

Riverside South Block 167

- 955 Borbridge Avenue

Servicing and Stormwater Management Report

January 31, 2025

Prepared for:

Richcraft Homes Ltd.

Prepared by:

Stantec Consulting Ltd. 400 – 1331 Clyde Avenue Ottawa ON K2C 3G4

File Number: 160402058

Revision	Description	Author	Date	Quality Check	Date	Independent Review	Date
1	Servicing and SWM	ZW	24.11.05	DT	24.11.08	SG	24.11.08
2	Revised Plan	ZW	25.01.21	DT	25.01.31	SG	25.01.31

Limitations and Sign-off

The conclusions in the report titled Riverside South Block 167 – Servicing and Stormwater Management are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Richcraft Homes Ltd. (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

Prepared by:	Cy. Cum		
	Signature		
	Ziyi Wang		
	Printed Name and Title		
	mon flo		JL IL
Reviewed by:		Approved by:	<u> </u>
	Signature		Signature
	Dustin Thiffault, P.Eng.		Sheridan Gillis
	Printed Name and Title		Printed Name and Title

i

Table of Contents

Limitat	tions ar	nd Sign-off	
1	Introd	uction	
	1.1	Objective	2
2	Refere	nce Documents	. 3
3	Potabl	e Water Servicing	4
	3.1	Background	
	3.2	Proposed Watermain Sizing and Layout	
		3.2.1 Connections to Existing Infrastructure	
		3.2.2 Ground Elevations	
		3.2.3 Domestic Water Demands	
	3.3	Level of Service	
		3.3.1 Allowable Pressures	
	3.4	3.3.2 Fire Flow Demands	
	5.4	3.4.1 Model Development	
		•	
4		water Servicing	
	4.1 4.2	Background Design Criteria	
	4.2	Sanitary Servicing Design	
5		water Management and Storm Servicing	13
	5.1	Background	
	5.2	Stormwater Management Design	
	5.3	5.2.1 Design Criteria and Constraints	
	5.5	5.3.1 Allowable Release Rate	
		5.3.2 Modelling Rationale	
		5.3.3 Storage Requirements	
		5.3.4 Uncontrolled Areas	
	5.4	Results and Discussion	
6	Gooto	chnical Considerations and Grading	4 7
U	6.1	Geotechnical Investigation	
	0.1	6.1.1 Proposed Pavement Structure	
		6.1.2 Sewer/Watermain Installation	
	6.2	Grading Plan	
7	Utilitie	s	19
8		vals	
9		on Control	
_			
10		usions and Recommendations	
	10.1 10.2	Potable Water Servicing	
	10.2	Stormwater Management and Servicing.	
	10.4	Grading	
	10.5	Approvals/Permits	
	10.6	Utilities	

955 Borbridge Avenue Table of Contents January 31, 2025

List of Tables

Table 3.1	Residential Water Demands for 955 Borbridge	6
Table 3.2	Fire Flow Calculations Using FUS Methodology	
Table 3.3	Boundary Condtions for Connection Points for 955 Borbridge	
Table 3.4	C-Factors Applied Based on Watermain Diameter	8
Table 4.1	Sanitary Peak Flow at Proposed SAN MH 1	12
Table 5.2	2-Year and 100-Year Peak Surface Volume and Controlled Discharge Summary	15
Table 5.3	Peak Uncontrolled 2-Year and 100-Year Release Rates	16
Table 5.4	Storm Event Peak Discharge Rates	16
Table 6.1	Recommended Pavement Structure for Local Road	17
Table 6.2	Recommended Pavement Structure for Driveway and Car-Only Parking Areas	18
List of Figu	res	
Figure 1.1 K	ey Map of Riverside South Subdivision Phase 17-1B Block 167	1
Figure 3.1	Proposed Watermain Layout and Pipe Diameters (mm)	
Figure 3.2	Ground Elevations (m) at Nodes	
Figure 3.3	Maximum Pressures in Block 167 (during AVDY Conditions after SUC Pressure	
	Zone Reconfiguration)	9
Figure 3.4	Minimum Pressures (psi) in Block 167 During PKHR Conditions after SUC Pressure	
	Zone Reconfiguration	9
Figure 3.5	Available Fire Flows (L/s) in Block 167 During MXDY Conditions after SUC	
	Pressure Zone Reconfiguration	10
List of App	endices	
Appendix A	Potable Water Servicing	
Appendix B	Wastewater Servicing Calculations	
Appendix C	Stormwater Management	

Appendix D

Appendix E

Appendix F

Geotechnical Information

Background Report Excerpts

Proposed Site Plan

1 Introduction

Richcraft Homes Ltd. (Richcraft) has commissioned Stantec Consulting Ltd. (Stantec) to prepare the following Servicing and Stormwater Management Report in support of the Site Plan Application for Block 167 (955 Borbridge Avenue) of the Riverside South Phase 17-1B subdivision. The subject site is within the City of Ottawa, bound by Borbridge Avenue to the north, Ralph Hennessy Avenue to the east, Axis Way to the south, and Compass Street to the west (refer to **Figure 1.1** below).

Figure 1.1 Key Map of Riverside South Subdivision Phase 17-1B Block 167

The subject property is currently zoned R4Z (Residential Fourth Density) and occupies 1.45 ha of land. The site is currently undeveloped. The proposed development consists of ninety-three (93) stacked townhouse units as shown in the draft plan included in **Appendix E**.

Servicing and stormwater management constraints for the block were identified as part of the previously approved *Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community* (IBI Group, 2022). Findings from the above noted report are referenced throughout this report.

1.1 Objective

This site servicing and stormwater management (SWM) report has been prepared to present an internal servicing scheme that is free of conflicts, uses existing/approved infrastructure, and meets all design criteria as identified in background documents and City of Ottawa design guidelines.

2 Reference Documents

The following documents were referenced in the preparation of this report:

- City of Ottawa Sewer Design Guidelines, 2nd Edition, City of Ottawa, October 2012.
- City of Ottawa Design Guidelines Water Distribution, 1st Edition, Infrastructure Services Department, City of Ottawa, July 2010.
- Technical Bulletin ISDTB-2014-02 Revision to Ottawa Design Guidelines Water, City of Ottawa, May 2014.
- Technical Bulletin PIEDTB-2016-01 Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, September 2016.
- Technical Bulletin ISTB-2018-01 Revision to Ottawa Design Guidelines Sewer, City of Ottawa, March 2018.
- Technical Bulletin ISTB-2018-02 Revision to Ottawa Design Guidelines Water Distribution, City of Ottawa, March 2018.
- Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community, IBI Group, March, 2022.
- Geotechnical Investigation: Proposed Residential Development 955 Borbridge Avenue, Ottawa, Ontario, Paterson Group, October 18, 2024.
- Pre-Consultation: Meeting Feedback Proposed Site Plan Control Application 955 Borbridge Avenue, City of Ottawa, September 27, 2024.

3 Potable Water Servicing

3.1 Background

The proposed development is located within Zone 2W2C of the City of Ottawa's water distribution system. The site will be fed by the 300mm diameter watermain on Borbridge Avenue and the 300mm diameter watermain on Ralph Hennessy Avenue to form a looped system.

3.2 Proposed Watermain Sizing and Layout

3.2.1 Connections to Existing Infrastructure

The proposed watermain alignment and sizing for the development is demonstrated on **Drawing SSP-1**. A 200mm diameter watermain is proposed to follow the alignment of the private roads within the subject property with a connection to the existing 300mm diameter watermain on Borbrdige Avenue and Ralph Hennessy Avenue at the two entrances to the 955 Borbridge site. **Figure 3.1** shows the location of the two (2) connection points to the existing watermain.

Figure 3.1 Proposed Watermain Layout and Pipe Diameters (mm)

3.2.2 Ground Elevations

Proposed ground elevations throughout the site range from approximately 97.28 m to 97.73 m at nodes in the watermain network.

Figure 3.2 Ground Elevations (m) at Nodes

3.2.3 Domestic Water Demands

The proposed site contains a total of ninety-three (93) stacked townhouse units, with an estimated total population of 251 persons. Refer to **Appendix A.1** for detailed domestic water demand calculations.

Water demands for the development were estimated using the City of Ottawa's Water Distribution Design Guidelines. For residential developments, the average day (AVDY) per capita water demand is 280 L/cap/d. For maximum day (MXDY) demand, AVDY was multiplied by a factor of 2.5 and for peak hour (PKHR) demand, MXDY was multiplied by a factor of 2.2. The calculated residential water consumption is represented in **Table 3.1**.

Table 3.1 Residential Water Demands for 955 Borbridge

Unit Type	Units	Persons/Unit	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Townhouse Units	93	2.7	251	0.81	2.03	4.48

3.3 Level of Service

3.3.1 Allowable Pressures

The City of Ottawa Water Distribution Design Guidelines state that the desired range of system pressures under normal demand conditions (i.e., basic day, maximum day, and peak hour) should be in the range of 350 to 552 kPa (50 to 80 psi) and no less than 275 kPa (40 psi) at the ground elevation on the streets (i.e., at hydrant level). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way is 552 kPa (80 psi). As per the Ontario Building Code (OBC) & Guide for Plumbing, if pressures greater than 552 kPa (80 psi) are anticipated pressure relief measures are required. The maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi). Under emergency fire flow conditions, the minimum pressure objective in the distribution system is 138 kPa (20 psi).

3.3.2 Fire Flow Demands

Fire flow calculations were completed using the Fire Underwriters Survey (FUS) methodology. Refer to **Appendix A.2** for detailed FUS calculations. The results of the fire flow calculations are summarized in **Table 3.2**.

Table 3.2 Fire Flow Calculations Using FUS Methodology

Unit Type	Unit Type Description		Required Fire Flow (L/s)	
Two-bedroom Terrace	Two-storey building with twelve stacked units (worst case exposures: Block 3)	11,000	183	

3.4 Hydraulic Analysis

Hydraulic modeling using PCSWMM was built by Stantec using the following boundary conditions:

- Boundary conditions before and after the SUC Pressure Zone Reconfiguration at the Borbridge Avenue watermain across from the northern entrance to the site were provided by City of Ottawa staff.
- 2. Boundary condition before and after the SUC Pressure Zone Reconfiguration at the Ralph Hennessy Avenue watermain across from the eastern entrance to the site were provided by City of Ottawa staff.

The boundary conditions used for the hydraulic analysis are summarized in **Table 3.3**.

Table 3.3 Boundary Condtions for Connection Points for 955 Borbridge

		SUC Pressur econfiguratio		After SUC Pressure Zone Reconfiguration		
Location	Max. HGL (AVDY), Head (m)	PKHR, Head (m)	MXDY+FF (183 L/s), Head (m)	Max. HGL (AVDY), Head (m)	PKHR, Head (m)	MXDY+FF (183 L/s), Head (m)
1 – Borbridge Avenue (northern entrance to Block 167)	132.3	124.9	123.3	146.8	143.7	140.7
2 – Ralph Hennessey Street (eastern entrance to Block 167)	132.3	124.9	123.2	146.8	143.7	140.5

The anticipated pressures in this development were assessed to meet minimum servicing requirements (average day and peak hour demands). A fire flow analysis was also performed under maximum day conditions. Detailed results are shown in **Appendix A3**.

3.4.1 Model Development

New watermains were added to the hydraulic model to simulate the proposed distribution system. Hazen-Williams coefficients ("C-Factors") were applied to the new watermain in accordance with the City of Ottawa's Water Distribution Design Guidelines (**Table 3.4**).

Table 3.4 C-Factors Applied Based on Watermain Diameter

Nominal Pipe Diameter (mm)	C-Factor
150	100
200 to 250	110
300 to 600	120
Over 600	130

3.4.1.1 Average Day & Peak Hour

The hydraulic model results show that the maximum pressures (AVDY condition) are anticipated to be approximately 339-343 kPa (49.2-49.8 psi) prior to the SUC Pressure Zone Reconfiguration and 480-485 kPa (69.7-70.4 psi) after the SUC Pressure Zone Reconfiguration within the Block 167 site. Minimum pressures during PKHR conditions are anticipated to be approximately 265-270 kPa (38.5-39.3 psi) prior to the SUC Pressure Zone Reconfiguration and 450-455 kPa (65.3-66.0 psi) after the SUC Pressure Zone Reconfiguration for Block 167. Following the SUC Pressure Zone Reconfiguration, these pressures are below the maximum allowable pressure at the unit of 80 psi, therefore, pressure reducing valves (PRVs) are not required for the development.

Figure 3.3 and Figure 3.4 below identify the minimum (PKHR) and maximum pressure (AVDY) results for the simulation, respectively.

Figure 3.3 Maximum Pressures in Block 167 (during AVDY Conditions after SUC Pressure Zone Reconfiguration)

Figure 3.4 Minimum Pressures (psi) in Block 167 During PKHR Conditions after SUC Pressure Zone Reconfiguration

3.4.1.2 Maximum Day Plus Fire flow

An analysis was carried out using the hydraulic model to determine if the proposed development, under maximum day demands, can achieve a fire flow of 11,000 L/min (183 L/s) while maintaining a residual pressure of 138 kPa (20 psi). This was accomplished using a steady-state maximum day demand scenario along with the automated fire flow simulation feature of PCSWMM. The available flows are shown in **Figure 3.5**.

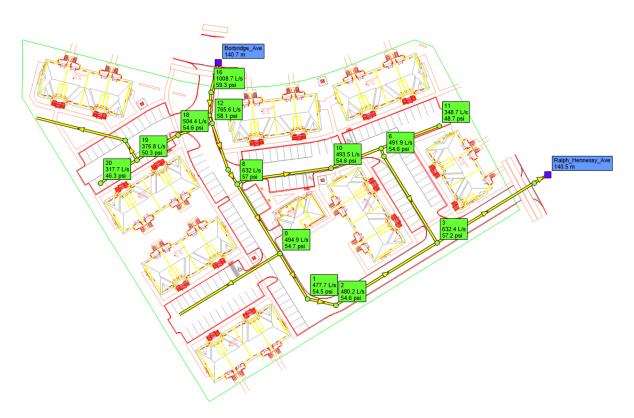


Figure 3.5 Available Fire Flows (L/s) in Block 167 During MXDY Conditions after SUC Pressure Zone Reconfiguration

Using the proposed pipe layout and sizing, a fire flow of 11,000 L/min (183 L/s) can be achieved while maintaining at least 20 psi residual pressure at all locations upon development.

4 Wastewater Servicing

4.1 Background

As indicated in Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, 2022), the wastewater from the Riverside South Phase 17-1B development is conveyed to the existing 450mm diameter sanitary sewer on Ralph Hennessy Road via an extended 375mm gravity sewer. Wastewater from the Riverside South Phase 17-1B Development is ultimately conveyed to the River Road Pumping Station.

The design brief identifies MH 907A on Borbridge Avenue as being used to service the proposed site. MH 907A lies within a sewer branch immediately upstream of the connection to the 375mm sewer on Ralph Hennessy Avenue. The brief identified an assumed site area of 1.45ha and a population of 188.5 persons (130 persons/ha) for the development.

4.2 Design Criteria

As outlined in the City of Ottawa Sewer Design Guidelines, the following design parameters were used to calculate wastewater flow rates and to size on-site sanitary sewers:

- Minimum full flow velocity 0.6 m/s
- Maximum full flow velocity 3.0 m/s
- Manning's roughness coefficient for all smooth-walled pipes 0.013
- Single family home persons per unit 3.4
- Townhouse persons per unit 2.7
- Extraneous flow allowance 0.33 L/s/ha
- Residential average flows 280 L/cap/day
- Commercial/mixed-use flows 28,000 L/ha/day
- Maintenance hole spacing 120 m for pipes under 450 mm diameter, 150 m for pipes 450 mm diameter and larger
- Minimum cover 2.5 m
- Harmon correction factor 0.8

In addition, a residential peak factor based on Harmon's Equation was used to determine the peak design flows, per the City of Ottawa Sewer Design Guidelines.

Refer to **Appendix B** for the sanitary sewer design sheet for the proposed site.

4.3 Sanitary Servicing Design

200mm diameter sanitary sewers are proposed throughout the site. Proposed SAN MH 1 is to be installed into the existing 300 mm sewer main on Borbridge Avenue to suit the proposed site access and serve as the sanitary outlet for the site. Sanitary flows will then be directed eastwards from Borbridge Avenue to Ralph Hennessy Avenue per background reports. The proposed sanitary sewer layout for the subject site is shown in **Drawings SSP-1** and **SA-1**. The sanitary sewer design sheet is included in **Appendix B.1**.

The proposed peak flows from 995 Borbridge are summarized in **Table 4.1** below.

Table 4.1 Sanitary Peak Flow at Proposed SAN MH 1

MH ID	Total Area (ha)	Population	Peak Flow (L/s)	Sewer Diameter (mm)	
SAN MH 1, Block 167 contribution	1.45	251	3.3	200	

The Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, 2022) assumes a peak flow generation of 2.7L/s for the sewer segment with discharge from the proposed 955 Borbridge site, with approximately 2.3L/s allotted for the site itself. Background information, including the IBI design brief, sanitary sewer design sheet, and the sanitary flow calculation based on the expected population, are provided in **Appendix F**.

The above table shows a 1.0 L/s increase in the expected sanitary peak flows over the 2.3L/s allotted as a result of higher anticipated population density. The residual capacity noted in the IBI Design Brief for the critical sewer run MH 908A – MH 909A is 13.22L/s, which demonstrates that the downstream sewer system maintains sufficient capacity to accept the relatively small increase in expected site sanitary peak discharge.

5 Stormwater Management and Storm Servicing

The proposed development encompasses approximately 1.45 ha of land within Block 167 of the Riverside South Phase 17-1B subdivision. The entire development is residential containing stacked townhouse units. As shown on **Drawing SD-1**, post-development minor system peak flows from the development will be discharged to an existing 1,650 mm diameter storm sewer on Borbridge Avenue. Emergency overland flows during storm events above that of the 100-year design storm event will be directed to Ralph Hennesy Avenue Right-of-Way and Rockmelon Street Right-of-Way, and ultimately discharging to Riverside South Community Pond 5 located northeast of the site. Stormwater quality control (80% TSS removal) is provided by RSC Pond 5, as described in the Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, 2022). Refer to **Appendix F** for the storm drainage plan and storm sewer design sheet for the Riverside South Phase 17-1B Subdivision (IBI Group, 2022).

In the existing condition, site runoff sheet flows overland to the east towards Ralph Hennessy Avenue. The site is currently undeveloped.

5.1 Background

IBI Group completed the Design Brief of the Riverside South Subdivision Phase 17-1B in March 2022. The design of storm drainage system and sewer network in the site accounted for development within the 955 Borbridge site.

Based on the IBI brief, the site minor system release rate is to be restricted to that of the previously modeled 5-year flow for the area, determined to be 320L/s. On-site quantity control storage is required to retain all runoff from the development from design storms up to and including the 100-year storm.

Flows are to be ultimately conveyed to RSC Pond 5 for quality and quantity control per Stormwater Management Report for the Design Brief for the Riverside South Phase 17-1B, (IBI Group, 2022).

Additional SWM criteria from this report are listed in the proceeding sections.

5.2 Stormwater Management Design

5.2.1 Design Criteria and Constraints

The design methodology for the SWM component of the development is as follows:

General

 Application of the IDF information derived from the Meteorological Services of Canada rainfall data, taken from the MacDonald Cartier Airport, collected 1966 to 1997, as described in Ottawa's Sewer Design Guidelines.

13

- Minimum time of concentration values applied for each subcatchment cannot be less than 10 minutes.
- Use of the Modified Rational Method to identify required quantity storage based on restricted minor system release rates (City of Ottawa).
- Quality control has been provided for the site via the existing RSC Pond 5.

Storm Sewer & Inlet Controls

- Proposed site to discharge to the existing 1650 mm diameter storm sewer on Borbridge Avenue, (Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community, IBI Group, 2022).
- Minor system discharge rate from the entirety of Block 167 not to exceed 320 L/s in the 100-year event (Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community, IBI Group, 2022).
- Size storm sewers to convey the 2-year storm event under free-flow conditions using 2012 City of Ottawa I-D-F parameters. (City of Ottawa)

Surface Storage & Overland Flow

- No surface ponding is permitted within the site during the 2-year storm event (City of Ottawa).
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.35m for design storm events (i.e., up to 100-year storm) (City of Ottawa).
- Minimum clearance depth of 0.30m to be provided from spill elevations to building envelopes in proximity of overland flow routes or ponding areas (City of Ottawa).
- Provide adequate emergency overflow conveyance off-site (City of Ottawa).

In keeping with the 2-year inlet restriction criterion, inlet control devices (ICDs) or orifice plates are specified for all catch basins to limit the inflow to the minor system. Restricted inlet rates to the sewer are necessary to prevent the hydraulic grade line from surcharging storm sewers into basements during major storms. **Drawing SD-1** outlines the proposed storm sewer alignment and drainage divides.

5.3 Post-Development Modelling

5.3.1 Allowable Release Rate

The allowable release rate from the 955 Borbridge Avenue site is based on the Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, March 2022), and noted as 320L/s for storm events up to and including the 100-year event.

5.3.2 Modelling Rationale

The Modified Rational Method was employed to assess the rate of runoff generated during postdevelopment conditions. A time of concentration for the post-development areas (10 minutes) was

assigned based on the relatively small site and its proximity to the existing drainage outlet for the site. Surface storage estimates were based on the final grading plan design (see **Drawing GP-1**). Peak flow rates to sewers have been calculated using the rational method as follows:

$$Q = 2.78(C)(I)(A)$$

Where:

Q = peak flow rate, L/s

C = site runoff coefficient

I = rainfall intensity, mm/hr (per City of Ottawa IDF curves)

A = drainage area, ha

5.3.3 Storage Requirements

The site requires quantity control measures to meet the restrictive stormwater release criteria. The use of controlled surface and subsurface storage within a proposed subdrain trench are proposed to reduce site peak outflow to the allowable target release rate. As per City of Ottawa criteria, no surface ponding is permitted within the site during the 2-year storm event. Refer to **Appendix C** for the Modified Rational Method calculations which demonstrate that no surface storage is required in the 2-year event.

It is proposed to detain stormwater on the surface in parking lot areas using inlet control devices (ICDs) in associated catch basins. Additional runoff from storms in excess of the 100-year storm event that exceed available on-site storage will be directed overland towards the Ralph Hennessy Avenue ROW at the east and Rockmelon Street ROW at the southwest boundary of the site.

The Modified Rational Method was employed to determine the peak volume stored in the catch basins and surface storage areas. The site was subdivided into subcatchments (subareas) as defined by the proposed grades and the location, nature, or presence/absence of inlet control devices (ICDs). Each subcatchment was assigned a runoff coefficient based on the proposed finished surface. Further details can be found in Appendix C, while Drawing SD-1 illustrates the proposed subcatchments. The inlet control devices were sized based on the available target release rate from the site during the 2-year storm event. Storage volume and controlled release rates from the on-site catch basins during the 2 and 100-year events are summarized in the table below.

Table 5.1 2-Year and 100-Year Peak Surface Volume and Controlled Discharge Summary

Area ID ICD (Circular Orifice)	ICD	2-Year Event			100-Year Event		
	Release Rate (L/s)	V _{required} (m³)	V _{available} (m³)	Release Rate (L/s)	V _{required} (m³)	V _{available} (m³)	
L103A	140 mm	43.4	0.0	49.6	52.4	44.2	49.6
L104A	102 mm	23.9	0.2	33.6	26.0	26.6	33.6
L106A	140 mm	45.2	0.0	83.5	52.8	47.1	83.5
L107A	108 mm	26.5	0.0	50.8	29.5	28.5	50.8
L107B	102 mm	15.0	0.0	19.8	22.0	13.0	19.8

L108A	102 mm	23.0	0.0	37.3	26.4	22.9	37.3
L108B	102 mm	3.5	0.0	2.1	7.4	0.0	2.1

5.3.4 Uncontrolled Areas

Due to grading restrictions, four subcatchment areas have been designed without a storage component. Areas UNC1-3 are located at the perimeter of the site where tie-ins to existing property line grades cannot permit capture of runoff to the minor system. Peak discharges from uncontrolled areas have been considered in the overall SWM plan and have been balanced through overcontrolling ICDs within the proposed site to meet target levels.

Table 5.3 summarizes the 2 and 100-year uncontrolled release rates from the proposed development.

Table 5.2 Peak Uncontrolled 2-Year and 100-Year Release Rates

Storm Return Period	Area ID	Area (ha)	Runoff 'C'	Tc (min)	Q _{release} (L/s)
	UNC-1	0.07	0.53	10	7.9
2-year	UNC-2	0.16	0.57	10	19.5
	UNC-3	0.04	0.63	10	5.4
	UNC-1	0.07	0.66	10	23.0
100-year	UNC-2	0.16	0.71	10	56.6
	UNC-3	0.04	0.79	10	15.6

5.4 Results and Discussion

The following section summarizes the key analysis results. For detailed calculations please refer to the Modified Rational Method sheet in **Appendix C**.

Table 5.4 summarizes the minor system peak discharge rate from the proposed 955 Borbridge Avenue for the 2 and 100-year storm events.

Table 5.3 Storm Event Peak Discharge Rates

	2-Year Peak Discharge (L/s)	100-Year Peak Discharge (L/s)
Controlled Discharge	184.5	216.7
Uncontrolled Sheet Flow	32.8	95.2
Total	217.3	311.9
Target	3	320

The total release rate from the proposed 955 Borbridge Avenue site is anticipated to be less than the allowable rate during all storm events up the 100-year storm event.

6 Geotechnical Considerations and Grading

6.1 Geotechnical Investigation

A geotechnical investigation report for 955 Borbridge Avenue was completed by Paterson Group on October 18, 2024. Field testing consisting of the advancement of four (4) boreholes with a maximum depth of 5.9m throughout the subject site was completed on September 20, 2024. Data from a previous investigation carried out by Paterson including a total of two (2) test pits and three (3) test boreholes with a maximum depth of 5.7m was also taken into consideration. The geotechnical investigation report is included in **Appendix D.1**.

The site is undeveloped with surface covered by gravel and grass. The grade across the site is generally level at an elevation of approximately 96 m. The subsurface profile within Block 167 consisted of 0.3 to 1.1m fill consists of compact brown silty sand, sandy silt and silty clay with gravel and organics, about 3.6 to 4.8m glacial till was encountered underlying the fill consists of compact to very dense brown silty sand to sandy silt with gravel, cobble and boulders.

Groundwater levels were taken at the four (4) boreholes advanced in 2020. The long-term groundwater table is anticipated to be at a 3 to 4 m depth, subject to seasonal fluctuations.

The site is considered suitable for the proposed development from a geotechnical perspective. Conventional shallow foundations placed on undisturbed stiff to firm silty clay, compacted silty sand to sandy silt, or engineered compacted fill, can be used for the proposed buildings.

Since no clay deposit was found on site, there will be no permissible grade raise restriction or geotechnical tree planting setback required for the 955 Borbridge Development

6.1.1 Proposed Pavement Structure

Tables 6.1 and 6.2 summarize the recommended pavement structures for the development.

Table 6.1 Recommended Pavement Structure for Local Road

Thickness (mm)	Material Description
40	Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete
50	Binder Course – HL-8 or Superpave 19.0 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone Compacted to Min. 99% SPMDD
450	Subbase – OPSS Granular B Type II Compacted to Min. 99% SPMDD
-	Subgrade – fill in situ soil or.OPSS Granular B Type I or II material placed over in situ soil

(

Table 6.2 Recommended Pavement Structure for Driveway and Car-Only Parking Areas

Thickness (mm)	Material Description
50	Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone Compacted to Min. 99% SPMDD
300	Subbase – OPSS Granular B Type II Compacted to Min. 99% SPMDD
-	Subgrade – OPSS Granular B Type II material placed over in situ soil or engineered fill

6.1.2 Sewer/Watermain Installation

The subsurface soils are considered to be Type 2 and 3 according to the Occupational Health and Safety Act and Regulations for Construction Projects. For excavations up to 3 m deep, 1H:1V slopes or shallower are recommended. A shallow slope should be used if the excavation is below the groundwater table. A trench box is required for all steep or vertical side slopes where workers are present.

At least 150mm of OPSS Granular A crushed stone compacted to 95% SPMDD is recommended as bedding for watermains and sewers, up to the springline of the pipes. OPSS Granular A crushed stone is to be used as cover material at least 300mm above the obvert of the pipes and compacted to a minimum of 95% SPMDD.

If the excavation and filling operations are carried out in dry weather, the moist brown silty clay is expected to be suitable as backfill material (above the cover material). Wet silty clay materials will be difficult to reuse without an extensive drying period. The trench backfill material within the frost zone (about 1.8 m below finished grade) should match the existing soils at the trench walls. Clay seals are recommended at no more than 60 m intervals in the service trenches and at strategic locations to reduce long-term lowering of the groundwater level in the site.

A low to moderate volume of groundwater infiltration is expected during excavation and it is anticipated to be sufficient in providing groundwater control by using open sumps and pumps. Contractor should be prepared to direct any water away from all bearing surface and subgrade to avoid disturbance to the founding medium. A temporary Permit to Take Water (PTTW) from the Ontario Ministry of the Environment, Conservation and Parks (MECP) may be required if more than 400,000 L/day of ground and/or surface water need to be pumped during the construction phase (to be determined by the geotechnical consultant). The review/issuance of the permit may take upwards of 4 months. For typical ground/surface water pumping volumes (50,000 L/day to 400,000 L/day), registration on the Environmental Activity and Sector Registry (EASR) will be required. Two to four weeks should be allotted for the completion of this registration and the preparation of a Water Taking and Discharge Plan by a Qualified Person as required under O.Reg. 63/16.

The founding stratum should be protected from freezing temperatures if winter construction is anticipated. The trench excavations should also be completed in a manner that will avoid the introduction of frozen materials into the trenches.

6.2 Grading Plan

Proposed grading for Block 167 is shown on Drawing GP-1. The proposed grading design for the Block 167 site directs the controlled overland flow from east half of the site toward Ralph Hennessy Avenue ROW and the controlled overland flow from the west half of the site toward Rockmelon Street ROW, as the emergency spill out outlet during major storm event that exceeded the 100-year level. A small North, and West portion of the site containing mostly landscape and grassed area drains uncontrolled towards existing Borbridge Avenue ROW. Another small section of mainly landscape area of proposed townhomes front yard drains uncontrolled towards Rockmelon Street ROW. The proposed grading implements sags in the parking areas for surface stormwater detention.

The proposed grading has been developed to match the existing road grades along Borbridge Avenue to the North, Ralph Hennessy Avenue to the East and Rockmelon Street to the South.

All grading, in-filling and backfilling works are to be completed as per the geotechnical recommendations made in Paterson's geotechnical investigation report (summarized above in Section 6.1).

7 Utilities

Utility infrastructure for Bell, Rogers, Hydro Ottawa, and Enbridge exists within underground plant servicing urbanized rights-of-way adjacent to the subject site. Coordination regarding the exact size, location, and routing of utilities will begin following design circulation.

8 Approvals

The City of Ottawa will review most development applications as they relate to the provision of water supply, wastewater collection and disposal, and stormwater conveyance and treatment for Site Plan Approval.

An Environmental Compliance Approval (ECA) is not expected to be required from the Ontario Ministry of the Environment, Conservation and Parks (MECP) for the proposed servicing works within the proposed private block so long as part lot control is not pursued for this development (i.e., as long as the property will be held under single ownership). The Rideau Valley Conservation Authority (RVCA) will be circulated on this submission.

An MECP Permit to Take Water (PTTW) or registration on the Environmental Activity and Sector Registry (EASR) may be required for the site. The geotechnical consultant shall confirm at the time of application whether a PTTW or EASR registration is required.

No other approval requirements from other regulatory agencies are anticipated.

9 Erosion Control

In order to protect downstream water quality and prevent sediment build up in catch basins and storm sewers, erosion and sediment control measures must be implemented during construction. The following recommendations will be included in the contract documents and communicated to the Contractor.

- Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- Limit the extent of the exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with geotextiles, geogrid, or synthetic mulches.
- Provide sediment traps and basins during dewatering works.
- Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- Schedule the construction works at times which avoid flooding due to seasonal rains.

The Contractor will also be required to complete inspections and guarantee the proper performance of their erosion and sediment control measures at least after every rainfall. The inspections are to include:

- Verification that water is not flowing under silt barriers.
- Cleaning and changing the sediment traps placed on catch basins.

Refer to **Drawing EC/DS-1** for the proposed location of silt fences, straw bales, and other erosion control measures.

10 Conclusions and Recommendations

10.1 Potable Water Servicing

The proposed watermain network is capable of achieving the level of service required by the City of Ottawa based on the hydraulic analysis. The following conclusions were made:

- The proposed water distribution system in the 955 Borbridge site is recommended to consist of a 200mm diameter watermain connecting to the existing 300mm diameter watermain on Borbridge Avenue and Ralph Hennessy Avenue at two connection points to loop the system.
- The proposed watermain network operates below the maximum pressure objective of 552 kPa
 (80 psi) in both the average day (AVDY) and peak hour (PKHR) conditions both before and after
 the SUC Pressure Zone Reconfiguration.
- During maximum day domestic demands with a fire flow demand of 11,000 L/min (183 L/s), the
 proposed watermain network is capable of providing sufficient fire flow while maintaining a
 residual pressure of 138 kPa (20 psi) in all areas within the development both before and after the
 SUC Pressure Zone Reconfiguration.

10.2 Wastewater Servicing

Wastewater from the proposed development will be conveyed to the existing sanitary sewer on Borbridge Avenue constructed as part of the Riverside South Phase 17-1B Development. The wastewater will ultimately be directed to the River Road Pumping Station.

200mm diameter sanitary sewers are proposed throughout the site. The capacity of the existing sanitary sewers on Ralph Hennessy Avenue and further downstream was verified with the estimated peak wastewater flows from the site and their relative increase from the estimates made in the Design Brief for the Riverside South Phase 17-1B 4775 & 4875 Spratt Road Riverside South Community (IBI Group, 2022). The analysis confirmed that there is sufficient capacity within the downstream sanitary sewer system to service the site.

10.3 Stormwater Management and Servicing

The proposed stormwater management plan is in compliance with the requirements outlined in the background documents, the City of Ottawa Sewer Design Guidelines and the Ontario Ministry of the Environment, Conservation and Parks (MECP) Stormwater Management Planning and Design Manual.

Inlet control devices were defined for each subcatchment to restrict inflow rates to the storm sewers to that of the 2-year runoff for the 955 Borbridge Avenue site as per City of Ottawa and background report design criteria. Emergency major system peak flows from the site for storm events above that of the 100-year design storm will be directed to Ralph Hennessy Avenue ROW and Rockmelon Street ROW, except for small uncontrolled areas to the north which will drain to Borbridge Avenue as per existing conditions.

21

Minor system peak flows will be directed to the existing 1650 mm diameter storm sewer on Borbridge Avenue. Quantity and quality control (80% TSS removal) of stormwater runoff will be provided at the downstream RSC Pond 5.

10.4 Grading

Proposed grading for the site directs emergency major system flows from events above that of the 100-year design storm event to the surrounding ROWs. The proposed grading implements sags in the parking areas for surface stormwater detention and has been designed to accommodate SWM requirements for the development.

All grading, in-filling and backfilling works are to be completed as per the geotechnical recommendations made in the background geotechnical investigation report (summarized above).

10.5 Approvals/Permits

An MECP Environmental Compliance Approval (ECA) may be required for the installation of the proposed storm and sanitary sewers within the private site should part lot control be pursued to sever the property into separate parcels at a later date. A Permit to Take Water or registration on the EASR may be required for dewatering works during sewer/watermain installation, pending confirmation by the geotechnical consultant. The Rideau Valley Conservation Authority (RVCA) will need to be consulted in order to obtain municipal approval for site development. No other approval requirements from other regulatory agencies are anticipated.

10.6 Utilities

Utility infrastructure for Bell, Rogers, Hydro Ottawa, and Enbridge exists within underground plant servicing urbanized rights-of-way adjacent to the subject site. Coordination regarding the exact size, location, and routing of utilities will begin following design circulation.

Appendices

Appendix A Potable Water Servicing

A.1 Domestic Water Demand Calculations

Riverside South Phase 17 - Block 167, Ottawa, ON - Domestic Water Demand Estimates

Site Plan provided by M.David Blakely Architect Inc. Rev 7
Project No. 160402058

Densities as	per City Guid	delines:			
Densities as per City Guidelines: Townhouse Row Units ¹ Row 2.7 ppu					
Row	2.7	ppu			

Type of Unit	of Unit No. of Units Population		Daily Rate of Demand ²	Avg I	Day Demand	Max Day	Demand ³	Max Hour Demand ³		
	Units		(L/cap/day)	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)	
Block 1	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58	
Block 2	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58	
Block 3	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58	
Block 4	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58	
Block 5	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58	
Block 6	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58	
Block 7	9	24	280	4.7	0.08	11.8	0.20	26.0	0.43	
Block 8	12	32	280	6.3	0.11	15.8	0.26	34.7	0.58	
Total Site :	93	251		48.8	0.81	122.1	2.03	268.5	4.48	

Notes:

- 1 As per Table 4-1 from the City of Ottawa Water Design Guidelines, the persons per unit for Townhouse (row) units is 2.7
- 2 As per Table 4-2 from the City of Ottawa Water Design Guidelines and Technical Bulletin ISTB-2021-03, the average daily rate of water demand for residential areas: 280 L/cap/day
- 3 As per Table 4.2 from the City of Ottawa Water Design Guidelines, the water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum daily demand rate = 2.5 x average day demand rate

maximum hour demand rate = 2.2 x maximum day demand rate

A.2 FUS Calculation Sheets

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 1
Description: Block 1 (2-storey residential townhouses c/w basement)

Notes: Site Plan provided by M.David Blakely Architect Inc.

