional boreholes and/or test pits have been carried out within these areas.

Project Name: Interim Geotechnical Investigation and Phase II ESA
Proposed New Riverside South Secondary School
675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

10. Foundation Considerations - Proposed School Building

The design finished floor elevation of the proposed school building is Elevation 91.50 m. Based on a review of the borehole information, it is considered feasible to support the proposed school building by footings founded on an engineered fill pad constructed on the silty clay. The sandy silt will have to be excavated and removed from within the proposed building area. The engineered fill pad should be constructed in accordance with the procedure below. Strip footings having a maximum width of 1.5 m and square pad footings having a maximum width and length of 3.0 m founded at a maximum depth of 1.5 m below existing grade on the properly constructed engineered fill pad constructed on the native silty clay may be designed for a bearing pressure at serviceability limit state (SLS) of 120 kPa and factored geotechnical resistance at ultimate limit state (ULS) of 180 kPa. The factored ULS value includes a geotechnical resistance value of 0.5. The SLS and factored ULS values are valid provided the maximum permissible site grade raise of 1.0 m using approved soil fill is respected. The settlement of the proposed school building designed for the above SLS value and properly constructed are expected to be within the normally tolerable limits of 25 mm total settlement and 19 mm differential settlement.

The construction of engineered fill pad for the proposed school building should consist of the excavation and removal of the surficial topsoil, organic stained soils and sandy silt down to the silty clay. The exposed subgrade should be examined by a geotechnician. Once the subgrade has been approved, the grades may be raised to the design underside footing and floor slab elevations by the construction of an engineered fill pad. The excavation for the proposed school building should extend to a sufficient distance beyond the limits of the proposed school building to accommodate a 1.0 m wide horizontal bench of engineered fill that extends beyond the perimeter of the proposed building on all sides, which should thereafter be sloped at an inclination of 1H to 1V down to the approved subgrade. The engineered fill should consist of OPSS Granular B Type II material that is placed in 300 mm thick lifts and each lift compacted to 100 percent SPMDD. The placement and compaction of the engineered fill can in this way be undertaken to the founding level of the footings. From the footing level to the underside of the floor slab, each lift of the Granular B Type II material should be compacted to 98 percent of SPMDD. The engineered fill should be placed under the full-time supervision of a geotechnician working under the direction of a geotechnical engineer. In-place density tests should be undertaken on each lift of the engineered fill to ensure that it is properly compacted prior to placement of subsequent lift.

All the footing beds should be examined by a geotechnical engineer to ensure that the founding surfaces are capable of supporting the design bearing pressure and that the footing beds have been properly prepared.

The first lift of compacted engineered fill should be placed on the approved subgrade within the same day of approval to protect the approved soi subgrade from disturbance.

A minimum of 1.5 m of earth cover should be provided to the footings to protect them from damage due to frost penetration. The frost cover should be increased to 2.1 m for unheated structures if snow will not be removed from their vicinity. If snow will be removed from the vicinity of the unheated structures, the frost cover should be increased to 2.4 m. Rigid insulation thermally equivalent to the required soil cover may be used instead of the soil cover. Alternatively, a combination of rigid insulation and soil cover may be used to achieve the required frost protection for the footings.

The recommended bearing pressure at SLS and factored geotechnical resistance at ULS have been calculated by EXP from the borehole information for the interim design stage only.

The recommendations regarding the engineered fill pad for the portables should be confirmed once additional boreholes and/or test pits have been carried out within the proposed portable footprint area.

New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

11. Floor Slab and Drainage Requirements

The ground floor of the proposed school building may be designed as a slab-on-grade placed on a well packed 200 mm thick 19 mm sized clear stone bed placed on a minimum 300 mm thick engineered fill pad set on the approved silty clay subgrade constructed in accordance with Sections 9 and 10 of this interim geotechnical report. The clear stone would minimize the capillary rise of moisture from the sub-soil to the floor slab. Alternatively, the clear stone may be replaced with a 200 mm thick bed of OPSS Granular A compacted to 98 percent overlain by a vapour barrier. Adequate saw cuts should be provided in the floor slabs to control cracking.

The proposed school building should have a perimeter drainage system. An underfloor drainage system is not required.

The finished floor slab should be set at least 150 mm higher than the finished exterior grade.

The finished exterior grade should be sloped away from the proposed school building to prevent ponding of surface water close to the exterior walls of the proposed school building.

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

12. Excavation and De-Watering Requirements

The geotechnical comments and recommendations regarding the excavation and de-watering requirements discussed in the following sections of this report should be updated once additional boreholes and/or test pits have been carried out in the remaining areas of the site.

12.1 Excavation

Excavations for the construction of the foundations and installation the underground services for the proposed school development are expected to extend to a maximum depth of 3.0 m below the existing grade into the sandy silt and silty clay. Based on groundwater level measurements from January 9,2025 excavations are anticipated to be above the groundwater level.

The excavations may be undertaken by conventional heavy equipment.

All excavations must be undertaken in accordance with the Occupational Health and Safety Act (OHSA), Ontario Reg. 213/91. Based on the definitions provided in OHSA, the subsurface soils on site are considered to be Type 3 and as such must be cut back at 1H:1V from the bottom of the excavation. Within zones of seepage, the excavation side slopes are expected to slough and eventually stabilize at 2H:1V to 3H:1V from the bottom of the excavation.

If side slopes cannot be achieved due to space restrictions on site such as the proximity of open cut excavations to the property limits, existing infrastructure or to foundations of adjacent existing building(s), the new building construction would have to be undertaken within the confines of an engineered support system (shoring system). The dewatered excavation for the installation of the municipal underground services may be undertaken within the confines of a prefabricated support system (trench box) designed and installed in accordance with OHSA.

The need for a shoring system, the most appropriate type of shoring system and the design and installation of the shoring system should be determined by the contractors bidding on this project. The design of the shoring system should be undertaken by a professional engineer experienced in shoring design and the installation of the shoring system should be undertaken by a contractor experienced in the installation of shoring systems. The shoring system should be designed and installed in accordance with latest edition of Ontario Regulation 213/91 under the OHSA and the 2023 Fifth Edition of the Canadian Foundation Engineering Manual (CFEM).

It is recommended that a pre-construction condition survey of adjacent buildings and infrastructure be undertaken prior to the start of construction activities and that vibration monitoring be conducted during construction activities.

Many geologic materials deteriorate rapidly upon exposure to meteorological elements. Unless otherwise specifically indicated in this report, walls and floors of excavations must be protected from moisture, desiccation, and frost action throughout the course of construction.

12.2 De-Watering Requirements

Seepage of surface and subsurface water into the excavations is anticipated and it should be possible to remove any water entering the excavations by pumping from sumps. In areas of high infiltration or in areas where more permeable soil layers may exist, a higher seepage rate should be anticipated requiring high-capacity pumps to keep the excavation dry.

For construction dewatering, an Environmental Activity and Sector Registry (EASR) approval may be obtained for water takings greater than 50 m³ and less than 400 m³ per day. If more than 400 m³ per day of groundwater are generated for dewatering purposes, then a Category 3 Permit to Take Water (PTTW) must be obtained from the Ministry of the Environment, Conservation and Parks (MECP). A Category 3 PTTW would require a complete hydrogeological assessment and would take at least 90 days for the MECP to process once the application is submitted.

Although this investigation has estimated the groundwater levels at the time of the fieldwork, and commented on dewatering and general construction problems, conditions may be present which are difficult to establish from standard boring and excavating techniques and which may affect the type and nature of dewatering procedures used by the contractor in practice. These conditions include local and seasonal fluctuations in the groundwater table, erratic changes in the soil profile, thin layers

EXP Services Inc.

Project Name: Interim Geotechnical Investigation and Phase II ESA

Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0

January 20,2025

of soil with large or small permeabilities compared with the soil mass, etc. Only carefully controlled tests using pumped wells and observation wells will yield the quantitative data on groundwater volumes and pressures that are necessary to adequately engineer construction dewatering systems.

675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

13. Pipe Bedding Requirements

For site servicing, it is anticipated that the subgrade for the proposed underground services will consist of sandy silt and silty clay.

It is recommended that the bedding for the underground services including material specifications, thickness of cover material and compaction requirements conform to the City of Ottawa requirements and/or Ontario Provincial Standard Specification and Drawings (OPSS and OPSD).

It is recommended that the pipe bedding should be 300 mm thick and consist of OPSS Granular A. The bedding material should be placed along the sides and on top of the pipe to provide a minimum cover of 300 mm. The bedding should be compacted to at least 98 percent of the SPMDD. The bedding thickness may be further increased in areas where the subgrade becomes disturbed or in areas where the subgrade consists of the very loose to loose sandy silt. loose zone of the sandy silt.

Should paved surfaces be located over service trenches, it is recommended that the trench backfill material within the frost zone (up to 1.8 m below finished grade), should match the existing material in the roadway to minimize differential frost heaving of the subgrade. Otherwise, frost tapers will be required. The trench backfill should be placed in 300 mm thick lifts and each lift should be compacted to 95 percent SPMDD.

If the backfill for the service trenches will consist of granular fill, clay seals should be installed in the service trenches at select intervals (spacing) as per City of Ottawa Drawing No. S8. The seals should be 1 m wide, extend over the entire trench width and from the bottom of the trench to the underside of the pavement structure. The clay should be compacted to 95 percent SPMDD. The purpose of the clay seals is to prevent the permanent lowering of the groundwater level.

The underground services should be installed in short open trench sections that are excavated and backfilled the same day.

The pipe bedding requirements are to be confirmed once additional boreholes and/or test pits have been carried out in the remaining areas of the site.

> 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

Backfilling Requirements and Suitability of On-Site Soils for Backfilling 14. **Purposes**

The materials to be excavated from the site will comprise of topsoil, sandy silt and silty clay. From a geotechnical perspective, the topsoil is not considered suitable for reuse as backfill material in the interior or exterior of the buildings and should be discarded. Portions of the sandy silt and silty clay, free of organics, cobbles and boulders, and above the groundwater level may be re-used as fill in locations away from the proposed building as backfill in service trenches and subgrade fill in paved, outdoor sports field and landscaped areas, subject to further geotechnical examination and testing during construction. These soils are subject to moisture absorption due to precipitation and must be protected at all times from the elements.

Therefore, it is anticipated that the majority of the material required for backfilling purposes in the interior and exterior of the proposed school building, at locations of the portables, outdoor sports field, access road, parking lot, bus loading and unloading area, the bus loop and in the underground service trenches will need to be imported and should preferably conform to the following specifications:

- Engineered fill under slab-on-grade and footings for the proposed school building and portables OPSS Granular B Type II placed in 300 mm thick lifts and each lift compacted to 98 percent SPMDD beneath the floor slab and 100 percent SPMDD beneath footings,
- Backfill material against foundation walls outside the proposed school building OPSS Granular B Type II placed in 300 mm thick lifts and each lift compacted to 95 percent SPMDD,
- Trench backfill and subgrade fill for access road, parking lot, bus loading and unloading area, bus loop and outdoor sports fields - OPSS Granular B Type I, Type II or Select Subgrade Material (SSM) or approved on site non-organic material (free of organics, debris, cobbles and boulders) placed in 300 mm thick lifts and each lift compacted to 95 percent SPMDD; and
- Landscaped areas clean fill that is free of organics and deleterious material, debris, cobbles and boulders and is placed in 300 mm thick lifts with each lift compacted to 92 percent of the SPMDD.

The backfilling requirements will be updated once boreholes or testpits have been carried out throughout the site.

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

15. Pavement Structures

Pavement structures for the access road, parking lot, bus loading and unloading area and the bus loop are given on Table VII for the subgrade anticipated to consist of existing fill, sandy silt, silty clay, OPSS Granular B Type II or Select Subgrade Material (SSM). The pavement structures are based upon the assumption that the subgrade will be properly prepared and assumes a functional design life of 15 to 18 years. The proposed functional design life represents the number of years to the first rehabilitation, assuming regular maintenance is carried out.

The pavement structure recommendations are to be confirmed once additional boreholes and test pits have been carried out within the proposed paved areas.

Table VII: Recommended Pavement Structure Thicknesses								
		Computed Pavement Structure						
Pavement Layer	Compaction Requirements	Light Duty Traffic (Cars Only)	Heavy Duty Traffic (Bus areas, Garbage Trucks, Emergency Vehicles)					
Asphaltic Concrete	92-97 percent MRD	65 mm HL3/SP12.5 mm/ Cat. B (PG 58-34)	50 mm HL3/SP12.5 Cat. B 60 mm HL8/SP 19 Cat. B (PG 58-34)					
OPSS 1010 Granular A Base (crushed limestone)	100% percent SPMDD	150 mm	150 mm					
OPSS 1010 Granular B Type II Sub-base	100 percent SPMDD	450 mm	600 mm					

Notes:

- 1. SPMDD denotes standard Proctor maximum dry density, ASTM, D-698-12e2.
- 2. MRD denotes Maximum Relative Density, ASTM D2041.
- 3. The upper 300 mm of the subgrade fill must be compacted to 98% SPMDD.
- 4. The approved subgrade should be covered with a woven geotextile prior to placement of granular sub-base of the pavement structure.

The foregoing design assumes that construction is carried out during dry periods and that the subgrade is stable under the load of construction equipment. If construction is carried out during wet weather and heaving or rolling of the subgrade is experienced, additional thickness of granular material may be required in addition to the woven geotextile indicated in Table VII.

Additional comments on the construction of the parking lot, access road, bus unloading and loading area and the bus loop are as follows:

- 1. As part of the subgrade preparation, the proposed parking area, bus loading area and bus loop should be stripped of topsoil, fill and other obviously unsuitable material. The subgrade should be properly shaped, crowned, then proofrolled with a heavy vibratory roller in the full-time presence of a representative of this office. Any soft or spongy subgrade areas detected should be sub excavated and properly replaced with suitable approved backfill compacted to 95 percent SPMDD (ASTM D698-12e2). Alternatively, crusher-run material (100 mm minus) may be used in the lower level of the subgrade fill for the proposed access road, parking lot, bus loading and unloading area and bus loop for the purposed of stabilizing the clayey subgrade in addition to using a geotextile (separation membrane) over the crusher-run material.
- 2. The long-term performance of the pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density

675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

conditions are achieved. The need for adequate drainage cannot be over-emphasized. Subdrains should be installed on both sides of the bus loop. Subdrains must be installed in the proposed parking area at low points and should be continuous between catchbasins to intercept excess surface and subsurface moisture and to prevent subgrade softening. This will ensure no water collects in the granular course, which could result in pavement failure during the spring thaw. The location and extent of subdrains required within the paved areas should be reviewed by this office in conjunction with the proposed site grading.

- 3. To minimize the problems of differential movement between the pavement and catchbasins/manhole due to frost action, the backfill around the structures should consist of free-draining granular preferably conforming to OPSS Granular B Type II material. Weep holes should be provided in the catchbasins/manholes to facilitate drainage of any water that may accumulate in the granular fill.
- 4. The most severe loading conditions on light-duty pavement areas and the subgrade may occur during construction. Consequently, special provisions such as restricted lanes, half-loads during paving, temporary construction roadways, etc., may be required, especially if construction is carried out during unfavorable weather.
- 5. The finished pavement surface should be free of depressions and should be sloped (preferably at a minimum cross fall of 2 percent) to provide effective surface drainage towards catch basins. Surface water should not be allowed to pond adjacent to the outside edges of paved areas.
- 6. Relatively weaker subgrade may develop over service trenches at subgrade level. These areas may require the use of thicker/coarser sub-base material and the use of a geotextile at the subgrade level. If this is the case, it is recommended that additional 150 mm thick granular sub-base, OPSS Granular B Type II, should be provided in these areas, in addition to the use of a geotextile at the subgrade level.
- 7. The granular materials used for pavement construction should conform to Ontario Provincial Standard Specifications (OPSS 1010) for Granular A and Granular B Type II and should be compacted to 100 percent of the SPMDD.

The asphaltic concrete used, and its placement should meet OPSS 1150 or 1151 requirements. It should be compacted from 92 percent to 97 percent of the MRD (ASTM D2041). Asphalt placement should be in accordance with OPSS 310 and OPSS 313.

It is recommended that EXP be retained to review the final pavement structure design and drainage plans prior to construction to ensure they are consistent with the recommendations of this interim report.

Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0

January 20,2025

16. Corrosion Potential

Chemical tests limited to pH, sulphate, chloride and resistivity were undertaken on two (2) soil samples. The tests are currently in progress and the test results will be provided in the final geotechnical report.

Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

17. Tree Planting Restrictions

The site is underlain by marine silty clay. The Atterberg limit test results of the silty clay were compared with the document titled, *Tree Planting in Sensitive Marine Clay Soils – 2017 City of Ottawa Guidelines (2017 Guidelines)* and indicate the silty clay has a low/medium potential for soil volume change. For soils that have a low/medium potential for soil volume change, the 2017 Guidelines indicate that the tree to foundation setback distance and tree planting restrictions should be in accordance with the 2017 guidelines.

A landscape architect should be consulted to ensure the setbacks and tree planting restrictions are in accordance with the 2017 Guidelines.

The recommendations and findings for tree planting restrictions should be confirmed when the additional boreholes and/or test pits have been completed.

Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

18. Additional Geotechnical Investigation and Environmental Assessment

The interim geotechnical and environmental comments and recommendations provided in this interim report are to be verified by a more detailed geotechnical investigation and environmental assessment consisting of additional boreholes and/or test pits.

675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

19. General Comments

The comments and recommendations given in this report are considered interim in nature and must be verified by a more detailed geotechnical investigation and environmental assessment consisting of additional boreholes and/or test pits.

Reference is made the Phase II ESA section of this report and the Phase I ESA regarding the environmental condition of the subsurface soils and groundwater.

