

Phase Two Environmental Site Assessment 3955 Kelly Farm Drive Ottawa, Ontario

GEMTEC Project: 100441.001

Submitted to:

CEPEO 2445 St. Laurent Boulevard Ottawa, Ontario K1G 6C3

Phase Two Environmental Site Assessment 3955 Kelly Farm Drive Ottawa, Ontario

November 27, 2024 GEMTEC Project: 100441.001 GEMTEC Consulting Engineers and Scientists Limited 32 Steacie Drive Ottawa, ON, Canada K2K 2A9

November 27, 2024

File: 100441.001

CEPEO 2445 St. Laurent Boulevard Ottawa, Ontario K1G 6C3

Attention: Mr. Omar Ben Hadda - Gestionnaire de projects de construction

Re: Phase Two Environmental Site Assessment 3955 Kelly Farm Drive Ottawa, Ontario

Enclosed is our Phase Two Environmental Site Assessment report for the above-noted project. The report presented herein is based on the scope of work discussed in the proposal dated September 23, 2024. This report was prepared by Melissa Tai, B.Sc., with senior review by Daniel Elliot, P.Geo, QP_{ESA}.

We trust this information is sufficient for your current needs. If you have any questions or require further information, please contact the undersigned.

Melisse ai

Melissa Tai, B.Sc. Environmental Specialist

MT/DE/MK

Daniel Elliot, P.Geo., QP_{ESA} Senior Environmental Geoscientist

N:\Projects\100440.\100441.001\07_Technical Work\Phase Two ESA Report\100441.001_RPT_Phase Two ESA_2024-11-27_Rev0.docx

i

EXECUTIVE SUMMARY

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by Conseil des Écoles Publiques de l'Est de l'Ontario (CEPEP) to carry out a Phase Two Environmental Site Assessment (ESA) for the property located at 3955 Kelly Farm Drive in Ottawa, Ontario (herein referred to as "Site" or "Phase Two Property"). It is understood that this Phase Two ESA is required to support a site plan application with the City of Ottawa (The City).

The Phase Two Property consists of an undeveloped parcel of land with an approximate area of 2.07 hectares (5.12 acres). The Site is bounded to the northwest by Barrett Farm Drive, to the northeast by Aconitum Way, to the southeast by Lavatera Street, and to the southwest by Kelly Farm Drive. The proposed future use is institutional development with a school.

GEMTEC previously completed the following reports:

- "Phase I Environmental Site Assessment, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 – V02 dated March 10, 2021 (2021 Phase I ESA).
- "Phase II Environmental Site Assessment, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 dated March 31, 2021 (2021 Phase II ESA).
- "Phase One Environmental Site Assessment Update, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 dated October 9, 2024 (2024 Phase One ESA Update).

Based on the findings of the 2021 Phase I ESA, six potentially contaminating activities (PCAs) were identified resulting in four areas of potential environmental concern (APECs) at the Site, as summarized in the table below:

APEC #	Type of PCA	Description	Material of Concern	Contaminants of Potential Concern (COPC)
1	PCA #30: Importation of Fill Material of Unknown Quality	Fill material of unknown origin was identified on the Site during the aerial photograph review and the Site interview	Soil	PAHs Metals & ORPs PHCs F1-F4 BTEX
2	PCA # 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large- Scale Applications.	Through a review of aerial photographs and during the Site interview, there is potential for pesticides having been historically used on the Site	Soil Groundwater	OCPs

APEC #	Type of PCA	Description	Material of Concern	Contaminants of Potential Concern (COPC)
3	PCA # 48. Salt Manufacturing, Processing and Bulk Storage	Through a search with the Historical Land Use Inventory (HLUI), Leitrim works site & garage was identified within the study area and accepted 2,000 tonnes of salt delivery	Soil Groundwater	ORPs (including EC, SAR Chlorine Sodium)
4	PCA # 28. Gasoline and Associated Products Storage in Fixed Tanks	Through a search with the HLUI, Leitrim works site & garage was identified within the study area with 3 pumps including gas and diesel	Soil Groundwater	Metals & ORPs PHCs F1-F4 VOCs

Notes:

PAHs - polyaromatic hydrocarbons

Metals - metal parameters as per O.Reg. 153/04 including hydride-forming metals

ORPs - other regulated parameters including electrical conductivity (EC), sodium adsorption ratio (SAR), pH, hot watersoluble boron (HWS-B), cyanide (CN-), hexavalent chromium (Cr IV), and mercury (Hg)

PHCs F1-F4 – petroleum hydrocarbon fractions

BTEX - benzene, toluene, ethylbenzene, xylene

OCPs - organochloride pesticides

VOCs - volatile organic compounds

As a result of the identified APECs in association with the Site, a Phase II ESA was recommended and carried out in March 2021. The shallow soil at one sample location (BH21-8) was characterized by elevated electrical conductivity (EC). It was concluded that delineation of impacted fill material be completed in the vicinity of BH21-8 prior to property development. The investigation methodology and results of the 2021 Phase II ESA are included throughout this report and formed the basis of the scope of work (i.e., delineation test holes in the vicinity of BH21-8) for this Phase Two ESA.

The 2024 Phase One ESA Update did not identify any new PCAs or APECs associated with the Site, with no additional intrusive investigations were recommended beyond the completion of this Phase Two ESA delineation program.

Between March 5, 2021 and March 15, 2021, eight boreholes (BH21-1 through BH21-8) were advanced using a Geoprobe drill rig to depths ranging between 1.06 to 4.57 m below ground surface (bgs). Monitoring wells were installed in three of the boreholes (BH/MW21-1, BH/MW21-4, and BH/MW21-6). On October 11, 2024, 11 additional test locations were advanced via hand augering to depths ranging between 0.5 to 1.5 mbgs in the vicinity of BH21-8 to assist with assessing the extent of fill material with elevated EC.

The subsurface soil conditions encountered in the boreholes was generally fill material consisting of brown silty sand or sandy silt with some gravel, clay and silt which was underlain by native deposits of brown to grey silty clay.

Collectively, a total of 27 soil samples (23 bulk samples plus four duplicates) were analyzed for one or more of the following contaminants of potential concern (COPCs): metals, hydride-forming metals, other regulated parameters (ORPs), petroleum hydrocarbon (PHC) fractions F1-F4, benzene, toluene, ethylbenzene, and xylene (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), EC, and/or sodium adsorption ratio (SAR).

A total of four groundwater samples (three bulk samples plus one duplicate) were analyzed for the following COPCs: metals, VOCs, PHCs, and OCPs. One trip blank was submitted for PHC F1 and VOCs.

The soil analytical results were compared to Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional (RPI) land use with coarse textured soil. The groundwater analytical results were compared to Table 2 Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for All Types of Property Use with coarse textured soil. Based on the results of this comparison, elevated EC was detected in the original borehole sample BH21-8 SA-3 and in some of the additional auger test locations in the vicinity of BH21-8. The EC results of the original and additional samples were averaged. The result of the averaging indicates that EC continues to be moderately elevated with respect to the Table 2 RPI SCS of 700 μ S/cm in the vicinity of BH21-8.

The EC in the soil samples collected from the Site are considered to be related to the application of de-icing salt on the adjacent roadways within the study area in the winter. Considering the other soil and groundwater analytical results across the Site did not have impacts of EC, it is not anticipated that the EC in the vicinity of BH21-8 would create impacts to the overall condition of the Site, and it is reasonable to assume salt application will continue with the anticipated future use of the property as a school. Further, the areas of impacted EC in the soil are limited to depths of fill material, which is likely to be removed or covered by asphalt during the proposed Site development. Accordingly, the singular area of EC impact that was identified is not anticipated to pose any risk to human health, nor a significant environmental risk to the property. Based on this and Section 49.1 of Ontario Regulation (O.Reg.) 153/04, it is the Qualified Person's opinion that the average value of EC within the area of BH21-8 should be deemed to not exceed.

No exceedances for groundwater samples were noted at any of the sampling locations.

Based on the results of the soil samples and groundwater samples submitted as part of this Phase Two ESA, no further work is recommended at this time.

TABLE OF CONTENTS

EXECU	TIVE SUMMARY	II
1.0 IN	TRODUCTION	1
1.1	Site Description	1
1.2	Property Ownership and Legal Description	1
1.3	Current and Proposed Future Uses	2
1.4	Applicable Site Condition Standards	2
2.0 BA	ACKGROUND INFORMATION	3
2.1	Physical Setting	4
2.2	Past Investigations	4
3.0 SC	COPE OF THE INVESTIGATION	6
3.1	Overview of the Phase Two ESA Investigation	6
3.2	Media Investigated	
3.3	Phase One ESA Conceptual Site Model	7
3.4	Deviations from Sampling and Analysis Plan	8
3.5	Impediments	9
4.0 IN	VESTIGATION METHOD	9
4.1	General	9
4.2	Borehole Drilling	9
4.3	Auger Sampling	10
4.4	Soil: Sampling	10
4.5	Field Screening Measurements	11
4.6	Groundwater: Monitoring Well Installation	11
4.7	Groundwater: Field Measurements for Water Quality Parameters	12
4.8	Groundwater: Sampling	12
4.9	Sediment: Sampling	12
4.10	Analytical Testing	
4.11	Residue Management Procedures	
4.12	Elevation Surveying	
4.13	Quality Assurance / Quality Control Program	13
5.0 RE	EVIEW AND EVALUATION	14
5.1	Geology	14
5.2	Groundwater: Elevations and Flow Direction	14
5.3	Groundwater: Hydraulic Gradients	15
5.4	Soil Texture	16

5.	5 So	il: Field Screening	16
5.	6 So	il Quality	16
	5.6.1	Electrical Conductivity	18
5.	7 Gr	oundwater Quality	19
5.	8 Se	diment - Quality	20
5.	9 QI	ality Assurance and Quality Control	20
	5.9.1	Field Program QA/QC	20
	5.9.2	Analytical Laboratory QA/QC	21
	5.9.3	QA/QC Summary	21
5.	10 Ph	ase Two Conceptual Site Model	22
	5.10.1	Property Description and History	22
	5.10.2	Previous Investigations	23
	5.10.3	Potentially Contaminating Activities	23
	5.10.4	Areas of Potential Environmental Concern	24
	5.10.5	Field Investigation	25
	5.10.6	Subsurface Structures and Utilities	25
	5.10.7	Physical Setting	26
	5.10	7.1 Topography	
	5.10	7.2 Stratigraphy – Borenoles 7.3 Depth to Bedrock	
	5.10	7.5 Depth to Bedrock	20
	5.10	7.5 Depth to Groundwater	
	5.10	7.6 Environmentally Sensitive Areas	26
	5.10	7.7 Shallow Soil Property or Water Body	27
	5.10.8	Applicable Site Condition Standards	27
	5.10.9	Discussion of APEC 1 – Potential for Fill Material	
	5.10.10	Contaminated Media	
	5.10.11	Contaminant Exceeding Applicable Standards at the Site	
	5.10.12	Contaminant Migration	
	5.10.13	Motoorological and Climatic Considerations	
	5.10.12	6 Cross Sections – Lateral and Vertical Distribution of Contaminants	
6.0	0010		20
0.0	CONC		
7.0	CLOS	URE	31
8.0	REFE	RENCES	32
9.0	LIMIT	ATION OF LIABILITY	

LIST OF TABLES

Table 2.1: APECs as per 2021 Phase I ESA	5
Table 4.1: Borehole Locations with Investigated APECs	9
Table 4.2: RKI Eagle 2 Details for Field Screening	11
Table 5.1: Monitoring Well Details	15
Table 5.2: Hydraulic Gradients Between Monitoring Wells	15
Table 5.4: Additional Sample Information and Electrical Conductivity	19
Table 5.6: Parent and Duplicate Samples	21
Table 5.7: Legal Description and Site Information	22
Table 5.8: Summary of Potentially Contaminating Activities	23
Table 5.9: Areas of Potential Environmental Concern	24
Table 5.10: Additional Sample Information and Electrical Conductivity	29

LIST OF APPENDICES

Appendix A	Figures
Appendix B	Borehole Logs
Appendix C	Soil and Groundwater Analytical Data Tables
Appendix D	Certificate of Analysis

1.0 INTRODUCTION

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by Conseil des Écoles Publiques de l'Est de l'Ontario (CEPEP) to carry out a Phase Two Environmental Site Assessment (ESA) for the property located at 3955 Kelly Farm Drive in Ottawa, Ontario (herein referred to as "Site" or "Phase Two Property"). It is understood that this Phase Two ESA is required to support a site plan application with the City of Ottawa (The City).

GEMTEC previously completed the following reports:

- "Phase I Environmental Site Assessment, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 – V02 dated March 10, 2021 (2021 Phase I ESA).
- "Phase II Environmental Site Assessment, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 dated March 31, 2021 (2021 Phase II ESA).
- "Phase One Environmental Site Assessment Update, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 dated October 9, 2024 (2024 Phase One ESA Update).

The findings of the 2021 Phase I ESA and the 2024 Phase One ESA Update are provided under a separate cover. The investigation methodology and results of the 2021 Phase II ESA are included throughout this report and formed the basis of the scope of work for this Phase Two ESA. This Phase Two ESA was completed in accordance with the requirements for Phase Two ESAs as defined in Part VII and Schedule E of Ontario Regulation (O.Reg.) 153/04.

The approximate boundaries and the location of the Site are provided on Figure A.1, Appendix A.

1.1 Site Description

The Phase Two Property consists of an undeveloped parcel of land with an approximate area of 2.07 hectares (5.12 acres) located at 3955 Kelly Farm Drive, Ottawa, Ontario. The site is bounded to the northwest by Barrett Farm Drive, to the northeast by Aconitum Way, to the southeast by Lavatera Street, and to the southwest by Kelly Farm Drive. The location of the Site is shown on Figure A.1, Appendix A.

1.2 Property Ownership and Legal Description

The property is currently owned by Conseil des Écoles Publiques de l'Est de l'Ontario. The contact person for the Site is Mr. Omar Ben Hadda (CEPEO).

The Parcel Register Abstract PIN is 04328-4888 (LT) and legal the description for the Site is as follows: BLOCK 196, PLAN 4M1640; SUBJECT TO AN EASEMENT IN GROSS AS IN OC2168913; SUBJECT TO AN EASEMENT IN GROSS OVER PART 40 4R32389 AS IN OC2168915; CITY OF OTTAWA.

1.3 Current and Proposed Future Uses

The Site is currently undeveloped and appears to be used partially as a laydown area for residential construction currently being completed in the area. The proposed future use is institutional development with a school.

1.4 Applicable Site Condition Standards

Site Condition Standards (SCS) were selected for the Site in accordance with the requirements of O. Reg. 153/04, Record of Site Condition – Part XV.1 of the Environmental Protection Act (O. Reg. 153/04, Ministry of Environment and Climate Change (MECP), October 31, 2011), as amended. The selection of applicable SCS for comparison to analytical data was based on a review of various Site characteristics which will need to be considered for the current property use and also to provide a preliminary indication of on-Site soil and groundwater quality to inform the future planned development.

The relevant Site characteristics were considered in the selection of the applicable regulatory criteria are as follows:

- Land Use: The Site is currently undeveloped and was historically used for agricultural purposes. The proposed future land use is institutional.
- Soil Texture: Based on visual observations during the field program and in the absence of a grain size analysis completed on samples as a conservative approach, coarse textured soils have been considered for this site.
- Soil Thickness and Proximity to Water Body: For the purposes of selection of the appropriate provincial standard, Section 43.1 of O. Reg.153/04 identifies specific SCS be applied if any of the following circumstances exist:
 - (a) The property is a shallow soil property (i.e., at least 1/3 or more of the property area contains less than 2 metres depth of overburden); or
 - (b) The property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

Based on results obtained from the intrusive investigation, the Site is not considered a shallow soil property. Furthermore, the property is not within 30 metres of a water body.

- Groundwater Use: Potable water in the area of the Site is supplied by the City of Ottawa, however through review of the Ontario Well Records, domestic and commercial water wells were identified within the study area – accordingly as a conservative approach, groundwater use for the Site and vicinity is considered potable.
- Environmentally Sensitive Site: Environmental sensitivity is considered in the selection of appropriate provincial standards for comparison. Section 41 of O.Reg.153/04 states that a property is to be considered environmentally sensitive if any of the following are applicable:

- (1) the property is,
 - (i) within an area of natural significance;
 - (ii) includes or is adjacent to an area of natural significance or part of such an area; or
 - (iii) includes land that is within 30 metres of an area of natural significance or part of such an area;
- \circ (2) the soil at the property has a pH value as follows:
 - (i) for surface soil, less than 5 or greater than 9;
 - (ii) for sub surface soil, less than 5 or greater than 11; or
- (3) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property.

The Site is not considered to be environmentally sensitive. pH values for soil samples submitted were within the acceptable range and the Site is not within, adjacent or include, in part, an Area of Natural of Scientific Interest (ANSI).

Based on the review of Site characteristics and intended future development of the property to institutional use, the following provincial standards were considered to be applicable to the analytical results obtained during the environmental investigation:

- Soil: MECP, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential / Parkland / Institutional (RPI) land use with coarse textured soil.
- Groundwater: MECP, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for All Types of Property Use with coarse textured soil.

2.0 BACKGROUND INFORMATION

This section presents the background conditions of the Site including a description of the physical setting and a summary of past investigations conducted.

The objectives of the Phase Two ESA were to obtain information about environmental conditions in the soil and groundwater on, in or under the Site, and to develop the information necessary to complete the Phase Two ESA for the Site. The objectives of this Phase Two ESA were achieved by:

- Developing an understanding of the geological and hydrogeological conditions at the Site; and,
- Conducting field sampling for all contaminants of potential concern (COPCs) associated with the areas of potential environmental concern (APECs) identified in the 2021 Phase I ESA and confirmed in the 2024 Phase One ESA Update.

2.1 Physical Setting

Topographic mapping available through the Ontario Basic Mapping (OBM, 2012) and the Ministry of Natural Resources and Forestry (MNR, 2014), were reviewed to determine topographic features in the vicinity of the Phase Two Property and study area. The elevation of the Site is approximately 95 metres above sea level (masl) and surrounding topography generally slopes gradually downwards towards the south.

Groundwater flow often reflects topographic features and typically flows toward nearby lakes, rivers and wetland areas. Based on the topography of the area, it is expected that the local shallow groundwater flow will trend north or southwesterly, towards one of two large provincially significant wetlands located approximately 1 km north and south of the Site. Regional groundwater flow is expected to be towards the Rideau River located approximately 6.5 km west of the Site.

Surficial soil and bedrock geology maps of the Ottawa area indicate that the overburden in the vicinity of the Site generally consists of coarse-textured glaciomarine deposits; sand, gravel, minor silt and clay foreshore and basinal deposits with approximate thicknesses ranging between 0 and 5 m. The bedrock is mapped as dolostone and sandstone of the Beekmantown Group.

2.2 Past Investigations

As previously mentioned, GEMTEC conducted a 2021 Phase I ESA to assess the likelihood of soil and/or groundwater contamination resulting from historical or present activities at the Site and surrounding area. GEMTEC undertook a Phase One ESA update in 2024 to determine if any material changes in the Site condition had occurred since the 2021 investigation. The Phase One ESA included a review of available historical information on the Site and surrounding area, interviews with persons familiar with the Site and a Site reconnaissance. Based on this report, six potentially contaminating activities (PCAs) were identified resulting in four APECs at the Site.

Figures A.1 and A.2, Appendix A illustrate the locations of the PCAs and APECs, respectively. The APECs identified in the 2021 Phase I ESA are summarized in Table 2.1 below.

Table 2.1: APECs as per 2021 Phase I ESA

	704 #201 Importation of			
F 1 F	Fill Material of Unknown Quality	Fill material of unknown origin was identified on the Site during the aerial photograph review and the Site interview	Soil	Metals & ORPs PHCs F1-F4 BTEX PAHs
2 Ma E	PCA # 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) anufacturing, Processing, Bulk Storage and Large- Scale Applications.	Through a review of aerial photographs and during the Site interview, there is potential for pesticides having been historically used on the Site	Soil Groundwater	OCPs
3 M	PCA # 48. Salt anufacturing, Processing and Bulk Storage	Through a search with the Historical Land Use Inventory (HLUI), Leitrim works site & garage was identified within the study area and accepted 2,000 tonnes of salt delivery	Soil Groundwater	ORPs (including EC, SAR Chlorine Sodium)
4 4	PCA # 28. Gasoline and Associated Products Storage in Fixed Tanks	Through a search with the HLUI, Leitrim works site & garage was identified within the study area with 3 pumps including gas and diesel	Soil Groundwater	Metals & ORPs PHCs F1-F4 VOCs

5.

PAHs – polyaromatic hydrocarbons

Metals - metal parameters as per O.Reg. 153/04 including hydride-forming metals

ORPs – other regulated parameters including electrical conductivity (EC), sodium adsorption ratio (SAR), pH, hot watersoluble boron (HWS-B), cyanide (CN-), hexavalent chromium (Cr IV), and mercury (Hg)

PHCs F1-F4 – petroleum hydrocarbon fractions

BTEX – benzene, toluene, ethylbenzene, xylene

OCPs – organochloride pesticides

VOCs – volatile organic compounds

As a result of the identified APECs in association with the Site, a Phase II ESA was recommended and carried out in March 2021. The shallow soil at one sample location (BH21-8) was found to have elevated electrical conductivity (EC). It was concluded that delineation of impacted fill material should be completed in the vicinity of BH21-8 prior to property development. The investigation methodology and results of the 2021 Phase II ESA are included throughout this report and formed the basis of the scope of work (i.e., delineation boreholes in the vicinity of BH21-8) for this Phase Two ESA. The 2024 Phase One ESA Update did not identify any new PCAs or APECs associated with the Site, and no additional intrusive investigations were recommended beyond the completion of this Phase Two ESA delineation program.

3.0 SCOPE OF THE INVESTIGATION

3.1 Overview of the Phase Two ESA Investigation

The Phase Two ESA investigation activities were completed between March 5, 2021, and March 17, 2021, with additional delineation field work on October 11, 2024. The Phase Two ESA included the following tasks:

- **Health and Safety Plan:** Preparation of a Health and Safety Plan prior to initiating any field work at the Site;
- **Utility Clearances:** Coordination of utility clearances with local utility companies along with retaining the services of a private locator to assess for possible services in the areas of the proposed borehole locations;
- **Sampling and Analysis Plan (SAP):** Preparation of an informal SAP to document the purpose, rationale, number and location of samples to be recovered as part of the Phase Two ESA investigation. More details are available in Section 4.0;
- Borehole Advancement and Monitoring Well Installation: The Phase Two ESA investigation activities carried out on March 5, 2021, and March 17, 2021, included the drilling of eight boreholes and completion of three of the boreholes as monitoring wells; the locations of which are provided in Figure A.3, Appendix A;
- **Auger Advancement:** To assist with assessing the extent of fill material with elevated EC, 11 shallow test holes were advanced via augering on October 11, 2024. The test locations are indicated on Figure A.3, Appendix A;
- **Soil Sampling:** Soil samples were collected on March 5, 2021, and March 15, 2021, from the boreholes and October 11, 2024, from the auger test holes. A total of 27 soil samples (23 bulk samples and four duplicates) were submitted for chemical analysis of one or more of the following COPCs:
 - Metals, hydride-forming metals, and other regulated parameters (ORPs);
 - Petroleum hydrocarbon (PHC) fractions (F1-F4);
 - Benzene, toluene, ethylbenzene, and xylene (BTEX);
 - Volatile organic compounds (VOCs);
 - Polycyclic aromatic hydrocarbons (PAHs);
 - Organochlorine pesticides (OCPs); and
 - EC and sodium adsorption ratio (SAR).
 - Details of COPCs with respect to the sampling locations is available in Section 5.6.
- **Groundwater Monitoring and Sampling:** A total of four groundwater samples (three samples and one duplicate) were collected on March 17, 2021, from the monitoring wells.

The groundwater samples were submitted for chemical analysis of one or more of the following COPCs:

- Metals, hydride-forming metals, ORPs;
- PHCs F1-F4;
- o VOCs;
- PAHs; and
- o OCPs
- Trip Blank for PHC F1 and VOCs.
- \circ Details of COPCs with respect to the sampling locations is available in Section 5.7.
- **Surveying:** An elevation survey for boreholes and monitoring wells was completed using a high precision Trimble R10 global positioning system (GPS).
- **Reporting:** GEMTEC compiled and assessed the field and laboratory results from the above-noted activities into this report.

The Phase Two ESA was carried out in general accordance with GEMTEC's standard operating procedures, which conform to the requirements of O. Reg. 153/04. The data from the 2021 Phase II ESA and this Phase Two ESA investigation, both completed by GEMTEC at the Site, were incorporated into a single Phase Two ESA report following the Phase Two ESA report format required by O. Reg. 153/04.

There were no impediments or access limitations that, in the opinion of the QP, would affect the conclusions of this Phase Two ESA report.

3.2 Media Investigated

The Phase Two ESA field program included sampling of subsurface soil from boreholes and groundwater from the monitoring wells to address the potential environmental issues identified in the 2021 Phase I ESA and confirmed in the 2024 Phase One ESA Update.

No sediment was present at the Site and, therefore, no sediment sampling was completed.

3.3 Phase One ESA Conceptual Site Model

The following describes the Phase One ESA Conceptual Site Model (CSM) based on the information obtained and reviewed as part of the 2021 Phase I ESA and the 2024 Phase One ESA Update.

- The Site is bounded to the northwest by Barrett Farm drive, to the northeast by Aconitum Way, to the southeast by Lavatera Street and to the southwest by Kelly Farm Drive;
- The Site is currently undeveloped with some fill of unknown origin and construction materials on-Site, and has previously been used for agricultural purposes;

- The surrounding properties are primarily agricultural with some residential development beginning between 2017 and 2019;
- The surrounding properties to the south are fully serviced by the municipality and utility providers although some wells were identified within the study area;
- The MECP Well Records search identified 11 wells within the study area. The average depth to the water table based on the static water levels available from the MECP Well Records was 2.74 metres below ground surface;
- No provincially significant wetlands (PSWs) or ANSIs were identified on the Site, or within the study area;
- The Site has a relatively flat topography and is at an elevation of approximately 95 masl. Surrounding topography generally slopes gradually downwards towards a wetland approximately 700 m south of the Site;
- Surficial soil and bedrock geology maps of the Ottawa area indicate that the overburden in the vicinity of the Site generally consists of coarse-textured glaciomarine deposits; sand, gravel, minor silt and clay foreshore and basinal deposits with thicknesses ranging between 0 and 5 m. The bedrock is mapped as dolostone and sandstone of the Beekmantown Group; and
- Based on the records review, the interview and the Site reconnaissance completed as part of the 2021 Phase I ESA and 2024 Phase One ESA Update, GEMTEC identified six PCAs for the study area. Four of the PCAs were determined to create APECs on the Site. These APECs include:
 - APEC 1 Fill material of unknown origin was identified during the aerial photograph review and Site interview. COPCs in the soil include metals, ORPs, PHCs F1-F4, BTEX, PAHs.
 - **APEC 2 Potential for pesticides to have been used historically.** COPCs in the soil and groundwater include OCPs.
 - APEC 3 Leitrim works site & garage in the study area that accepted 2,000 tonnes of salt delivery. COPCs in the soil and groundwater include ORPs such as EC, SAR, chlorine (CI), and sodium (Na).
 - APEC 4 Leitrim works site & garage in the study area having three pumps including gas and diesel. The COPCs in the soil and groundwater include metals, ORPs, PHCS F1-F4, and VOCs.