Step	Task			Value Used	Req'd Fire Flow (L/min)								
1	Determine Type of Construction			Туре	V - Wood Fro	ıme / Type I\	/-D - Mass Timbe	er Construc	ction			1.5	-
2	Determine Effective		Sum	of All Floor	Areas							-	-
	Floor Area	313	313 313										-
3	Determine Required Fire Flow				(F = 220 x C	x A ^{1/2}). Rour	nd to nearest 100	00 L/min				-	8000
4	Determine Occupancy Charge					Limited Co	ombustible					-15%	6800
						No	ne					0%	
5	Determine Sprinkler				Non-	Standard Wo	iter Supply or N/	Α				0%	0
	Reduction	Not Fully Supervised or N/A									0%	Ĭ	
		% Coverage of Sprinkler System								0%			
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of A Wall	adjacent	Fire	wall / Sprinkler	ed?	-	-
	Determine Increase	North	20.1 to 30	13	2	21-49	Type V			NO		2%	
6	for Exposures (Max. 75%)	East	> 30	0	0	0-20	Type V			NO		0%	1360
	7.5757	South	20.1 to 30	33	2	61-80	Type V			NO		6%	1360
		West	10.1 to 20	25	2	41-60	Type V			NO		12%	
					Total Requi	red Fire Flow	in L/min, Round	ed to Nea	rest 1000L/ı	min			8000
7	Determine Final		Total Required Fire Flow in L/s										133.3
′	Required Fire Flow					Required	Duration of Fire	Flow (hrs)					2.00
						Required	Volume of Fire	Flow (m ³)					960

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 2
Description: Block 2 (2-storey residential townhouses c/w basement)

 ${\bf Notes:} \ \ {\bf Site} \ \ {\bf Plan} \ \ {\bf provided} \ \ {\bf by} \ \ {\bf M.David} \ \ {\bf Blakely} \ \ {\bf Architect} \ \ {\bf Inc.}$

Step	Task			Value Used	Req'd Fire Flow (L/min)									
1	Determine Type of Construction			Туре	V - Wood Fra	ıme / Type I\	/-D - Mass Timb	oer Constr	uction			1.5	-	
2	Determine Effective		Sum	of All Floor	Areas							-	-	
	Floor Area	412	412 412									824	-	
3	Determine Required Fire Flow				(F = 220 x C	x A ^{1/2}). Rour	nd to nearest 10	000 L/min				-	9000	
4	Determine Occupancy Charge					Limited Co	ombustible					-15%	7650	
						No	ne					0%		
5	Determine Sprinkler		Non-Standard Water Supply or N/A										0	
	Reduction		Not Fully Supervised or N/A									0%		
					% C		Sprinkler Systen	m				0%		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Wall		Fire	wall / Sprinkler	ed ?	-	-	
	Determine Increase	North	20.1 to 30	26	2	41-60	Type V	,		NO		4%		
6	for Exposures (Max. 75%)	East	10.1 to 20	13	0	0-20	Type V	′		NO		10%	3060	
	,	South	10.1 to 20	33	2	61-80	Type V	,		NO		13%	3000	
		West 10.1 to 20 31 2 61-80 Type V NO							13%					
					Total Requi	red Fire Flow	in L/min, Roun	ded to Ne	arest 1000L/	min			11000	
7	Determine Final					Total R	equired Fire Flo	ow in L/s					183.3	
′	Required Fire Flow					Required	Duration of Fire	e Flow (hrs)				2.00	
						Required	Volume of Fire	e Flow (m³)				1320	

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 3
Description: Block 3 (2-storey residential townhouses c/w basement)

Notes: Site Plan provided by M.David Blakely Architect Inc.

Step	Task		Notes Value Used											
1	Determine Type of Construction			Туре	V - Wood Fro	ıme / Type I\	/-D - Mass Ti	mber Constr	uction			1.5	-	
2	Determine Effective		Sum	of All Floor	Areas							-	-	
	Floor Area	412 412									824	-		
3	Determine Required Fire Flow				(F = 220 x C	x A ^{1/2}). Rour	nd to neares	1000 L/min				-	9000	
4	Determine Occupancy Charge					Limited Co	mbustible					-15%	7650	
						No	ne					0%		
5	Determine Sprinkler		Non-Standard Water Supply or N/A										0	
	Reduction	Not Fully Supervised or N/A									0%			
					% (Coverage of	Sprinkler Syst	em				0%		
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction W	of Adjacent all	Fire	wall / Sprinkle	red ?	-	-	
	Determine Increase	North	10.1 to 20	33	2	61-80	Тур	e V		NO		13%		
6	for Exposures (Max. 75%)	East	10.1 to 20	13	2	21-49	Тур	e V		NO		11%	3137	
	, 5,5,	South	20.1 to 30	33	2	61-80	Тур	e V		NO		6%	313/	
		West	10.1 to 20	13	2	21-49	Тур	e V		NO		11%		
					Total Requi	red Fire Flow	in L/min, Ro	unded to Ne	arest 1000L/	min			11000	
7	Determine Final					Total R	equired Fire	Flow in L/s					183.3	
′	Required Fire Flow					Required	Duration of	Fire Flow (hr	5)				2.00	
						Required	Volume of l	Fire Flow (m ³)				1320	

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 4
Description: Block 4 (2-storey residential townhouses c/w basement)

Notes: Site Plan provided by M.David Blakely Architect Inc.

Step	Task					No	tes					Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fra	me / Type I\	/-D - Mass Timb	er Constru	ction			1.5	-
2	Determine Effective		Sum	of All Floor	Areas							-	-
	Floor Area	412	112 412									824	-
3	Determine Required Fire Flow				(F = 220 x C	x A ^{1/2}). Rour	nd to nearest 10	00 L/min				-	9000
4	Determine Occupancy Charge					Limited Co	ombustible					-15%	7650
						No	ne					0%	
5	Determine Sprinkler				Non-	Standard Wo	iter Supply or N	/A				0%	0
	Reduction		Not Fully Supervised or N/A									0%	
	% Coverage of Sprinkler System						0%						
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Wall	Adjacent	Fire	Firewall / Sprinklered ?		-	-
	Determine Increase	North	20.1 to 30	33	2	61-80	Type V			NO		6%	
6	for Exposures (Max. 75%)	East	> 30	33	2	61-80	Type V			NO		0%	1683
	7.5751	South	> 30	33	2	61-80	Type V			NO		0%	1683
		West	3.1 to 10	13	2	21-49	Type V			NO		16%	
					Total Requi	red Fire Flow	in L/min, Round	led to Nec	arest 1000L/	min			9000
7	Determine Final		Total Required Fire Flow in L/s										
′	Required Fire Flow					Required	Duration of Fire	Flow (hrs))				2.00
						Required	l Volume of Fire	Flow (m ³)					1080

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 5
Description: Block 5 (2-storey residential townhouses c/w basement)

Step	Task					No	ites					Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fro	ıme / Type I\	/-D - Mass Tin	nber Constr	uction			1.5	-
2	Determine Effective		Sum	of All Floor	Areas							-	-
	Floor Area	412										824	-
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}), Round to nearest 1000 L/min								•	-	9000
4	Determine Occupancy Charge		Limited Combustible									-15%	7650
			None									0%	
5	Determine Sprinkler				Non-	Standard Wo	ater Supply or	N/A				0%	0
	Reduction				N	lot Fully Supe	ervised or N/A	L				0%	0
					% (Coverage of	Sprinkler Syste	em				0%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction (Fire	wall / Sprinkle	red ?	-	-
	Determine Increase	North	> 30	33	2	61-80	Туре	v		NO		0%	
6	for Exposures (Max. 75%)	East	3.1 to 10	13	2	21-49	Туре	v		NO		16%	2219
	7 5701	South	20.1 to 30	13	2	21-49	Туре	V		NO		2%	2217
		West	10.1 to 20	13	2	21-49	Туре	V		NO		11%	
			Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min										10000
7	Determine Final		Total Required Fire Flow in L/s										166.7
′	Required Fire Flow		Required Duration of Fire Flow (hrs)									2.00	
						Required	d Volume of Fi	re Flow (m³)				1200

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 6
Description: Block 6 (2-storey residential townhouses c/w basement)

Step	Task					No	tes					Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fra	me / Type I\	/-D - Mass Ti	mber Constr	uction			1.5	-
2	Determine Effective		Sum	of All Floor	Areas							-	-
	Floor Area	412										824	-
3	Determine Required Fire Flow		(F = $220 \times C \times A^{1/2}$). Round to nearest 1000 L/min									-	9000
4	Determine Occupancy Charge		Limited Combustible								-15%	7650	
			None									0%	
5	Determine Sprinkler				Non-	Standard Wo	iter Supply o	r N/A				0%	0
	Reduction				N	lot Fully Supe	ervised or N/	A				0%	U
					% C	Coverage of	Sprinkler Syst	em				0%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction W		Fire	wall / Sprinkler	red ?	-	-
	Determine Increase	North	> 30	33	2	61-80	Тур	e V		NO		0%	
6	for Exposures (Max. 75%)	East	> 30	13	2	21-49	Тур	e V		NO		0%	1377
	7. 57.57	South	20.1 to 30	13	2	21-49	Тур	e V		NO		2%	13//
		West	3.1 to 10	13	2	21-49	Тур	e V		NO		16%	
					Total Requi	red Fire Flow	in L/min, Ro	unded to Ne	arest 1000L/ı	min			9000
7	Determine Final		Total Required Fire Flow in L/s									150.0	
′	Required Fire Flow		Required Duration of Fire Flow (hrs)									2.00	
						Required	l Volume of I	Fire Flow (m ³)				1080

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 7
Description: Block 7 (2-storey residential townhouses c/w basement)

Step	Task					No	tes					Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fra	ıme / Type I\	/-D - Mass Ti	mber Constr	uction			1.5	-
2	Determine Effective		Sum	of All Floor	Areas							-	-
	Floor Area	412											-
3	Determine Required Fire Flow		(F = 220 x C x A ^{1/2}). Round to nearest 1000 L/min									-	9000
4	Determine Occupancy Charge		Limited Combustible									-15%	7650
			None									0%	
5	Determine Sprinkler				Non-	Standard Wo	iter Supply o	r N/A				0%	0
	Reduction				N	lot Fully Supe	ervised or N/	A				0%	
					% C	Coverage of	Sprinkler Syst	em				0%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction W		Fire	wall / Sprinkle	red ?	-	-
	Determine Increase	North	20.1 to 30	33	2	61-80	Тур	e V		NO		6%	
6	for Exposures (Max. 75%)	East	> 30	0	0	0-20	Тур	e V		NO		0%	2142
	, 5,5,	South	3.1 to 10	13	2	21-49	Тур	e V		NO		16%	2142
		West	20.1 to 30	33	2	61-80	Тур	e V		NO		6%	
			Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min										10000
,	Determine Final		Total Required Fire Flow in L/s										166.7
′	Required Fire Flow		Required Duration of Fire Flow (hrs)									2.00	
						Required	Volume of l	Fire Flow (m ³)				1200

Stantec Project #: 160402058 Project Name: Riverside South Block Ph 17 - Block 167 Date: 11/11/2024

Fire Flow Calculation #: 8
Description: Block 8 (2-storey residential townhouses c/w basement)

Step	Task					No	tes					Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Туре	V - Wood Fra	me / Type I\	/-D - Mass Ti	mber Constr	uction			1.5	-
2	Determine Effective		Sum	of All Floor	Areas							-	-
	Floor Area	412	412 412									824	-
3	Determine Required Fire Flow		(F = $220 \times C \times A^{1/2}$). Round to nearest 1000 L/min									-	9000
4	Determine Occupancy Charge		Limited Combustible								-15%	7650	
			None									0%	
5	Determine Sprinkler				Non-	Standard Wo	ter Supply o	r N/A				0%	0
	Reduction				N	lot Fully Supe	ervised or N/	A				0%	
					% C	Coverage of	Sprinkler Syst	em				0%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction W		Fire	wall / Sprinkler	ed ?	-	-
	Determine Increase	North	20.1 to 30	33	2	61-80	Тур	e V		NO		6%	
6	for Exposures (Max. 75%)	East	20.1 to 30	33	0	0-20	Тур	e V		NO		0%	2907
	. 5,5,	South	3.1 to 10	13	2	21-49	Тур	e V		NO		16%	2707
		West	3.1 to 10	11	2	21-49	Тур	e V		NO		16%	
			Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min										11000
7	Determine Final		Total Required Fire Flow in L/s									183.3	
′	Required Fire Flow		Required Duration of Fire Flow (hrs)									2.00	
						Required	Volume of I	ire Flow (m³)				1320

A.3 Watermain Hydraulic Analysis Results

Pre-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Junction Results - Basic Day

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (m)	Pressure (psi)2	Pressure (kPa)
0	0.00	97.44	132.30	34.86	49.56	341.73
1	0.00	97.32	132.30	34.98	49.74	342.97
2	0.00	97.29	132.30	35.02	49.79	343.29
3	0.00	97.38	132.30	34.92	49.66	342.40
4	0.00	97.48	132.30	34.82	49.51	341.34
6	0.19	97.48	132.30	34.82	49.51	341.37
7	0.11	97.50	132.30	34.81	49.49	341.23
8	0.00	97.59	132.30	34.71	49.36	340.29
9	0.00	97.54	132.30	34.76	49.43	340.80
10	0.11	97.53	132.30	34.77	49.44	340.86
11	0.00	97.50	132.30	34.81	49.49	341.23
12	0.00	97.72	132.30	34.58	49.17	339.03
13	0.00	97.60	132.30	34.70	49.35	340.24
14	0.22	97.52	132.30	34.78	49.45	340.95
16	0.00	97.73	132.30	34.57	49.16	338.96
17	0.00	97.75	132.30	34.55	49.13	338.71
18	0.00	97.78	132.30	34.53	49.09	338.49
19	0.11	97.60	132.30	34.70	49.35	340.23
20	0.00	97.61	132.30	34.69	49.32	340.08
22	0.00	97.53	132.30	34.77	49.44	340.91
23	0.11	97.53	132.30	34.77	49.44	340.87

Link Results - Basic Day

ID	FROM	то	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)
1000	1	0	19.73	204	110	0.122	0.004
1001	2	1	11.00	204	110	0.122	0.004
1002	3	2	44.75	204	110	0.122	0.004
1003	4	3	42.80	204	110	0.358	0.011
1004	Ralph_Hennessy	4	6.00	204	110	0.358	0.011
1005	6	3	38.03	204	110	-0.236	0.007
1006	7	6	3.00	204	110	-0.046	0.001
1007	9	8	3.00	204	110	-0.174	0.005
1008	10	9	33.09	204	110	-0.174	0.005
1009	7	10	20.20	204	110	-0.064	0.002
1010	11	7	23.35	204	110	0.000	0.000
1011	13	12	18.55	204	110	-0.272	0.008
1012	8	13	6.34	204	110	-0.272	0.008
1013	0	8	30.65	204	110	-0.098	0.003
1014	14	0	44.32	204	110	-0.220	0.007
1015	16	Borbridge_Ave	11.05	204	110	-0.492	0.015
1016	17	16	9.00	204	110	-0.492	0.015
1017	12	17	2.89	204	110	-0.492	0.015
1018	18	12	13.44	204	110	-0.220	0.007
1019	19	18	18.17	204	110	-0.220	0.007
1020	20	19	16.05	204	110	0.000	0.000
1022	22	19	8.65	204	110	-0.110	0.003
1023	23	22	34.40	204	110	-0.110	0.003

Pre-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Junction Results - Peak Hour

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (m)	Pressure (psi)2	Pressure (kPa)
0	0.00	97.44	124.90	27.45	39.04	269.16
1	0.00	97.32	124.90	27.58	39.22	270.40
2	0.00	97.29	124.90	27.61	39.26	270.72
3	0.00	97.38	124.90	27.52	39.14	269.83
4	0.00	97.48	124.90	27.42	38.98	268.79
6	1.01	97.48	124.90	27.42	38.99	268.80
7	0.58	97.50	124.90	27.40	38.97	268.66
8	0.00	97.59	124.90	27.31	38.83	267.72
9	0.00	97.54	124.90	27.36	38.90	268.23
10	0.58	97.53	124.90	27.37	38.91	268.29
11	0.00	97.50	124.90	27.40	38.97	268.66
12	0.00	97.72	124.90	27.18	38.65	266.46
13	0.00	97.60	124.90	27.30	38.82	267.67
14	1.16	97.52	124.90	27.37	38.92	268.37
16	0.00	97.73	124.90	27.17	38.64	266.40
17	0.00	97.75	124.90	27.15	38.60	266.15
18	0.00	97.78	124.90	27.12	38.57	265.92
19	0.58	97.60	124.90	27.30	38.82	267.66
20	0.00	97.61	124.90	27.29	38.80	267.51
22	0.00	97.53	124.90	27.37	38.92	268.34
23	0.58	97.53	124.90	27.37	38.91	268.30

Link Results - Peak Hour

ID	FROM	то	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)
1000	1	0	19.727	204	110	0.642	0.020
1001	2	1	11.000	204	110	0.642	0.020
1002	3	2	44.746	204	110	0.642	0.020
1003	4	3	42.797	204	110	1.892	0.058
1004	Ralph_Henmessy	4	6.000	204	110	1.892	0.058
1005	6	3	38.034	204	110	-1.251	0.038
1006	7	6	3.000	204	110	-0.241	0.007
1007	9	8	3.000	204	110	-0.919	0.028
1008	10	9	33.089	204	110	-0.919	0.028
1009	7	10	20.199	204	110	-0.339	0.010
1010	11	7	23.351	204	110	0.000	0.000
1011	13	12	18.546	204	110	-1.438	0.044
1012	8	13	6.339	204	110	-1.438	0.044
1013	0	8	30.653	204	110	-0.518	0.016
1014	14	0	44.323	204	110	-1.160	0.035
1015	16	Borbridge_Ave	11.046	204	110	-2.598	0.079
1016	17	16	9.003	204	110	-2.598	0.079
1017	12	17	2.892	204	110	-2.598	0.079
1018	18	12	13.442	204	110	-1.160	0.035
1019	19	18	18.171	204	110	-1.160	0.035
1020	20	19	16.053	204	110	0.000	0.000
1022	22	19	8.650	204	110	-0.580	0.018
1023	23	22	34.396	204	110	-0.580	0.018

Pre-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Fire Flow Results - Max Day + 150 L/s

		Static Pressure	Static Pressure	Static Pressure	Static Head	Fire Flow	Residual	Residual	Available	Available
ID	Static Demand (L/s)	(m)	(psi)	(kPa)	(m)	Demand (L/s)	Pressure (m)	Pressure (psi)	Flow (L/s)	Pressure (psi)
0	0.00	25.80	36.69	252.99	123.25	183.33	21.15	30.07	302.77	20
1	0.00	25.93	36.87	254.18	123.24	183.33	20.94	29.78	293.31	20
2	0.00	25.96	36.91	254.49	123.24	183.33	21.02	29.89	295.13	20
3	0.00	25.86	36.77	253.51	123.23	183.33	22.90	32.56	387.64	20
4	0.00	25.72	36.57	252.16	123.20	183.33	24.97	35.51	803.56	20
6	0.46	25.76	36.63	252.54	123.24	183.33	21.06	29.95	300.58	20
7	0.26	25.746	36.61	252.42	123.24	183.33	21.01	29.88	299.01	20
8	0.00	25.664	36.49	251.61	123.26	183.33	22.71	32.29	385.06	20
9	0.00	25.715	36.57	252.11	123.25	183.33	22.52	32.02	370.00	20
10	0.26	25.713	36.56	252.09	123.25	183.33	21.05	29.93	301.13	20
11	0.00	25.746	36.61	252.42	123.24	183.33	16.9	24.03	213.04	20
12	0.00	25.557	36.34	250.56	123.28	183.33	23.48	33.39	464.98	20
13	0.00	25.665	36.49	251.62	123.26	183.33	22.85	32.49	395.41	20
16	0.00	25.562	36.35	250.61	123.29	183.33	24.31	34.57	612.78	20
17	0.00	25.528	36.30	250.28	123.28	183.33	23.62	33.59	486.49	20
18	0.00	25.502	36.26	250.03	123.28	183.33	21.05	29.93	305.86	20
19	0.26	25.68	36.52	251.77	123.28	183.33	18.01	25.61	229.61	20
20	0.00	25.664	36.49	251.61	123.28	183.33	15.17	21.57	193.52	20
22	0.00	25.749	36.61	252.45	123.28	183.33	16.55	23.53	208.73	20

Post-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Junction Results - Basic Day

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (m)	Pressure (psi)2	Pressure (kPa)
0	0.00	97.44	146.80	49.36	70.18	483.89
1	0.00	97.32	146.80	49.48	70.36	485.13
2	0.00	97.29	146.80	49.52	70.41	485.45
3	0.00	97.38	146.80	49.42	70.28	484.56
4	0.00	97.48	146.80	49.32	70.13	483.50
6	0.19	97.48	146.80	49.32	70.13	483.53
7	0.11	97.50	146.80	49.31	70.11	483.39
8	0.00	97.59	146.80	49.21	69.97	482.45
9	0.00	97.54	146.80	49.26	70.05	482.96
10	0.11	97.53	146.80	49.27	70.06	483.02
11	0.00	97.50	146.80	49.31	70.11	483.39
12	0.00	97.72	146.80	49.08	69.79	481.19
13	0.00	97.60	146.80	49.20	69.97	482.40
14	0.22	97.52	146.80	49.28	70.07	483.11
16	0.00	97.73	146.80	49.07	69.78	481.12
17	0.00	97.75	146.80	49.05	69.74	480.87
18	0.00	97.78	146.80	49.03	69.71	480.65
19	0.11	97.60	146.80	49.20	69.97	482.39
20	0.00	97.61	146.80	49.19	69.94	482.24
22	0.00	97.53	146.80	49.27	70.06	483.07
23	0.11	97.53	146.80	49.27	70.06	483.03

Link Results - Basic Day

ID	FROM	то	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)
1000	1	0	19.73	204	110	0.122	0.004
1001	2	1	11.00	204	110	0.122	0.004
1002	3	2	44.75	204	110	0.122	0.004
1003	4	3	42.80	204	110	0.358	0.011
1004	Ralph_Hennessy	4	6.00	204	110	0.358	0.011
1005	6	3	38.03	204	110	-0.236	0.007
1006	7	6	3.00	204	110	-0.046	0.001
1007	9	8	3.00	204	110	-0.174	0.005
1008	10	9	33.09	204	110	-0.174	0.005
1009	7	10	20.20	204	110	-0.064	0.002
1010	11	7	23.35	204	110	0.000	0.000
1011	13	12	18.55	204	110	-0.272	0.008
1012	8	13	6.34	204	110	-0.272	0.008
1013	0	8	30.65	204	110	-0.098	0.003
1014	14	0	44.32	204	110	-0.220	0.007
1015	16	Borbridge_Ave	11.05	204	110	-0.492	0.015
1016	17	16	9.00	204	110	-0.492	0.015
1017	12	17	2.89	204	110	-0.492	0.015
1018	18	12	13.44	204	110	-0.220	0.007
1019	19	18	18.17	204	110	-0.220	0.007
1020	20	19	16.05	204	110	0.000	0.000
1022	22	19	8.65	204	110	-0.110	0.003
1023	23	22	34.40	204	110	-0.110	0.003

Post-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Junction Results - Peak Hour

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (m)	Pressure (psi)2	Pressure (kPa)
0	0.00	97.44	143.70	46.25	65.77	453.48
1	0.00	97.32	143.70	46.38	65.95	454.72
2	0.00	97.29	143.70	46.41	66.00	455.04
3	0.00	97.38	143.70	46.32	65.87	454.15
4	0.00	97.48	143.70	46.22	65.72	453.11
6	1.01	97.48	143.70	46.22	65.72	453.12
7	0.58	97.50	143.70	46.20	65.70	452.98
8	0.00	97.59	143.70	46.11	65.56	452.04
9	0.00	97.54	143.70	46.16	65.64	452.55
10	0.58	97.53	143.70	46.17	65.65	452.61
11	0.00	97.50	143.70	46.20	65.70	452.98
12	0.00	97.72	143.70	45.98	65.38	450.77
13	0.00	97.60	143.70	46.10	65.56	451.99
14	1.16	97.52	143.70	46.17	65.66	452.69
16	0.00	97.73	143.70	45.97	65.37	450.72
17	0.00	97.75	143.70	45.95	65.34	450.47
18	0.00	97.78	143.70	45.92	65.30	450.24
19	0.58	97.60	143.70	46.10	65.55	451.98
20	0.00	97.61	143.70	46.09	65.53	451.82
22	0.00	97.53	143.70	46.17	65.65	452.66
23	0.58	97.53	143.70	46.17	65.65	452.62

Link Results - Peak Hour

ID	FROM	то	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)
1000	1	0	19.727	204	110	0.020	0.005
1001	2	1	11.000	204	110	0.020	0.005
1002	3	2	44.746	204	110	0.020	0.005
1003	4	3	42.797	204	110	0.058	0.037
1004	Ralph_Hennessy	4	6.000	204	110	0.058	0.037
1005	6	3	38.034	204	110	0.038	0.017
1006	7	6	3.000	204	110	0.007	0.000
1007	9	8	3.000	204	110	0.028	0.009
1008	10	9	33.089	204	110	0.028	0.010
1009	7	10	20.199	204	110	0.010	0.001
1010	11	7	23.351	204	110	0.000	0.000
1011	13	12	18.546	204	110	0.044	0.022
1012	8	13	6.339	204	110	0.044	0.022
1013	0	8	30.653	204	110	0.016	0.003
1014	14	0	44.323	204	110	0.035	0.015
1015	16	Borbridge	11.046	204	110	0.079	0.067
1016	17	16	9.003	204	110	0.079	0.066
1017	12	17	2.892	204	110	0.079	0.068
1018	18	12	13.442	204	110	0.035	0.015
1019	19	18	18.171	204	110	0.035	0.015
1020	20	19	16.053	204	110	0.000	0.000
1022	22	19	8.650	204	110	0.018	0.004
1023	23	22	34.396	204	110	0.018	0.004

Post-SUC Reconfiguration PCSWMM Watermain Hydraulic Analysis Result Fire Flow Results - Max Day (Dead end pipe upgraded to 200mm dia.)

		Static Pressure	Static Pressure	Static Pressure	Static Head	Fire Flow	Residual	Residual	Available	Available
ID	Static Demand (L/s)	(m)	(psi)	(kPa)	(m)	Demand (L/s)	Pressure (m)	Pressure (psi)	Flow (L/s)	Pressure (psi)
0	0.00	43.156	61.37	423.11	140.60	183.33	38.50	54.75	494.91	20
1	0.00	43.274	61.53	424.26	140.59	183.33	38.29	54.45	477.72	20
2	0.00	43.303	61.58	424.55	140.59	183.33	38.37	54.56	480.25	20
3	0.00	43.194	61.42	423.48	140.57	183.33	40.24	57.22	632.41	20
4	0.00	43.025	61.18	421.82	140.51	183.33	42.29	60.14	1313.96	20
6	0.46	43.104	61.29	422.60	140.59	183.33	38.41	54.62	491.93	20
7	0.26	43.091	61.27	422.47	140.59	183.33	38.36	54.55	489.56	20
8	0.00	43.023	61.18	421.80	140.61	183.33	40.06	56.96	631.97	20
9	0.00	43.074	61.25	422.30	140.61	183.33	39.87	56.69	606.37	20
10	0.26	43.063	61.23	422.20	140.60	183.33	38.40	54.60	493.49	20
11	0.00	43.091	61.27	422.47	140.59	183.33	34.24	48.69	348.66	20
12	0.00	42.938	61.06	420.97	140.66	183.33	40.85	58.09	765.62	20
13	0.00	43.029	61.19	421.86	140.63	183.33	40.21	57.18	648.98	20
16	0.00	42.953	61.08	421.12	140.68	183.33	41.69	59.28	1008.69	20
17	0.00	42.911	61.02	420.71	140.66	183.33	40.99	58.29	801.67	20
18	0.00	42.882	60.98	420.42	140.66	183.33	38.42	54.63	504.40	20
19	0.26	43.06	61.23	422.17	140.66	183.33	35.38	50.31	376.78	20
20	0.00	43.044	61.21	422.01	140.66	183.33	32.54	46.27	317.66	20
22	0.00	43.129	61.33	422.84	140.66	183.33	33.92	48.23	341.86	20

955 Borbridge Avenue Appendix B Wastewater Ser January 31, 2025	vicing Calculations
Appendix B	Wastewater Servicing Calculations

B.1 Sanitary Sewer Design Sheet

Stantec

SUBDIVISION

Riverside South Block 167

DATE: 11/8/2024
REVISION: 1
DESIGNED BY: MJS
CHECKED BY: -

SANITARY SEWER DESIGN SHEET (City of Ottawa)

FILE NUMBER: 160402058

DESIGN PARAMETERS

MAX PEAK FACTOR (RES.)= AVG. DAILY FLOW / PERSON 4.0 280 l/p/day MINIMUM VELOCITY 0.60 m/s MIN PEAK FACTOR (RES.)= 2.0 COMMERCIAL 28,000 l/ha/day MAXIMUM VELOCITY 3.00 m/s PEAKING FACTOR (INDUSTRIAL): 2.4 INDUSTRIAL (HEAVY) 55,000 l/ha/day MANNINGS n 0.013 PEAKING FACTOR (ICI >20%): INDUSTRIAL (LIGHT) 1.5 35,000 l/ha/day BEDDING CLASS PERSONS / SINGLE 3.4 INSTITUTIONAL 28,000 l/ha/day MINIMUM COVER 2.50 m PERSONS / TOWNHOME
PERSONS / APARTMENT INFILTRATION 2.7 0.33 l/s/Ha HARMON CORRECTION FACTOR

															PERSONS /	APARTMENT		1.8																	
LOCATI	ION					RESIDENTIA	AL AREA AND	POPULATION				COM	IERCIAL	INDUS	TRIAL (L)	INDUS'	TRIAL (H)	INSTITU	JTIONAL	GREEN /	UNUSED	C+I+I		NFILTRATION		TOTAL				PIP	PE				
AREA ID	FROM	ТО	AREA	01101.5	UNITS	457	POP.	CUMUI		PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.	(1)	SINGLE	TOWN	APT		AREA (ha)	POP.	FACT.	FLOW	(1)	AREA	(1)	AREA	(1)	AREA	(1)	AREA	(1)	AREA	FLOW	AREA	AREA	FLOW	(11-)	()	()			(0/)		PEAK FLOW		(ACT.)
			(na)					(na)			(I/S)	(ha)	(ha)	(na)	(ha)	(na)	(ha)	(ha)	(ha)	(na)	(ha)	(I/S)	(na)	(na)	(I/S)	(I/S)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
R5A	5	4	0.42	0	24	0	65	0.42	65	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.42	0.42	0.1	0.9	42.7	200	PVC.	SDR 35	0.65	27.0	3.34%	0.85	0.32
G4A	4	3	0.00	0	0	0	0	0.42	65	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.09	0.0	0.09	0.51	0.1	0.9	39.8	200	PVC	SDR 35	0.40	21.1	4.40%	0.67	0.27
		-		•	•	_	-													0.00															
R8A	8	7	0.22	0	21	0	57	0.22	57	3.64	0.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.22	0.22	0.1	0.7	37.3	200	PVC	SDR 35	0.40	21.1	3.51%	0.67	0.26
R9A	9	7	0.12	0	9	0	24	0.12	24	3.69	0.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.12	0.12	0.0	0.3	23.2	200	PVC	SDR 35	1.40	39.6	0.83%	1.24	0.33
R7A	7	6	0.07	0	2	0	0	0.40	90	3.61	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.07	0.40	0.1	1.2	21.8	200	PVC	SDR 35	0.40	21.1	5.55%	0.67	0.20
R6A	6	3	0.07	0	12	0	32	0.40	122	3.58	1.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.07	0.40	0.1	1.2	41.0	200 200	PVC	SDR 35	0.40	21.1	7.52%	0.67	0.29
NOA		3	0.13	U	12	U	32	0.50	122	3.30	1.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.13	0.50	0.2	1.0	41.0	200	1 10	ODITOS	0.40	21.1	7.52/6	0.07	0.32
	3	2	0.00	0	0	0	0	0.97	186	3.53	2.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.0	0.00	1.06	0.4	2.5	26.4	200	PVC	SDR 35	0.40	21.1	11.73%	0.67	0.37
R10A	10	11	0.16	0	9	0	24	0.16	24	3.69	0.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.16	0.16	0.1	0.3	27.1	200	PVC	SDR 35	0.65	27.0	1.28%	0.85	0.24
R12A	12	11	0.13	0	12	0	32	0.13	32	3.68	0.4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.13	0.13	0.0	0.4	42.7	200	PVC	SDR 35	0.40	21.1	2.03%	0.67	0.22
R11A	11	2	0.10	0	2	0	0	0.39	65	3.63	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.10	0.39	0.1	0.0	21.7	200	PVC	SDR 35	0.40	21.1	4.22%	0.67	0.27
RHA	11		0.10	U	<u> </u>	U	0	0.39	UO	3.03	0.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.10	0.39	U. I	0.9	21.7	200	FVC	3DK 35	0.40	21.1	4.22%	0.07	0.27
	2	1	0.00	0	0	0	0	1.36	251	3.49	2.8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.0	0.00	1.45	0.5	3.3	21.2	200	PVC	SDR 35	0.40	21.1	15.69%	0.67	0.40
																												200							

Appendix C Stormwater Management

C.1 Storm Sewer Design Sheet

		ivoreido 9	South Block	167			STOR	M SEW	ER		DESIGN	PARAME	TERS																										
Stantec	DATE:	iverside		4-11-08			DESIC (City	ON SHE			I = a / (t	+b) ^c 1:2 yr			Dity of Otta 1:100 yr	wa Guide	lines, 201	2)																					
	REVISIO DESIGN	ED BY:		1 MJS	FILE NU	MBER:	160402	058			a = b =	6.199	6.053	6.014		MINIMUM	COVER:	0.013 2.00	m	BEDDING	CLASS =	В																	
LOCATION	CHECK	D BY:		-							c =	0.810	0.814		0.820	TIME OF	ENTRY	10	min														PIPE SELEC	TION					
AREA ID	FROM	TO	AREA	AREA	ΔRFΔ	ARE	Δ ARFA	c	C	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM	AxC	ACCUM	T of C	lavean	levern	lavean	Lonvern	Qoorano	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Ocan	% FIII I	VEI	VEL.	TIME O
NUMBER	M.H.	M.H.	(2-YEAR	(5-YEAR) (10-YEAF	R) (100-YE	AR) (ROOF) (2-YEA	R) (5-YEAF	(10-YEAF	t) (100-YEAF) (2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR)	-2-1EAR	-D-TEAR	-10-TEAR	-100-TEAR	-control	Q _{CONTROL}	(CIA/360)		OR DIAMETE	HEIGHT	SHAPE	With Elitorie	02100	02012	(FULL)	NOT OLL	(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
L108A	108	103	0.13	0.00	0.00	0.00	0.00	0.83	0.00	0.00	0.00	0.106	0.106	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.88	76.81	104.19	122.14	178.56	0.0	0.0	22.6	39.7	250	250	CIRCULAR	PVC	-	0.50	42.7	52.88%	0.86	0.75	0.88
L103A	103A	103	0.30	0.00	0.00	0.00	0.00	0.67	0.00	0.00	0.00	0.203	0.203	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.29	76.81	104.19	122.14	178.56	0.0	0.0	43.4	25.5	250	250	CIRCULAR	PVC		2.00	85.4	50.82%	1.72	1.48	0.29
L103B	103	102	0.08	0.00	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.048	0.358	0.000	0.000	0.000	0.000	0.000	0.000	10.88 11.66	73.57	99.75	116.91	170.87	0.0	0.0	73.1	43.6	375	375	CIRCULAR	PVC		0.40	104.3	70.14%	0.99	0.94	0.77
L106A	106	105	0.27	0.00	0.00	0.00	0.00	0.79	0.00	0.00	0.00	0.211	0.211	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.80	76.81	104.19	122.14	178.56	0.0	0.0	45.1	40.1	300	300	CIRCULAR	PVC		0.40	60.8	74.20%	0.86	0.83	0.80
	109	105	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	20.4	250	250	CIRCULAR	PVC		0.50	42.7	0.00%	0.86	0.00	0.00
L104A	105 104	104 102	0.00 0.14		0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.000 0.113	0.211 0.325	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	10.80 11.24 11.89	73.85 72.35	100.13 98.06	117.36 114.92	171.53 167.95	0.0	0.0 0.0	43.4 65.3	21.5 44.4	300 300	300 300	CIRCULAR CIRCULAR	PVC PVC	-	0.40 0.70	60.8 80.4	71.35% 81.18%	0.86 1.14	0.82 1.13	0.44 0.65
	102	101	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.683	0.000	0.000	0.000	0.000	0.000	0.000	11.89 12.21	70.22	95.15	111.49	162.91	0.0	0.0	133.2	22.2	450	450	CIRCULAR	CONCRETE	-	0.50	210.3	63.32%	1.28	1.17	0.32
L107A	107	101	0.16	0.00	0.00	0.00	0.00	0.77	0.00	0.00	0.00	0.124	0.124	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	26.5	46.5	250	250	CIRCULAR	PVC	-	0.65	48.7	54.44%	0.98	0.86	0.90
	101	100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.807	0.000	0.000	0.000	0.000	0.000	0.000	12.21 12.60	69.25	93.81	109.91	160.60	0.0	0.0	155.2	28.5	450 450	450 450	CIRCULAR	CONCRETE		0.50	210.3	73.81%	1.28	1.23	0.39

C.2 Runoff Coefficient/Impervious Calculations

Project Block 167
Desc Richcraft

28-Oct-24

Sub Catchment ID	Total Area (m²)	Hard Surface (m²)	Soft Surface (m²)	Runoff Coefficient, C
UNC-1	681.62	320.11	361.51	0.53
UNC-2	1634.57	875.59	758.98	0.57
UNC-3	963.56	250.20	713.36	0.38
UNC-4	395.08	244.15	150.93	0.63
C107A	1613.72	1302.99	310.73	0.77
C103A	3036.88	2051.29	985.60	0.67
C103B	807.53	456.99	350.54	0.60
C108A	1275.38	1147.00	128.38	0.83
C104A	1436.52	1211.64	224.88	0.79
C106A	2677.14	2245.84	431.30	0.79
	1.00	1.00	0.00	0.90