We trust that the information contained in this interim geotechnical report will be satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Sincerely

DRAFT

Daniel Wall, M. Eng., P.Eng. Geotechnical Engineer Earth & Environment

DRAFT

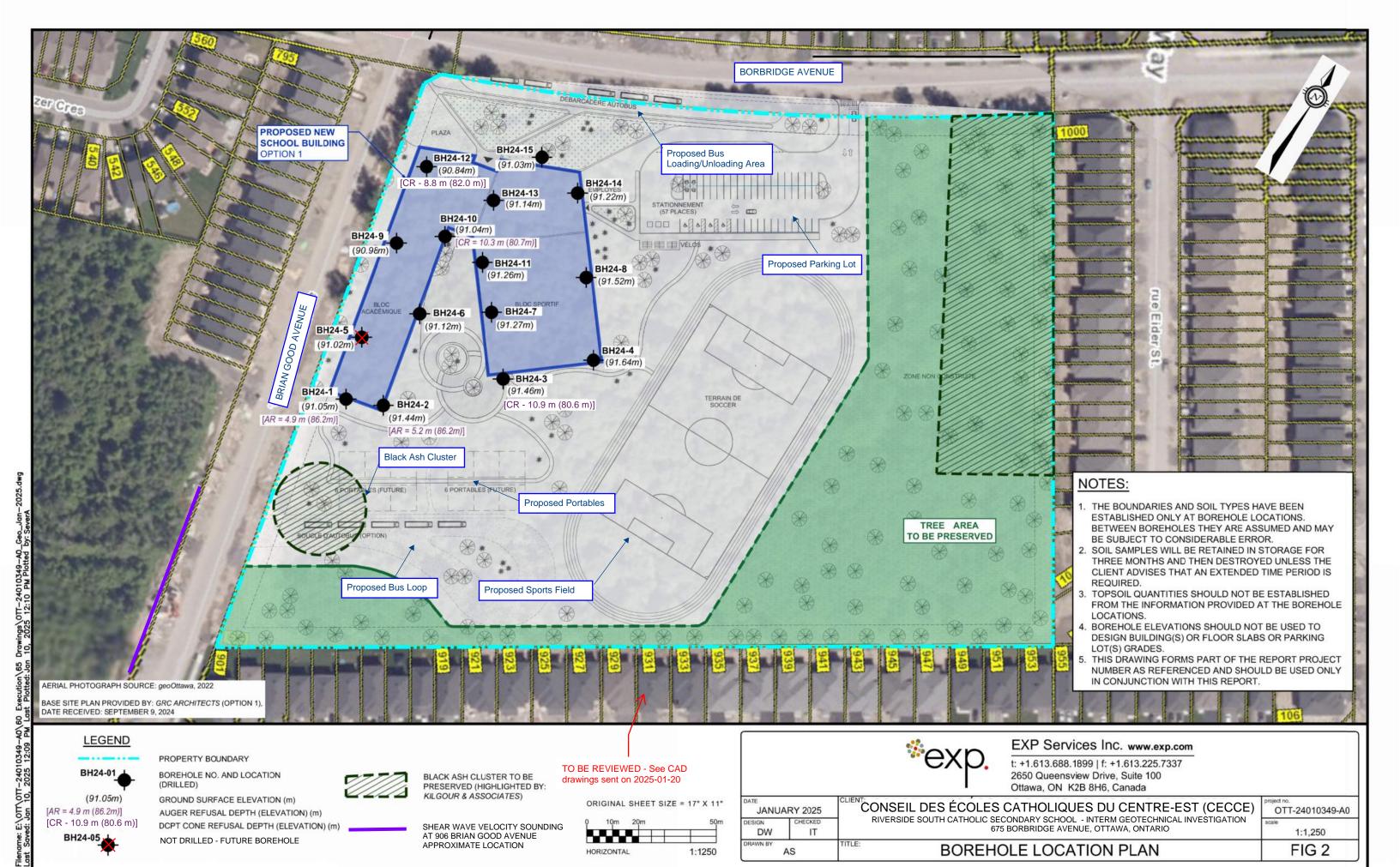
Devin Clouthier. Environmental Scientist Earth & Environment

DRAFT

Susan M. Potyondy, P.Eng. Senior Geotechnical Engineer Earth & Environment

DRAFT

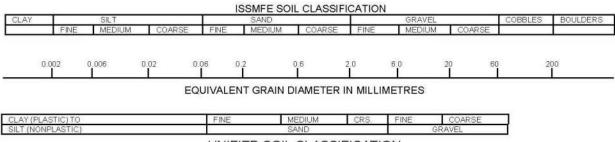
Chris Kimmerly, M.Sc., P. Geo. Manager, Environmental Earth & Environment



EXP Services Inc.

Project Name: Interim Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0 January 20,2025

Figures

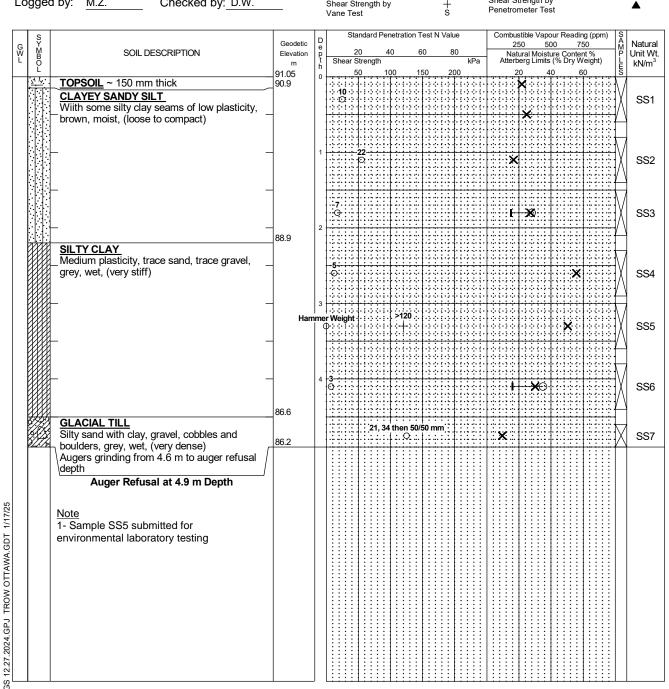


Project Name: Interim Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON Project Number: OTT-24010349-A0

January 20,2025

Notes On Sample Descriptions

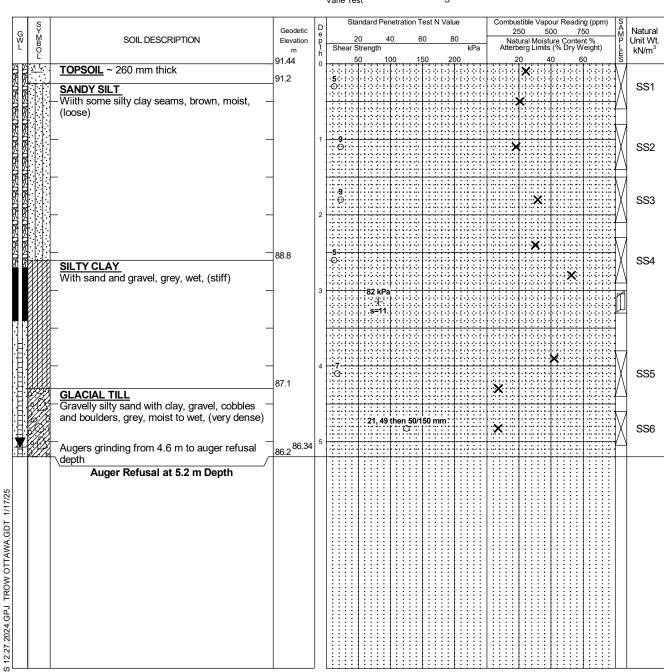
1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by exp Services Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.



UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

		1011010 <u>Di</u>		1.07	-x
Project No:	OTT-24010349-A0				
Project:	Proposed New Riverside South Secondary Scho	ool		Figure No3	
Location:	675 Borbridge Avenue, Ottawa, ON			Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'December 6, 2024	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample —— SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊷
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.Z. Checked by: D.W.	Shear Strength by	+	Shear Strength by	•


NOTES:

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24010349-A0

WATER LEVEL RECORDS					
Date	Hole Open To (m)				
Completion	Dry	4.6			

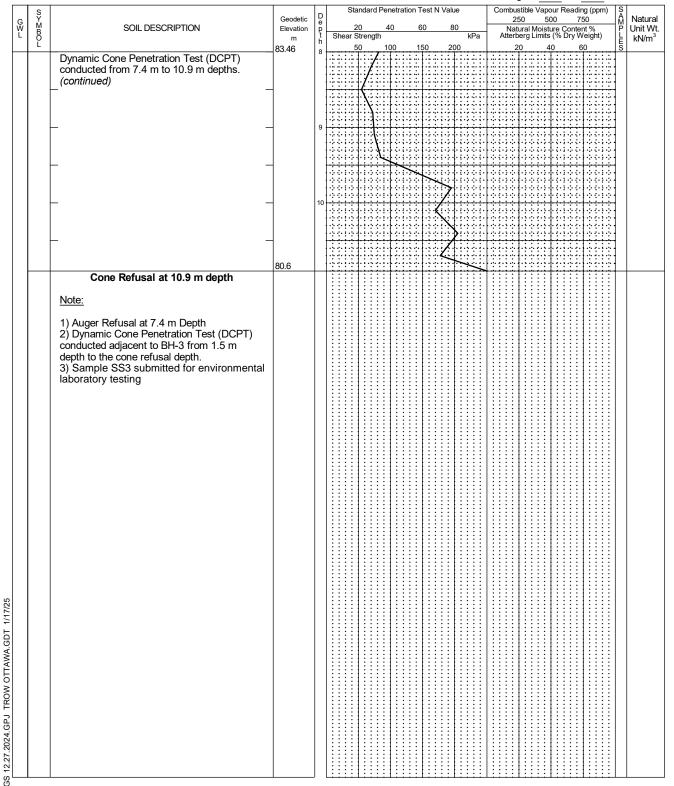
CORE DRILLING RECORD					
Run No.	Depth (m)	% Rec.	RQD %		

					-x
Project No:	OTT-24010349-A0			Figure No.	
Project:	Proposed New Riverside South Secondary School			Figure No. 4	'
Location:	675 Borbridge Avenue, Ottawa, ON			Page. <u>1</u> of <u>1</u>	-
Date Drilled:	December 3, 2024	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample SPT (N) Value	Ⅲ ○	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic Elevation	Dynamic Cone Test —— Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.Z. Checked by: D.W.	Shear Strength by	+	Shear Strength by Penetrometer Test	A

NOTES:

- Borehole data requires interpretation by EXP before use by others
- 2.A 19 mm slotted standpipe was installed in the borehole upon completion
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- $5. Log \ to \ be \ read \ with EXP Report OTT-24010349-A0$

WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				
Completion 'January 9. 2024	Dry 5.1	5.2				

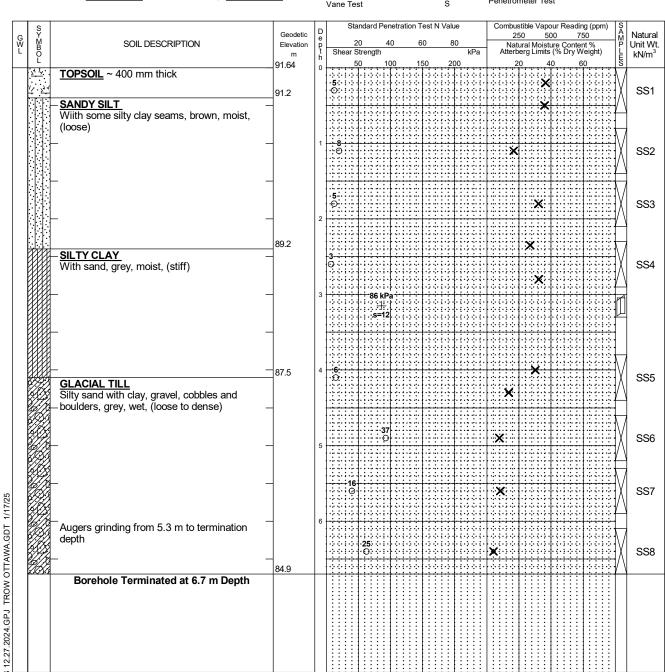

CORE DRILLING RECORD					
Run No.	Depth (m)	% Rec.	RQD %		

Project No:	OTT-24010349-A0						Figure No.	5	\sim	· / \
Project:	Proposed New Riverside South	Secondary Sc	hool				_	1 of 2		
Location:	675 Borbridge Avenue, Ottawa,	ON					Page. ₋	<u> </u>		
Date Drilled:	'December 3, 2024			Split Spoon S	Sample		Combustible V	apour Reading		
Orill Type:	CME-55 Track Mounted Drill Rig	g		Auger Sampl SPT (N) Valu		II	Natural Moistur Atterberg Limit			×
Datum:	Geodetic Elevation			Dynamic Cor			Undrained Tria % Strain at Fai	xial at	•	Φ
ogged by:	M.Z. Checked by:	D.W.		Shelby Tube Shear Streng	jth by	+ s	Shear Strength	by		A
				Vane Test	d Penetration 1			apour Reading (ppn	, s	
G S Y M B O L L	SOIL DESCRIPTION	Elev	odetic /ation m	p 20 Shear Streng	40 6 gth	60 80 kPa	250	500 750 isture Content % nits (% Dry Weight) 40 60	SAMPLES	Natu Unit \ kN/n
<u>TOP</u>	SOIL ~ 300 mm thick	91.2		0					$\mathbb{R}^{\mathbb{R}}$	
	DY SILT n some silty clay seams, brown, m	noist,		©:::::::::::::::::::::::::::::::::::::			: :::::: :		A	SS
	se to compact)	,								,
		+		1 10 · · · ·			*		$\frac{2}{3}$	SS
		7		-5						1
				2			×		<u> </u>	S
SILT	Y CLAY	89.3		1						
Medi	ium plasticity, trace sand, trace gr , wet, (stiff)	ravel,		4					$\mathbb{R}^{\mathbb{R}}$	s
gicy,	, wot, (Suii)								\square	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		-		3 58 kPa	a : 				: n	
				.:s=6					## 	
		1		- 10 - 1 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2						
				4 3					<u>::</u> \/	1
				0			: : ::: : ::::0 : : : : : : : : : : : : : : :	******	## \	SS
GLA	CIAL TILL	87.0								
Silty	sand with clay, gravel, cobbles ar ders, grey, wet, (loose)			9			×		<u></u>	SS
	20.0, g. 0,,, (.2000)	_	86.46	5						
									-	1
				ő	X		×		\mathbb{X}	SS
	ore ariading from 4.6 m to augus r	refused		6	/				<u>:://</u>	1
depth	ers grinding from 4.6 m to auger r h	erusai		5. /	/ ::::::::::::::::::::::::::::::::::::					
		-		⊙∷∴4	****		X		∄∖	SS
				0010410		حسيرا				
				7						
Dvna	amic Cone Penetration Test (DCP	84.1 PT)		2						
cond	lucted from 7.4 m to 10.9 m depth	ns.								
	Continued Next Page			8	>				:-	
NOTES:	requires interpretation by EXP before	V	VATER	R LEVEL RECO			CORE DI	RILLING RECOR		
use by others		Date		Water Level (m)	Hole Ope To (m)		Depth (m)	% Rec.	R	QD %
upon completion		Completion 'January 9. 202	24	Dry 5.0	7.4					
	s supervised by an EXP representative.									
4. See Notes on S	Sample Descriptions				1			1		

Project No: OTT-24010349-A0

Figure No. 5

Project: Proposed New Riverside South Secondary School Page. 2 of 2


NOTES:

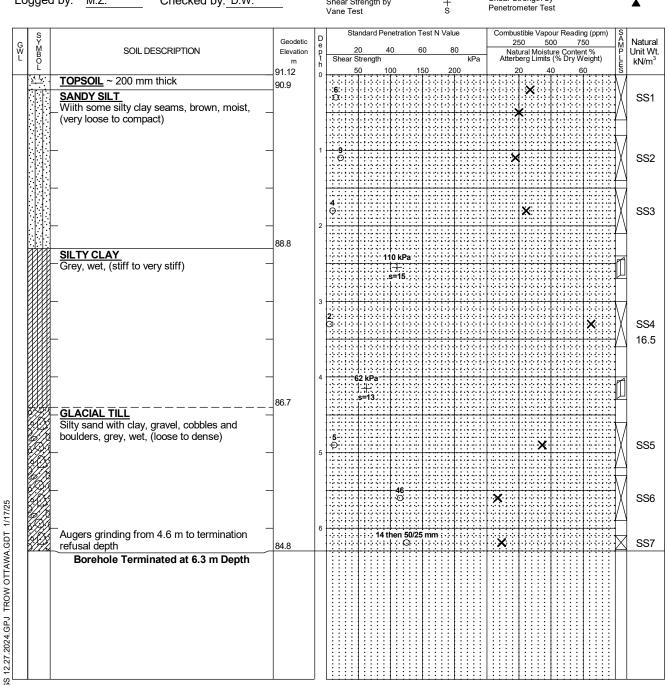
- Borehole data requires interpretation by EXP before use by others
- 2.A 50 mm monitoring well was installed in the borehole upon completion
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24010349-A0

WATER LEVEL RECORDS					
Date	Hole Open To (m)				
Completion	Dry	7.4			
'January 9. 2024	5.0				

CORE DRILLING RECORD					
Run	Depth	% Rec.	RQD %		
No.	(m)				

	Log of E	sore	enoie	; B	H24-4	-	$^{\circ}$	V
Project No:	OTT-24010349-A0					Figure No. 6		·/\
Project:	Proposed New Riverside South Secondary	School				·		
Location:	675 Borbridge Avenue, Ottawa, ON					Page1_ of _1_		
Date Drilled:	'December 4, 2024		Split Spoon S	Sample		Combustible Vapour Reading		
Orill Type:	CME-55 Track Mounted Drill Rig		Auger Sampl	е	II	Natural Moisture Content		×
Jilli Type.	CIVIE-33 Track Mounted Drill Rig		SPT (N) Valu	е	0	Atterberg Limits	-	$\overline{}$
Datum:	Geodetic Elevation		Dynamic Cor	e Test		Undrained Triaxial at % Strain at Failure		\oplus
oggod by	M.7. Charled by D.W.		Shelby Tube			Shear Strength by		
_ogged by:	M.Z. Checked by: D.W.	-	Shear Streng Vane Test	th by	+ s	Penetrometer Test		•
s S Y			Standar	d Penetrati	ion Test N Value	Combustible Vapour Reading (ppn	n) S A M	
G Y		Geodetic Elevation	e p 20	40	60 80	250 500 750 Natural Moisture Content %	— ₩	Natura Unit W

LOG OF BOREHOLE

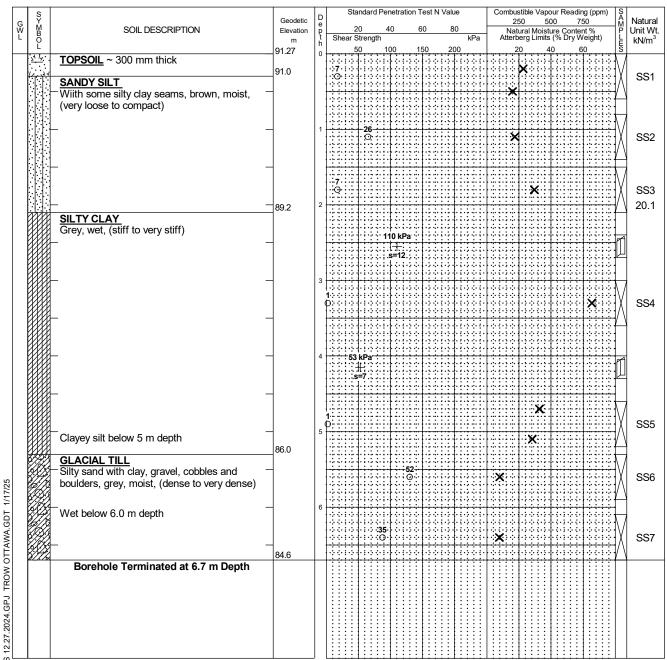

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24010349-A0

WATER LEVEL RECORDS						
Date	Hole Open To (m)					
Completion	Dry	5.6				

CORE DRILLING RECORD					
Run No.	Depth (m)	% Rec.	RQD %		
	,				

2000

	Log of Doi	CHOIC DI		<u> </u>	-x
Project No:	OTT-24010349-A0				
Project:	Proposed New Riverside South Secondary School	l		Figure No/_ Page. 1 of 1	
Location:	675 Borbridge Avenue, Ottawa, ON			Fage 1_ 01 _ 1_	_
Date Drilled:	'December 5, 2024	_ Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample		Natural Moisture Content	×
Біш туро.	OME-55 Track Mounted Brill Hig	SPT (N) Value	0	Atterberg Limits	\longrightarrow
Datum:	Geodetic Elevation	Dynamic Cone Test - Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.Z. Checked by: D.W.	Shear Strength by	+	Shear Strength by	•

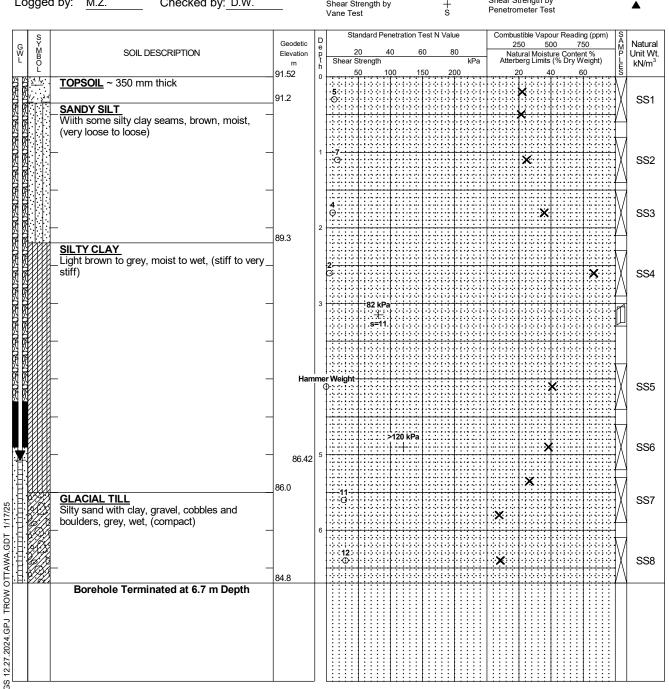

NOTES

- Borehole data requires interpretation by EXP before use by others
- $\label{eq:completion} \textbf{2.} \textbf{The borehole was backfilled upon completion}.$
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24010349-A0