3.4 Deviations from Sampling and Analysis Plan

No deviations to the sampling and analysis plan occurred during the Phase Two ESA investigation.

3.5 Impediments

No physical impediments to the Phase Two ESA investigation were encountered.

4.0 INVESTIGATION METHOD

The following sections describe the field investigation methodology employed during the Phase Two ESA. The field work was conducted between March 5, 2021, and March 17, 2021, and additional field work took place on October 11, 2024.

4.1 General

Prior to initiating the field work, GEMTEC developed and implemented Site-specific protocols to protect the health and safety of its employees and subcontractors through the preparation of a Site-specific Health and Safety Plan. Additionally, GEMTEC completed public and private utility clearances.

4.2 Borehole Drilling

Between March 5, 2021, and March 15, 2021, 8 boreholes (BH21-1 through BH21-8) were advanced to depths ranging between 1.06 to 4.57 m below ground surface (bgs). Borehole locations are provided in Figure A.3, Appendix A. A description of quality assurance/quality control measures taken to minimize the potential for cross-contamination between sampling locations is provided in Section 4.12.

The boreholes were advanced using a Geoprobe drill rig supplied and operated by Strata Drilling Group (Strata). During drilling, a macro core soil sampling system utilizing direct-push technology with disposable 5.71 cm (2-1/4 inch) polyvinyl chloride (PVC) tube liners which fit inside a 6.26 cm (3-1/4 inch) outer stainless-steel tube were used to sample the overburden soil. The macro core soil samples were obtained at regular depth intervals and logged in the field noting subsurface. Table 4.1 summarizes the location of boreholes advanced as part of the Phase Two ESA.

Table 4.1: Borehole Locations with Investigated APECs

Borehole ID	MW Installation Required (Y/N)	APEC Investigated	COPCs - Soil	COPCs – GW
BH/MW21-1	Y	APEC 1,2,3,4	Metals, PHCs, VOCs, OCPs	Metals, PHCs, VOCs, PAHs, OCPs
BH21-2	Ν	APEC 1	Metals, PHCs, BTEX, PAHs	-
BH21-3	Ν	APEC 1	Metals, PHCs, BTEX, PAHs	

Borehole ID	MW Installation Required (Y/N)	APEC Investigated	COPCs - Soil	COPCs – GW
BH/MW21-4	Y	APEC 1,2,3,4	Metals, PHCs, VOCs, PAHs, OCPs	Metals, PHCs, VOCs, PAHs; OCPs
BH21-5	Ν	APEC 1	Metals, PHCs, BTEX, PAHs	-
BH/MW21-6	Y	APEC 1,2,3,4	Metals, PHCs, VOCs, PAHs, OCPs	Metals, PHCs, VOCs, PAHs, OCPs
BH21-7	Ν	APEC 1	Metals, PHCs, BTEX, PAHs	-
BH21-8	Ν	APEC 1	Metals, PHCs, BTEX, VOCs, PAHs, OCPs	

Notes:

APEC 1 – Presence of fill material based on aerial photographs and Site interview

APEC 2 – Potential for historical pesticide use

APEC 3 – Works site & garage in study area with bulk storage of salt

APEC 4 - Works site & garage in study area with gasoline and diesel pumps

PHCs F1-F4 – Petroleum hydrocarbons F1 to F4

PAHs – Polycyclic aromatic hydrocarbons

VOCs – Volatile organic compounds

OCPs – Organochlorine pesticides

 $\label{eq:metals} \mbox{Metals} - \mbox{Metals} \mbox{ and hydride-forming metals}, \mbox{ and ORPs including EC and SAR}$

4.3 Auger Sampling

On October 11, 2024, 11 test locations were advanced using a 2-inch Dutch hand auger to depths ranging between 1.0 to 1.5 mbgs for the collection of soil samples for EC and SAR analysis. The samples were collected to assist with the vertical and lateral delineation of elevated EC in shallow fill material found at BH21-8. The test locations are shown on Figure A.3, Appendix A.

4.4 Soil: Sampling

Soil samples were collected from the boreholes via dual tubes and from the auger locations via auger flights; following the Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE, 1996).

Soil samples were recovered at regular intervals during drilling and were split in the field into two components. One component was placed into laboratory prepared containers, one preserved with methanol and the other packed with soil for minimal headspace, then stored in a cooler for potential laboratory analysis. The second component was placed inside a plastic bag for field

screening, consisting of the soil description, and noting the presence of any staining, odour and/or debris. An RKI Eagle 2 gas detector was used to measure the total organic vapour and combustible gas concentrations in the headspace in the sealed plastic bag. Clean gloves were worn and changed between each sample to prevent cross contamination. A summary of the soil samples submitted for analysis is provided in Tables C1 and C2, Appendix A.

Geologic descriptions, visual and olfactory observations, and results of field headspace measurements are presented on the Record of Borehole Logs in Appendix B.

4.5 Field Screening Measurements

Field measurements of sample headspace concentration were made using the equipment detailed in Table 4.2.

Equipment	Parameters Detected	Detection Limit	Accuracy	Calibration Standard
	Combustible gas	0-50,000 ppm	±5%	Hexane (HEX) (1650 ppm)
KKI Eagle 2	Total organic vapour	0-2,000 ppm	±5%	Isobutylene (IBL) (100 ppm)

Table 4.2: RKI Eagle 2 Details for Field Screening

HEX readings varied between 0 ppm and 10 ppm; whereas IBL readings varied between 0 ppm and 4 ppm. The results of soil headspace screening measurements are provided in the Record of Borehole Logs in Appendix B.

Soil samples at each sampling location were selected for laboratory analysis based on the field headspace screening measurements, visual observations (e.g., staining, discoloration and/or free product, if any), and olfactory observations (if any). Soil samples were submitted to the analytical laboratory under chain-of-custody procedures. No staining, discoloration or free product was noted during the investigation.

4.6 Groundwater: Monitoring Well Installation

Three groundwater monitoring wells (BH/MW21-1, BH/MW21-24, and BH/MW21-6) were installed by Strata using threaded 38-mm diameter, schedule 40, PVC well screens and riser pipe, which were brought to the Site in sealed plastic bags. The annular space was filled with silica filter sand to at least 0.30 m above the well screen. The monitoring wells were sealed with bentonite from the top of the sand pack and the riser pipes were sealed with a J-plug. All three monitoring wells were completed with a monument/stick-up protective casing.

4.7 Groundwater: Field Measurements for Water Quality Parameters

The field measurements for the groundwater monitoring wells were taken on March 17, 2021. The measurements included the water level and the depth to the bottom of the monitoring well, both of which were from the top of the riser pipe using an electronic water level tape.

Physical parameters including pH, temperature, EC, dissolved oxygen (DO), and oxidation redox potential (ORP) were monitored during groundwater collection using a Horiba Water Quality Meter.

4.8 Groundwater: Sampling

Monitoring well development and sampling was conducted on March 17, 2021, and included removal of a minimum of three well volumes or to dry three times from each monitoring well. Well development activities were performed using dedicated Waterra® tubing and foot valves.

Monitoring well sampling was conducted using low flow techniques using a GeoPump peristaltic pump. Physical parameters, pH, temperature, EC, DO, and ORP, were monitored and stabilized before groundwater sample collection. During purging and sampling, qualitative observations were made of water colour, clarity, and the presence of hydrocarbon sheen or odour. Groundwater samples were collected from the monitoring wells directly into laboratory supplied bottles using a peristaltic pump with disposable tubing.

4.9 Sediment: Sampling

No sediment samples were collected as part of this investigation as no surface water bodies were identified at the Site.

4.10 Analytical Testing

All samples were stored and transported in laboratory supplied coolers with ice. Soil and groundwater samples were submitted to Paracel Laboratories Ltd. (Paracel) for analysis of the samples taken in 2021 and to AGAT Laboratories Ltd. (AGAT) for analysis of the samples taken in 2024. Paracel and AGAT are accredited by the Standards Council of Canada (SCC) in cooperation with the Canadian Association of Laboratory Accreditation (CALA) for specific environmental tests listed in the scope of accreditation. The laboratories meet the ISO/IEC 17025 (2017) standards and employs in-house quality assurance and quality control programs to govern sample analysis including the analysis of method blanks, spiked blanks, and the analysis of duplicates (10%) for each sample batch. The details of COPCs with respect to the sampling locations is available in Sections 5.6 and 5.7.

4.11 Residue Management Procedures

All soil from drilling operations were collected for screening and sampling. Any additional cuttings were stored in soil drums on-Site. Water generated during monitoring well development and

sampling was stored in water barrels on-Site. The soil and groundwater drums were disposed of at the Site following receipt and review of soil and groundwater results. All equipment used for sampling was single use and/or disposable, therefore, no wash water was generated during the investigation.

4.12 Elevation Surveying

The ground surface elevations at the location of the boreholes (ground surface) and monitoring wells (with elevations from the PVC risers) were determined using a Trimble R10 GPS. The coordinates of the boreholes are referenced to NAD83 (CSRS) Epoch 2010, vertical network CGVD28 and are considered to be accurate within the tolerance of the instrument. The locations of the boreholes and monitoring wells advanced on-Site are shown on Figure A.3, Appendix A.

4.13 Quality Assurance / Quality Control Program

GEMTEC's quality assurance program for environmental investigations was implemented to ensure that analytical data obtained by the investigation were valid and representative. The quality assurance program included the following measures:

- The use of standard operating procedures for all field investigation activities;
- Soil samples were handled and stored in accordance with the sample collection and preservation requirement of the MECP "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.I of the Environmental Protection Act", July 1, 2011. Samples were collected directly into pre-cleaned, laboratory-supplied sample containers with the appropriate preservative for the analyte group. Upon collection, samples were placed in insulated coolers with ice for storage and transport to the analytical laboratory under chain-of-custody;
- The collection of field duplicate samples at a minimum frequency of one duplicate for every ten samples;
- The monitoring wells were to be developed following installation to remove fine particles from the filter pack and any fluids introduced during drilling;
- Monitoring wells were to be appropriately purged prior to groundwater sample collection to remove stagnant water from the well bore and improve sample representativeness, minimizing sample agitation and aeration to the extent practicable;
- A trip blank was collected for PHC F1 and VOCs during the groundwater sampling event;
- Clean disposable Nitrile[™] gloves were used at each sampling location to prevent crosscontamination;
- Detailed field records documenting the methods and circumstances of collection for each field sample were prepared at the time of sample collection. Each sample was assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses; and

• The submission of samples to the analytical laboratory in accordance with standard chain of custody procedures.

5.0 REVIEW AND EVALUATION

This section of the report presents a review and evaluation of the results of the drilling, augering, monitoring, and sampling activities conducted as part of the Phase Two ESA.

5.1 Geology

The soil conditions encountered during the borehole drilling program are presented in the Record of Borehole Logs provided in Appendix B.

The soil stratigraphy was visually observed and logged during the field investigation. The Record of Borehole Logs indicate the subsurface conditions encountered at the specific locations only. Boundaries between zones on the logs are often not distinct, but rather are transitional and have been interpreted based on observations by trained GEMTEC field personnel. The precision with which subsurface conditions are indicated depends on the method of drilling, the frequency and recovery of samples, the method of sampling, and the uniformity of the subsurface conditions. Subsurface conditions at other than the test locations may vary from the conditions encountered in the boreholes. The following presents an overview of the subsurface conditions encountered in the boreholes advanced as part of this investigation.

Fill material was encountered from ground surface at all boreholes. Fill material is variable in nature and can be described at this Site as brown silty sand/sandy silt with some gravel, clay and silt. Organic material in fill was noted at BH21-6. Red brick debris was observed within the fill material at BH21-8. The fill material has a thickness ranging between 0.1 and 0.9 mbgs. BH21-8 was terminated within the fill material due to refusal.

Native deposits of brown to grey silty clay were encountered below the fill materials in all boreholes at depths ranging from about 0.1 and 0.9 mbgs, with the exception of BH21-8. Native brown to grey silty clay was observed from ground surface to 0.9 mbgs at BH21-1. Boreholes BH21-1 to BH21-7 were terminated within the grey/brown silty clay deposits at depths ranging between 1.2 and 4.6 mbgs.

5.2 Groundwater: Elevations and Flow Direction

Groundwater depths were measured directly from the top of pipe in each monitoring well location on March 17, 2021, using an electronic oil-water interface probe. Depth measurements were converted to groundwater elevations by subtracting the measured depth from the elevation of the ground surface of each monitoring well riser. The data is summarized in Table 5.1 below.

All the monitoring wells were installed to straddle the anticipated water table based on conditions observed during drilling. The well screens were located within the overburden for all the monitoring wells. No free product was identified in and of the monitoring wells.

The location of these monitoring wells is shown in Figure A.3, Appendix A. The details of these monitoring wells are provided in Table 5.1 below.

Monitoring Well ID	Soil Stratigraphy at Screen	Depth to Groundwater (mbgs)	Ground Elevation (masl)	Groundwater Elevation (masl)
BH/MW21-1	Brown to grey silty clay with sand	3.80	96.179	92.38
BH/MW21-4	Brown to grey silty sand with clay and gravel	3.51	96.079	92.56
BH/MW21-6	Brown to grey silty clay/clayey silt with sand	3.56	93.338	92.78

Table 5.1: Monitoring Well Details

The inferred direction of shallow groundwater flow is generally to the northwest based on the interpreted groundwater elevation contours presented in Figure A.4, Appendix A.

Seasonal fluctuation in water levels at the Site should be expected. Considering only one monitoring event was conducted, seasonal trends could not be identified; however, shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

5.3 Groundwater: Hydraulic Gradients

The horizontal hydraulic gradient between well sets is presented in Table 5.2 below. The horizontal hydraulic gradient was estimated for shallow groundwater conditions based on water levels measured on March 17, 2021, and the inferred groundwater contours are presented in Figure A.4, Appendix A.

Monitoring Well ID	Monitoring Well ID	Distance between Monitoring Wells (m)	Difference in Groundwater Elevation (m)	Horizontal Hydraulic Gradient (m/m)
BH/MW21-1	BH/MW21-4	80.28	0.19	0.002367

Table 5.2: Hydraulic Gradients Between Monitoring Wells

Monitoring Well ID	Monitoring Well ID	Distance between Monitoring Wells (m)	Difference in Groundwater Elevation (m)	Horizontal Hydraulic Gradient (m/m)
BH/MW21-1	BH/MW21-6	87.89	0.40	0.004551
BH/MW21-4	BH/MW21-6	60	0.21	0.0035

The average horizontal hydraulic gradient for shallow groundwater conditions was 0.003473 m/m. Vertical hydraulic gradient for shallow groundwater conditions were not calculated as nested monitoring wells were not installed at the Site.

5.4 Soil Texture

The predominant soil grain size at the Site was assumed to be coarse-textured, based on the observations made during the field investigation and surficial soil maps of the Ottawa area.

5.5 Soil: Field Screening

Headspace vapour measurements were conducted on the soil samples collected from each of the boreholes advanced at the Site. The results of headspace vapour measurements are presented in the Record of Borehole Logs in Appendix B.

5.6 Soil Quality

Soil sampling at the Site was completed during borehole advancement on March 5, 2021, and March 15, 2021, and augering on October 11, 2024. The analytical results of soil samples are presented in Tables C.1 and Table C.2, Appendix C. The soil samples were submitted to Paracel (in 2021) and AGAT (in 2024) for analysis of one or more of the following parameters: metals, hydride-forming metals, ORPs, PHCs F1-F4, BTEX, VOCs, PAHS, and/or OCPs.

For the 2021 investigation, a total of 14 soil samples (11 bulk samples plus three duplicates) were collected and stored in laboratory provided coolers with ice and shipped to the laboratory for analysis. Samples were submitted to Paracel, a CALA-certified analytical laboratory, under standard chain-of-custody protocols and in accordance with GEMTEC QA/QC procedures. The soil samples submitted for analyses are summarized in Table 5.3.

Location ID	Sample ID	Depth Interval (mbgs)	Soil Description	Analytical Analyses
BH21-1	SA-2	0.76 – 1.52	Brown silty clay with sand	Metals, PHCs, VOCs, OCPs
BH21-2	SA-1	0.00 – 0.91	Brown sandy silt with gravel (fill Material)	Metals, PHCs, BTEX, PAHs
BH21-3	SA-1	0.00 – 0.69	Brown sandy silt with gravel (fill Material)	Metals, PHCs, BTEX, PAHs
	SA-1	0.00 – 0.91	Brown silty sand with gravel (fill Material)	Metals, PHCs, VOCs, PAHs, OCPs
BH21-4	SA-101*	0.00 – 0.91	Brown silty sand with gravel (fill Material)	Metals, PHCs, VOCs, PAHs
	SA-6	3.81 – 4.57	Grey silty clay	Metals, PHCs, VOCs, OCPs
	SA-106*	3.81 – 4.57	Grey silty clay	Metals, PHCs, VOCs, OCPs
BH21-5	SA-1	0.00 - 0.77	Brown sandy silt with gravel (fill Material)	Metals, PHCs, BTEX, PAHs
	SA-101*	0.00 – 0.77	Brown sandy silt with gravel (fill Material)	Metals, PHCs, BTEX, PAHs
BH21-6	SA-1	0.00 – 0.76	Brown sandy silt with gravel (fill Material)	Metals, PHCs, VOCs, PAHs, OCPs
	SA-4	2.43 – 2.73	Grey silty clay	Metals, PHCs, VOCs, OCPs
BH21-7	SA-1	0.00 – 0.91	Brown silty sand with gravel (fill Material)	Metals, PHCs, BTEX, PAHs
BH21-8	SA-2	0.45 – 0.85	Grey clay and silt (fill Material)	Metals, PHCs, BTEX, PAHs, OCPs
	SA-3	0.85 – 1.06	Brown sand and gavel with red brick (fill Material)	Metals, PHCs, VOCs, PAHs

Notes:

PHCs F1-F4 – Petroleum hydrocarbons F1 to F4

PAHs – Polycyclic aromatic hydrocarbons

VOCs – Volatile organic compounds

 $\mathsf{OCPs}-\mathsf{Organochlorine}\ \mathsf{pesticides}$

Metals - Metals and hydride-forming metals, and ORPs including EC and SAR

No exceedances were reported for soil samples except for EC in one sample collected from BH21-8 (see discussion below). Laboratory Certificates of Analysis for the soil samples are included in Appendix D.

5.6.1 Electrical Conductivity

The 2021 analytical results indicated the value of EC for soil sample BH21-8 SA-3 was 2560 μ S/cm, which exceeded the Table 2 RPI SCS of 700 μ S/cm. This sample taken between 0.85 to 1.06 mbgs within sand and gravel fill material.

To better assess the lateral extent of elevated EC, 11 additional shallow test holes were advanced via hand augering on October 11, 2024. A total of 13 samples (12 bulk samples plus one duplicate) were collected within a 2 m radius of the exceeding sampling location (BH21-8) and from the same depths as the initial exceeding sample for lateral delineation. The vertical extent of elevated EC was assessed by collecting one sample in the interval below the known exceedance.

The 13 additional samples were analyzed for EC and SAR. A summary of analytical results is presented in Table 5.4 below and in Table C.2 in Appendix A. The sample locations are shown on Figure A.3 and the results by location are shown on Figure A.5.

No SAR exceedances were noted. To further assess the presence of elevated EC, the EC results of the original and additional samples were averaged. The result of the averaging is presented in the table below and indicates that EC continues to be moderately elevated with respect to the Table 2 RPI SCS of 700 μ S/cm.

Additional Sample ID	Additional Sample Depth (mbgs)	EC of Additional Sample (μS/cm)	Average EC of Original and Additional Samples (µS/cm)
BH21-8 SA3 A	0.8 – 1.0	631	
BH21-8 SA4 A	1.0 – 1.5	642	
BH21-8 SA3 B	0.8 – 1.0	401	
BH21-8 SA3 C	0.8 – 1.0	937	
BH21-8 SA3 D	0.8 – 1.0	356	
BH21-8 SA3 E	0.8 – 1.0	526	
BH21-8 SA3 F	0.8 – 1.0	917	797
BH21-8 SA3 G	0.8 – 1.0	526	
BH21-8 North	0.8 – 1.0	873	
BH21-8 10 North*	0.8 – 1.0	762	
BH21-8 South	0.8 – 1.0	834	
BH21-8 East	0.8 – 1.0	298	
BH21-8 West	0.8 – 1.0	892	

Table 5.4: Additional Sample Information and Electrical Conductivity

Notes:

*Duplicate sample for QA/QC purposes.

5.7 Groundwater Quality

Groundwater sampling at the Site was completed on March 17, 2021. The analytical results of groundwater samples are presented in Table C.3, Appendix C. The groundwater samples were submitted for analysis of one or more of the following parameters: metals, hydride-forming metals, PHCs F1-F4, VOCs, and OCPs.

A total of four groundwater samples (three samples plus one duplicate) were collected and stored in laboratory provided coolers with ice and shipped to the laboratory for analysis. One trip blank sample was also transported to the property during the field program and submitted with the collected groundwater samples for analysis. Samples were submitted to Paracel under standard chain-of-custody protocols and in accordance with GEMTEC QA/QC procedures. The groundwater samples submitted are summarized in Table 5.5.

Monitoring Well ID	Screened Interval (mbgs)	Stratigraphic Unit	Analytical Analyses
MW21-1	0.76 – 3.81	Overburden	Metals, PHCs, VOCs, OCPs
MW21-4	1.52 – 4.57	Overburden	Metals, PHCs, VOCs, OCPs
MW21-104*	1.52 – 4.57	Overburden	Metals, PHCs, VOCs, OCPs
MW21-6	0.61 – 3.65	Overburden	Metals, PHCs, VOCs, OCPs
Trip Blank	-	-	PHC F1 & VOCs

Table 5.5: Summary of Groundwater Sampling Program and COPC Analyses

Notes:

PHCs F1-F4 – Petroleum hydrocarbons F1 to F4

PAHs - Polycyclic aromatic hydrocarbons

VOCs – Volatile organic compounds

OCPs – Organochlorine pesticides

Metals - Metals and hydride-forming metals, and ORPs including EC and SAR

*Duplicate sample for QA/QC purposes

No exceedances were identified based on the review of groundwater analytical results to MECP Table 2 All Types of Property Use SCS with coarse-textured soils. Laboratory Certificates of Analysis for the groundwater samples are included in Appendix D.

5.8 Sediment - Quality

No sediment samples were collected as part of this investigation.

5.9 Quality Assurance and Quality Control

5.9.1 Field Program QA/QC

A quality assurance/quality control (QA/QC) program was implemented during the investigation. The QA/QC program consisted of the use of industry-standard field protocols and the collection of blind field duplicates. Blind duplicates were submitted for laboratory analysis to evaluate laboratory precision and field sampling and handling procedures, in addition to sample homogeneity. The method used to assess the validity of the field collection protocols and laboratory analytical procedures, is the calculation of the Relative Percent Difference (RPD) for the sample and duplicate pair. The RPD is defined as the absolute value of the variation between a sample and its duplicate when compared to the average concentration of the original and the duplicate. Calculations of the RPD between the parent and duplicate samples were performed and compared to the acceptance limits outlined in the *'Protocol for Analytical Methods Used in the Assessment of Properties'* under Part XV.1 of the Environmental Protection Act, April 2011. The RPD calculation is only applicable when concentrations in the sample and its field duplicate are greater than five times the laboratory reportable detection limit (RDL).

The RDA was calculated as follows:

	$RPD = \frac{ x_1 - x_2 }{x_m}$
Where	<i>x</i> ₁ initial sample results
	x ₂ duplicate sample results
	x_m mean of x_1, x_2

Two parent-duplicate soil/groundwater sample sets were collected and submitted for laboratory analysis as part of the QA/QC program, as per Table 5.6.

Table 5.6: Parent and Duplicate Samples

Date	Media	Sample ID	Duplicate ID
March 15, 2021	Soil	BH21-4 SA-1	BH21-4 SA-101
March 15, 2021	Soil	BH21-4 SA-6	BH21-4 SA-106
March 3, 2021	Soil	BH21-5 SA-1	BH21-5 SA-101
March 17, 2021	Groundwater	BH/MW21-4	BH/MW21-104

The analytical results of the parent and duplicate samples indicated a satisfactory correlation between the parent and duplicate samples as per the Analytical Protocol except chromium (34%) and lead (36%) in the soil duplicate pair BH21-4 SA1 and BH21-4 SA-101. The marginal exceedances identified in the duplicate RPD samples are presumably related to the heterogeneous nature of soil. The calculated RPDs for all of the soil samples and their duplicates do not suggest inconsistencies in the field collection or the laboratory analysis methods. This is not considered to affect the overall interpretation of the data for this sample as the results are still below the applicable standard.

5.9.2 Analytical Laboratory QA/QC

The analytical laboratory completed all analyses in accordance with internal laboratory QA/QC which includes standardized analytical methods and procedures, in accordance with O. Reg. 153/04, as amended. The certificates of analysis (CoA) did not summarize any qualifiers to the datasets. All CoAs are provided in Appendix D.

5.9.3 QA/QC Summary

Based on the measures discussed above, considering the inherent heterogeneity of soil, sample collection and handling protocols are considered acceptable and associated analytical results are considered reliable. The sample collection methods and duplicates do not suggest inconsistencies in the field collection or in the laboratory analysis methods.

5.10 Phase Two Conceptual Site Model

The Phase Two ESA CSM is presented in the following sections.

The Phase Two CSM was prepared in accordance with Schedule E, Part V, Table 1, Section 6, of O. Reg. 153/04 and is described in the text below and in the following figures:

- Figure A.1 Study Area Plan and Potentially Contaminating Activities
- Figure A.2 Areas of Potential Environmental Concern
- Figure A.3 Test Location Plan
- **Figure A.4** Groundwater Elevation and Inferred Groundwater Flow Plan
- Figure A.5 Elevated EC in Shallow Soil

5.10.1 Property Description and History

The Phase Two Property consists of an undeveloped parcel of land with an approximate area of 2.07 hectares (5.12 acres) located at 3955 Kelly Farm Drive, Ottawa, Ontario. The Site is bounded to the northwest by Barrett Farm Drive, to the northeast by Aconitum Way, to the southeast by Lavatera Street, and to the southwest by Kelly Farm Drive.

Historically, the Site was used for agricultural purposes based on aerial photographs. The Site is currently undeveloped and appears to be used partially as a laydown area for residential construction currently being completed in the area. The proposed future use is institutional development with a school.

Table 5.7: Legal Description and Site Information

Site Information				
Legal Description	BLOCK 196, PLAN 4M1640; SUBJECT TO AN EASEMENT IN GROSS AS IN OC2168913; SUBJECT TO AN EASEMENT IN GROSS OVER PART 40 4R32389 AS IN OC2168915; CITY OF OTTAWA.			
PIN	04328-4888 (LT)			
Site Owners	Findlay Creek Properties (North) Ltd. Tartan Homes (North Leitrim) Inc. Tartan Land (North Leitrim) Inc.			
Site Contact	Mr. Brian Carré of CEPEO			

5.10.2 Previous Investigations

The following lists the previous reports for the Site completed by GEMTEC.