C.3 Modified Rational Method Calculations

File No: **160402058**

Project: 955 Borbridge Avenue
Date: 21-Jan-25

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

		Runoff (Coefficient Table					
Sub-catch			Area		Runoff			Overall
Area Catchment Type	ID / Description		(ha) "A"	•	Coefficient "C"	"A :	x C"	Runoff Coefficient
Controlled - Tributary	L108B	Hard	0.009		0.9	0.008		
	Q.	Soft ubtotal	0.021	0.03	0.2	0.004	0.012	0.400
	31	ubtotai		0.03			0.012	0.400
Uncontrolled - Non-Tributary	UNC-3	Hard	0.025		0.9	0.022		
		Soft	0.015		0.2	0.003		
	Si	ubtotal		0.04			0.025	0.630
Uncontrolled - Non-Tributary	UNC-2	Hard	0.085		0.9	0.076		
		Soft	0.075		0.2	0.015		
	Si	ubtotal		0.16			0.091	0.570
Uncontrolled - Non-Tributary	UNC-1	Hard	0.033		0.9	0.030		
•		Soft	0.037		0.2	0.007		
	Si	ubtotal		0.07			0.037	0.530
Controlled - Tributary	L103A	Hard	0.204		0.9	0.183		
,		Soft	0.100		0.2	0.020		
	Si	ubtotal		0.30			0.203	0.670
Controlled - Tributary	L106A	Hard	0.226		0.9	0.203		
,		Soft	0.042		0.2	0.008		
	Si	ubtotal		0.27			0.211	0.790
Controlled - Tributary	L104A	Hard	0.121		0.9	0.109		
•		Soft	0.023		0.2	0.005		
	Si	ubtotal		0.14			0.113	0.790
Controlled - Tributary	L108A	Hard	0.117		0.9	0.105		
,		Soft	0.013		0.2	0.003		
	Si	ubtotal		0.13			0.108	0.830
Controlled - Tributary	L107B	Hard	0.060		0.9	0.054		
,		Soft	0.081		0.2	0.016		
	Si	ubtotal		0.14			0.070	0.500
Controlled - Tributary	L107A	Hard	0.131		0.9	0.118		
,		Soft	0.030		0.2	0.006		
	Si	ubtotal		0.16			0.124	0.770
T-4-1				4.450			0.000	
Total verall Runoff Coefficient= C:				1.450			0.996	0.69

Total Roof Areas	0.000 ha
Total Tributary Surface Areas (Controlled and Uncontrolled)	1.180 ha
Total Tributary Area to Outlet	1.180 ha
Total Uncontrolled Areas (Non-Tributary)	0.270 ha
Total Site	1.450 ha

Project #160402058 955 Borbridge Avenue

	2 yr Intens	ity [I = a/(t + b)°	a =	732.951	t (min)	I (mm/hr)
	City of Otta			b =	6.199	10	76.81
				c =	0.81	20 30	52.03 40.04
						40	32.86
						50	28.04
						60 70	24.56 21.91
						80	19.83
						90	18.14
						100 110	16.75 15.57
						120	14.56
	2 YEA	R Predeve	elopment Ta	rget Releas	e from Por	rtion of Site	
Subdraiı			ment Tributar	y Area to Outl	et		
	Area (ha): C:	1.4500 0.70					
	Typical Tim	e of Concer	ntration				
	tc (min)	l (5 yr) (mm/hr)	Qtarget (L/s)				
	-	-	320.0				
	2 VEAD I	Andifind P	ational Moth	nod for Entir	o Sito		
	2 IEAR	nounieu K	ational weti	iou ioi Eiilii	e Sile		
Cubdesi	nage Area:	1.400B				Controllo	d Tributana
Subaran	Area (ha):	L108B 0.03				Controlle	d - Tributary
	C:	0.40					
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
	5	103.57	3.5	3.5	0.00	0.00	
	10 15	76.81 61.77	2.6 2.1	2.6 2.1	0.00	0.00	
	20	52.03	1.7	1.7	0.00	0.00	
	25	45.17	1.5	1.5	0.00	0.00	
	30 35	40.04 36.06	1.3 1.2	1.3 1.2	0.00	0.00 0.00	
	40	32.86	1.1	1.1	0.00	0.00	
	45 50	30.24 28.04	1.0 0.9	1.0 0.9	0.00	0.00 0.00	
	55	26.17	0.9	0.9	0.00	0.00	
	60	24.56	8.0	8.0	0.00	0.00	
rage:	Above CB						
-		. 0-14/0	0.5	Where C =	0.570		
	e Equation: e Diameter:	 CdA(2gh)[^] 102.00 	u.s mm	where C =	0.572		
Orifice C	L Elevation	95.63	m				
	3 Elevation ding Depth	96.96 0.00	m m				
	stream W/L	95.52	m				
		Stage	Head	Discharge	Vreq	Vavail	Volume
			(m)	(L/s)	(cu. m)	(cu. m)	Check
5-year V	Vater Level	96.96	1.3	23.9	0.00	0.00	OK
Subdraii	nage Area: Area (ha):	UNC-3 0.04			Un	controlled - N	on-Tributary
	C:	0.63					
	tc	I (2 yr)	Qactual	Qrelease	Qstored	Vstored	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
	10 20	76.81 52.03	5.4 3.6	5.4 3.6			
	30	40.04	2.8	2.8			
	40	32.86	2.3	2.3			
	50 60	28.04 24.56	2.0 1.7	2.0 1.7			
	70	21.91	1.5	1.7			
	80	19.83	1.4	1.4			
	90 100	18.14 16.75	1.3 1.2	1.3 1.2			
	110	15.57	1.1	1.1			
	120	14.56	1.0	1.0			
Subdraii	nage Area:	UNC-2			Un	controlled - N	on-Tributary
	Area (ha): C:	0.16 0.57					
		0.31					
	tc (min)	I (2 yr)	Qactual	Qrelease	Qstored	Vstored	
	(min) 10	76.81	(L/s) 19.5	(L/s) 19.5	(L/s)	(m^3)	
	20	52.03	13.2	13.2			
	30	40.04	10.2	10.2			
	40 50	32.86 28.04	8.3 7.1	8.3 7.1			
	60	24.56	6.2	6.2			
	70	21.91	5.6	5.6			
	80 90	19.83 18.14	5.0 4.6	5.0 4.6			
	100	16.75	4.0	4.0			
	110	15.57	3.9	3.9			
	120	14.56	3.7	3.7			
							_
Subdraii	nage Area:	UNC-1			Un	controlled - N	on-Tributary
Subdraii	nage Area: Area (ha): C:	UNC-1 0.07 0.53			Uni	controlled - N	on-Iributary
Subdraii	Area (ha):	0.07	Qactual	Qrelease	Qstored	Vstored	on-Inbutary

Project #160402058, 955 Borbridge Avenue

	100 yr Inte	nsity	I = a/(t + b)	a =	1735.688	t (min)	I (mm/hr)
	City of Otta			b =	6.014	10	178.56
				c =	0.820	20 30	119.95 91.87
					I	40	75.15
					I	50	63.95
					I	60 70	55.89 49.79
					I	80	44.99
					I	90	41.11
					I	100 110	37.90 35.20
					I	120	32.89
	100 YE	AR Prede	velopment 1	arget Relea	se from Po	rtion of Sit	e
	100 YEAR	Modified	d Rational M	ethod for En	ntire Site		
	nage Area: Area (ha):	L108B 0.03				Controlle	d - Tributary
	C:	0.50					
г	4-		00-4	Oral	Ontown	Vote	
	tc (min)	I (100 yr) (mm/hr)		Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
L	10	178.56	7.4	7.4	0.00	0.00	
	20 30	119.95	5.0	5.0	0.00	0.00 0.00	
	30 40	91.87 75.15	3.8 3.1	3.8 3.1	0.00	0.00	
	50	63.95	2.7	2.7	0.00	0.00	
	60	55.89	2.3	2.3	0.00	0.00	
	70 80	49.79 44.99	2.1 1.9	2.1 1.9	0.00	0.00 0.00	
	90	41.11	1.7	1.7	0.00	0.00	
	100 110	37.90 35.20	1.6 1.5	1.6 1.5	0.00	0.00 0.00	
	120	32.89	1.5	1.5	0.00	0.00	
Storage:	Surface Sto	orage Abov	ve CB				
Orifice	Equation:	Q = CdA(2gh)^0.5	Where C =	0.572		
	Diameter:	102.00					
	Elevation Elevation	95.60 96.96					
	ding Depth	0.00					
Downs	tream W/L	95.52	2 m				
		Stage	Head	Discharge	Vreq	Vavail	Volume
400 14	/-t11	96.96	(m) 1.3	(L/s)		(cu. m)	Check
100-year W					(cu. m)		
		30.30	1.0	23.9	0.00	0.00	OK
			1.0	23.9	0.00	0.00	
	nage Area:	UNC-3	1.0	23.9	0.00	0.00	OK lon-Tributary
			1.5	23.9	0.00	0.00	
	nage Area: Area (ha): C:	UNC-3 0.04 0.79			0.00 Unc	0.00 0.00 controlled - N	
	nage Area: Area (ha): C:	UNC-3 0.04 0.79	Qactual	Qrelease	0.00 Unc	0.00 0.00 controlled - N	
	nage Area: Area (ha): C:	UNC-3 0.04 0.79	Qactual		0.00 Unc	0.00 0.00 controlled - N	
	tc (min)	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95	Qactual (L/s) 15.6 10.5	Qrelease (L/s) 15.6 10.5	0.00 Unc	0.00 0.00 controlled - N	
	tc (min) 10 20 30	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87	Qactual (L/s) 15.6 10.5 8.0	Qrelease (L/s) 15.6 10.5 8.0	0.00 Unc	0.00 0.00 controlled - N	
	tc (min) 10 20 30 40 50	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	Qactual (L/s) 15.6 10.5 8.0 6.6 5.6	Qrelease (<i>Lls</i>) 15.6 10.5 8.0 6.6 5.6	0.00 Unc	0.00 0.00 controlled - N	
	tc (min) 10 20 30 40 50 60	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	Qactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9	0.00 Unc	0.00 0.00 controlled - N	
	tc (min) 10 20 30 40 50 60 70	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	Qactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4	0.00 Unc	0.00 0.00 controlled - N	
	tc (min) 10 20 30 40 50 60 70 80 90	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	Qactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6	0.00 Unc	0.00 0.00 controlled - N	
	tc (min) 10 20 30 40 50 60 70 80 90 100	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	Qactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3	0.00 Unc	0.00 0.00 controlled - N	
	tc (min) 10 20 30 40 50 60 70 80 90	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	Qactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6	0.00 Unc	0.00 0.00 controlled - N	
[tc (min) 10 20 30 60 60 70 80 90 110 120	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.91 37.90 35.20 32.89	Qactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 3.1	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3	Unc Qstored (L/s)	0.00 0.00 controlled - N Vstored (m^3)	ion-Tributary
Subdrain	tc (min) 10 20 30 40 50 60 70 80 90 110	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 35.20	Qactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 3.1	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3	Unc Qstored (L/s)	0.00 0.00 controlled - N Vstored (m^3)	
Subdrain	tc (min) 10 20 30 40 50 60 70 80 90 110 120 120 120 124 126 124 126 126 126 127 127 128 128 128 128 128 128 128 128 128 128	UNC-3 0.04 0.79 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 UNC-2 0.16 0.71	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.1 2.9	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C: (min)	UNC-3 0.04 0.79 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 35.20 0.16 0.71	(L/s) 15.6 10.5 8.0 6.6 5.6 4.9 3.6 3.3 3.1 2.9	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 3.6 3.3 3.1 2.9	Qstored (L/s)	0.00 0.00 0.00 vontrolled - N Vstored (m^3)	ion-Tributary
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C: tc (min) 10 20	UNC-3 0.04 0.79 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 UNC-2 0.16 0.71 1 (100 yr) (mm/hr) 178.56	Qactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 3.6 3.3 3.1 2.9 Qactual (L/s) 56.6 38.0	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 3.6 3.3 3.1 2.9 Qrelease (L/s) 56.6 38.0	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	tc (min) 100 200 300 110 110 120 300 110 120 120 130 120 120 130 120 120 120 120 120 120 120 120 120 130 130 140 150 150 150 160 170 170 180 180 180 190 190 190 190 190 190 190 190 190 19	UNC-3 0.04 0.79 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.99 44.11 37.90 35.20 35.20 0.16 0.71 1 (100 yr) (mm/hr) 178.56 119.95 91.87	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 3.6 3.3 3.1 2.9 Cactual (L/s) Cactual (L/s)	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 3.1 2.9 Qrelease (L/s) (L/s)	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 nage Area: Area (ha): C: tc (min) 10 20 30 40 40 40	UNC-3 0.04 0.79 1(100 yr) (mm/hr) 178.56 61.19.95 91.87 75.15 63.95 65.89 49.79 44.91 37.90 35.20 32.89 UNC-2 0.16 0.71 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 3.1 2.9	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.4 3.9 4.4 3.9 Qrelease (L/s) 6.6 6.8 0 2.9 1	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	tc (min) 100 200 300 110 110 120 300 110 120 120 130 120 120 130 120 120 120 120 120 120 120 120 120 130 130 140 150 150 150 160 170 170 180 180 180 190 190 190 190 190 190 190 190 190 19	UNC-3 0.04 0.79 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.99 44.11 37.90 35.20 35.20 0.16 0.71 1 (100 yr) (mm/hr) 178.56 119.95 91.87	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 3.6 3.3 3.1 2.9 Cactual (L/s) Cactual (L/s)	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 3.1 2.9 Qrelease (L/s) (L/s)	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	tc (min) 100 20 30 40 100 20 30 40 50 60 70 70 60 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70	UNC-3 0.04 0.79 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 44.99 35.20 32.89 UNC-2 0.16 0.71 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 91.87 75.15	Cactual (L/s) 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6	Qrelease (L/s) 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 90 110 120 110 120 120 100 30 40 50 60 70 80 80 80 80	UNC-3 0.04 0.79 1 (100 yr) (mm/hr) 178.56 6119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 UNC-2 0.16 0.71 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.99 44.99 91.87 91.	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Cactual (L/s) (L/s) 2.9 Cactual (L/s) 1.7 1.7 1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Qrelease (L/s) 56.6 38.0 29.1 23.8 20.3 17.7 15.8	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	tc (min) 100 20 30 40 40 120 120 130 40 150 150 150 150 150 150 150 150 150 15	UNC-3 0.04 0.79 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 44.99 35.20 32.89 UNC-2 0.16 0.71 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 91.87 75.15	Cactual (L/s) 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6	Qrelease (L/s) 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 hage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 110 110 110 110 110 110 110	UNC-3 0.04 0.79 1(100 yr) (mm/hr) 178.56 63.95 55.89 49.79 44.91 37.90 35.20 0.16 0.71 1(100 yr) (mm/hr) 178.56 6119.95 91.87 75.15 63.95 55.89 49.79 44.91 35.20	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Cactual (L/s) 56.6 38.0 29.1 23.8 20.3 17.7 15.8 14.3 13.0 12.0 11.2	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Qrelease (L/s) 56.6 38.0 29.1 17.7 15.8 14.3 13.0 12.0 11.2	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	tc (min) 100 20 300 400 110 20 300 400 110 20 30 40 40 50 60 70 80 40 40 50 60 70 80 40 60 70 80 80 80 80 80 90 100 100 80 80 80 90 100 80 80 90 100 80 80 90 100 80 80 90 100 80 80 90 100	UNC-3 0.04 0.79 1 (100 yr) (mm/hr) 178.56 63.95 55.89 49.79 44.99 41.11 37.90 UNC-2 0.16 0.71 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.99 44.91	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 3.6 3.3 3.1 2.9 Cactual (L/s) 15.6 3.8 2.9 17.7 15.8 14.3 13.0 12.0	Qrelease (L/s) 15.6 10.5 8.0 6.6 6.6 4.9 4.4 3.9 3.6 3.3 3.1 2.9 Qrelease (L/s) (L/s) 6.6 38.0 29.1 23.8 20.3 17.7 15.8 20.3 12.0	Qstored (L/s) Unc	0.00 0.00 vontrolled - N Vstored (m^3) vontrolled - N	ion-Tributary
Subdrain	nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 hage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 110 110 110 110 110 110 110	UNC-3 0.04 0.79 1(100 yr) (mm/hr) 178.56 63.95 55.89 49.79 44.91 37.90 35.20 0.16 0.71 1(100 yr) (mm/hr) 178.56 6119.95 91.87 75.15 63.95 55.89 49.79 44.91 35.20	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Cactual (L/s) 56.6 38.0 29.1 23.8 20.3 17.7 15.8 14.3 13.0 12.0 11.2	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Qrelease (L/s) 56.6 38.0 29.1 17.7 15.8 14.3 13.0 12.0 11.2	Unc Qstored (L/s) Unc Qstored (L/s)	0.00 0.00 vsontrolled - N Vstored (m^3) Vstored (m^3)	ion-Tributary
Subdrain	age Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 tc (min) 20 30 40 50 60 70 80 90 110 120 120 120 120 120 120 120 120 12	UNC-3 0.04 0.79 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 35.20 32.89 UNC-2 0.16 0.71 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.99 44.111 37.90 35.20 32.89	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Cactual (L/s) 56.6 38.0 29.1 23.8 20.3 17.7 15.8 14.3 13.0 12.0 11.2	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Qrelease (L/s) 56.6 38.0 29.1 17.7 15.8 14.3 13.0 12.0 11.2	Unc Qstored (L/s) Unc Qstored (L/s)	0.00 0.00 vsontrolled - N Vstored (m^3) Vstored (m^3)	ion-Tributary
Subdrain	te (min) 10 20 30 40 50 100 110 120 100 110 120 100 110 120 100 10	UNC-3 0.04 0.79 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.11 37.90 35.20 32.89 UNC-2 0.16 0.71 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.11 178.56 19.95 91.87 75.15 63.95 55.89 44.99 91.87 91.	Cactual (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Cactual (L/s) 56.6 38.0 29.1 23.8 20.3 17.7 15.8 14.3 13.0 12.0 11.2	Qrelease (L/s) 15.6 10.5 8.0 6.6 5.6 4.9 4.4 3.9 3.6 3.3 1.2.9 Qrelease (L/s) 56.6 38.0 29.1 17.7 15.8 14.3 13.0 12.0 11.2	Unc Qstored (L/s) Unc Qstored (L/s)	0.00 0.00 vsontrolled - N Vstored (m^3) Vstored (m^3)	ion-Tributary

Project #1 Modified				enue s for Storag	е		
	10	76.81	7.9	7.9			
	20 30	52.03 40.04	5.4 4.1	5.4 4.1			
	40	32.86	3.4	3.4			
	50	28.04	2.9	2.9			
	60 70	24.56 21.91	2.5 2.3	2.5 2.3			
	80	19.83	2.0	2.0			
	90 100	18.14 16.75	1.9 1.7	1.9 1.7			
	110	15.57	1.6	1.7			
	120	14.56	1.5	1.5			
Subdrai	nage Area: Area (ha): C:	L103A 0.30 0.67				Controll	led - Tributary
	tc tc		Osetual	Qrelease	Qstored	Vstored	1
	(min)	l (2 yr) (mm/hr)	Qactual (L/s)	(L/s)	(L/s)	(m^3)	
	10 20	76.81 52.03	43.4 29.4	43.4 29.4	0.0	0.0 0.0	
	30	40.04	22.6	22.6	0.0	0.0	
	40 50	32.86 28.04	18.6 15.9	18.6 15.9	0.0	0.0 0.0	
	60	24.56	13.9	13.9	0.0	0.0	
	70	21.91	12.4	12.4	0.0	0.0	
	80 90	19.83 18.14	11.2 10.3	11.2 10.3	0.0	0.0 0.0	
	100	16.75	9.5	9.5	0.0	0.0	
	110 120	15.57 14.56	8.8 8.2	8.8 8.2	0.0 0.0	0.0 0.0	
			0	U	0.2	•	
Storage:	Above CB						
	e Equation:			Where C =	0.61		
	e Diameter: L Elevation	140 95.88	mm m				
T/	G Elevation	97.19	m				
	nding Depth stream W/L	0.00 95.30	m m				
	Stroum						
		Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check
5-year \	Water Level	97.19	1.31	47.6	0.0	49.6	OK
Subdrai	nage Area: Area (ha):	L106A 0.27				Controll	led - Tributary
	C:	0.79					
	tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
	(min) 10	76.81	45.2	45.2	0.0	0.0]
	20	52.03	20.0	00.0			
l			30.6	30.6	0.0	0.0	
	30 40	40.04 32.86	23.5 19.3	23.5 19.3	0.0 0.0 0.0	0.0 0.0 0.0	
	30 40 50	40.04 32.86 28.04	23.5 19.3 16.5	23.5 19.3 16.5	0.0 0.0 0.0	0.0 0.0 0.0	
	30 40 50 60	40.04 32.86 28.04 24.56	23.5 19.3 16.5 14.4	23.5 19.3 16.5 14.4	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	
	30 40 50 60 70 80	40.04 32.86 28.04 24.56 21.91 19.83	23.5 19.3 16.5 14.4 12.9 11.7	23.5 19.3 16.5 14.4 12.9 11.7	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	
	30 40 50 60 70 80 90	40.04 32.86 28.04 24.56 21.91 19.83 18.14	23.5 19.3 16.5 14.4 12.9 11.7	23.5 19.3 16.5 14.4 12.9 11.7 10.7	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	
	30 40 50 60 70 80 90 100	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	30 40 50 60 70 80 90	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Storage:	30 40 50 60 70 80 90 100	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
_	30 40 50 60 70 80 90 100 110 120	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Orific Orific	30 40 50 60 70 80 90 100 110 120 Above CB	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Orific Orific Orifice C	30 40 50 60 70 80 90 100 110 120 Above CB	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Orific Orifice Orifice C T/ Max Por	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: 1. Elevation ding Depth	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Orific Orifice Orifice C T/ Max Por	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: c) L Elevation G Elevation	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 • CdA(2gh) ⁴ 140 95.90 97.21	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Orific Orifice Orifice C T/ Max Por	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: 1. Elevation ding Depth	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 **CdA(2gh)** 140 95.90 97.21 0.00	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C =	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume
Orific Orifice C Orifice C T/ Max Por Down	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: L Elevation G Elevation ding Depth stream W/L	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 : CdA(2gh) ^A 140 95.90 97.21 0.00 94.51 Stage	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.2 8.6 0.5 mm m m	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check
Orific Orifice C Orifice C T/ Max Por Down	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: 1. Elevation ding Depth	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 : CdA(2gh) ^h 140 95.90 97.21 0.00 94.51 Stage	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C =	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Orifice Orifice C T/ Max Por Down	30 40 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: L'Elevation G Elevation ding Depth stream W/L Water Level	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 • CdA(2gh)/ 140 95.90 97.21 0.00 94.51 Stage 97.21	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.2 8.6 0.5 mm m m	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check
Orifice Orifice C T/ Max Por Down	30 40 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: It. Elevation ding Depth stream W/L	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 • CdA(2gh) ^h 140 95.90 97.21 Stage	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.2 8.6 0.5 mm m m	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 40 50 60 70 80 90 100 110 Above CB se Equation: e Diameter: L Elevation ding Depth stream W/L Water Level nage Area: Area (ha): C:	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 : CdA(2gh)^* 140 95.90 97.21 Stage 97.21 L104A 0.79	23.5 19.3 16.5 14.4 12.9 11.7 9.8 9.2 8.6 0.5 mm m m m	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C =	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 40 50 60 70 80 90 100 110 120 Above CB se Equation: e Diameter: C Elevation G Elevation G Elevation Ming Depth stream W/L Water Level nage Area: Area (ha): C: tc (min)	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 • CdA(2gh)* 140 95.90 97.21 0.00 97.21 Stage 97.21 L104A 0.14 0.79 I (2 yr) (mm/hr)	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (Us) 47.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: L. Elevation GE Elevation GE Elevation Harris Stream W/L Water Level nage Area: Area (ha): tc (min) 10	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 • CdA(2gh)* 140 95.90 97.21 094.51 Stage 97.21 L104A 0.14 0.79 I (2 yr) (mm/lh) 76.81	23.5 19.3 16.5 14.4 12.9 11.7 9.8 9.2 8.6 0.5 mm m m m m	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C =	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 40 50 60 70 80 90 100 110 120 Above CB se Equation: e Diameter: C Elevation G Elevation G Elevation Ming Depth stream W/L Water Level nage Area: Area (ha): C: tc (min)	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 • CdA(2gh)* 140 95.90 97.21 0.00 97.21 Stage 97.21 L104A 0.14 0.79 I (2 yr) (mm/hr)	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (Us) 47.6 Qrelease (Lts) 23.9 16.4 12.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 40 50 60 70 80 90 100 1120 Above CB e Equation: e Diameter: L Elevation G Elevation G Elevation Stream W/L Water Level water Level tc (min) 10 20 30 40	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 • CdA(2gh)* 140 97.21 0.00 97.21 0.00 94.51 Stage 97.21 L104A 0.14 0.79 1(2 yr) (mm/hr) 76.81 52.03 40.04 32.86	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m m m 1.31	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 23.9 16.4 12.6 10.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Vstored (m^3) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Equation: e Elevation diding Depth stream W/L C	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 : CdA(2gh)* 14.56 : CdA(2gh)* 14.51 Stage 97.21 L104A 0.79 L12 yr) (mm/hr) 76.81 52.03 34.04 32.86 28.04	23.5 19.3 16.5 14.4 12.9 11.7 9.8 9.2 8.6 0.5 mm m m m 1.31 Qactual (L/s) 24.2 16.4 12.6 10.4 8.8	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 16.4 12.6 10.4 8.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 40 50 60 70 80 90 100 110 Above CB e Equation: e Diameter: L Elevation G Elevation G Elevation G Elevation G Elevation C: tc (min) 10 20 30 40 50 60 70	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 : CdA(2gh)^* 14.56 : CdA(2gh)^* 14.56 : CdA(2gh)^* 14.51 Stage 97.21 L104A 0.79 L12 yr) 176.81 52.03 40.04 32.86 424.56 21.91	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m m 1.31 Qactual (L/s) 24.2 16.4 12.6 10.4 12.6 10.6 10.7 10.7	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 23.9 16.4 12.6 10.4 8.8 7.7 6.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Controll Vstored (m^3) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: L. Elevation of GE levation diding Depth stream W/L Water Level tc (min) 10 20 30 40 50 70 80	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 • CdA(2gh)* 140 95.90 97.21 0.04 0.79 L104A 0.14 0.79 I (2 yr) (mm/hr) 76.81 52.03 40.04 40.28 62.03 40.04 24.56 21.91	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m m 1.31 Qactual ((L/s) 12.4 12.6 10.4 8.8 7.7 6.9 6.3	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (Us) 47.6 Qrelease (Us) 16.4 12.6 10.4 8.8 7.7 6.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Controll Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Check OK
Orifice Orifice C T/ Max Por Down	30 40 40 50 60 70 80 90 100 110 Above CB e Equation: e Diameter: L Elevation G Elevation G Elevation G Elevation G Elevation C: tc (min) 10 20 30 40 50 60 70	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 : CdA(2gh)^* 14.56 : CdA(2gh)^* 14.56 : CdA(2gh)^* 14.51 Stage 97.21 L104A 0.79 L12 yr) 176.81 52.03 40.04 32.86 424.56 21.91	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m m 1.31 Qactual (L/s) 24.2 16.4 12.6 10.4 12.6 10.6 10.7 10.7	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 23.9 16.4 12.6 10.4 8.8 7.7 6.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Controll Vstored (m^3) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 40 50 60 70 80 90 100 1120 Above CB e Equation: e Diameter: L. Elevation G Elevation G Elevation Harris Stream W/L Water Level tc (min) 10 20 30 40 50 60 70 80 90 1100	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 **CdA(2gh)** 14.09 97.21 0.00 94.51 Stage 97.21 L104A 0.14 0.79 1(2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m m m 1.31 Qactual (L/s) 24.2 16.4 12.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3 4.9	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 47.6 23.9 16.4 12.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3 4.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Controll Vstored (m^3) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifice C T/ Max Por Down	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: L. Elevation of GE levation diding Depth stream W/L Water Level tc (min) 10 20 30 40 50 60 70 80 90 100	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 CdA(2gh)* 140 95.90 97.21 Stage 97.21 L104A 0.14 0.79 I (2 yr) (mm/lhr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 19.83 18.14 16.75	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m m 1.31 42.9 11.7 9.8 9.2 8.6 6 10.4 8.8 7.7 6.3 5.7 6.3 5.7 6.3	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (Us) 47.6 Qrelease (Us) 47.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavaii (ou. m) 83.5 Controll Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Check OK
Orifice Orific	30 40 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: L'Elevation G Elevation 100 100 100 110 120 Above CB	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 CdA(2gh)* 1400 97.21 0.00 97.21 0.00 112 yr) (mm/hr) 76.81 22.03 40.04 23.286 23.96 21.91 19.83 18.14 16.75	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m m 1.31	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 47.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3 4.9 4.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Controll Vstored (m^3) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orific	30 40 50 60 70 80 90 100 110 120 Above CB e Equation: e Equation: e Equation: e CB levation ding Depth stream W/L Water Level nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 1100 1120 Above CB	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 • CdA(2gh)* Stage 97.21 L104A 0.79 L104A 0.7	23.5 19.3 16.5 14.4 12.9 11.7 9.8 9.2 8.6 0.5 mm m m m m 1.31 24.2 16.4 12.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3 4.9	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 47.6 23.9 16.4 12.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3 4.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Controll Vstored (m^3) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifica Orifice Orifice Orifice Orifice Orifice Orifice Orifice Orific	30 40 40 50 60 70 80 90 100 1120 Above CB e Equation: e Diameter: L Elevation G Elevation ding Depth stream W/L Water Level 10 20 30 40 50 60 70 80 90 110 120 Above CB e Equation: e Diameter: L televation e Diameter e Diameter L televation e Diameter L televation e Diameter L Elevation	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 **CdA(2gh)** 140 95.90 97.21 0.00 94.51 Stage 97.21 L104A 0.14 0.79 176.81 52.03 40.04 32.86 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 29.10 29.20 29.20 20.20	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m m m 1.31 Qactual ((L/s)) 24.2 16.4 12.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3 4.6 0.5 mm m m	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 47.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3 4.9 4.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Controll Vstored (m^3) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifica Orifice Orifice Orifice Orifice Orifice Orifice Orifice Orific	30 40 40 50 60 60 70 80 90 100 110 120 Above CB e Equation: e Diameter: L. Elevation of GE levation diagnostic	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 • CdA(2gh)* 140 95.90 97.21 Stage 97.21 L104A 0.14 0.79 I (2 yr) (mm/lh) 76.81 52.03 40.04 32.86 28.94 24.56 21.91 19.83 18.14 16.75 15.57 14.56	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 0.5 mm m m m m 1.31 Qactual ((m)) 1.31 Qactual (1.4 8.8 8.7 6.3 5.7 5.3 4.9 4.6	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 47.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3 4.9 4.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Controll Vstored (m^3) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK
Orifice Orifica Orifice Orifice Orifice Orifice Orifice Orifice Orifice Orific	30 40 40 50 60 70 80 90 100 1120 Above CB e Equation: e Diameter: L Elevation G Elevation ding Depth stream W/L Water Level 10 20 30 40 50 60 70 80 90 110 120 Above CB e Equation: e Diameter: L televation e Diameter e Diameter L televation e Diameter L televation e Diameter L Elevation	40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 **CdA(2gh)** 140 95.90 97.21 0.00 94.51 Stage 97.21 L104A 0.14 0.79 176.81 52.03 40.04 32.86 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 29.10 29.20 29.20 20.20	23.5 19.3 16.5 14.4 12.9 11.7 9.8 9.2 8.6 0.5 mm m m m m 1.31	23.5 19.3 16.5 14.4 12.9 11.7 10.7 9.8 9.2 8.6 Where C = Discharge (L/s) 47.6 Qrelease (L/s) 47.6 10.4 8.8 7.7 6.9 6.3 5.7 5.3 4.9 4.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vavail (cu. m) 83.5 Controll Vstored (m^3) 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Check OK

Project #160402058, 955 Borbridge Avenue

	Rational I			s for Storag	Ie.		
	10	178.56	23.0	23.0			
	20	119.95	15.5	15.5			
	30	91.87	11.8	11.8			
	40	75.15	9.7	9.7			
	50	63.95	8.2	8.2			
	60	55.89	7.2	7.2			
	70	49.79	6.4	6.4			
	80	44.99	5.8	5.8			
	90	41.11	5.3	5.3			
	100	37.90	4.9	4.9			
	110	35.20	4.5	4.5			
	120	32.89	4.2	4.2			
Cubdesi	4	L103A				Controll	ed - Tributary
Supurai	nage Area: Area (ha):	0.30				COLITON	eu - IIIDUIATY
	Area (na): C:	0.84					
	٥.	0.04					
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
	10	178.56	126.2	52.4	73.7	44.2	
	20	119.95	84.8	52.4	32.3	38.8	
	30	91.87	64.9	52.4	12.5	22.5	
	40	75.15	53.1	52.4	0.7	1.6	
	50	63.95	45.2	45.2	0.0	0.0	
	60	55.89	39.5	39.5	0.0	0.0	
	70	49.79	35.2	35.2	0.0	0.0	
	80	44.99	31.8	31.8	0.0	0.0	
	90	41.11	29.1	29.1	0.0	0.0	
	100	37.90	26.8	26.8	0.0	0.0	
	110	35.20	24.9	24.9	0.0	0.0	
	120	32.89	23.2	23.2	0.0	0.0	
Storage:	Surface Sto	orage Above	СВ				
	e Equation:			Where C =	0.61		
	e Diameter:	140					
	L Elevation	95.88					
	G Elevation	97.19					
Max Por	nding Depth	0.28					
Down	stream W/L	95.30	m				

			(m)	(L/s)	(cu. m)	(cu. m)	Check
100-year V	Vater Level	97.47	1.59	52.4	44.2	49.6	OK
-						5.36	
	_						
Subdrai	nage Area:	L106A				Controlle	ed - Tributar
	Area (ha):	0.27					
	C:	0.99					
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
	10	178.56	131.2	52.8	78.5	47.1	
	20	119.95	88.2	52.8	35.4	42.5	
	30	91.87	67.5	52.8	14.7	26.5	
	40	75.15	55.2	52.8	2.5	5.9	
	50	63.95	47.0	47.0	0.0	0.0	
	60	55.89	41.1	41.1	0.0	0.0	
	70	49.79	36.6	36.6	0.0	0.0	
	80	44.99	33.1	33.1	0.0	0.0	
	90	41.11	30.2	30.2	0.0	0.0	
	100	37.90	27.9	27.9	0.0	0.0	
	110	35.20	25.9	25.9	0.0	0.0	
	120	32.89	24.2	24.2	0.0	0.0	
Storage:	Surface Sto	orage Above	СВ				
Orific	e Fauation:	Q = CdA(2c	h)^0 5	Where C =	0.61		
	Diameter:	140		***********	0.01		
Orifice C	L Elevation	95.90					
T/6	G Elevation	97.21	m				
Max Pon	ding Depth	0.30	m				
Down:	stream W/L	94.51	m				
		Stage	Head	Discharge	Vreq	Vavail	Volume
			(m)	(L/s)	(cu. m)	(cu. m)	Check
100-year V	Vater Level	97.51	1.61	52.8	47.1	83.5	OK
•						36.43	

Stage Head Discharge Vreq

Vavail

						36.43	
Subdra	inage Area:	L104A				Controll	ed - Tributary
	Area (ha):	0.14					,
	C:	0.99					
	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored	ĺ
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
	10	178.56	70.4	26.0	44.4	26.6	
	20	119.95	47.3	26.0	21.3	25.5	
	30	91.87	36.2	26.0	10.2	18.4	
	40	75.15	29.6	26.0	3.6	8.7	
	50	63.95	25.2	25.2	0.0	0.0	
	60	55.89	22.0	22.0	0.0	0.0	
	70	49.79	19.6	19.6	0.0	0.0	
	80	44.99	17.7	17.7	0.0	0.0	
	90	41.11	16.2	16.2	0.0	0.0	
	100	37.90	14.9	14.9	0.0	0.0	
	110	35.20	13.9	13.9	0.0	0.0	
	120	32.89	13.0	13.0	0.0	0.0	
Storage:	Surface Sto	orage Above	СВ				
Orifi	ce Equation:	Q = CdA(2g	h)^0.5	Where C =	0.572		
Orific	ce Diameter:	102	mm				
Orifice	CL Elevation	96.00	m				
T	/G Elevation	97.33	m				
	onding Depth						
Dow	nstream W/L	94.03	m				
		Stage	Head	Discharge	Vreq	Vavail	Volume
			(m)	(L/s)	(cu. m)	(cu. m)	Check