WATER LEVEL RECORDS				
Date	Date Water Level (m)			
Completion	Dry	5.5		

CORE DRILLING RECORD				
Run No.	Depth (m)	% Rec.	RQD %	
	,			

	Log of	Bor	е	hole BH24	-7		6	Υľ
Project No:	OTT-24010349-A0							<u>'</u>
Project:	Proposed New Riverside South Secondar	ry School			_ '	Figure No. 8		ı
Location:	675 Borbridge Avenue, Ottawa, ON				_	Page. <u>1</u> of <u>1</u>		
Date Drilled:	'December 4, 2024		_	Split Spoon Sample		Combustible Vapour Reading		
Drill Type:	CME-55 Track Mounted Drill Rig		_	Auger Sample SPT (N) Value O		Natural Moisture Content Atterberg Limits	<u> </u>	× →
Datum:	Geodetic Elevation		-	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	M.Z. Checked by: D.W.			Shear Strength by + Vane Test S		Shear Strength by Penetrometer Test		•
GW L BO L	SOIL DESCRIPTION	Geodetic Elevation m 91.27	D e p t h	20 40 60 8 Shear Strength	80 kPa	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	SAMPLES	Natural Unit Wt kN/m ³
123.1	SOIL ~ 300 mm thick DY SILT	91.0	0	 				SS1

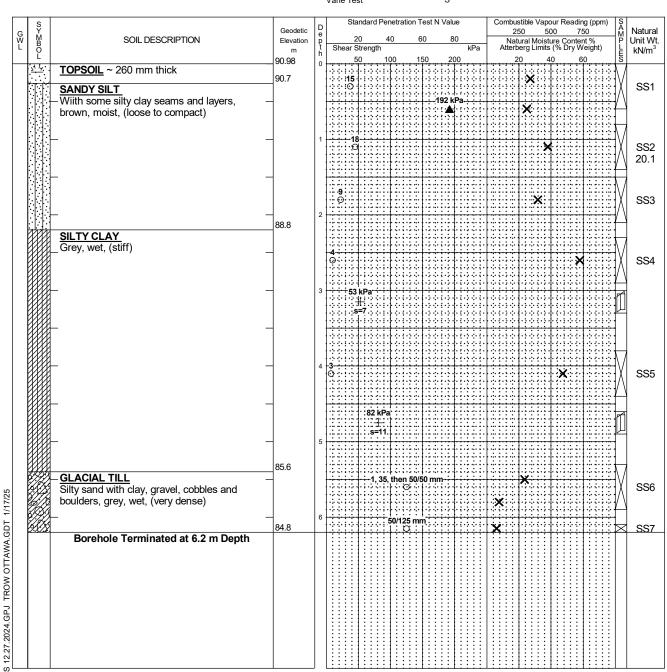

NOTES:

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24010349-A0

WATER LEVEL RECORDS				
Date	Date Water Level (m)			
Completion	Dry	5.9		

CORE DRILLING RECORD				
Run No.	Depth (m)	% Rec.	RQD %	
	,			

	Log of Bore	ehole BH2	4-8		eyn
Project No:	OTT-24010349-A0			_	CAP.
Project:	Proposed New Riverside South Secondary School			Figure No. 9	ı
Location:	675 Borbridge Avenue, Ottawa, ON			Page. <u>1</u> of <u>1</u>	_
Date Drilled:	December 4, 2024	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Orill Type:	CME-55 Track Mounted Drill Rig	Auger Sample		Natural Moisture Content	×
Jilli Type.	CIVIE-33 Track Modified Drill Rig	SPT (N) Value	0	Atterberg Limits	\longmapsto
Datum:	Geodetic Elevation	Dynamic Cone Test ——	_	Undrained Triaxial at	\oplus
		Shelby Tube		% Strain at Failure	Ψ
_ogged by:	M.Z. Checked by: D.W.	Shear Strength by	+	Shear Strength by Penetrometer Test	A



- Borehole data requires interpretation by EXP before use by others
- 2. A 19 mm slotted standpipe was installed in the borehole upon completion
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24010349-A0

WATER LEVEL RECORDS				
Date	Water Level (m)	Hole Open To (m)		
Completion	Dry	6.7		
'January 9. 2024	5.1			

	CORE DRILLING RECORD				
Run No.	Depth (m)	% Rec.	RQD %		

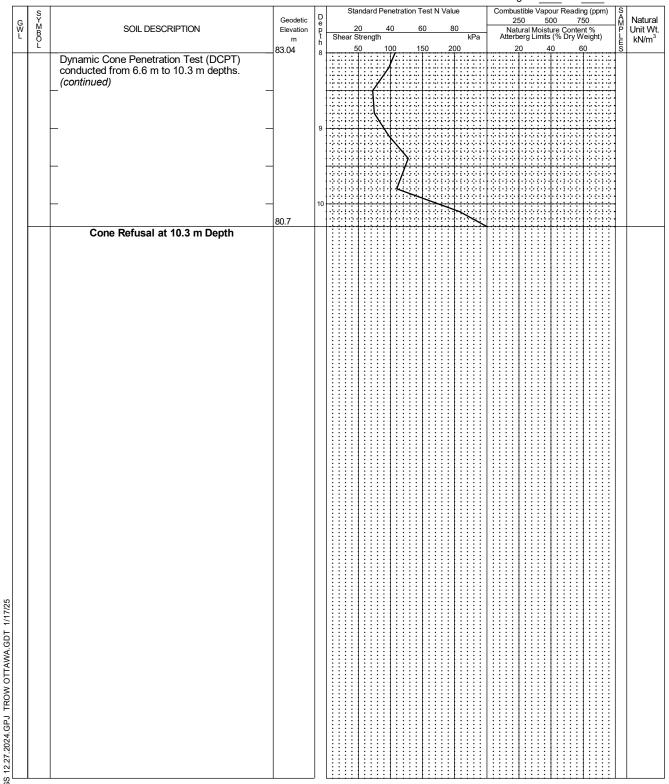
		••• <u> </u>	`		$\Box \lambda$
Project No:	OTT-24010349-A0_			Figure No. 10	O / (
Project:	Proposed New Riverside South Secondary School				
Location:	675 Borbridge Avenue, Ottawa, ON			Page. <u>1</u> of <u>1</u>	_
Date Drilled:	December 5, 2024	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample - SPT (N) Value	Ⅲ ○	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.Z. Checked by: D.W.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A

NOTES:

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24010349-A0

WATER LEVEL RECORDS				
Date	Date Water Level (m)			
Completion	Dry	5.8		

CORE DRILLING RECORD				
Run No.	Depth (m)	% Rec.	RQD %	
	,			


roject No: roject:	OTT-24010349-A0 Proposed New Riverside South Secon	ndary Sch	ool							Figure	_	11	-		
ocation:	675 Borbridge Avenue, Ottawa, ON	luary Scri	OOI							Pa	ige	1_ of	_2_		
Date Drilled: 'December 6, 2024												_			
rill Type:						oon Sam ample	iple		⊠ ■			apour Read e Content	ding		□ X
atum:	CME-55 Track Mounted Drill Rig Geodetic Elevation				. ,	Value Cone T	est) -		rg Limits ned Triax		ŀ		→
	-			She	elby T	ube				% Straii	n at Faili Strength	ure			0
ogged by:	M.Z. Checked by: D.W.				ear Si ne Te	trength t st	ру	5	 S		meter T				•
S Y		Geode	,uc	D e			enetration ⁻			2	250		50	S A M	Natura
M B O L	SOIL DESCRIPTION	Elevati	ion	p	hear S	Strength		60	kPa	Na Atter	tural Moi: berg Limi	sture Conte its (% Dry V	ent % Veight)	SAMP LEG	Unit W
1 1	SOIL ~ 280 mm thick	91.04		0	· i · ;	50 	100 1	50	200		20 >	K	00		
	DY SILT some silty clay seams, brown, moist,	90.0		0							×				SS1
(loose															
		4		1	8 :::									$ \bigvee$	SS2
		89.6									<u> </u>			: /\	20.2
	Y CLAY sand, grey, moist, (stiff)														
	, , , , , ,			þ							· · · >	K			SS3
				2											1
				4											
				0								X			SS ²
		-		3	·) 5	l⊷ 8 kPa∵	*****) 1 2 1 1 2 1 1 1 2 1	· 0 (·) 0 - 0 (·) 0 - 0 (·) 0	1.3.3.4.			:	
					/::	. 								<u>:Ш</u>	
		-													
				4 2:	1:::									. 7	
				O:								×		$\left \right $	SS5
		_												: Y \	
					5	8 kPa∵: ∰-::::									
		-		5		5-0									
				-3- -0:								X		$\exists \chi$	SS6
				6							×			:: /_\	
				1	!										
GI A	CIAL TILL	84.5 84.4		O.	(. j .) (. j . j						×			$ \bigwedge$	SS7
\Silty	sand with clay, gravel, cobbles and lers, grey, wet				\. 										
Dyna	mic Cone Penetration Test (DCPT) ucted from 6.6 m to 10.3 m depths.			7	/										
Condi	uotea moni oto m to 10.3 m deptns.					7									
	Continued Next Pers			8	::::		<u>}</u>				1				
OTES:	Continued Next Page	WA	ATER	LEVE	EL RE	ECORD:	 S			C	ORE DR	RILLING RI	ECORD)	
.Borehole data r use by others	equires interpretation by EXP before	Date			ater el (m)		Hole Op To (m)		Run No.	Dep (m		% Re	C.	R	QD %
		mpletion			ry		5.6			,,,	<i>'</i>				
. rieid work was	supervised by an EXP representative. Sample Descriptions														

Project No: OTT-24010349-A0

Project: Proposed New Riverside South Secondary School

Figure No. 11

ject: Proposed New Riverside South Secondary School Page. 2 of 2

NOTES:

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24010349-A0

WATER LEVEL RECORDS										
Date	Water Level (m)	Hole Open To (m)								
Completion	Dry	5.6								

	CORE DRILLING RECORD											
Run No.	Depth (m)	% Rec.	RQD %									
	,											

Pr	oject	: No:	OTT-2401034	Log of	Bor	е	hole _	<u>B</u>	<u>124</u>		_				е	ΧĽ
	, oject			w Riverside South Second	ary School					ı	Figure N	_	12	-		ı
	catio		-	e Avenue, Ottawa, ON	,					-	Pag	ge	1_ of			
	Date Drilled: 'December 5, 2024				Split Spoon Samp			-	Combust	tible Var	our Pear	dina				
	Drill Type: CME-55 Track Mounted Drill Rig			-	Auger Sample	ic			Natural N	∕loisture		anig		×		
	tum:		Geodetic Elev			-	SPT (N) Value Dynamic Cone Te	st			Atterberg Undraine		al at	ŀ		—⊖ ⊕
-			M.Z.	Checked by: D.W.		Shelby Tube Shear Strength by + Vane Test S				% Strain Shear St Penetron	rength b	у			▲	
G W L	S Y M B O L		SOIL E	DESCRIPTION	Geodetic Elevation m	D e p t	Standard Pen 20 4 Shear Strength	0 6	60 80	kPa	25	50 5	our Readii 600 7 ture Conte s (% Dry V	50	SAMPLES	Natural Unit Wt. kN/m³
	\(\frac{1}{2}\).	SAN	SOIL ~ 280 mr	n thick	91.26 91.0	0	50 10	0 1:	50 200		20	×	10 (50 		SS1
			loose to loose)		_	1	-8 -0 					×				SS2
		SILT Grey	Y CLAY , wet, (stiff to v	ery stiff)	89.1 —	3	2- G:- 72 kPa							×		SS4
		_			_	4	s=30					-3 -0 -5 -3 -3 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	×			SS5
			CIAL TILL		86.2	5	11	0 kPa :: +								
		Silty – bould	sand with clay, lers, grey, wet,	gravel, cobbles and (compact to dense)			9				×	*				SS6

NOTES:

LOG OF BOREHOLE GINT LOGS 12.27.2024.GPJ TROW OTTAWA.GDT 1/17/25

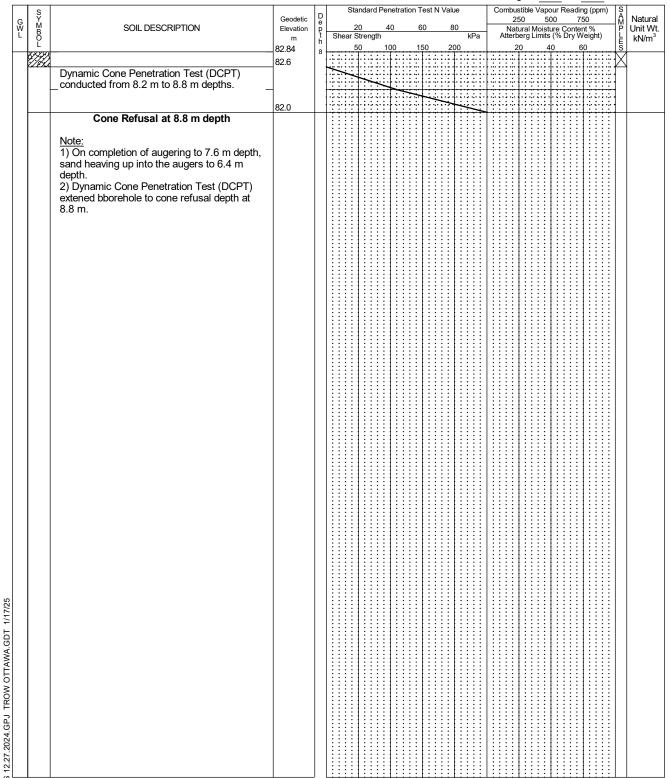
Borehole data requires interpretation by EXP before use by others

Borehole Terminated at 6.7 m Depth

- 2. The borehole was backfilled upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24010349-A0

WA ⁻	WATER LEVEL RECORDS										
Date	Water Level (m)	Hole Open To (m)									
Completion	Dry	5.8									

84.6


	CORE DRILLING RECORD										
Run	Depth	% Rec.	RQD %								
No.	(m)										

SS7

Project:	Proposed New Riverside South S	Seconda	ry Schoo	ı					I	Figure I	_	13			ı
-	675 Borbridge Avenue, Ottawa,		,						_	Pa	ge	1_ of	_2_		
	'December 6, 2024				Split Spoon	Cample			_	Combu	atible Va	apour Rea	adina		
	CME-55 Track Mounted Drill Rig	ı		-	Auger Samp							e Conten	-		□ ×
• •	Geodetic Elevation	1		-	SPT (N) Value Dynamic Con					Atterber Undrain	ed Triax	dal at			— ⊕
	M.Z. Checked by:	D W		-	Shelby Tube Shear Streng			■		% Strair Shear S	trength	by			Φ
-99,					Vane Test	jui by		+ s		Penetro	meter T	est			
S Y M B O	SOIL DESCRIPTION		Geodetic Elevation	D	'	rd Penetra 40	ition Te			2	50		750) S A M	Natura Unit W
L			90.84	t h	Shear Stren 50		15		kPa 00	Atter	turai ivioi: berg Limi 20	sture Cont its (% Dry 40	Weight)	SAMPLES	kN/m
النت عنها	OIL ~ 280 mm thick		90.6		.7			· · · · · · · · · · · · · · · · · · ·			k				CC1
	<u>DY SILT</u> some silty clay seams, brown, m	oist, -						· · · · · · · · · · · · · · · · · · ·		×					SS1
(loose	to compact)														
		=		1	18 0							*			SS2
															18.7
		_			12 •										SS3
		-	-	2	: : Y : : :						<u> </u>			<u>:::</u> }\	333
			88.4												
– <u>SILTY</u> Grey,	CLAY wet, (firm to stiff)	-			4 0						×				SS4
	,													:: <u> </u> /\	
				3	48 kPa ::-# ::=20										
		-	_					· · · · · · · · · · · · · · · · · · ·							
							• • • • •								
		-	-	4									X		ST1 15.9
		_													
					::::62 kF	Pa : : :									
		-	-	5	s=7			· · · · · · · · · · · · · · · · · · ·							
		-	1		6 O							×		:: \	SS5
		_	85.0 ⁴ 84.8	1										<u>:</u>	
Silty s	CIAL TILL and with clay, gravel, cobbles and	d					19	-3 -3 -3 - -3 -3 -3 -3 - -3 -3 -3 -3 -3						<u>:</u>	
boulde	ers, grey, wet, (loose to dense)	-	_				Õ: ··	-; ; ; ; ; . -; ; ; ; . -; ; ; . ; . ; .		×					SS6
								· · · · · · · · · · · · · · · · · · ·	. ; . ; . ; . ; . . ; . ; . ; . ; . ; .						
		-	_	7				-; ; ; ; ; ;						:	
		_													
					.9										
	Continued Next Page		<u> </u>	8	· · · · · · · · · · · · · · · · · · ·					::: X :		<u> </u>		<u>:</u> :::/\	SS7
OTES: .Borehole data re	equires interpretation by EXP before		WATE	RL	EVEL RECO							RILLING F			
use by others		Da			Water Level (m)	To	e Ope o (m)	n	Run No.	Dep (m		% R	ec.	R	QD %
	s backfilled upon completion. supervised by an EXP representative.	Comp	ietion		5.8	'	6.4								

Project No: OTT-24010349-A0 Figure No. 13

Project: Proposed New Riverside South Secondary School Page. 2 of 2

NOTES:

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24010349-A0

WA ⁻	WATER LEVEL RECORDS										
Date	Water Level (m)	Hole Open To (m)									
Completion	5.8	6.4									

	CORE DRILLING RECORD											
Run No.	Depth (m)	% Rec.	RQD %									

Log of Borohola BH21-13

roject No:	OTT-24010349-A0					F	igure N	0.	14			ı
roject:	Proposed New Riverside South S	Secondary Schoo	<u> </u>			_	Pag	e. 1	of	1		•
ocation:	675 Borbridge Avenue, Ottawa, 0	ON				_	· ·		_			
ate Drilled:	'December 5, 2024		_	Split Spoon Sample			Combust			-		
rill Type:	CME-55 Track Mounted Drill Rig		_	Auger Sample SPT (N) Value	•		Natural M Atterberg		Content	H		× →
atum:	Geodetic Elevation		_	Dynamic Cone Test Shelby Tube	_		Undraine % Strain					\oplus
ogged by:	M.Z. Checked by: [D.W		Shear Strength by Vane Test	+ s		Shear Str Penetron					•
S Y M	SOIL DESCRIPTION	Geodetic Elevation	De	Standard Penetration To		ue 30	25	0 50	our Readi	750	S A M	Natura Unit W
M B O L	COIL BLOOM! HOW	91.14	p t h	Shear Strength 50 100 15		kPa 00	Atterbe		ure Conte (% Dry V	Veight) 60	AMP-IIII/	kN/m
	SOIL ~ 300 mm thick DY SILT	90.8		8: · · · · · · · · · · · · · · · · · · ·				×				SS1
₩iith	n some silty clay seams, brown, mo e to compact)	pist,			· · · · · · · · · · · · · · · · · · ·		×	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 				
<u> </u>			1	16			×	· · · X			$\frac{1}{ X }$	SS2
		_									1	
		88.9	2	ŏ				X			$\frac{1}{N}$	SS3 18.9
	Y CLAY v, wet, (firm to stiff)	06.9		2							$\frac{1}{\sqrt{2}}$	
									?			SS4
			3						,	.		ST1
				38 kPa				· · · · · · · · · · · · · · · · · · ·				
		-	4	.s=16								
		86.64	4									
			5	3.				····>	(SS5
				72 kPa								
		85.2		;s=8.								
Silty	.CIAL TILL sand with clay, gravel, cobbles and ders, grey, wet, (very dense)	d	6		., ., ., .,			· · · · · · · · · · · · · · · · · · ·			$\frac{1}{M}$	66-
	archala Tarminetad at C.7 De	84.4	1	53.	· · · · · · · · · · · · · · · · · · ·		×	· ; · ; (·) · ; · } · ; · ; · ; · · } · ; · ; · ; ·			\bigvee	SS6
	orehole Terminated at 6.7 m De	μιι										