- "Phase I Environmental Site Assessment, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 – V02 dated March 10, 2021 (2021 Phase I ESA).
- "Phase II Environmental Site Assessment, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 dated March 31, 2021 (2021 Phase II ESA).
- "Phase One Environmental Site Assessment Update, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 dated October 9, 2024 (2024 Phase One ESA Update).

The 2021 Phase I ESA identified six PCAs (shown in Table 5.8 below) resulting in four APECS (shown in Table 5.9 below); as such a Phase II ESA was recommended and carried out in March 2021. The shallow soil at one sample location (BH21-8) was characterized by elevated EC. It was concluded that delineation of impacted fill material be completed in the vicinity of BH21-8 prior to property development. The investigation methodology and results of the 2021 Phase II ESA are included throughout this report and formed the basis of the scope of work (i.e., delineation boreholes in the vicinity of BH21-8) for this Phase Two ESA.

5.10.3 Potentially Contaminating Activities

The PCAs identified in the 2021 Phase I ESA are summarized in Table 5.8. No new PCAs were identified in the 2024 Phase One ESA Update.

Type of PCA Address / Location		Description	PCA Resulted in APEC / No APEC Rationale
PCA #30: Importation of Fill Material of Unknown Quality	On Site, entire property	Fill material of unknown origin was identified on the Site during the aerial photograph review and the Site interview	Yes Based on fill of unknown origin being located on the Site
PCA # 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.	On Site, entire property	Through a review of aerial photographs and during the site interview, there is potential for pesticides having been historically used on the subject property	Yes Based on potential pesticide use on the Site
Ot. Spill	163 Nepeta Crescent	A pipeline incident was identified as pipeline damage at 163 Nepeta Crescent in 2020	No Based on type of release and distance from Site

Table 5.8: Summary of Potentially Contaminating Activities

Type of PCA Address / Location		Description	PCA Resulted in APEC / No APEC Rationale
Ot. Spill	Leitrim Road between Bank Street and Kelly Farm Drive	Two spills were identified on Leitrim Road: (i) Flooding in 2018 resulted in an overflow of storm water with suspended solids; and (ii) A 170 lb leak of freon occurred in 2011	No Based on distance from Site and type of release
48. Salt Manufacturing, Processing and Bulk Storage	On Site and adjacent properties	The HLUI identified City of Gloucester – Leitrim works site & garage within the study area accepted 2,000 tonnes of salt delivery	Yes Based on PCA being in study area of the Site
28. Gasoline and Associated Products Storage in Fixed Tanks	On Site, and adjacent properties	The HLUI identified City of Gloucester – Leitrim works site & garage within the study area with 3 pumps including gas and diesel	Yes Based on PCA being in the study area of the Site

5.10.4 Areas of Potential Environmental Concern

The APECs identified based on the PCAs are summarized in Table 5.9. Figure A.3, Appendix A indicates the location of the APECs.

Table 5.9: Areas of Potential	Environmental Concern
-------------------------------	------------------------------

APEC #	Type of PCA	Description	Material of Concern	Contaminants of Potential Concern (COPC)
1	PCA #30: Importation of Fill Material of Unknown Quality	Fill material of unknown origin was identified on the Site during the aerial photograph review and the Site interview	Soil	Metals & ORPs PHCs F1-F4 BTEX PAHs
2	PCA # 40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications.	Through a review of aerial photographs and during the Site interview, there is potential for pesticides having been historically used on the Site	Soil Groundwater	OCPs
3	PCA # 48. Salt Manufacturing, Processing and Bulk Storage	Through a search with the HLUI, Leitrim works site & garage was identified within the study area and accepted 2,000 tonnes of salt delivery	Soil Groundwater	ORPs (including EC, SAR Chlorine Sodium)

APEC #	Type of PCA	Description	Material of Concern	Contaminants of Potential Concern (COPC)
4	PCA # 28. Gasoline and Associated Products Storage in Fixed Tanks	Through a search with the HLUI, Leitrim works site & garage was identified within the study area with 3 pumps including gas and diesel	Soil Groundwater	Metals & ORPs PHCs F1-F4 VOCs
Notos:				

PAHs – polyaromatic hydrocarbons

Metals - metal parameters as per O.Reg. 153/04 including hydride-forming metals

ORPs - other regulated parameters including electrical conductivity (EC), sodium adsorption ratio (SAR), pH, hot wastersoluble boron (HWS-B), cyanide (CN-), hexavalent chromium (Cr IV) and mercury (Hg)

PHCs F1-F4 – petroleum hydrocarbon fractions

BTEX - benzene, toluene, ethylbenzene, xylene

OCPs - organochloride pesticides

VOCs - volatile organic compounds

5.10.5 Field Investigation

Between March 5, 2021, and March 15, 2021, 8 boreholes (BH21-1 through BH21-8) were advanced using a Geoprobe drill rig to depths ranging between 1.06 to 4.57 mbgs. Monitoring wells were installed in three of the boreholes (BH/MW21-1, BH/MW21-4, and BH/MW21-6). On October 11, 2024, 11 additional test locations were advanced via hand augering to depths ranging between 1.0 to 1.5 mbgs in the vicinity of BH21-8 to assist with assessing the extent of fill material with elevated EC.

The subsurface soil conditions encountered in the boreholes was generally fill material consisting of brown silty sand or sandy silt with some gravel, clay and silt which was underlain by native deposits of brown to grey silty clay.

Collectively, a total of 27 soil samples (23 bulk samples plus four duplicates) were analyzed for one or more of the following COPCs: metals, hydride-forming metals, ORPs, PHCs F1 to F4, BTEX, VOCs, PAHs, OCPs, EC, and/or SAR.

A total of 4 groundwater samples (3 bulk samples plus one duplicate) were analyzed for the following COPCs: metals, VOCs, PHCs, and OCPs. One trip blank was submitted for PHC F1 and VOCs.

5.10.6 Subsurface Structures and Utilities

Buried utility service locates completed prior to the drilling program indicated public buried utility services are present within the Study Area. No supplemental underground utility drawings for the Site were provided for review.

5.10.7 Physical Setting

5.10.7.1 Topography

The Site has a relatively flat topography and is at an elevation of approximately 95 masl. Surrounding local topography generally slopes gradually downwards towards a wetland approximately 700 m south of the Site.

The physical setting for the Site is consistent based on GEMTEC's observation during the Phase Two ESA field program.

5.10.7.2 Stratigraphy – Boreholes

The subsurface soil conditions encountered in the boreholes throughout the two field programs included in this Phase Two ESA was generally fill material consisting of brown silty sand or sandy silt with some gravel, clay and silt which was underlain by native deposits of brown to grey silty clay. The Record of Borehole Logs are provided in Appendix B.

5.10.7.3 Depth to Bedrock

The presence of bedrock was not confirmed. However, the overburden mapping indicates that the depth to bedrock is approximately 3 to 5 m. Geologic mapping of the area shows the bedrock is anticipated to be dolostone and sandstone of the Beekmantown Group.

5.10.7.4 Hydrogeological Characteristics

The inferred direction of shallow groundwater flow is generally to the northwest based on the interpreted groundwater elevation contours presented in Figure A.4, Appendix A.

The average horizontal hydraulic gradient for shallow groundwater conditions was 0.003473 m/m. Vertical hydraulic gradient for shallow groundwater conditions were not calculated as nested monitoring wells were not installed at the Site.

5.10.7.5 Depth to Groundwater

Water levels were measured in the monitoring wells which were advanced at the Site. The location of these monitoring wells is shown on Figure A.3, Appendix A. Groundwater elevations ranged from 92.38 to 92.78 masl on October 11, 2024. The inferred direction of shallow groundwater flow is generally to the northwest based on the interpreted groundwater elevation contours presented in Figure A.4, Appendix A.

5.10.7.6 Environmentally Sensitive Areas

No ANSIs were identified on-Site or within the study area.

5.10.7.7 Shallow Soil Property or Water Body

Surficial soil maps of the Ottawa area indicate that the overburden in the vicinity of the Site generally consists of coarse-textured glaciomarine deposits; sand, gravel, minor silt and clay foreshore and basinal deposits with thicknesses ranging between 0 and 5 m. The closest water body is the Rideau River located over 6.5 km west of the Site. Therefore, Section 43.1(a) and 43.1(b) of O. Reg. 153/04 do not apply to the Site.

5.10.8 Applicable Site Condition Standards

The analytical results were compared to the Table 2 Full Depth Generic SCS RPI in a Potable Ground Water Condition with coarse textured soil as presented in the MECP document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011.

The applicable SCS were selected based on the following rationale:

- Land Use: The Site is currently undeveloped and was historically used for agricultural purposes. The proposed future land use is institutional.
- Soil Texture: Based on visual observations during the field program and in the absence of a grain size analysis completed on samples as a conservative approach, coarse textured soils have been considered for this site.
- Soil Thickness and Proximity to Water Body: For the purposes of selection of the appropriate provincial standard, Section 43.1 of O. Reg.153/04 identifies specific SCS be applied if any of the following circumstances exist:
 - (a) The property is a shallow soil property (i.e., at least 1/3 or more of the property area contains less than 2 metres depth of overburden); or
 - (b) The property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

Based on results obtained from the intrusive investigation, the Site is not considered a shallow soil property. Furthermore, the property is not within 30 metres of a water body.

- Groundwater Use: Potable water in the area of the Site is supplied by the City of Ottawa, however through review of the Ontario Well Records, domestic and commercial water wells were identified within the study area – accordingly as a conservative approach, groundwater use for the Site and vicinity is considered potable.
- Environmentally Sensitive Site: Environmental sensitivity is considered in the selection of appropriate provincial standards for comparison. Section 41 of O.Reg.153/04 states that a property is to be considered environmentally sensitive if any of the following are applicable:
 - (1) the property is,
 - (i) within an area of natural significance;

- (ii) includes or is adjacent to an area of natural significance or part of such an area; or
- (iii) includes land that is within 30 metres of an area of natural significance or part of such an area;
- (2) the soil at the property has a pH value as follows:
 - (i) for surface soil, less than 5 or greater than 9;
 - (ii) for sub surface soil, less than 5 or greater than 11; or
- (3) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property.

The Site is not considered to be environmentally sensitive. pH values for soil samples submitted were within the acceptable range and the Site is not within, adjacent or include, in part, an ANSI or water body within 30 m of the Site.

5.10.9 Discussion of APEC 1 – Potential for Fill Material

Based on the 2021 Phase I ESA and confirmation in the 2024 Phase One ESA Update, there is potential for fill of unknown quality to have been used on the Site. The COPCs include metals, hydride-forming metals, ORPs, PHCs, BTEX, and/or PAHs.

Between March 5, 2021 and March 15, 2021, 8 boreholes were advanced to assess this APEC. Fill material was encountered from the ground surface at all boreholes except BH21-1. The fill material consisted of brown silty sand/sandy silt with some gravel, clay, and silt. The analytical results indicated the value of EC for soil sample BH21-8 SA-3 was 2560 μ S/cm, which exceeded the Table 2 RPI SCS of 700 μ S/cm. This sample taken between 0.85 to 1.06 mbgs within sand and gravel fill material.

To better assess the lateral extent of elevated EC, 11 additional shallow test holes were advanced via hand augering on October 11, 2024. A total of 13 samples (12 bulk samples plus one duplicate) were collected within a 2 m radius of the exceeding sampling location (BH21-8) and from the same depths as the initial exceeding sample for lateral delineation. The vertical extent of elevated EC was assessed by collecting one sample in the interval below the known exceedance.

The 13 additional samples were analyzed for EC and SAR. A summary of the analytical results is presented in Table 5.10 below and in Table C.2 in Appendix A. The sample locations are shown on Figure A.3 and the results by location are shown on Figure A.5.

No SAR exceedances were noted. To further assess the presence of elevated EC, the EC results of the original and additional samples were averaged. The result of the averaging is presented in the table below and indicates that EC continues to be moderately elevated with respect to the Table 2 RPI SCS of 700 μ S/cm in the vicinity of BH21-8.

Additional Sample ID	Additional Sample Depth (mbgs)	EC of Additional Sample (μS/cm)	Average EC of Original and Additional Samples (µS/cm)
BH21-8 SA3 A	0.8 – 1.0	631	
BH21-8 SA4 A	1.0 – 1.5	642	
BH21-8 SA3 B	0.8 – 1.0	401	
BH21-8 SA3 C	0.8 – 1.0	937	
BH21-8 SA3 D	0.8 – 1.0	356	
BH21-8 SA3 E	0.8 – 1.0	526	
BH21-8 SA3 F	0.8 – 1.0	917	797
BH21-8 SA3 G	0.8 – 1.0	526	
BH21-8 North	0.8 – 1.0	873	
BH21-8 10 North*	0.8 – 1.0	762	
BH21-8 South	0.8 – 1.0	834	
BH21-8 East	0.8 – 1.0	298	
BH21-8 West	0.8 – 1.0	892	

Table 5.10: Additional Sample Information and Electrical Conductivity

Notes:

*Duplicate sample for QA/QC purposes.

5.10.10 Contaminated Media

Based on the findings of two field investigations undertaken as part of this Phase Two ESA, EC exceedances in the vicinity of one borehole (BH21-8) were confirmed.

5.10.11 Contaminant Exceeding Applicable Standards at the Site

The EC in the soil samples collected from the Site are considered to be related to application of de-icing salt on the adjacent roadways within the study area in the winter.

Considering the other soil and groundwater analytical results across the Site did not have impacts of EC, it is not anticipated that the EC in the vicinity of BH21-8 would create impacts to the overall condition of the Site, and it is reasonable to assume salt application will continue with the anticipated future use of the property as a school. Further, the areas of impacted EC in the soil

are limited to depths of fill material, which is likely to be removed or covered by asphalt during the proposed Site development. Accordingly, the singular area of EC impact that was identified is not anticipated to pose any risk to human health, nor a significant environmental risk to the property. Based on this and Section 49.1 of O.Reg. 153/04, it is the Qualified Person's opinion that the average value of EC within the area of BH21-8 should be deemed to not exceed.

5.10.12 Potential Influence of Utilities on Contaminant Migration

The area of identified EC impacts in the shallow fill material area and not in the deeper samples. As such, the potential influence of underground utilities is not anticipated to be an issue at the Site.

5.10.13 Contaminant Migration

Soil impacted with EC was identified in the vicinity of BH21-8, which is anticipated to be due to salt application on adjacent roadways. Due to the nature of this contaminant and that salt application will continue in the future, contaminant migration is not anticipated to be an issue.

5.10.14 Meteorological and Climatic Considerations

Seasonal fluctuation in water levels at the Site should be expected. Considering only one monitoring event was conducted, seasonal trends could not be identified; however, shallow groundwater water levels are typically highest following the spring recharge and decline throughout the summer and fall months into the winter.

5.10.15 Cross Sections – Lateral and Vertical Distribution of Contaminants

No cross sections were completed considering the singular identification of the salt-related contaminant at the tested locations on the Site.

6.0 CONCLUSIONS

The Phase Two ESA investigated the APECs identified in the 2021 Phase I ESA and confirmed in the 2024 Phase One ESA Update. Based on the results of the soil samples and groundwater samples submitted as part of this Phase Two ESA, no further work is recommended at this time.

7.0 CLOSURE

The undersigned Qualified Person confirms that he/she was responsible for conducting and/or supervising this Phase Two ESA and the associated findings and conclusions.

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

Regards,

GEMTEC Consulting Engineers and Scientists Limited

Melisse Cai

Melissa Tai, B.Sc. Environmental Specialist

Daniel Elliot, P.Geo., QP_{ESA} Senior Environmental Geoscientist

November 27,2024

MT/DE/mk

8.0 REFERENCES

Geography Network Canada (GNC). October 2004. Ontario Basic Mapping Accessed: October 2024. Available: http://www.geographynetwork.ca/website/obm/viewer.htm.

GEMTEC Consulting Engineers and Scientists Limited. March 10, 2021. "Phase I Environmental Site Assessment, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 – V02 (2021 Phase I ESA)

GEMTEC Consulting Engineers and Scientists Limited. March 31, 2021. "Phase II Environmental Site Assessment, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 (2021 Phase II ESA)

GEMTEC Consulting Engineers and Scientists Limited. October 9, 2024. "Phase One Environmental Site Assessment Update, 3955 Kelly Farm Drive, Ottawa, Ontario" Project No. 100441.001 (2024 Phase One ESA Update)

Google Earth 6.0. Map, Buildings data layer. Accessed: October 2024. Available: http://www.google.com/earth/index.html.

Google Earth[™] Satellite Imagery, 2024.

Ontario Ministry of the Environment, Conservation and Parks (MECP). Ontario Regulation 153/04, Made under the Environmental Protection Act, Part XV.1 – Records of Site Condition. October 31, 2011 most recently updated January 1, 2024.

Ontario Ministry of the Environment (MOE). Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act. April 15, 2011.

Ontario Ministry of the Environment, Laboratory Services Branch (MOE). Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. March 9, 2004, amended as of July 1, 2011.

Ontario Ministry of the Environment and Climate Change (MOE). Guidance on sampling and analytical methods for use at contaminated sites in Ontario. Revised December 1996.

Ontario Ministry of the Environment. Updated January 24, 2020. Map: Well Records. Accessed: October 2024. Available: <u>https://www.ontario.ca/environment-and-energy/map-well-records</u>.

9.0 LIMITATION OF LIABILITY

This report was prepared for the exclusive use of Conseil des Écoles Publiques de l'Est de l'Ontario. This report may not be relied upon by any other person or entity without the express written consent of GEMTEC Consulting Engineers and Scientists Limited and Conseil des Écoles Publiques de l'Est de l'Ontario. Nothing in this report is intended to provide a legal opinion. Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. GEMTEC accepts no responsibility for damages, if any, suffered by any third party (other than as noted above) as a result of decisions made or actions based on this report.

The investigation undertaken by GEMTEC with respect to this report and any conclusions or recommendations made in this report reflect the best judgements of GEMTEC based on the Site conditions observed during the investigations undertaken at the date(s) identified in the report and on the information available at the time the report was prepared. This report has been prepared for the application noted and it is based, in part, on visual observations made at the Site, subsurface investigations at discrete locations and depths and laboratory analyses of specific chemical parameters and material during a specific time interval, all as described in the report. Unless otherwise stated, the findings contained in this report cannot be extrapolated or extended to previous or future Site conditions, portions of the Site that were unavailable for direct investigation, subsurface locations on the Site that were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Chemical parameters other than those addressed by the investigation described in this report may exist in soil and groundwater elsewhere on the Site.

This report provides a professional opinion and therefore no warranty is expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

Should new information become available during future work, including excavations, borings or other studies, GEMTEC should be requested to review the information and, if necessary, reassess the conclusions presented herein.

LEGEND

SUBJECT SITE

STUDY AREA 250m AROUND SUBJECT SITE

AREA OF POTENTIALLY CONTAMINATING ACTIVITIES

- APEC 1 Importation of Fill Material of Unknown Quality
- APEC 2 Pesticides Manufacturing, Processing, Bulk Storage and Large-Scale Applications
- - APEC 3 Salt Manufacturing, Processing and Bulk Storage

APEC 4 – Gasoline and Associated Products Storage in Fixed Tanks

DATA SOURCES AND REFERENCES

- Coordinate system:
 Distances, elevations, and coordinates are shown in metres unless denoted otherwise
 This drawing is a schematic representation and should not be taken as a substitute for a legal survey.
 Image @2024 Google Maps, CNES / Airbus, First Base Solutions, Maxar Technologies
 Contains information licensed under the Open Government Licence Ontario

N	Geographic	c dataset source: Ontario Geo⊢	lub										
Name of Street, or	^{SCALE} 1:3	000											
-													
-	0	10	0	 200m									
	AREAS OF POTENTIAL ENVIRONMENTAL CONCERN												
	CLIENT CONSEIL DES ÉCOLES PUBLIQUES DE												
N.C.	L'EST DE L'ONTARIO (CEPEO)												
No. 1													
1	3955 KELLY FARM DRIVE												
	OTTAWA, ONTARIO												
N.	DRAWN BY		CHECKED BY										
100		S.L.	D.E.										
	PROJECT NC).	REVISION NO.										
	1	00441.001	1										
12	DATE		FIGURE NO.										
-	NO∖	/EMBER 2024	FIGURE A	2									
Consulting Engineers AND SCIENTISTS													

1	LEGEND			
2	BH/ MW # 🔫	BOREHOLE/	MONITORING WELI	LID
/	XX.XX 🔫	GROUND SU	RFACE ELEVATION	, IN METRES
-	њво		AIUM	
P.	(MA	RCH 2021)		
PENT		REHOLE / MON RCH 2021)		-
-		IGER SAMPLE TOBER 2024)		
-		- APPROXIMA	TE PROPERTY	BOUNDARY
X				
X				
1.				
P				
Ve				
**				
	DATA SOURCES AND	REFERENCES		
	 Coordinate system: Distances, elevation This drawing is a so 	ns, and coordinates are chematic representatio	e shown in metres un n and should not be t	less denoted otherwise aken as a substitute for
10	a legal survey. 4. Image @2024 Goog 5. Contains informatio	gle Maps, CNES / Airb n licensed under the C	us, First Base Solutio open Government Lic	ns, Maxar Technologies ence – Ontario
-	6. Geographic datase	t source: Ontario Geol	lub	
	1:100	0		
	0	20	40	60m
1	DRAWING	TESTIOC		
1	CLIENT			
	CON	NSEIL DES ECO L'EST DE L'ON	LES PUBLIQUE TARIO (CEPEO	.S DE)
-	PROJECT	PHASE 1	WO ESA	
1 Martin		3955 KELLY OTTAWA	FARM DRIVE	
LE	DRAWN BY		CHECKED BY	
1 e	S. PROJECT NO.	L.	REVISION NO.).E.
0	10044	1.001		1
ici	NOVEMB	ER 2024	FIGURE NO.	RE A.3
1			32 S	teacie Drive
170		<u>ッヒIVI ヒ</u>	Ottawa Tel: (6	, ON, K2K 2A9 13) 836-1422
Satt	CC	DNSULTING ENGINEER	S ottawa	a@gemtec.ca

1 Ja	LEGEND	
1	BH/ MW # - BOREHOLI XX.XX - GROUND S	E/ MONITORING WELL ID SURFACE ELEVATION, IN METRES
D		DATUM
1.	(MARCH 2021)	
7		E PROPERTY BOUNDARY
	GROUNDWAT	
00	INFERRED G	
and a	FLOW DIREC	TION
1		
- 1		
-		
**		
1000		
1. L		
- 1		
-		
	DATA SOURCES AND REFERENCES	
. lande	 Coordinate system: Distances, elevations, and coordinates a This drawing is a schematic representat 	are shown in metres unless denoted otherwise ion and should not be taken as a substitute for
	a legal survey. 4. Image @2024 Google Maps, CNES / Ai 5. Contains information licensed under the	rbus, First Base Solutions, Maxar Technologies Open Government Licence – Ontario
1	6. Geographic dataset source: Ontario Geoscience SCALE 1.1000	oHub
1		
	0 20	40 60m
	GROUNDWATE	R ELEVATION AND DWATER FLOW PLAN
-	CLIENT CONSEIL DES ÉC	OLES PUBLIQUES DE
	PROJECT	TWO ESA
	3955 KELL	
	DRAWN BY	
1	S.L. PROJECT NO.	D.E. REVISION NO.
and the second second	100441.001	1 FIGURE NO.
8	NOVEMBER 2024	FIGURE A.4
1	GFMT	32 Steacie Drive Ottawa, ON, K2K 2A9
1		Tel: (613) 836-1422 www.gemtec.ca
	and Scientists	งแลพล(พูงเกเธง.เล

Sample ID	Sampling Date	Sample Depth (mbgs)	Parameter Tested	Detected Value (µs/cm)
BH21-8 SA-3	05-Mar-21	0.85 - 1.06	EC	2560
BH21-8 SA3 A	11-Oct-24	0.8 - 1.0	EC	631
BH21-8 SA4 A	11-Oct-24	1.0 - 1.5	EC	642
BH21-8 SA3 B	11-Oct-24	0.8 - 1.0	EC	401
BH21-8 SA3 C	11-Oct-24	0.8 - 1.0	EC	937
BH21-8 SA3 D	11-Oct-24	0.8 - 1.0	EC	356
BH21-8 SA3 E	11-Oct-24	0.8 - 1.0	EC	526
BH21-8 SA3 F	11-Oct-24	0.8 - 1.0	EC	917
BH21-8 SA3 G	11-Oct-24	0.8 - 1.0	EC	526
BH21-8 North	11-Oct-24	0.8 - 1.0	EC	873
BH21-8 10 North	11-Oct-24	0.8 - 1.0	EC	762
BH21-8 South	11-Oct-24	0.8 - 1.0	EC	834
BH21-8 East	11-Oct-24	0.8 - 1.0	EC	289
BH21-8 West	11-Oct-24	0.8 - 1.0	EC	892
	A	verage EC of Shallov	v Soil Samples:	797

LEGEND

Notes:

1 - MECP Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential / Parkland / Institutional (RPI) land use with coarse textured soil.

Bolded	Exceeds MECP Table 2 SCS	

REFER TO REPORT DISCUSSION REGARDING EC VALUES WITH RESPECT TO THE STANDARD

DATA SOURCES AND REFERENCES

- Coordinate system:
 Distances, elevations, and coordinates are shown in metres unless denoted otherwise
 This drawing is a schematic representation and should not be taken as a substitute for
 a legal survey.
 Image @2024 Google Maps, CNES / Airbus, First Base Solutions, Maxar Technologies
 Contains information licensed under the Open Government Licence Ontario
 Geographic dataset source: Ontario GeoHub

10	0. Ocograpi	ne dataset source. Ontano de	Jilub		
10.00 M	SCALE	1:1500			
1					
えたい	C) 30	60	90)m
0	DRAWING	ELEVATED EC	N SHALL	OW SOIL	
N					
	CLIENT	CONSEIL DES ÉC L'EST DE L'OI	OLES PUBL NTARIO (CE	-IQUES DE EPEO)	
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	PROJECT	PHASE 3955 KELLY OTTAWA	TWO ESA 7 FARM D A, ONTAR	A RIVE IO	
V.S.V.	DRAWN BY	S.L.	CHECKED I	D.E.	
P	PROJECT N	0.	REVISION	10.	
-		100441.001		1	
1	DATE NO	VEMBER 2024	FIGURE NO	IGURE A.	5
		GEMT Consulting Enginer	EC RS	32 Steacie Drive Ottawa, ON, K2K 2/ Tel: (613) 836-142 www.gemtec.ca ottawa@gemtec.ca	49 2 a

APPENDIX B

Borehole Logs

CL PF JO	IENT OJE B#:	 CEPEO Créateur Dèopportunités CT: 3955 Kelly Farm Drive, Ottawa, Ontario 100441.001 		RE	cc	RD	0	FI	BOREHOLE	21-1			SHEET: DATUM: BORING DATE [.]	1 OF 1 CGVD28 Mar 5 2021
LC		ON: Refer to Borehole and Monitoring Well L	ocation Plan,	, Figure	A1								1	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY (mm)	BLOWS/0.3m	LE DATA LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MO	NITORING WELL NSTALLATION AND NOTES
LY FARM DRIVE- 100441.001- MARCH 2021.GPJ GEMTEC 2018.GDT 31/3/21		Ground Surface Grey GRAVEL and SAND Brown SILTY CLAY with sand Grey SILTY CLAY End of Borehole	STRU	95.21 95.06 0.15 2.28 91.40 3.81	JZ 1 2 3 4 4		GO 1 457 533 533 1 5335 1	BLO	PHC F1-F4/VOC, PAHs, M&I, OCP	O No Hex: 0 IBL: 1 Hex: 0 IBL: 0 Hex: 10 IBL: 1	None None None			Stick-up casing (0.97 m) Bentonite Filter Pack TOP OF SCREEN ELEV.: 94.45 m 38 millimetre diameter slotted PVC pipe BOTTOM OF SCREEN ELEV.: 91.40 m
OLE LOG BOREHOLE LOG- KE													GROUN DATE Mar. 17/21	DWATER OBSERVATIONS DEPTH (m) ELEVATION (m) 3.80 92.38 92.3
ENV - BOREH		GEMTEC											L. C	ogged: R.F. Hecked: N.S.