Project #160402058, 955 Borbridge Avenue

	97.33	1.33	23.9	0.2	33.6	OK
Subdrainage Area					Controlle	ed - Tributary
Area (ha): C:						
		Onet	Orni	Onto	Vote	
tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10	76.81	23.0	23.0	0.0	0.0	
20 30	52.03 40.04	15.6 12.0	15.6 12.0	0.0 0.0	0.0 0.0	
40	32.86	9.9	9.9	0.0	0.0	
50 60	28.04 24.56	8.4 7.4	8.4 7.4	0.0	0.0 0.0	
70	21.91	6.6	6.6	0.0	0.0	
80 90	19.83 18.14	5.9 5.4	5.9 5.4	0.0	0.0 0.0	
100	16.75	5.0	5.0	0.0	0.0	
110 120	15.57 14.56	4.7 4.4	4.7 4.4	0.0 0.0	0.0 0.0	
	14.50	4.4	7.7	0.0	0.0	
orage: Above CB	:					
Orifice Equation:			Where C =	0.572		
Orifice Diameter Orifice CL Elevation		mm m				
T/G Elevation	97.21	m				
Max Ponding Depth Downstream W/L		m m				
Downstream w/L						
	Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check
5-year Water Leve	97.21	1.33	23.9	0.0	37.3	OK
Subdrainage Area					Controlle	ed - Tributary
Area (ha):						
-		0	0	0-4	M-4	
tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	
10	76.81	15.0	15.0	0.0	0.0	
20 30	52.03 40.04	10.2 7.8	10.2 7.8	0.0	0.0 0.0	
40	32.86	6.4	6.4	0.0	0.0	
50 60	28.04 24.56	5.5 4.8	5.5 4.8	0.0 0.0	0.0 0.0	
70	21.91	4.3	4.3	0.0	0.0	
80 90	19.83 18.14	3.9 3.6	3.9 3.6	0.0	0.0 0.0	
100	16.75	3.3	3.3	0.0	0.0	
110 120	15.57 14.56	3.0 2.9	3.0 2.9	0.0 0.0	0.0 0.0	
					0.0	
orage: Storage W	/ithin Perfora					
		tea Subarair	n & Stone Trend	511		
Orifice Equation:	: CdA(2gh)^	0.5	Where C =	0.572		
Orifice Equation: Orifice Diameter	: CdA(2gh)^		Where C =	0.572	33.5	m
Orifice Equation: Orifice Diameter: Orifice CL Elevation T/G Elevation	: CdA(2gh) ⁴ : 102 : 96.05 : 97.03	0.5 mm m m	Where C = Subdrain Len Trench Width	0.572 igth =	33.5 0.85	m
Orifice Equation. Orifice Diameter. Orifice CL Elevation T/G Elevation Max Ponding Depth	: CdA(2gh) [^] : 102 : 96.05 : 97.03 : 0.00	0.5 mm m m m	Where C = Subdrain Len Trench Width Trench Depth	0.572 igth = i = i =	0.85 1.00	m
Orifice Equation: Orifice Diameter: Orifice CL Elevation T/G Elevation	: CdA(2gh) ^A : 102 : 96.05 : 97.03 : 0.00 : 95.86	0.5 mm m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volun	0.572 igth = i = in = in e @ 40% P	0.85 1.00 orosity =	m m 11.4
Orifice Equation. Orifice Diameter. Orifice CL Elevation T/G Elevation Max Ponding Depth	: CdA(2gh) [^] : 102 : 96.05 : 97.03 : 0.00	0.5 mm m m m	Where C = Subdrain Len Trench Width Trench Depth	0.572 ligth = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	0.85 1.00	m m
Orifice Equation. Orifice Diameter. Orifice CL Elevation T/G Elevation Max Ponding Depth	: CdA(2gh) ⁶ : 102 : 96.05 : 97.03 : 0.00 : 95.86	0.5 mm m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volun Discharge	0.572 igth = i = in = in e @ 40% P	0.85 1.00 orosity =	m 11.4 Volume
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L	: CdA(2gh) ⁿ : 102 : 96.05 : 97.03 : 0.00 : 95.86 Stage	0.5 mm m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volun Discharge (L/s)	0.572 gth = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	0.85 1.00 orosity = Vavail (cu. m) 19.8	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve	: CdA(2gh) ^A : 102 : 96.05 : 97.03 : 0.00 : 95.86 Stage : 97.03	0.5 mm m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volun Discharge (L/s)	0.572 gth = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	0.85 1.00 orosity = Vavail (cu. m) 19.8	m 11.4 Volume Check
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L	CdA(2gh) ⁶ : 102: 96.05: 97.03: 0.00: 95.86 Stage: 97.03 L107A: 0.16	0.5 mm m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volun Discharge (L/s)	0.572 gth = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	0.85 1.00 orosity = Vavail (cu. m) 19.8	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area Area (ha):	: CdA(2gh) ^A : 102 96.05 97.03 0.00 95.86 Stage 97.03	0.5 mm m m m m Head (m) 0.98	Where C = Subdrain Len Trench Width Trench Depth Trench Volun Discharge (L/s)	0.572 gth = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	0.85 1.00 orosity = Vavail (cu. m) 19.8	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area Area (ha): C: tc (min)	: CdA(2gh)* : 102 : 96.05 : 97.03 : 0.00 : 95.86 Stage : 97.03 : L107A : 0.16 : 0.77	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volun Discharge (L/s) 20.5	0.572 igth = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m^3)	m 11.4 Volume Check OK
Orifice Equation Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C:	: CdA(2gh) ^A : 102 96.05 97.03 0.00 95.86 Stage 97.03 : L107A : 0.16 : 0.77	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volun Discharge (Us) 20.5	0.572 igth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle	m 11.4 Volume Check OK
Orifice Equation Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area Area (ha): tc (min) 10 20 30	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.76 1 (2 yr) (mm/hr) 76.81 52.03 40.04	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volun Discharge (L/s) 20.5	0.572 gth =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): tc (min) 10 20	: CdA(2gh)' 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depti Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4	0.572 light =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m^3) 0.0 0.0 0.0 0.0	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Deptit Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	: CdA(2gh)" 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depti Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5	0.572 ugth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 1 (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 13.8 11.4 9.7 8.5 7.6	0.572 gth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: (min): 10 20 30 40 50 60 70 80 90	: CdA(2gh)" 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depti Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3	0.572 ugth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I(2y) 76.81 52.03 40.04 24.56 21.91 19.83 18.14 16.75	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench D	0.572 ggth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: (min): 10 20 30 40 50 60 70 80 90	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 1(umn/hr) 76.81 52.03 40.04 24.56 28.04 24.56 21.91 19.83 18.14	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depti Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3	0.572 gth = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depti Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 6.9 6.3 5.8 5.4	0.572 gth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Deptit Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Above CE	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I(2 yr) (mm/hr) 76.81 22.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3 5.8 5.4 5.0	0.572 gth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Above CE	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 [1(2 yr) (mm/hr) 76.81 52.03 40.04 22.86 22.80 424.56 21.91 19.83 18.14 16.75 15.57 15.57 14.56	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depti Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 6.9 6.3 5.8 5.4	0.572 gth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK
Orifice Equation Orifice CL Elevation T/G Elevation Max Ponding Deptit Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Above CE Orifice Equation Orifice Elevation	: CdA(2gh)' 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 1 (2 yr) (mm/hr) 76.81 52.03 40.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 24.56 28.04 29.191 19.83 18.14 16.75 11.56	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3 5.8 5.4 5.0	0.572 gth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation T/G Elevation Max Ponding Deptir Downstream W/L 5-year Water Leve Subdrainage Area Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 110 120 Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation	: CdA(2gh)* 102 98.05 97.03 0.00 95.86 Stage 97.03 1107A 0.16 0.77 1(2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 : CdA(2gh)* 108 96.13 97.45	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3 5.8 5.4 5.0	0.572 gth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK
Orifice Equation Orifice CL Elevation T/G Elevation Max Ponding Deptit Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 orage: Above CE Orifice Equation Orifice Elevation	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3 5.8 5.4 5.0	0.572 gth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK
Orifice Equation Orifice CL Elevation T/G Elevation Max Ponding Deptit Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: C: (min) 10 20 30 40 50 60 70 80 90 110 120 Orifice Equation Orifice Equation Orifice Equation Orifice Equation T/G Elevation T/G Elevation Max Ponding Deptit	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I(2 yr) (mm/hr) 76.81 40.04 42.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56 : CdA(2gh)* : 108 96.13 97.45 0.00 94.10	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depti Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3 5.8 5.4 5.0	0.572 gth = = = = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 1100 110 120 Orifice Equation Orifice Diameter Orifice CL Elevation Max Ponding Depth Downstream W/L	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I(2 yr) (mm/hr) 76.81 22.03 40.04 32.86 28.04 24.56 21.91 19.83 38.14 16.75 15.57 14.56 : CdA(2gh)* 108 96.13 97.45 0.00 94.10 Stage	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depit Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3 5.8 5.4 5.0 Where C =	0.572 gth = = = = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK OK Volume Check OK Volume Check OK
Orifice Equation Orifice CL Elevation T/G Elevation Max Ponding Deptit Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: C: (min) 10 20 30 40 50 60 70 80 90 110 120 Orifice Equation Orifice Equation Orifice Equation Orifice Equation T/G Elevation T/G Elevation Max Ponding Deptit	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I(2 yr) (mm/hr) 76.81 22.03 40.04 32.86 22.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 : CdA(2gh)* 108 96.13 97.45 0.00 94.10 Stage	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depth Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 6.9 6.3 5.8 5.4 5.0 Where C =	0.572 gth = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Wstored (m^3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 1100 110 120 Orifice Equation Orifice Diameter Orifice CL Elevation Max Ponding Depth Downstream W/L	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I(2 yr) (mm/hr) 76.81 22.03 40.04 32.86 28.04 24.56 21.91 19.83 38.14 16.75 15.57 14.56 : CdA(2gh)* 108 96.13 97.45 0.00 94.10 Stage	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depit Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3 5.8 5.4 5.0 Where C =	0.572 gth = = = = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK OK Volume Check OK Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 1100 110 120 Orifice Equation Orifice Diameter Orifice CL Elevation Max Ponding Depth Downstream W/L	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 I(2 yr) (mm/hr) 76.81 22.03 40.04 32.86 28.04 24.56 21.91 19.83 38.14 16.75 15.57 14.56 : CdA(2gh)* 108 96.13 97.45 0.00 94.10 Stage	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depit Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3 5.8 5.4 5.0 Where C =	0.572 gth = = = = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK OK Volume Check OK Volume Check OK
Orifice Equation Orifice Diameter Orifice CL Elevation T/G Elevation Max Ponding Depth Downstream W/L 5-year Water Leve Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 1100 110 120 Orifice Equation Orifice Diameter Orifice CL Elevation Max Ponding Depth Downstream W/L	: CdA(2gh)* 102 96.05 97.03 0.00 95.86 Stage 97.03 L107A 0.16 0.77 (mm/hr) 76.81 52.03 40.04 24.56 28.04 24.56 28.04 24.56 21.91 19.83 18.14 16.75 11.55 108 96.13 97.45 0.00 94.10 Stage	0.5 mm m m m m m m m m m m m m m m m m m	Where C = Subdrain Len Trench Width Trench Depit Trench Volum Discharge (L/s) 20.5 Qrelease (L/s) 26.5 18.0 13.8 11.4 9.7 8.5 7.6 6.9 6.3 5.8 5.4 5.0 Where C =	0.572 gth = = = = = = = = = = = = =	0.85 1.00 orosity = Vavail (cu. m) 19.8 Controlle Vstored (m*3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	m 11.4 Volume Check OK OK Volume Check OK Volume Check OK

Project #160402058, 955 Borbridge Avenue

e Vreq (cu. m) (cu. r 22.9 37.3 6 Qstored (L/s) (m^\circ	a) 3) 3) 3) 3) 3) 3) 3) 4) Check 3) OK 4.44 Autrolled - Tributary
e Qstored (L/s) (m^Y. 38.1 22.5 16.9 20.3 6.8 12.2 0.7 1.7 0.0	ed 3) 9 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CLS (m^2)	a) 3) 3) 3) 3) 3) 3) 3) 4) Check 3) OK 4.44 Autrolled - Tributary
CLS (m^2)	a) 3) 3) 3) 3) 3) 3) 3) 4) Check 3) OK 4.44 Autrolled - Tributary
16.9 20.3	ail Volume (m) Check (s) OK (s) A44 ed (s)
e Vreq (cu, m) (cu, r. 1.7.4 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	will Volume m) Check 5. OK 6.44 authorized - Tributary ed 6)
e Vreq (cu. m) (cu. r. 13. 7. 4 8. 8. 9. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	iil Volume m) Check 3 OK 44 strolled - Tributary
e Vreq (cu. m) (cu. r. 132.9 37.3 12	nil Volume n) Check 3 OK 44 strolled - Tributary
e Vreq (ou. m) (cu. r. (22.9 37.3 14 22.9 37.4 8.8 0.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	nil Volume n) Check 3 OK 1.44 attrolled - Tributary
e Vreq (cu. m) (cu. r 22.9 37.3 Cor e Qstored (Us) (m². 7.4 8.8 0.5 0.0 0.0 0.0	nil Volume m) Check 3 OK 1.44 strolled - Tributary
e Vreq (cu. m) (cu. r 22.9 37.3 14 Cor e Qstored (L/s) (m*.7 7.4 8.8 0.5 0.9 0.0 0.0 0.0 0.0	nil Volume n) Check 3. OK 3.44 attrolled - Tributary
e Vreq (cu, m) (cu, r) 22.9 37.3 Cor a Qstored (m^2) 21.7 13.6 0.0	nil Volume m) Check 3. OK 4.4 throlled - Tributary ed 3)
e Vreq (cu. m) (cu. r. 22.9 37.3 12	n) Check 3 OK 1.44 otrolled - Tributary ed 3)
e Vreq (cu. m) (cu. r. 22.9 37.3 12	n) Check 3 OK 1.44 otrolled - Tributary ed 3)
Cu. m) (cu.r.	n) Check 3 OK 1.44 otrolled - Tributary ed 3)
Cu. m) (cu.r.	n) Check 3 OK 1.44 otrolled - Tributary ed 3)
Cu. m) (cu.r.	n) Check 3 OK 1.44 otrolled - Tributary ed 3)
Cu. m) (cu.r.	n) Check 3 OK 1.44 otrolled - Tributary ed 3)
22.9 37.3 Cor S Qstored (L/s) (m/s) 7.4 8.8 0.5 0.9 0.0	OK 1.44 atrolled - Tributary ed 3)
B Qstored (L/s) (m^2/s) 12.7 13.1 7.4 8.8 0.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ed 3)
B Qstored (L/s) (m^\chi_1) 21.7 13.8 0.5 0.9 0.0	ed 3)
(L/s) (m^2/s) 21.7 13.1 21.7 13.1 7.4 8.8 0.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3)
(L/s) (m^2/s) 21.7 13.1 21.7 13.1 7.4 8.8 0.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3)
(L/s) (m^2/s) 21.7 13.1 21.7 13.1 7.4 8.8 0.5 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3)
7.4 8.8 0.5 0.9 0.0	
0.5 0.9.9 0.0 0.0 0.0 0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ench	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ench	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0.0 0.0 0.0	
ench	
0.572	
.ength = 5	i4.8 m
dth = 0).85 m .00 m
pth = 1 lume @ 40% Porosity	
e Vreq Vava	il Volume
(cu. m) (cu. r 13.0 19.8	
	3.78
Cor	ntrolled - Tributary
e Qstored Vstor	n d
(L/s) (m^:	3)
47.6 28. 9 22.3 26.7	
10.1 18.2	2
0.0 0.0	
0.0 0.0	
0.0 0.0	
0.0 0.0	
0.572	
e Vren Vovr	ail Volume
(cu. m) (cu. r	n) Check
20 " "	3 OK 2.26
	2.9 7.0 0.0

Project #160402058, 955 Borbridge Avenue Modified Rational Method Calculations for Storage

Total 2yr Flow to Sewer	184.5 L/s	0.2	274.6 m ³
Non-Tributary Area	0.27 ha		
Total 2yr Flow Uncontrolled	32.8 L/s		
Total Area	1.45 ha		
Total 2yr Flow	217.3 L/s		
Target	320.0 L/s		

Project #160402058, 955 Borbridge Avenue Modified Rational Method Calculations for Storage

Total 100yr Flow to Sewer	216.7 L/s	182.4	274.6 m ³
Non-Tributary Area	0.27 ha		
Total 100yr Flow Uncontrolled	95.2 L/s		
Total Area	1.45 ha		
Total 100yr Flow	311.9 L/s		
Target	320.0 L/s		

955 Borbridge Avenue Appendix D Geotechnical Information January 31, 2025

Appendix D Geotechnical Information

D.1 Geotechnical Investigation Report Excerpts

Geotechnical Investigation Proposed Residential Development

955 Borbridge Avenue Ottawa, Ontario

Prepared for Richcraft Homes Ltd.

Table of Contents

1.0	Introduction	PAGE 1
2.0	Proposed Development	
3.0	Method of Investigation	
3.1	•	
3.2	Field Survey	3
3.3	Laboratory Testing	3
3.4	Analytical Testing	3
4.0	Observations	4
4.1	Surface Conditions	
4.2	Subsurface Profile	4
4.3	Groundwater	4
5.0	Discussion	6
5.1	Geotechnical Assessment	6
5.2	Site Grading and Preparation	6
5.3	Foundation Design	7
5.4	Design for Earthquakes	7
5.5	Floor Slab Construction	7
5.6	Pavement Design	8
6.0	Design and Construction Precautions	10
6.1	Foundation Backfill	
6.2	Protection of Footings Against Frost Action	10
6.3	Excavation Side Slopes	10
6.4	Pipe Bedding and Backfill	11
6.5	Groundwater Control	12
6.6	Winter Construction	12
6.7	Corrosion Potential and Sulphate	13
6.8	Tree Planting Restrictions	13
7.0	Recommendations	14
Q N	Statement of Limitations	15

Appendices

Appendix 1 Soil Profile and Test Data Sheets

Symbols and Terms

Analytical Testing Results

Appendix 2 Figure 1 - Key Plan

Drawing PG7285-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Richcraft Homes Ltd. to conduct a geotechnical investigation for the proposed residential development to be located at 955 Borbridge Avenue in the City of Ottawa (reference should be made to Figure 1 - Key Plan in Appendix 2 of this report for the general site location).

The objectives of the geotechnical investigation were to:

Determine the subsoil and groundwater conditions at this site by means of boreholes and to;
Provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

Investigating for the presence or potential presence of contamination on the subject property was not part of the scope of work of the present investigation. Therefore, the present report does not address environmental issues.

2.0 Proposed Development

Based on the available site plan, it is understood that the proposed development will consist of several townhouse blocks and an accessory building, with associated asphalt-paved access lanes and parking areas. An amenity area is also proposed to the south of accessory building.

It is expected that the proposed development will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current geotechnical investigation was carried out on September 20, 2024, and consisted of advancing a total of 4 boreholes to a maximum depth of 5.9 m below existing ground surface. The approximate borehole locations are shown on Drawing PG7285-1 – Test Hole Location Plan included in Appendix 2.

Previous geotechnical investigations on January 31, 2020, August 10, 2022, and April 8, 2022 included test holes at or within the vicinity of the subject site. These test holes consisted of 3 test pits (TP 3-22, TP 10-22, and TP 11-22) and 2 boreholes (BH 2 and BH 20) advanced to a maximum depth of 5.7 m below the existing ground surface.

The borehole locations were distributed in a manner to provide general coverage of the subject site, taking into consideration underground utilities and site features.

The boreholes were completed using a low clearance auger drill rig operated by a two-person crew. The test pits were advanced with an excavator, and backfilled with the excavated soil upon completion. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The testing procedure consisted of augering to the required depths at the selected locations and sampling the overburden.

Sampling and In Situ Testing

Soil samples were collected from the boreholes using two different techniques, namely, sampled directly from the auger flights (AU) or collected using a 50 mm diameter split spoon (SS) sampler. All samples were visually inspected and initially classified on-site. The auger and split-spoon samples were placed in sealed plastic bags. All samples were transported to our laboratory for further examination and classification. The depths at which the auger and split spoon samples were recovered from the boreholes are shown as AU, and SS, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data Sheets in Appendix 1 of this report.

Groundwater

Flexible standpipe piezometers were installed in all boreholes to permit monitoring of the groundwater levels subsequent to the completion of the sampling program. The groundwater level readings were obtained after a suitable stabilization period subsequent to the completion of the field investigation.

3.2 Field Survey

The borehole locations, and ground surface elevation at each borehole location, were surveyed by Paterson using a handheld GPS and referenced to a geodetic datum. The locations of the boreholes, and the ground surface elevation at each borehole location, are presented on Drawing PG7285-1 – Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logging. The results are discussed in Section 4.2 and are provided in Appendix 1 of this report.

All samples from the current investigation will be stored in the laboratory for a period of 1 month after issuance of this report. They will then be discarded unless we are directed otherwise.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity, and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Section 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently vacant with a gravel and grassed surface. The site is bordered by Borbridge Avenue to the north, Ralph Hennessy Avenue to the east, Rockmelon Street to the south, and vacant land to the west. The ground surface across the subject site is relatively flat at approximate geodetic elevation of 96.0 m.

4.2 Subsurface Profile

Generally, the subsurface profile at the borehole locations consists of topsoil or fill underlain by glacial till. The fill was generally observed to consist of a compact, brown silty sand, sandy silt, and/or silty clay with varying amounts of gravel and organics.

The glacial till was encountered underlying the fill at approximate depths of 0.3 to 1.1 m below the existing ground surface. The glacial till was generally observed to consist of compact to very dense, brown silty sand to sandy silt with varying amounts of gravel, cobbles, and boulders.

Practical refusal to augering was encountered at depths ranging from about 3.9 to 5.9 m below the existing ground surface.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at each test hole location.

Bedrock

Based on available geological mapping, bedrock in the area of the subject site consists of sandstone and dolomite of the March formation with an overburden drift thickness of about 5 to 10 m in depth.

4.3 Groundwater

Groundwater levels were measured within the installed piezometers at the time of the investigation. The measured groundwater levels noted at that time are presented in Table 1 on next page, and are also presented in Appendix 1.

Table 1 – Summary of Groundwater Levels								
Borehole	Ground Surface	Measured Gro						
Number	Elevation (m)	Depth (m)	Elevation (m)	Dated Recorded				
BH 1-24	96.04	3.85	92.19					
BH 2-24	96.65	4.43	92.22	0-4-60-0004				
BH 3-24	96.88	5.10	91.78	October 8, 2024				
BH 4-24	96.19	4.63	91.56					
BH 2B-22	96.50	2.95	93.55	August 17, 2022				
BH 20	96.34	2.30	94.04	Feb 11, 2020				
TP 3-22	96.47	DRY	-					
TP 10-22	95.98	DRY	-	April 8, 2022				
TP 11-22	96.26	4.9	91.36					
Note: Ground surfa	Note: Ground surface elevations at borehole location are referenced to a geodetic datum.							

Long-term groundwater levels can also be estimated based on the observed colour and consistency of the recovered soil samples. Based on these observations, the long-term groundwater table can be expected at approximately 3 to 4 m below ground surface.

However, it should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater levels could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered suitable for the proposed development. It is recommended that the proposed structures be founded on conventional spread footings bearing on the undisturbed, compact to very dense glacial till.

As a silty clay deposit was not encountered at this site, the proposed development is not subject to a permissible grade raise restriction or geotechnical tree planting setbacks.

The above and other considerations are discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing significant organic materials, should be stripped from under any buildings and other settlement sensitive structures. The existing fill material, free of organic materials, should be reviewed by Paterson personnel at the time of construction to determine if the existing fill can be left in place below paved areas.

Fill Placement

Fill used for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the proposed building areas should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill and beneath exterior parking areas where settlement of the ground surface is of minor concern. In landscaped areas, these materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of their respective SPMDD.

5.3 Foundation Design

Bearing Resistance Values

Footings supported on the undisturbed, compact to very dense glacial till can be designed using a bearing resistance value at serviceability limit states (SLS) of **200 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **300 kPa**. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, have been removed prior to the placement of concrete for footings.

Footings placed on an undisturbed, compact to very dense glacial till bearing surface and designed using the bearing resistance values at SLS provided above will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Above the groundwater level, adequate lateral support is provided to the insitu bearing medium soils when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in-situ soil.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class C** for the foundations considered at this site. Soils underlying the subject site are not susceptible to liquefaction. Reference should be made to the latest revision of the Ontario Building Code (OBC) 2012 for a full discussion of the earthquake design requirements.

5.5 Floor Slab Construction

With the removal of all topsoil and fill, containing significant amounts of deleterious or organic materials, the undisturbed, compact to very dense glacial till is considered to be an acceptable subgrade surface on which to commence backfilling for floor slab construction.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab.

For structures with slab-on-grade construction, the upper 200 mm of sub-slab fill is recommended to consist of OPSS Granular A crushed stone. For structures with basement slabs, it is recommended that the upper 200 mm of sub-floor fill consists of 19 mm clear crushed stone.

All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

5.6 Pavement Design

For design purposes, the pavement structures presented in Tables 2 and 3 below are recommended for the design of the driveways, car parking areas, and local roadways.

Table 2 - Recommended Pavement Structure – Driveways & Car Only parking Areas						
Thickness Material Description (mm)						
50	50 Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete					
150	BASE - OPSS Granular A Crushed Stone					
300 SUBBASE - OPSS Granular B Type II						
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill.						

Table 3 - Recommended Pavement Structure – Local Roadways						
Thickness Material Description (mm)						
40	Wear Course – Superpave 12.5 Asphaltic Concrete					
50	Binder Course – Superpave 19.0 Asphaltic Concrete					
150	150 BASE - OPSS Granular A Crushed Stone					
450 SUBBASE - OPSS Granular B Type II						
SUBGRADE - OPSS Granular B Type I or II material placed over in situ soil or engineered fill.						

Report: PG7285-1 October 18, 2024

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 99% of the material's SPMDD using suitable vibratory equipment.

6.0 Design and Construction Precautions

6.1 Foundation Backfill

Foundation Drainage

A perimeter foundation drainage system is recommended for each proposed structure with below-grade space. The system should consist of a 100 to 150 mm diameter, geotextile-wrapped, perforated and corrugated plastic pipe which is surrounded on all sides by 150 mm of 19 mm clear crushed stone which is placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, such as Delta Drain 6000, connected to the perimeter foundation drainage system. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should otherwise be used for this purpose.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are recommended to be insulated against the deleterious effects of frost action. A minimum 1.5 m thick soil cover, or an equivalent combination of soil cover and foundation insulation, should be provided in this regard.

Exterior unheated footings, such as isolated piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure, and require additional protection, such as soil cover of 2.1 m, or an equivalent combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The temporary excavation side slopes anticipated should either be excavated to acceptable slopes or retained by shoring systems from the beginning of the excavation until the structure is backfilled. It is expected that sufficient room will be available for the greater part of the excavation to be undertake by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsurface soil is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should maintain safe working distance from the excavation sides. Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent material specifications and standard detail drawings from the department of public works and services, infrastructure services branch of the City of Ottawa.

A minimum of 150 mm of OPSS Granular A should be placed for bedding for sewer or water pipes when placed on a soil subgrade. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to a minimum of 300 mm above the obvert of the pipe, should consist of OPSS Granular A (concrete or PSM PVC pipes) or sand (concrete pipe). The bedding and cover materials should be placed in maximum 225 mm thick lifts and compacted to 98% of the SPMDD.

It should generally be possible to re-use the moist (not wet) site-generated fill above the cover material if the excavation and filling operations are carried out in dry weather conditions.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD. All cobbles larger than 200 mm in their longest direction should be segregated from re-use as trench backfill.

6.5 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Groundwater Control for Building Construction

A temporary Ministry of Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required if more than 400,000 L/day of ground and/or surface water are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration.

Impacts to Neighbouring Properties

A silty clay deposit was not encountered at this site, therefore no adverse effects to neighbouring properties are expected as a result of dewatering which may occur during construction and due to foundation drainage.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities

are to be carried out during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (GU – General Use cement) would be appropriate for this site. The chloride content and pH of the sample indicate that they are not a significant factor in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a slightly aggressive to moderate corrosive environment.

6.8 Tree Planting Restrictions

As noted above in Section 5.1, a silty clay deposit was not encountered at the subject site. Therefore, tree planting setbacks are not required for the proposed development, from a geotechnical perspective.

7.0 Recommendations

provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:
Review of the finalized Grading Plan and Servicing Plan, from a geotechnical perspective.
Observation of all bearing surfaces prior to the placement of concrete.
Sampling and testing of the concrete and fill materials used.
Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
Observation of all subgrades prior to backfilling.
Field density tests to determine the level of compaction achieved.
Sampling and testing of the bituminous concrete including mix design reviews.
A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory inspection program by the geotechnical consultant.

A materials testing and observation services program is a requirement for the

All excess soil must be handled as per *Ontario Regulation 406/19: On-Site and Excess Soil Management*.

Report: PG7285-1 October 18, 2024

8.0 Statement of Limitations

The recommendations provided herein are in accordance with the present understanding of the project. Paterson requests permission to review the recommendations when the drawings and specifications are completed.

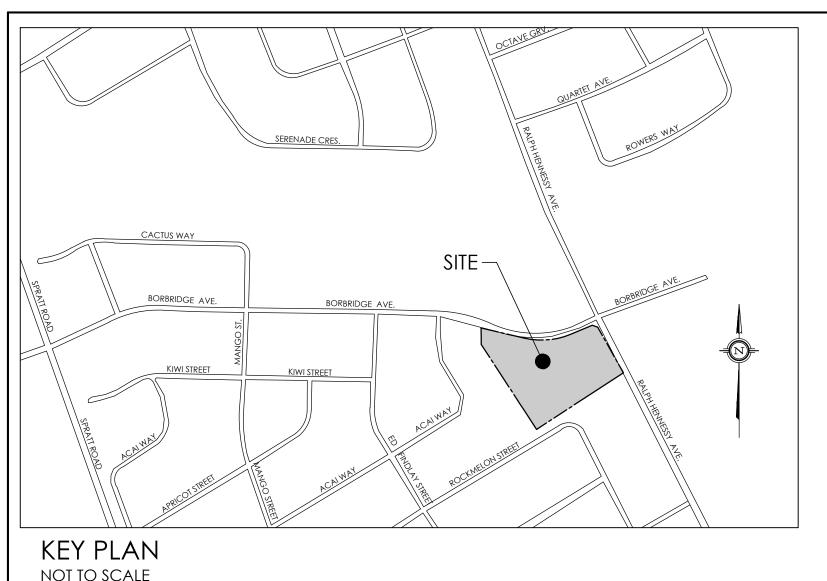
A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine the suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

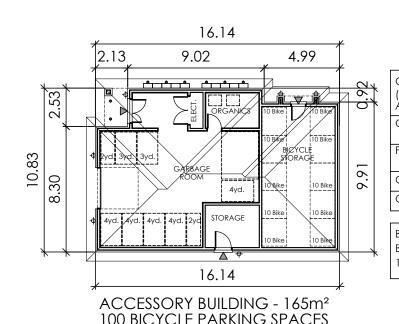
The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Richcraft Homes Ltd., or their agents, is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

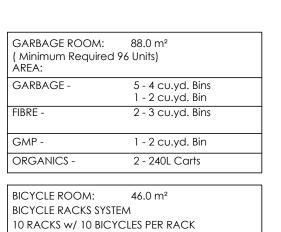
Paterson Group Inc.

Kinobe Ssekadde, B. Eng.


Oct. 18, 2024
S. S. DENNIS
100519516
TOUNCE OF ONTARIO

Scott S. Dennis, P.Eng.


Report Distribution:


- ☐ Richcraft Homes Ltd. (e-mail Copy)
- □ Paterson Group (1 Copy)

Appendix E Proposed Site Plan

ACCESSORY BUILDING - 165m² 100 BICYCLE PARKING SPACES

SITE INFORMATION: PROPOSED ZONING: R4Z - PERMITTED USES: - PLANNED UNIT DEVELOPMENT - STACKED DWELLING UNITS

14,521.93 m² 3,361.5 m² TOTAL BUILDING AREA:

PROPOSED ZONING:	R4Z	PROVIDED:
LOT AREA (MIN.):	1,400.0 m²	14,521.93 m ²
LOT WIDTH (MIN.):	18.0m	69.41 m Ralph Hennessy Ave
BUILDING HEIGHT (MAX.):	11.0 m	9.45 m
FRONT YARD (MIN.):	3.0 m	5.68 m
CORNER SIDE YARD (MIN.) :	3.0 m	5.35 m
REAR YARD (MIN.) :	6.0 m	6.10 m
interior side yard (min.) :		
Within 18m of Front Lot Line	1.5 m	12.65 m @ Block 8
Remainder	7.5 m	
BUILDING SPACING :		
BETWEEN BUILDING & PRIVATE WAY	1.8 m	2.75 m
BETWEEN GARAGE & PRIVATE WAY	5.2 m	n/a
BETWEEN BUILDINGS	1.2 m	7.87 m
MINIMUM LANDSCAPED AREA :	30.0%	46.8 % (6,804.0m²)
PORCH STAIR TO LOT LINE (SECTION 65)	0.60 m	1.16 m

TOTAL AMENITY AREA REQUIRED: - STACKED DWELLING $6.0 \text{m}^2 \times 93 = 558.0 \text{ m}^2$

- PRIVATE AMENITY AREA -

9,447.5 m²

93 UNITS

(BALCONIES & PATIOS) $6.5m^2 \times 93 = 604.5 \text{ m}^2$ COMMUNAL AMENITY AREA REQ'D. (MIN.): - COMMUNAL AMENITY AREA - 535.0 m² TOTAL AMENITY AREA PROVIDED: 1,139.5 m² 50% of $558 \text{ m}^2 = 279.0 \text{ m}^2$

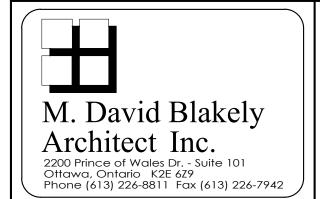
ACCESSORY BUILDING PROVIDED: BUILDING HEIGHT (MAX.): 4.5 m 4.47 m 200.0 m² 165.0 m²

TERRACE FLATS PARKING:

TOTAL =

PARKING REQUIRED: 1.2 Spaces / (93) d.u. + 0.2 / (93) d.u. (Visitor) = 112 + 19 = 131 Spaces PARKING PROVIDED: 2.6m x 5.2m Spaces = 115 Spaces 85.0% 2.6m x 5.2m Visitor Spaces = 12 Spaces 9.0%

2.6m x 5.2m E.V. Visitor Spaces = 4 Spaces 3.0% 3.9m x 5.2m H.C. Visitor Spaces = 4 Spaces 3.0% Total = = 135 Spaces

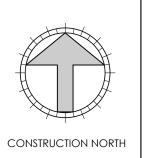

BICYCLE PARKING REQUIRED: 93 (0.5 / d.u.) = 47.0 Spaces BICYCLE PARKING PROVIDED: 100 Interior Spaces

TERRACE FLATS: BUILDING AREA: GROSS FLOOR AREA: No. UNITS: BLOCK 1 = TERRACE FLATS 412.0 m² 1,219.0 m² 12 UNITS BLOCK 2 = TERRACE FLATS 412.0 m² 12 UNITS BLOCK 3 = TERRACE FLATS 412.0 m² 1,219.0 m² 12 UNITS 12 UNITS 12 UNITS BLOCK 4 = TERRACE FLATS 412.0 m² 1,219.0 m² BLOCK 5 = TERRACE FLATS 412.0 m² 1,219.0 m² BLOCK 6 = TERRACE FLATS BLOCK 7 = TERRACE FLATS 412.0 m² 1,219.0 m² 12 UNITS 312.5 m² 914.5 m² 9 UNITS BLOCK 8 = TERRACE FLATS BICYCLE / GARBAGE = 412.0 m² 1,219.0 m² 12 UNITS

SNOW STORAGE: SNOW STORAGE WILL BE OFF SITE.

SITE PLAN TO BE READ IN CONJUNCTION WITH: - LANDSCAPING PLAN PREPARED BY _ - BOUNDARIES DERIVED FROM: PLAN 4M -xxxx BLOCK 167

PREPARED BY ANNIS O'SULLIVAN VOLLEBEKK LTD.



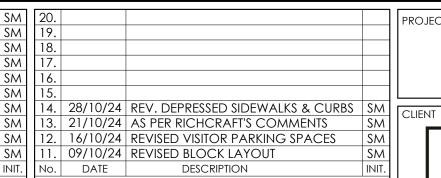
GENERAL NOTES: 1. THE CONTRACTOR IS RESPONSIBLE FOR CHECKING AND VERIFYING ALL DIMENSIONS, ANY DISCREPANCY MUST BE REPORTED TO M. DAVID BLAKELY ARCHITECT INC. 2. ALL WORK AND MATERIALS TO BE IN COMPLIANCE WITH ALL CODES, REGULATIONS, AND BY-LAWS. 3. ADDITIONAL DRAWINGS MAY BE ISSUED FOR CLARIFICATION TO ASSIST THE PROPER EXECUTION OF WORK. SUCH DRAWINGS WILL HAVE THE SAME MEANING AND INTENT AS IF

THEY WERE INCLUDED WITH THE PLANS IN CONTRACT DOCUMENTS.

--Rockmelon----Street-

4. DO NOT SCALE DRAWINGS.
5. THIS DRAWING SHALL NOT BE USED FOR PERMIT OR CONSTRUCTION UNLESS THE DRAWING BEARS THE ARCHITECT'S SEAL AND SIGNATURE. 6. THIS REPRODUCTION SHALL NOT BE ALTERED

BUILDING 165m²


Fire Access Route

AMENITY AREA

1/10/24 REVISED BLOCK LAYOUT 26/09/24 REVISED BLOCK LAYOUT
05/09/24 REV. EV PARKING TO 4 SPACES 26/08/24 AS PER RICHCRAFT'S COMMENTS 21/08/24 REVISED FOR REAR STREET ELEVATION SM 16 14/08/24 REVISED ACC. BLDG. LOCATION 31/07/24 REVISED BLOCK LAYOUT 17/07/24 REVISED BLOCK LAYOUT 30/04/24 FOR REVIEW 11/04/24 FOR REVIEW

DESCRIPTION

REVISIONS

REVISIONS

93 UNIT TERRACE FLATS 955 BORBRIDGE AVE. BLOCK 167 OTTAWA, ONT.

DRAWING TITLE SITE PLAN

RICHCRAFT

APR., 2024. 1:500 DRAWN BY: CHECKED SBM MDB SP-1 REV. 11

Appendix F Background Report Excerpts

REPORT

Project: 125581.6.04-03

DESIGN BRIEF RIVERSIDE SOUTH PHASE 17-1B 4775 & 4875 SPRATT ROAD RIVERSIDE SOUTH COMMUNITY

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

3 WASTEWATER DISPOSAL

3.1 Existing Conditions

Sanitary flows from the majority of the site are routed to the existing 450 mm sanitary sewer on Ralph Hennessy on the RSDC Phase 13 site north of the BRT corridor. A portion of the west side of the site flows through sewers that are currently being constructed in the Phase 17-1A site which is tributary to the Spratt Road/Brian Good sub trunk via existing sewers in the RSDC Phase 15-2 site. **Figure 1.3**, in **Appendix A**, shows the current location of those sewers.