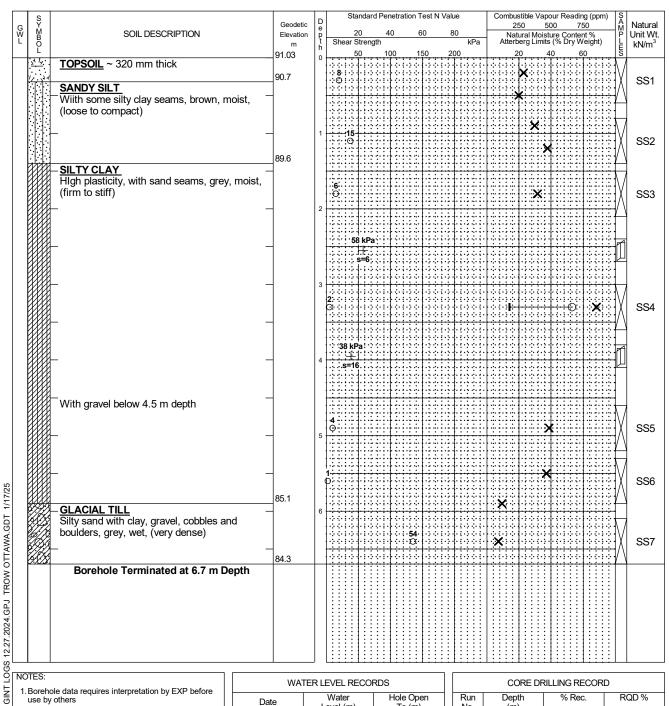
- Borehole data requires interpretation by EXP before use by others
- 2. A 50 mm monitoring well was installed in the borehole upon completion
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24010349-A0

WATER LEVEL RECORDS										
Date	Water Level (m)	Hole Open To (m)								
Completion	Dry									
'January 9. 2024	4.5									

	CORE DRILLING RECORD										
Run	Depth	% Rec.	RQD %								
No.	(m)										

-	ect No:	OTT-24010349-A0						1	Figure N	lo	15	_		
Proje		Proposed New Riverside South Seco	ndary Schoo	<u> </u>				_	Pag	ge. ´	1 of	1		•
Loca	ition:	675 Borbridge Avenue, Ottawa, ON								_				
Date	Drilled:	'December 4, 2024		_	Split Spoon Sample				Combus			ding		
Drill 7	Гуре:	CME-55 Track Mounted Drill Rig		_	Auger Sample SPT (N) Value				Natural M Atterbero		Content	H		X →
Datu	m:	Geodetic Elevation		_	Dynamic Cone Test		_		Undraine % Strain	ed Triaxia		•		\oplus
Logg	ed by:	M.Z. Checked by: D.W	<u>. </u>		Shelby Tube Shear Strength by		+		Shear St Penetror	rength b	у			A
					Vane Test		S							
G M B C	1	SOIL DESCRIPTION	Geodetic Elevation	D e p		ation Test N 60		ue 30	25	50 5		50	SAMP	Natural Unit Wt.
W BOL	5	SOIL DEGGMI TION	91.22	h	Shear Strength 50 100	150		kPa	Atterb		ure Conte (% Dry V	Veight)	LLL	kN/m ³
\(\frac{1}{2}\) \(\frac{1}{2}\)	<u>TOP</u>	SOIL ~ 300 mm thick	90.9	0	5		· · · · · · · · · · · · · · · · · · ·			×			\mathbb{N}	
		DY SILT n some silty clay seams, brown, moist,			O: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:		! · : ! · : ! · :			×			∄	SS1
		e to compact)			100100100100		! : ? ! : ?							
	-		_	1	10		: : <u>:</u>			· · · · · · · · · · · · · · · · · · ·			₩	SS2
													$\downarrow \bigwedge$	332
			\dashv										$\overline{}$	
					0					×			1	SS3
			89.0	2									\mathcal{L}	
	SILT Grey	Y CLAY y, wet, (firm)			2								17	
					Ō								‡ X	SS4
			4	3	48 kPa		::; :::			· ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				
					s=20		(· ·) (· ·) (· ·)			·			\mathbb{U}	
			-		· · · · · · · · · · · · · · · · · · ·		! · : ! · : ! · :			·			:	
							! · ;						<u> </u>	
			\dashv	4	1		: :: : : :					×	╢	SS5
							: : : : :						$\frac{1}{2}$	
			\dashv										M	
					s=20		:::						\mathbb{I}	
			-	5			:::						-	
													\vdash	
			\dashv		3		;		*****	(╢	SS6
	GLA	CIAL TILL	85.4						×				}/\	
	Silty	sand with clay, gravel, cobbles and	\dashv	6	· · · · · · · · · · · · · · · 16 then	50/75 mm	;			<u>;;;;;</u>				
2/2		ders, grey, wet orehole Terminated at 6.3 m Depth	84.9	+	 		: · ·	+		· · · · · · · · · · · · · · · · · · ·			X	SS7
		oronoic reminated at 0.0 in Doptii												
	Note:													
	1- Sa	imple SS4 and duplicate sample litted for environmental laboratory												
	testin													
NOTES	3.				· · · · · · · · · · · · · · · · · · ·		∷- ¬	I : : : :	1::::		1::::			
			WATE	RL	EVEL RECORDS				CO	RE DRII	LLING RI	ECORD		

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion.
- $3. \mbox{\sc Field}$ work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions


LOG OF BOREHOLE GINT LOGS 12.27.2024.GPJ TROW OTTAWA.GDT 1/17/25

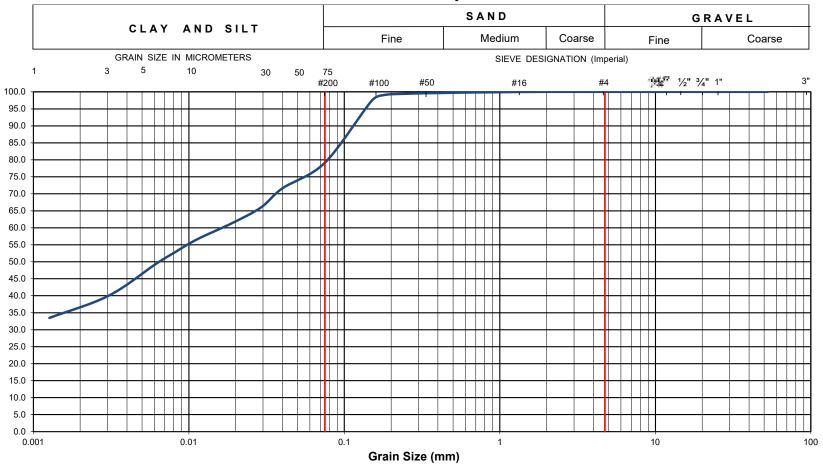
5.Log to be read with EXP Report OTT-24010349-A0

	WA	TER LEVEL RECO	RDS
	Oate	Water Level (m)	Hole Open To (m)
Com	pletion	Dry	6.1

	CORE DE	RILLING RECOR	ט
Run No.	Depth (m)	% Rec.	RQD %

	Log of	Bor	е	hole BH2	4-15	5	e	X
Project No:	OTT-24010349-A0					— Figure No. 16		'' \
Project:	Proposed New Riverside South Secondar	ry School						ı
Location:	675 Borbridge Avenue, Ottawa, ON					Page1_ of _1_	-	
Date Drilled:	'December 4, 2024		-	Split Spoon Sample	\boxtimes	Combustible Vapour Reading		
Drill Type:	CME-55 Track Mounted Drill Rig			Auger Sample SPT (N) Value	■	Natural Moisture Content Atterberg Limits		X →0
Datum:	Geodetic Elevation		-	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	•	⊕
Logged by:	M.Z. Checked by: D.W.	_		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test		•
S Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m	Depth	Standard Penetration Test N 20	Value 80 kPa 200	Combustible Vapour Reading (ppr 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	- M M P	Natura Unit Wi kN/m³
1//	SOIL ~ 320 mm thick DY SILT	90.7	0	8:				SS1

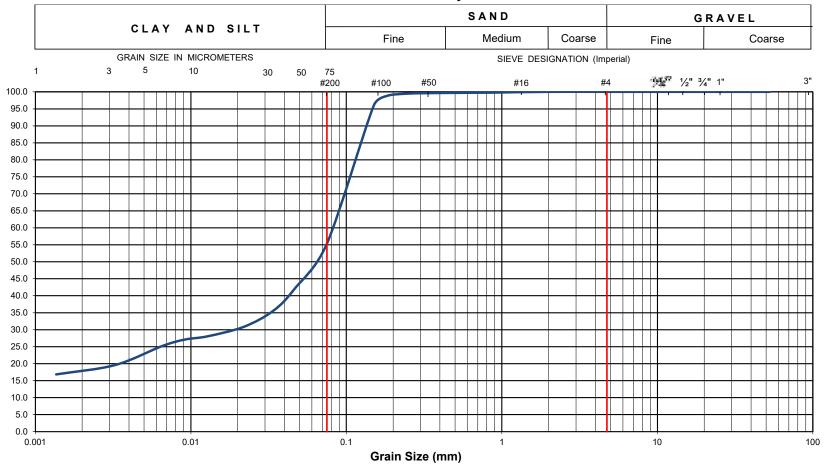
- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24010349-A0


WA	TER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)
Completion	Dry	5.2

	CORE DE	RILLING RECOR	D
Run No.	Depth (m)	% Rec.	RQD %
	,		

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

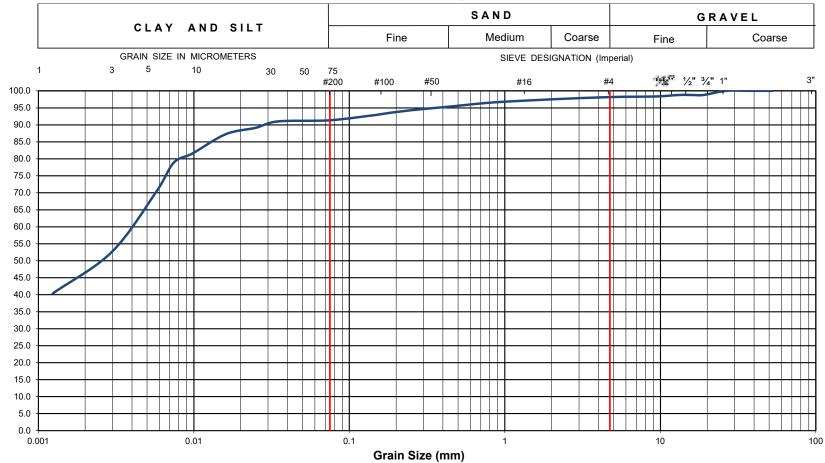
100-2650 Queensview Drive Ottawa, ON K2B 8H6



EXP Project No.:	OTT-24010349-A0	Project Name :	roject Name : Proposed New Riverside South Secondary School								
Client :	CECCE	Project Location	roject Location : 675 Borbridge Avenue, Ottawa, Ontario								
Date Sampled :	December 6, 2024	Borehole No:		24-1	Sam	ple No.:	Depth (m) :	1.5 - 2.1			
Sample Description :		% Silt and Clay	79	% Sand	21	% Gravel		0	Figure :	47	
Sample Description :	ple Description : Clayey Sandy Silt (ML) with Silty Clay Seams of Low Plasticity								rigure :	17	

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

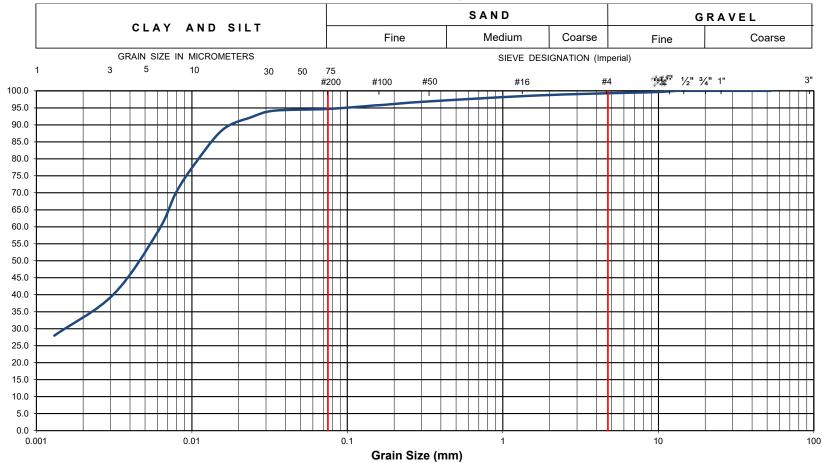
100-2650 Queensview Drive Ottawa, ON K2B 8H6



EXP Project No.:	OTT-24010349-A0	Project Name :	oject Name : Proposed New Riverside South Secondary School								
Client :	CECCE	Project Location	oject Location : 675 Borbridge Avenue, Ottawa, Ontario								
Date Sampled :	December 4, 2024	Borehole No:		24-14	San	Depth (m):	1.5-2.1				
Sample Description :		% Silt and Clay	55	% Sand	45	% Gravel		0	Figure .	40	
Sample Description :		Sandy Silt (ML) - Some Clay							Figure :	18	

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

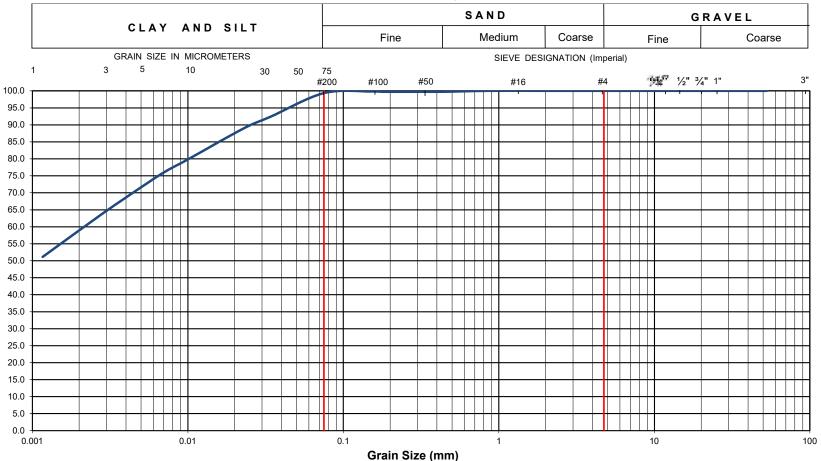
100-2650 Queensview Drive Ottawa, ON K2B 8H6



EXP Project No.:	OTT-24010349-A0		Project Name :	roject Name : Proposed New Riverside South Secondary School								
Client :	CECCE		Project Location	roject Location: 675 Borbridge Avenue, Ottawa, Ontario								
Date Sampled :	December 6, 2024		Borehole No:		24-1	Sam	ple No.:	S	S6	Depth (m):	3.8 - 4.4	
Sample Description :	mple Description : % Silt and Clay 91 % Sand 7 % Gravel 2		Figure :	19								
Sample Description :	ample Description : Silty Clay of Medium Plasticity (CI) - Trace Sand, Trace Gravel								rigure :	19		

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

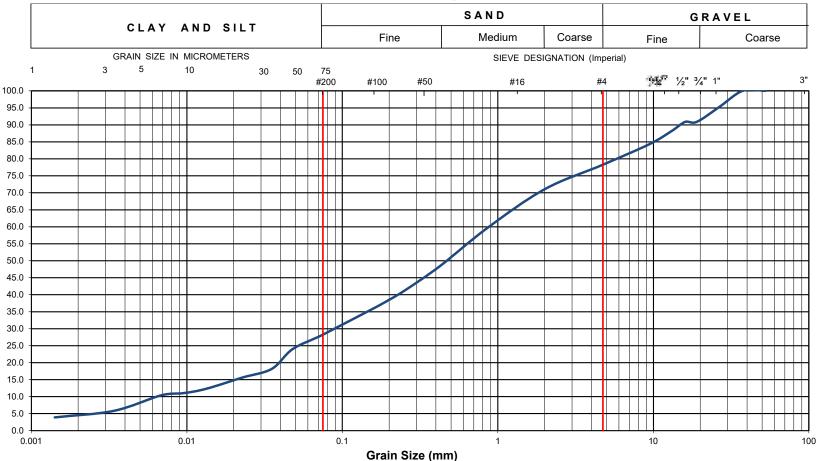
100-2650 Queensview Drive Ottawa, ON K2B 8H6



EXP Project No.:	OTT-24010349-A0	Project Name :	oject Name : Proposed New Riverside South Secondary School								
Client :	CECCE	Project Location	roject Location : 675 Borbridge Avenue, Ottawa, Ontario								
Date Sampled :	December 3, 2024	Borehole No:		24-3	San	ple No.:	S	S5	Depth (m) :	3.8-4.4	
Sample Description :		% Silt and Clay	94	% Sand	5	% Gravel		1	Figure .	20	
Sample Description :	ample Description : Silty Clay of Medium Plasticity (CI) - Trace Sand, Trace Gravel								Figure :	20	

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

100-2650 Queensview Drive Ottawa, ON K2B 8H6



EXP Project No.:	OTT-24010349-A0	Project Name :	oject Name : Proposed New Riverside South Secondary School								
Client :	CECCE	Project Location	roject Location : 675 Borbridge Avenue, Ottawa, Ontario								
Date Sampled :	December 4, 2024	Borehole No:		24-15	Sam	ple No.:	S	Depth (m) :	3.0-3.6		
Sample Description :		% Silt and Clay	99	% Sand	1	% Gravel		0	Figure :	24	
Sample Description : Silty Clay of High Plasticity (CH) - Trace Sand							Figure :	21			

Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

100-2650 Queensview Drive Ottawa, ON K2B 8H6

EXP Project No.:	OTT-24010349-A0	Project Name :	oject Name : Proposed New Riverside South Secondary School								
Client :	CECCE	Project Location :	roject Location : 675 Borbridge Avenue, Ottawa, Ontario								
Date Sampled :	December 3, 2024	Borehole No:		24-2	Sam	ple No.:	Depth (m):	4.6-5.1			
Sample Description :		% Silt and Clay	28	% Sand	50	% Gravel		Figure :		22	
Sample Description : Glacial Till - Gravelly Silty Sand (SM) - Trace Clay							rigure :	22			

EXP Services Inc.

Project Name: Interim Geotechnical Investigation and Phase II ESA
Proposed New Riverside South Secondary School
675 Borbridge Avenue, Ottawa, ON
Project Number: OTT-24010349-A0
January 20,2025

Appendix A – Seismic Shear Wave Velocity Sounding Survey Report by GPR

January 15th, 2025

Transmitted by email: daniel.wall@exp.com

c.c.: ismail.taki@exp.com

Our ref: GPR24-05886-d

Mr. Daniel Wall, P.Eng. Intermediate Geotechnical Engineer **exp** Services inc. 100 - 2650 Queensview Drive Ottawa ON K2B 8H6

Shear Wave Velocity Sounding for the Site Class Determination Subject: 906 Brian Good Avenue, Ottawa (ON)

[Project: OTT-23012778-I0]

Dear Mr. Wall,

Geophysics GPR International inc. has been mandated by **exp** Services inc. to carry out seismic surveys at 960 Brian Good Avenue, Riverside South, in Ottawa (ON). The geophysical investigation used the Multi-channel Analysis of Surface Waves (MASW) with the Spatial AutoCorrelation (SPAC), and the seismic refraction and reflection methods. From the subsequent results, the seismic shear wave velocity values were calculated for the soils and the rock, to determine the Site Class.