JOB	#: ATIO	100441.001 N: Refer to Borehole and Monitoring Well SOIL PROFILE	ocation Pla	n, Figure	A1		S/	AMF	PLE DATA	-		E	BORING DATE: Mar 15 2021
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
· 0 ·		Ground Surface Brown SANDY SILT with gravel (fill material) Brown SILTY SAND		94.79 93.88 0.91	1	SL	254		PHC F1-F4/BTEX, PAHs, M&I	Hex: 0 IBL: 3	None		Backfilled with bentonite
		End of Borehole		<u>93.27</u> 1.52	2	SL	737			Hex: 0 IBL: 3	None		

24

CL	CLIENT: CEPEO Créateur Dèopportunités CLIENT: CEPEO Créateur Dèopportunités SHEET: 1 OF 1												
PR JOI LO	OJEC ⁻ 3#: CATIC	 T: 3955 Kelly Farm Drive, Ottawa, Ontario 100441.001 N: Refer to Borehole and Monitoring Well L 	ocation Pla	an, Figure	A1							I E	DATUM: CGVD28 30RING DATE: Mar 5 2021
		SOIL PROFILE						SAMF	PLE DATA	7			
DEPTH SCALE METRES	BORING METHOL	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATIOI (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
		Ground Surface Brown SANDY SILT with gravel (fill material) Brown SILTY CLAY with sand and gravel End of Borhole	STR	95.45 94.76 0.69 94.15 1.30		SL	650	Bro	PHC F1-F4/BTEX, PAHs, M&I	C O	None		Backfilled with bentonite
	GEMTEC CONSULTING FINGURES												

ENV - BOREHOLE LOG BOREHOLE LOG-KELLY FARM DRIVE- 100441.001- MARCH 2021.GPJ GEMTEC 2018.GDT 31/3/21

L

	Q	SOIL PROFILE	1				:	SAMF	PLE DATA	ы N					
INIE I RES	BORING METH		STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBL VAPOUR CONCENTRATI (ppm)	ODOUR	TPH (mg/kg)		MO	NITORING WELL NSTALLATION AND NOTES
0 -		Ground Surface		95.04											
		material)		2 7 4 2 94.13	1	SL	457		PHC F1-F4/VOCs, PAHs, M&I, OCP + DUP	Hex: 0 IBL: 1	None				Stick-up casing (1.03 m) Bentonite
1			0.91	2	SL	610			Hex: 0 IBL: 1	None				Filter Pack	
2				92.76	3	SL	483			Hex: 0 IBL: 3	None				ELEV.: 93.52 m
3	er 40 003	G G E E E E E E E E E E E E E E E E E E		2.28	4	SL	483			Hex: 0 IBL: 3	None				38 millimetre diameter slotted
4	Power Auge	Stem Auger (2			5	SL	762			Hex: 0 IBL: 1	None				PVC pipe
4		Hollov		90.47	6	SL	762		PHC F1-F4/VOC, M&I, OCP + DUP	Hex: 0 IBL: 4	None				
													G DATE Mar. 17	BROUN E	DWATER OBSERVATIONS DEPTH (m) ELEVATIC 3.51 又 92.5

CLI PRI JOI LOI	CLIENT: CEPEO Créateur Déopportunités SHEET: 1 OF 1 PROJECT: 3955 Kelly Farm Drive, Ottawa, Ontario DATUM: CGVD28 JOB#: 100441.001 BORING DATE: Mar 5 2021												
	_	SOIL PROFILE					5	SAMF	PLE DATA	7			
DEPTH SCALE METRES	BORING METHOL	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATIOI (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
		Ground Surface Brown SANDY SILT with gravel (fill material) Brown SILTY CLAY with sand and gravel End of Borehole		95.27 94.50 0.77 1.22	1	SL	431		PHC F1-F4/VOC, M&I, OCP + DUP	Hex: 0 IBL: 1 Hex: 0 IBL: 1	None		Backfilled with bentonite
		SEMTEC											LOGGED: R.F. CHECKED: N.S.

	D	SOIL PROFILE		i			5	SAMF	PLE DATA	Z					
METRES	BORING METHO	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLI VAPOUR CONCENTRATI((ppm)	ODOUR	TPH (mg/kg)	MO	NITORING WE NSTALLATION AND NOTES	ELL
0		Ground Surface		95.37											
0		Brown SANDY SILT with gravel (fill material)		04.61	1	SL	635		PHC F1-F4/VOC, PAHs, M&I, OCP	Hex: 0 IBL: 0	None			Stick-up cas (0.97 m) Bentonite Filter Pack TOP OF SC	ing REEN
1		Brown SILTY CLAY with sand and vegetation	vn SILTY CLAY with sand and		2 SL 63		635			Hex: 0 IBL: 0	None			ELEV.: 94.7	6 m
		Grey SILTY CLAY/ CLAYEY SILT		92.93	3	SL	304				None			diameter slo PVC pipe	tted
				2.44	4	SL	304		PHC F1-F4/VOC, M&I, OCP	Hex: 0 IBL: 0	None				
3					5	SI	914			Hex: 0 IBL: 0	None				
		6 SL 914		Hex IBL	Hex: 10 IBL: 1	None									
													GROUN	DWATER OBSERV	ATIONS
													DATE Mar 17/21	DEPTH (m) 3.56 ∇	ELEVATIO
														<u></u>	

L

PROJECT: 3955 Kelly Farm Drive, Ottawa, Ontario JOB#: 100441.001 LOCATION: Refer to Borehole and Monitoring Well Location Plan, Figure A1												
BORING METHOE	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
	Ground Surface Brown SANDY SILT/SANDY SILT with		95.38									
				1	SL	381		PHC F1-F4/BTEX, PAHs, M&I	Hex: 0 IBL: 2	None		Backfilled with bentonite
End of Borehole	End of Borehole		<u>93.86</u> 1.52	2	SL	584			Hex: 0 IBL: 2	None		
		ATION: Refer to Borehole and Monitoring Well Lo SOIL PROFILE DESCRIPTION Ground Surface Brown SANDY SILT/SANDY SILT with gravel (fill material) End of Borehole	ATION: Refer to Borehole and Monitoring Well Location Pla SOIL PROFILE OF	Crown Surface 95.38 Ground Surface 95.38 Brown SANDY SILT/SANDY SILT with gravel (fill material) 0 Image: Solid Control of Borehole 1.52	TITUDE: Refer to Borehole and Monitoring Well Location Plan, Figure A1 OPH SOIL PROFILE Image: Comparison of the second	Control Diama Discrete to Borehole and Monitoring Well Location Plan, Figure A1 Optimized Image: Control Diama Oround Surface 95.38 Brown SANDY SILT/SANDY SILT with Image: Control Diama Brown SANDY SILT/SANDY SILT with Image: Control Diama Image: Control Diama Image: Control Diama Image:	TODE TOTAL Solic PROFILE Image: Constraint of the second sec	Description Soll PROFILE Soll PROFILE Soll PROFILE DESCRIPTION U U U U DESCRIPTION U U U U U DESCRIPTION U U U	Consult During Sour Refer to Borehole and Monitoring Well Location Plan, Figure A1 Open during Sour Pack (Internet to Borehole and Monitoring Well Location Plan, Figure A1 Open during DESCRIPTION Image: The second	Charlow Control Source Sourc	Bit With TWO Solu PROFILE SAMPLE DATA With Solution Bit Solution S	Open and Surface Solu PROFILE SAMPLE DATA Use of Borehole Open and Surface Open and Surface

CLI PR(JOE LO(RECORD OF BOREHOLE 21-8 CLIENT: CEPEO Créateur Déopportunités PROJECT: 3955 Kelly Farm Drive, Ottawa, Ontario JOB#: 100441.001 LOCATION: Refer to Borehole and Monitoring Well Location Plan, Figure A1 BORING DATE: Mar 5 2021													
	0	SOIL PROFILE					ę	Samf	PLE DATA	7				
DEPTH SCALE METRES	BORING METHOI	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATIOI (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES	
		Ground Surface Brown SANDY SILT (fill material) Grey CLAY AND SILT (fill material) Brown SAND AND GRAVEL with red brick (fill material) End of Borehole		95.12 0.45 0.85 94.06 1.06	1 2 3	SL SL SL	457		PHC F1-F4/BTEX, PAHs, M&I, OCP PHC F1-F4/VOCs, PAHs, M&I	Hex: 0 IBL: 1 Hex: 5 IBL: 1	None None None		Backfilled with bentonite	
		SEMTEC								<u> </u>			LOGGED: R.F. CHECKED: N.S.	

APPENDIX C

Soil and Groundwater Analytical Data Tables

TABLE C.1 SOIL ANALYTICAL RESULTS Phase Two Environmental Site Assessment 3955 Kelly Farm Drive Ottawa, Ontario

	Date	Sampleo	Sample ID: Laboratory ID: Depth (mbgs): d (dd/mm/yyyy):	BH-21-1 SA-2 2111041-01 0.76 – 1.52 5/3/2021	BH21-2 SA-1 2112125-01 0.00 – 0.91 03/15/2021	BH21-3 SA-1 2111041-02 0.00 – 0.69 5/3/2021	BH21-4 SA-1 2112125-03 0.00 – 0.91 03/15/2021	BH21-4 SA-101 ² 2112125-05 0.00 – 0.91 03/15/2021	BH21-4 SA-6 2112125-04 3.81 – 4.57 03/15/2021	BH21-4 SA-106 ² 2112125-04 3.81 – 4.57 03/15/2021	BH21-5 SA-1 2111041-03 0.00 – 0.77 5/3/2021	BH21-5 SA-101 ² 2111041-04 0.00 – 0.77 5/3/2021	BH21-6 SA-1 2111041-05 0.00 – 0.76 5/3/2021	BH21-6 SA-4 2111041-06 2.43 – 2.73 5/3/2021	BH21-7 SA-1 2112125-02 0.00 – 0.91 03/15/2021	BH21-8 SA-2 2111041-07 0.45 – 0.85 5/3/2021	BH21-8 SA-3 2111041-08 0.85 – 1.06 5/3/2021
Parameter	Units	MDL	MECP Table 2														
Physical Characteristics																	
% Solids	% by Wt.	0.1	NS	74.9	91	88.4	82.5	83.7	76	N/A	78.6	71.9	66.3	78.7	74.6	80.7	92.5
General Inorganics																	
SAR	N/A	0.01	5	0.81	1.09	1.05	1.39	1.15	0.36	N/A	0.54	0.55	0.61	0.46	0.61	1.04	1.88
Conductivity	uS/cm	5	700	275	576	561	563	564	162	N/A	359	455	302	188	306	548	2560
Cyanide, free	ug/g dry	0.03	0.051	ND (0.03)	ND (0.03)	ND (0.03)	ND (0.03)	ND (0.03)	ND (0.03)	N/A	ND (0.03)	ND (0.03)	ND (0.03)	ND (0.03)	ND (0.03)	ND (0.03)	ND (0.03)
pH	pH Units	0.05	5 to 9	7.18	7.62	7.3	7.53	7.59	7.86	N/A	7.27	7.28	7.25	7.26	7.42	7.32	7.55
Metals																	
Boron, available	ug/g dry	0.5	1.5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	N/A	0.6	ND (0.5)	0.6	ND (0.5)	ND (0.5)	ND (0.5)	0.6
Chromium (VI)	ug/g dry	0.2	8	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	N/A	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	0.2	ND (0.2)
Mercury	ug/g dry	0.1	0.27	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	N/A	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Amenia	ug/g dry	1	1.0	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	1.1
Arsenic	ug/g dry	1	300	2.4	4.5	3.9	2.0	112	3.2	N/A	172	3.1	2.0	3.9	2.9	2.0	120
Banum	ug/g dry	0.5	390	247	ND (0.5)	0.6	ND (0.5)	ND (0.5)		N/A	0.7	0.6	190	199	102	229	
Boron	ug/g dry	5	120	5.5	7 7	7.7	ND (5.0)	5.4	5.5	N/A	7.4	7	7.5	6.5	6.9	ND (5.0)	10.6
Cadmium	ug/g dry	0.5	1.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	N/A	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Chromium	ug/g dry	5	160	86.4	30.9	39.1	41.8	29.7	21.8	N/A	46.6	42.6	50.7	71.4	41.9	47.4	19.9
Cobalt	ua/a drv	1	22	16.3	8.6	9.4	9.5	7.9	7.8	N/A	9.8	9.2	10.3	14.6	9.4	9.3	7.6
Copper	ua/a drv	5	140	42.4	18.7	19.8	20.8	16.8	21.5	N/A	22.7	20.6	21.2	33.4	21.6	22.7	16.8
Lead	ug/g dry	1	120	6.3	8.7	10.1	15.4	10.7	5.4	N/A	8.1	7.1	8.3	6.5	7.9	4.3	23.5
Molybdenum	ug/g dry	1	6.9	ND (1.0)	1.8	1.7	1.1	1.6	1.3	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	1.1	ND (1.0)	3.7
Nickel	ug/g dry	5	100	47.2	19.9	23.4	24.4	19.6	17.5	N/A	23.6	22.2	25.3	37.6	22.2	26	18.3
Selenium	ug/g dry	1	2.4	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Silver	ug/g dry	0.3	20	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	N/A	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)
Thallium	ug/g dry	1	1	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Uranium	ug/g dry	1	23	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Vanadium	ug/g dry	10	86	69	34.3	39.8	43.1	36.1	34.7	N/A	48.3	46.7	50.1	71.7	44.9	48.8	23.6
Zinc	ug/g dry	20	340	82.1	51.8	57.6	51.5	41.2	33.1	N/A	65	56	64.3	71.1	57.7	46.3	40.2
Volatile Organic Compounds																	
Acetone	ug/g dry	0.5	16	ND (0.50)	N/A	N/A	ND (0.50)	ND (0.50)	ND (0.50)	N/A	N/A	N/A	ND (0.50)	ND (0.50)	N/A	N/A	ND (0.50)
Benzene	ug/g dry	0.02	0.21	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Bromodichloromethane	ug/g dry	0.05	1.5	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Bromotorm	ug/g ary	0.05	0.27	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Bromomethane Carbon Tatrashlarida	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	IN/A	ND (0.05)
Calbon Tetrachionde	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	IN/A	N/A	ND (0.05)
Chloroform	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Dibromochloromethane	ug/g dry	0.05	2.3	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Dichlorodifluoromethane	ug/g dry	0.05	16	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1 2-Dichlorobenzene	ug/g dry	0.05	12	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1.3-Dichlorobenzene	ug/g dry	0.05	4.8	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1.4-Dichlorobenzene	ua/a drv	0.05	0.083	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1,1-Dichloroethane	ug/g dry	0.05	0.47	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1,2-Dichloroethane	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1,1-Dichloroethylene	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
cis-1,2-Dichloroethylene	ug/g dry	0.05	1.9	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
trans-1,2-Dichloroethylene	ug/g dry	0.05	0.084	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1,2-Dichloropropane	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
cis-1,3-Dichloropropylene	ug/g dry	0.05	NS	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
trans-1,3-Dichloropropylene	ug/g dry	0.05	NS	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1,3-Dichloropropene, total	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)

TABLE C1 - CONTINUED SOIL ANALYTICAL RESULTS Phase II Environmental Site Assessment 3955 Kelly Farm Drive Ottawa, Ontario

			Sample ID:	BH-21-1 SA-2	BH21-2 SA-1	BH21-3 SA-1	BH21-4 SA-1	BH21-4 SA-101 ²	BH21-4 SA-6	BH21-4 SA-106 ²	BH21-5 SA-1	BH21-5 SA-101 ²	BH21-6 SA-1	BH21-6 SA-4	BH21-7 SA-1	BH21-8 SA-2	BH21-8 SA-3
			Laboratory ID:	2111041-01	2112125-01	2111041-02	2112125-03	2112125-05	2112125-04	2112125-04	2111041-03	2111041-04	2111041-05	2111041-06	2112125-02	2111041-07	2111041-08
	Date	Sample	d (dd/mm/vvvv):	5/3/2021	0.00 - 0.91	0.00 - 0.69 5/3/2021	0.00 - 0.91	0.00 - 0.91	3.81 - 4.57	3.81 - 4.57 03/15/2021	0.00 - 0.77 5/3/2021	5/3/2021	5/3/2021	2.43 - 2.73	03/15/2021	0.45 - 0.85 5/3/2021	0.85 - 1.06 5/3/2021
	Duit	, campio		0.0.2021													
Parameter	Units	MDL	MECP Table 2 RPI SCS ¹														
Ethylbenzene	ug/g dry	0.05	1.1	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Ethylene dibromide	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Hexane	ug/g dry	0.05	2.8	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Methyl Ethyl Ketone	ug/g dry	0.5	16	ND (0.50)	N/A	N/A	ND (0.50)	ND (0.50)	ND (0.50)	N/A	N/A	N/A	ND (0.50)	ND (0.50)	N/A	N/A	ND (0.50)
Methyl Isobutyl Ketone	ug/g dry	0.5	1.7	ND (0.50)	N/A	N/A	ND (0.50)	ND (0.50)	ND (0.50)	N/A	N/A	N/A	ND (0.50)	ND (0.50)	N/A	N/A	ND (0.50)
Methyl tert-butyl ether	ug/g dry	0.05	0.75	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Methylene Chloride	ug/g dry	0.05	0.1	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Styrene	ug/g dry	0.05	0.7	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1,1,1,2-Tetrachloroethane	ug/g dry	0.05	0.058	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1,1,2,2-I etrachloroethane	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Tetrachloroethylene	ug/g dry	0.05	0.28	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Toluene	ug/g dry	0.05	2.3	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
1,1,1-Irichloroethane	ug/g dry	0.05	0.38	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
1,1,2-I richloroethane	ug/g dry	0.05	0.05	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Irichloroethylene	ug/g dry	0.05	0.061	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Irichlorofluoromethane	ug/g dry	0.05	4	ND (0.05)	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A	ND (0.05)	ND (0.05)	N/A	N/A	ND (0.05)
Vinyl Chloride	ug/g dry	0.02	0.02	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	N/A	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)
m/p-Xylene	ug/g dry	0.05	NS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.37	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
o-Xylene	ug/g ary	0.05	NS	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.09	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Xylenes, total	ug/g dry	0.05	3.1	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	0.46	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Petroleum Hydrocarbons		-															
F1 PHCs (C6-C10)	ug/g dry	(55	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	N/A	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)
F2 PHCs (C10-C16)	ug/g dry	4	98	ND (4)	ND (4)	ND (4)	ND (4)	8	ND (4)	N/A	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (4)	ND (40)
F3 PHCs (C16-C34)	ug/g dry	8	300	ND (8)	ND (8)	ND (8)	ND (8)	y ND (0)	ND (8)	N/A	ND (8)	ND (8)	ND (8)	ND (8)	ND (8)	ND (8)	83
F4 PHCs (C34-C50)	ug/g dry	6	2800	ND (6)	ND (6)	ND (6)	ND (6)	ND (6)	ND (6)	N/A	ND (6)	ND (6)	ND (6)	ND (6)	ND (6)	ND (6)	183
Polycyclic Aromatic Hydrocarbons	5						10 (0.00)										
Acenaphthene	ug/g dry	0.02	7.9	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	ND (0.02)
Acenaphthylene	ug/g dry	0.02	0.15	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	ND (0.02)
Anthracene	ug/g ary	0.02	0.67	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	0.03
Benzolajantnracene	ug/g ary	0.02	0.5	N/A	ND (0.02)	ND (0.02)	0.02	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	0.06
Benzolajpyrene	ug/g ary	0.02	0.3	N/A	ND (0.02)	ND (0.02)	0.02	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	0.06
Benzolbjiluorantnene	ug/g ary	0.02	0.78	N/A	ND (0.02)	ND (0.02)	0.02	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	0.06
Benzolg,n,ijperviene	ug/g ary	0.02	0.0	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	0.04
Benzolkjiluorantnene	ug/g ary	0.02	0.78	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	0.03
Chrysene	ug/g ary	0.02	1	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	0.06
Dibenzola,njantnracene	ug/g ary	0.02	0.1	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	ND (0.02)
Fluoranthene	ug/g dry	0.02	0.69	N/A	ND (0.02)	0.03	0.05	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	0.12
Fluorene	ug/g dry	0.02	02	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	IN/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	IN/A	ND (0.02)	ND (0.02)	ND (0.02)
A Mathula and the land	ug/g dry	0.02	0.38	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	IN/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	IN/A	ND (0.02)	ND (0.02)	0.03
2 Methylpephthelepe	ug/g dry	0.02	0.99	IN/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	IN/A	ND (0.02)	ND (0.02)	ND (0.02)
∠-weinyinaphthalene	ug/g ary	0.02	0.99	N/A	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	ND (0.02)
Neurymaphinaiene (1&2)	ug/g ary	0.04	0.99	IN/A	ND (0.04)	ND (0.04)	ND (0.04)	ND (0.04)	N/A	N/A	ND (0.04)	ND (0.04)	ND (0.04)	IN/A	ND (0.04)	ND (0.04)	ND (0.04)
Reportere	ug/g ary	0.01	0.0	IN/A	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	IN/A	IN/A	ND (0.01)	ND (0.01)	ND (0.01)	IN/A	ND (0.01)	ND (0.01)	0.00
Prienarithrene	ug/g ary	0.02	0.2	IN/A	ND (0.02)	ND (0.02)	0.03	ND (0.02)	IN/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	IN/A	ND (0.02)	ND (0.02)	0.09
Pyrene	ug/g ary	0.02	78	N/A	ND (0.02)	0.03	0.05	ND (0.02)	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	ND (0.02)	ND (0.02)	0.11

TABLE C1 - CONTINUED SOIL ANALYTICAL RESULTS Phase II Environmental Site Assessment 3955 Kelly Farm Drive Ottawa, Ontario

			Sample ID:	BH-21-1 SA-2	BH21-2 SA-1	BH21-3 SA-1	BH21-4 SA-1	BH21-4 SA-101 ²	BH21-4 SA-6	BH21-4 SA-106 ²	BH21-5 SA-1	BH21-5 SA-101 ²	BH21-6 SA-1	BH21-6 SA-4	BH21-7 SA-1	BH21-8 SA-2	BH21-8 SA-3
			Dopth (mhac):	0.76 - 1.52	0.00 - 0.91	0.00 - 0.69	2112125-05	2112125-05	2 91 - 4 57	2112125-04	2111041-03	2111041-04	2111041-03	2 / 2 - 2 72	0.00 - 0.91	2111041-07	2111041-08
	Date	Sampler	d (dd/mm/yyyy):	5/3/2021	03/15/2021	5/3/2021	03/15/2021	03/15/2021	03/15/2021	03/15/2021	5/3/2021	5/3/2021	5/3/2021	5/3/2021	03/15/2021	5/3/2021	5/3/2021
	Duto	oumpier	a (aa, iiii, , , , , , , , , , , , , , , , , , ,	0/0/2021	00/10/2021	0,0,2021	00/10/2021	00,10,2021	00/10/2021	00/10/2021	0,0,2021	0/0/2021	0/0/2021	0/0/2021	00/10/2021	0/0/2021	0/0/2021
			MECP Table 2														
Parameter	Units	MDL	RPI SCS ¹														
Organochlorine Pesticides																	
2,4'-DDD	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
2,4'-DDE	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
2,4'-DDT	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
4,4'-DDD	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
4,4'-DDE	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
4,4'-DDT	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Aldrin	µg/g dry	0.01	0.05	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
DDD (Total)	µg/g dry	0.01	3.3	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
DDE (Total)	µg/g dry	0.01	0.26	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
DDT (Total)	µg/g dry	0.01	1.4	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Decachlorobiphenyl (Surr.)	% Rec	-	NS	124	N/A	N/A	129	N/A	122	127	N/A	N/A	136	132	N/A	113	N/A
Dieldrin	µg/g dry	0.01	0.05	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Endosulfan I	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Endosulfan I + II	µg/g dry	0.01	0.04	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Endosulfan II	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Endosulfan sulfate	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Endrin	µg/g dry	0.01	0.04	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Endrin aldehyde	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Heptachlor	µg/g dry	0.01	0.15	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Heptachlor epoxide	µg/g dry	0.01	0.05	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Hexachlorobenzene	µg/g dry	0.01	0.52	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Hexachlorobutadiene	µg/g dry	0.01	0.012	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Hexachloroethane	µg/g dry	0.01	0.089	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Methoxychlor	µg/g dry	0.01	0.13	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Mirex	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
Oxychlordane	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
ß-BHC	µg/g dry	0.01	Ns	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
α - Chlordane	µg/g dry	0.01	0.05	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
α + γ -Chlordane	µg/g dry	0.01	0.05	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
α-BHC	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
γ - Chlordane	µg/g dry	0.01	0.05	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
γ-BHC (Lindane)	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A
δ-BHC	µg/g dry	0.01	NS	ND(0.009)	N/A	N/A	ND(0.009)	N/A	ND(0.01)	ND(0.01)	N/A	N/A	ND(0.009)	ND(0.01)	N/A	ND(0.01)	N/A

Notes:

'MDL': Method Detection Limit

'N/A': Not Analyzed

'ND' : Non Detect

'NS ' : No Standard / Guideline Established

'mbgs' : metres below ground surface 1 - MECP Table 2 RPI SCS: MECP, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition, residential/parkland/institutional (RPI) land use, coarse textured soils.

2 - Soil sample BH21-3 SA-10X is a duplicate of BH21-3 SAX

Bolded Exceeds MECP Table 2 RPI SCS

TABLE C.2 SOIL ANALYTICAL RESULTS Phase Two Environmental Site Assessment 3955 Kelly Farm Drive Ottawa, Ontario

	Date	Sampleo	Sample ID: Laboratory ID: Depth (mbgs): d (dd/mm/yyyy):	BH21-8 SA3 A 6232019 0.8 - 1.0 11/10/2021	BH21-8 SA4 A 6232023 1.0 - 1.5 11/10/2021	BH21-8 SA3 B 6232018 0.8 - 1.0 11/10/2021	BH21-8 SA3 C 6232024 0.8 - 1.0 11/10/2021	BH21-8 SA3 D 6232022 0.8 - 1.0 11/10/2021	BH21-8 SA3 E 6232021 0.8 - 1.0 11/10/2021	BH21-8 SA3 F 6232017 0.8 - 1.0 11/10/2021	BH21-8 SA3 G 6232015 0.8 - 1.0 11/10/2021	BH21-8 North 6232020 0.8 - 1.0 11/10/2021	BH21-8 10 North ² 6232008 0.8 - 1.0 11/10/2021	BH21-8 South 6232016 0.8 - 1.0 11/10/2021	BH21-8 East 6232013 0.8 - 1.0 11/10/2021	BH21-8 West 6232014 0.8 - 1.0 11/10/2021
Parameter	Units	MDL	MECP Table 2 RPI SCS ¹													
General Inorganics																
SAR	N/A	0.01	5	0.208	0.273	0.229	0.243	0.259	0.24	0.212	0.244	0.275	0.465	0.304	0.292	0.542
Conductivity	uS/cm	5	700	631	642	401	937	356	526	917	526	873	762	834	298	892

Notes:

'MDL': Method Detection Limit

'N/A': Not Analyzed

'ND' : Non Detect

'NS ' : No Standard / Guideline Established

'mbgs' : metres below ground surface 1 - MECP Table 2 RPI SCS: MECP, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 2: Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition, residential/parkland/institutional (RPI) land use, coarse textured soils.