Riverside South Community Infrastructure Servicing Study Update – Rideau River Area (2017 ISSU)

The report provided a macro level servicing plan for the portion of the Riverside South Community that will be tributary to Pond 5, which is referred to as the Rideau River Study Area. The limits of the study area are shown on Figure 1.1 from the study and a copy is included in **Appendix A**. The subject property is located within the Rideau River Drainage Area.

The 2017 ISSU Report recommended that wastewater flows from approximately ¾ of the study area is to be routed to the Spratt Road sewer. For reference, a copy of Drawing SAN-1, Sanitary Drainage Plan from the 2017 study is included in **Appendix C**. The 2017 ISSU study recommended that drainage area 2e be tributary to the Spratt Road sewer. A copy of Figure 4.2, Recommended Sanitary Servicing (2017 Update), from the 2017 ISSU Report, together with a related design sheet are both included in **Appendix C**..

Deviation Report Memorandum Riverside South, Rideau River Drainage Area Sanitary Sewer Design Parameters, IBI Group – 2017 (Deviation Report)

This report, which was accepted by the City of Ottawa in 2017, provided alternative drainage areas for the River Road, Spratt Road and Shoreline Drive collector sewers. This report proposed to expand the drainage area of the River Road collector sewer to better follow the storm sewer flow directions and reduce grade raise challenges associated with the ISSU Spratt Road collector drainage area. The shift of the River Road/Spratt Road drainage area split westward has resulted in additional lands west of Spratt Road being included in the Spratt Road collector drainage area. The deviation memo, supporting figures and sewer design sheets along with City of Ottawa approval emails can all be found in **Appendix C**. The deviation memo and supporting documents confirm that the small portion of the subject lands that was included in the ISSU drainage area 3b which were tributary to the Shoreline Drive collector sewer are now included in the expanded drainage area 2Diii as shown in the deviation report. As such, the western side of the subject lands are tributary to the Spratt Road collector sewer while the remaining is tributary to the Shoreline Drive collector.

3.4 Design Criteria

The estimated wastewater flows from the subject site are based on the revised City of Ottawa design criteria. Among other items, these include:

Average residential flow = 280 l/c/d

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

Peak residential flow factor
 = (Harmon Formula) x 0.80

Average commercial flow = 28,000 l/s/ha
 Average institutional flow = 28,000 l/s/ha

Peak ICI flow factor = 1.5 if ICI area is ≤ 20% total area

1.0 if ICI area is > 20% total area

Inflow and Infiltration Rate = 0.33 l/s/ha
 Minimum Full Flow Velocity = 0.60 m/s
 Maximum Full Flow Velocity = 3.0 m/s

Minimum Pipe Size = 200 mm diameter

In accordance with the Table 4.2 of the Ottawa Sewer Guidelines, the following density rates are estimated for the subject site:

Single units = 3.4
 Semi units (Duplex) = 2.3
 Townhouse and back to back units = 2.7
 Apartment units = 1.8

Minimum allowable slopes as listed below:

DIAMETER (mm)	SLOPE (%)				
200	0.320				
250	0.240				
300	0.186				
375	0.140				
450	0.111				
525 and larger	0.100				

Where practical and where there are less than 10 residential connections, the first lengths of sanitary sewers are designed as 200 mm diameter pipes with a minimum slope of 0.65%.

3.5 Proposed Wastewater Plan

The sanitary outlet for the majority of the site is the 450 mm sanitary sewer stub on Ralph Hennessy north of the BRT corridor. The sewer will be extended on Ralph Hennessy through the site with another branch extending west on Borbridge and south on Ed Findlay. A sanitary drainage area plan, and an external sanitary sewer drainage area plan, showing the external drainage areas, and a sanitary sewer design sheet is included in **Appendix C**. The total area from Phase 17 tributary to the Ralph Hennessy sewer at the BRT corridor is 45.28 hectares with a peak

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

flow of 46.58 l/s, in the ISSU at Node 116 the sanitary drainage area is 48.13 hectares with a total flow of 49.8 l/s. The remainder of the site will drain to the west through stubs on Kiwi, Apricot, Honeydew and Rockmellon Streets in Phase 17-1A and the 4725 Spratt Road site.

An external drainage area plan of lands to the south shows the extension of the Ralph Hennessy sanitary sewer and the extensions of the Ed Findlay and Solarium Avenue sanitary sewers. The sewers are extended using the minimum slopes for the pipe sizes and the inverts are compared with the proposed road grades. At all locations the depths are well in excess of 3 meters allowing normal house construction, the storm sewer are below the sanitary sewers.

During construction, temporary inlet control devices (ICD) will be placed at the first new upstream MH on the sanitary sewers outletting to existing sewers on Ralph Hennessy and on Rockmelon, Honeydew, Apricot and Kiwi Streets in Phase 17-1A and 4725 Spratt Road to prevent excessive groundwater flow into the system which could occur during construction. The ICDs will remain in place until preliminary acceptance at which time it will be removed. Calculations are included in **Appendix C** in which the size of the ICD is calculated based on the design flow of the sewer with the hydraulic head set at the road grade.

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

4 MINOR STORM SEWERS

4.1 Existing Conditions

As noted in Section 1.6 all minor stormwater from this site is routed to Pond 5 which is located west of Rideau Road and is in service. A 2250 mm storm stub on Borbridge Avenue is currently under construction in the 4725 Spratt Road site. Storm sewers in Phase 17-1A are being constructed on Rockmelon, Honeydew, Apricot and Kiwi Streets at the west limit of the Phase 17-1B site. **Figure 1.3** shows the current location of those sewers.

4.2 Riverside South Community Infrastructure Servicing Study Update – Rideau River Area (2017 ISSU)

Comparison with the 2017 ISSU report is included in Section 5. Figure 4.1 from the 2020 Assessment of Adequacy of Public Service is included in **Appendix D** which shows the proposed minor system layout for this area.

4.3 Design Criteria

In accordance with the City of Ottawa Sewer Design Guidelines, the following design criteria was used to size storm sewers using the rational method:

Design return period:
 1:2 year – local roads

1:5 year – collector roads 1:10 year – arterial roads

Time of Concentration: 10 minutes
Minimum velocity: 0.8 m/s
Maximum velocity: 3.0 m/s

Manning's roughness coefficient: 0.013

Minimum allowable slopes listed below:

•

DIAMETER	SLOPE				
(MM)	(%)				
250	0.432				
300	0.340				
375	0.250				
450	0.195				
525	0.160				
600	0.132				
675	0.113				
750 and larger	0.100				

• Runoff Coefficients

Townhouses - Front 0.68

- Rear 0.44

Single Family - Front 0.63

- Rear 0.53

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

Detail calculations for runoff coefficients for the residential lots are included in **Appendix D**.

4.4 Proposed Minor Storm Plan

The storm outlet for the majority of site is the 2250 mm stub on Borbridge Avenue, the sewer will be extended on Borbridge and Ralph Hennessy to service lands to the south along with Ed Findlay Street. Phase 17-1A and sewers on Rockmelon, Honeydew, Apricot and Kiwi Streets will also be extended for the west portion of Phase 17-1B.

Similar to the sanitary sewer temporary ICD's will be placed on the first upstream MH on the storm sewer outletting to existing sewers on Borbridge, Rockmelon, Honeydew, Apricot and Kiwi Streets. Calculations are included in **Appendix D** where the size of the ICD is calculated based on the design flow of the sewer with the hydraulic head set at road grade.

A storm sewer design sheet and storm drainage area plan and external storm drainage area plan are provided in **Appendix D**.

The existing surface drainage in this area generally runs south to north, temporary ditches are proposed along the southern boundary to intercept this flow. The existing flows are directed to two temporary DICB's on Ed Findlay and one on the Rockmellon storm stub at Lavender. As the Ed Findlay sewer has a large upstream drainage area, the DICB leads will limit the flow, for the Rockmellon DICB an ICD will be installed to limit the flow to the design 2 year storm for the storm sewer. Temporary DICB's are placed on the Ralph Hennessy storm sewer to temporary drain the school and mid density blocks while temporary drainage from the park block drains to the park CBMH. On the commercial block at the north end of Ralph Hennessy, an existing DICB will be relocated. Along the north boundary the existing drainage flows away from the development.

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

5 STORMWATER MANAGEMENT

5.1 Background

Riverside South Phase 17-1B (subject site) is located within the Rideau River Area of the Riverside South Development Community and is tributary to the Pond 5 Stormwater Facility. The stormwater management strategy for the subject site was outlined in the following reports:

- Riverside South Community Infrastructure Servicing Study Update Rideau River Area (Stantec Consulting Ltd., June 2017), referred henceforth as the 2017 ISSU;
- Assessment of Adequacy of Public Services Claridge Homes Phase 3 Lands 4725 Spratt Road (IBI Group August 2020)
- Assessment of Adequacy of Public Services RSDC Phase 17 Lands 4775 & 4725 Spratt Road – Riverside South Community Rideau River Area (IBI Group, July 2020); and,
- Design Brief Riverside South Phase 15-2, 4 & Spratt Road (IBI Group, August 2019),
- Design Brief Riverside South Phase 17-1A (IBI Group, September 2021)

The property is east of Spratt Road and south and east of the proposed 4725 Spratt Subdivision and south of the future BRT corridor and east of Phase 17-1A. It is expected that the 4725 Spratt Road site will be built in advance or concurrently with this site. In the 2017 ISSU, the minor storm runoff for the Rideau River Area is proposed to be routed to one of four trunk storm sewers. For reference a copy of Drawing STM1, Storm Sewers from the 2017 ISSU study is included in **Appendix E**. One of the trunk sewers are proposed to be located within the subject property and is tributary to the north inlet of Pond 5. This trunk sewer has two branches which run along Borbridge Street and Atrium Ridge, both converging on Brian Good Avenue (**Figure 5-1**).

The minor storm plan for the subject site is proposed to follow the recommendation of the 2017 ISSU report with only minor adjustments to that plan which have been addressed in the 2018 River Road Report. **Appendix E** includes the applicable sections and information from that report.

Details of the subject site parameters, on-site storage available, restricted minor system rates and assumptions for the areas external to the subject site will be discussed in **Section 5.5**.

5.2 Objective

The purpose of this evaluation is to prepare the dual drainage design, including the minor and major system, for Riverside South Phase 17-1B development. The design includes the assignment of inlet control devices, maximum depth and velocity of flow on the surface and hydraulic grade line analysis. The evaluation takes into consideration the following City of Ottawa documents:

- Ottawa Sewer Design Guidelines (OSDG) (October 2012);
- February 2014 Technical Bulletin ISDTB-2014-01;
- September 2016 Technical Bulletin PIEDTB-2016-01;
- March 2018 Technical Bulletin ISTB-2018-01; and,

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

June 2018 Technical Bulletin ISTB-2018-04.

5.3 System Concept

The stormwater management system for the site incorporates standard urban drainage design and stormwater management features that can be summarized as follows:

- a dual drainage concept;
- routing of surface runoff; and,
- an end-of-pipe SWM facility (designed by others).

The stormwater management system has been developed based on the MOE Stormwater Management Planning and Design Manual (March 2003) and the City of Ottawa Sewer Design Guidelines (OSDG, October 2012), as well as subsequent City of Ottawa Technical Bulletins.

The design of the proposed stormwater management facility (Pond 5) was completed by Stantec Consulting Ltd.

5.3.1 Scope

The evaluation described in the following sections has been completed to support the detail design of Riverside South Phase 17-1B development.

A fully dynamic PCSWMM model was used to evaluate the dual drainage system for the subject site. The River Road model used in the approved August 2018 River Road Report has been used as the base and as detailed design of phases has progressed, the semi-lumped areas were replaced with the detail design information of the corresponding sites. The current development model includes detail design information on River Road, River's Edge Phase 1, River's Edge Phase 2, RSDC PH15-1A, and RSDC PH15-1B, and RSS PH15-3, 4725 Spratt Road, and RSDC PH17-1A developments. As required, adjustments have been made to those drainage boundaries adjacent to Phase 17-1B development. The overall drainage area represented by the PCSWMM model is shown in **Figure 5.1**. The drainage area plans for the subject site are provided on **Drawings 125581-750** in **Appendix E**.

5.4 Dual Drainage Design

The subject site is designed with dual drainage features, accommodating minor and major system flow. During frequent storm events, the effective runoff of a catchment area is directly released via catchbasin inlets to the network of storm sewers, called the minor system. During less frequent storm events, the balance of the flow (in excess of the minor flow) is accommodated by a system of rear yard swales and street segments, called the major system.

All streets within the subject site feature a sawtooth profile with the exception of areas S841B, S906, S908, S933A, and S981A which have a continuous grade profile. The sawtooth profile facilitates surface storage on subdivision streets and is based on maximum 350 mm separation between the low point at the catchbasin and the high overflow point at the downstream end of the segment. **Table 5-3** indicates whether a street segment is continuous or sawtoothed. In accordance with OSDG, rear yard storages have not been accounted for.

Inlet control devices (ICDs) are proposed across the site to maximize the use of available on-site storage and control surcharge of the minor system during infrequent storm events. For those street segments on continuous grade, the inflow to the minor system will be limited by hydraulic characteristic of the catchbasins. As such, the model incorporates the actual flow entering the

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

minor system on continuous grade based on depth-capture curves derived from the Townsend Curves in the Sewer Design Guidelines. Depth-capture curves on continuous grades was provided by the City of Ottawa and are enclosed in **Appendix E**.

The dual drainage system has been evaluated using the fully dynamic PCSWMM model for both the hydrological and hydraulic analysis. The PCSWMM hydrological evaluation offers single storm event flow generation and routing. The major system evaluation is fully dynamic and based on typical road cross sections and road profiles.

According to the September 2016 Technical Bulletin, local streets are required to provide a 2 year level of service without ponding during the storm event. For the subject site, the following approach was taken:

- 2 year level of service provided for all local streets;
- 5 year level of service provided for all collector roads; and,
- 2 year level of service for rear yards.

ICDs were initially sized based on the 2 or 5 year 3 hour Chicago design storm event. In some instances, the proposed ICD release rates and minor system sewer sizing were optimized to protect lots from surface flooding. This was accomplished by increasing ICD release rates above the 2 or 5 year storm event.

The major system flow from the subject site outlet toward 4725 Spratt Road (Borbridge Ave and Kiwi Street) and Phase 17-1A (Apricot St, Honeydew St, and Rockmellon St) at locations shown on **Drawing 125581-750**. It is intended that the total flow from the subject site not impact the receiving developments. Therefore, in some locations, there may be capture greater than 2 or 5 year flow

The drainage area plans are presented on **Drawings 125581-750**. Model files are enclosed in **Appendix E**.

5.5 Stormwater Evaluation

5.5.1 Hydrological Evaluation

Land use, selected modeling routines, and input parameters are discussed in the following sections for the subject site only. Model files are included in **Appendix E**.

Land Use

Riverside South Phase 17-1B development will be developed with a mix of single family units and townhouses. The overall PCSWMM schematic is presented in **Appendix E** and the drainage plan is provided on **Drawings 125581-750**.

Storms and Drainage Area Parameters

The main hydrological parameters for the subject site are presented in Table 5-2 and Table 5-3.

- **Design Storms:** The subject site was evaluated using the following storms:
 - 2, 5 and 100 year 3 hour Chicago storm events (10 minute time step), as per the OSDG and the September 2016 Technical Bulletin;

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

- 100 year 3 hour Chicago storm event (10 minute time step) with 20% increase for Climate Change consideration, as per the OSDG;
- 25 mm 4 hour Chicago storm event consistent with the 2018 Pond 5 Design Brief;
 and.
- 100 year 12 hour SCS Type II storm event consistent with the 2018 Pond 5 Design Brief.
- Area: The drainage area was divided into sub-drainage areas based on the proposed minor system network of storm sewers and the rational method spreadsheet with some minor modifications for modeling purposes. See Drawing 125581-750 for the catchment areas used in the detail evaluation of the subject site.
- **Imperviousness:** PCSWMM provides an opportunity to specify direct and indirect routing to a pervious or impervious area. For this evaluation, all street segments were assumed to be 100% routed to an impervious surface and all rear yards were assumed to be 100% routed to a pervious surface.
- **Infiltration:** Infiltration losses were selected to be consistent with the OSDG. The Horton values are as follows: Max. infiltration rate = 76.2 mm/h, Min. infiltration rate = 13.2 mm/h, Decay constant = 4.14 1/hr.
- Subcatchment Width: The catchment width was based on the conveyance route length
 of the drainage area and multiplied by two. The multiplier of two was only used if the
 drainage area had runoff contribution from both sides of the drainage area. This approach
 is consistent with the OSDG.
- **Slope:** The average surface slope was based upon the average slope for both impervious and pervious area. An average slope of 1% has been used for subcatchment flow routing. It should be noted that the appropriate longitudinal slope of streets was accounted in PCSWMM using a combination of nodes with inverts corresponding to gutter elevations, and links with corresponding road cross-sections
- Initial Abstraction (Detention Storage): Detention storage depths of 1.57 mm and 4.67 mm were used for impervious and pervious areas, respectively. These values are consistent with the OSDG.
- Manning's Roughness: Manning's roughness coefficients of 0.013 and 0.25 were used for impervious and pervious areas, respectively.
- **Baseflow:** No baseflow components were assumed for any of the areas contributing runoff to the minor system within the PCSWMM model.
- Major System Storage and Routing: The subject site is comprised of both continuous grade and sawtooth road profiles. For drainage areas with sawtoothing, flow is attenuated within low points with potential overflow cascading to the next segment downstream. The total volume at each low point, up to the overflow depth, is the maximum static storage. Ponding plan is presented on Drawing 125581-602 to Drawing 125581-606. Rear yard segments have a sawtooth pattern with some storage available, but the storage is not accounted for as part of the analysis.

For street segments with ponding, minor system capture is set to fully utilize storage during the 100 year design storm, while minimizing ponding during the 2 or 5 year event. Cascading overflow from a low point to a downstream segment utilizes the static storage

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

available plus an additional amount of storage equivalent to the depth required for the flow to cascade over the downstream high point. The attenuation in street sags was evaluated to account for static storage and, if overflow occurs, dynamic storage.

For street segments with continuous grade, simulations were based on the approach-capture characteristics of the catchbasin with the constraint that during the 100 year design storm the maximum cascading flow does not exceed 0.35 m.

For street segments with sawtoothing, simulations were based on the constraint that during the 100 year design storm the maximum depth of ponding (including cascading flow where applicable) does not exceed 0.35 m. The surface storages were modeled in PCSWMM using a combination of nodes with inverts corresponding to gutter elevations, and links with corresponding road cross-sections. The evaluation was undertaken assuming dynamic flow conditions. It should be noted that the visual interpretation of street links in the model, is based on illustrating street nodes along the center of the road. However, the invert elevations are modified to correspond to the gutter (CB grill) elevations as indicated above.

Rear yards were considered independently of street segments. Storage volumes in rear yards were not accounted for as available on-site storage. Therefore, in the PCSWMM model, the sawtooth pattern of rear yard swales was neglected, and it was assumed that there is a continuous slope from the high point to the low point elevation of the swale. Simulations were based on the total interception of runoff by the storm inlets. This was done by specifying a subcatchment outlet in the model at the same node as the rear yard ICD outlet link. Overflow from the rear yards cascades to the next downstream segment and then ultimately to a major system road segment via swales.

• Minor system capture: The minor system capture for the subject site is based on the 2 or 5 year storm event depending on the road type (local or collector) and for maximum ponding conditions. ICDs are proposed to protect the minor system from surcharge during infrequent storm events and to utilize on-site storage. The assignment and placement of the ICDs within the subject site were determined as part of this evaluation. The inflow rate for the CBs located at low points within the subject site were increased to maintain the major system flow dynamic depth at 0.35 m, if required.

The City has requested specific ICD sizes to be specified for use on the site. These ICD sizes are documented in City of Ottawa MS-18.4 Inlet Control Devices (ICD's, March 2017). Within the aforementioned document eight (8) ICD sizes are noted. The following table summarizes the ICD sizes assigned to the site including associated flowrate at the maximum allowable ponding depth of 0.35m above top of grate.

Table 5-1: Standard City of Ottawa ICD Sizes

ICD DIAMETER (MM)	ORIFICE AREA (M²)	MAX FLOW RATE AT MAX PONDING DEPTH OF 0.35 M (L/S)		
Vortex	n/a	6		
83	0.0054	20.41		
94	0.0069	26.18		
102	0.0082	30.83		
108	0.0092	34.56		
127	0.0127	47.80		

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

ICD DIAMETER (MM)	ORIFICE AREA (M²)	MAX FLOW RATE AT MAX PONDING DEPTH OF 0.35 M (L/S)
152	0.0181	68.46
178	0.0249	93.89

The standard ICDs were assigned to each CB within the subject site. For the evaluation of the site in PCSWMM, a rating curve for each standard ICD has been created. The rating curve was emulating performance of a particular orifice in question to convey the ICD flow to the minor system. The rating curve was based on an average top of grate (T/G) to the center of CB lead height of 1.3 m for the street segments and 1.4 m for the rear yard segments. The ICD size, head and flow are provided on the CB table presented on **Drawing 125581-010**. Any exemptions to the above noted ICDs assumed are indicated in the CB table presented on **Drawing 125581-010**.

Non-Residential Lands

In addition to the above noted assumptions with respect to Phase 17-1B, the following assumptions were used to model the minor and major system flow from the non-residential areas which are tributary to and contribute flow (minor and major) to the subject site. A summary of the areas, storages and parameter assumptions are provided in **Table 5-2**.

- Park Site (PCSWMM ID: P931): The minor system capture limit for the park was based on the 2 year modeled flow as provided in **Table 5-3**. It was also assumed the balance of flow up to the 100 year storm event, to be stored on-site with emergency overflow (excess of the 100 year event) to Ralph Hennessy Ave (area S930).
- School Site (PCSWMM ID: SC933): The institutional site was assumed to be restricted
 to the 2 year modeled flow as provided in **Table 5-3**. It was also assumed that full on-site
 storage will be provided (all major flow contained on-site up to and including the 100 year
 event). Emergency overflow will be routed to adjacent streets Ralph Hennessy Ave (area
 S933B).
- Commercial Site (PCSWMM ID: COM947): The minor system capture limit for the commercial site was based on the 2 year modeled flow as provided in **Table 5-3**. It was also assumed the balance of flow up to the 100 year storm event, to be stored on-site with emergency overflow (excess of the 100 year event) to Ralph Hennessy Ave (area S946).
- Mid Density Site (PCSWMM ID: MD910): The mid density site was assumed to be restricted to the 5 year modeled flow as provided in **Table 5-3**. It was also assumed that full on-site storage will be provided (all major flow contained on-site up to and including the 100 year event). Emergency overflow will be routed to adjacent streets Borbridge Ave (area S910).

A summary of parameters and assumed inflow for non-residential lands are provided in **Table 5-2** and **Table 5-3**. **Drawing 122581-750** presents the area contributing major and minor flow to the subject site including their segment ID.

Summary of Modeling Files

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

For ease of review, the following is a reference list of the computer modeling files enclosed in **Appendix E**.

PCSWMM

- o 125581-RSSPH17-1B-REV2-25MM.pcz 25 mm 4 hour Chicago
- o 125581-RSSPH17-1B-REV2-2CH.pcz 2 year 3 hour Chicago
- o 125581-RSSPH17-1B-REV2-5CH.pcz 5 year 3 hour Chicago
- o 125581-RSSPH17-1B-REV2-100CH.pcz 100 year 3 hour Chicago
- 125581-RSSPH17-1B-REV2-100SCS.pcz 100 year 12 hour SCS Type II
- o 125581-RSSPH17-1B-REV2-120CH.pcz 100 year 3 hour Chicago increased by 20%

Table 5-2 Hydrological Parameters - Subcatchment Summary Table

DRAINAGE AREA ID	AREA (HA)	DOWNSTREAM SEGMENT ID	RECEIVING MH (SEWER NODE)	IMP RATIO	SUBCATCHMENT WIDTH (M)	AVAILABLE STATIC STORAGE (CU-M) ⁽¹⁾	
Street Segments							
S804	0.40	Phase 17-1A	MH804	69	217	26.65	
S805	0.22	S982	MH805	69	88	21.73	
S806	0.43	S982	MH806	69	170	67.22	
S807	0.32	S808	MH807	69	104	57.29	
S808	0.26	S906B	MH808	MH808 69 110		1.48	
S822	0.42	Future Phase 17	MH822	H822 61		10.15	
S825	0.29	S984B	MH825	69	168	45.88	
S826	0.47	S825	MH826	69	182	70.18	
S828A	0.17	S828B	MH828	61	88	10.86	
S828B	0.35	S826	MH828	69	98	97.70	
S835A	0.24	S985A	MH835	61	150	6.16	
S835B	0.46	S835A	MH835	61	190	52.18	
S840	0.29	S986	MH840	61	170	9.42	
S841A	0.22	S841C	MH841	MH841 61		49.81	
S841B	0.29	S841A	MH841	61	120	n/a	
S841C	0.25	S828B	MH841	69	80	68.34	
S905	0.36	4725 Spratt Rd	MH905	76	158	28.74	

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE AREA ID	AREA (HA)	DOWNSTREAM SEGMENT ID	RECEIVING MH (SEWER IMP RATIO NODE)		SUBCATCHMENT WIDTH (M)	AVAILABLE STATIC STORAGE (CU-M) ⁽¹⁾
S906	0.17	S906B	MH906	69	53	n/a
S906B	0.31	S981B	MH906	69	70	9.03
S908	0.26	S906	MH908	69	62	n/a
S910	0.31	S946	MH910	69	102	83.03
S911	0.11	S946	MH911	61	96	2.03
S911A	0.25	S911	MH911	61	190	46.71
S930	0.37	S946	MH930	69	127	45.99
S931A	0.26	S931B	MH931	69	60	13.86
S931B	0.24	S930	MH931	69	68	29.36
S932	0.26	S841C	MH932	69	132	42.45
S933A	0.21	S933B	MH933	43 105		n/a
S933B	0.27	S931A	MH933	MH933 69 52		6.73
S943	0.25	S945	MH943	1943 69 110		7.95
S945	0.22	S947	MH945	69	73	12.80
S946	0.29	S947	MH946	61	90	2.60
S947	0.24	OUT	MH947	69	73	6.47
S961A	0.37	S961B	MH961	69	86	2.32
S961B	0.24	Phase 17-1A	MH961	61	124	22.02
S963	0.27	Phase 17-1A	MH963	69	168	18.09
S981A	0.15	S961B	MH981	69	144	n/a
S981B	0.23	4725 Spratt Rd	MH981	69	83	28.96
S982	0.32	S981B	MH982	69	100	8.25
S984A	0.32	S984B	MH984	61	114	12.51
S984B	0.23	S805	MH984	61	81	7.57
S985A	0.13	S985B	MH985	61	70	8.39
S985B	0.17	S984A	MH985	61 92		2.98

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE AREA ID	AREA (HA)	DOWNSTREAM SEGMENT ID	RECEIVING MH (SEWER NODE)	IMP RATIO	SUBCATCHMENT WIDTH (M)	AVAILABLE STATIC STORAGE (CU-M) ⁽¹⁾			
S986	0.30	S985A	MH986	61	162	4.30			
Rear Yards									
R804	0.42	S804	MH804	47	110	n/a			
R806A	0.26	R806B	MH806	34	157	n/a			
R806B	0.26	S806	MH806	34	162	n/a			
R808	0.14	R806A	MH808	34	92	n/a			
R822	0.34	S822	MH822	47	107	n/a			
R825	0.33	S825	MH825	47	208	n/a			
R826	0.30	R825	MH826	47	190	n/a			
R828	0.34	S828B	MH828	34	98	n/a			
R835	0.27	S835A	MH835	47	170	n/a			
R840	0.30	S840	MH840	47	188	n/a			
R841A	0.30	S841A	MH841	47	188	n/a			
R841B	0.33	S841C	MH841	47	214	n/a			
R906B	0.17	S906B	MH906	34	102	n/a			
R932A	0.37	OUT	MH932	34	221	n/a			
R932B	0.20	S932	MH932	34	126	n/a			
R943	0.35	R944	MH943	34	216	n/a			
R944	0.23	S945	MH944	34	131	n/a			
R947	0.22	S947	MH947	34	155	n/a			
R961	0.18	S961A	MH961	34	116	n/a			
R963	0.47	S963	MH963	34	281	n/a			
R982	0.42	R906B	MH982	34	184	n/a			
R984A	0.23	S984A	MH984	47	158	n/a			
R984B	0.13	S984B	MH984	47	80	n/a			
R981	0.23	n/a	n/a	43	134	n/a			

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE AREA ID	AREA (HA)	DOWNSTREAM SEGMENT ID	RECEIVING MH (SEWER NODE)	IMP RATIO	SUBCATCHMENT WIDTH (M)	AVAILABLE STATIC STORAGE (CU-M) ⁽¹⁾
R986	0.23	OUT	OUT MH986 47		148	n/a
			Non-Residential La	nds		
MD910	1.45	S910	MH910	71	326	100yr on-site storage
P931	2.36	S930	MH931	43	531	100yr on-site storage
SC933	3.12	S933B	MH933	71	702	100yr on-site storage
COM947	0.93	S946	MH947	71	209	100yr on-site storage

⁽¹⁾ The available on-site static storage is based on Drawing 125581-602 to 125581-606.

5.5.2 Results of Hydrological Evaluation

In PCSWMM, the hydraulic grade line (minor system) and major system are simulated simultaneously. The resulting hydraulic grade line is presented in **Section 5.5.3**. The results of the major system evaluation are summarized in the following sections.

The assigned size of the inlet control devices (ICDs) for the subject site was optimized using PCSWMM. ICDs are incorporated into the stormwater management design to protect the minor system from surcharge during infrequent storm events. The ICDs used for the subject site are provided in the CB table presented on **Drawing 125581-010**. It should be noted that due to the major system flow from the future areas, there were a few instances where the flow restriction into the minor system was increased above the 100 year flow.

Table 5-3 Minor Flow Capture for Riverside South Phase 17-1B Development

DRAINAGE	CONTINUOU S/SAG ⁽¹⁾		MINOR SYSTEM DESIG TARGET (BASED ON ROAD TYPE)		100 YEAR CAPTURE ICD ORIFICE		RIFICE	
AREA ID		ROAD TYPE	MINOR SYSTEM DESIGN STORM	GENERATE D FLOW ON INDIVIDUAL SEGMENT SIMULATED (L/S)	D FLOW SIZE (MM DIA (L/S)		NOTES	
				Street Segme	nts			
S804	Sag	18m Row, 8.5m asphalt	2	57.9	73.5	108	127	
S805	Sag	18m Row, 8.5m asphalt	2	32.6	36.8	83	83	
S806	Sag	18m Row, 8.5m asphalt	2	62.8	86.6	127	127	
S807	Sag	18m Row, 8.5m asphalt	2	46.7	54.2	102	102	
S808	Sag	18m Row, 8.5m asphalt	2	38.0	45.4	94	94	

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE	CONTINUOU		TARGET	STEM DESIGN (BASED ON D TYPE)	100 YEAR CAPTURE	ICD O	RIFICE	
AREA ID	S/SAG (1)	ROAD TYPE	MINOR SYSTEM DESIGN STORM	GENERATE D FLOW ON INDIVIDUAL SEGMENT SIMULATED (L/S)	D FLOW (L/S)	SIZE (MM DIA.)		NOTES
S822	Sag	20m Row, 8.5m asphalt	2	55.1	61.1	108	108	
S825	Sag	18m Row, 8.5m asphalt	2	42.4	47.5	94	94	
S826	Sag	18m Row, 8.5m asphalt	2	68.6	83.2	127	127	
S828A	Sag	18m Row, 8.5m asphalt	2	22.3	34.9	83	83	
S828B	Sag	18m Row, 8.5m asphalt	2	51.1	55.3	102	102	
S835A	Sag	18m Row, 8.5m asphalt	2	31.4	35.9	83	83	
S835B	Sag	18m Row, 8.5m asphalt	2	60.2	72.2	108	127	
S840	Sag	18m Row, 8.5m asphalt	2	38.0	46.0	94	94	
S841A	Sag	18m Row, 8.5m asphalt	2	28.8	74.7	108	127	
S841B	Continuous	18m Row, 8.5m asphalt	2	38.0	0.0	n/a	n/a	
S841C	Sag	18m Row, 8.5m asphalt	2	36.5	47.9	94	94	
S905	Sag	26m Row, 11m asphalt	3	58.1	104.0	127	152	
S906	Continuous	26m Row, 11m asphalt	5	32.7	37.5	n	/a	
S906B	Sag	26m Row, 11m asphalt	5	60.6	102.8	152	152	
S908	Continuous	26m Row, 11m asphalt	5	51.5	51.8	n/a	n/a	
S910	Sag	26m Row, 11m asphalt	5	61.4	69.8	108	127	
S911	Sag	26m Row, 11m asphalt	5	19.5	33.3	83	83	
S911A	Sag	26m Row, 11m asphalt	5	44.4	48.7	94	102	
S930	Sag	26m Row, 11m asphalt	5	73.3	81.0	127	127	
S931A	Sag	26m Row, 11m asphalt	5	52.1	58.9	108	108	
S931B	Sag	26m Row, 11m asphalt	5	46.9	52.4	102	102	
S932	Sag	18m Row, 8.5m asphalt	2	38.6	55.2	102	102	
S933A	Continuous	26m Row, 11m asphalt	5	26.1	96.5	n/a	n/a	
S933B	Sag	26m Row, 11m asphalt	5	53.9	60.0	108	127	
S943	Sag	18m Row, 8.5m asphalt	2	36.5	45.1	94	94	

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE	CONTINUOU		TARGET	STEM DESIGN (BASED ON D TYPE)	100 YEAR CAPTURE	ICD O	RIFICE	
AREA ID	S/SAG ⁽¹⁾	ROAD TYPE	MINOR SYSTEM DESIGN STORM	GENERATE D FLOW ON INDIVIDUAL SEGMENT SIMULATED (L/S)	D FLOW (L/S)	SIZE (MM DIA.)		NOTES
S945	Sag	18m Row, 8.5m asphalt	2	32.1	36.0	83	83	
S946	Sag	26m Row, 11m asphalt	5	51.5	58.2	108	108	
S947	Sag	26m Row, 11m asphalt	5	47.6	54.7	102	102	
S961A	Sag	18m Row, 8.5m asphalt	2	53.9	59.6	108	108	
S961B	Sag	18m Row, 8.5m asphalt	2	31.4	46.8	94	94	
S963	Sag	18m Row, 8.5m asphalt	2	39.6	47.0	94	94	
S981A	Continuous	18m Row, 8.5m asphalt	2	21.9	24.9	n/a		
S981B	Sag	18m Row, 8.5m asphalt	2	33.6	36.9	83	83	
S982	Sag	18m Row, 8.5m asphalt	2	46.7	53.9	102	102	
S984A	Sag	20m Row, 8.5m asphalt	2	41.9	46.8	94	94	
S984B	Sag	18m Row, 8.5m asphalt	2	30.1	37.2	83	83	
S985A	Sag	18m Row, 8.5m asphalt	2	16.6	35.9	83	83	
S985B	Sag	18m Row, 8.5m asphalt	2	22.6	35.4	83	83	
S986	Sag	18m Row, 8.5m asphalt	2	39.3	46.1	94	94	
				Rear Yards				
R804	Rear Yard	Rear Yard	2	23.4	27.5	10	02	
R806A	Rear Yard	Rear Yard	2	11.9	18.5	8	3	
R806B	Rear Yard	Rear Yard	2	12.1	18.9	8	3	
R808	Rear Yard	Rear Yard	2	6.7	18.2	8	3	
R822	Rear Yard	Rear Yard	2	21.0	23.3	g)4	
R825	Rear Yard	Rear Yard	2	26.8	28.4	10	02	
R826	Rear Yard	Rear Yard	2	24.4	28.1	10	02	
R828	Rear Yard	Rear Yard	2	10.1	18.2	8	13	
R835	Rear Yard	Rear Yard	2	21.9	23.6	9)4	
R840	Rear Yard	Rear Yard	2	24.3	29.5	10	02	

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE	CONTINUOU	CONTINUOU ROAD TYPE				100 YEAR CAPTURE	ICD ORIFICE	
AREA ID	S/SAG ⁽¹⁾	ROAD TYPE	MINOR SYSTEM DESIGN STORM	GENERATE D FLOW ON INDIVIDUAL SEGMENT SIMULATED (L/S)	D FLOW (L/S)	SIZE (MM DIA.)	NOTES	
R841A	Rear Yard	Rear Yard	2	24.3	29.5	102		
R841B	Rear Yard	Rear Yard	2	27.0	27.8	102		
R906B	Rear Yard	Rear Yard	2	7.8	18.5	83		
R932A	Rear Yard	Rear Yard	2	16.8	18.4	83		
R932B	Rear Yard	Rear Yard	2	9.3	18.2	83		
R943	Rear Yard	Rear Yard	2	16.2	18.6	83		
R944	Rear Yard	Rear Yard	2	10.2	18.8	83		
R947	Rear Yard	Rear Yard	2	10.8	18.1	83		
R961	Rear Yard	Rear Yard	2	8.5	17.9	83		
R963	Rear Yard	Rear Yard	2	21.4	23.4	94		
R982	Rear Yard	Rear Yard	2	16.2	18.4	83		
R984A	Rear Yard	Rear Yard	2	19.1	23.3	94		
R984B	Rear Yard	Rear Yard	2	10.4	18.2	83		
R981	Rear Yard	Rear Yard	2	15.4	18.4	83		
R986	Rear Yard	Rear Yard	2	18.8	23.2	94		
			No	on-Residential	Lands			
MD910	Rear Yard	CUSTOM as required	5	320	320	320		
P931	Rear Yard	CUSTOM as required	2	217	217	217		
SC933	Rear Yard	CUSTOM as required	2	475	475	475		
COM947	Rear Yard	CUSTOM as required	2	142	142	142	for a file of five many and the same and the	

⁽¹⁾ if required, the minor flow restriction has been increased in sags to allow full capture of overflow from upstream segments on continuous grade during the design storm event without ponding.