The surveys were conducted on December 5th, 2024, by Mrs. Karyne Faguy, B.Sc. geophysics and Mr. Félix Bergeron, EIT (QC). Figure 1 shows the regional location of the site and Figure 2 illustrates the location of the seismic spread. Both figures are presented in the Appendix.

The following paragraphs briefly describe the survey design, the principles of the testing methods, and the results presented in table and graph.

MASW Principle

The Multi-channel Analysis of Surface Waves (MASW) and the SPatial AutoCorrelation (SPAC or MAM for Microtremors Array Method) are seismic methods used to evaluate the shear wave velocities of subsurface materials through the analysis of the dispersion properties of the Rayleigh surface wave. The MASW is considered an "active" method, as the seismic signal is induced at known location and time in the geophones' spread axis. Conversely, the SPAC is considered a "passive" method, using the low frequency "signals" produced far away. The method can also be used with "active" seismic source records. The SPAC method generally allows deeper V_S soundings. Its dispersion curve can then be merged with the one of higher frequency from the MASW to calculate a more complete inversion. The dispersion properties are expressed as a change of velocities with respect to frequencies. Surface wave energy will decay exponentially with depth. Lower frequency surface waves will travel deeper and thus be more influenced by deeper velocity layering than the shallow higher frequency waves. The inversion of the Rayleigh wave dispersion curve yields a shear wave (V_S) velocity depth profile (sounding).

Figure 3 schematically outlines the basic operating procedure for the MASW method. Figure 4 illustrates an example of one of the MASW/SPAC records, a corresponding spectrogram analysis and resulting 1D V_S model.

INTERPRETATION

The main processing sequence involved data inspection and edition when required; spectral analysis (from MASW and SPAC); picking the fundamental mode; and 1D inversion of the MASW and SPAC shot records using the SeisImagerSW™ software. The data inversions used a nonlinear least squares algorithm.

In theory, all the shot records for a given seismic spread should produce a similar shear-wave velocity profile. In practice, however, differences can arise due to energy dissipation, local surface seismic velocities variations, and/or dipping of overburden layers or rock. In general, the precision of the calculated seismic shear wave velocities (V_S) is around 15% or better.

More detailed descriptions of these methods are presented in *Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock*, Hunter, J.A., Crow, H.L., et al., Geological Surveys of Canada, General Information Product 110, 2015.

SURVEY DESIGN

The seismic spreads were laid out north-west of the intersection of Brian Good Ave and Atrium Ridge (Figure 2). The geophone spacing was 3.0 metres for the main spread, using 24 geophones. A shorter seismic spread, with geophone spacing of 1.0 metre, was dedicated to the near surface materials. The seismic records were produced with a seismograph Terraloc PRO2 (from ABEM Instrument), and the geophones were 4.5 Hz.

The seismic records counted 4096 data, sampled at 1000 μ s for the MASW surveys, and at 50 μ s for the seismic refraction. The records included a pre-trigged portion of 10 ms. A 5 kg sledgehammer was used as the energy source, with impacts being recorded off both ends of the seismic spreads. A stacking procedure was also used to improve the Signal / Noise ratio for the seismic records.

The shear wave depth sounding can be considered as the average of the bulk area within the geophone spread, especially for its central half-length.

RESULTS

From seismic reflection (NMO) a reflector associated to the rock was calculated between 33.5 and 37 metres deep. This parameter was used for the initial geophysical models, prior to the modelling and inversion of the MASW results.

The MASW calculated V_S results are illustrated at Figure 5.

The \overline{V}_{S30} value results from the harmonic mean of the shear wave velocities, from the surface to 30 metres deep. It is calculated by dividing the total depth of interest (30 metres) by the sum of the time spent in each velocity layer from the surface down to 30 metres, as:

$$\bar{V}_{S30} = \frac{\sum_{i=1}^{N} H_i}{\sum_{i=1}^{N} H_i / V_i} \mid \sum_{i=1}^{N} H_i = 30 \text{ m}$$

(N: number of layers; H_i: thickness of layer "i"; V_i: V_S of layer "i")

Thus, the \overline{V}_{S30} value represents the seismic shear wave velocity of an equivalent homogeneous single layer response, between the surface and 30 metres deep.

The calculated \overline{V}_{S30} value of the actual site is 478.9 m/s (Table 1), corresponding to the Site Class "C".

CONCLUSION

Geophysical surveys were carried out to identify the Site Class at 960 Brian Good Avenue, Riverside South, in Ottawa (ON). The seismic surveys used the MASW and the SPAC analysis to calculate the \overline{V}_{S30} value. Its calculation is presented at Table 1.

The \overline{V}_{S30} value of the actual site is 479 m/s, corresponding to the Site Class "C" (360 < \overline{V}_{S30} ≤ 760 m/s), as determined through the MASW and SPAC methods, Table 4.1.8.4.-A of the NBC (2015), and the Building Code, O. Reg. 332/12.

It must be noted that other geotechnical information gleaned on site; including the presence of liquefiable soils, very soft clays, high moisture content etc. (cf. Table 4.1.8.4.-A of the NBC 2015) can supersede the Site classification provided in this report based on the \overline{V}_{S30} value.

The V_S values calculated are representative of the in situ materials and are not corrected for the total and effective stresses.

Hoping the whole to your satisfaction, we remain yours truly,

Jean-Luc Arsenault, M.A.Sc., P.Eng.

Senior Project Manager

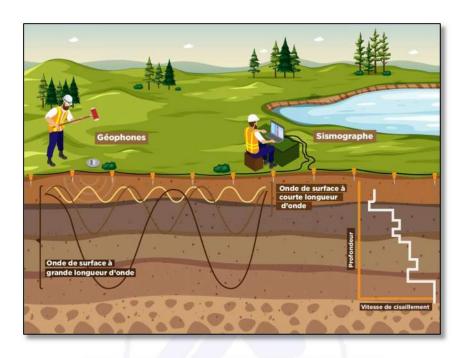


Figure 1: Regional location of the Site (Source : OpenStreetMap®)

Figure 2: Location of the seismic spread (source: Google Earth™)

Figure 3: MASW Operating Principle

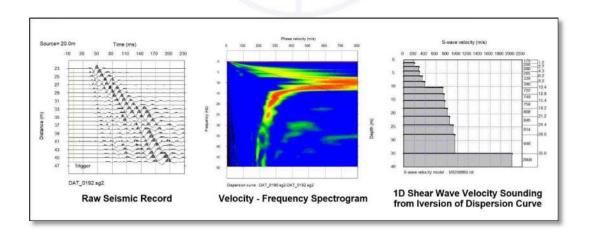


Figure 4: Example of a MASW/SPAC record, Phase Velocity - Frequency curve of the Rayleigh wave and resulting 1D Shear Wave Velocity Model

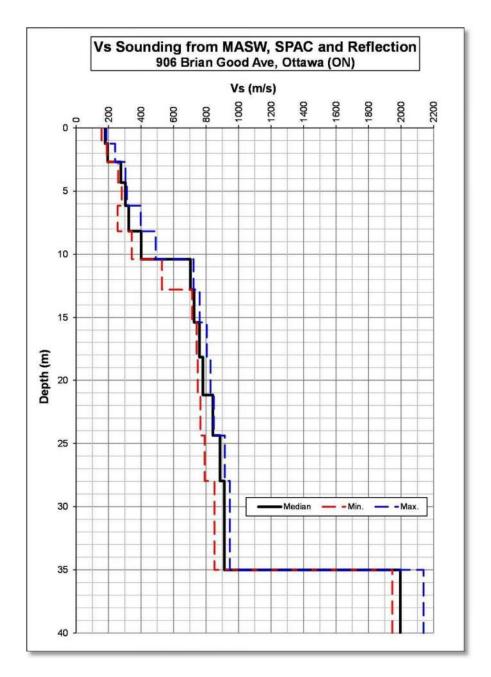


Figure 5: MASW Shear-Wave Velocity Sounding

 $\frac{{\sf TABLE~1}}{\bar{V}_{{\sf S30}}}~{\sf Calculation~for~the~Site~Class~(actual~site)}$

Depth		Vs		Thickness	Cumulative	Delay for	Cumulative	Vs at given	
Deptil	Min.	Median	Max.	HIICKHESS	Thickness	med. Vs	Delay	Depth	
(m)	(m/s)	(m/s)	(m/s)	(m)	(m)	(s)	(s)	(m/s)	
0	157.8	179.3	187.2	Grade Level (December 5 th , 2024)					
1.25	189.4	194.5	240.7	1.25	1.25	0.006973	0.006973	179.3	
2.69	259.1	275.7	303.9	1.44	2.69	0.007415	0.014388	187.1	
4.33	281.3	303.7	313.4	1.63	4.33	0.005929	0.020317	213.0	
6.15	256.0	324.7	398.1	1.83	6.15	0.006016	0.026333	233.7	
8.17	343.1	401.2	490.0	2.02	8.17	0.006218	0.032551	251.1	
10.38	528.5	703.7	723.0	2.21	10.38	0.005513	0.038064	272.8	
12.79	714.6	726.4	760.6	2.40	12.79	0.003416	0.041480	308.3	
15.38	742.3	759.6	804.5	2.60	15.38	0.003574	0.045054	341.5	
18.17	749.0	780.9	827.4	2.79	18.17	0.003671	0.048725	373.0	
21.17	765.4	842.3	848.3	3.00	21.17	0.003842	0.052566	402.8	
24.37	791.6	886.2	915.0	3.20	24.37	0.003799	0.056366	432.4	
27.97	852.1	912.2	946.8	3.60	27.97	0.004062	0.060428	462.9	
30				2.03	30.00	0.002222	0.062650	478.9	

Vs30 (m/s)	478.9				
Class	С				

EXP Services Inc.

Project Name: Interim Geotechnical Investigation and Phase II ESA
Proposed New Riverside South Secondary School
675 Borbridge Avenue, Ottawa, ON
Project Number: OTT-24010349-A0
January 20,2025

Appendix B – Consolidation Test Results

Stantec Consulting Ltd.

400 - 1331 Clyde Avenue, Ottawa ON K2C 3G4

January 17, 2025 File: 121624678

Attention: Ismail Taki, M.Eng., P.Eng.

Exp Services Inc 2650 Queensview Drive Suite 100

Ottawa, Ontario, Canada, K2B 8H6

Tel: 1-613-853-1350

E-mail: ismail.taki@exp.com

Dear Mr. Taki,

Reference: Consolidation Test Results: Proposed OCDSB Riverside South Elementary School,

675 Borbridge, Ottawa, ON. Exp Services Inc., File # OTT-24010349-A0

This letter presents the results of one-dimensional consolidation test carried out on one shelby tube samples in accordance with ASTM D2435/D2435M – 11(2020). The test result is provided in the attached tables and figures.

Summary of samples tested.

Sample ID	Depth (ft)	Date sampled			
BH 24-12, ST1	12.5-14.5	December 6, 2024			

This letter provides test results only and does not constitute any interpretation or engineering recommendations with respect to material suitability or specification compliance.

We trust the information presented herein meets your present requirements. Should you have any questions or require additional information, please do not hesitate to contact us.

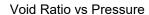
Regards,

Stantec Consulting Ltd.

Ramin Ghassemi Ph.D., P.Eng.

Geotechnical Engineer Direct: 613 722-4420 Mobile: 437 775-7625

Ramin.ghassemi@stantec.com


v:\01216\active\laboratory_standing_offers\12024 laboratory standing offers\121625890 exp services inc\1 consol, exp # ott-24010349-a0\121624678_let_consolidation_bh24-12, st1_revised.docx

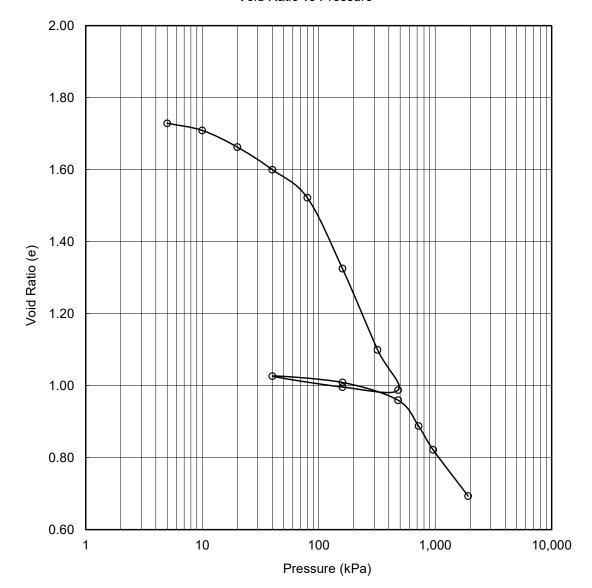
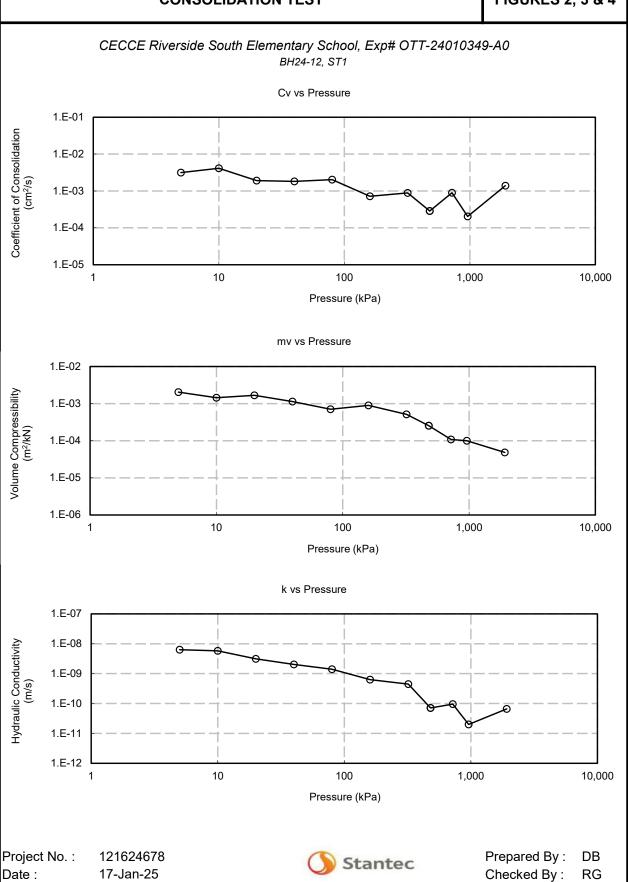

	C	ONSOLIDATION T	EST SUMN	MARY					
			SAMPLE I	DENTIFIC	ATION				_
Borehole No	.:	BH24-12			Sample No	. :		ST1	
טטופווטופ אט		21.21 .2			Sample No. :			12.5-14.5	
			TEST CON	DITIONS	•	, ,			_
Test Type :		ASTM D2435/D243	5M		Date Starte	d :		24-Dec-24	
Load Duration (hr):		24			Date Comp	9-Jan-25			
		SAMPLE DIMENS	SIONS AND	PROPER	TIES _ INI	TIAL			
Sample Heig	iht (mm) ·	20.50			Unit Weigh	t (kN/m³) ·		15.89	
Sample Dian					Dry Unit W	9.78			
Area (cm ²):	notor (mm).	19.63 Specific Gravity : (Assumed				•	2.75		
Volume (cm ³	·):	40.25			Solid Heigh	• .		7.44	
Water Conte		62.47			-	Solids (cm³)	:	14.60	
Wet Mass (g		65.23				√oids (cm³)		25.65	
Dry Mass (g)	•	40.15				Saturation (%		97.77	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						`	•		_
		Corrected	TEST COM	_	_	C	m	l.	
A : 10:	11 - 1 - 0 - 0	Corrected	Axial	Void Ratio	00	C _v	m _v	k	
Axial Stress	Height (H)		Strain (ε _a)	е	(sec)	(cm ² /s)	(m ² /kN)	(m/s)	
(kPa)	(mm)	(mm)	(%)	4 757					
0	20.5000	0.0000	0.00	1.757		0.445.00	0.045.00	0.00=.00	
5	20.2906	0.2094	1.02	1.729			2.04E-03	6.29E-09	
10	20.1425	0.3575	1.74	1.709			1.44E-03	5.83E-09	
20	19.7985	0.7015	3.42	1.663			1.68E-03	3.14E-09	
40	19.3321	1.1679	5.70	1.600			1.14E-03	2.04E-09	
80	18.7516	1.7484	8.53	1.522			7.08E-04	1.40E-09	
160	17.2892	3.2108	15.66	1.325			8.92E-04	6.31E-10	
320	15.6111	4.8889	23.85	1.099			5.12E-04	4.46E-10	
480	14.7798	5.7202	27.90	0.988		2.85E-04	2.53E-04	7.09E-11	
160	14.8427	5.6573	27.60	0.996					
40	15.0683	5.4317	26.50	1.026		2 705 02	E 20E 0E	2.045.40	
160	14.9356	5.5644	27.14	1.009			5.39E-05	2.01E-10	
480 720	14.5697	5.9303	28.93	0.959			5.58E-05 1.08E-04	1.92E-10	
720 960	14.0359 13.5449	6.4641 6.9551	31.53 33.93	0.888 0.822			9.98E-05	9.52E-11 2.00E-11	
1920	12.5916	7.9084	38.58	0.622			9.96E-05 4.84E-05	6.60E-11	
.020		SAMPLE DIMENS						0.002 11	-
Sample Heig	ht (mm) ·	12.59			Unit Weigh	t (kN/m³) ·		20.73	
Sample Diameter (mm) :					_	eight (kN/m ³	³) ·	15.93	
Area (cm ²):		19.63			-	avity (Assun	-	2.75	
Volume (cm ³):		24.72			Solid Heigh		uj.	7.44	
Water Content (%) :		30.16			U	Solids (cm³)		14.60	
Wet Mass (g):		52.26				voids (cm³)		10.12	
Dry Mass (g)	-	40.15			, ordino or	· Jido (OIII)	•	10.12	
, mass (g)	-								
oject No. :	121624678						Prepared E	Зу:	
ite:	17-Jan-25			Sta	ntec		Checked E	-	

FIGURE 1

CECCE Riverside South Elementary School, Exp# OTT-24010349-A0
BH24-12, ST1


Soil Type :	Silty clay, grey, ver	y moist			
e _o =	1.757	w _L =	N/A	σ _{v0} ' =	kPa
w =	62.5%	$w_P =$	N/A	$\sigma_P' =$	kPa
γ =	15.9 kN/m ³	PI =	N/A		
Gs =	2.75				

Project No. : 121624678 Date : 17-Jan-25

CONSOLIDATION TEST

CECCE Riverside South Elementary School, Exp# OTT-24010349-A0 Silty clay, grey, very moist

BH24-12, ST1

BH24-12, ST1

Project No.: 121624678

Date: 17-Jan-2025

Prepared by: DB

Checked by: RG

EXP Services Inc.

Project Name: Interim Geotechnical Investigation and Phase II ESA
Proposed New Riverside South Secondary School
675 Borbridge Avenue, Ottawa, ON
Project Number: OTT-24010349-A0

January 20,2025

Appendix C – Environmental Laboratory Certificates of Analysis

Your Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Your C.O.C. #: N/A

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/12/13

Report #: R8445437 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BB424 Received: 2024/12/09, 14:48

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Hot Water Extractable Boron (1)	3	2024/12/12	2024/12/12	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron (1)	1	2024/12/12	2024/12/13	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum (1)	4	N/A	2024/12/12		EPA 8260C m
Free (WAD) Cyanide (1)	4	2024/12/12	2024/12/12	CAM SOP-00457	OMOE E3015 m
Conductivity (1)	4	2024/12/12	2024/12/12	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1, 2)	4	2024/12/12	2024/12/12	CAM SOP-00436	EPA 3060A/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	1	2024/12/12	2024/12/12	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	3	2024/12/12	2024/12/13	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS (1)	4	2024/12/12	2024/12/12	CAM SOP-00447	EPA 6020B m
Moisture (1)	4	N/A	2024/12/11	CAM SOP-00445	Carter 2nd ed 70.2 m
pH CaCl2 EXTRACT (1)	4	2024/12/12	2024/12/12	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR) (1)	4	N/A	2024/12/12	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs (1)	4	N/A	2024/12/12	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Your Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Your C.O.C. #: N/A

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/12/13

Report #: R8445437 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4BB424

Received: 2024/12/09, 14:48

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8
- (2) Soils are reported on a dry weight basis unless otherwise specified.