2 - Soil sample BH21-3 SA-10X is a duplicate of BH21-3 SAX

Bolded Exceeds MECP Table 2 RPI SCS for coarse textured soils

TABLE C.3 GROUNDWATER ANALYTICAL RESULTS Phase Two Environmental Site Assessment 3955 Kelly Farm Drive Ottawa, Ontario

	Dati	Screened I e Sampled	Laboratory ID: nterval (mbgs): (dd/mm/yyyy):	2112364-01 0.76 - 3.81 03/17/2021	2112364-02 1.52 - 4.57 03/17/2021	2112364-04 1.52 - 4.57 03/17/2021	2112364-03 0.61 - 3.65 03/17/2021	2112364-0 - 03/17/2021
Parameter	Unito	MDI	MECP Table 2					
eneral Inorganics	Units	MDL	SCS1					
vanide, free	ug/L pH Units	2	66 5 to 9	ND (2) 7.8	ND (2) 7.6	ND (2) 7.7	ND (2) 7.9	N/A N/A
lions			700	420	<u>co</u>	60	67	N/A
etals	mg/L	1	790	130	60	52	67	IN/A
arcury timony	ug/L ug/L	0.1	0.29	ND (0.1) 0.6	ND (0.1) ND (0.5)	ND (0.1) ND (0.5)	ND (0.1) ND (0.5)	N/A N/A
senic	ug/L	1	25	2	ND (1)	ND (1)	3	N/A
aryllium	ug/L	0.5	4	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	N/A N/A
oron admium	ug/L ug/l	10	5000 2 7	39 ND (0 1)	28 ND (0.1)	24 ND (0.1)	34 ND (0.1)	N/A N/A
nromium	ug/L	1	50	ND (1)	ND (1)	ND (1)	ND (1)	N/A
obalt	ug/L ug/L	0.5	3.8	ND (10) ND (0.5)	0.6	ND (10) ND (0.5)	ND (10) ND (0.5)	N/A N/A
opper	ug/L	0.5	87	0.6	2.4	1.9	1	N/A
olybdenum	ug/L	0.5	70	3.7	3.1	1.9	2.4	N/A
ckel elenium	ug/L ug/L	1	100	3 ND (1)	3 ND (1)	2 ND (1)	2 ND (1)	N/A N/A
lver	ug/L	0.1	1.5	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	N/A
allium	ug/L ug/L	0.1	490000	35100 ND (0.1)	ND (0.1)	22200 ND (0.1)	ND (0.1)	N/A N/A
anium	ug/L	0.1	20	1.2 ND (0.5)	5.7	4.7	1.1	N/A
nc	ug/L	5	1100	ND (5)	ND (5)	ND (5)	ND (5)	N/A
platile Organic Compounds cetone	ua/L	5	2700	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
enzene	ug/L	0.5	5	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
omotichloromethane omoform	ug/L ug/L	0.5	16 25	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
omomethane	ug/L	0.5	0.89	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
lorobenzene	ug/L ug/L	0.2	30	ND (0.2) ND (0.5)	ND (0.2) ND (0.5)	ND (0.2) ND (0.5)	ND (0.2) ND (0.5)	ND (0.2) ND (0.5)
loroform bromochloromethene	ug/L	0.5	2.4	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
chlorodifluoromethane	ug/L	1	590	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
2-Dichlorobenzene 3-Dichlorobenzene	ug/L ug/L	0.5	3 59	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
4-Dichlorobenzene	ug/L	0.5	1	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
2-Dichloroethane	ug/L ug/L	0.5	1.6	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)
1-Dichloroethylene	ug/L	0.5	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
ins-1,2-Dichloroethylene	ug/L	0.5	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
2-Dichloropropane a-1,3-Dichloropropvlene	ug/L ug/L	0.5	5 NS	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
ins-1,3-Dichloropropylene	ug/L	0.5	NS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
3-Dichloropropene, total hylbenzene	ug/L ug/L	0.5	0.5	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
hylene dibromide (dibromoethane,	ug/L	0.2	0.2	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
athyl Ethyl Ketone (2-Butanone)	ug/L	5	1800	ND (5.0)	ND (1.0)	ND (5.0)	ND (5.0)	ND (1.0) ND (5.0)
thyl Isobutyl Ketone	ug/L	5	640	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
thylene Chloride	ug/L	5	50	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
yrene 1,1,2-Tetrachloroethane	ug/L ug/L	0.5	5.4	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
1,2,2-Tetrachloroethane	ug/L	0.5	1	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
luene	ug/L	0.5	24	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
1,1-Trichloroethane 1.2-Trichloroethane	ug/L ug/L	0.5	200	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
ichloroethylene	ug/L	0.5	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
nyl Chloride	ug/L	0.5	0.5	ND (0.5)	ND (0.5)	ND (1.0)	ND (0.5)	ND (1.0) ND (0.5)
/p-Xylene Xylene	ug/L	0.5	NS	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
/lenes, total	ug/L	0.5	300	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
PHCs (C6-C10)	ug/L	25	750	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
PHCs (C10-C16)	ug/L	100	150	ND (100)	ND (100)	ND (100)	ND (100)	N/A
PHCs (C34-C50)	ug/L	100	500	ND (100)	ND (100)	ND (100)	ND (100)	N/A
emi-Volatile Organic Compounds enaphthene	ua/L	0.05	4.1	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	N/A
enaphthylene	ug/L	0.05	1	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	N/A
mzo[a]anthracene	ug/L	0.01	1	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A N/A
nzo[a]pyrene	ug/L	0.01	0.01	ND (0.01)	ND (0.01) ND (0.05)	ND (0.01)	ND (0.01) ND (0.05)	N/A
nzo[g,h,i]perylene	ug/L	0.05	0.2	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	N/A
rizo(kjiluorantnene	ug/L ug/L	0.05	0.1	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A
benzo[a,h]anthracene	ug/L	0.05	0.2	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	N/A
Jorene	ug/L	0.01	120	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
deno[1,2,3-cd]pyrene Methylnaphthalene	ug/L ug/L	0.05	0.2 3.2	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A
Methylnaphthalene	ug/L	0.05	3.2	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	N/A
unymaphthalene (1&2) Iphthalene	ug/L ug/L	0.05	3.2	ND (0.10) ND (0.05)	ND (0.10) ND (0.05)	ND (0.10) ND (0.05)	ND (0.10) ND (0.05)	N/A N/A
enanthrene	ug/L	0.05	1	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	N/A
ganoChlorine Pesticides	ug/L	0.01	4.1	(10.01) UNI	(U.U1)	(U.U1)	(U.U1)	N/A
frin ha-Chlordane	ug/L ug/l	0.01	0.35 NS	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	N/A N/A
mma-Chlordane	ug/L	0.01	NS	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
iordane DDD	ug/L ug/L	0.01	7 NS	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	N/A N/A
>-DDD	ug/L	0.01	NS 10	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
-DDE	ug/L ug/L	0.01	NS	ND (0.01) ND (0.01)	ND (0.01)	ND (0.01) ND (0.01)	ND (0.01)	N/A N/A
D-DDE	ug/L	0.01	NS 10	ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	N/A
-DDT	ug/L	0.01	NS	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
T	ug/L ug/L	0.01	NS 2.8	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	N/A N/A
eldrin Idogulfan I	ug/L	0.01	0.35	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
dosulfan II	ug/L	0.01	NS	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
dosulfan I/II drin	ug/L	0.01	1.5	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
ptachlor	ug/L	0.01	1.5	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
	ug/L ua/L	0.01	0.048	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	ND (0.01) ND (0.01)	N/A N/A
aptachlor Epoxide	ug/L	0.01	0.44	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
eptachlor Epoxide exachlorobenzene exachlorobutadiene		0.01	1.2	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)	N/A
ptachlor Epoxide exachlorobenzene exachlorobutadiene BHC (LINDANE) exachloroethane	ug/L ug/L	0.01	2.1	ND (0.01)	140 (0.01)	140 (0.01)	ND (0.01)	IN/A

APPENDIX D

Certificate of Analysis

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Nicole Soucy

Client PO: Project: 100441.001 Custody: 130456

Order Date: 5-Mar-2021

Revised Report

Order #: 2111041

Report Date: 19-Mar-2021

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2111041-01	BH-21-1 SA-2
2111041-02	BH21-3 SA-1
2111041-03	BH21-5 SA-1
2111041-04	BH21-5 SA-101
2111041-05	BH21-6 SA-1
2111041-06	BH21-6 SA-4
2111041-07	BH21-8 SA-2
2111041-08	BH20-8 SA-3

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Analysis Summary Table

Report Date: 19-Mar-2021 Order Date: 5-Mar-2021

Project Description: 100441.001

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.7 - ICP-OES	9-Mar-21	9-Mar-21
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	9-Mar-21	10-Mar-21
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	8-Mar-21	9-Mar-21
Conductivity	MOE E3138 - probe @25 °C, water ext	9-Mar-21	9-Mar-21
Cyanide, free	MOE E3015 - Auto Colour, water extraction	8-Mar-21	10-Mar-21
Mercury by CVAA	EPA 7471B - CVAA, digestion	9-Mar-21	10-Mar-21
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	8-Mar-21	9-Mar-21
PHC F1	CWS Tier 1 - P&T GC-FID	9-Mar-21	10-Mar-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	8-Mar-21	9-Mar-21
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	9-Mar-21	9-Mar-21
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	8-Mar-21	9-Mar-21
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	9-Mar-21	10-Mar-21
SAR	Calculated	9-Mar-21	9-Mar-21
Solids, %	Gravimetric, calculation	8-Mar-21	9-Mar-21
SAR Solids, %	Calculated Gravimetric, calculation	9-Mar-21 8-Mar-21	9-Mar- 9-Mar-

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

	Client ID:	BH-21-1 SA-2	BH21-3 SA-1	BH21-5 SA-1	BH21-5 SA-101
	Sample Date:	05-Mar-21 09:00	05-Mar-21 09:00	05-Mar-21 09:00	05-Mar-21 09:00
	Sample ID:	2111041-01	2111041-02	2111041-03	2111041-04
	MDL/Units	Soil	Soil	Soil	Soil
	0.1.9/ by 14/4				
% Solids	0.1 % by Wt.	74.9	88.4	78.6	71.9
General Inorganics	0.04 N/A		1		I
SAR	0.01 N/A	0.81	1.05	0.54	0.55
Conductivity	5 uS/cm	275	561	359	455
Cyanide, free	0.03 ug/g dry	<0.03	<0.03	<0.03	<0.03
рН	0.05 pH Units	7.18	7.30	7.27	7.28
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	2.4	3.9	3.0	3.1
Barium	1.0 ug/g dry	247	168	173	171
Beryllium	0.5 ug/g dry	0.7	0.6	0.7	0.6
Boron	5.0 ug/g dry	5.5	7.7	7.4	7.0
Boron, available	0.5 ug/g dry	<0.5	<0.5	0.6	<0.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	86.4	39.1	46.6	42.6
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	16.3	9.4	9.8	9.2
Copper	5.0 ug/g dry	42.4	19.8	22.7	20.6
Lead	1.0 ug/g dry	6.3	10.1	8.1	7.1
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	<1.0	1.7	<1.0	<1.0
Nickel	5.0 ug/g dry	47.2	23.4	23.6	22.2
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	69.0	39.8	48.3	46.7
Zinc	20.0 ug/g dry	82.1	57.6	65.0	56.0
Volatiles			·		
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

	Client ID:	BH-21-1 SA-2	BH21-3 SA-1	BH21-5 SA-1	BH21-5 SA-101
	Sample Date:	2111041-01	2111041-02	2111041-03	2111041-04
	MDL/Units	Soil	Soil	Soil	Soil
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Order #: 2111041

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

	Client ID:	BH-21-1 SA-2	BH21-3 SA-1	BH21-5 SA-1	BH21-5 SA-101
	Sample Date:	05-Mar-21 09:00	05-Mar-21 09:00	05-Mar-21 09:00	05-Mar-21 09:00
	Sample ID:	2111041-01 Soil	2111041-02 Soil	2111041-03 Soil	2111041-04 Soil
Vulanaa tatal	MDL/Units	301	3011	3011	3011
A Bromofluorobenzene	Surrogate	<0.05	-	-	-
Dibromofluoromethane	Surrogate	91.2%	-	-	-
Toluene-d8	Surrogate	112%	-	-	-
Benzene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Ethylbenzene	0.05 ug/g dry	-	< 0.05	<0.05	< 0.05
Toluene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Toluene-d8	Surrogate	-	110%	110%	109%
Hydrocarbons					-
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Acenaphthylene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Anthracene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Benzo [a] anthracene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Benzo [a] pyrene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Benzo [b] fluoranthene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Benzo [g,h,i] perylene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Benzo [k] fluoranthene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Chrysene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Fluoranthene	0.02 ug/g dry	-	0.03	<0.02	<0.02
Fluorene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
1-Methylnaphthalene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
2-Methylnaphthalene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	-	<0.04	<0.04	<0.04
Naphthalene	0.01 ug/g dry	-	<0.01	<0.01	<0.01
Phenanthrene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Pyrene	0.02 ug/g dry	-	0.03	<0.02	<0.02
2-Fluorobiphenyl	Surrogate	-	67.9%	58.2%	71.0%

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021 Order Date: 5-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date:	BH-21-1 SA-2 05-Mar-21 09:00	BH21-3 SA-1 05-Mar-21 09:00	BH21-5 SA-1 05-Mar-21 09:00	BH21-5 SA-101 05-Mar-21 09:00
	Sample ID:	2111041-01	2111041-02	2111041-03	2111041-04
	MDL/Units	Soil	Soil	Soil	Soil
Terphenyl-d14	Surrogate	-	96.1%	81.4%	103%

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Order #: 2111041

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

	Client ID:	BH21-6 SA-1	BH21-6 SA-4	BH21-8 SA-2	BH20-8 SA-3
	Sample Date:	05-Mar-21 09:00	05-Mar-21 09:00	05-Mar-21 09:00	05-Mar-21 09:00
	Sample ID:	2111041-05	2111041-06	2111041-07	2111041-08
Physical Oberratoriation	MDL/Units	Soll	Soil	Soil	Soil
	0.1 % by Wt	00.0	70.7	00.7	00.5
% Solids	0.1 /0 09 114	00.3	10.1	80.7	92.5
SAR	0.01 N/A	0.61	0.46	1 04	1.88
Conductivity	5 uS/cm	302	188	548	2560
Cvanide, free	0.03 ug/g dry	<0.03	<0.03	< 0.03	<0.03
pH	0.05 pH Units	7.25	7.26	7.32	7.55
Metals	ļļ		-	-	
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	1.1
Arsenic	1.0 ug/g dry	2.8	3.9	2.6	5.3
Barium	1.0 ug/g dry	190	199	229	180
Beryllium	0.5 ug/g dry	0.7	0.7	0.5	<0.5
Boron	5.0 ug/g dry	7.5	6.5	<5.0	10.6
Boron, available	0.5 ug/g dry	0.6	<0.5	<0.5	0.6
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	50.7	71.4	47.4	19.9
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	0.2	<0.2
Cobalt	1.0 ug/g dry	10.3	14.6	9.3	7.6
Copper	5.0 ug/g dry	21.2	33.4	22.7	16.8
Lead	1.0 ug/g dry	8.3	6.5	4.3	23.5
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	3.7
Nickel	5.0 ug/g dry	25.3	37.6	26.0	18.3
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	50.1	71.7	48.8	23.6
Zinc	20.0 ug/g dry	64.3	71.1	46.3	40.2
Volatiles					
Acetone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Benzene	0.02 ug/g dry	<0.02	<0.02	-	<0.02
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date:	BH21-6 SA-1 05-Mar-21 09:00	BH21-6 SA-4 05-Mar-21 09:00	BH21-8 SA-2 05-Mar-21 09:00	BH20-8 SA-3 05-Mar-21 09:00
	Sample ID:	2111041-05	2111041-06	2111041-07	2111041-08
	MDL/Units	Soil	Soil	Soil	Soil
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Order #: 2111041

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date: Sample ID:	BH21-6 SA-1 05-Mar-21 09:00 2111041-05 Soil	BH21-6 SA-4 05-Mar-21 09:00 2111041-06 Soil	BH21-8 SA-2 05-Mar-21 09:00 2111041-07 Soil	BH20-8 SA-3 05-Mar-21 09:00 2111041-08 Soil
Xylenes total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
4-Bromofluorobenzene	Surrogate	96.2%	97.6%	_	96.5%
Dibromofluoromethane	Surrogate	106%	91.3%		90.4%
	Surrogate	100%	110%		110%
		10978	110 %	-	110 %
Benzene	0.05 ug/g dry	-	-	<0.02	-
	0.05 ug/g dry	-	-	<0.05	-
Ioluene		-	-	<0.05	-
m,p-Xylenes		-	-	<0.05	-
o-Xylene	0.05 ug/g dry	-	-	<0.05	-
Xylenes, total	0.05 ug/g dry	-	-	<0.05	-
Toluene-d8	Surrogate	-	-	110%	-
Hydrocarbons	7		_		
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<40 [1]
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	83
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	183
Semi-Volatiles			1	1	
Acenaphthene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Acenaphthylene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Anthracene	0.02 ug/g dry	<0.02	-	<0.02	0.03
Benzo [a] anthracene	0.02 ug/g dry	<0.02	-	<0.02	0.06
Benzo [a] pyrene	0.02 ug/g dry	<0.02	-	<0.02	0.06
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	-	<0.02	0.06
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	-	<0.02	0.04
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	-	<0.02	0.03
Chrysene	0.02 ug/g dry	<0.02	-	<0.02	0.06
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Fluoranthene	0.02 ug/g dry	<0.02	-	<0.02	0.12
Fluorene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	-	<0.02	0.03
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	<0.02	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	<0.04	<0.04
Naphthalene	0.01 ug/g dry	<0.01	-	<0.01	<0.01
Phenanthrene	0.02 ug/g dry	<0.02	-	<0.02	0.09

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Order #: 2111041

Report Date: 19-Mar-2021 Order Date: 5-Mar-2021

Project Description: 100441.001

	Client ID:	BH21-6 SA-1	BH21-6 SA-4	BH21-8 SA-2	BH20-8 SA-3
	Sample Date:	05-Mar-21 09:00	05-Mar-21 09:00 05-Mar-21 09:00		05-Mar-21 09:00
Sample ID:		2111041-05	2111041-06	2111041-07	2111041-08
	MDL/Units	Soil	Soil	Soil	Soil
Pyrene	0.02 ug/g dry	<0.02	-	<0.02	0.11
2-Fluorobiphenyl	Surrogate	59.6%	-	59.4%	71.5%
Terphenyl-d14	Surrogate	91.3%	-	106%	107%

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

Method Quality Control: Blank

	Reporting			Source		%REC	%REC RPD		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Cyanide, free	ND	0.03	ug/g						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ua/a						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron, available	ND	0.5	ug/g						
Cadmium		5.0	ug/g						
Chromium (VI)		0.3	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Thallium		0.3	ug/g						
Uranium		1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ua/a						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluorantnene	ND	0.02	ug/g						
Dibenzo [a b] anthracene		0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Prenanthrene		0.02	ug/g						
Surrogate: 2-Eluorobinhenvl	0.894	0.02	ug/g ua/a		67 1	50-140			
Surrogate: Terphenyl-d14	1 29		ua/a		96.6	50-140			
Volatiles			<u></u>						
Acetone	ND	0.50	ua/a						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/q						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

Method Quality Control: Blank

Analyte	Bogult	Reporting	1.1 34 -	Source	0/ DE0	%REC		RPD	Notoo
	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	notes
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2-	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
loluene	ND	0.05	ug/g						
1,1,1-I richloroethane	ND	0.05	ug/g						
1,1,2-Irichloroethane	ND	0.05	ug/g						
Irichloroethylene	ND	0.05	ug/g						
Irichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND 0.07	0.05	ug/g		101	50 4 40			
Surrogate: 4-Bromonuorobenzene	8.07		ug/g		101	50-140			
Surrogate: Dibromofluoromethane	6.94		ug/g		86.7	50-140			
Surrogate: Toluene-d8	8.66		ug/g		108	50-140			
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g			//_			
Surrogate: Toluene-d8	8.66		ug/g		108	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Order #: 2111041

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
SAR	3 10	0.01	N/A	3.06			13	30	
Conductivity	410	5	uS/cm	406			1.0	5	
Cvanide, free	ND	0.03	ua/a drv	ND			NC	35	
pH	7.63	0.05	pH Units	7.63			0.0	2.3	
Hydrocarbons									
	ND	-	the desidence	ND			NO	40	
F1 PHCs (C6-C10)	ND	/	ug/g dry	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	10				30	
F3 PHCS (C16-C34)	209	8	ug/g ary	480			79.8	30	QR-04
F4 PHCS (C34-C50)	35	ю	ug/g ary	73			70.6	30	QR-04
Metals									
Antimony	1.5	1.0	ug/g dry	ND			NC	30	
Arsenic	2.8	1.0	ug/g dry	2.4			14.1	30	
Barium	281	1.0	ug/g dry	247			12.7	30	
Beryllium	1.0	0.5	ug/g dry	0.7			NC	30	
Boron, available	ND	0.5	ug/g dry	ND			NC	35	
Boron	7.5	5.0	ug/g dry	5.5			NC	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g dry	ND			NC	35	
Chromium	102	5.0	ug/g dry	86.4			16.4	30	
Cobalt	19.0	1.0	ug/g dry	16.3			15.2	30	
Copper	47.9	5.0	ug/g dry	42.4			12.2	30	
Lead	7.6	1.0	ug/g dry	6.3			19.8	30	
Mercury	ND	0.1	ug/g dry	ND			NC	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	54.8	5.0	ug/g dry	47.2			15.0	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	81.1	10.0	ug/g dry	69.0			16.1	30	
Zinc	94.1	20.0	ug/g dry	82.1			13.6	30	
Physical Characteristics									
% Solids	93.8	0.1	% by Wt.	92.5			1.4	25	
Semi-Volatiles									
Acenaphthene	0.106	0.02	ug/g dry	ND			NC	40	
Acenaphthylene	0.026	0.02	ug/g dry	ND			NC	40	
Anthracene	0.095	0.02	ug/g dry	ND			NC	40	
Benzo [a] anthracene	0.023	0.02	ug/g dry	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [g,h,i] perviene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Chrysene	0.024	0.02	ug/g dry	ND			NC	40	
Dibenzo [a,n] anthracene	ND	0.02	ug/g dry	ND			NC	40	
Fluoranthene	0.048	0.02	ug/g dry	ND			NC	40	
FILLORENE	0.108	0.02	ug/g dry	ND			NC	40	
1 Methylapathalanc		0.02	ug/g ary					40	
	0.585	0.02	ug/g ary	0.039			1/5.0	40	
	0.746	0.02	ug/g ary	0.082			101.0	40	
Naphthalene	0.545	0.01	ug/g ary	0.039			173.0	40	Qr(-04
Phenanthrene	0.468	0.02	ug/g ary				NC	40	
ryicile Surragata: 2 Eluarabiahanul	0.089	0.02	ug/g ary	ND	61 E	50 1 10	NC	40	
Surrogate. 2-Fluorobiphenyl	1.00		ug/g ary		77.0	50-140			
Sunogale. Terprienyl-014	1.34		ug/g ary		11.9	50-140			
Volatiles									

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Method Quality Control: Duplicate

Report Date: 19-Mar-2021 Order Date: 5-Mar-2021

Project Description: 100441.001

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	uq/q dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	uq/q dry	ND			NC	50	
cis-1.3-Dichloropropylene	ND	0.05	ua/a drv	ND			NC	50	
trans-1.3-Dichloropropylene	ND	0.05	ua/a drv	ND			NC	50	
Ethylbenzene	ND	0.05	ua/a drv	ND			NC	50	
Ethylene dibromide (dibromoethane, 1.2	ND	0.05	ua/a drv	ND			NC	50	
Hexane	ND	0.05	ua/a drv	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ua/a drv	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ua/a drv	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ua/a dry	ND			NC	50	
Methylene Chloride	ND	0.05	ua/a drv	ND			NC	50	
Styrene	ND	0.05	ua/a dry	ND			NC	50	
1 1 2-Tetrachloroethane	ND	0.05	ua/a dry	ND			NC	50	
1 1 2 2-Tetrachloroethane	ND	0.05	ua/a dry	ND			NC	50	
Tetrachloroethylene	ND	0.05	ua/a dry	ND			NC	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
1 1 1-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1 1 2-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
Vinvl chloride	ND	0.00	ug/g dry	ND			NC	50	
m n-Yylenes		0.02	ug/g dry				NC	50	
o-Xylene	ND	0.05	ug/g dry				NC	50	
Surrogate: 4-Bromofluorobenzene	0.72	0.00	ug/g dry	ND	01 0	50-140	110	00	
Surrogate: T-Diomonuolobenzene	11 0		ug/g dry		102	50 140			
	11.0		ug/g ury		105	50-140			
Surrogate: Toluene-a8	11.8		ug/g ary		TTT	50-140		50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Ioiuene	ND	0.05	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: Ioluene-d8	11.8		ug/g dry		111	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited Client PO: Order #: 2111041