The storage available on-site and its maximum depth and the results of the PCSWMM evaluation for the subject site are presented in **Table 5.4**. The ponding plan for the subject site is presented on **Drawing 125581-602** to **Drawing 125581-606**.

⁽²⁾ From PCSWMM Output "125581-RSSPH17-1B-REV2-100CH.pcz" presented in Appendix E.

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

Table 5-4 Summary of On-Site Storage during the Target Minor System Design Storm

DRAINAGE AREA ID	MINOR SYSTEM DESIGN STORM	AVAILABLE STATIC STORAGE (CU-M) ⁽¹⁾	AVAILABLE STATIC DEPTH (M) ⁽²⁾	MAXIMUM DEPTH AT LOW POINT (M) - IF APPLICABLE DURING THE TARGET MINOR SYSTEM DESIGN STORM	OVERFLOW (L/S)				
Riverside South Phase 17-1B (Subject site)									
S804	Sag	26.7	0.25	0	0				
S805	Sag	21.7	0.27	0	0				
S806	Sag	67.2	0.27	0	0				
S807	Sag	57.3	0.27	0	0				
S808	Sag	1.5	0.13	0	0				
S822	Sag	10.2	0.18	0	0				
S825	Sag	45.9	0.25	0	0				
S826	Sag	70.2	0.25	0	0				
S828A	Sag	10.9	0.19	0	0				
S828B	Sag	97.7	0.30	0	0				
S835A	Sag	6.2	0.16	0	0				
S835B	Sag	52.2	0.25	0	0				
S840	Sag	9.4	0.15	0	0				
S841A	Sag	49.8	0.25	0	0				
S841B	Continuous	n/a	n/a	0.06	35.3				
S841C	Sag	68.3	0.30	0	0				
S905	Sag	28.7	0.21	0	0				
S906	Continuous	n/a	n/a	0.05	48.94				
S906B	Sag	9.0	0.16	0	0				
S908	Continuous	n/a	n/a	0.04	32.03				
S910	Sag	83.0	0.32	0	0				
S911	Sag	2.0	0.11	0	0				
S911A	Sag	46.7	0.25	0	0				

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE AREA ID	MINOR SYSTEM DESIGN STORM	AVAILABLE STATIC STORAGE (CU-M) ⁽¹⁾	AVAILABLE STATIC DEPTH (M) ⁽²⁾	MAXIMUM DEPTH AT LOW POINT (M) - IF APPLICABLE DURING THE TARGET MINOR SYSTEM DESIGN STORM	OVERFLOW (L/S)
S930	Sag	46.0	0.24	0	0
S931A	Sag	13.9	0.15	0	0
S931B	Sag	29.4	0.20	0	0
S932	Sag	42.5	0.24	0	0
S933A	Continuous	n/a	n/a	0.03	12.46
S933B	Sag	6.7	0.15	0	0
S943	Sag	8.0	0.11	0	0
S945	Sag	12.8	0.18	0	0
S946	Sag	2.6	0.14	0	0
S947	Sag	6.5	0.15	0	0
S961A	Sag	2.3	0.13	0	0
S961B	Sag	22.0	0.21	0	0
S963	Sag	18.1	0.21	0	0
S981A	Continuous	n/a	n/a	0.03	9.16
S981B	Sag	29.0	0.24	0	0
S982	Sag	8.3	0.15	0	0
S984A	Sag	12.5	0.25	0	0
S984B	Sag	7.6	0.17	0	0
S985A	Sag	8.4	0.15	0	0
S985B	Sag	3.0	0.15	0	0
S986	Sag	4.3	0.16	0	0
	ı	Riverside South Phase 17	-1A and 4725 Spratt Road	i	
S905	Sag	28.7	0.21	0	0
S972	Sag	26.5	0.18	0	0
S816	Sag	41.2	0.25	0	0

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE AREA ID	MINOR SYSTEM DESIGN STORM	AVAILABLE STATIC STORAGE (CU-M) ⁽¹⁾	AVAILABLE STATIC DEPTH (M) ⁽²⁾	MAXIMUM DEPTH AT LOW POINT (M) - IF APPLICABLE DURING THE TARGET MINOR SYSTEM DESIGN STORM	OVERFLOW (L/S)
S803B	Sag	4.4	0.13	0	0
S821	Sag	69.0	0.25	0	0

- (1) The available on-site static storage is based on Drawing 125581-602 to Drawing 125581-606.
- (2) The available static depth is based on **Drawing 125581-602** to **Drawing 125581-606**.
- (3) The resulting storage was simulated in PCSWMM based on road profile and cross sections for that street segment.

The results of the on-site detention analysis show that during the restricted inflow rate of the 2 or 5 year storm event, there is no ponding on the subject site.

Table 5-5 and Table 5-6 summarize the cascading overflows for each subcatchment on the subject site and the downstream subcatchments on Spratt Road for the 100 year 3 hour Chicago storm event and the 100 year Chicago storm increased by 20%, respectively. The cascading overflow is the flow exiting a drainage area when maximum minor system inflow and maximum available ponding has been utilized. The 18 m, 20 m and 26 m ROW sections, with the corresponding longitudinal profiles, were imported into PCSWMM to determine the depth and velocity of cascading overflow for continuous and sawtooth street segments.

It should be noted that for the purposes of modeling, where there are VPI in the road profile, the vertical curves have been flattened to straight line slopes between the two points. This approach is considered conservative with respect to the model.

Table 5-5 Summary of Velocity x Depth during the 100 Year 3 Hour Chicago Storm

DRAINAGE AREA ID	CONTINUOUS/SAG	AVAILABLE STATIC DEPTH (M) ⁽¹⁾	MAXIMUM DEPTH AT LOW POINT (M) - IF APPLICABLE	CASCADING DEPTH (m) ⁽²⁾	VELOCITY (M/S)	VELOCITY X DEPTH (M²/S)
		Riverside Soutl	n Phase 17-1B (Subjec	et site)		
S804	Sag	0.25	0.25	0.00	0.00	0.00
S805	Sag	0.27	0.18	0.00	0.00	0.00
S806	Sag	0.27	0.31	0.04	0.54	0.02
S807	Sag	0.27	0.21	0.00	0.00	0.00
S808	Sag	0.13	0.17	0.04	0.46	0.02
S822	Sag	0.18	0.22	0.04	0.09	0.00
S825	Sag	0.25	0.30	0.05	0.76	0.04
S826	Sag	0.25	0.18	0.00	0.00	0.00

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE AREA ID	CONTINUOUS/SAG	AVAILABLE STATIC DEPTH (M) ⁽¹⁾	MAXIMUM DEPTH AT LOW POINT (M) - IF APPLICABLE	CASCADING DEPTH (m) ⁽²⁾	VELOCITY (M/S)	VELOCITY X DEPTH (M²/S)
S828A	Sag	0.19	0.13	0.01	0.13	0.00
S828B	Sag	0.30	0.28	0.00	0.00	0.00
S835A	Sag	0.16	0.21	0.05	0.45	0.02
S835B	Sag	0.25	0.20	0.00	0.00	0.00
S840	Sag	0.15	0.21	0.06	0.72	0.04
S841A	Sag	0.25	0.30	0.05	0.49	0.02
S841B	Continuous	n/a	0.07	0.07	0.97	0.07
S841C	Sag	0.30	0.36	0.06	0.65	0.04
S905	Sag	0.21	0.26	0.05	1.37	0.07
S906	Continuous	n/a	0.06	0.06	1.59	0.10
S906B	Sag	0.16	0.24	0.07	0.91	0.06
S908	Continuous	n/a	0.05	0.05	0.71	0.04
S910	Sag	0.32	0.11	0.00	0.00	0.00
S911	Sag	0.11	0.01	0.00	0.00	0.00
S911A	Sag	0.25	0.13	0.00	0.00	0.00
S930	Sag	0.24	0.11	0.00	0.00	0.00
S931A	Sag	0.15	0.12	0.00	0.00	0.00
S931B	Sag	0.20	0.11	0.00	0.00	0.00
S932	Sag	0.24	0.22	0.01	0.07	0.00
S933A	Continuous	n/a	0.04	0.04	0.85	0.03
S933B	Sag	0.15	0.11	0.00	0.00	0.00
S943	Sag	0.11	0.14	0.03	0.77	0.02
S945	Sag	0.18	0.22	0.03	0.28	0.01
S946	Sag	0.14	0.09	0.00	0.00	0.00
S947	Sag	0.15	0.23	0.08	0.57	0.05
S961A	Sag	0.13	0.18	0.05	0.19	0.01

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE AREA ID	CONTINUOUS/SAG	AVAILABLE STATIC DEPTH (M) ⁽¹⁾	MAXIMUM DEPTH AT LOW POINT (M) - IF APPLICABLE	CASCADING DEPTH (m) ⁽²⁾	VELOCITY (M/S)	VELOCITY X DEPTH (M²/S)
S961B	Sag	0.21	0.25	0.04	0.52	0.02
S963	Sag	0.21	0.27	0.06	0.63	0.04
S981A	Continuous	n/a	0.04	0.04	0.58	0.02
S981B	Sag	0.24	0.29	0.06	0.59	0.04
S982	Sag	0.15	0.18	0.03	0.10	0.00
S984A	Sag	0.25	0.28	0.03	0.28	0.01
S984B	Sag	0.17	0.23	0.06	0.60	0.04
S985A	Sag	0.15	0.19	0.04	0.16	0.01
S985B	Sag	0.15	0.19	0.04	0.35	0.01
S986	Sag	0.16	0.21	0.05	0.45	0.02
		Riverside South Ph	ase 17-1A and 4725 S _l	oratt Road		
S905	Sag	0.21	0.26	0.05	1.37	0.07
S972	Sag	0.18	0.23	0.05	0.13	0.01
S816	Sag	0.25	0.28	0.03	0.00	0.00
S803B	Sag	0.13	0.05	0.00	0.00	0.00
S821	Sag	0.25	0.29	0.04	1.53	0.06

Table 5-6 Summary of Velocity x Depth during the 100 Year 3 Hour Chicago Storm Increased by 20%

DRAINAGE AREA ID	CONTINUOUS/SAG	AVAILABLE STATIC Depth (M)	MAXIMUM DEPTH AT LOW POINT (M) - IF APPLICABLE	Cascading Depth (m) ⁽²⁾	VELOCITY (M/S)	VELOCITY X DEPTH (M²/S)					
	Riverside South Phase 17-1B (Subject site)										
S804	Sag	0.25	0.28	0.03	0.11	0.00					
S805	Sag	0.27	0.23	0.00	0.00	0.00					

JANUARY 2022 31

 ⁽¹⁾ The available static depth is based on **Drawing 125581-602** to **Drawing 125581-606**.
 (2) Evaluated at most downstream node within drainage area. From PCSWMM Output "125581-RSSPH17-1B-REV2-100CH.pcz" presented in Appendix E.

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE AREA ID	CONTINUOUS/SAG	AVAILABLE STATIC Depth (M)	MAXIMUM DEPTH AT LOW POINT (M) - IF APPLICABLE	Cascading Depth (m) ⁽²⁾	VELOCITY (M/S)	VELOCITY X DEPTH (M²/S)
S806	Sag	0.27	0.37	0.10	0.88	0.09
S807	Sag	0.27	0.26	0.00	0.00	0.00
S808	Sag	0.13	0.18	0.04	0.56	0.02
S822	Sag	0.18	0.27	0.08	0.14	0.01
S825	Sag	0.25	0.34	0.09	0.83	0.07
S826	Sag	0.25	0.27	0.02	0.15	0.00
S828A	Sag	0.19	0.24	0.05	0.33	0.02
S828B	Sag	0.30	0.38	0.07	0.20	0.01
S835A	Sag	0.16	0.23	0.07	0.56	0.04
S835B	Sag	0.25	0.26	0.01	0.07	0.00
S840	Sag	0.15	0.22	0.07	0.81	0.06
S841A	Sag	0.25	0.32	0.07	0.57	0.04
S841B	Continuous	n/a	0.07	0.07	0.96	0.07
S841C	Sag	0.30	0.40	0.10	0.76	0.08
S905	Sag	0.21	0.30	0.08	1.50	0.12
S906	Continuous	n/a	0.07	0.07	1.58	0.11
S906B	Sag	0.16	0.26	0.09	1.07	0.10
S908	Continuous	n/a	0.06	0.06	0.75	0.05
S910	Sag	0.32	0.15	0.00	0.00	0.00
S911	Sag	0.11	0.06	0.00	0.00	0.00
S911A	Sag	0.25	0.18	0.00	0.00	0.00
S930	Sag	0.24	0.15	0.00	0.00	0.00
S931A	Sag	0.15	0.22	0.07	0.16	0.01
S931B	Sag	0.20	0.24	0.04	0.30	0.01
S932	Sag	0.24	0.31	0.06	0.14	0.01
S933A	Continuous	n/a	0.09	0.09	0.85	0.08

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

DRAINAGE AREA ID	CONTINUOUS/SAG	AVAILABLE STATIC Depth (M)	MAXIMUM DEPTH AT LOW POINT (M) - IF APPLICABLE	Cascading Depth (m) ⁽²⁾	VELOCITY (M/S)	VELOCITY X DEPTH (M²/S)
S933B	Sag	0.15	0.22	0.07	0.27	0.02
S943	Sag	0.11	0.15	0.03	0.79	0.02
S945	Sag	0.18	0.23	0.04	0.32	0.01
S946	Sag	0.14	0.14	0.00	0.00	0.00
S947	Sag	0.15	0.25	0.10	0.66	0.07
S961A	Sag	0.13	0.19	0.06	0.24	0.01
S961B	Sag	0.21	0.34	0.13	0.73	0.09
S963	Sag	0.21	0.29	0.08	0.72	0.06
S981A	Continuous	n/a	0.04	0.04	0.60	0.02
S981B	Sag	0.24	0.35	0.11	0.93	0.10
S982	Sag	0.15	0.24	0.08	0.20	0.02
S984A	Sag	0.25	0.31	0.06	0.57	0.03
S984B	Sag	0.17	0.29	0.12	0.76	0.09
S985A	Sag	0.15	0.22	0.07	0.16	0.01
S985B	Sag	0.15	0.25	0.10	0.37	0.04
S986	Sag	0.16	0.23	0.07	0.56	0.04
		Riverside South Ph	ase 17-1A and 4725 S	pratt Road		
S905	Sag	0.21	0.30	0.08	1.50	0.12
S972	Sag	0.18	0.25	0.07	0.14	0.01
S816	Sag	0.25	0.39	0.14	0.76	0.11
S803B	Sag	0.13	0.08	0.01	0.03	0.00
S821	Sag	0.25	0.38	0.11	1.77	0.19

⁽¹⁾ The available static depth is based on Drawing 125581-602 to Drawing 125581-606

The product of velocity x depth (v x d) should be less than 0.6 m^2 /s for street segments during the 100 year storm event as per the 2012 OSDG. For the street segments within the subject site, the product of v x d is less than 0.6 m^2 /s during the 100 year storm event.

⁽²⁾ Evaluated at most downstream node within drainage area. From PCSWMM Output "125581-RSSPH17-1B-REV2-120CH.pcz" presented in Appendix E.

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

Within the subject site under the 100 year Chicago storm event, all street segments have a total ponding depth of less than 0.35 m.

For the 100 year storm event increased by 20%, the v x d results are provided for information purposes. During the 100 year storm event increased by 20%, the total depth of ponding is less than 0.35 m throughout the subject site except at the following locations: S828B, S841C, S981B. These areas are noted in **Table 5-6** in red and bold.

The following table summarizes the extend of ponding, property line elevation and the garage elevations for the street segments where summation of depth of ponding and depth of cascading flow exceeds 0.35 m during the 100 year Chicago design storm event increased by 20%.

Table 5-7: Critical Ponding Locations during the Stress Test and Adjacent Property Elevations

	TOP OF	MAX. DEPTH AT	(1)	(2) ADJACENT CRITICA	L ELEVATION	
DRAINAGE AREA ID	GRATE ELEVATION (M)	LOW POINT (M)	CORRESPONDING ELEVATION (M)	LOCATION	(2) ELEVATION (M)	DIFFERENCE (2) – (1)
S828B	97.07	0.38	97.43	Garage	97.75	0.32
S806	96.48	0.37	96.85	Garage	97.35	0.5
S841C	97.12	0.40	97.52	Garage	97.80	0.28
		Rive	erside South Phase 1	7-1A and 4725 Spratt Road		
S816	94.87	0.39	95.26	Garage	95.45	0.19
S821	96.42	0.38	96.8	Garage	96.90	0.1

During the 100 year Chicago design storm event increased by 20%, the major system will cascade from each street segment noted in **Table 5-7** but remains below adjacent critical elevation.

5.5.3 Hydraulic Evaluation

The evaluation of the hydraulic grade line (HGL) was completed using PCSWMM. As noted previously, the PCSWMM model has been used to simulate both the hydrology and hydraulics for the subject site. Minor system losses were accounted for in accordance with Appendix 6-B of the 2012 OSDG.

Simulations were performed for various storms to confirm the performance of the downstream Pond 5 SWM facility and the hydraulic grade line (HGL) through the subject site.

5.5.4 Results of Hydraulic Evaluation

The hydraulic grade line (HGL) was analyzed using PCSWMM for the 100 year 3 hour Chicago storm; the governing storm event for the subdivision. The corresponding stress test (100 year 3 hour Chicago storm + 20% increase in intensity) was also simulated. The 100 year 12 hour SCS Type II storm was also simulated to assess the receiving SWM facility.

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

The HGL elevations are presented in the following **Table 5-8**, along with a comparison of underside of footing (USF) elevations. Where USF elevations are not available, a comparison with existing ground elevations (EG) is provided.

Table 5-8 Storm Hydraulic Grade Line for Riverside South Phase 17-1B for the 100 Year 3 Hour Chicago and 100 Year 3 Hour Chicago increased by 20% Storm Events

			STORM HYDRAL	JLIC GRADE LINE	
PCSWMM MH (SEWER NODE)	USF / (Existing Ground Elevation) (M)	100 YEAR 3 H	OUR CHICAGO	100 YEAR 3 HOUR	CHICAGO + 20%
		HGL (M)	USF-HGL (EG - HGL) (M)	HGL (M)	USF-HGL (EG - HGL) (M)
		Riverside South	Phase 17-1B (Subject site	9)	
BLK934	96.57	95.98	0.59	96.21	0.36
MH933	96.57	95.69	0.88	95.91	0.66
MH932	95.69	95.01	0.68	95.17	0.52
MH931	95.79	94.69	1.10	94.82	0.97
MH930B	95.89	94.17	1.72	94.26	1.63
MH910	94.94	92.44	2.50	92.64	2.30
MH946	93.42	92.61	0.81	92.82	0.60
MH947	93.02	92.67	0.35	92.88	0.14
MH943	93.97	92.96	1.01	92.96	1.01
MH944	94.49	92.65	1.84	92.86	1.63
MH945	93.42	92.63	0.79	92.84	0.58
MH911	N/A	95.13	n/a	95.14	n/a
MH909	96.09	92.24	3.85	92.41	3.68
MH908	96.09	92.19	3.90	92.35	3.74
MH907	94.99	91.99	3.00	92.12	2.87
MH906	94.59	91.95	2.64	92.07	2.52
MH905	93.77	91.68	2.09	91.79	1.98
Blk905	93.77	91.45	2.32	91.56	2.21
MH981	94.52	92.16	2.36	92.32	2.20
MH982	94.99	92.44	2.55	92.61	2.38
MH805	94.88	92.66	2.22	92.85	2.03

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

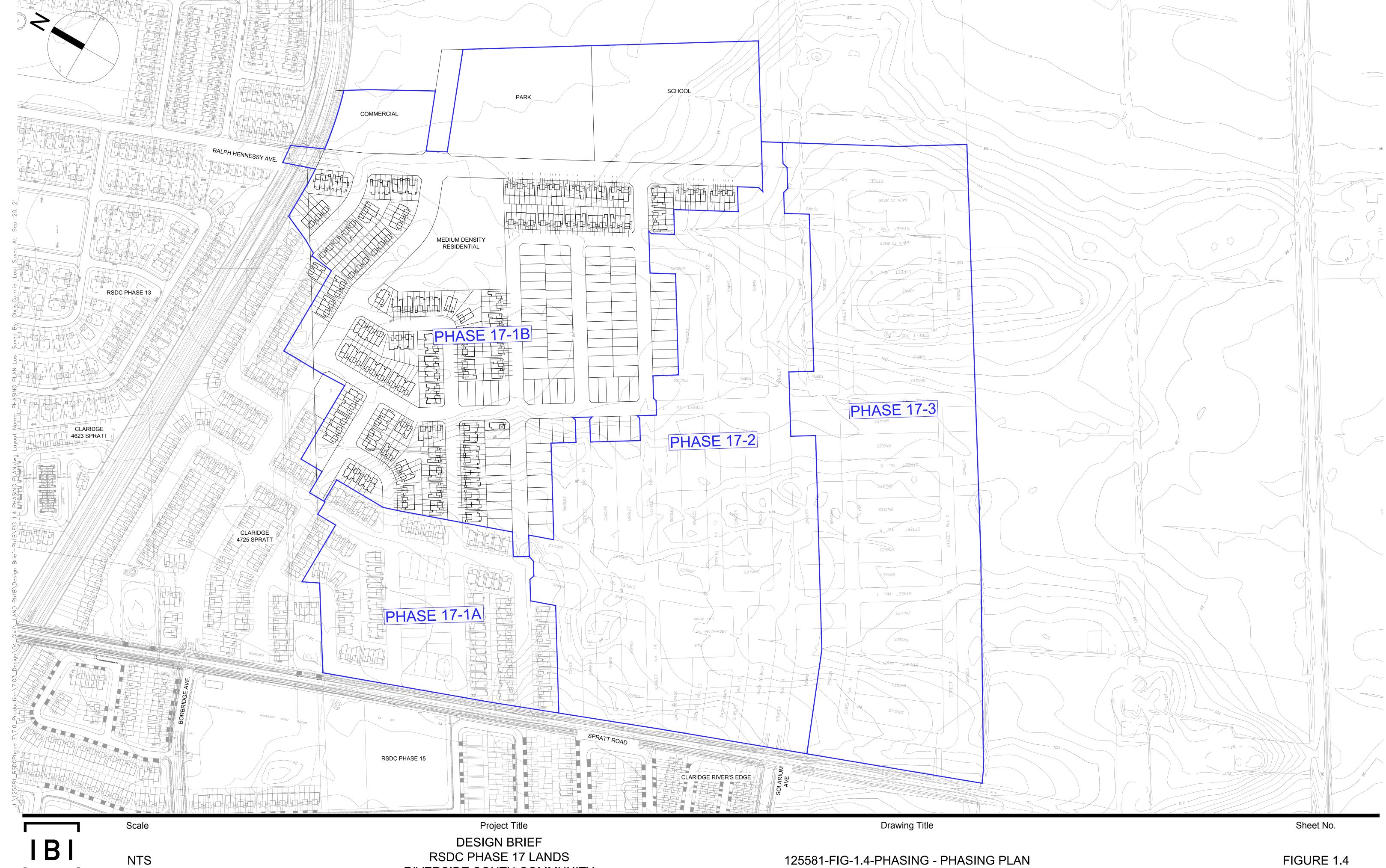
			STORM HYDRAL	JLIC GRADE LINE	
PCSWMM MH (SEWER NODE)	USF / (Existing Ground Elevation) (M)	100 YEAR 3 F	HOUR CHICAGO	100 YEAR 3 HOU	R CHICAGO + 20%
		HGL (M)	USF-HGL (EG - HGL) (M)	HGL (M)	USF-HGL (EG - HGL) (M)
MH984	95.09	92.93	2.16	93.14	1.95
MH985	95.19	93.36	1.83	93.57	1.62
MH986	95.64	93.75	1.89	93.97	1.67
MH987	95.64	94.03	1.61	94.24	1.40
BLK822	95.19	92.94	2.25	92.94	2.25
MH822	96.09	93.01	3.08	93.01	3.08
MH825	95.25	93.29	1.96	93.52	1.73
MH826	95.5	93.72	1.78	93.98	1.52
MH827	95.5	93.78	1.72	94.04	1.46
MH828	95.39	94.00	1.39	94.31	1.08
MH841	95.34	94.30	1.04	94.59	0.75
MH842	95.34	94.40	0.94	94.68	0.66
MH840	95.8	94.11	1.69	94.37	1.43
MH835	95.3	93.77	1.53	93.99	1.31
BLK804	94.64	92.82	1.82	92.82	1.82
MH804	95.54	92.82	2.72	92.82	2.72
MH806	95.49	93.77	1.72	93.77	1.72
MH807	95.14	93.79	1.35	93.79	1.35
MH808	95.19	93.60	1.59	93.60	1.59
BLK960	93.07	91.23	1.84	91.32	1.75
MH961	93.82	92.76	1.06	92.76	1.06
BLK963	94.3	92.01	2.29	92.03	2.27
MH963	94.69	92.09	2.60	92.10	2.59
MH962	94.67	92.18	2.49	92.18	2.49

Prepared for RIVERSIDE SOUTH DEVELOPMENT CORPORATION (RSDC)

The HGL results presented in **Table 5-8** indicates that the minimum 0.3 m clearance between the USF and HGL is maintained across the subject site during the 100 year 3 hour Chicago and the 100 year 3 hour Chicago increased by 20% storm event, respectively.

5.6 Performance of Pond 5 Facility

The Pond 5 Facility has been designed and is currently under construction. The design is presented in the reported entitled Riverside South Pond 5 Facility Design Brief (Stantec Consulting Ltd., May 2018). The overall PCSWMM model includes the features of the Pond 5 Facility which provides a dynamic representation of the entire storm system. The hydraulic performance of the stormwater facility is compared and summarized in the following table for those storm events which were used to evaluate the detail design of Riverside South Phase 17-1B.

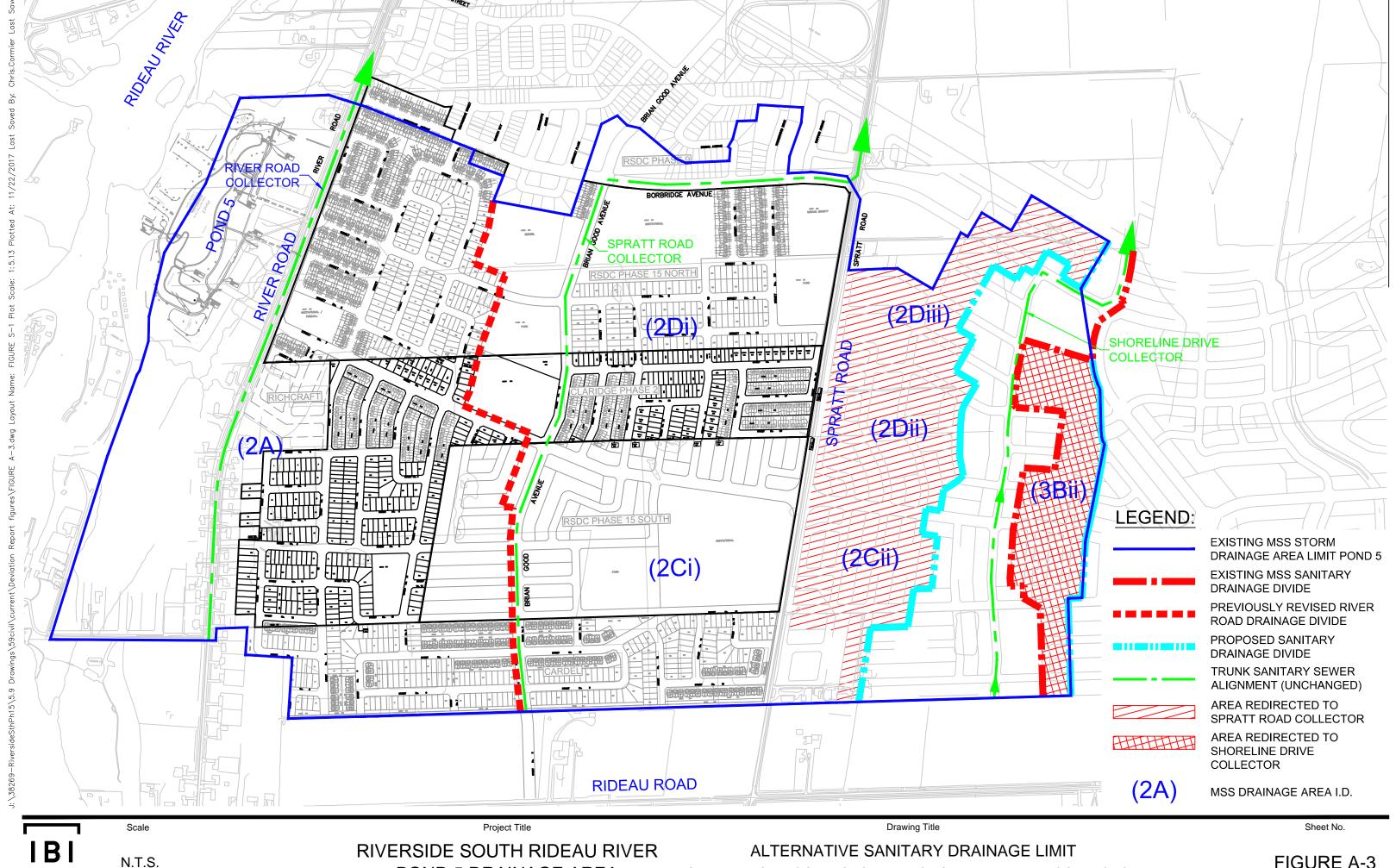

Table 5-9 Performance of Pond 5 Facility

		Current E	Evaluation		Fro	m May 2018 Fa	cility Design B	Brief
Storm Event	Peak Pond I	nflow (cms)	Peak Pond	Pond W/L	Peak Pond	Inflow (cms)	Peak Pond Discharge	Pond W/L
	North Inlet	South Inlet	Discharge (cms)	(m)	North Inlet ⁽¹⁾	South Inlet ⁽¹⁾	(cms) ⁽²⁾	(m) ⁽²⁾
Permanent Storage	n/a	n/a	n/a	82.60	n/a	n/a	n/a	82.60 ⁽²⁾
25 mm 4 hour Chicago	7.2	7.0	3.8	83.19	6.3	6.9	4.8	83.25
5 year 3 hour Chicago	11.8	11.2	9.7	83.46	11.7	11.1	11.4	83.53
100 year 3 hour Chicago	13.5	12.5	18.1	83.75	15.7	12.7	21.0	83.88
100 year 12 hour SCS Type II	12.9	12.1	19.3	83.80	15.3	12.6	23.1	83.96
100 year 3 hour Chicago + 20%	13.9	12.8	20.4	83.84	n/a	n/a	24.2	84.00

- (1) From Table 3-1 from 2018 Facility Design Brief.
- (2) From Table 3-2 from 2018 Facility Design Brief.
- (3) From Table 4-2 from 2018 Facility Design Brief.

Note that the Stantec 2018 Pond 5 model was based on a semi-lumped basis, using the ISSU Horton infiltration parameters which are more conservative than the City guideline (Max. infiltration rate = 53 mm/hr & Min. infiltration rate = 0.053 mm/hr). The current Ph 17-1B model uses the City infiltration parameters for both semi-lumped and detailed areas. This change reduces the flow volume in the pond for all storm events. As expected, this results in a lower pond HGL and ultimately lower peak outflow.

Comparison of the results also shows that during frequent storm events (specifically the 25mm and 5 year storms), the current evaluation produces peakier inflow to the pond while the pond HGL is lower than the Stantec 2018 Pond 5 design. Again, this is due to the change of the


RIVERSIDE SOUTH COMMUNITY RIDEAU RIVER AREA

RIVERSIDE SOUTH DEVELOPMENT

PHASE 17-1B

Scale 1:9000

RIVERSIDE SOUTH DEVELOPMENT AREA

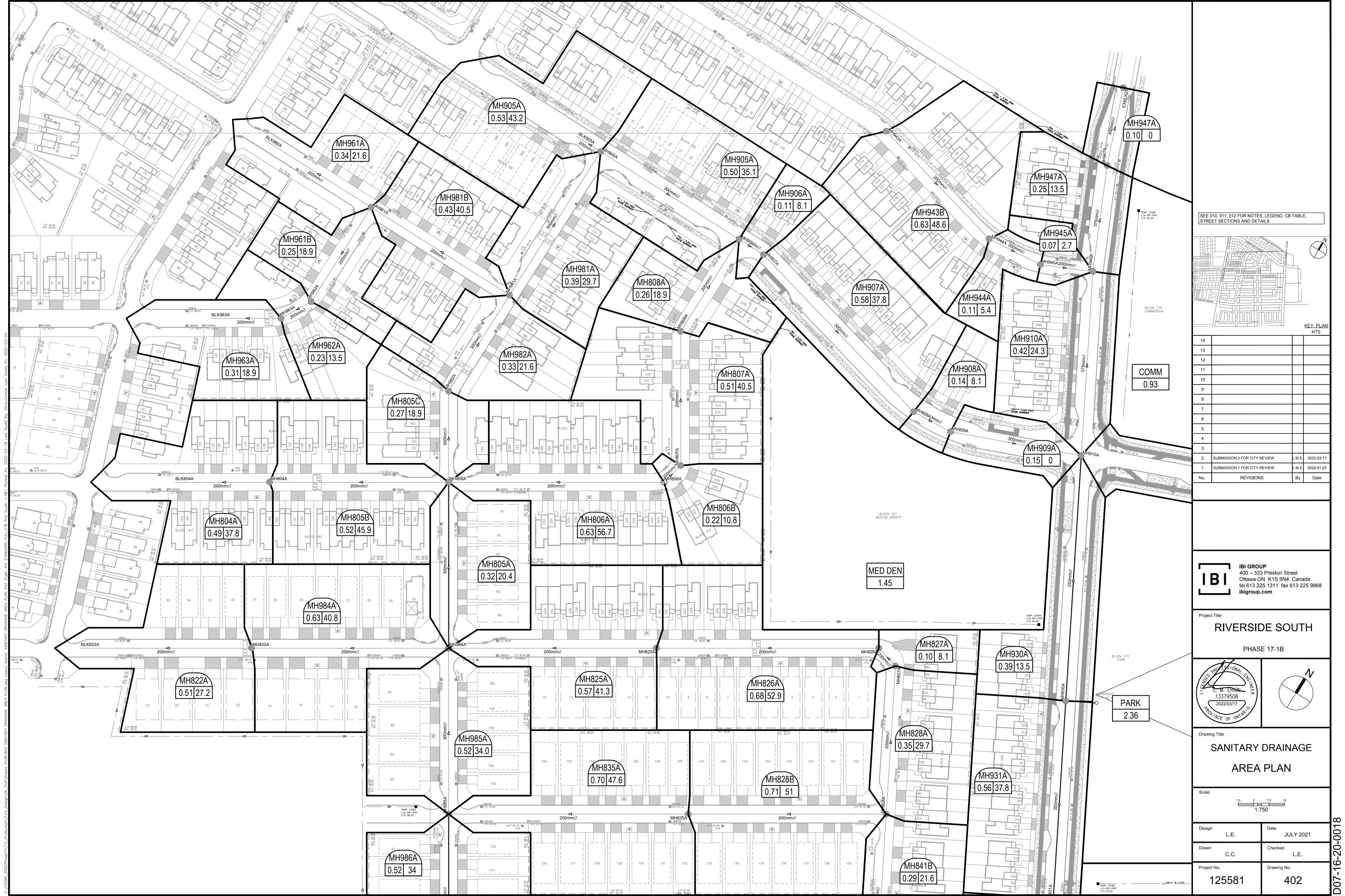
POND 5 DRAINAGE AREA

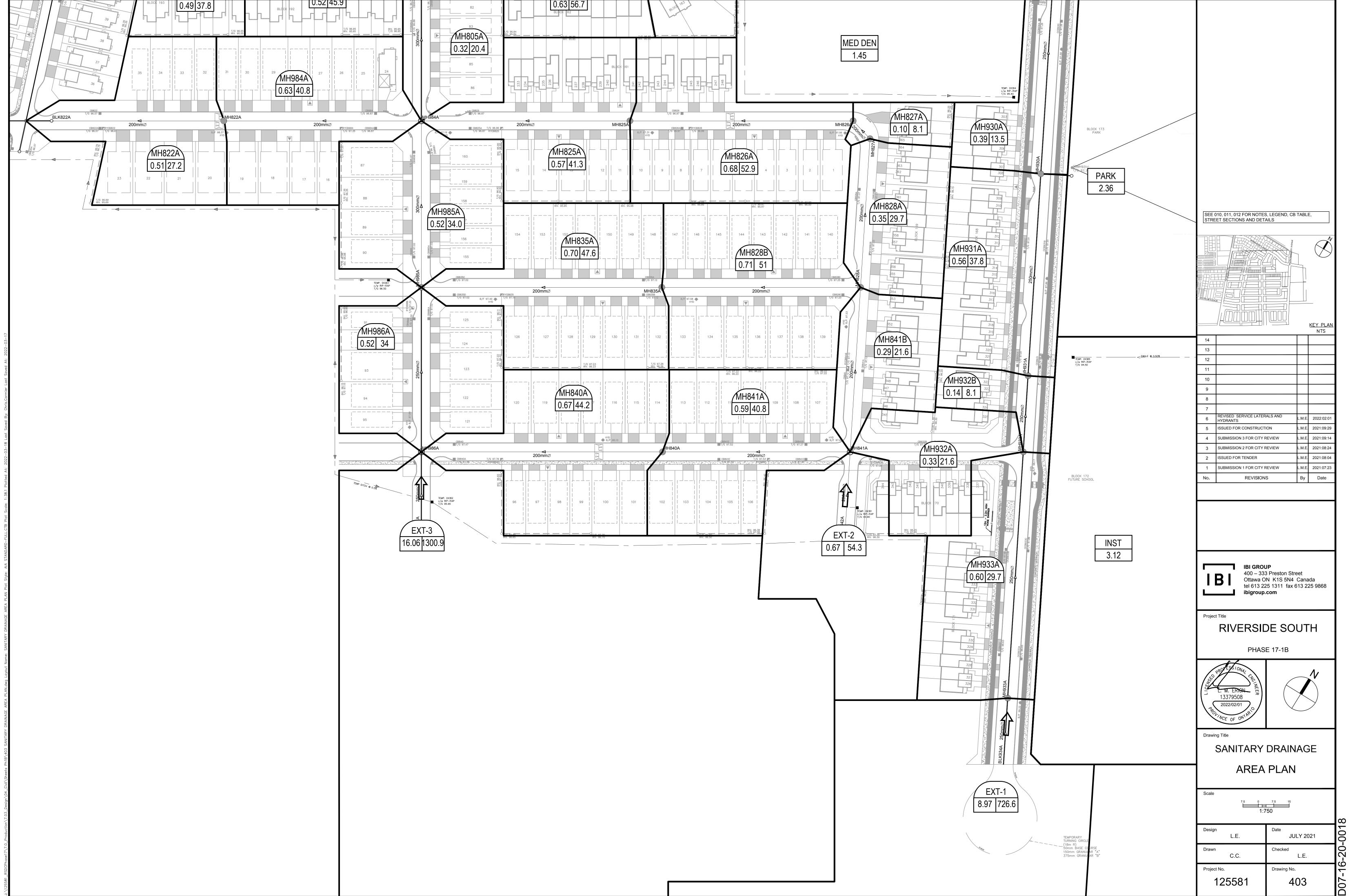
SPRATT ROAD COLLECTOR AND SHORELINE DRIVE COLLECTOR