(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 2 Page 2 of 20

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		ALGO15			ALGO15			ALGO16		
Sampling Date		2024/12/06			2024/12/06			2024/12/04		
Sampling Date		13:00			13:00			09:00		
COC Number		N/A			N/A			N/A		
		BH 24-01,			BH 24-01,					
	UNITS	SS5	RDL	QC Batch	SS5	RDL	QC Batch	BH24-04,SS3	RDL	QC Batch
					Lab-Dup					
Calculated Parameters	1		1	1		1				
Sodium Adsorption Ratio	N/A	0.27 (1)		9820300				0.38 (1)		9820300
Inorganics			•			•				
Conductivity	mS/cm	0.16	0.002	9822989				0.085	0.002	9822989
Available (CaCl2) pH	рН	7.66		9823309				7.13		9823309
WAD Cyanide (Free)	ug/g	<0.01	0.01	9822211				<0.01	0.01	9822211
Chromium (VI)	ug/g	<0.18	0.18	9822456				0.24	0.18	9822456
Metals										
Hot Water Ext. Boron (B)	ug/g	<0.050	0.050	9822615				<0.050	0.050	9822615
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	9822953	<0.20	0.20	9822953	<0.20	0.20	9822630
Acid Extractable Arsenic (As)	ug/g	<1.0	1.0	9822953	<1.0	1.0	9822953	2.1	1.0	9822630
Acid Extractable Barium (Ba)	ug/g	200	0.50	9822953	190	0.50	9822953	130	0.50	9822630
Acid Extractable Beryllium (Be)	ug/g	0.56	0.20	9822953	0.52	0.20	9822953	0.46	0.20	9822630
Acid Extractable Boron (B)	ug/g	<5.0	5.0	9822953	<5.0	5.0	9822953	<5.0	5.0	9822630
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.10	9822953	<0.10	0.10	9822953	<0.10	0.10	9822630
Acid Extractable Chromium (Cr)	ug/g	42	1.0	9822953	40	1.0	9822953	28	1.0	9822630
Acid Extractable Cobalt (Co)	ug/g	11	0.10	9822953	11	0.10	9822953	8.3	0.10	9822630
Acid Extractable Copper (Cu)	ug/g	26	0.50	9822953	24	0.50	9822953	18	0.50	9822630
Acid Extractable Lead (Pb)	ug/g	5.1	1.0	9822953	5.0	1.0	9822953	4.7	1.0	9822630
Acid Extractable Molybdenum (Mo)	ug/g	0.61	0.50	9822953	0.66	0.50	9822953	<0.50	0.50	9822630
Acid Extractable Nickel (Ni)	ug/g	24	0.50	9822953	23	0.50	9822953	17	0.50	9822630
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	9822953	<0.50	0.50	9822953	<0.50	0.50	9822630
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	9822953	<0.20	0.20	9822953	<0.20	0.20	9822630
Acid Extractable Thallium (TI)	ug/g	0.24	0.050	9822953	0.24	0.050	9822953	0.15	0.050	9822630
Acid Extractable Uranium (U)	ug/g	0.67	0.050	9822953	0.66	0.050	9822953	0.54	0.050	9822630
Acid Extractable Vanadium (V)	ug/g	67	5.0	9822953	63	5.0	9822953	42	5.0	9822630
Acid Extractable Zinc (Zn)	ug/g	68	5.0	9822953	67	5.0	9822953	46	5.0	9822630
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	9822953	<0.050	0.050	9822953	<0.050	0.050	9822630

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID		ALGO17		ALGO18				
Sampling Date		2024/12/04 13:30		2024/12/04				
COC Number		N/A		N/A				
	UNITS	BH24-14,SS4	QC Batch	DUP	RDL	QC Batch		
Calculated Parameters								
Sodium Adsorption Ratio	N/A	0.25	9820300	0.25		9820300		
Inorganics								
Conductivity	mS/cm	0.22	9822989	0.23	0.002	9822989		
Available (CaCl2) pH	рН	7.63	9823309	7.64		9822993		
WAD Cyanide (Free)	ug/g	<0.01	9822210	<0.01	0.01	9822210		
Chromium (VI)	ug/g	<0.36	9822456	<0.36	0.36	9822456		
Metals	•				•			
Hot Water Ext. Boron (B)	ug/g	<0.050	9822615	<0.050	0.050	9822600		
Acid Extractable Antimony (Sb)	ug/g	<0.20	9822630	<0.20	0.20	9822630		
Acid Extractable Arsenic (As)	ug/g	1.0	9822630	<1.0	1.0	9822630		
Acid Extractable Barium (Ba)	ug/g	390	9822630	340	0.50	9822630		
Acid Extractable Beryllium (Be)	ug/g	0.77	9822630	0.71	0.20	9822630		
Acid Extractable Boron (B)	ug/g	<5.0	9822630	<5.0	5.0	9822630		
Acid Extractable Cadmium (Cd)	ug/g	<0.10	9822630	<0.10	0.10	9822630		
Acid Extractable Chromium (Cr)	ug/g	89	9822630	89	1.0	9822630		
Acid Extractable Cobalt (Co)	ug/g	21	9822630	21	0.10	9822630		
Acid Extractable Copper (Cu)	ug/g	40	9822630	38	0.50	9822630		
Acid Extractable Lead (Pb)	ug/g	6.1	9822630	5.8	1.0	9822630		
Acid Extractable Molybdenum (Mo)	ug/g	0.66	9822630	0.59	0.50	9822630		
Acid Extractable Nickel (Ni)	ug/g	50	9822630	51	0.50	9822630		
Acid Extractable Selenium (Se)	ug/g	<0.50	9822630	<0.50	0.50	9822630		
Acid Extractable Silver (Ag)	ug/g	<0.20	9822630	<0.20	0.20	9822630		
Acid Extractable Thallium (TI)	ug/g	0.43	9822630	0.38	0.050	9822630		
Acid Extractable Uranium (U)	ug/g	0.66	9822630	0.68	0.050	9822630		
Acid Extractable Vanadium (V)	ug/g	100	9822630	98	5.0	9822630		
Acid Extractable Zinc (Zn)	ug/g	130	9822630	120	5.0	9822630		
Acid Extractable Mercury (Hg)	ug/g	<0.050	9822630	<0.050	0.050	9822630		
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
L								

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		ALGO15	ALGO16		ALGO17		ALGO18		
		2024/12/06	2024/12/04		2024/12/04				
Sampling Date		13:00	09:00		13:30		2024/12/04		
COC Number		N/A	N/A		N/A		N/A		
	UNITS	BH 24-01, SS5	BH24-04,SS3	RDL	BH24-14,SS4	RDL	DUP	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	9819530
Volatile Organics					•			•	
Acetone (2-Propanone)	ug/g	<0.49	<0.49	0.49	<0.49	0.49	<0.49	0.49	9820755
Benzene	ug/g	<0.0060	<0.0060	0.0060	<0.0060	0.0060	<0.0060	0.0060	9820755
Bromodichloromethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Bromoform	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Bromomethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Carbon Tetrachloride	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Chlorobenzene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Chloroform	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Dibromochloromethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,2-Dichlorobenzene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,3-Dichlorobenzene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,4-Dichlorobenzene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,1-Dichloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,2-Dichloroethane	ug/g	<0.049	<0.049	0.049	<0.049	0.049	<0.049	0.049	9820755
1,1-Dichloroethylene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
cis-1,2-Dichloroethylene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
trans-1,2-Dichloroethylene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,2-Dichloropropane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	0.030	<0.030	0.030	<0.030	0.030	9820755
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Ethylbenzene	ug/g	<0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	9820755
Ethylene Dibromide	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Hexane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Methylene Chloride(Dichloromethane)	ug/g	<0.049	<0.049	0.049	<0.049	0.049	<0.049	0.049	9820755
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	<0.40	0.40	<0.40	0.40	<0.40	0.40	9820755
Methyl Isobutyl Ketone	ug/g	<0.40	<0.40	0.40	<0.40	0.40	<0.40	0.40	9820755
Methyl t-butyl ether (MTBE)	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Styrene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,1,1,2-Tetrachloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,1,2,2-Tetrachloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
RDL = Reportable Detection Limit									

QC Batch = Quality Control Batch

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		ALGO15	ALGO16		ALGO17		ALGO18		
Sampling Date		2024/12/06 13:00	2024/12/04 09:00		2024/12/04 13:30		2024/12/04		
COC Number		N/A	N/A		N/A		N/A		
	UNITS	BH 24-01, SS5	BH24-04,SS3	RDL	BH24-14,SS4	RDL	DUP	RDL	QC Batch
Tetrachloroethylene	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Toluene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9820755
1,1,1-Trichloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
1,1,2-Trichloroethane	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Trichloroethylene	ug/g	<0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	9820755
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	<0.040	0.040	<0.040	0.040	<0.040	0.040	9820755
Vinyl Chloride	ug/g	<0.019	<0.019	0.019	<0.019	0.019	<0.019	0.019	9820755
p+m-Xylene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9820755
o-Xylene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9820755
Total Xylenes	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	9820755
F1 (C6-C10)	ug/g	<10	<10	10	<10	10	<10	10	9820755
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	<10	10	<10	10	9820755
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<7.0	<7.0	7.0	<14	14	7.1	7.0	9822204
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	50	<100	100	<50	50	9822204
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	<100	100	<50	50	9822204
Reached Baseline at C50	ug/g	Yes	Yes		Yes		Yes		9822204
Surrogate Recovery (%)								•	•
o-Terphenyl	%	96	104		98		100		9822204
4-Bromofluorobenzene	%	94	96		95		95		9820755
D10-o-Xylene	%	86	88		83		81		9820755
D4-1,2-Dichloroethane	%	123	124		121		123		9820755
D8-Toluene	%	90	90		91		92		9820755
RDL = Reportable Detection Limit			•						•

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		ALGO15	ALGO16	ALGO17	ALGO18				
Sampling Date		2024/12/06 13:00	2024/12/04 09:00	2024/12/04 13:30	2024/12/04				
COC Number		N/A	N/A	N/A	N/A				
	UNITS	BH 24-01 , SS5	BH24-04,SS3	BH24-14,SS4	DUP	RDL	QC Batch		
Inorganics									
Moisture	%	30	22	40	36	1.0	9821321		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

Report Date: 2024/12/13

exp Services Inc

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: ALGO15

Sample ID: BH 24-01, SS5 Matrix: Soil

Collected:

2024/12/06

Shipped:

Received: 2024/12/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9822615	2024/12/12	2024/12/12	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	CALC	9819530	N/A	2024/12/12	Automated Statchk
Free (WAD) Cyanide	TECH	9822211	2024/12/12	2024/12/12	Prgya Panchal
Conductivity	AT	9822989	2024/12/12	2024/12/12	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9822456	2024/12/12	2024/12/12	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9822204	2024/12/12	2024/12/12	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	9822953	2024/12/12	2024/12/12	Daniel Teclu
Moisture	BAL	9821321	N/A	2024/12/11	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9823309	2024/12/12	2024/12/12	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9820300	N/A	2024/12/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9820755	N/A	2024/12/12	Xueming Jiang

Bureau Veritas ID: ALGO15 Dup

Sample ID: BH 24-01, SS5

Matrix: Soil

Shipped:

Collected: 2024/12/06

Received: 2024/12/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Acid Extractable Metals by ICPMS	ICP/MS	9822953	2024/12/12	2024/12/12	Daniel Teclu

Bureau Veritas ID: ALGO16

Sample ID: BH24-04,SS3

Matrix: Soil

Collected: Shipped:

2024/12/04

Received: 2024/12/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9822615	2024/12/12	2024/12/12	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	CALC	9819530	N/A	2024/12/12	Automated Statchk
Free (WAD) Cyanide	TECH	9822211	2024/12/12	2024/12/12	Prgya Panchal
Conductivity	AT	9822989	2024/12/12	2024/12/12	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9822456	2024/12/12	2024/12/12	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9822204	2024/12/12	2024/12/13	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	9822630	2024/12/12	2024/12/12	Daniel Teclu
Moisture	BAL	9821321	N/A	2024/12/11	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9823309	2024/12/12	2024/12/12	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9820300	N/A	2024/12/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9820755	N/A	2024/12/12	Xueming Jiang

Bureau Veritas ID: ALGO17 Sample ID: BH24-14,SS4

Matrix: Soil

Collected: 2024/12/04

Shipped:

Received: 2024/12/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9822615	2024/12/12	2024/12/12	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	CALC	9819530	N/A	2024/12/12	Automated Statchk
Free (WAD) Cyanide	TECH	9822210	2024/12/12	2024/12/12	Prgya Panchal
Conductivity	AT	9822989	2024/12/12	2024/12/12	Gurparteek KAUR

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: ALGO17

Sample ID: BH24-14,SS4

Matrix: Soil

Collected: 2024/12/04

Shipped:

Received: 2024/12/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	9822456	2024/12/12	2024/12/12	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9822204	2024/12/12	2024/12/13	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	9822630	2024/12/12	2024/12/12	Daniel Teclu
Moisture	BAL	9821321	N/A	2024/12/11	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9823309	2024/12/12	2024/12/12	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9820300	N/A	2024/12/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9820755	N/A	2024/12/12	Xueming Jiang

Bureau Veritas ID: ALGO18

Sample ID: DUP

. Matrix: Soil **Collected:** 2024/12/04

Shipped: Received: 2024/12/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	9822600	2024/12/12	2024/12/13	Aswathy Neduveli Suresh
1,3-Dichloropropene Sum	CALC	9819530	N/A	2024/12/12	Automated Statchk
Free (WAD) Cyanide	TECH	9822210	2024/12/12	2024/12/12	Prgya Panchal
Conductivity	AT	9822989	2024/12/12	2024/12/12	Gurparteek KAUR
Hexavalent Chromium in Soil by IC	IC/SPEC	9822456	2024/12/12	2024/12/12	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	9822204	2024/12/12	2024/12/13	(Kent) Maolin Li
Acid Extractable Metals by ICPMS	ICP/MS	9822630	2024/12/12	2024/12/12	Daniel Teclu
Moisture	BAL	9821321	N/A	2024/12/11	Muhammad Chhaidan
pH CaCl2 EXTRACT	AT	9822993	2024/12/12	2024/12/12	Kien Tran
Sodium Adsorption Ratio (SAR)	CALC/MET	9820300	N/A	2024/12/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	9820755	N/A	2024/12/12	Xueming Jiang

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 2.0°C

Sample ALGO17 [BH24-14,SS4]: F2-F4 Analysis: Detection limits were adjusted for high moisture content.

Hexavalent Chromium: Detection Limits were raised due to high moisture content.