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Cyanide, free	0.280	0.03	ug/g	ND	93.5	70-130			
Hydrocarbons									
F1 PHCs (C6-C10)	183	7	ua/a	ND	91.6	80-120			
F2 PHCs (C10-C16)	97	4	ua/a	10	83.9	60-140			
F3 PHCs (C16-C34)	180	8	ua/a	ND	91.8	80-120			
F4 PHCs (C34-C50)	204	6	ug/g	73	82.0	60-140			
Metals			- 5 5						
Antimony	40.3	1.0	ua/a	ND	80.0	70-130			
Arsenic	46.9	1.0	ug/g	1.0	91.8	70-130			
Barium	155	1.0	ug/g	99.0	112	70-130			
Bervllium	48.7	0.5	ug/g	ND	96.8	70-130			
Boron available	4 51	0.5	ug/g	ND	90.2	70-122			
Boron	46.5	5.0	ug/g	ND	88.6	70-130			
Cadmium	46.6	0.5	ug/g	ND	93.0	70-130			
Chromium (VI)	40.0 0 1	0.2	ug/g	ND	49.5	70-130			OM-01
Chromium	89.1	5.0	ug/g	34.6	109	70-130			
Cobalt	56.9	1.0	ua/a	6.5	101	70-130			
Copper	64 7	5.0	ug/g	16.9	95.6	70-130			
Lead	45.0	1.0	ua/a	2.5	84.9	70-130			
Mercury	1 35	0.1	ug/g		90.1	70-130			
Molybdenum	47 7	1.0	ua/a	ND	94.9	70-130			
Nickel	67.7	5.0	ua/a	18.9	97.7	70-130			
Selenium	42.5	1.0	ua/a	ND	84.7	70-130			
Silver	45.6	0.3	ua/a	ND	91.0	70-130			
Thallium	43.6	1.0	ua/a	ND	86.8	70-130			
Uranium	44.2	1.0	ua/a	ND	87.8	70-130			
Vanadium	83.3	10.0	uq/q	27.6	111	70-130			
Zinc	80.3	20.0	ug/g	32.8	94.9	70-130			
Semi-Volatiles									
Acenaphthene	0.093	0.02	ua/a	ND	55.7	50-140			
Acenaphthylene	0.096	0.02	ua/a	ND	57.3	50-140			
Anthracene	0.102	0.02	ug/g	ND	61.0	50-140			
Benzo [a] anthracene	0.088	0.02	ug/g	ND	52.8	50-140			
Benzo [a] pyrene	0.102	0.02	ug/g	ND	61.0	50-140			
Benzo [b] fluoranthene	0.124	0.02	ug/g	ND	74.6	50-140			
Benzo [g,h,i] perylene	0.108	0.02	ug/g	ND	65.0	50-140			
Benzo [k] fluoranthene	0.113	0.02	ug/g	ND	67.5	50-140			
Chrysene	0.113	0.02	ug/g	ND	67.8	50-140			
Dibenzo [a,h] anthracene	0.105	0.02	ug/g	ND	62.7	50-140			
Fluoranthene	0.088	0.02	ug/g	ND	53.0	50-140			
Fluorene	0.099	0.02	ug/g	ND	59.6	50-140			
Indeno [1,2,3-cd] pyrene	0.100	0.02	ug/g	ND	60.0	50-140			
1-Methylnaphthalene	0.099	0.02	ug/g	ND	59.7	50-140			
2-Methylnaphthalene	0.111	0.02	ug/g	ND	66.5	50-140			
Naphthalene	0.119	0.01	ug/g	ND	71.2	50-140			
Phenanthrene	0.101	0.02	ug/g	ND	60.7	50-140			
Pyrene	0.090	0.02	ug/g	ND	53.8	50-140			
Surrogate: 2-Fluorobiphenyl	1.10		ug/g		82.7	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Terphenyl-d14	1.65		ug/g		124	50-140			
Volatiles									
Acetone	13.0	0.50	ug/g	ND	130	50-140			
Benzene	4.58	0.02	ug/g	ND	115	60-130			
Bromodichloromethane	3.21	0.05	ug/g	ND	80.2	60-130			
Bromoform	2.54	0.05	ug/g	ND	63.5	60-130			
Bromomethane	4.17	0.05	ug/g	ND	104	50-140			
Carbon Tetrachloride	3.60	0.05	ug/g	ND	90.1	60-130			
Chlorobenzene	4.40	0.05	ug/g	ND	110	60-130			
Chloroform	4.64	0.05	ug/g	ND	116	60-130			
Dibromochloromethane	4.03	0.05	ug/g	ND	101	60-130			
Dichlorodifluoromethane	4.41	0.05	ug/g	ND	110	50-140			
1,2-Dichlorobenzene	3.96	0.05	ug/g	ND	98.9	60-130			
1,3-Dichlorobenzene	3.88	0.05	ug/g	ND	97.0	60-130			
1,4-Dichlorobenzene	3.88	0.05	ug/g	ND	96.9	60-130			
1,1-Dichloroethane	4.98	0.05	ug/g	ND	124	60-130			
1,2-Dichloroethane	4.84	0.05	ug/g	ND	121	60-130			
1,1-Dichloroethylene	4.24	0.05	ug/g	ND	106	60-130			
cis-1,2-Dichloroethylene	4.42	0.05	ug/g	ND	111	60-130			
trans-1,2-Dichloroethylene	4.17	0.05	ug/g	ND	104	60-130			
1,2-Dichloropropane	4.73	0.05	ug/g	ND	118	60-130			
cis-1,3-Dichloropropylene	2.48	0.05	ug/g	ND	62.0	60-130			
trans-1,3-Dichloropropylene	2.41	0.05	ug/g	ND	60.3	60-130			
Ethylbenzene	4.83	0.05	ug/g	ND	121	60-130			
Ethylene dibromide (dibromoethane, 1,2-	3.91	0.05	ug/g	ND	97.7	60-130			
Hexane	3.51	0.05	ug/g	ND	87.8	60-130			
Methyl Ethyl Ketone (2-Butanone)	12.7	0.50	ug/g	ND	127	50-140			
Methyl Isobutyl Ketone	9.64	0.50	ug/g	ND	96.4	50-140			
Methyl tert-butyl ether	10.8	0.05	ug/g	ND	108	50-140			
Methylene Chloride	3.87	0.05	ug/g	ND	96.8	60-130			
Styrene	3.62	0.05	ug/g	ND	90.6	60-130			
1,1,1,2-Tetrachloroethane	3.64	0.05	ug/g	ND	91.1	60-130			
1,1,2,2-Tetrachloroethane	2.60	0.05	ug/g	ND	65.0	60-130			
Tetrachloroethylene	4.18	0.05	ug/g	ND	105	60-130			
Toluene	4.94	0.05	ug/g	ND	123	60-130			
1,1,1-Trichloroethane	4.53	0.05	ug/g	ND	113	60-130			
1,1,2-Trichloroethane	4.28	0.05	ug/g	ND	107	60-130			
Trichloroethylene	5.06	0.05	ug/g	ND	127	60-130			
Trichlorofluoromethane	4.38	0.05	ug/g	ND	110	50-140			
Vinyl chloride	4.32	0.02	ug/g	ND	108	50-140			
m,p-Xylenes	8.83	0.05	ug/g	ND	110	60-130			
o-Xylene	4.48	0.05	ug/g	ND	112	60-130			
Surrogate: 4-Bromofluorobenzene	7.63		ug/g		95.3	50-140			
Surrogate: Dibromofluoromethane	8.57		ug/g		107	50-140			
Surrogate: Toluene-d8	8.31	0.00	ug/g		104	50-140			
Benzene	4.58	0.02	ug/g	ND	115	60-130			
Ethyldenzene	4.83	0.05	ug/g	ND	121	60-130			
	4.94	0.05	ug/g	ND	123	60-130			
m,p-Aylenes	8.83	0.05	ug/g	ND	110	60-130			
o-xyiene	4.48	0.05	ug/g	ND	112	60-130			

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Order #: 2111041

Report Date: 19-Mar-2021

Order Date: 5-Mar-2021

Project Description: 100441.001

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Toluene-d8	8.31		ug/g		104	50-140			

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Qualifier Notes:

Login Qualifiers :

Container and COC sample IDs don't match - Jar labelled as BH21-8 SA-3, the vial is labelled as BH21 SSA3, chain of custody reads BH20-8 SA-3 Applies to samples: BH20-8 SA-3

Container and COC sample IDs don't match - Vial labelled as BH21-5 SA102, chain of custody reads BH21-5 SA-101

Applies to samples: BH21-5 SA-101

Sample Qualifiers :

1: Elevated detection limits due to the nature of the sample matrix.

QC Qualifiers :

QM-01: The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

REVISION 1: This report includes an updated parameter list as per the client.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

C PARA (Parac E S	cel ID:	2111	041		urent Blvd. K1G 4J8 47 icellabs.com s.com	Par D	acel (Lab	Orde Use	r Nu Only	mber)		C	hain (Lat NO	Of Cu Use Of 130	stody nly) 456	
Client Name: GEMTEC			Proje	ect Ref:	100441.0	01				/				Pa	ige 📘 (of 1	
Contact Name: NS			Quot	e #: 21	-113	4								Turna	round	Time	
Address:			PO #	:		é,							🗆 1 day	/		3	day
32 Steacie Dr			E-mail: Dicole, Soucy Q.gen			tec.ca					,		🗆 2 day	1		X Re	egular
elephone: 613-836-1422												Da	ite Requ	ired:			
Regulation 153/04	Other Regulation		Matrix	Type: \$	(Soil/Sed.) GW	(Ground Water)	1.6			4		0					
🛛 Table 1 🗌 Res/Park 🗌 Med/Fine	REG 558 PWO	0	SW (S	urface W	/ater) SS (Storm,	/Sanitary Sewer)						Red	quired A	nalysis			
Table 2 Ind/Comm Coarse				P (P	aint) A(Air) O(Other)				Н							÷
Table 3 Agri/Other	SU - Sani SU - S	Storm		ers			BTEX			93							
Table	Mun:		a	ntain	Sam	ple Taken	L-F4+										
For RSC: 🗌 Yes 🛛 🕅 No	Other:	tric .	Volu				CS EI	Cc	Hs	tals		HWS	3				
Sample ID/Locatio	on Name	Ŵ	Air	0 #	Date	Time	Hd	\$	PAI	Š	Hg	5 8	õ				-
1 BH-21-1 SA-2			S	3	March 51	21	X			Х			X				1
2 BH21-3 SA-1				2			X		χ	χ							1
3 BH21-5 SA-1				2			X		Х	Х							-
4 BH21-5 SA-101				3			٢		Χ	۶							
5 BH216 SA-1	-			3			Х		X	х			X				į.
6 BH 21-6 SA-4				3			Х		-	х			X				
7 BH21-8 SA-2				12			×		х	×			X	¹			
8/ BH20-8 SA-3			,	2	*		X		X	×	\top				-		1
9											+			-	-		\top
10							-				+					+	\top
Comments:									I		M	ethod o	of Delivep	#			
													1	De	00	Bo	×
Relinquished By (Sign):	Receive	d By Driver	/Depot:	2		Received at Lab	Any	٨٨		n	We	rifield	Mr.		-1	a	#
Relinquished By (Print):	Date/Ti	me:	(6	2	<u>.</u>	Date/Sime.	a ar	1	1	1.1	Da	term	Co	2	1		7
Nicole Soney	Temper	ature:	031	051	201 4.1	Temperature:	offi	64	°C	1/ 1	U ob	Verifi	ed D	BV	271	45	8_
Moven S/al	- competition		6.	2	Devision 0.0		11				- Pr	, renti				NA	

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Nicole Soucy

Client PO: Project: 100441.001 Custody: 129775

Revised Report

Report Date: 19-Mar-2021 Order Date: 15-Mar-2021

Order #: 2112125

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2112125-01	BH21-2 SA-1
2112125-02	BH21-7 SA-1
2112125-03	BH21-4 SA-1
2112125-04	BH21-4 SA-6
2112125-05	BH21-4 SA-101

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Analysis Summary Table

Report Date: 19-Mar-2021 Order Date: 15-Mar-2021

Project Description: 100441.001

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.7 - ICP-OES	17-Mar-21	17-Mar-21
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	16-Mar-21	16-Mar-21
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	15-Mar-21	17-Mar-21
Conductivity	MOE E3138 - probe @25 °C, water ext	17-Mar-21	17-Mar-21
Cyanide, free	MOE E3015 - Auto Colour, water extraction	16-Mar-21	17-Mar-21
Mercury by CVAA	EPA 7471B - CVAA, digestion	17-Mar-21	17-Mar-21
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	16-Mar-21	16-Mar-21
PHC F1	CWS Tier 1 - P&T GC-FID	16-Mar-21	16-Mar-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	16-Mar-21	16-Mar-21
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	17-Mar-21	17-Mar-21
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	16-Mar-21	16-Mar-21
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	16-Mar-21	16-Mar-21
SAR	Calculated	17-Mar-21	17-Mar-21
Solids, %	Gravimetric, calculation	16-Mar-21	16-Mar-21

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021 Order Date: 15-Mar-2021

Project Description: 100441.001

	Client ID:	BH21-2 SA-1	BH21-7 SA-1	BH21-4 SA-1	BH21-4 SA-6
	Sample Date:	15-Mar-21 09:00	15-Mar-21 09:00	15-Mar-21 09:00	15-Mar-21 09:00
	Sample ID:	2112125-01 Soil	2112125-02 Soil	2112125-03 Soil	2112125-04 Soil
Physical Characteristics	MDL/Units	001		001	001
% Solids	0.1 % by Wt.	91.0	74.6	82.5	76.0
General Inorganics					
SAR	0.01 N/A	1.09	0.61	1.39	0.36
Conductivity	5 uS/cm	576	306	563	162
Cyanide, free	0.03 ug/g dry	<0.03	<0.03	<0.03	<0.03
рН	0.05 pH Units	7.62	7.42	7.53	7.86
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	4.3	2.9	2.6	3.2
Barium	1.0 ug/g dry	144	162	127	110
Beryllium	0.5 ug/g dry	<0.5	0.6	<0.5	<0.5
Boron	5.0 ug/g dry	7.7	6.9	<5.0	5.5
Boron, available	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	30.9	41.9	41.8	21.8
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	8.6	9.4	9.5	7.8
Copper	5.0 ug/g dry	18.7	21.6	20.8	21.5
Lead	1.0 ug/g dry	8.7	7.9	15.4	5.4
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	1.8	1.1	1.1	1.3
Nickel	5.0 ug/g dry	19.9	22.2	24.4	17.5
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	34.3	44.9	43.1	34.7
Zinc	20.0 ug/g dry	51.8	57.7	51.5	33.1
Volatiles					
Acetone	0.50 ug/g dry	-	-	<0.50	<0.50
Benzene	0.02 ug/g dry	-	-	<0.02	<0.02
Bromodichloromethane	0.05 ug/g dry	-	-	<0.05	<0.05
Bromoform	0.05 ug/g dry	-	-	<0.05	<0.05
Bromomethane	0.05 ug/g dry	-	-	<0.05	<0.05
Carbon Tetrachloride	0.05 ug/g dry	-	-	<0.05	<0.05

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date:	BH21-2 SA-1 15-Mar-21 09:00	BH21-7 SA-1	BH21-4 SA-1 15-Mar-21 09:00	BH21-4 SA-6
	Sample ID:	2112125-01	2112125-02	2112125-03	2112125-04
	MDL/Units	Soil	Soil	Soil	Soil
Chlorobenzene	0.05 ug/g dry	-	-	<0.05	<0.05
Chloroform	0.05 ug/g dry	-	-	<0.05	<0.05
Dibromochloromethane	0.05 ug/g dry	-	-	<0.05	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	<0.05
1,1-Dichloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,2-Dichloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
1,2-Dichloropropane	0.05 ug/g dry	-	-	<0.05	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	-	<0.05	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	-	<0.05	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	-	-	<0.05	<0.05
Ethylbenzene	0.05 ug/g dry	-	-	<0.05	<0.05
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	-	-	<0.05	<0.05
Hexane	0.05 ug/g dry	-	-	<0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	-	<0.50	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	-	-	<0.50	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	-	-	<0.05	<0.05
Methylene Chloride	0.05 ug/g dry	-	-	<0.05	<0.05
Styrene	0.05 ug/g dry	-	-	<0.05	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
Tetrachloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
Toluene	0.05 ug/g dry	-	-	<0.05	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	-	-	<0.05	<0.05
Trichloroethylene	0.05 ug/g dry	-	-	<0.05	<0.05
Trichlorofluoromethane	0.05 ug/g dry	-	-	<0.05	<0.05
Vinyl chloride	0.02 ug/g dry	-	-	<0.02	<0.02
m,p-Xylenes	0.05 ug/g dry	-	-	<0.05	<0.05
o-Xylene	0.05 ug/g dry	-	-	<0.05	<0.05

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Order #: 2112125

Report Date: 19-Mar-2021 Order Date: 15-Mar-2021

Project Description: 100441.001

	Client ID:	BH21-2 SA-1	BH21-7 SA-1	BH21-4 SA-1	BH21-4 SA-6
	Sample Date:	15-Mar-21 09:00	15-Mar-21 09:00	15-Mar-21 09:00	15-Mar-21 09:00
	Sample ID:	2112125-01 Soil	2112125-02 Soil	2112125-03 Soil	2112125-04 Soil
Yulanca tatal	0.05 µg/g dp/	301	3011	-0.05	-0.05
A-Bromofluorobenzene	Surrogate	-	-	<0.05	<0.05
Dibromofluoromethane	Surrogate	-	-	86.1%	88.2%
Toluene-d8	Surrogate	-	-	117%	117%
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene-d8	Surrogate	117%	117%	-	-
Hydrocarbons			-		
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	<6
Semi-Volatiles			-		
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Anthracene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Benzo [a] anthracene	0.02 ug/g dry	<0.02	<0.02	0.02	-
Benzo [a] pyrene	0.02 ug/g dry	<0.02	<0.02	0.02	-
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	<0.02	0.02	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Chrysene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Fluoranthene	0.02 ug/g dry	<0.02	<0.02	0.05	-
Fluorene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	<0.04	-
Naphthalene	0.01 ug/g dry	<0.01	<0.01	<0.01	-
Phenanthrene	0.02 ug/g dry	<0.02	<0.02	0.03	-
Pyrene	0.02 ug/g dry	<0.02	<0.02	0.05	-
2-Fluorobiphenyl	Surrogate	68.6%	77.3%	84.0%	-

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021 Order Date: 15-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date: Sample ID:	BH21-2 SA-1 15-Mar-21 09:00 2112125-01	BH21-7 SA-1 15-Mar-21 09:00 2112125-02	BH21-4 SA-1 15-Mar-21 09:00 2112125-03	BH21-4 SA-6 15-Mar-21 09:00 2112125-04
	MDL/Units	Soil	Soil	Soil	Soil
Terphenyl-d14	Surrogate	96.3%	109%	117%	-

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

	Client ID:	BH21-4 SA-101	-	-	-
	Sample Date:	15-Mar-21 09:00	-	-	-
	Sample ID:	2112125-05	-	-	-
Physical Characteristics	MDL/Units	301	-	-	-
% Solids	0.1 % by Wt.	83.7	_	_	_
General Inorganics		00.7		_	
SAR	0.01 N/A	1.15	-	-	-
Conductivity	5 uS/cm	564	-	-	-
Cyanide, free	0.03 ug/g dry	<0.03	-	-	-
рН	0.05 pH Units	7.59	-	-	-
Metals			-	-	
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	3.0	-	-	-
Barium	1.0 ug/g dry	113	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	5.4	-	-	-
Boron, available	0.5 ug/g dry	<0.5	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	29.7	-	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	7.9	-	-	-
Copper	5.0 ug/g dry	16.8	-	-	-
Lead	1.0 ug/g dry	10.7	-	-	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	1.6	-	-	-
Nickel	5.0 ug/g dry	19.6	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	36.1	-	-	-
Zinc	20.0 ug/g dry	41.2	-	-	-
Volatiles	I		1	1	
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date		-	-	-
	Sample Date:	2112125-05	-	-	-
	MDL/Units	Soil	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	0.37	-	-	-
o-Xylene	0.05 ug/g dry	0.09	-	-	-

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date: Sample ID:	BH21-4 SA-101 15-Mar-21 09:00 2112125-05	- - -	- - -	- - -
	MDL/Units	Soil	-	-	-
Xylenes, total	0.05 ug/g dry	0.46	-	-	-
4-Bromofluorobenzene	Surrogate	117%	-	-	-
Dibromofluoromethane	Surrogate	90.1%	-	-	-
Toluene-d8	Surrogate	117%	-	-	-
Hydrocarbons	· · ·				
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	8	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	9	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	-	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	<0.02	-	-	-
Acenaphthylene	0.02 ug/g dry	<0.02	-	-	-
Anthracene	0.02 ug/g dry	<0.02	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	<0.02	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	<0.02	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Chrysene	0.02 ug/g dry	<0.02	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	-	-
Fluoranthene	0.02 ug/g dry	<0.02	-	-	-
Fluorene	0.02 ug/g dry	<0.02	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	-
Naphthalene	0.01 ug/g dry	<0.01	-	-	-
Phenanthrene	0.02 ug/g dry	<0.02	-	-	-
Pyrene	0.02 ug/g dry	<0.02	-	-	-
2-Fluorobiphenyl	Surrogate	78.4%	-	-	-
Terphenyl-d14	Surrogate	112%	-	-	-

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

Method Quality Control: Blank

	Reporting		Source			%REC	RPD		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Cyanide, free	ND	0.03	ug/g						
Hydrocarbons									
E1 PHCs (C6-C10)	ND	7	ua/a						
F2 PHCs (C10-C16)	ND	4	ua/a						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ua/a						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron, available	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
	ND	0.5	ug/g						
Chromium (VI)		0.2	ug/g						
Cobalt		5.0 1.0	ug/g						
Copper		5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Zinc		20.0	ug/g						
Semi-Volatiles	ND	20.0	ug/g						
		0.02							
Acenaphthylene		0.02	ug/g						
Anthracene		0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ua/a						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene		0.02	ug/g						
Indeno [1 2 3-cd] pyrene		0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.07		ug/g		79.9	50-140			
Surrogate: Ierphenyl-d14	1.55		ug/g		116	50-140			
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromomethane		0.05	ug/g						
Diomoniculanc	ND	0.05	uy/y						

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Carbon Tetrachloride	ND	0.05	ua/a						
Chlorobenzene	ND	0.05	ua/a						
Chloroform	ND	0.05	ua/a						
Dibromochloromethane	ND	0.05	ua/a						
Dichlorodifluoromethane	ND	0.05	ua/a						
1.2-Dichlorobenzene	ND	0.05	ua/a						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	8.71		ug/g		109	50-140			
Surrogate: Dibromofluoromethane	7.43		ug/g		92.8	50-140			
Surrogate: Toluene-d8	9.39		ug/g		117	50-140			
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	9.39		ug/g		117	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Order #: 2112125

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

Method Quality Control: Duplicate

	F	Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
SAR	0.15	0.01	N/A	0.15			0.0	30	
Conductivity	117	5	uS/cm	118			0.9	5	
Cyanide, free	ND	0.03	ug/g dry	ND			NC	35	
рН	7.00	0.05	pH Units	7.05			0.7	2.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ua/a dry	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g dry				NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g dry				NC	30	
F4 PHCs (C34-C50)	19	6	ug/g dry	19			0.9	30	
Notals	10	Ū.		10			0.0		
Wetais									
Antimony	2.3	1.0	ug/g dry	ND			NC	30	
Arsenic	1.8	1.0	ug/g dry	1.8			2.8	30	
Barium	18.2	1.0	ug/g dry	17.8			2.2	30	
Beryllium	ND	0.5	ug/g dry	ND			NC	30	
Boron, available	ND	0.5	ug/g dry	ND			NC	35	
Boron	ND	5.0	ug/g dry	ND			NC	30	
Cadmium	ND	0.5	ug/g dry	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g dry	ND			NC	35	
Chromium	9.0	5.0	ug/g dry	9.0			0.0	30	
Cobalt	2.3	1.0	ug/g dry	2.2			4.1	30	
Copper	ND	5.0	ug/g dry	ND			NC	30	
Lead	8.2	1.0	ug/g dry	8.0			2.3	30	
Mercury	ND	0.1	ug/g dry	ND			NC	30	
Molybdenum	ND	1.0	ug/g dry	ND			NC	30	
Nickel	ND	5.0	ug/g dry	ND			NC	30	
Selenium	ND	1.0	ug/g dry	ND			NC	30	
Silver	ND	0.3	ug/g dry	ND			NC	30	
Thallium	ND	1.0	ug/g dry	ND			NC	30	
Uranium	ND	1.0	ug/g dry	ND			NC	30	
Vanadium	19.3	10.0	ug/g dry	20.9			8.1	30	
Zinc	ND	20.0	ug/g dry	ND			NC	30	
Physical Characteristics									
% Solids	80.1	0.1	% by Wt.	80.4			0.4	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g dry	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g dry	ND			NC	40	
Anthracene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [a] anthracene	0.025	0.02	ug/g dry	ND			NC	40	
Benzo [a] pyrene	0.027	0.02	ug/g dry	ND			NC	40	
Benzo [b] fluoranthene	0.027	0.02	ug/g dry	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND			NC	40	
Chrysene	0.032	0.02	ug/g dry	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND			NC	40	
Fluoranthene	0.072	0.02	ug/g dry	0.041			NC	40	
Fluorene	ND	0.02	ug/g dry	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g dry	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g dry	0.034			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g dry	0.047			NC	40	
Naphthalene	ND	0.01	ug/g dry	0.032			NC	40	
Phenanthrene	0.050	0.02	ug/g dry	0.039			25.3	40	
Pyrene	0.057	0.02	ug/g dry	0.034			NC	40	
Surrogate: 2-Fluorobiphenyl	1.31		ug/g dry		79.2	50-140			
Surrogate: Terphenyl-d14	1.86		ug/g dry		112	50-140			
Volatiles									

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Method Quality Control: Duplicate