Temporary Sanitary Construction ICDs RSS Phase 17-1B

Structure	Flow	Grade Elev.	Pipe Invert	Pipe Size	Height	Area	Orific	e Size
	(l/s)	(m)	(m)	(m)	(m)	(Sq m)	Sq. mm	mm dia.
Sanitary								
Ralph Hennesy MH947A	46.58	94.75	86.75	0.450	7.78	0.0062	79	89
Kiwi MH950A	0.99	95.30	89.74	0.200	5.46	0.0002	13	14
Rockmelon MH821A	1.18	96.90	93.33	0.200	3.47	0.0002	15	17
Honeydew MH803A	1.31	96.60	93.17	0.200	3.33	0.0003	16	18
Apricot MH811A	0.87	95.80	92.34	0.200	3.36	0.0002	13	15

2022-01-25


Based On Equation: Where: $A=(Q/(C^*(2^*g^*h)^{\wedge}.5)$ C=0.61 g=9.81



IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

RSS Phase 17-1B CITY OF OTTAWA Urbandale

''	bigroup.com																					.=										Urbandale
	LOCATION			AREA	Ī	UNIT TY		SIDENTIAL AREA	POPIII	ATION	RES	PEAK			AREA	ICI AR	REAS		ICI	PEAK	INFILTR/ AREA	ATION ALLO	FLOW	FIXED FI	LOW (L/s)	TOTAL FLOW	CAPACITY	LENGTH	PROPOS DIA	SED SEWER I	DESIGN VELOCITY	AVAILABLE
STREET	AREA ID	FROM	ТО	w/ Units	SF	SD	TH AF	w/o Unit		CUM	PEAK	FLOW	INSTITU		COMME	RCIÁL	INDUS		PEAK	FLOW	IND	CUM	(L/s)	IND	СПМ	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	CAPACITY
OTREET	ANLAID	MH	MH	(Ha)		00	111 A	' (Ha)		00111	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)			(13)		00111	(13)	(2/3)	(111)	(11111)	(70)	(m/s)	L/s
Lavender Street	MH932A	MH932A	MH841A	0.33			8		21.6	21.6	3.70	0.26	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.33	0.33	0.11	0.00	0.00	0.37	27.59	84.16	200	0.65	0.851	27.22 98.67%
Rockmellon Street	EXT-2	MH842A	MH841A					0.67	54.3	54.3	3.65	0.64	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.67	0.67	0.22	0.00	0.00	0.86	20.24	40.08	200	0.35	0.624	19.38 95.74%
								0.07				0.0.																				
Lavender Street	MH841A MH840A	MH841A MH840A	MH840A MH986A	0.59 0.67	12 13				40.8 44.2	116.7 160.9	3.58	1.35 1.85	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.59 0.67	1.59 2.26	0.52 0.75	0.00	0.00	1.88 2.59	20.24 20.24	91.28 117.20	200 200	0.35 0.35	0.624 0.624	18.36 90.72% 17.65 87.19%
F F W Ot 1	EVT 0	MU1007A	NAL 1000 A					40.00	4000.0	1000.0	0.40	40.40	0.00	0.00					4.00	0.00	10.00	40.00	5.00			40.70					0.040	40.00
Ed Findlay Street	EXT-3	MH987A	MH986A					16.06	1300.9	1300.9	3.18	13.40	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	16.06	16.06	5.30	0.00	0.00	18.70	31.02	40.00	250	0.25	0.612	12.32 39.71%
Ed Findlay Street	MH986A	MH986A	MH985A	0.52	10				34.0	1495.7	3.14	15.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.52	18.84	6.22	0.00	0.00	21.46	31.02	79.99	250	0.25	0.612	9.56 30.82%
Fuchsia Street	MH828A	MH828A	MH835A	0.71	15				51.0	51.0	3.65	0.60	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.71	0.71	0.23	0.00	0.00	0.84	27.59	96.64	200	0.65	0.851	26.75 96.96%
	MH835A	MH835A	MH985A	0.70	14				47.6	98.6	3.60	1.15	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.70	1.41	0.47	0.00	0.00	1.61	20.24	116.90	200	0.35	0.624	18.63 92.02%
Ed Findlay Street	MH985A	MH985A	MH984A	0.52	10				34.0	1628.3	3.12	16.48	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.52	20.77	6.85	0.00	0.00	23.33	45.12	81.00	300	0.20	0.618	21.78 48.28%
Rockmellon Street	MH841B	MH841A	MH828A	0.29			8		21.6	21.6	3.70	0.26	0.00	0.00	0.00	0.00	0.00	0.00	1 00	0.00	0.29	0.29	0.10	0.00	0.00	0.35	20.24	80.15	200	0.35	0.624	19.89 98.25%
Trookinonon Gudot	MH828A	MH828A	MH827A	0.35			11		29.7	51.3	3.65	0.61	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.35	0.64	0.21	0.00	0.00	0.82	20.24	72.44	200	0.35	0.624	19.42 95.96%
	MH827A MH826A	MH827A MH826A	MH826A MH825A	0.10 0.68	10		7		8.1 52.9	59.4 112.3	3.64	0.70 1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.10 0.68	0.74 1.42	0.24 0.47	0.00	0.00	0.94 1.77	20.24 20.24	11.94 108.52	200 200	0.35 0.35	0.624 0.624	19.30 95.33% 18.47 91.24%
	MH825A	MH825A	MH984A	0.57	5		9		41.3	153.6	3.55	1.77	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.57	1.99	0.66	0.00	0.00	2.42	20.24	101.41	200	0.35	0.624	17.82 88.03%
Ed Findlay Street	MH984A	MH984A	MH805A	0.32	6				20.4	1802.3	3.10	18.09	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.32	23.08	7.62	0.00	0.00	25.70	45.12	81.00	300	0.20	0.618	19.41 43.03%
				0.00			21		50.7			0.07	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	07.50		000		0.054	00.74
Honeydew Street	MH806A	MH806A	MH805A	0.63			21		56.7	56.7	3.64	0.67	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.63	0.63	0.21	0.00	0.00	0.88	27.59	105.13	200	0.65	0.851	26.71 96.82%
Ed Findlay Street	MH805C	MH805A	MH982A	0.27			7		18.9	1877.9	3.09	18.78	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.27	23.98	7.91	0.00	0.00	26.69 27.00	45.12	44.47	300	0.20	0.618 0.618	18.42 40.84% 18.12 40.16%
	MH982A MH981A	MH982A MH981A	MH981A MH905A	0.33			11		29.7	1899.5 1929.2	3.08	19.25	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.33	24.70	8.02	0.00	0.00	27.40	45.12 45.12	83.00	300	0.20 0.20	0.618	18.12 40.16% 17.72 39.27%
Borbridge Avenue	MH905A	MH905A	MH906A	0.50			13		35.1	1964.3	3.07	19.57	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.50	25.20	8.32	0.00	0.00	27.88	45.12	80.00	300	0.20	0.618	17.23 38.20%
Honeydew Street	MH806B	MH806A	MH807A	0.63			4		10.8	10.8	3.73	0.13	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.63	0.63	0.21	0.00	0.00	0.34	20.24	11.48	200	0.35	0.624	19.90 98.33%
	MH807A MH808A	MH807A MH808A	MH808A MH906A	0.22 0.51			15 7		40.5 18.9	51.3 70.2	3.65 3.63	0.61 0.82	0.00 0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.22	0.85	0.28 0.45	0.00	0.00	0.89 1.27	20.24 34.22	65.57 53.19	200 200	0.35 1.00	0.624 1.055	19.36 95.62% 32.94 96.28%
							,		10.0					0.00	0.00						0.01	1.00										
Borbridge Avenue	MH906A MD MH907A	MH906A MH907A	MH907A MH908A	0.11 0.58			3	1.45	8.1 226.3	2042.6 2268.9	3.06	20.28	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.11 2.03	26.67 28.70	8.80 9.47	0.00	0.00	29.08 31.78	45.12 45.12	14.10 106.09	300 300	0.20 0.20	0.618 0.618	16.04 35.55% 13.34 29.56%
	MH908A	MH908A	MH909A	0.14			3	1.10	8.1	2277.0	3.03	22.38	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.14	28.84	9.52	0.00	0.00	31.90	45.12	20.50	300	0.20	0.618	13.22 29.30%
	MH909A	MH909A	MH910A	0.15					0.0	2277.0	3.03	22.38	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.15	28.99	9.57	0.00	0.00	31.95	59.68	64.81	300	0.35	0.818	27.73 46.47%
Ralph Hennessy Avenue	EXT-1	BLK934A	MH933A	0.00			44	8.97	726.6	726.6	3.31	7.79	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	8.97	8.97	2.96	0.00	0.00	10.75	31.02	32.29	250	0.25	0.612	20.27 65.35%
	INST MH933A MH932B	MH933A MH932A	MH932A MH931A	0.60 0.14			3		29.7 8.1	756.3 764.4	3.30	8.09 8.17	0.00	3.12 3.12	0.00	0.00	0.00	0.00	1.50	1.52 1.52	3.72 0.14	12.69 12.83	4.19 4.23	0.00	0.00	13.79 13.92	31.02 31.02	120.00 37.08	250 250	0.25	0.612 0.612	17.23 55.54% 17.10 55.13%
	MH931A	MH931A	MH930A	0.56			14		37.8	802.2	3.29	8.55	0.00	3.12	0.00	0.00	0.00	0.00	1.50	1.52	0.56	13.39	4.42	0.00	0.00	14.48	31.02	98.38	250	0.25	0.612	16.54 53.31%
		MH931D	MH930A	2.36					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	2.36	2.36	0.78	0.00	0.00	0.78	34.22	15.00	200	1.00	1.055	33.44 97.72%
	MH930A	MH930A	MH910A	0.39			5		13.5	815.7	3 28	2 62	0.00	3.12	0.00	0.00	0.00	0.00	1.00	1.01	0.30	16.14	5.33	0.00	0.00	15.02	31.02	120.00	250	0.25	0.612	16.00 51.58%
	IVII 1930A		IVII IS TOA	0.39			3		13.3		3.20	0.00	0.00	3.12	0.00	0.00	0.00	0.00	1.00	1.01	0.39	10.14	3.33	0.00	0.00	13.02	31.02	120.00	230	0.23	0.012	
Ralph Hennessy Avenue	COMM MH910A	MH910A	MH946A	0.42			9		24.3	3117.0	2.94	29.72	0.00	3.12	0.93	0.93	0.00	0.00	1.00	1.31	1.35	46.48	15.34	0.00	0.00	46.38	81.80	90.05	375	0.20	0.717	35.43 43.31%
Pomelo Street	MH943B	MH943A	MH944A	0.63			18		48.6	48.6	3.65	0.58	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.63	0.63	0.21	0.00	0.00	0.78	27.59	72.75	200	0.65	0.851	26.80 97.16%
	MH944A MH945A	MH944A MH945A	MH945A MH946A	0.11 0.07			1		5.4 2.7	54.0 56.7	3.65 3.64	0.64 0.67	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.11	0.74 0.81	0.24 0.27	0.00	0.00	0.88 0.94	20.24 41.91	27.95 25.86	200 200	0.35 1.50	0.624 1.292	19.36 95.64% 40.97 97.76%
Ralph Hennessy Avenue	MH946A MH947A	MH946A MH947A	MH947A EXBLK25	0.25 0.10			5		13.5 0.0	3187.2 3187.2	2.94	30.33 30.33	0.00	3.12 3.12	0.00	0.93 0.93	0.00	0.00	1.00	1.31	0.25 0.10	47.54 47.64	15.69 15.72	0.00	0.00	47.33 47.36	81.80 122.63	52.18 38.82	375 450	0.20 0.17	0.717 0.747	34.47 42.14% 75.28 61.38%
Rockmellon Street	MH984A	MH984A		0.63	12				40.8	40.8	3.67	0.48	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.63	0.63	0.21	0.00	0.00	0.69	27.59	96.12	200	0.65	0.851	26.89 97.49%
	MH822A	MH822A	BLK822A	0.51	δ				27.2	68.0	3.63	0.80	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.51	1.14	0.38	0.00	0.00	1.18	20.24	83.68	200	0.35	0.624	19.07 94.19%
Honeydew Street	MH805B	MH805A	MH804A	0.52			17		45.9	45.9	3.66	0.54	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.52	0.52	0.17	0.00	0.00	0.72	27.59	87.33	200	0.65	0.851	26.87 97.41%
	MH804A	MH804A	BLK804A	0.49			14		37.8	83.7	3.61	0.98	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.49	1.01	0.33	0.00	0.00	1.31	20.24	46.40	200	0.35	0.624	18.93 93.51%
Kiwi Street	MH981B	MH981A	MH961A	0.43			15		40.5	40.5	3.67	0.48	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.43	0.43	0.14	0.00	0.00	0.62	34.22	79.99	200	1.00	1.055	33.59 98.18%
54350	MH961A	MH961A	BLK960A	0.34			8		21.6	62.1	3.64	0.73	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.34	0.77	0.25	0.00	0.00	0.99	60.24	62.08	200	3.10	1.858	59.26 98.36%
Anriant Ctrast	MH961B	MH961A	MH962A	0.05			7		10.0	10.0	2 74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.25	0.25	0.00	0.00	0.00	0.24	27.50	EA EF	200	0.65	0.054	27.28 98.88%
Apricot Street	MH961B MH962A	MH961A MH962A	MH962A MH963A	0.25 0.23			5		18.9 13.5	18.9 32.4	3.71	0.23 0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.25 0.23	0.25 0.48	0.08 0.16	0.00	0.00	0.31 0.54	27.59 20.24	54.55 16.83	200 200	0.65 0.35	0.851 0.624	27.28 98.88% 19.70 97.31%
	MH963A	MH963A	BLK963A	0.31			7		18.9	51.3	3.65	0.61	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.31	0.79	0.26	0.00	0.00	0.87	20.24	34.28	200	0.35	0.624	19.38 95.71%
Borbridge Avenue	MH905A	MHQOEV	BLK905A	0.53			16		43.2	43.2	3.66	0.51	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.53	0.53	0.17	0.00	0.00	0.60	35 NA	13 0/	200	1.05	1 021	34.37 98.04%
	IVII IBUUA	IVII IBUUA	DEIGOOA				10		43.2	70.2				0.00	0.00		0.00	0.00	1.00	0.00	0.00			0.00	0.00	0.03	55.00	13.34	200	1.00		JT.J1 30.0470
Design Parameters:				Notes: 1. Mannings	coefficient (r	n) =	0.013				Designed:		LME		H	No.							evision Submission								Date 2022-01-25	
Residential		ICI Areas		2. Demand (per capita):	-,	280 L/day	2	00 L/day							2.							Submission								2022-01-23	
SF 3.4 p/p/u TH/SD 2.7 p/p/u	INST 28,00	0 L/Ha/day		 Infiltration Residentia 		actor:	0.33 L/s/Ha	1			Checked:				-																	
APT 1.8 p/p/u	COM 28,00	0 L/Ha/day			Harmon For	rmula = 1+(14	/(4+(P/1000)^0.5	8.0((
MD 130 p/p/Ha Future 81 p/p/Ha		0 L/Ha/day 0 L/Ha/day	MOE Chart).8 Correction tional Peak Fa	Factor actors based on t	otal area			Dwg. Refe	rence:	125581-401	1	-	Fil	le Reference	9:						Date:							Sheet No:	
li araio o i bibilia	1700			15. John 101010	4114 1113(1(U)	Jonari Galli	Dagoa on I				1					1 11	. J . VOIOI GIIU							Dull.							J.1301 1101	

STORM SEWER DESIGN SHEET

IBI

IBI GROUP
400-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
tel 613 225 1311 fax 613 225 9868
ibigroup.com

RSS Phase 17-1B City of Ottawa

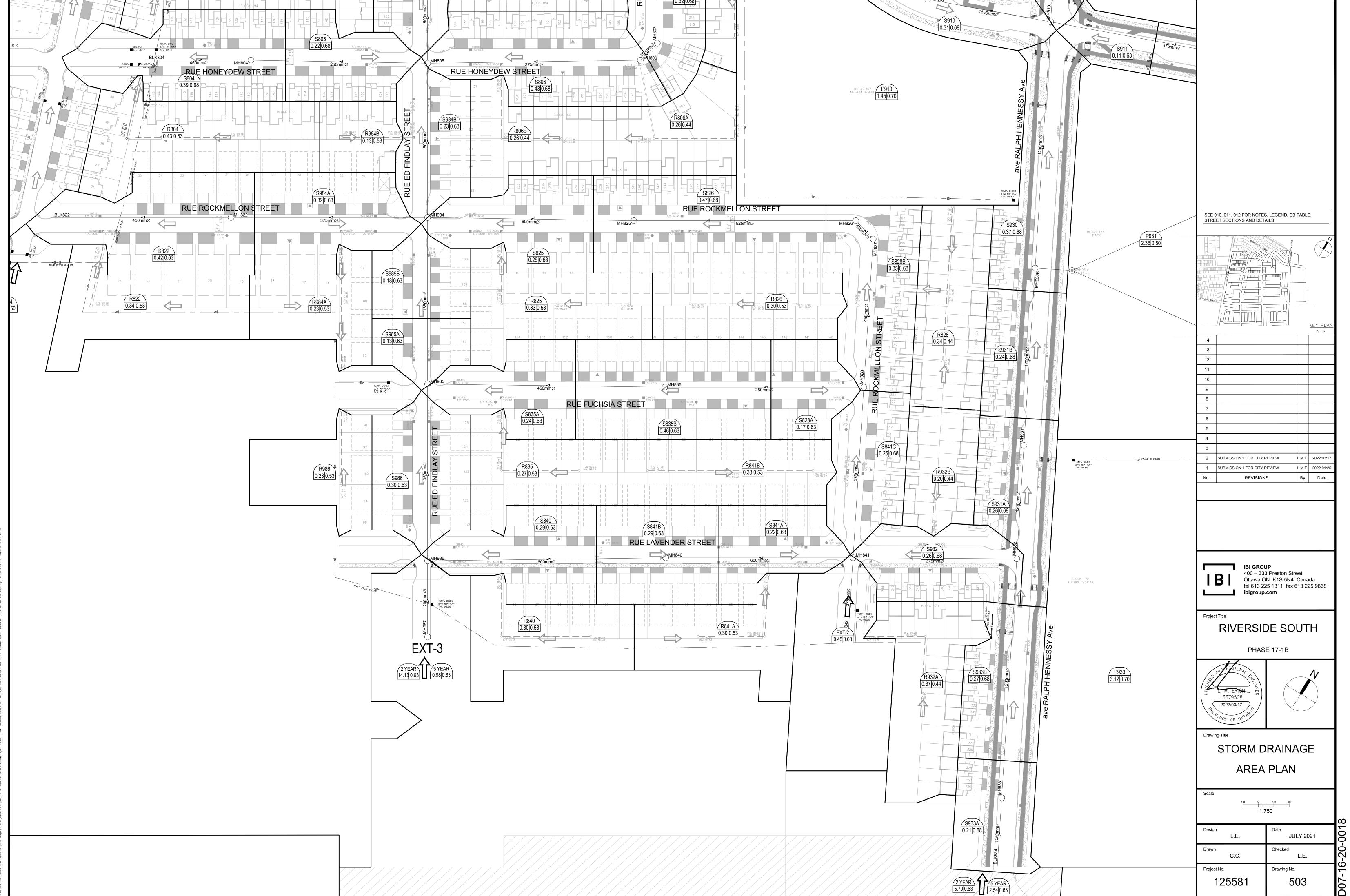
Urbandale

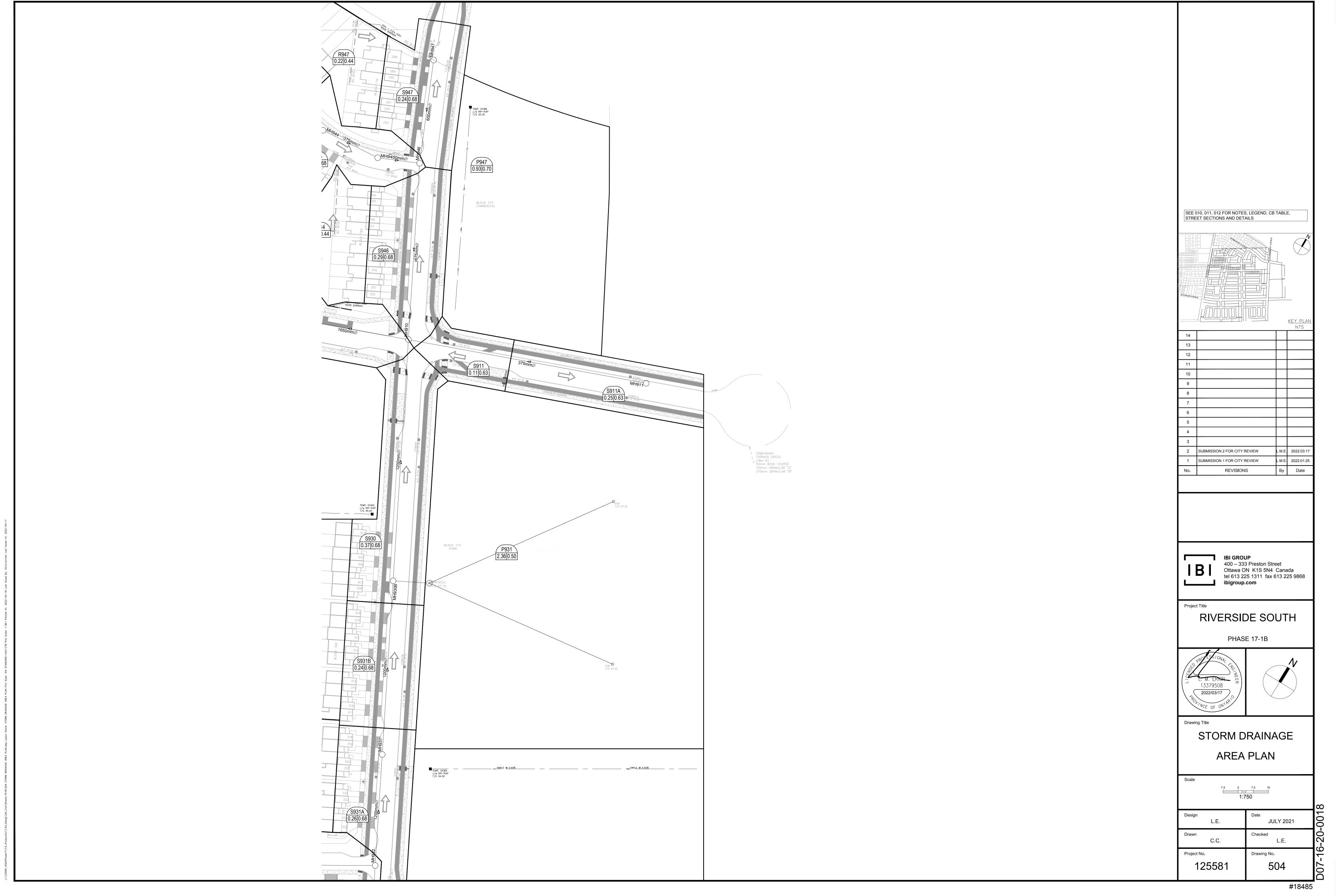
	ibigroup.com																												Urbandale
	LOCATION					EA (Ha)						_			_	_	RAT	IONAL DES					_		,		EWER DAT		
STREET	AREA ID	FROM	то	C= C= C= 0.63 0.68 0.50			1 1		C= 0.70		CUM IND 2.78AC 2.78AC		INLET	TIME IN PIPE	TOTAL	i (2) (mm/hr)	i (5) (mm/hr)	i (10) (mm/hr)			K					PE SIZE (m DIA	SLOPE (%)	VELOCITY (m/s)	1
				0.00 0.00 0.50	0.53	0.03	0.44	U.00	0.70	2.10AU	2.10AC 2.10AC	2.10AU	(min)	INFIFE	(min)	(11111/117)	(111111/111/)	(11111/111/)	(111111/1117)	I LOW (L/S	(s) FLOW (L/s) FLOW (L/s) FLOW (L/s)) IND CUM	FLOW (L/s)	(L/s)	(m)	DIA	(70)	(111/5)	(L/s) (%)
Lavender Street	S932, R932A&B	MH932	MH841				0.57	0.26		1.19	1.19		10.00	1.40	11.40	76.81	104.19	122.14	178.56	91.30			91.30	108.21	79.62	375	0.35	0.949	16.91 15.63%
Rockmellon Street	EXT-2	MH842	MH841			0.45	+ +		+	0.79	0.79		10.00	0.68	10.68	76.81	104.19	122.14	178.56	60.53			60.53	108.21	38.67	375	0.35	0.949	47.68 44.06%
														0.00															
Lavender Street	S841A&B, R841A S840, R840	MH841 MH840	MH840 MH986			0.51				1.34 0.95	3.31 4.26		10.68 11.85	1.17	11.85	74.29 70.37	100.74 95.35	118.07 111.72	172.58 163.26	246.06 299.91			246.06 299.91	378.96 378.96	91.12	600	0.35	1.298 1.298	132.90 35.07% 79.05 20.86%
	3040, R040	IVIП04U	IVITIBOO		0.30	0.29	+ +			0.95	4.20		11.00	1.49	13.33	10.31	95.35	111.72	103.20	299.91	+ + + + + + + + + + + + + + + + + + + +		299.91	370.90	115.78	600	0.35	1.290	79.05 20.86%
Ed Findlay Street	EXT-3	MH987	MH986	0.98		14.13				24.75	24.75 1.72	1.72	17.84	0.40	18.24	55.78	75.37	88.23	128.77	1,380.43	3 129.36		1,509.79	1,818.95	37.00	1200	0.20	1.558	309.16 17.00%
Ed Findlay Street	S986. R986	MH986	MH985		0.23	0.30				0.86	29.87 0.00	1.72	13.33	0.85	14.19	66.00	89.35	104.67	152.90	1,971.62	2 153.36		2,124.99	2,490.17	85.99	1350	0.20	1.685	365.18 14.66%
Ed I maidy Offoot	2000, 11000	1711 1000	WII 1000		0.20	0.00				0.00	20.07	1.72	10.00	0.00	11.10	00.00	00.00	101.07	102.00	1,071.02	100.00		2,121.00	2,100.11	00.00	1000	0.20	1.000	11.0070
Fushia Street	S828A S835A&B, R835		MH835 MH985		0.27	0.17					0.30		10.00	1.64	11.64	76.81	104.19	122.14	178.56	22.87			22.87	50.02	96.85	250	0.65	0.987	27.15 54.28% 39.44 22.41%
	3033A&B, R033	MH835	INITIBOD		0.27	0.70				1.62	1.92		11.64	1.79	13.43	71.05	96.28	112.83	164.87	136.52	+ + + + + + + + + + + + + + + + + + + +		136.52	175.96	115.29	450	0.35	1.072	39.44 22.41%
Ed Findlay Street	S985A&B	MH985	MH984			0.31				0.54	32.34 0.00	1.72	14.19	0.80	14.99	63.76	86.29	101.06	147.60	2,061.86	3 148.10		2,209.96	2,490.17	81.00	1350	0.20	1.685	280.21 11.25%
Rockmellon Street	S841B, R841B	MH841	MH828		0.33			0.25		0.96	0.96	<u> </u>	10.00	1.46	11.46	76.81	104.19	122.14	178.56	73.64	 		73.64	108.21	83.16	375	0.35	0.949	34.57 31.95%
TOOKITICIIOTI GUCCU	S828B, R828	MH828	MH827		0.00		0.34			1.08	2.04		11.46	1.12	12.58	71.62	97.06	113.75	166.23	145.84			145.84	175.96	72.17	450	0.35	1.072	30.12 17.12%
		MH827	MH826							0.00	2.04		12.58	0.19	12.77	68.13	92.28	108.11	157.96	138.74			138.74	175.96	12.30	450	0.35	1.072	37.22 21.15%
	S826, R826 S825, R825	MH826 MH825	MH825 MH984		0.30			0.47			3.37 4.40	+	12.77 14.29	1.51 1.29	14.29 15.58	67.58 63.50	91.52 85.93	107.21 100.64	156.64 146.99	227.52 279.48		 	227.52 279.48	265.43 378.96	107.97 100.31	525 600	0.35 0.35	1.188 1.298	37.91 14.28% 99.48 26.25%
	5020, 1020	1911 1023	1911 1904		0.00			J.ZJ		1.03	T.TU		17.23	1.23	13.30		00.80	100.04	170.33	213.40			213.40	010.90	100.51	000	0.00	1.230	JU.70 ZU.ZJ/0
Ed Findlay Street	S984B, R984B	MH984	MH805		0.13	0.23				0.59	37.33 0.00	1.72	14.99	0.69	15.68	61.80	83.60	97.90	142.97	2,307.22	2 143.49		2,450.71	3,297.98	75.00	1500	0.20	1.808	847.27 25.69%
Honeydew Street	S806, R806A&B	MH806	MH805		1		0.52	0.43		1.45	1.45		10.00	1.39	11.39	76.81	104.19	122.14	178.56	111.29			111.29	141.68	103.47	375	0.60	1.243	30.40 21.45%
								53.0																					
Ed Findlay Street	0000 D000	MH805					0.40	0.20	\overline{T}		38.78 0.00	1.72	15.68	0.43	16.11	60.21	81.43	95.35	139.22	2,335.22			2,474.99	3,297.98	46.60	1500	0.20	1.808	822.99 24.95%
	S982, R982 S981B, R981	MH982 MH981	MH981 MH905		+		0.42	0.32			39.90 0.00 40.62 0.00	1.72	16.11 16.62	0.52 0.78	16.62 17.41	59.27 58.18	80.14 78.65	93.84 92.08	137.00 134.43	2,365.03 2,363.17			2,502.59 2,498.17	3,297.98 3,297.98	56.13 85.09	1500 1500	0.20 0.20	1.808 1.808	795.40 24.12% 799.81 24.25%
	0001B, 11001	1711 100 1	WILLOOG				0.20	0.20			10.02	1.72	10.02	0.70	17.11	00.10	7 0.00	02.00	101.10	2,000.11	10 1.00		2,100.17	0,201.00	00.00	1000	0.20	1.000	700.01 21.2070
Ralph Hennessy Ave.	EXT-1 S933A		MH933	2.54		5.70			0.40		9.98 4.45	4.45	14.41	0.40	14.81	63.19	85.51	100.15	146.26	630.84			1,011.22	1,274.02	1	1050	0.20	1.425	262.80 20.63%
	S933A&B, P933 931A	MH933	MH932 MH931	0.48		_			3.12	6.07 0.00	16.05	5.36	14.81 16.05	1.25 0.59	16.05 16.64	62.23 59.39	84.19 80.30	98.59 94.02	143.98 137.28	999.02 953.46			1,449.92 1,423.02	1,818.95 1,818.95	116.49 55.23	1200 1200	0.20 0.20	1.558 1.558	369.04 20.29% 395.93 21.77%
	S931B			0.24		+			+	0.00	16.05 0.45	6.30	16.64	0.92	17.57	58.14	78.60	92.02	134.34	933.43			1,428.68	1,818.95	86.41	1200	0.20	1.558	390.27 21.46%
	P931	CBMH9310	MH930B	2.36	; <u> </u>					3.28	3.28		10.00	0.17	10.17	76.81	104.19	122.14	178.56	251.95	0.00		251.95	297.43	18.00	450	1.00	1.812	45.48 15.29%
	S930	MH930B	MH910	0.37					+	0.00	19.33 0.70	7.00	17.57	1.28	18.85	56.30	76.08	89.06	130.00	1,088.61	532.63		1,621.25	1,818.95	120.00	1200	0.20	1.558	197.70 10.87%
																								,					
Ralph Hennessy Ave.	S947, P947, R947	MH947	MH946	0.24			0.22		0.93	2.08	2.08 0.45	0.45	10.00	0.88	10.88	76.81	104.19	122.14	178.56	159.67	47.27		206.94	286.47	51.72	600	0.20	0.982	79.53 27.76%
Pomelo Street	S943, R943	MH943	MH944				0.35	0.25	+	0.90	0.90		10.00	0.90	10.90	76.81	104.19	122.14	178.56	69.18			69.18	147.47	69.62	375	0.65	1.293	78.29 53.09%
	R944	MH944	MH945				0.23			0.28	1.18		10.90	0.53	11.43	73.52	99.68	116.83	170.75	86.91			86.91	108.21	30.28	375	0.35	0.949	21.30 19.69%
	S945	MH945	MH946			_		0.22		0.42	1.60		11.43	0.33	11.75	71.72	97.21	113.91	166.47	114.61	 		114.61	175.96	20.98	450	0.35	1.072	61.36 34.87%
Ralph Hennessy Ave.	S946	MH946	MH910	0.29						0.00	3.68 0.55	1.00	11.75	1.38	13.13	70.67	95.76	112.21	163.96	259.82	95.94		355.76	392.18	87.77	675	0.20	1.062	36.41 9.29%
	2211	101044	1,11,0,10										40.00				101.10	100.11	1=0 =0					444.00	400.00			1.010	
Borbridge Ave.	S911, S911A	MH911	MH910	0.36						0.00	0.00 0.68	0.68	10.00	1.61	11.61	76.81	104.19	122.14	178.56	0.00	70.91		70.91	141.68	120.00	375	0.60	1.243	70.77 49.95%
Borbridge Ave.	S910, P910	MH910	MH909	0.31					1.45	2.82	25.83 0.59	9.27	18.85	0.53	19.38	53.95	72.88	85.29	124.47	1,393.83	3 675.50		2,069.33	4,252.35	60.80	1650	0.20	1.927	2183.02 51.34%
	2000	MH909									25.83 0.00	9.27	19.38	0.17	19.55	53.05	71.65	83.85	122.36	1,370.57			2,034.67	4,252.35	19.36	1650	0.20	1.927	2217.68 52.15%
	S908	MH908 MH907	MH907 MH906	0.26	+		+ +			0.00	25.83 0.49 25.83 0.00	9.76	19.55 20.46	0.92	20.46	52.77 51.30	71.27 69.26	83.40 81.04	121.70 118.24	1,363.34 1,325.30		 	2,058.93 2,001.28	4,252.35 4,252.35	105.80 12.68	1650 1650	0.20 0.20	1.927 1.927	2193.42 51.58% 2251.07 52.94%
		IVII 1301	1911 1900				<u> </u>			0.00	20.00 0.00	5.70	20.70	0.11	20.01	01.00	00.20	01.04	110.24	1,020.00	0,000		2,001.20	T, ZUZ.UU	12.00	1000	0.20	1.021	2201.01 U2.34 /0
Honeydew Street	622-	MH806						0.25			0.00		10.00	0.20	10.20	76.81	104.19	122.14	178.56	0.00			0.00	50.02	11.72	250	0.65	0.987	50.02 100.00%
	S807 S807, R807	MH807 MH808	MH808 MH906				0.14	0.32		0.60 0.66	0.60 1.27	+	10.20 11.53	1.34 1.00	11.53 12.54	76.05 71.38	103.16 96.74	120.92 113.36	176.77 165.66	46.01 90.49		 	46.01 90.49	59.68 108.21	65.52 57.14	300 375	0.35 0.35	0.818 0.949	13.68 22.91% 17.72 16.38%
	·							5.20						1.00	12.04	71.00	50.74	110.00	100.00	30.73			50.70	100.21	07.14	575	0.00	0.040	
Borbridge Ave.	S906&B, R906A&E	B MH906	MH905	0.48			0.39			0.48	27.58 0.91	10.67	20.57	0.68	21.25	51.13	69.02	80.77	117.84	1,410.11	736.34		2,146.45	4,252.35	79.00	1650	0.20	1.927	2105.89 49.52%
Borbridge Ave.		MH905	BLK905		+	-	+ +		+	0.00	68.20 0.00	12.38	17.41	0.13	17.53	56.61	76.50	89.56	130.73	3,860.58	3 947.45		4.808.03	8,089.52	17.00	2100	0.20	2.263	3281.50 40.56%
		1411 1000	5211000							3.00	0.00	.2.00		3.10	77.00	55.61	. 0.00	55.50	.55.75	5,555.55			1,000.00	5,555.02	.7.00	2100	J.20	2.200	3231.33 40.0070
Rockmellon Street	S948A, R948A	MH984	MH822		0.23	0.32	+ +			0.90	0.90	-	10.00	1.23	11.23	76.81	104.19	122.14	178.56	69.07	93.70		69.07	147.47	95.56	375	0.65	1.293	78.39 53.16%
	S822, R822		BLK822			0.32				1.24	2.14		11.23	1.36	12.59	72.38	98.11	114.98	168.04	154.59			154.59	175.96	87.24	450	0.35	1.072	21.37 12.14%
Honeydew Street	S805		MH804					0.22			0.42		10.00	1.45	11.45	76.81	104.19	122.14	178.56	31.94	43.33		31.94	50.02	85.89	250	0.65	0.987	18.07 36.14%
	S804, R804	MH804	BLK804		0.43			0.39		1.37	1.79		11.45	0.79	12.24	71.65	97.11	113.80	166.31	128.02	173.51		128.02	175.96	50.85	450	0.35	1.072	47.94 27.25%
Kiwi Street	S981A		MH961				+	0.15	-		0.28		10.00	1.20	11.20	76.81	104.19	122.14	178.56	21.78	29.54		21.78	57.20	81.49	250	0.85	1.129	35.42 61.92%
	S961B	WH961	BLK960			+	+ +	0.24		0.45	0.74	+	11.20	0.48	11.68	72.47	98.24	115.13	168.26	53.43	72.43		53.43	159.51	62.97	300	2.50	2.186	106.08 66.50%
	<u> </u>	1										I		<u> </u>	1	1	I	l	<u> </u>	<u> </u>		1 1		<u> </u>	1	1		I	