Sample ALGO18 [DUP]: Hexavalent Chromium: Detection Limits were raised due to high moisture content.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9820755	4-Bromofluorobenzene	2024/12/12	101	60 - 140	104	60 - 140	95	%		
9820755	D10-o-Xylene	2024/12/12	100	60 - 130	89	60 - 130	84	%		
9820755	D4-1,2-Dichloroethane	2024/12/12	112	60 - 140	120	60 - 140	124	%		
9820755	D8-Toluene	2024/12/12	101	60 - 140	105	60 - 140	90	%		
9822204	o-Terphenyl	2024/12/12	112	60 - 140	85	60 - 140	91	%		
9820755	1,1,1,2-Tetrachloroethane	2024/12/12	109	60 - 140	117	60 - 130	<0.040	ug/g	NC	50
9820755	1,1,1-Trichloroethane	2024/12/12	109	60 - 140	109	60 - 130	<0.040	ug/g	NC	50
9820755	1,1,2,2-Tetrachloroethane	2024/12/12	89	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9820755	1,1,2-Trichloroethane	2024/12/12	97	60 - 140	107	60 - 130	<0.040	ug/g	NC	50
9820755	1,1-Dichloroethane	2024/12/12	101	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
9820755	1,1-Dichloroethylene	2024/12/12	103	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
9820755	1,2-Dichlorobenzene	2024/12/12	95	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
9820755	1,2-Dichloroethane	2024/12/12	109	60 - 140	115	60 - 130	<0.049	ug/g	NC	50
9820755	1,2-Dichloropropane	2024/12/12	99	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
9820755	1,3-Dichlorobenzene	2024/12/12	97	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
9820755	1,4-Dichlorobenzene	2024/12/12	97	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
9820755	Acetone (2-Propanone)	2024/12/12	104	60 - 140	109	60 - 140	<0.49	ug/g	NC	50
9820755	Benzene	2024/12/12	101	60 - 140	100	60 - 130	<0.0060	ug/g	NC	50
9820755	Bromodichloromethane	2024/12/12	104	60 - 140	106	60 - 130	<0.040	ug/g	NC	50
9820755	Bromoform	2024/12/12	93	60 - 140	104	60 - 130	<0.040	ug/g	NC	50
9820755	Bromomethane	2024/12/12	104	60 - 140	104	60 - 140	<0.040	ug/g	NC	50
9820755	Carbon Tetrachloride	2024/12/12	119	60 - 140	118	60 - 130	<0.040	ug/g	NC	50
9820755	Chlorobenzene	2024/12/12	87	60 - 140	87	60 - 130	<0.040	ug/g	NC	50
9820755	Chloroform	2024/12/12	107	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
9820755	cis-1,2-Dichloroethylene	2024/12/12	101	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
9820755	cis-1,3-Dichloropropene	2024/12/12	86	60 - 140	82	60 - 130	<0.030	ug/g	NC	50
9820755	Dibromochloromethane	2024/12/12	100	60 - 140	109	60 - 130	<0.040	ug/g	NC	50
9820755	Dichlorodifluoromethane (FREON 12)	2024/12/12	133	60 - 140	126	60 - 140	<0.040	ug/g	NC	50
9820755	Ethylbenzene	2024/12/12	90	60 - 140	85	60 - 130	<0.010	ug/g	NC	50
9820755	Ethylene Dibromide	2024/12/12	92	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
9820755	F1 (C6-C10) - BTEX	2024/12/12					<10	ug/g	2.8	30
9820755	F1 (C6-C10)	2024/12/12	65	60 - 140	91	80 - 120	<10	ug/g	2.8	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9820755	Hexane	2024/12/12	104	60 - 140	107	60 - 130	<0.040	ug/g	NC	50
9820755	Methyl Ethyl Ketone (2-Butanone)	2024/12/12	98	60 - 140	105	60 - 140	<0.40	ug/g	NC	50
9820755	Methyl Isobutyl Ketone	2024/12/12	92	60 - 140	94	60 - 130	<0.40	ug/g	NC	50
9820755	Methyl t-butyl ether (MTBE)	2024/12/12	91	60 - 140	93	60 - 130	<0.040	ug/g	NC	50
9820755	Methylene Chloride(Dichloromethane)	2024/12/12	103	60 - 140	106	60 - 130	<0.049	ug/g	NC	50
9820755	o-Xylene	2024/12/12	95	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
9820755	p+m-Xylene	2024/12/12	87	60 - 140	83	60 - 130	<0.020	ug/g	NC	50
9820755	Styrene	2024/12/12	87	60 - 140	83	60 - 130	<0.040	ug/g	NC	50
9820755	Tetrachloroethylene	2024/12/12	98	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
9820755	Toluene	2024/12/12	96	60 - 140	98	60 - 130	<0.020	ug/g	NC	50
9820755	Total Xylenes	2024/12/12					<0.020	ug/g	NC	50
9820755	trans-1,2-Dichloroethylene	2024/12/12	104	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
9820755	trans-1,3-Dichloropropene	2024/12/12	94	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
9820755	Trichloroethylene	2024/12/12	98	60 - 140	96	60 - 130	<0.010	ug/g	NC	50
9820755	Trichlorofluoromethane (FREON 11)	2024/12/12	112	60 - 140	110	60 - 130	<0.040	ug/g	NC	50
9820755	Vinyl Chloride	2024/12/12	112	60 - 140	111	60 - 130	<0.019	ug/g	NC	50
9821321	Moisture	2024/12/11							1.9	20
9822204	F2 (C10-C16 Hydrocarbons)	2024/12/12	107	60 - 140	82	80 - 120	<7.0	ug/g	NC	30
9822204	F3 (C16-C34 Hydrocarbons)	2024/12/12	110	60 - 140	84	80 - 120	<50	ug/g	NC	30
9822204	F4 (C34-C50 Hydrocarbons)	2024/12/12	108	60 - 140	82	80 - 120	<50	ug/g	NC	30
9822210	WAD Cyanide (Free)	2024/12/12	101	75 - 125	111	80 - 120	<0.01	ug/g	NC	35
9822211	WAD Cyanide (Free)	2024/12/12	92	75 - 125	106	80 - 120	<0.01	ug/g	NC	35
9822456	Chromium (VI)	2024/12/12	39 (1)	70 - 130	93	80 - 120	<0.18	ug/g	NC	35
9822600	Hot Water Ext. Boron (B)	2024/12/13	106	75 - 125	91	75 - 125	<0.050	ug/g	6.2	40
9822615	Hot Water Ext. Boron (B)	2024/12/12	103	75 - 125	106	75 - 125	<0.050	ug/g	NC	40
9822630	Acid Extractable Antimony (Sb)	2024/12/12	115	75 - 125	111	80 - 120	<0.20	ug/g	4.6	30
9822630	Acid Extractable Arsenic (As)	2024/12/12	109	75 - 125	98	80 - 120	<1.0	ug/g	5.1	30
9822630	Acid Extractable Barium (Ba)	2024/12/12	NC	75 - 125	92	80 - 120	<0.50	ug/g	3.3	30
9822630	Acid Extractable Beryllium (Be)	2024/12/12	107	75 - 125	90	80 - 120	<0.20	ug/g	0.032	30
9822630	Acid Extractable Boron (B)	2024/12/12	97	75 - 125	91	80 - 120	<5.0	ug/g	1.5	30
9822630	Acid Extractable Cadmium (Cd)	2024/12/12	110	75 - 125	92	80 - 120	<0.10	ug/g	NC	30
9822630	Acid Extractable Chromium (Cr)	2024/12/12	110	75 - 125	96	80 - 120	<1.0	ug/g	4.3	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9822630	Acid Extractable Cobalt (Co)	2024/12/12	107	75 - 125	96	80 - 120	<0.10	ug/g	3.6	30
9822630	Acid Extractable Copper (Cu)	2024/12/12	NC	75 - 125	95	80 - 120	<0.50	ug/g	0.71	30
9822630	Acid Extractable Lead (Pb)	2024/12/12	111	75 - 125	95	80 - 120	<1.0	ug/g	1.3	30
9822630	Acid Extractable Mercury (Hg)	2024/12/12	118	75 - 125	101	80 - 120	<0.050	ug/g		
9822630	Acid Extractable Molybdenum (Mo)	2024/12/12	109	75 - 125	90	80 - 120	<0.50	ug/g	NC	30
9822630	Acid Extractable Nickel (Ni)	2024/12/12	NC	75 - 125	96	80 - 120	<0.50	ug/g	1.9	30
9822630	Acid Extractable Selenium (Se)	2024/12/12	105	75 - 125	94	80 - 120	<0.50	ug/g	NC	30
9822630	Acid Extractable Silver (Ag)	2024/12/12	109	75 - 125	92	80 - 120	<0.20	ug/g	NC	30
9822630	Acid Extractable Thallium (TI)	2024/12/12	112	75 - 125	96	80 - 120	<0.050	ug/g	7.0	30
9822630	Acid Extractable Uranium (U)	2024/12/12	117	75 - 125	99	80 - 120	<0.050	ug/g	2.8	30
9822630	Acid Extractable Vanadium (V)	2024/12/12	NC	75 - 125	97	80 - 120	<5.0	ug/g	3.8	30
9822630	Acid Extractable Zinc (Zn)	2024/12/12	NC	75 - 125	98	80 - 120	<5.0	ug/g	1.5	30
9822953	Acid Extractable Antimony (Sb)	2024/12/12	107	75 - 125	112	80 - 120	<0.20	ug/g	NC	30
9822953	Acid Extractable Arsenic (As)	2024/12/12	104	75 - 125	101	80 - 120	<1.0	ug/g	NC	30
9822953	Acid Extractable Barium (Ba)	2024/12/12	NC	75 - 125	94	80 - 120	<0.50	ug/g	2.0	30
9822953	Acid Extractable Beryllium (Be)	2024/12/12	101	75 - 125	92	80 - 120	<0.20	ug/g	6.5	30
9822953	Acid Extractable Boron (B)	2024/12/12	95	75 - 125	90	80 - 120	<5.0	ug/g	NC	30
9822953	Acid Extractable Cadmium (Cd)	2024/12/12	102	75 - 125	96	80 - 120	<0.10	ug/g	NC	30
9822953	Acid Extractable Chromium (Cr)	2024/12/12	NC	75 - 125	100	80 - 120	<1.0	ug/g	5.7	30
9822953	Acid Extractable Cobalt (Co)	2024/12/12	105	75 - 125	100	80 - 120	<0.10	ug/g	4.4	30
9822953	Acid Extractable Copper (Cu)	2024/12/12	NC	75 - 125	98	80 - 120	<0.50	ug/g	6.1	30
9822953	Acid Extractable Lead (Pb)	2024/12/12	104	75 - 125	98	80 - 120	<1.0	ug/g	2.0	30
9822953	Acid Extractable Mercury (Hg)	2024/12/12	110	75 - 125	107	80 - 120	<0.050	ug/g	NC	30
9822953	Acid Extractable Molybdenum (Mo)	2024/12/12	102	75 - 125	95	80 - 120	<0.50	ug/g	6.5	30
9822953	Acid Extractable Nickel (Ni)	2024/12/12	109	75 - 125	102	80 - 120	<0.50	ug/g	4.1	30
9822953	Acid Extractable Selenium (Se)	2024/12/12	102	75 - 125	98	80 - 120	<0.50	ug/g	NC	30
9822953	Acid Extractable Silver (Ag)	2024/12/12	100	75 - 125	96	80 - 120	<0.20	ug/g	NC	30
9822953	Acid Extractable Thallium (TI)	2024/12/12	105	75 - 125	99	80 - 120	<0.050	ug/g	1.0	30
9822953	Acid Extractable Uranium (U)	2024/12/12	110	75 - 125	103	80 - 120	<0.050	ug/g	1.4	30
9822953	Acid Extractable Vanadium (V)	2024/12/12	NC	75 - 125	100	80 - 120	<5.0	ug/g	6.2	30
9822953	Acid Extractable Zinc (Zn)	2024/12/12	NC	75 - 125	102	80 - 120	<5.0	ug/g	2.1	30
9822989	Conductivity	2024/12/12			104	90 - 110	<0.002	mS/cm	3.6	10

Bureau Veritas Job #: C4BB424 Report Date: 2024/12/13

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9822993	Available (CaCl2) pH	2024/12/12			100	97 - 103			0.20	N/A
9823309	Available (CaCl2) pH	2024/12/12			100	97 - 103			0.90	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

Client Project #: OTT-24010349-A0

Site Location: BARRHAVEN, 675 BORBRIDGE AVE.

Sampler Initials: MB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Louise Harding, Scientific Specialist

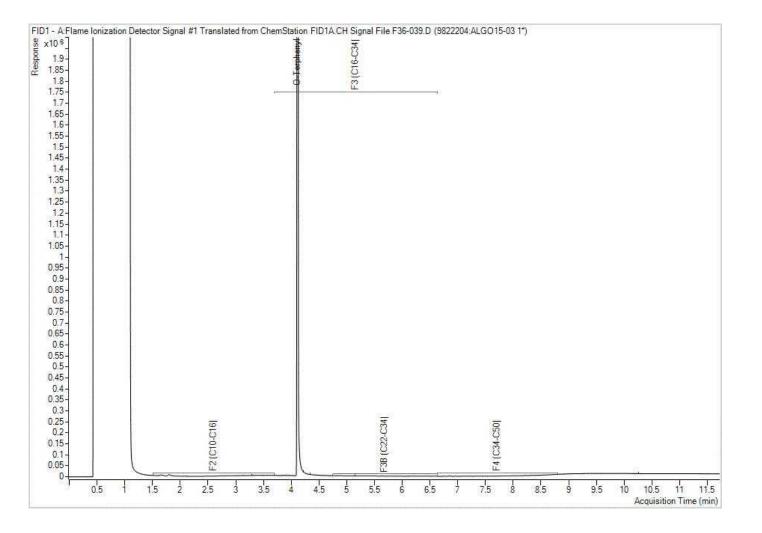
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

6740 Campobello Road, Mississauga, Ontario LSN 2L8
Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD

ENV COC - 00014v6

nvoice Information	Invoice to (requires report)				Report Ir	nformat	tion (if	differs from inve	pice)								Proje	ct Infor	mation	ì											
Company: EXP	Serves no	2	Company:									q	uotat	ion#:											12	اخو		CI	012	210	01
	Kumery		Contact Name:									P	.0.#/	AFER:									_		κ٨	4	7	C	$\langle C \rangle$	، ہو	20
Street Address: 265a	quension Dr.		Street Address:									P	roject	u:		5TT-	2	101	03	19	-40		_		×	30	3	NON	T-202	B4 :	176
city: Offavo	Prov: ON Postal Code:	KJB8KI	City:	_			Р	rov:	Post			Si	ite#:		+	0,12		, -,	-		/10		_		18	10					
Phone: 613 - 8	163 - 1891		Phone:	T					Trode	U.s	_	s	ite Lo	cation:	.	Barri	10/2	_	675	- R	rba	u h	ne i	_							
	emmerly @ txp.c	-Ona	Email:										ite Lo	cation		OV.	140		0.17	L		- 11	-								
Copies: Matthew	, Zamito Exp.	com	Copies:									s	ample	d By:		Mat	F	Za	muí	7											
Table 1		gulatory Crite	CCME Reg 55: *min 3 da MI5A PWQO	y TAT	☐ Othe	ary Sew n Sewer Municij	er Byla Bylaw		_1_	2	3 (1)		5		norganics .	8 9 (8:5MH	10	11	12 13	14	15	16 17	18	19 20			51	to 7 Day Rush Tu	rnaround ircharges	Time (TAT) ipply 1 Day	
SAMPLES MUST B	E KEPT COOL (<10°C) FROM T	TIME OF SAMPL	ING UNTIL	DELIVER	RY TO BU	REAU V	ERITAS				EQUIR		1		d inor	metals 5 metals									SUBM	ANALYZE	□ 20	Day		3 Day	
	NAME OF STREET		D	ate Samp	oled	Tin			RED	ERVED	TION R		Ū		rtals an	rtals CPMS r									AINERS	DO NOT AM	□ 40	Day			
Sample Identification	print or Type)	(Plea	YYYY	мм	DD	(24) HH	MM	Matrix	FIELD FILTERED	FIELD PRESERVED	LAB FILTRATION REQUIRED	BTEX/F1	1	vocs	Reg 153 metals and	Reg 153 ICPMS metals Reg 153 metals He. Cr VI. ICPMS metals									# OF CONTAINERS SUBMITTED	101CD - DO	Date Require	d:	Commen		DD
1 BH 24-01,	SS 5		202	112	06	13	00	Sort	T				1	1	1								Ħ		5						
2 BH 24-04			000	(1)	04	09	00	7.	Т				1	1	/						\top		\Box		5	П					
3 BH 24-19				1 12	64		30	1,				,	1	1	/								П		5	П					
1 Dup			200	1 12	04			11					V 1	1			П				П		П		4						
5							П			Т	Г		T				П				П		П	\top		П					
6			\top	\top		Г	П		\top	T	\vdash	H	\forall	\top	\top	\top	П	\neg	1	T	\vdash		H	\top		Н					
7			+			\vdash	\vdash		+	+		H	\forall	+	+	+	Н	+	+	t	Ħ	+	H	+	+	Н	_		_		
			+	+	+	\vdash	Н		+	+		Н	+	+	+	+	Н	+	+	+	\vdash	+	H	+	+	Н	_				
8			+	+-	+-	-	Н		+	+	-	Н	+	+	+	-	Н	+	+	+	\vdash	+	Н	_	+	Н	_				
9			_	_	-				\perp	1		Ш		4	_		Ш	_	_	-		_	Ш	\perp	\perp						
10							Ш		1																						
11																0	oď	:-	04	4-	347.00		П								
12									Т			П			-	-		1	1	1			П			П					
*UNLESS OTHERWISE AGREE	ED TO IN WRITING, WORK SUB	MITTED ON TH	IS CHAIN C	F CUSTO	DY IS SU	BJECT	O BUR	EAU VERITAS STA	ANDAR	TER	MS AN	D CON	DITIO	NS. SI	GNIN	G OF THIS	CHAIN	OF CU	STODY	ocur	MENT IS A	ACKNOW	LEDGM	ENT AND	ACCE	PTANC	E OF OU	R TERMS	AND COND	ITIONS WH	ICH ARE
	بمسيده		A	VAILABLE	FOR VIE	WING A	TWW	W.BVNA.COM/T	ERMS-	AND	CONDI	TIONS	DR BY	CALLIP	NG TH	E LABOR	TORY	LISTED	ABOVE	TO OB	TAIN A C	OPY				Щ			-		
LAB USE ONLY	Yes No				LAB US	E ONLY		Yes	No	4		_		3		3			LAB USE	ONLY			Yes	No							erature ing by:
Seal present Seal intact	y "	2 2	12	Seal p	ntact			- V	_	-	°C	2	-	1		>	Seal i	resent ntact				+	$\overline{}$		1	°c					
Cooling media present		1 2	3 ate	Coolin	ng media	preser Time	it			1	0 0	1	-	2		1	Coolin	ng med	lia prese	nt			\Box	Time	1_	-	1	2 Energi	3 al instructio		
Relinquished by: ((Signature/ Print)		MM	DD		N		A .			15/20	ignatur	0		10		1	YYYY	-	MN		DD	HI	1 I	MM			эреск	ii instructii	ans	
1								Acupa	lie	crs	cu	elle	age	26	8	L.	202	-	_	12		07	19	_	18						100
2								2 -	1	1		J2	h	7	~	69	20	24	-	12	-	10	00	P :	30	1					(O)

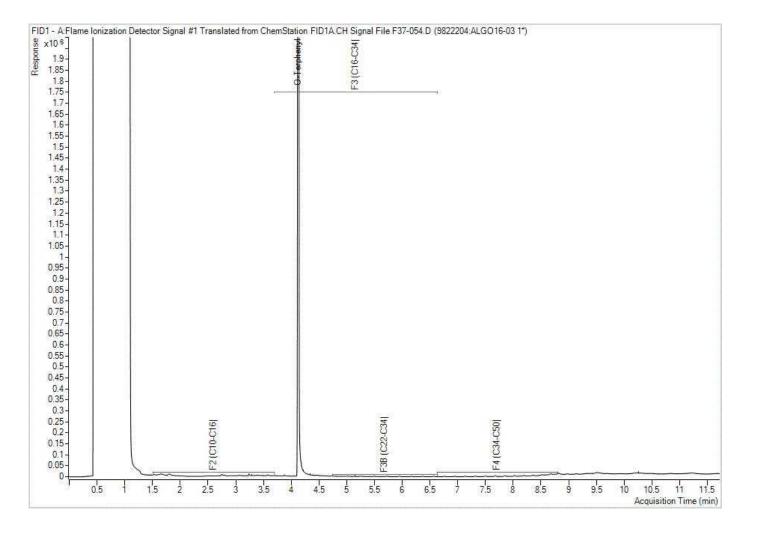

exp Services Inc

Client Project #: OTT-24010349-A0

Project name: BARRHAVEN, 675 BORBRIDGE AVE.

Client ID: BH 24-01, SS5

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

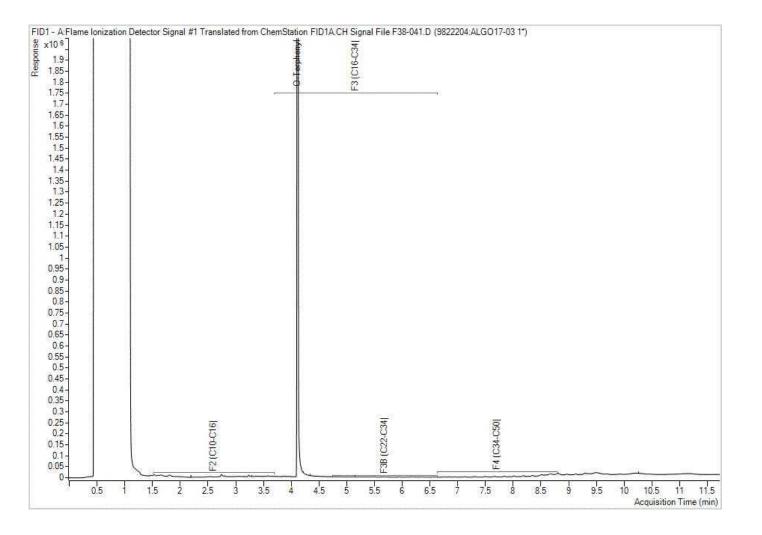

exp Services Inc

Client Project #: OTT-24010349-A0

Project name: BARRHAVEN, 675 BORBRIDGE AVE.

Client ID: BH24-04,SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

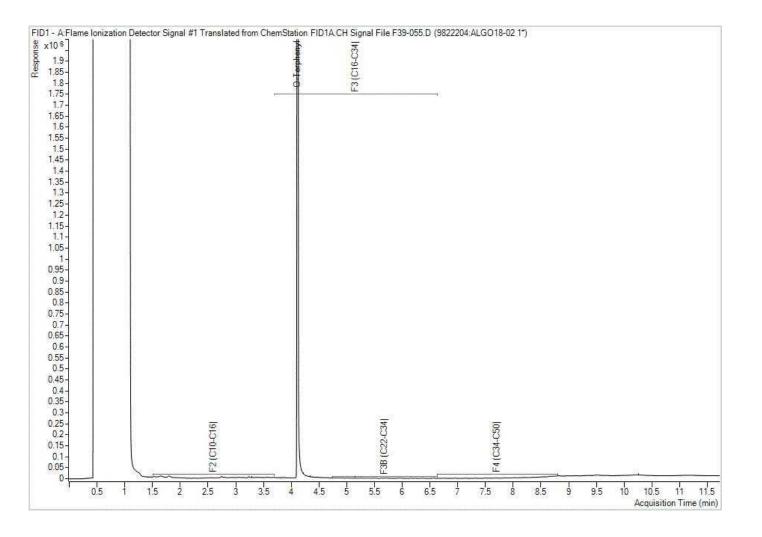

exp Services Inc

Client Project #: OTT-24010349-A0

Project name: BARRHAVEN, 675 BORBRIDGE AVE.

Client ID: BH24-14,SS4

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram


exp Services Inc

Client Project #: OTT-24010349-A0

Project name: BARRHAVEN, 675 BORBRIDGE AVE.

Client ID: DUP

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

EXP Services Inc.