Report Date: 19-Mar-2021 Order Date: 15-Mar-2021

Project Description: 100441.001

		Reporting		Courses				ססס	
Analyte	Result	Limit	Unite	Source	% DEC	%REC	PPD	Limit	Notes
	rtoodit		Offics	Result	/0IXLO	Linit	N D	LIIIII	Notes
Acetone	ND	0.50	ug/g dry	ND			NC	50	
Benzene	ND	0.02	ug/g dry	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g dry	ND			NC	50	
Bromoform	ND	0.05	ug/g dry	ND			NC	50	
Bromomethane	ND	0.05	ug/g dry	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
Chloroform	ND	0.05	ug/g dry	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g dry	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g dry	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g dry	ND			NC	50	
Hexane	ND	0.05	ug/g dry	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g dry	ND			NC	50	
Styrene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND			NC	50	
Toluene	ND	0.05	ug/g dry	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g dry	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g dry	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g dry	ND			NC	50	
o-Xylene	ND	0.05	ug/g dry	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	12.3		ug/g dry		115	50-140			
Surrogate: Dibromofluoromethane	9.36		ug/g dry		87.3	50-140			
Surrogate: Toluene-d8	12.6		uq/q dry		117	50-140			
Benzene	ND	0.02	ua/a drv	ND			NC	50	
Ethylbenzene	ND	0.05	ua/a drv	ND			NC	50	
Toluene	ND	0.05	ug/g drv	ND			NC	50	
m.p-Xvlenes	ND	0.05	ua/a drv	ND			NC	50	
o-Xylene	ND	0.05	ug/g drv	ND			NC	50	
Surrogate: Toluene-d8	12.6		ug/g dry		117	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
Cyanide, free	0.272	0.03	ug/g	ND	90.8	70-130			
Hydrocarbons									
F1 PHCs (C6-C10)	206	7	ua/a	ND	103	80-120			
F2 PHCs (C10-C16)	70	4	ua/a	ND	78.8	60-140			
F3 PHCs (C16-C34)	226	8	ua/a	ND	104	60-140			
F4 PHCs (C34-C50)	154	6	uq/q	19	97.7	60-140			
Metals									
Antimony	43.6	1.0	ua/a		86.6	70-130			
Arsonic	43.0	1.0	ug/g		00.0	70-130			
Barium	5/ 1	1.0	ug/g	7 1	03.0	70-130			
Benyllium	50.3	0.5	ug/g		100	70-130			
Beron, available	1 96	0.5	ug/g		07.2	70-130			
Boron	4.00	5.0	ug/g		97.2	70-122			
Codmium	40.9	0.5	ug/g		02.4	70-130			
	40.2	0.5	ug/g		92.4	70-130			
Chromium	0.2	0.2	ug/g		104	70-130			
Cholt	50.0	5.0	ug/g	ND	104	70-130			
Copper	40.5	5.0	ug/g		99.0	70-130			
	49.0	5.0	ug/g	2.2	90.1	70-130			
Leau	44.0	1.0	ug/g	3.2	03.Z	70-130			
Meliciale sure	1.00	0.1	ug/g	ND	105	70-130			
Nolybaenum	48.8	1.0	ug/g	ND	97.2	70-130			
	49.5	5.0	ug/g	ND	95.6	70-130			
Selenium	43.1	1.0	ug/g	ND	85.8	70-130			
	44.9	0.3	ug/g	ND	89.8	70-130			
Inallium	42.4	1.0	ug/g	ND	84.7	70-130			
Uranium	44.6	1.0	ug/g	ND	88.9	70-130			
	60.1	10.0	ug/g	ND	103	70-130			
Zinc	52.9	20.0	ug/g	ND	92.7	70-130			
Semi-Volatiles									
Acenaphthene	0.237	0.02	ug/g	ND	114	50-140			
Acenaphthylene	0.230	0.02	ug/g	ND	111	50-140			
Anthracene	0.254	0.02	ug/g	ND	122	50-140			
Benzo [a] anthracene	0.235	0.02	ug/g	ND	113	50-140			
Benzo [a] pyrene	0.242	0.02	ug/g	ND	117	50-140			
Benzo [b] fluoranthene	0.258	0.02	ug/g	ND	124	50-140			
Benzo [g,h,i] perylene	0.219	0.02	ug/g	ND	106	50-140			
Benzo [k] fluoranthene	0.258	0.02	ug/g	ND	125	50-140			
Chrysene	0.253	0.02	ug/g	ND	122	50-140			
Dibenzo [a,h] anthracene	0.204	0.02	ug/g	ND	98.3	50-140			
Fluoranthene	0.251	0.02	ug/g	0.041	101	50-140			
Fluorene	0.220	0.02	ug/g	ND	106	50-140			
Indeno [1,2,3-cd] pyrene	0.220	0.02	ug/g	ND	106	50-140			
1-Methylnaphthalene	0.235	0.02	ug/g	0.034	97.0	50-140			
2-Methylnaphthalene	0.256	0.02	ug/g	0.047	101	50-140			
Naphthalene	0.277	0.01	ug/g	0.032	118	50-140			
Phenanthrene	0.270	0.02	ug/g	0.039	111	50-140			
Pyrene	0.289	0.02	ug/g	0.034	123	50-140			
Surrogate: 2-Fluorobiphenyl	1.41		ug/g		84.8	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Terphenyl-d14	1.96		ug/g		118	50-140			
Volatiles									
Acetone	8.40	0.50	ug/g	ND	84.0	50-140			
Benzene	4.42	0.02	ug/g	ND	111	60-130			
Bromodichloromethane	3.61	0.05	ug/g	ND	90.1	60-130			
Bromoform	2.45	0.05	ug/g	ND	61.3	60-130			
Bromomethane	4.62	0.05	ug/g	ND	116	50-140			
Carbon Tetrachloride	2.81	0.05	ug/g	ND	70.3	60-130			
Chlorobenzene	4.47	0.05	ug/g	ND	112	60-130			
Chloroform	3.93	0.05	ug/g	ND	98.3	60-130			
Dibromochloromethane	3.05	0.05	ug/g	ND	76.2	60-130			
Dichlorodifluoromethane	4.30	0.05	ug/g	ND	108	50-140			
1,2-Dichlorobenzene	4.29	0.05	ug/g	ND	107	60-130			
1,3-Dichlorobenzene	4.23	0.05	ug/g	ND	106	60-130			
1,4-Dichlorobenzene	4.24	0.05	ug/g	ND	106	60-130			
1,1-Dichloroethane	4.24	0.05	ug/g	ND	106	60-130			
1,2-Dichloroethane	3.92	0.05	ug/g	ND	97.9	60-130			
1,1-Dichloroethylene	4.58	0.05	ug/g	ND	115	60-130			
cis-1,2-Dichloroethylene	4.27	0.05	ug/g	ND	107	60-130			
trans-1,2-Dichloroethylene	4.30	0.05	ug/g	ND	107	60-130			
1,2-Dichloropropane	4.78	0.05	ug/g	ND	120	60-130			
cis-1,3-Dichloropropylene	3.70	0.05	ug/g	ND	92.5	60-130			
trans-1,3-Dichloropropylene	3.07	0.05	ug/g	ND	76.7	60-130			
Ethylbenzene	4.49	0.05	ug/g	ND	112	60-130			
Ethylene dibromide (dibromoethane, 1,2-	4.32	0.05	ug/g	ND	108	60-130			
Hexane	4.02	0.05	ug/g	ND	100	60-130			
Methyl Ethyl Ketone (2-Butanone)	11.5	0.50	ug/g	ND	115	50-140			
Methyl Isobutyl Ketone	10.2	0.50	ug/g	ND	102	50-140			
Methyl tert-butyl ether	8.01	0.05	ug/g	ND	80.1	50-140			
Methylene Chloride	3.87	0.05	ug/g	ND	96.8	60-130			
Styrene	4.52	0.05	ug/g	ND	113	60-130			
1,1,1,2-Tetrachloroethane	2.97	0.05	ug/g	ND	74.2	60-130			
1,1,2,2-Tetrachloroethane	4.63	0.05	ug/g	ND	116	60-130			
Tetrachloroethylene	4.91	0.05	ug/g	ND	123	60-130			
Toluene	5.16	0.05	ug/g	ND	129	60-130			
1,1,1-Trichloroethane	3.89	0.05	ug/g	ND	97.2	60-130			
1,1,2-Trichloroethane	4.88	0.05	ug/g	ND	122	60-130			
Trichloroethylene	4.58	0.05	ug/g	ND	114	60-130			
Trichlorofluoromethane	3.38	0.05	ug/g	ND	84.4	50-140			
Vinyl chloride	3.87	0.02	ug/g	ND	96.8	50-140			
m,p-Xylenes	9.04	0.05	ug/g	ND	113	60-130			
o-Xylene	4.28	0.05	ug/g	ND	107	60-130			
Surrogate: 4-Bromofluorobenzene	8.31		ug/g		104	50-140			
Surrogate: Dibromofluoromethane	7.20		ug/g		90.1	50-140			
Surrogate: Toluene-d8	8.64	0.00	ug/g	ND	108	50-140			
	4.42	0.02	ug/g		117	60 400			
	4.49	0.05	ug/g		112	60 400			
	5.16	0.05	ug/g		129	60 130			
	9.04	0.05	ug/g		113	00-130			
0-Aylene	4.28	0.05	ug/g	ND	107	00-130			

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Order #: 2112125

Report Date: 19-Mar-2021

Order Date: 15-Mar-2021

Project Description: 100441.001

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Toluene-d8	8.64		ug/g		108	50-140			

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Qualifier Notes:

QC Qualifiers :

Sample Data Revisions

None

Work Order Revisions / Comments:

REVISION 1: This report includes an updated parameter list as per the client.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

	Parace		: 21)	1212	5	rent Blvd. K1G 4J8 7 ellabs.com .com	Pai Z	racel (Lat	Ord b Usi	er Ni e On 2	umb ly)	er		Chai (I NO	n Of Co ab Use C 12	ustody ^{Dnly)} 9775	
Client Name: Gentec			Proje	ct Ref:	10044	1.001		1					-		Page	of [
contact Name: NS			Quot	e #:	21-113									Turi	naround	Time	
Address: 27 cloarie Quive			PO #:											1 day		□ 3	day
Si Aller			E-mai	1:	nicole.sou	icy ogent	ec,	CCY				,		2 day		NG- R€	egular
Telephone: 613-336 - 1422						()							Date	Required:			-
Regulation 153/04 Other	Regulation		Matrix	Tuno:	E /Soil/Sod) GW/	Ground Weber											
🖌 Table 1 🗌 Res/Park 🗌 Med/Fine 🗌 REG 558	D PWQ0	1	SW (Su	irface V	Vater) SS (Storm/S	Ground Water) Sanitary Sewer)						Required Analysis					
Table 2 Ind/Comm Coarse CCME	🗆 MISA	A P (Paint) A (Air) O (Other)								Τ				T			
Table 3 Agri/Other SU - Sani	🛛 SU - Storm			sis			BTEX			8							
TableMun:			a	taine	Samp	le Taken	F4+8			E N				6			
For RSC: Yes KNo Other:		trix	Volu	f Con			E S	s	s	als b			WS)	N.			
Sample ID/Location Name		Ň	Air	0 #	Date	Time	PHG	NON N	PAH	Met	θŰ	C_	B (H	^O			
1 BHZ1-Z SA-1		5	MA	2	March 15/2	ι	\times		Х	×							
2 BH21-7 SA-1		1		2			\times		Х	×							
3 BH21-4 54-1				23	3		X		X	X				<		-	1
4 BHZI - 4 54-6	-			3			X			X				×			+
5 BHZ1 - 4 5A-101				2			Х		×	X		1					-
6 BHZI - 4 5A-106		J	V	1			ŕ		-				1.	X			
7											+	+	ť				
8									-		+	+	╈				-
9									-		+	+	┢				
10										+	-	-	┢				
omments:											A	Aetho	d of D	elivery			
												T		201			
elinquished By (Sign):	Received By Dri	ver/D	epot:			Received at Lab:	min	7	ſ		V	erifie	d By	S		-	2
elinquished By (Print): Q Engl	Date/Time:	XX	4	12.	Linut.	Date	A VA	1	-	NOV	m a	ate/T	ime	10	-	1/1	12
ate/Time: Matala LT (2021 12"00	Temperature:	10	015	121	°C	Temperature: Z	10,0	1	0L °C	t.d	2	ui ve	(Red	2-	52	16,	5)
Chain of Custody (Env.) xlsx			0.0		Pauleian 0.0	9	0		C		P	et ver	med:	Ш ву:			

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

GEMTEC Consulting	g Engineers and Scientists Limited				
32 Steacie Drive		Tel: (6	13) 836-1422		
Kanata, ON K2K 2A9		Fax: (613) 836-97			
Attn: Nicole Soucy					
Paracel Report No	2111041	Order Date:	05-Mar-21		
Client Project(s):	100441.001	Report Date:	10-Mar-21		
Client PO:					
Reference:	#21-113 Gemtec - 100441.00 - 3955 Kelly Farm Drive				
CoC Number:	130456				

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
2111041-01	BH-21-1 SA-2	Pesticides - Organochlorine in soil
2111041-05	BH21-6 SA-1	Pesticides - Organochlorine in soil
2111041-06	BH21-6 SA-4	Pesticides - Organochlorine in soil
2111041-07	BH21-8 SA-2	Pesticides - Organochlorine in soil

53 Table 1 Soil Stringent Criteria
1
21
21
1

WORK ORDER SUMMARY

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH-21-1 SA-2	1624131	Soil	None		3/5/2021	
BH-21-6 SA-1	1624132	Soil	None		3/5/2021	
BH-21-6 SA-4	1624133	Soil	None		3/5/2021	
BH-21-8 SA-2	1624134	Soil	None		3/5/2021	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In-House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

Paracel Laboratories Ltd.- Ottawa

CERTIFICATE OF ANALYSIS

Work Order Number: 424823

This report has been approved by:

Fal Halvon

Brad Halvorson, B.Sc. Laboratory Director

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 424823

WORK ORDER RESULTS

Sample Description	BH - 21 -	1 SA - 2	BH - 21 -	6 SA - 1	BH - 21 -	6 SA - 4	BH - 21 -	8 SA - 2		
Sample Date	3/5/2021	3/5/2021 12:00 AM		12:00 AM	3/5/2021	12:00 AM	3/5/2021	12:00 AM		
Lab ID	1624	4131	1624132		1624	4133	1624	1134		
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Stringent Criteria
% Moisture	23.3	0.1	28.1	0.1	20.0	0.1	15.2	0.1	%	~
Sample Description	BH - 21 -	- 1 SA - 2	BH - 21 - 6 SA - 1		BH - 21 - 6 SA - 4		BH - 21 - 8 SA - 2			
Sample Date	3/5/2021	12:00 AM	3/5/2021 12:00 AM		3/5/2021 12:00 AM		3/5/2021 12:00 AM			
Lab ID	1624	4131	1624132		1624133		1624134			
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Stringent Criteria
2,4'-DDD	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~
2,4'-DDE	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~
2,4'-DDT	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~
4,4'-DDD	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~
4,4'-DDE	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~
4,4'-DDT	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~
Aldrin	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.05
DDE (Total) (Calc.)	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.078

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 424823

Sample Description	BH - 21 -	- 1 SA - 2	BH - 21 - 6 SA - 1		BH - 21 - 6 SA - 4		BH - 21 - 8 SA - 2		BH - 21 - 8 SA - 2			
Sample Date	3/5/2021	12:00 AM	3/5/2021	12:00 AM	3/5/2021	12:00 AM	3/5/2021	12:00 AM				
Lab ID	1624	4131	1624	1624132		4133	1624134					
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Stringent Criteria		
Decachlorobiphenyl (Surr.)	124	N/A	136	N/A	132	N/A	112 [113]	N/A	% Rec	~		
Dieldrin	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.05		
Endosulfan I	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~		
Endosulfan I + II (Calc.)	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.04		
Endosulfan II	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~		
Endosulfan sulfate	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~		
Endrin	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.04		
Endrin aldehyde	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~		
Heptachlor	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.05		
Heptachlor epoxide	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.05		
Hexachlorobenzene	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.01		
Hexachlorobutadiene	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.01		
Hexachloroethane	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.01		
Methoxychlor	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.05		
Mirex	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~		
Oxychlordane	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~		

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 424823

Sample Description	BH - 21 -	- 1 SA - 2	BH - 21 - 6 SA - 1		BH - 21 - 6 SA - 4		BH - 21 - 8 SA - 2					
Sample Date	3/5/2021	12:00 AM	3/5/2021	12:00 AM	3/5/2021 12:00 AM		3/5/2021 12:00 AM		3/5/2021 12:00 AM			
Lab ID	1624131		1624132		1624133		1624	1134				
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Stringent Criteria		
ß-BHC	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~		
α - Chlordane	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	µg/g	~		
α + γ -Chlordane (Calc.)	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	µg/g	0.05		
α-BHC	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	µg/g	~		
γ - Chlordane	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~		
γ-BHC (Lindane)	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	0.01		
δ-ΒΗC	<0.009	0.009	<0.009	0.009	<0.01	0.01	<0.01 [<0.009]	0.01	μg/g	~		

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 424823

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. If multiple re-runs exist they are suffixed by a number. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis.

MDL: Method detection limit or minimum reporting limit.

[]: Results for laboratory replicates are shown in square brackets immediately below the associated sample result for ease of comparison.

% Rec: Surrogate compounds are added to the sample in some cases and the recovery is reported as a % recovered.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Field Data: Reports containing Field Parameters represent data that has been collected and provided by the client. Testmark is not responsible for the validity of this data which may be used in subsequent calculations. Sample Condition Deviations: A noted sample condition deviation may affect the validity of the result. Results apply to the sample(s) as received.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

GEMTEC Consulting	g Engineers and Scientists Limited			
32 Steacie Drive		Tel: (613) 836-1422		
Kanata, ON K2K 2A9		Fax: (613) 836-973		
Attn: Nicole Soucy				
Paracel Report No	2112125	Order Date:	15-Mar-21	
Client Project(s):	100441.001	Report Date:	18-Mar-21	
Client PO:				
Reference:	#21-113 Gemtec - 100441.00 - 3955 Kelly Farm Drive			
CoC Number:	129775			

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
2112125-03	BH21-4 SA-1	Pesticides - Organochlorine in soil
2112125-04	BH21-4 SA-6	Pesticides - Organochlorine in soil
2112125-06	BH21-4 SA-106	Pesticides - Organochlorine in soil

Client:	Dale Robertson	Work Order Number:	425489
Company:	Paracel Laboratories Ltd Ottawa	PO #:	
Address:	300-2319 St. Laurent Blvd.	Regulation:	O.Reg 153 Table 1 Soil Stringent Criteria
	Ottawa, ON, K1G 4J8	Project #:	2112125
Phone/Fax:	(613) 731-9577 / (613) 731-9064	DWS #:	
Email:	drobertson@paracellabs.com	Sampled By:	
Date Order Received:	3/17/2021	Analysis Started:	3/19/2021
Arrival Temperature:	15 °C	Analysis Completed:	3/23/2021

WORK ORDER SUMMARY

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH21-4 SA-1	1626284	Soil	None		3/15/2021	
BH21-4 SA-6	1626285	Soil	None		3/15/2021	
BH21-4 SA-106	1626286	Soil	None		3/15/2021	

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Moisture (A99)	Garson	Determination of Percent Moisture	In-House
OCPs Soil (A19)	Garson	Determination of Organochlorine Pesticides in Soil by GC/ECD	Modified from SW846-8081B

Paracel Laboratories Ltd.- Ottawa

CERTIFICATE OF ANALYSIS

Work Order Number: 425489

This report has been approved by:

Fal Halvon

Brad Halvorson, B.Sc. Laboratory Director

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 425489

WORK ORDER RESULTS

Sample Description	BH21 - 4	4 SA - 1	BH21 -	4 SA - 6	BH21 - 4	SA - 106		
Sample Date	3/15/2021	12:00 AM	3/15/2021	12:00 AM	3/15/2021	12:00 AM		
Lab ID	1626	6284	1626	6285	1626	6286		
General Chemistry	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Stringent Criteria
% Moisture	16.2	0.1	20.9	0.1	17.3	0.1	%	~
Sample Description	BH21 - 4	4 SA - 1	BH21 -	4 SA - 6	BH21 - 4	SA - 106		
Sample Date	3/15/2021	12:00 AM	3/15/2021	12:00 AM	3/15/2021	12:00 AM		
Lab ID	1626	6284	1626	6285	1620	6286		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Stringent Criteria
2,4'-DDD	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDE	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
2,4'-DDT	<0.009	0.009	<0.01	0.01	<0.01	0.01	µg/g	~
4,4'-DDD	<0.009	0.009	<0.01	0.01	<0.01	0.01	µg/g	~
4,4'-DDE	<0.009	0.009	<0.01	0.01	<0.01	0.01	µg/g	~
4,4'-DDT	<0.009	0.009	<0.01	0.01	<0.01	0.01	µg/g	~
Aldrin	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDD (Total) (Calc.)	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDE (Total) (Calc.)	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.05
DDT (Total) (Calc.)	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.078
Decachlorobiphenyl (Surr.)	129	N/A	122	N/A	127	N/A	% Rec	~
Dieldrin	<0.009	0.009	<0.01	0.01	<0.01	0.01	µg/g	0.05
Endosulfan I	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan I + II (Calc.)	<0.009	0.009	<0.01	0.01	<0.01	0.01	µg/g	0.04

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 425489

Sample Description	BH21 - 4	4 SA - 1	BH21 -	4 SA - 6	BH21 - 4	SA - 106		
Sample Date	3/15/2021 12:00 AM		3/15/2021 12:00 AM		3/15/2021 12:00 AM			
Lab ID	1626	6284	1620	6285	1620	6286		
OC Pesticides	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: O.Reg 153 Table 1 Soil Stringent Criteria
Endosulfan II	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
Endosulfan sulfate	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
Endrin	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.04
Endrin aldehyde	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
Heptachlor	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.05
Heptachlor epoxide	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.05
Hexachlorobenzene	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.01
Hexachlorobutadiene	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.01
Hexachloroethane	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.01
Methoxychlor	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.05
Mirex	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
Oxychlordane	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
ß-BHC	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
α - Chlordane	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
α + γ -Chlordane (Calc.)	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.05
α-BHC	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
γ - Chlordane	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~
γ-BHC (Lindane)	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	0.01
δ-ΒΗC	<0.009	0.009	<0.01	0.01	<0.01	0.01	μg/g	~

Paracel Laboratories Ltd.- Ottawa

Work Order Number: 425489

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

[rr]: After a parameter name indicates a re-run of that parameter. If multiple re-runs exist they are suffixed by a number. Sample may not have been handled according to the recommended temperature, hold time and head space requirements of the method after the initial analysis.

MDL: Method detection limit or minimum reporting limit.

% Rec: Surrogate compounds are added to the sample in some cases and the recovery is reported as a % recovered.

~: In a criteria column indicates the criteria is not applicable for the parameter row.

Quality Control: All associated Quality Control data is available on request.

Field Data: Reports containing Field Parameters represent data that has been collected and provided by the client. Testmark is not responsible for the validity of this data which may be used in subsequent calculations.

Sample Condition Deviations: A noted sample condition deviation may affect the validity of the result. Results apply to the sample(s) as received.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Nicole Soucy

Client PO: Project: 100441.001 Custody:

Report Date: 23-Mar-2021 Order Date: 17-Mar-2021

Order #: 2112364

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID
MW21-1
MW21-4
MW21-6
MW21-104
Trip Blank

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Order #: 2112364

Report Date: 23-Mar-2021 Order Date: 17-Mar-2021

Project Description: 100441.001

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC	18-Mar-21	18-Mar-21
Chromium, hexavalent - water	MOE E3056 - colourimetric	17-Mar-21	18-Mar-21
Cyanide, free	MOE E3015 - Auto Colour	18-Mar-21	18-Mar-21
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	18-Mar-21	19-Mar-21
Metals, ICP-MS	EPA 200.8 - ICP-MS	19-Mar-21	19-Mar-21
рН	EPA 150.1 - pH probe @25 °C	22-Mar-21	22-Mar-21
PHC F1	CWS Tier 1 - P&T GC-FID	18-Mar-21	18-Mar-21
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	18-Mar-21	19-Mar-21
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	19-Mar-21	22-Mar-21
REG 153: Pesticides, OC	EPA 8081B - GC-ECD	17-Mar-21	18-Mar-21
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	18-Mar-21	18-Mar-21

General Inorganics Cyanide, free

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

pН

Thallium

Uranium

Vanadium

Zinc

Volatiles

Acetone

Benzene

Bromoform

Bromomethane

Chlorobenzene

Chloroform

Carbon Tetrachloride

Bromodichloromethane

MW21-6

17-Mar-21 00:00

2112364-03

Water

<2

7.9

<0.1

1.1

1.1

<5

<5.0 [5]

<0.5 [5]

<0.5 [5]

<0.5 [5]

<0.5 [5]

<0.2 [5]

<0.5 [5]

<0.5 [5]

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021 Project Description: 100441.001

MW21-104

17-Mar-21 00:00

2112364-04

Water

<2

7.7

52

< 0.1

< 0.5

<1

125

<0.5

24

<0.1

<1

<10

<0.5

1.9

<0.1

1.9

2

<1

<0.1

22200

<0.1

4.7

1.1

<5

<5.0

<0.5

<0.5

<0.5

<0.5

<0.2

<0.5

<0.5

Anions				-
Chloride	1 mg/L	130	60	67
Metals				
Mercury	0.1 ug/L	<0.1	<0.1	<0.1
Antimony	0.5 ug/L	0.6	<0.5	<0.5
Arsenic	1 ug/L	2	<1	3
Barium	1 ug/L	321	113	507
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5
Boron	10 ug/L	39	28	34
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1
Chromium	1 ug/L	<1	<1	<1
Chromium (VI)	10 ug/L	<10	<10	<10
Cobalt	0.5 ug/L	<0.5	0.6	<0.5
Copper	0.5 ug/L	0.6	2.4	1.0
Lead	0.1 ug/L	<0.1	<0.1	<0.1
Molybdenum	0.5 ug/L	3.7	3.1	2.4
Nickel	1 ug/L	3	3	2
Selenium	1 ug/L	<1	<1	<1
Silver	0.1 ug/L	<0.1	<0.1	<0.1
Sodium	200 ug/L	35100	31600	13200

<0.1

1.2

<0.5

<5

<5.0

<0.5

<0.5

< 0.5

<0.5

<0.2

<0.5

<0.5

MW21-1

17-Mar-21 00:00

2112364-01

Water

<2

7.8

Client ID:

Sample Date:

MDL/Units

2 ug/L

0.1 pH Units

0.1 ug/L

0.1 ug/L

0.5 ug/L

5 ug/L

5.0 ug/L

0.5 ug/L

0.5 ug/L

0.5 ug/L

0.5 ug/L

0.2 ug/L

0.5 ug/L

0.5 ug/L

Sample ID:

MW21-4

17-Mar-21 00:00

2112364-02

Water

<2

7.6

<0.1

5.7

0.9

<5

<5.0

<0.5

<0.5

< 0.5

<0.5

<0.2

<0.5

<0.5

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 23-Mar-2021 Order Date: 17-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date: Sample ID: MDI /Units	MW21-1 17-Mar-21 00:00 2112364-01 Water	MW21-4 17-Mar-21 00:00 2112364-02 Water	MW21-6 17-Mar-21 00:00 2112364-03 Water	MW21-104 17-Mar-21 00:00 2112364-04 Water
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0 [5]	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2 [5]	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0 [5]	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0 [5]	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0 [5]	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0 [5]	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0 [5]	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0 [5]	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5 [5]	<0.5
4-Bromofluorobenzene	Surrogate	89.6%	91.5%	90.0% [5]	91.4%
Dibromofluoromethane	Surrogate	90.8%	87.3%	88.6% [5]	88.9%

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Order #: 2112364

Report Date: 23-Mar-2021 Order Date: 17-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date: Sample ID: MDI /Units	MW21-1 17-Mar-21 00:00 2112364-01 Water	MW21-4 17-Mar-21 00:00 2112364-02 Water	MW21-6 17-Mar-21 00:00 2112364-03 Water	MW21-104 17-Mar-21 00:00 2112364-04 Water
Toluene-d8	Surrogate	107%	106%	106% [5]	107%
Hydrocarbons			•		
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25 [5]	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100 [4]	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	150 [4]	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100 [4]	<100
Semi-Volatiles					
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Acenaphthylene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Anthracene	0.01 ug/L	<0.01	<0.01	<0.01 [4]	<0.01
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	<0.01 [4]	<0.01
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	<0.01 [4]	<0.01
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Chrysene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Fluoranthene	0.01 ug/L	<0.01	<0.01	<0.01 [4]	<0.01
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	<0.10 [4]	<0.10
Naphthalene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Phenanthrene	0.05 ug/L	<0.05	<0.05	<0.05 [4]	<0.05
Pyrene	0.01 ug/L	<0.01	<0.01	<0.01 [4]	<0.01
2-Fluorobiphenyl	Surrogate	84.9%	86.6%	86.8% [4]	85.8%
Terphenyl-d14	Surrogate	114%	120%	117% [4]	95.1%
Pesticides, OC			1		
Aldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
o,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
p,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 23-Mar-2021 Order Date: 17-Mar-2021

