

210 Prescott Street P.O. Box 189 Kemptville, Ontario K0G 1J0 Civil • Geotechnical •

Structural • Environmental •

Hydrogeology •

(613) 860-0923

FAX: (613) 258-0475

REPORT ON

HYDROGEOLOGICAL AND TERRAIN STUDY PROPOSED LIGHT INDUSTRIAL BUILDINGS 151-159 WESCAR LANE CITY OF OTTAWA ONTARIO

Submitted to:

Sunbelt Rentals Inc. 2489 Sheffield Road Ottawa, Ontario K1B 3V6

DATE February 14, 2025

DISTRIBUTION

1 digital copy
1 digital copy
1 copy
City of Ottawa
Sunbelt Rentals Inc.
Kollaard Associates Inc.

230403

Table of Contents

1.0	Groundwater Supply Evaluation	2
1.1	Water Quantity	2
A		2
B.		
1.2	·	
1.3	Water Quality	4
A		
B.		
С	. Iron	5
D		5
E.		5
F.		
2.0	TERRAIN STUDY	7
2.1	GROUNDWATER IMPACT ASSESSMENT	
2.2	SEWAGE DESIGN CONSIDERATIONS	9
3.0	WELLHEAD PROTECTION	9

Attachments: Figure 1 - Key Plan

Table I - Field Water Quality

Attachment A - Well Record and Certificate of Well Compliance

Attachment B - Pumping Test Data

Attachment C - Well Water Laboratory Test Results and LSI/RSI

Attachment D - Nitrate Dilution Calculations and Climate Data for infiltration

Attachment E -Site Servicing Plans (DB Gray Engineering)

210 Prescott Street P.O. Box 189 Kemptville, Ontario K0G 1J0 Civil • Geotechnical • Structural • Environmental •

Hydrogeology •

(613) 860-0923

FAX: (613) 258-0475

February 14, 2025 230403

Sunbelt Rentals Inc. 2489 Sheffield Road Ottawa, Ontario K1B 3V6

RE: HYDROGEOLOGICAL AND TERRAIN STUDY

EXISTING SUPPLY WELL

PROPOSED LIGHT INDUSTRIAL BUILDINGS

151-159 WESCAR LANE

WEST CARLETON-MARCH WARD CITY OF OTTAWA, ONTARIO

Dear Sir:

This report presents the results of an evaluation of the water quality and quantity for the well that will supply water for the above noted proposed light industrial development at 151-159 Wescar Lane in the City of Ottawa, Ontario (see Key Plan, Figure 1). It is understood that it is proposed to develop one building (Phase 1) and then eventually a second building (Phase 2) will be constructed. It is understood that each of the proposed light industrial buildings are to contain warehouse, office space and loading bays (storage space) associated with an equipment rental company. The preliminary Site Servicing Plan (prepared by DB Gray Engineering) is provided as Attachment E and outlines the locations and layout of the proposed buildings, well and septic system area, stormwater infiltration and provides hard surfaced areas.

The well in question was constructed by Saunders Well Drilling Ltd. of Braeside, Ontario on July 11, 2023. A Ministry of the Environment, Conservation and Parks (MECP) Well Record for the subject well (TW1) and a Compliance Certificate are provided as Attachment A.

A pumping test was carried out at the well, TW1, by a member of our engineering staff on July 25, 2023. The testing consisted of a 6 hour duration constant discharge rate pumping test. During the pumping test, water level measurements were made both manually and using a pressure transducer to monitor the drawdown of the water level in the well in response to pumping. Groundwater samples were collected from TW1 at about hour 3 and at hour 6 of the pumping test to characterize groundwater quality. After the pumping period, the pump was shut off and the recovery of the water level in the well was monitored for a period of time until at least 95 percent of the drawdown created during pumping had been recovered or for at least 24 hours, whichever was less.

1.0 Groundwater Supply Evaluation

1.1 Water Quantity

A. Water Demand

The water demand is calculated using the information from the sewage system daily design flow and peaking factors available in the City of Ottawa Water Distribution Guidelines, 2010. The sewage design flows are provided below, based on the sewage design information (provided by client).

Daily sewage design flow:

The daily sewage design flow is equal to a maximum daily demand for the site. The site is to be developed in two phases as follows, with the corresponding sewage design flows as provided by the sewage design consultant (DB Gray Engineering).