Project Name: Interim Geotechnical Investigation and Phase II ESA
Proposed New Riverside South Secondary School
675 Borbridge Avenue, Ottawa, ON
Project Number: OTT-24010349-A0

January 20,2025

Appendix D – Environmental Soil Analytical Tables

Table 1 - Soil Analytical Results - Residential/Parkland/Institutional - Metals & Inorganics Proposed New Riverside South Elemntary School, 675 Borbridge Avenue, Ottawa, ON OTT-24010349-A0

Sample ID	RDL	MECD Table 1 ¹ Residential/Parkland/ Re		MECP Table 3.1 Residential/Parkland/ Institutional ³	BH24-01 SS5	BH24-04-SS3	BH24-14-SS4	DUP (duplicate of BH24-14-SS4)
Sampling Date			institutional	institutional	2024-12-06	2024-12-04	2024	I-12-04
Sample Depth		Bold	<u>Underline</u>	<u>Underline</u>	3 to 3.6	1.5 to 2.1	2.25	5 - 2.85
Metals								
Antimony	0.2	1.3	7.5	7.5	<0.20	<0.20	<0.20	<0.20
Arsenic	1	18	18	18	<1.0	2.1	1	<1.0
Barium	0.5	220	390	390	200	130	390	340
Beryllium	0.2	2.5	4	4	0.56	0.46	0.77	0.71
Boron (Total)	5	36	120	120	<5.0	<5.0	<5.0	<5.0
Boron (Hot Water Soluble)	0.05	NV	1.5	1.5	<0.050	<0.050	<0.050	<0.050
Cadmium	0.1	1.2	1.2	1.2	<0.10	<0.10	<0.10	<0.10
Chromium	1	70	160	160	42	28	89	89
Chromium VI	0.36	0.66	8	8	<0.18	0.24	< 0.36	< 0.36
Cobalt	0.1	21	22	22	11	8.3	21	21
Copper	0.5	92	140	140	26	18	40	38
Lead	1	120	120	120	5.1	4.7	6.1	5.8
Mercury	0.05	0.27	0.27	0.27	<0.050	<0.050	<0.050	< 0.050
Molybdenum	0.5	2	6.9	6.9	0.61	<0.50	0.66	0.59
Nickel	0.5	82	100	100	24	17	50	51
Selenium	0.5	1.5	2.4	2.4	<0.50	<0.50	<0.50	<0.50
Silver	0.2	0.5	20	20	<0.20	<0.20	<0.20	<0.20
Thallium	0.05	1	1	1	0.24	0.15	0.43	0.38
Uranium	0.05	2.5	23	23	0.67	0.54	0.66	0.68
Vanadium	5	86	86	86	67	63	<u>100</u>	<u>98</u>
Zinc	5	290	340	340	68	67	130	120
Inorganics								
pH (pH Units)	N/A	NV	NV	NV	7.66	7.13	7.63	7.64
Conductivity (mS/cm)	0.001	0.57	0.7	0.7	0.16	0.085	0.22	0.23
Cyanide, Free	0.01	0.051	0.051	0.051	<0.01	<0.01	<0.01	<0.01
Sodium Adsroption Ratio (no units)	N/A	2.4	5	5	0.27	0.38	0.25	0.25

2

3

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April

2011, Table 1 Full Depth Background Site Condition Standards (SCS) for residential/parkland/institutional/industrial/commercial/community property use.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Potable Ground Water Condition for residential/parkland/institutional property use.

Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Non-Potable Ground Water Condition for residential/parkland/institutional property use.

<(RDL) Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

m bgs Metres below ground surface

All values are in ppm (ug/g) unless shown in brackets beside parameter name. Dry weight basis.

 Bold
 Indicates soil exceedance of MECP Table 1 SCS

 Underline
 Indicates soil exceedance of MECP Table 2.1 ESQS

 Underline
 Indicates soil exceedance of MECP Table 3.1 ESQS

Table 2 - Soil Analytical Results - Residential/Parkland/Institutional - VOC & PHC Proposed New Riverside South Elemntary School, 675 Borbridge Avenue, Ottawa, ON OTT-24010349-A0

Sample ID	- PDI	MECP Table 1 ¹	MECP Table 2.1 Residential/Parkland/	MECP Table 3.1 Residential/Parkland/	BH24-01 SS5	BH24-04-SS3	BH24-14-SS4	DUP (duplicate of BH24-14-SS4)
Sampling Date	RDL		Institutional ²	Institutional ³	2024-12-06	2024-12-04	2024	-12-04
Sample Depth		Bold	<u>Underline</u>	<u>Underline</u>	3 to 3.6	1.5 to 2.1	2.25	- 2.85
Volatile Organic Compounds (VOC)								
Acetone	0.49	0.5	0.5	1.8	< 0.49	<0.49	< 0.49	<0.49
Benzene	0.006	0.02	0.02	0.02	<0.0060	<0.0060	<0.0060	<0.0060
Bromodichloromethane	0.04	0.05	0.05	5.8	<0.040	<0.040	<0.040	<0.040
Bromoform	0.04	0.05	0.05	2.5	<0.040	<0.040	<0.040	<0.040
Bromomethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Carbon Tetrachloride	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Chlorobenzene	0.04	0.05	0.083	0.28	<0.040	<0.040	<0.040	<0.040
Chloroform	0.04	0.05	0.05	0.08	<0.040	<0.040	<0.040	<0.040
Dibromochloromethane	0.04	0.05	0.05	5.5	<0.040	<0.040	<0.040	<0.040
1,2-Dichlorobenzene	0.04	0.05	3.4	3.4	<0.040	<0.040	<0.040	<0.040
1,3-Dichlorobenzene	0.04	0.05	0.26	4.8	<0.040	<0.040	<0.040	<0.040
1,4-Dichlorobenzene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,1-Dichloroethane	0.04	0.05	0.05	0.14	<0.040	<0.040	<0.040	<0.040
1,2-Dichloroethane	0.049	0.05	0.05	0.05	<0.049	<0.049	<0.049	<0.049
1,1-Dichloroethylene	0.043	0.05	0.05	0.05	<0.040	<0.049	<0.040	<0.040
Cis-1,2-Dichloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Trans-1,2-Dichloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,2-Dichloropropane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Cis-1,3-Dichloropropylene	0.03		NV		<0.040		<0.040	<0.040
Trans-1,3-Dichloropropylene	0.03	NV NV	NV	NV NV	<0.030	<0.030 <0.040	<0.030	<0.030
Ethylbenzene	0.04	0.05	0.05	1.9	<0.040	<0.040	<0.040	<0.040
Ethylene Dibromide					<0.040	<0.010	<0.010	<0.040
Methyl Ethyl Ketone	0.04	0.05	0.05	0.05	<0.40		<0.40	<0.40
Methylene Chloride	0.4	0.5	0.5	14		<0.40	<0.40	<0.40
Methyl Isobutyl Ketone	0.049	0.05	0.05	0.06	<0.049	<0.049		4
Methyl-t-Butyl Ether	0.4	0.5	0.5	0.89	<0.40	<0.40	<0.40	<0.40
	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Styrene 1,1,1,2-Tetrachloroethane	0.04	0.05	0.05	0.5	<0.040	<0.040	<0.040	<0.040
, , ,	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,1,2,2-Tetrachloroethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Toluene	0.02	0.2	0.2	0.99	<0.020	<0.020	<0.020	<0.020
Tetrachloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,1,1-Trichloroethane	0.04	0.05	0.11	0.11	<0.040	<0.040	<0.040	<0.040
1,1,2-Trichloroethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Trichloroethylene	0.01	0.05	0.05	0.05	<0.010	<0.010	<0.010	<0.010
Vinyl Chloride	0.019	0.02	0.02	0.02	<0.019	<0.019	<0.019	<0.019
m-Xylene & p-Xylene	0.02	NV	NV	NV	<0.020	<0.020	<0.020	<0.020
o-Xylene	0.02	NV	NV	NV	<0.020	<0.020	<0.020	<0.020
Total Xylenes	0.02	0.05	0.091	0.9	<0.020	<0.020	<0.020	<0.020
Dichlorodifluoromethane	0.04	0.05	1.5	1.8	<0.040	<0.040	<0.040	<0.040
Hexane(n)	0.04	0.05	2.5	2.5	<0.040	<0.040	<0.040	<0.040
Trichlorofluoromethane	0.04	0.25	0.25	0.46	<0.040	<0.040	<0.040	<0.040
1,3-Dichloropropene (cis + trans)	0.05	0.05	0.05	0.05	<0.050	<0.050	<0.050	< 0.050
Petroleum Hydrocarbons (PHC)								
PHC F1 (C6-C10)	10	25	25	25	<10	<10	<10	<10
PHC F2 (>C10-C16)	7	10	10	10	<7	<7	<14	7.1
PHC F3 (>C16-C34)	50	240	240	300	<50	<50	<100	<50
PHC F4 (>C34-C50)	50	120	2800	2800	<50	<50	<100	<50

2

3

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April

2011, Table 1 Full Depth Background Site Condition Standards (SCS) for residential/parkland/institutional/industrial/commercial/community property use.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards, Table 2.1 Full Depth Excess Soil Quality Standards in a Potable Ground Water Condition for residential/parkland/institutional property use.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards, Table 3.1 Full Depth Excess Soil Quality Standards in a Non-Potable Ground Water Condition for residential/parkland/institutional property use.

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit. <(RDL)

No Value NV

Metres below ground surface m bgs

_All values are in ppm (ug/g) unless shown in brackets beside parameter name. Dry weight basis.

Bold Indicates soil exceedance of MECP Table 1 SCS Indicates soil exceedance of MECP Table 2.1 ESQS **Underline** <u>Underline</u> Indicates soil exceedance of MECP Table 3.1 ESQS

Table 3 - Soil Analytical Results - Industrial/Commercial/Community - Metals & Inorganics Proposed New Riverside South Elemntary School, 675 Borbridge Avenue, Ottawa, ON OTT-24010349-A0

Sample ID	RDL	MECP Table 1 ¹	MECP Table 2.1 Industrial/Commercial/C ommunity ²	MECP Table 3.1 Industrial/Commercial/C ommunity ³	BH24-01 SS5	BH24-04-SS3	BH24-14-SS4	DUP (duplicate of BH24-14-SS4)	
Sampling Date			ommunity	ommunity	2024-12-06	2024-12-04	2024-12-04		
Sample Depth		Bold	<u>Underline</u>	<u>Underline</u>	3 to 3.6	1.5 to 2.1	2.25 - 2.85		
Metals									
Antimony	0.2	1.3	40	40	<0.20	<0.20	<0.20	<0.20	
Arsenic	1	18	18	18	<1.0	2.1	1	<1.0	
Barium	0.5	220	670	670	200	130	390	340	
Beryllium	0.2	2.5	8	8	0.56	0.46	0.77	0.71	
Boron (Total)	5	36	120	120	<5.0	<5.0	<5.0	<5.0	
Boron (Hot Water Soluble)	0.05	NV	2	2	< 0.050	<0.050	< 0.050	< 0.050	
Cadmium	0.1	1.2	1.9	1.9	<0.10	<0.10	<0.10	<0.10	
Chromium	1	70	160	160	42	28	89	89	
Chromium VI	0.36	0.66	8	8	<0.18	0.24	< 0.36	< 0.36	
Cobalt	0.1	21	80	80	11	8.3	21	21	
Copper	0.5	92	230	230	26.00	18	40.00	38.00	
Lead	1	120	120	120	5.1	4.7	6.1	5.8	
Mercury	0.05	0.27	0.27	0.27	<0.050	<0.050	<0.050	< 0.050	
Molybdenum	0.5	2	40	40	0.61	<0.50	0.66	0.59	
Nickel	0.5	82	270	270	24.00	17.00	50.00	51.00	
Selenium	0.5	1.5	5.5	5.5	<0.50	<0.50	<0.50	<0.50	
Silver	0.2	0.5	40	40	<0.20	<0.20	<0.20	<0.20	
Thallium	0.05	1	3.3	3.3	0.24	0.15	0.43	0.38	
Uranium	0.05	2.5	33	33	0.67	0.54	0.66	0.68	
Vanadium	5	86	86	86	67	63	<u>100</u>	98	
Zinc	5	290	340	340	68	67	130	120	
Inorganics									
pH (pH Units)	N/A	NV	NV	NV	7.66	7.13	7.63	7.64	
Conductivity (mS/cm)	0.001	0.57	1.4	1.4	0.16	0.085	0.22	0.23	
Cyanide, Free	0.01	0.051	0.051	0.051	<0.01	<0.01	<0.01	<0.01	
Sodium Adsroption Ratio (no units)	N/A	2.4	12	12	0.27	0.38	0.25	0.25	

3

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April

2011, Table 1 Full Depth Background Site Condition Standards (SCS) for residential/parkland/institutional/industrial/commercial/community property use.

Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards, Table 2.1 Full Depth Excess Soil Quality Standards in a Potable Ground Water Condition for residential/parkland/institutional property use.

Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards, Table 3.1 Full Depth Excess Soil Quality Standards in a Non-Potable Ground Water Condition for residential/parkland/institutional property use.

<(RDL) Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

m bgs Metres below ground surface

All values are in ppm (ug/g) unless shown in brackets beside parameter name. Dry weight basis.

Bold	Indicates soil exceedance of MECP Table 1 SCS
<u>Underline</u>	Indicates soil exceedance of MECP Table 2.1 ESQS
Underline	Indicates soil exceedance of MECP Table 3.1 ESQS

Table 4 - Soil Analytical Results - Industrical/Commercial/Community - VOC & PHC Proposed New Riverside South Elemntary School, 675 Borbridge Avenue, Ottawa, ON OTT-24010349-A0

Sample ID		MECP Table 1 ¹	MECP Table 2.1 Industrial/Commercial/C	MECP Table 3.1 Industrial Commercial	BH24-01 SS5	BH24-04-SS3	BH24-14-SS4	DUP (duplicate of BH24-14-SS4)
Sampling Date	RDL		ommunity ²	Community ³	2024-12-06	2024-12-04	2024	-12-04
Sample Depth	7	Bold	Underline	Underline	3 to 3.6	1.5 to 2.1	2.25	- 2.85
Volatile Organic Compounds (VOC)	•	•					<u> </u>	
Acetone	0.49	0.5	0.5	1.8	<0.49	<0.49	<0.49	<0.49
Benzene	0.006	0.02	0.02	0.034	<0.0060	<0.0060	<0.0060	<0.0060
Bromodichloromethane	0.04	0.05	0.05	5.8	<0.040	<0.040	<0.040	<0.040
Bromoform	0.04	0.05	0.05	2.5	<0.040	<0.040	<0.040	<0.040
Bromomethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Carbon Tetrachloride	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Chlorobenzene	0.04	0.05	0.083	0.28	<0.040	<0.040	<0.040	<0.040
Chloroform	0.04	0.05	0.05	0.26	<0.040	<0.040	<0.040	<0.040
Dibromochloromethane	0.04	0.05	0.05	5.5	<0.040	<0.040	<0.040	<0.040
1.2-Dichlorobenzene	0.04	0.05	6.8	6.8	<0.040	<0.040	<0.040	<0.040
1.3-Dichlorobenzene	0.04	0.05	0.26	6.8	<0.040	<0.040	<0.040	<0.040
1,4-Dichlorobenzene	0.04	0.05	0.26	0.05	<0.040	<0.040	<0.040	<0.040
1,1-Dichloroethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,2-Dichloroethane	0.049	0.05	0.05	0.05	<0.049	<0.040	<0.040	<0.040
1,1-Dichloroethylene	0.049		0.05		<0.049	<0.049	<0.049	<0.049
Cis-1,2-Dichloroethylene		0.05		0.05	<0.040	<0.040	<0.040	<0.040
Trans-1,2-Dichloroethylene	0.04	0.05	0.05	0.05	<0.040		<0.040	<0.040
1,2-Dichloropropane	0.04	0.05	0.05	0.05		<0.040	4	
Cis-1,3-Dichloropropylene	0.04	0.05	0.05	0.05	<0.040	<0.040 <0.030	<0.040	<0.040
Trans-1,3-Dichloropropylene	0.03	0.05	NV	NV	<0.030		<0.030	<0.030
Ethylbenzene	0.04	0.05	NV 2.05	NV	<0.040	<0.040	<0.040	<0.040
Ethylene Dibromide	0.01	0.05	0.05	1.9	<0.010	<0.010	<0.010	<0.010
	0.04	NV	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Methyl Ethyl Ketone	0.4	NV	0.5	26	<0.40	<0.40	<0.40	<0.40
Methylene Chloride	0.049	0.05	0.05	0.2	<0.049	<0.049	<0.049	<0.049
Methyl Isobutyl Ketone	0.4	0.05	0.5	17	<0.40	<0.40	<0.40	<0.40
Methyl-t-Butyl Ether	0.04	0.5	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Styrene	0.04	0.5	0.05	6.8	<0.040	<0.040	<0.040	<0.040
1,1,1,2-Tetrachloroethane	0.04	0.1	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,1,2,2-Tetrachloroethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Toluene	0.02	0.05	0.2	7.8	<0.020	<0.020	<0.020	<0.020
Tetrachloroethylene	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
1,1,1-Trichloroethane	0.04	0.05	0.12	0.4	<0.040	<0.040	<0.040	<0.040
1,1,2-Trichloroethane	0.04	0.05	0.05	0.05	<0.040	<0.040	<0.040	<0.040
Trichloroethylene	0.01	0.2	0.05	0.05	<0.010	<0.010	<0.010	<0.010
Vinyl Chloride	0.019	0.05	0.02	0.02	<0.019	<0.019	<0.019	<0.019
m-Xylene & p-Xylene	0.02	0.05	NV	NV	<0.020	<0.020	<0.020	<0.020
o-Xylene	0.02	0.05	NV	NV	<0.020	<0.020	<0.020	<0.020
Total Xylenes	0.02	0.25	0.091	3	<0.020	<0.020	<0.020	<0.020
Dichlorodifluoromethane	0.04	0.02	1.5	1.8	<0.040	<0.040	<0.040	<0.040
Hexane(n)	0.04	NV	2.5	2.5	<0.040	<0.040	<0.040	<0.040
Trichlorofluoromethane	0.04	NV	0.25	0.46	<0.040	<0.040	<0.040	<0.040
1,3-Dichloropropene (cis + trans)	0.05	0.05	0.05	0.05	<0.050	<0.050	<0.050	<0.050
Petroleum Hydrocarbons (PHC)								
PHC F1 (C6-C10)	10	25	25	25	<10	<10	<10	<10
PHC F2 (>C10-C16)	7	10	26	26	<7	<7	<14	7.1
PHC F3 (>C16-C34)	50	240	240	1700	<50	<50	<100	<50
PHC F4 (>C34-C50)	50	120	3300	3300	<50	<50	<100	<50

2

3

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for residential/parkland/institutional/industrial/commercial/community property use.

Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess

Soil Quality Standards, Table 2.1 Full Depth Excess Soil Quality Standards in a Potable Ground Water Condition for residential/parkland/institutional property use.

Ontario Ministry of Environment, Conservation and Parks (MECP),O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards, Table 3.1 Full Depth Excess Soil Quality Standards in a Non-Potable Ground Water Condition for residential/parkland/institutional property use.

<(RDL) Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value m bgs Metres belo

m bgs

Metres below ground surface

All values are in ppm (ug/g) unless shown in brackets beside parameter name. Dry weight basis.

BoldIndicates soil exceedance of MECP Table 1 ESQSUnderlineIndicates soil exceedance of MECP Table 2.1 ESQSUnderlineIndicates soil exceedance of MECP Table 3.1 ESQS

EXP Services Inc.

Project Name: Interim Geotechnical Investigation and Phase II ESA
Proposed New Riverside South Secondary School
675 Borbridge Avenue, Ottawa, ON
Project Number: OTT-24010349-A0

January 20,2025

Legal Notification

This report was prepared by EXP Services Inc. for the account of Conseil des écoles catholiques du Centre-Est (CECCE).

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

EXP Services Inc.

Project Name: Interim Geotechnical Investigation and Phase II ESA Proposed New Riverside South Secondary School 675 Borbridge Avenue, Ottawa, ON

Project Number: OTT-24010349-A0 January 20,2025

List of Distribution

Report Distributed To:

Jacques Lavictoire lavicj@ecolecatholique.ca

Pamela Reid <u>preid@provencherroy.ca</u>

Aaditya Jariwala <u>aaditya.jariwala@exp.com</u>