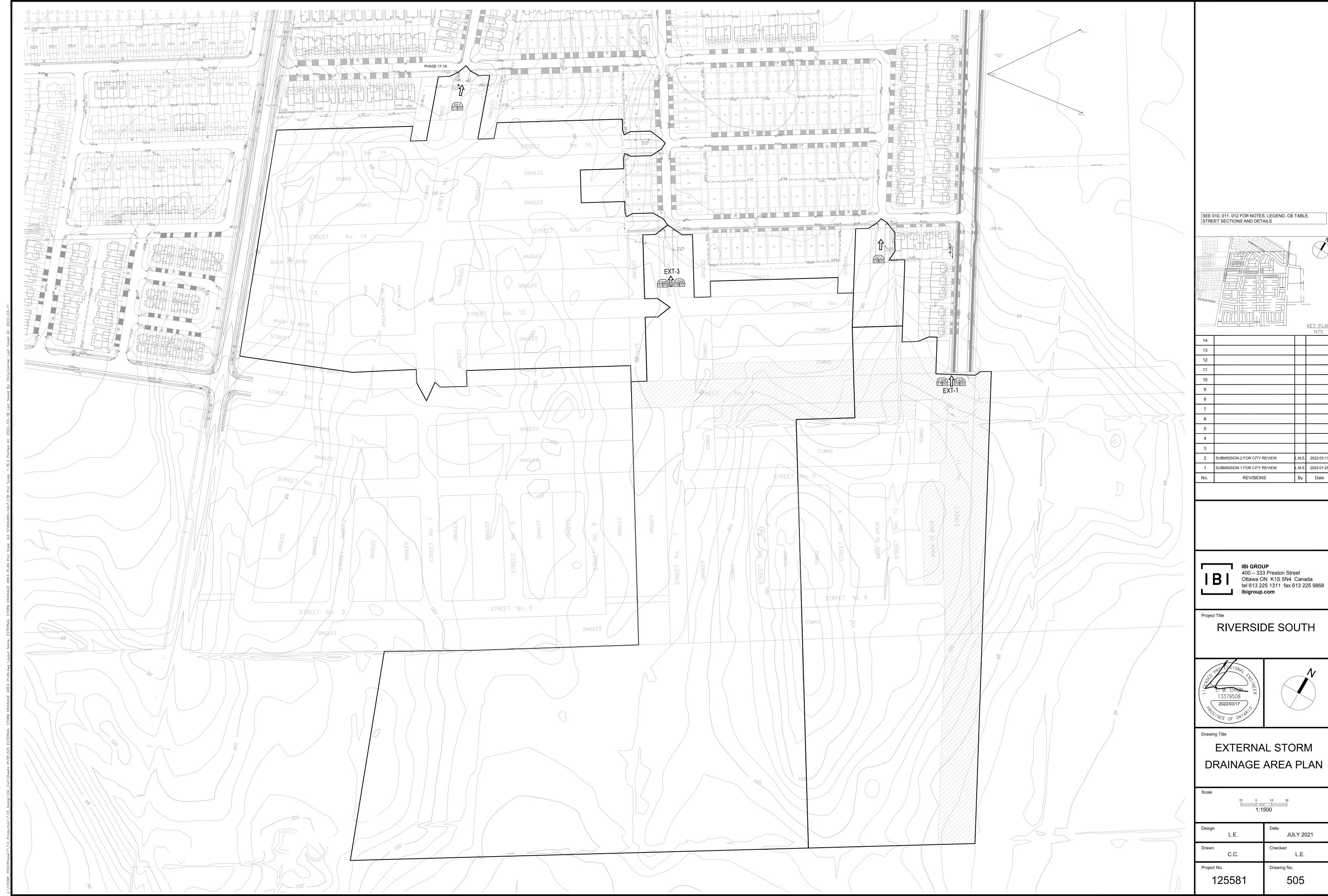
STORM SEWER DESIGN SHEET

IBI


IBI GROUP
400-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
tel 613 225 1311 fax 613 225 9868
ibigroup.com

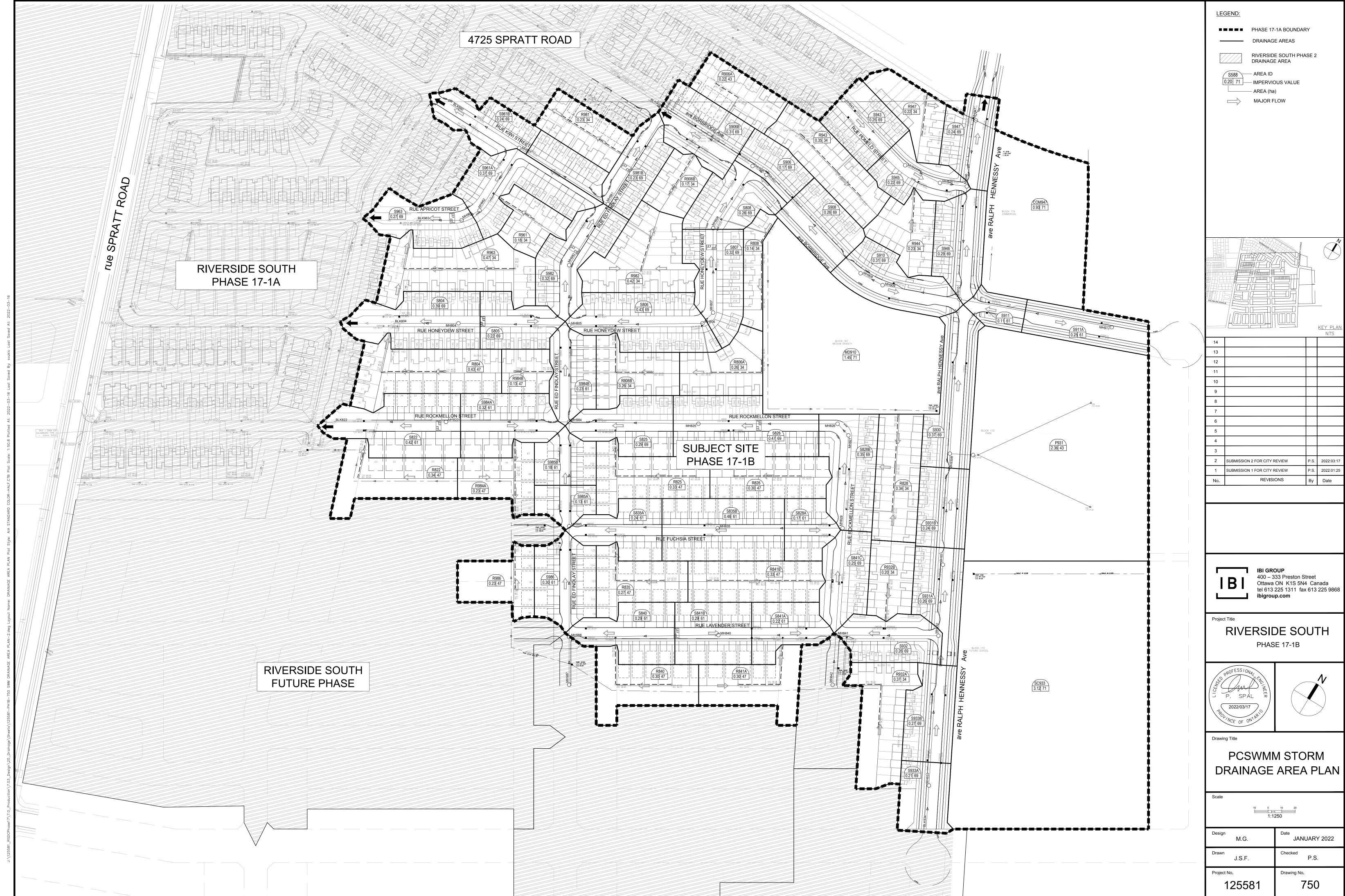

RSS Phase 17-1B City of Ottawa Urbandale

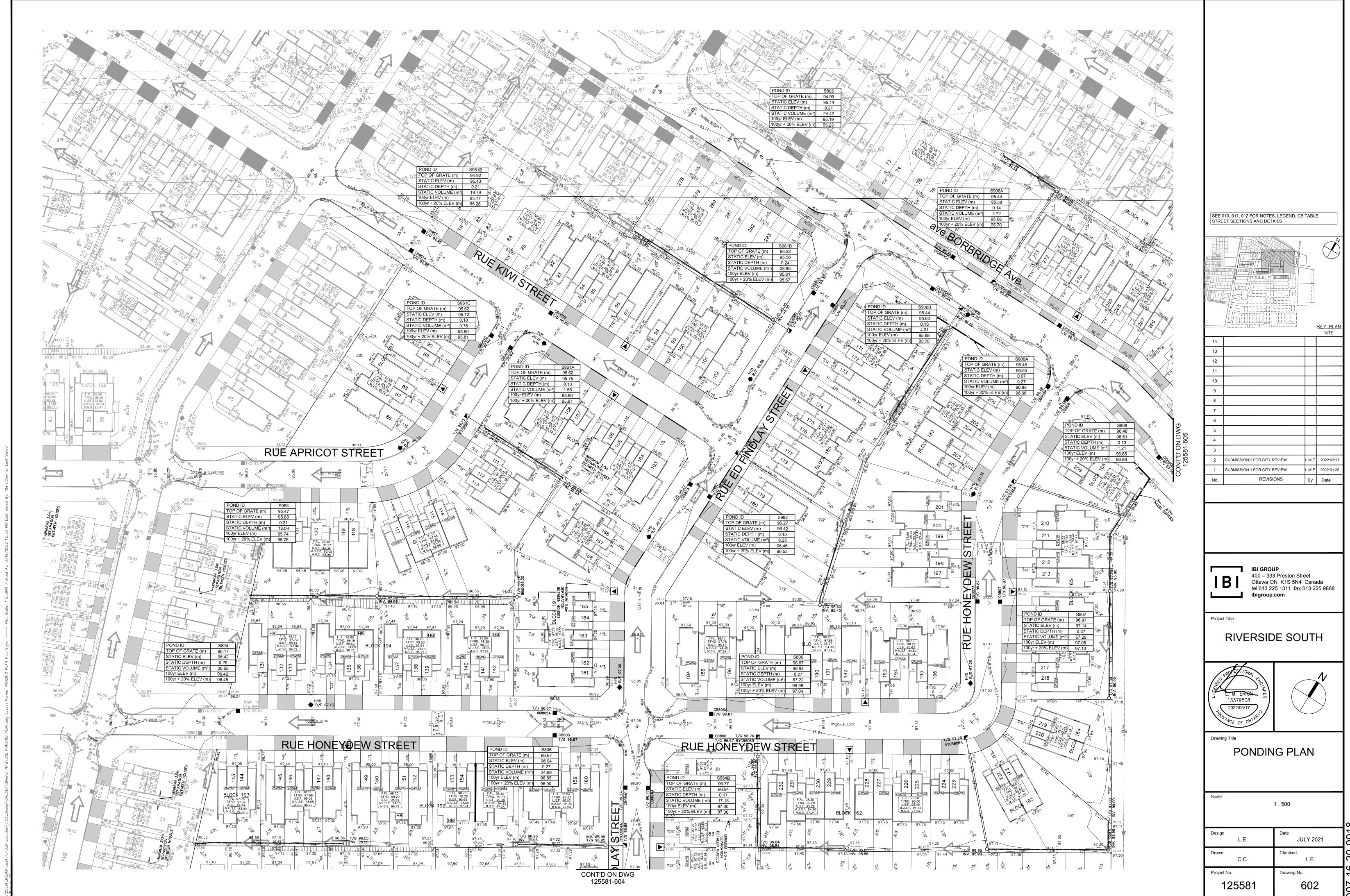

	LOCATION						AREA (I	la)											RA	TIONAL DES	SIGN FLOW	<u> </u>										SEWER DA	ATA		
CTDEET	ADEAID	FROM	то	C=	C=	C=	C=	C= (C= (C= C	= INI	CUM	IND	CUM	INLET	TIME	TOTAL	i (2)	i (5)	i (10)	i (100)	2yr PEAK	5yr PEAK	10yr PEAI	(100yr PEAK	FIXE	D FLOW	DESIGN	CAPACITY	/ LENGTH	PE SIZE (m SLOPE	VELOCITY	AVAIL	CAP (2yr)
STREET	AREA ID	FROM	10	0.63	0.68	0.50	0.53	0.63 0	.44 0	.68 0.7	70 2.78	AC 2.78A	2.78AC	2.78AC	(min)	IN PIPE	(min)	(mm/hr)		(mm/hr)		_	_	-) FLOW (L/s)		CUM	FLOW (L/s)) (L/s)	(m)	DIA	(%)	(m/s)	(L/s)	(%)
Apricot Street	S961A, R961	MH961	MH962					0	.18 0	.37	0.9	2 0.92			10.00	0.57	10.57	76.81	104.19	122.14	178.56	70.63	95.82		+			70.63	191.84	57.47	375	1.10	1.683	121.21	63.18%
•	·	MH962	MH963								0.0				10.57	0.28	10.85	74.69	101.28	118.71	173.52	68.68	93.14					68.68	108.21	15.79	375	0.35	0.949	39.53	36.53%
	S963, R963	MH963	BLK963					0	.47 0	.27	1.0				10.85	0.56	11.40	73.70	99.92	117.11	171.17	147.77	200.34					147.77	175.96	35.70	450	0.35	1.072	28.20	16.03%
Definitions:				Notes:										l D	esigned:		LME				No.						Revision						Da	ate	
Q = 2.78CiA, where:				1. Mann	ings coef	ficient	0.013								J						1.					1st Su	ıbmission							01-25	
Q = Peak Flow in Litres	per Second (L/s)																				2.					2nd Su	ubmission						2022-	03-17	
A = Area in Hectares (H														С	hecked:																				
i = Rainfall intensity in	millimeters per hour (r	nm/hr)																																	
[i = 732.951 / (TC+6.	199)^0.810]	2 YEAR																																	
[i = 998.071 / (TC+6.	053)^0.814]	5 YEAR												D	wg. Refer	ence:	125581-50	1																	
[i = 1174.184 / (TC+6	.014)^0.816]	10 YEAR																				File R	Reference:					Date:					Shee	t No:	
[i = 1735.688 / (TC+6	.014)^0.820]	100 YEAR	2																			125	581-6.04					2022-03-18					1 (of 1	

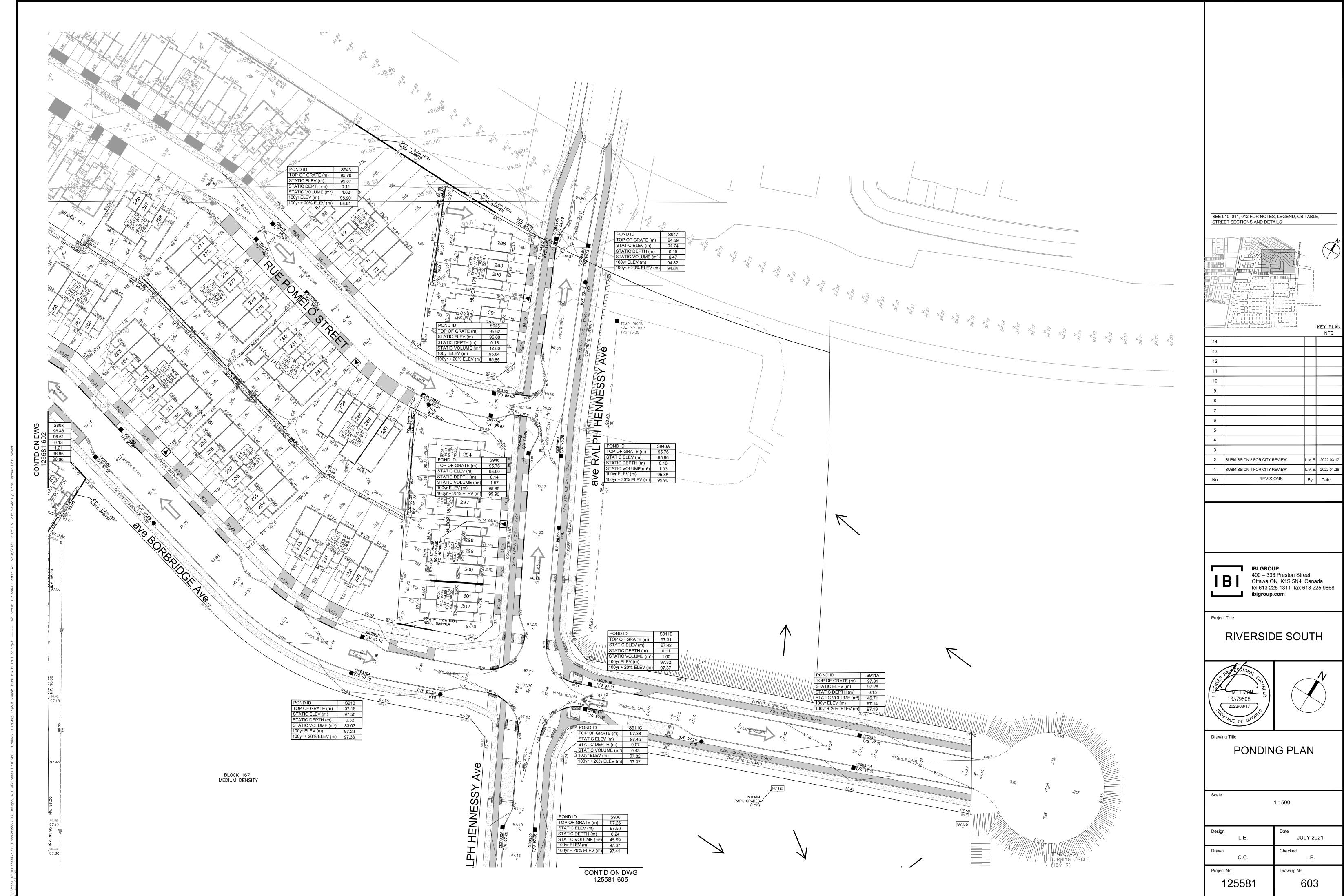

Inlet Time

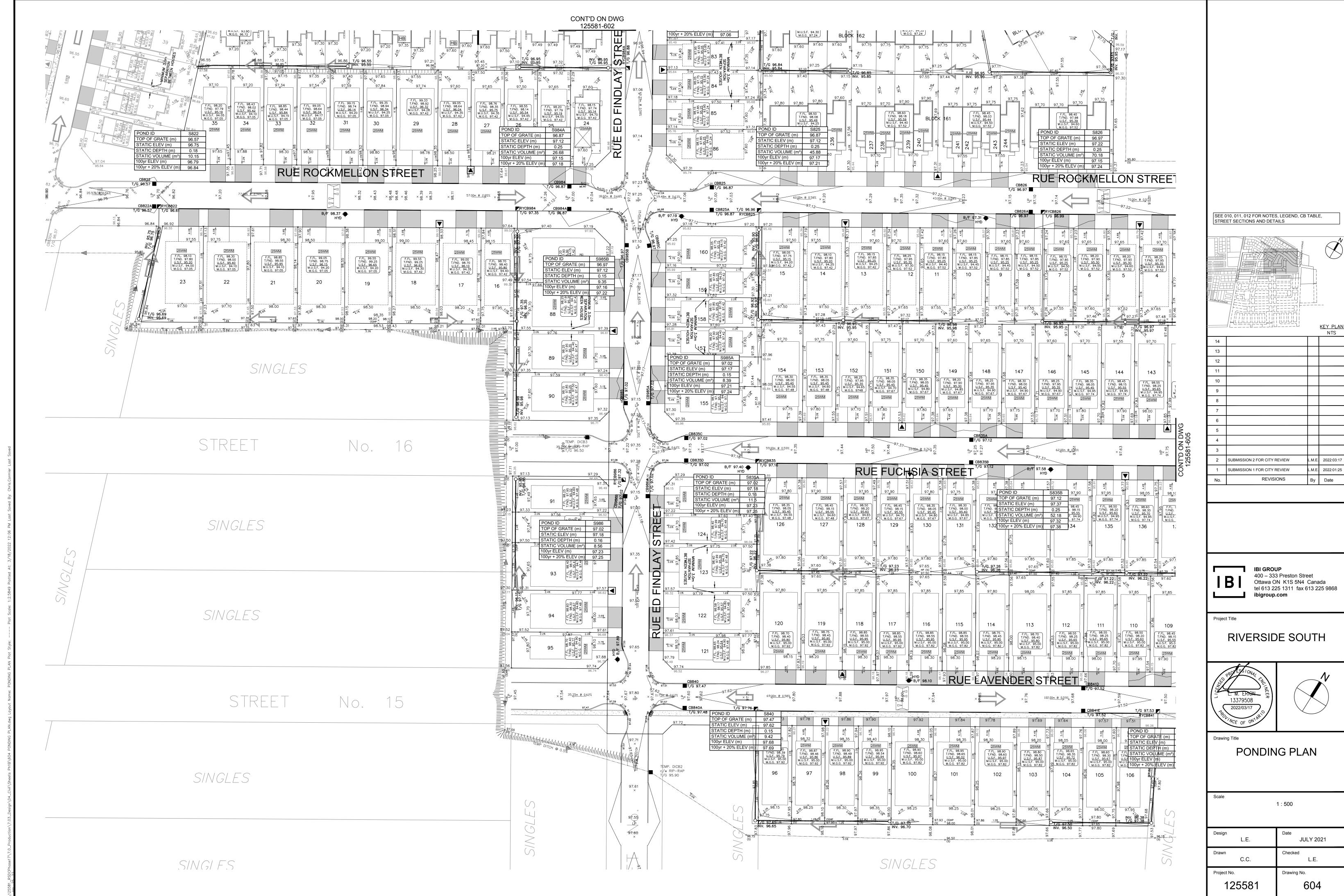
External Draiinage	Length of Pipe	Velocity	Travel Tim	∈Inlet Time
Area	Upstream (m)	(m/s)	(min)	(min)
EXT-1	450	1.70	4.41	14.41
EXT-3	800	1.70	7.84	17.84

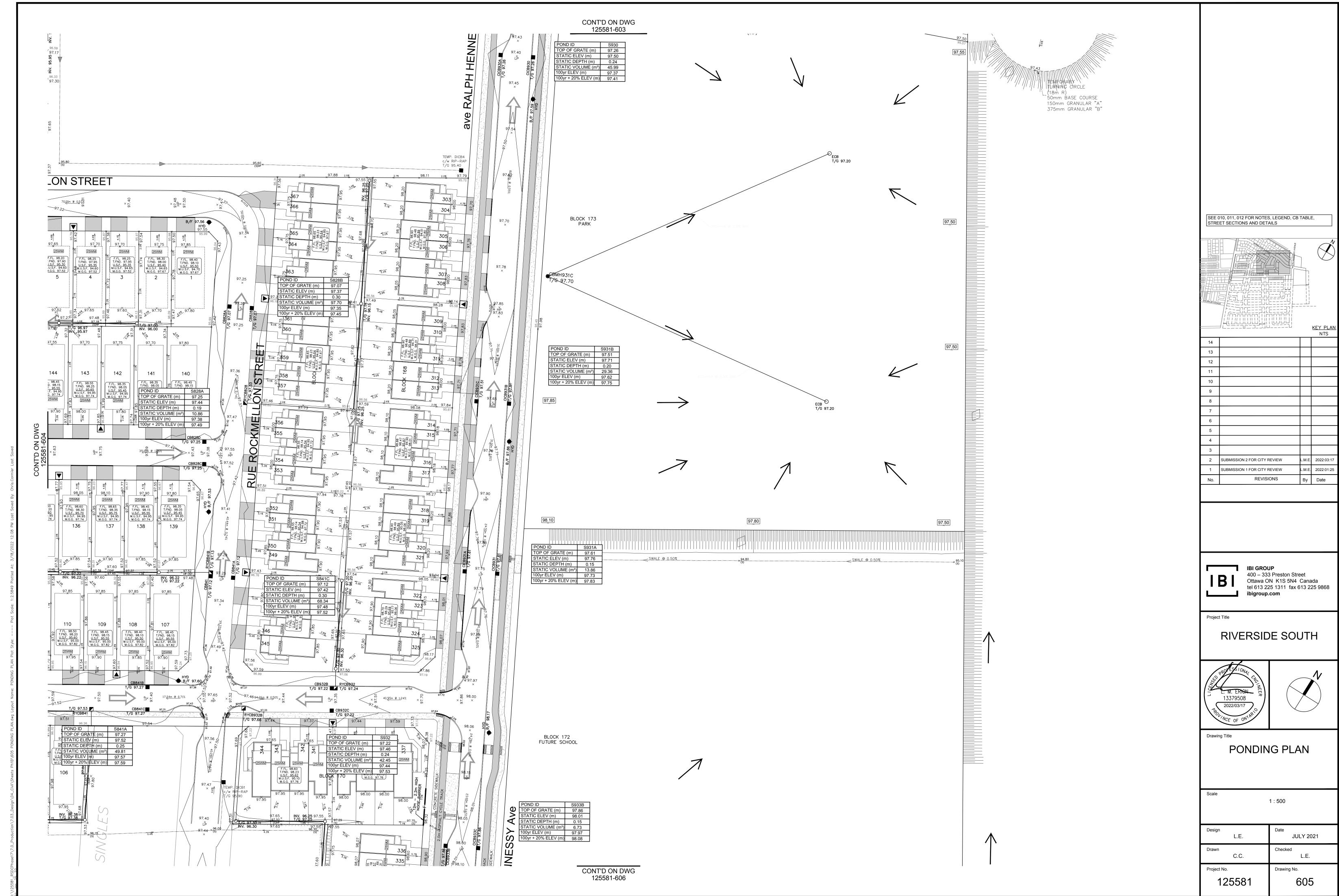
IBI GROUP


400-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
tel 613 225 1311 fax 613 225 9868
ibigroup.com


River Road City of Ottawa Riverside South Development Corporation


	LOCATION			ARI	EA (Ha)											RATION	IAL DESIGN	N FLOW		_							SEWER DA	TA		-	
STREET	AREA ID	FROM	то	C= 0.25	C= C=		C=	Walden		CUM	IND	CUM 2.78AC	IND	CUM 2.78AC	INLET (min)	TIME IN PIPE	TOTAL (min)	i (2) (mm/hr)	i (5) (mm/hr)	i (10) (mm/hr)			10yr PEAK FIXED FLOW (L/s)	DESIGN FLOW (L/s)	CAPACITY (L/s)	LENGTH (m)	PE SIZE (r	m SLOPE (%)	VELOCITY (m/s)	AVAII	IL CAP (%)
North Outlet																															
River Road	EXT-1		EXMH160		5.15 4.44			1.90	0.00	0.00	12.04	12.04	3.54	3.54	12.78			67.56	91.50	107.20	0.00	1,101.80	379.36	1,481.16							
River Road		EXMH160	MH2						0.00	0.00	0.00	12.04	0.00	3.54	12.78	1.45	14.23	67.56	91.50	107.20	0.00	1,101.80	379.36	1,481.16	3,006.86	118.40	1650	0.10	1.362	1525.71	50.74%
River Road		MH2	MH3									12.04		3.54	14.23	1.15	15.37	63.66	86.14	100.89	0.00	1,037.30	357.06	1,394.35	3,006.86		1650	0.10	1.362		53.63%
Borbridge Avenue	EXT-2	CAP	MH3			1.86	0.60					1.05		0.00	12.56	0.21	12.77	68.21	92.39	108.24	222.21	97.08	0.00	319.29		25.00	600	0.80	1.963		44.27%
River Road		MH3	MH4						0.00	3.26	0.00	13.09	0.00	3.54	15.37	1.49	16.87	60.90	82.37	96.45	198.38	1,078.39	341.34	1,618.11	3,792.13	129.25	1800	0.10	1.444	2174.02	57.33%
Street No. 3	EXT-3	CAP	MH4			8.36			14.64	14.64	0.00	0.00	0.00	0.00	16.67	0.22	16.89	58.09	78.53	91.94	850.60	0.00	0.00	850.60	1,117.30	22.89	900	0.35	1.701	266.70	23.87%
Street No. 3 West		MH4	MH154						0.00	17.90	0.00	13.09	0.00	3.54	16.87	0.26	17.12	57.69	77.98	91.29	1,032.55	1,020.88	323.06	2,376.50	3,792.13	22.11	1800	0.10	1.444	1415.63	37.33%
Street No. 3 West	154	MH154	CAP			2.11			3.70	21.59	0.00	13.09	0.00	3.54	17.12	1.36	18.48	57.17	77.28	90.47	1,234.68	1,011.72	320.15	2,566.55	3,792.13	117.91	1800	0.10	1.444	1225.58	32.32%
Street No. 5	EXT-4	CAP	MH11			103.76	2.60		181.73	181.73	4.55	4.55	0.00	0.00	33.75	0.39	34.14	36.97	49.75	58.15	6,718.47	226.56	0.00	6,945.03	14,807.43	47.00	3000	0.10	2.029	7862.40	53.10%
Street No. 1 West	11	MH11	CAP			1.06			1.86	183.58	0.00	4.55	0.00	0.00	34.14	1.02	33.75	36.68	49.36	57.69	6,734.45	224.79	6,959.24	14,807.43	124.30	3000	0.10	2.029	7848.20	53.00%	
South Outlet																															
River Road	EXT-6		MH28			17.38			30.44	30.44	0.00	0.00	0.00	0.00	16.67			58.09	78.53	91.94	1,768.36	1,768.36									
River Road		MH28	MH29						0.00	30.44	0.00	0.00	0.00	0.00	16.67	1.05	17.72	58.09	78.53	91.94	1,768.36	0.00	0.00	1,768.36	4,486.91	107.73	1800	0.14	1.708	2718.55	60.59%
Street No. 7	EXT-5	CAP	MH29	<u> </u>		122.85	2.77		215.16	245.60	4.85	4.85	0.00	0.00	23.33	0.27	23.60	47.22	63.69	74.51	11,597.38	309.00	0.00	11,906.38	14,807.43	33.00	3000	0.10	2.029	2901.05	19.59%
River Road		MH30	MH29						0.00	0.00	0.00	0.00	0.00	0.00	10.00	1.65	11.65	76.81	104.19	122.14	0.00	0.00	0.00	0.00	129.34	112.57	375	0.50	1.134	129.34	100.00%
		MH29	CAP						0.00	276.04	0.00	4.85	0.00	0.00	23.60	1.17	24.78	46.87	63.22	73.95	12,938.66	306.70	0.00	13,245.36	14,807.43	142.90	3000	0.10	2.029	1562.08	10.55%
Roadside Ditch Conv	reyance																														
Culvert STA 1+280	A9, A11*	MHA	Outlet																				325*	325.00	2,178.02	28.32	900	1.33	3.317	1853.02	85.08%
Culvert STA 1+680	A5, A7*	DICB3	DICB4																				150*	150.00	162.91	23.00	450	0.30	0.992	12.91	7.93%
	A6, A8*	DICB4	MHB																				161*	311.00	350.85	57.40	600	0.30	1.202	39.85	11.36%
		MHB	MHC																					311.00	350.85	41.32	600	0.30	1.202	39.85	11.36%
		MHC	HW42																					311.00	350.85	22.06	600	0.30	1.202	39.85	11.36%
A = Area in Hectares (i = Rainfall intensity in	2.78CiA, where: Peak Flow in Litres per Second (L/s) Area in Hectares (Ha) Rainfall intensity in millimeters per hour (mm/hr)				: nnings coefficie * Drainage Area	, ,	0.013 ure 4.3 a	and 100 y	ear flows	s from Ta	ble 4.2 o	f the Desi	gn Brief		Designed: Checked:		LME			No. 1. 2.			City submi	rision ission No. 1 ission No. 2					27-04	ate 4-2018 7-2018	
[i = 998.071 / (TC+6	[i = 732.951 / (TC+6.199)^0.810] 2 YEAR [i = 998.071 / (TC+6.053)^0.814] 5 YEAR [i = 1174.184 / (TC+6.014)^0.816] 10 YEAR														Dwg. Refe	rence:		114373-50	0		File Reference 114373.5.7.			Da t 7/3/2						et No: of 1	


Inlet Time


External Draiinage Area	Length of Pipe Upstream (m)	Velocity (m/s)	Travel Time (min)	Inlet Time (min)
EXT-1	250	1.50	2.78	12.78
EXT-2	230	1.50	2.56	12.56
EXT-3	600	1.50	6.67	16.67
EXT-4	2,850	2.00	23.75	33.75
EXT-5	1,600	2.00	13.33	23.33
EXT-6	600	1.50	6.67	16.67

Common Curves for Analysis of Existing ROWs, No Gutter, For PCSWMM

Curves for Catch Basins on a Slope

Ottawa Standard		
	Q _{capture}	
Depth (m)	(m ³ /s)	
0.000	0.000	
0.010	0.001	
0.015	0.003	
0.021	0.006	
0.030	0.012	
0.040	0.020	
0.050	0.030	
0.054	0.034	
0.060	0.040	
0.080	0.050	
1.000	0.050	

Fish or fishbone Type		
	Q _{capture}	
Depth (m)	(m ³ /s)	
0.000	0.000	
0.010	0.001	
0.015	0.003	
0.021	0.007	
0.030	0.014	
0.040	0.024	
0.050	0.036	
0.054	0.041	
0.060	0.047	
0.070	0.050	
1.000	0.050	

Curb Inlets		
	Q _{capture}	
Depth (m)	(m ³ /s)	
0.000	0.000	
0.010	0.001	
0.015	0.002	
0.021	0.004	
0.030	0.006	
0.040	0.009	
0.050	0.013	
0.054	0.014	
0.060	0.017	
0.070	0.021	
0.080	0.026	
0.090	0.031	
0.140	0.050	
1.000	0.050	

Curves for Catch Basins in a Low Point

Sag, Ottawa Standard		
Q _{capture}		
(m ³ /s)		
0.000		
0.008		
0.022		
0.034		
0.048		
0.052		
0.060		
0.080		
0.085		
0.090		
0.095		
0.097		
0.100		
0.100		

Sag, fish or fishbone		
	Q _{capture}	
Depth (m)	(m ³ /s)	
0.000	0.000	
0.050	0.010	
0.080	0.027	
0.090	0.042	
0.100	0.060	
0.104	0.065	
0.110	0.075	
0.120	0.082	
0.130	0.090	
0.150	0.095	
0.200	0.097	
0.300	0.100	
1.000	0.100	

Sag, curb inlet		
	Q _{capture}	
Depth (m)	(m ³ /s)	
0.000	0.000	
0.018	0.002	
0.030	0.010	
0.040	0.018	
0.050	0.030	
0.060	0.050	
0.070	0.080	
0.100	0.093	
0.200	0.097	
0.300	0.100	
1.000	0.100	

General Notes

- The curves were developed from the Townsend curves in the Sewer Design Guidelines (even though that had a gutter) and a manning's calculation of road geometry to convert to a depth-flow curve
- The curves are **depth**-flow curves. Caution should be excercised if using these curves for the **head**-flow options in PCSWMM
- All curves were developed using a 2% cross slope
- The curves were simplified from a family of curves (for different road geometries and longitudinal slopes) since they were relatively consistent
- Ottawa "Standard" (rectangular grid) CB curves in a low point were generated from the Percent area difference from fish type curves found in the Sewer Design Guidelines 2012
- Fishbone was assumed to be the same as Fish Type
- Note that the curb inlet curves assume no local depression and a typical cross fall. These
 were derived from the Sewer Design Guidelines. Use caution with these curves and refer to
 original sources where necessary.
- All catch basins on a slope were assumed to have a max capture rate of 50 L/s according to Townsend's report from 1981.
- Catch basins in a low point or "sag" were assumed to have a max capture rate of 100 L/s which was calculated using the orifice equation Q=CdA*SQRT(Zgh) based on the following: C=0.61, diameter of lead is 200 mm, depth from rim of CB to springline of orifice is 1.1 m, depth in major system is 0.3 m.
- The low point curves were capped at ~100 L/s because it was assumed that the orifice behaviour (unlike the orifice equation) would level out in reality.
- There are other types of CB's in the Ottawa area; These curves could be modified to fit that specific type.
- Separate curves for manhole and surcharging may also be required in PCSWMM
- Separate curves are required when modelling ICDs
- Separate curves are required for DICBs
- Separate curves are required if the ROW has gutters