Phase I Building

Office: The greater of 30 employees x 75 L/day = 2,250 L/day OR

 $277.3 \text{ m}^2 \text{ x } 75 \text{ L/day per } 9.3 \text{ m}^2 = 2,236 \text{ L/day}$

Factory: 18 employees x 75 L/day = 1,350 L/day Warehouse: 18 loading bays x 150 L/day = 2,700 L/day

Total Daily Sewage Design Flow (Phase I) = 6,300 L/day

Phase 2 Building

Office: The greater of 4 employees x 75 L/day = 300 L/day OR

 $45.3 \text{ m}^2 \text{ x } 75 \text{ L/day per } 9.3 \text{ m}^2 = 365 \text{ L/day}$

Factory: 8 employees x 75 L/day = 600 L/day Warehouse: 9 loading bays x 150 L/day = 1,350 L/day

Total Daily Sewage Design Flow (Phase II) = 2,315 L/day

TOTAL DAILY SEWAGE DESIGN FLOW = 8,615 L/day

It is understood that the daily sewage design flow will be less than 10,000 litres per day. As such, a design flow of 8,615 litres per day is used for the purposes of this report.

Since sewage system design is based on the maximum expected daily use, it is equivalent to the Maximum Daily Demand (MDD). The MDD is based on an eight hour operation schedule (i.e. full day occurs over an eight hour period and not over 24 hours).

City of Ottawa calculates the Maximum Hour Demand (MHD) for a commercial or industrial demand to be 1.8 x MDD

Sunbelt Rentals Inc. February 14, 2025

MDD = 8,615 litres / day x 1 day / 8 hours x 1 hour / 60 minutes = 18 litres / minute

 $MHD = 1.8 \times MDD$

 $= 1.8 \times 18$ litres / minute

= 32.3 litres / minute

The predicted water usage for MDD and MHD of 18 L/min and 32.3 L/min, respectively, are used.

The Maximum Hourly Demand (MHD) for the site based on its proposed use is expected to be about ~32.5 litres/minute, compared to the pumping test rate which was 38 litres/minute. This indicates that the pumping rate used for the test was appropriate as the peak water demand rate was met for the test. The MDD is 8,615 L/day. The test was carried out for 6 hours at the above noted rate and some ~13,680 Litres of water were removed from the well in that time. As such, the amount of water taking in six hours exceeds the expected maximum daily water taking for the full development.

В. **Pumping Test**

The well was pumped for six hours at a pumping rate of about 38 litres per minute. Over the course of the pumping test, the water level in the well dropped some 2.84 metres. At the end of the pumping test, about 12 minutes was required for 96 percent recovery of the total drawdown in the static water level created during pumping.

The pumping test drawdown and recovery data and plots for TW1 are provided as Attachment B. The drawdown and recovery data provided were measured with reference to the top of the well casing at the test well location.

The pumping test data for the test well was analyzed using the method of Cooper and Jacob (1946). Although the assumptions on which these equations are based are not strictly met, this method provides a reasonable estimate of the aquifer transmissivity.

Transmissivity was calculated using the following relationship:

$$T = \frac{2.3Q}{4\pi ds}$$

where Q is the pump rate, m³/day ds is the change in drawdown over one time log cycle, m T is the transmissivity, m²/day

Specific Capacity = Q / TD $= 54.6 \text{ m}^3/\text{day} / 2.85 \text{ m}$ $= 19 \text{ m}^{3}/\text{day/m}$

where $Q = \text{test pumping rate } (\text{m}^3/\text{day})$ TD = total drawdown (m)

Based on the pumping test drawdown data the transmissivity of the aquifer is estimated to be about 100 m²/day. Based on the recovery data the aquifer transmissivity is estimated to be about 8.5 m²/day. It should be noted that pumping tests should typically be carried out for a period of between 24 hours or greater to establish transmissivity for a confined aquifer in order to assess boundary

conditions. Over the course of the six hour test, some ~13,600 litres of water were pumped from the well. As the expected maximum daily water demand is about 8,615 litres per day, the well is capable of meeting the expected daily water demand.

1.2 Well Interference

During the pumping test, the drawdown at the well was 2.84 metres. That drawdown was observed during pumping at a peak water demand rate. A review of several additional well records was carried out and indicated that area wells are typically 38 metres in depth or deeper. These wells are all sufficiently deep such that well interference is not an issue, with available drawdown of greater than 15 metres or more. There are 4 wells located near the site that are of older construction and are indicated to be shallower wells of depths of some 7 metres to 20 metres. The available drawdown in these wells based on the pump depths and the static water level indicated on the well records is between 2.4 metres and 13.6 metres. It is unlikely that the well would affect water levels by more than a few centimetres as even in the pumping well, drawdown was only 2.8 metres. There is sufficient available drawdown at these wells such that the use of the well will not interfere with the well performance in other offsite wells.

1.3 Water Quality

To determine the water quality of the groundwater supply, groundwater samples were obtained from the well during the pumping test and prepared/preserved in the field using appropriate techniques and submitted to Eurofins Environmental Testing in Ottawa, Ontario for the chemical, physical and bacteriological analyses listed in the MECP guideline entitled Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment, August 1996. The temperature, conductivity, pH, total dissolved solids, turbidity and residual chlorine levels of the groundwater were measured at periodic intervals during the pumping test. The results of the chemical, physical and bacteriological analyses of the water samples obtained from the test well and the field water quality are provided as Attachment C and in Table I, respectively.