Project Description: 100441.001

	Client ID:	MW21-1	MW21-4	MW21-6	MW21-104
	Sample Date:	17-Mar-21 00:00	17-Mar-21 00:00	17-Mar-21 00:00	17-Mar-21 00:00
	Sample ID:	2112304-01	2112304-02	2112304-03	2112304-04
Γ	MDL/Units	vvater	vvater	vvater	vvater
o,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
p,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
o,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
p,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Dieldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endosulfan I	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endosulfan II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endosulfan I/II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Endrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Heptachlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Heptachlor epoxide	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachlorobenzene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachlorobutadiene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachlorocyclohexane, gamma	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Methoxychlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01
Decachlorobiphenyl	Surrogate	119%	138%	126%	97.0%

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021

Project Description: 100441.001

	Client ID: Sample Date:	Trip Blank 12-Mar-21 00:00	-	-	-
	Sample ID:	2112364-05	-	-	-
Volatiles	MDL/Units	Water	-	-	-
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethane, 1	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 23-Mar-2021 Order Date: 17-Mar-2021

Project Description: 100441.001

	Client ID:	Trip Blank	-	-	-
	Sample Date:	12-Mar-21 00:00	-	-	-
	Sample ID:	2112364-05	-	-	-
	MDL/Units	Water	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	85.4%	-	-	-
Dibromofluoromethane	Surrogate	82.4%	-	-	-
Toluene-d8	Surrogate	106%	-	-	-
Hydrocarbons			1		
F1 PHCs (C6-C10)	25 ug/L	<25	-	_	-

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021

Project Description: 100441.001

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride		1	ma/l						
General Inorganics	ND	I	mg/L						
		2							
	ND	2	ug/L						
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C10) F3 PHCs (C16-C34)		100	ug/L						
F4 PHCs (C34-C50)	ND	100	ua/L						
Metals			5						
Mercury	ND	0.1	ua/l						
Antimony	ND	0.5	ua/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium		0.1	ug/L						
Chromium	ND	10	ug/L						
Cobalt	ND	0.5	ua/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium		1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Pesticides, OC									
Aldrin	ND	0.01	ug/L						
alpha-Chlordane	ND	0.01	ug/L						
gamma-Chlordane	ND	0.01	ug/L						
		0.01	ug/L						
o,p-DDD	ND	0.01	ug/L						
DDD	ND	0.01	ug/L						
o,p'-DDE	ND	0.01	ug/L						
p,p'-DDE	ND	0.01	ug/L						
DDE	ND	0.01	ug/L						
ו עט: חסק 'מס		0.01	ug/L						
р,р-001 DDT	ND	0.01	ug/L						
Dieldrin	ND	0.01	ug/L						
Endosulfan I	ND	0.01	ug/L						
Endosulfan II	ND	0.01	ug/L						
Endosulfan I/II	ND	0.01	ug/L						
Endrin		0.01	ug/L						
Heptachlor epoxide		0.01	ug/L ug/l						
Hexachlorobenzene	ND	0.01	ug/L						
Hexachlorobutadiene	ND	0.01	ug/L						
Hexachlorocyclohexane, gamma	ND	0.01	ug/L						
Hexachloroethane	ND	0.01	ug/L						
Methoxychlor	ND	0.01	ug/L		101	50 4 40			
Surrogate: Decachioropipnenyi	0.018		ug/L		124	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021

Project Description: 100441.001

Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	16.6		ug/L		83.0	50-140			
Surrogate: Terphenyl-d14	23.2		ug/L		116	50-140			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2-	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Ietrachloroethylene	ND	0.5	ug/L						
loluene	ND	0.5	ug/L						
1,1,1-Irichloroethane	ND	0.5	ug/L						
1,1,2-Irichloroethane	ND	0.5	ug/L						
Irichloroethylene	ND	0.5	ug/L						

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021

Project Description: 100441.001

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	76.4		ug/L		95.5	50-140			
Surrogate: Dibromofluoromethane	64.5		ug/L		80.6	50-140			
Surrogate: Toluene-d8	86.4		ug/L		108	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021

Project Description: 100441.001

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	2 05	1	ma/l	2 18			62	10	
General Inorganics	2.00		<u>9</u> .=	20			0.2		
Cvanida free		2	ug/l				NC	20	
nH	77	0.1	ug/∟ nH Units	77			0.1	20	
Hydrocarbons		0.1	pri onto				0.1	0.0	
		25					NC	20	
Motolo	ND	25	ug/L	ND			NC	30	
metals									
Mercury	ND	0.1	ug/L	ND			NC	20	
Antimony		0.5	ug/L				NC	20	
Barium		1	ug/L				NC	20	
Bervllium	ND	0,5	ug/L	ND			NC	20	
Boron	ND	10	ug/L	ND			NC	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium (VI)	ND	10	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	ND	0.5	ug/L	ND			NC	20	
Copper	ND	0.5	ug/L	ND			NC	20	
Lead	ND	0.1	ug/L	ND			NC	20	
Molybdenum	ND	0.5	ug/L	ND			NC	20	
Nickel	ND	1	ug/L	ND			NC	20	
Selenium		0.1	ug/L					20	
Sodium		0.1	ug/L				NC	20	
Thallium		0.1	ug/L				NC	20	
Uranium	ND	0.1	ug/L	ND			NC	20	
Vanadium	ND	0.5	ug/L	ND			NC	20	
Zinc	ND	5	ug/L	ND			NC	20	
Volatiles			Ū						
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Dibromochloromothano		0.5	ug/L				NC	30	
Diplomocnioromethane		0.5	ug/L				NC	30	
1 2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1.3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
uans-1,3-Dichloropropylene		0.5	ug/L				NC	30	
Euryidene dibromide (dibromoethane, 1.2		0.5	ug/L	UN DIN				30 30	
Hexane		10	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ua/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ua/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	

Client: GEMTEC Consulting Engineers and Scientists Limited Client PO: Order #: 2112364

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021

Project Description: 100441.001

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	72.2		ug/L		90.2	50-140			
Surrogate: Dibromofluoromethane	78.6		ug/L		98.3	50-140			
Surrogate: Toluene-d8	85.4		ug/L		107	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021

Project Description: 100441.001

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	11.7	1	mg/L	2.18	95.3	77-123			
General Inorganics									
Cvanide, free	24.4	2	ua/L	ND	81.3	70-130			
Hydrocarbons									
	1900	25	ug/l		00.0	60 117			
$E_2 PHCs (C10 C16)$	1580	100	ug/L		09.0	60 140			
F3 PHCs (C16-C34)	3570	100	ug/L		90.0	60-140			
F4 PHCs (C34-C50)	2220	100	ug/L	ND	89.5	60-140			
Motals	2220	100	ug/L		00.0	00 110			
Manaura	2.00	0.4			407	70 400			
	3.20	0.1	ug/L		107	70-130			
Anumony	43.2	0.5	ug/L		80.4 07.0	80-120			
Arsenic	49.0	1	ug/L		97.9	00-120 90-120			
Banuni	40.4 52.0	0.5	ug/L		90.4 109	00-120 90-120			
Beron	10	0.5	ug/L		00 4	00-120 00-120			
Cadmium	49	0.1	ug/L		90.4 07 /	80-120			
Chromium (VI)	208	10	ug/L		97.4 104	70-120			
Chromium	52.6	10	ug/L		105	80-120			
Cobalt	49.7	0.5	ug/L	ND	99.5	80-120			
Copper	49.0	0.5	ug/L	ND	98.0	80-120			
Lead	45.8	0.0	ug/L	ND	91.5	80-120			
Molybdenum	48.3	0.5	ug/L	ND	96.6	80-120			
Nickel	48.0	1	ug/L	ND	96.0	80-120			
Selenium	47.5	1	ua/L	ND	94.9	80-120			
Silver	49.3	0.1	ug/L	ND	98.5	80-120			
Sodium	11100	200	ug/L	ND	111	80-120			
Thallium	45.2	0.1	ug/L	ND	90.5	80-120			
Uranium	43.5	0.1	ug/L	ND	87.0	80-120			
Vanadium	52.5	0.5	ug/L	ND	105	80-120			
Zinc	52	5	ug/L	ND	103	80-120			
Pesticides, OC									
Aldrin	0.58	0.01	ug/L	ND	116	50-140			
alpha-Chlordane	0.58	0.01	ug/L	ND	115	50-140			
gamma-Chlordane	0.56	0.01	ug/L	ND	113	50-140			
o,p'-DDD	0.70	0.01	ug/L	ND	140	50-140			
p,p'-DDD	0.61	0.01	ug/L	ND	123	50-140			
o,p'-DDE	0.68	0.01	ug/L	ND	135	50-140			
p,p'-DDE	0.62	0.01	ug/L	ND	123	50-140			
o,p'-DDT	0.68	0.01	ug/L	ND	135	50-140			
p,p'-DDT	0.62	0.01	ug/L	ND	125	50-140			
Dieldrin	0.60	0.01	ug/L	ND	120	50-140			
Endosulfan I	0.60	0.01	ug/L	ND	120	50-140			
Endosulfan II	0.57	0.01	ug/L	ND	115	50-140			
Endrin	0.18	0.01	ug/L	ND	35.0	50-140		C	QS-02
Heptachlor	0.58	0.01	ug/L	ND	116	50-140			
Heptachlor epoxide	0.55	0.01	ug/L	ND	110	50-140			
Hexachlorobenzene	0.40	0.01	ug/L	ND	80.4	50-140			

Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Order #: 2112364

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021

Project Description: 100441.001

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hexachlorobutadiene	0.54	0.01	ug/L	ND	108	50-140			
Hexachlorocyclohexane, gamma	0.55	0.01	ug/L	ND	110	50-140			
Hexachloroethane	0.36	0.01	ug/L	ND	71.0	50-140			
Methoxychlor	0.55	0.01	ug/L	ND	110	50-140			
Surrogate: Decachlorobiphenyl	0.643		ug/L		129	50-140			
Semi-Volatiles									
Acenaphthene	4.74	0.05	ug/L	ND	94.8	50-140			
Acenaphthylene	4.42	0.05	ug/L	ND	88.5	50-140			
Anthracene	5.05	0.01	ug/L	ND	101	50-140			
Benzo [a] anthracene	4.60	0.01	ug/L	ND	92.0	50-140			
Benzo [a] pyrene	4.85	0.01	ug/L	ND	97.0	50-140			
Benzo [b] fluoranthene	5.91	0.05	ug/L	ND	118	50-140			
Benzo [g,h,i] perylene	4.56	0.05	ug/L	ND	91.2	50-140			
Benzo [k] fluoranthene	5.33	0.05	ug/L	ND	107	50-140			
Chrysene	5.21	0.05	ug/L	ND	104	50-140			
Dibenzo [a,h] anthracene	4.88	0.05	ug/L	ND	97.6	50-140			
Fluoranthene	4.66	0.01	ug/L	ND	93.3	50-140			
Fluorene	4.37	0.05	ug/L	ND	87.4	50-140			
Indeno [1,2,3-cd] pyrene	4.84	0.05	ug/L	ND	96.9	50-140			
1-Methylnaphthalene	4.38	0.05	ug/L	ND	87.6	50-140			
2-Methylnaphthalene	4.62	0.05	ug/L	ND	92.3	50-140			
Naphthalene	4.94	0.05	ug/L	ND	98.8	50-140			
Phenanthrene	4.60	0.05	ug/L	ND	92.0	50-140			
Pyrene	4.65	0.01	ug/L	ND	93.0	50-140			
Surrogate: 2-Fluorobiphenyl	16.2		ug/L		80.8	50-140			
Surrogate: Terphenyl-d14	23.5		ug/L		117	50-140			
Volatiles									
Acetone	99.7	5.0	ug/L	ND	99.7	50-140			
Benzene	35.1	0.5	ug/L	ND	87.6	60-130			
Bromodichloromethane	30.2	0.5	ug/L	ND	75.4	60-130			
Bromoform	35.4	0.5	ug/L	ND	88.4	60-130			
Bromomethane	37.6	0.5	ug/L	ND	94.0	50-140			
Carbon Tetrachloride	29.3	0.2	ug/L	ND	73.2	60-130			
Chlorobenzene	40.1	0.5	ug/L	ND	100	60-130			
Chloroform	34.5	0.5	ug/L	ND	86.2	60-130			
Dibromochloromethane	31.3	0.5	ug/L	ND	78.2	60-130			
Dichlorodifluoromethane	45.1	1.0	ug/L	ND	113	50-140			
1,2-Dichlorobenzene	37.4	0.5	ug/L	ND	93.6	60-130			
1,3-Dichlorobenzene	38.0	0.5	ug/L	ND	95.0	60-130			
1,4-Dichlorobenzene	38.2	0.5	ug/L	ND	95.6	60-130			
1,1-Dichloroethane	35.9	0.5	ug/L	ND	89.8	60-130			
1,2-Dichloroethane	40.0	0.5	ug/L	ND	99.9	60-130			
1,1-Dichloroethylene	32.9	0.5	ug/L	ND	82.3	60-130			
cis-1,2-Dichloroethylene	33.0	0.5	ug/L	ND	82.6	60-130			
trans-1,2-Dichloroethylene	32.6	0.5	ug/L	ND	81.6	60-130			
1,2-Dichloropropane	33.8	0.5	ug/L	ND	84.4	60-130			
cis-1,3-Dichloropropylene	41.9	0.5	ug/L	ND	105	60-130			
trans-1,3-Dichloropropylene	31.6	0.5	ug/L	ND	79.0	60-130			
Ethylbenzene	39.5	0.5	ug/L	ND	98.8	60-130			

Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Order #: 2112364

Report Date: 23-Mar-2021

Order Date: 17-Mar-2021

Project Description: 100441.001

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Ethylene dibromide (dibromoethane, 1,2-	35.7	0.2	ug/L	ND	89.2	60-130			
Hexane	35.8	1.0	ug/L	ND	89.4	60-130			
Methyl Ethyl Ketone (2-Butanone)	85.1	5.0	ug/L	ND	85.1	50-140			
Methyl Isobutyl Ketone	71.7	5.0	ug/L	ND	71.7	50-140			
Methyl tert-butyl ether	84.6	2.0	ug/L	ND	84.6	50-140			
Methylene Chloride	33.0	5.0	ug/L	ND	82.4	60-130			
Styrene	40.7	0.5	ug/L	ND	102	60-130			
1,1,1,2-Tetrachloroethane	36.2	0.5	ug/L	ND	90.6	60-130			
1,1,2,2-Tetrachloroethane	35.5	0.5	ug/L	ND	88.7	60-130			
Tetrachloroethylene	39.3	0.5	ug/L	ND	98.3	60-130			
Toluene	41.6	0.5	ug/L	ND	104	60-130			
1,1,1-Trichloroethane	29.6	0.5	ug/L	ND	74.0	60-130			
1,1,2-Trichloroethane	31.0	0.5	ug/L	ND	77.6	60-130			
Trichloroethylene	33.1	0.5	ug/L	ND	82.8	60-130			
Trichlorofluoromethane	34.2	1.0	ug/L	ND	85.6	60-130			
Vinyl chloride	37.8	0.5	ug/L	ND	94.4	50-140			
m,p-Xylenes	88.9	0.5	ug/L	ND	111	60-130			
o-Xylene	43.7	0.5	ug/L	ND	109	60-130			
Surrogate: 4-Bromofluorobenzene	78.9		ug/L		98.6	50-140			
Surrogate: Dibromofluoromethane	72.3		ug/L		90.4	50-140			
Surrogate: Toluene-d8	83.4		ug/L		104	50-140			

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:

Qualifier Notes:

Login Qualifiers :

0.1

Container and COC sample IDs don't match - Containers labelled as 100441.001, chain of custody reads MW21-1

Applies to samples: MW21-1

Sample - Received with >5% sediment, instructed to perform whole bottle extraction (analyze with sediment) *Applies to samples: MW21-6*

Sample Qualifiers :

- 4: Water sample included significant amount of sediment which was included in extraction process. The inclusion of sediment in the extraction is expected to reduce accuracy and results may be biased high.
- VOC07 (s.03): Submitted VOC vials were decanted into a single vial prior to analysis due to the presence of sediments.

QC Qualifiers :

QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel I	D: 2	112	364	019 199 10.0 20.7 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	29 St. Laurent Blvd. ntario K1G AJB 23-1547 aparacellabs.com cellabs.com	Para 21 (d	cel Or (Lab U 236	der Nu ise On	ımber ly)			Chai (I	n Of Cu .ab Use O	nly)	y
lient Name: GEMTEC		Project	Ref: 10	0441.001									Page 1	of <u>1</u>	
ontact Name: Nicole Soucy		Quote	#: 2 [·]	1-113								Tur	naround	Time	
ddress: 32 Steacie Drive		PO #: E-mail:	ni	cole.soucy@gemt	ec.ca						□ 1 day □ 3 day				
elephone: 613-836-1422	_										Daten	equirec	/		=
Regulation 153/04 Other Regulation X Table 1 Res/Park Med/Fine REG 558 PWQO Table 2 Ind/Comm Coarse COME MISA	N	latrix T SW (Su	ype: S rface W P (P	i (Soil/Sed.) GW (Gr /ater) SS (Storm/Sar aint) A (Air) O (Oth	ound Water) itary Sewer) er)					Req	juired /	Analysi	5		T
Table Yas IX No Other:	X	olume	Containers	Sample Taken				IC/BTEX	L						
Sample ID/Location Name	Matr	Air V	to #	Date	Time	PAF	M&I	ЪН	Ö						
1 MW21-1	GW			March 17/2021		1	2	~	1				┛	╢	
2 MW21-4	GW			March 17/2021		1	4		4			╡	┥└┥	╝	╞
3 MW21-6	GW	- 1		March 17/2021		Ľ	1	V				╧	╡┝┥┥	╉	╡┝
4 MW21-10 <u>4</u>	GW		÷	March 17/2021			\mathbf{r}					╞	╡┝┤	╡	╬
5		-	_							Ц			┥┝┥	╉	╇
6 Trip Blank	GW		_	March 17/2021		╞				H			╡┝┤	╬	÷
7	-	-	-	10						님	H	╬	╡┝┤	╡	Ŧ
8	-	-	-			-				H		╞	╡┝┤		╡
9	-	-	-							H	ᅢ	╞			Ŧ
10 Comments:	DriveAll)enot:			Received and ab	?				Metho D Verifie	d of Deli	very: Ba	 (•	
Relinquished By (Sign): Carb Sha	20	4		S. Stant	XB	~	-	1		Date	11	20	2	7-1	11
Relinquished By (Print): Connor Shale Date/Time:	e:	2r ;	n1: 8	20 1 <u>3.56</u> °c	Temperature:	700	57	-16	11	pH Ve	rified: D	2	17 a	521	1620

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS 32 STEACIE DRIVE OTTAWA, ON K2K 2A9 (613) 836-1422 ATTENTION TO: Chris Dionne PROJECT: 100441.001 AGAT WORK ORDER: 24Z209775 SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead DATE REPORTED: Oct 23, 2024 PAGES (INCLUDING COVER): 6 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

tes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 6

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 24Z209775 PROJECT: 100441.001 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

SAMPLING SITE:

ATTENTION TO: Chris Dionne

SAMPLED BY:

DATE RECEIVED: 2024-10-16								I	DATE REPORTED: 2024-10-23						
		SAMPLE DES	SCRIPTION:	BH21-8 10 North	BH21-8 East	BH21-8 West	BH21-8 SA3 G	BH21-8 South	BH21-8 SA3 F	BH21-8 SA3 B	BH21-8 SA3 A				
		SAM	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2024-10-11	2024-10-11	2024-10-11	2024-10-11	2024-10-11	2024-10-11	2024-10-11	2024-10-11				
Parameter	Unit	G/S	RDL	6232008	6232013	6232014	6232015	6232016	6232017	6232018	6232019				
Electrical Conductivity (2:1)	mS/cm		0.005	0.762	0.298	0.892	0.526	0.834	0.917	0.401	0.631				
Sodium Adsorption Ratio (2:1) (Calc.)	N/A		N/A	0.465	0.292	0.542	0.244	0.304	0.212	0.229	0.208				
		SAMPLE DES	SCRIPTION:	BH21-8 North	BH21-8 SA3 E	BH21-8 SA3 D	BH21-8 SA4A	BH21-8 SA3 C							
		SAN	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil							
		DATE	SAMPLED:	2024-10-11	2024-10-11	2024-10-11	2024-10-11	2024-10-11							
Parameter	Unit	G/S	RDL	6232020	6232021	6232022	6232023	6232024							
Electrical Conductivity (2:1)	mS/cm		0.005	0.873	0.526	0.356	0.642	0.937							
Sodium Adsorption Ratio (2:1) (Calc.)	N/A		N/A	0.275	0.240	0.259	0.273	0.243							

O. Reg. 153(511) - ORPs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6232008-6232024 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). SAR is a calculated parameter. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100441.001

AGAT WORK ORDER: 24Z209775

ATTENTION TO: Chris Dionne

SAMPLED BY:

SAMPLING SITE:

Soil Analysis

RPT Date: Oct 23, 2024		DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recoverv	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - ORPs (Soil)															

Electrical Conductivity (2:1) 6232008 6232008 97% 0.762 0.800 4.9% < 0.005 80% 120% Sodium Adsorption Ratio (2:1) 6232008 6232008 0.465 0.447 3.9% NA NA (Calc.)

Comments: NA signifies Not Applicable.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 6

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100441.001

AGAT WORK ORDER: 24Z209775 ATTENTION TO: Chris Dionne

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES

5.

Chain of Custody Record If this is a Drinking Water sample, pl	ave feedback? 5835 Coopers Avenue Mississauga. Ontario L4Z 1Y2 Scan here for a quick survey! Ph: 905,712,5100 Fax: 905,712,5122 webearth.agatlabs.com Work Order #: se use Drinking Water Chain of Custody Form (potable water consumed by humans) Cooler Quantity: 1 Ph: 905,712,5100 Fax: 905,712,5102 Arrival Temperatures: 0.016,05,74
Report Information: GENTEC	Regulatory Requirements: Custody Seal Intact: (Please check all applicable boxes) Image: Custody Seal Intact:
Contact: Address: 33 Steache Spine	Image: Constraint of the second of the se
Phone: Reports to be sent to: 1. Email: 2. Email: 3. Email: 3	
Project Information: Project: 100441,001 Site Location: Sampled By:	Is this submission for a Record of Site Condition (RSC)? Report Guideline on Certificate of Analysis Yes No Yes No Yes No
AGAT Quote #:PO: _PO:	Legal Sample 0. Reg 153 0. Reg 406 0. Re
Invoice Information: Bill To Same: Yes No Company: Contact: Address: Email:	Sample Matrix Feder Maradous or High Concentration To high Conce
Sample Identification Date Time # of Container	Sample Comments/ V/N Metraix Matrix Special Instructions V/N Metraix
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
11. BH AT - O SKOU AND Samples Relinquished By (Print Name and Sign) Date State CC+ IL/AT Time CC+ IL/AT Target and Sign) Date	Samples Received By (Print Name and Sign):
Samples Relincuished By (Print Name and Sidn). Determined by AGAT Labs are pursual Courses to Determine the AGAT Labs are pursual	Samples Received By (Print Name and Sign): Date Time N: T - 157284 to the terms and conditions as set forth at youry and table com/terms and conditions unless otherwise agreed in a current written contractual document. The contractual document. The contractual document.

I White Copy- AGAT

Pink Copy - Client 1 Yellow Copy - AGAT

5835 Coopers Avenue

Laboratory Use Only

chain of custody Recor	If this is a l	Drinking Water s	ample, plea	ase use Drini	king Water Chain of Custody Form	ootable water	r consum	ned by I	numans)		Ari De	pot Ter	mpera mpera	atures: atures:	6	1010	105	-]			
Report Information: Gem	TEC			(Please	Regulatory Requirements: (Please check all applicable boxes)									Custody Seal Intact:								
Contact: Chris Dio	me				Regulation 153/04 Regulation 406 Sewer Use								Notes:									
Address: <u>32 Stracte Drive</u> Phone: Reports to be sent to: Reports to be sent to: Beneficient of the sent to: Reports to be sent to be sent to be			— Та	ble Table Table	One		× []	Storm		Turnaround Time (TAT) Required:												
			-	Ind/Com Ind/Com Res/Park Res/Park			Regi	on tor Our	alitu		Regular TAT											
				Agriculture		Ob	jective	s (PW	QO)		KUSN IAI (Rush Surcharges Apply)											
1. Email: <u>Chlisaionne</u>	h in A	on Ja	.60.		Soil Texture (Check One)				Other						3 Business 2 Business Days Days Days							
2. Email: Utit	ignici e	Jemper	1.00		Fine							OR Date Required (Rush Surcharges May Apply):										
Project Information:	11			Is th	is submission for a Record	R	leport	Gui	delin	e on				Plac	60 OFC	vide c	ior potificatio	o for ruch TA	г			
Project:	171.001			- -		Ce		ate o		No			Please provide prior notification for rush IAI *TAT is exclusive of weekends and statutory holidays									
Sampled By:					Ties Eino		U Yes Z No						For 'Same Day' analysis, please contact your AGAT CSR									
AGAT Quote #:	PO:		0.00	Leg	Legal Sample				0. Reg 153				Reg 40	6 0	0. Reg 558 න				UN/ A			
Please note: If quotation number is not provided, client will be billed full price for analysis.										ackag	L.		CLP:	e			Uniter Distance					
Invoice Information:	Bi	II To Same: Ye	s 🖸 No 🗆	San	nple Matrix Legend	s, Hg.		WSB			-	tion P	torlo	SVOC	ation T DB(a)F	ulphic	a l		hrant			
Company:				GW	Ground Water SD Sediment	Metal		H				teriza	omuio		cteriza	ens	S		- U			
Address:				- 0 - P	Paint R Rock/Shale	er p	nics	ПHg	2			harac F1-F4	0		chara(isture			5 DT			
Email:				s	Soil	1 Filte	lorga	CrVI, I	4 PHC	_	Si C	406 C BTEX,	De so	letals		Ŵ			Upardo			
	L II BA					Field	s & Ir	, S	F1-F	-	Aroclo	ation 4 etals,	AR tion		ll Disp J M&I	sivity:	5		H Ale			
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metal	Metal	BTEX,	VOC	PCBs:	Regula pH, Me	EC, S/		Landfi TCLP: [Corros	B		Potanti			
1 BM 21-8 SAYA	0(11/20	AM PM	1	S																		
2. BH21-85K3C	V	AM PM	[5		24	114															
3.	1 20 21 24	AM PM	_	100				-			-	LIA			_							
4		PM		-	14 FT 1	_		-			-							-	_			
э. С		PM AM	01			-	-	-			-	-		-								
7	-	PM AM	_				-	-			-											
8		PM AM												-								
9.		AM	-	-			1	-									_					
10.		AM		_		1	1	-			1											
11.		AM		FORCES &	participants.		1															
Samples Relinquished By (Print Name and Sign):	Ah.TT	Str 11	Time	2-02	Samptes Received By (Print Name and Sign):			1	2	0		700	TIME	γ	2							
Sept Cy Commic of G	you	Date	J.Y Time	4120	Samples Received By (Print Name and Simil:	-		4	E -		(*)() ate	At	Time	13	S	/	D	2	+			
		Date	TIPO		Samples Received By Print Name and Stants			1			a1e		Tippe				Page	- of				
Samples Relinguisned by (Print Name and Sign)			10 10 10 10 10 10 10 10 10 10 10 10 10 1		, the second of														1 10			

experience • knowledge • integrity

civil geotechnical environmental structural field services materials testing

civil géotechnique environnement structures surveillance de chantier service de laboratoire des matériaux