The water quality as determined from the results of the analyses is acceptable. The water meets all the Ontario Drinking Water Standards (ODWS) health and aesthetic parameters tested for at the test well except for aesthetic objective for hardness, Iron, Manganese, TDS, Turbidity (lab measured) and Antimony. Sodium in the raw water supply exceeds the 20 mg/L medical advisory level for those on medically restricted low sodium diets.

A. Hardness

The water is considered to be hard by water treatment standards. Water with hardness above 80 to 100 milligrams per litre as CaCO₃ is often softened for domestic use. The hardness at the well is 336 to 339 milligrams per litre. Treatment consisting of water softening by conventional sodium ion exchange is effective to reduce scale formation associated with hardness. Ion exchange water softening may introduce relatively high concentrations of sodium into the drinking water which can also contribute a significant percentage to the daily sodium intake for a consumer on a sodium restricted diet. Where ion exchange water softeners are used, a separate unsoftened water supply could be used for drinking and culinary purposes. The untreated water had sodium levels that were less than the medical advisory level of 20 mg/l.

В. Manganese

The level of manganese was 0.15 mg/l after three and six hours. The ODWSOG aesthetic objective (AO) for manganese is 0.05 mg/l. The Health Canada Canadian Drinking Water Guideline has a proposed MAC (Maximum Allowable Concentration) of 0.12 mg/L and an AO of 0.02 mg/L. Manganese can stain laundry and fixtures black. The health objective of 0.12 mg/L is considered to be protective of neurological effects in infants, and is therefore also protective of older children and adults. Manganese can be effectively treated using a manganese greensand filter or some other proprietary filter for manganese removal. Information regarding manganese and different treatment options are provided herein as Attachment F. It is understood that the City of Ottawa will register the manganese exceedance on title for a health warning and water treatment considereation.

C. Iron

Iron was measured at a level of 1.58 mg/l, compared to the aesthetic objective of 0.3 mg/l. Excessive iron levels may cause brown or black discolouration of laundry and fixtures, affect the taste and colour of water, and iron precipitation in pipes and hot water tank can also promote the growth of iron bacteria. Iron can be effectively removed using conventional ion exchange water softeners. However, depending on the form that iron is in (reduced or oxidized) as well as the concentration and other factors, iron filters may be more effective in removing iron from the water supply.

D. **Turbidity**

The lab based measurement of turbidity was elevated in the three hour sample and six hour samples (23.2 and 20.2 NTU). The elevated turbidity was considered to be due to the elevated iron and manganese also possibly as part of well development as the well was recently constructed. The lab result for turbidity is not considered to be representative due to the iron and manganese precipitates which developed through sample handling, exposure to air and temperature changes between the time sampled and the lab testing.

The field reading for turbidity after three hours was 5.67 NTU and the final field reading for turbidity after six hours was 4.23 NTU. The turbidity generally declined throughout pumping and is considered to be associated with well development. Additional sampling was completed November 2, 2023 at the test well (due to antimony in the water supply well). At the time of additional sampling the well was pumped for 2.5 hours at 23 LPM, the field turbidity reading at the time was 1.87 NTU. Groundwater is considered to be acceptable for turbidity of up to 5 NTU, as measured at the point of consumption. There are no concerns with the noted laboratory results for turbidity as they are anticipated to be high at the laboratory due to elevated dissolved iron and manganese. The well is considered to be fully developed.

Total Dissolved Solids

Total dissolved solids (TDS) were slightly elevated above the aesthetic objective of 500 mg/l, about 515 to 522 mg/l. The Ryznar Stability Index (RSI) and Langelier Saturation Index (LSI) were calculated for both water samples. The RSI values for the water samples were 6.66 and 6.60 for the three and six hour samples, respectively. The LSI values for the water samples were 0.48 and 0.51 for the three and six hour samples, respectively. RSI values less than 6 indicate that the scale potential increases and values greater than 7 indicate that a calcium carbonate formation does not lead to a protective corrosion inhibiting film. In this case, the water is mildly scale forming and not corrosive. Positive values for LSI indicate that scale can form and calcium carbonate precipitation may occur, while values close to zero indicate borderline scale potential. In this case, the LSI values are positive, indicating borderline scale potential. Combined with the RSI values, it is likely that the water is slightly scale forming and not corrosive potential. According to the Support Document for the Ontario Drinking Water Standards, Objectives and Guidelines (ODWSOG), the palatability of

drinking water with a TDS level less than 500 mg/l is generally considered to be good. The effect of elevated TDS levels on drinking water depends on the individual components, which are principally chlorides, sulphates, calcium, magnesium and bicarbonates. Depending on which parameters are elevated, TDS exceedances can include hardness, taste, mineral deposition or corrosion. In this case, the water samples had high hardness and calcium and magnesium are high. Sodium and chloride are both within the aesthetic objectives and are unlikely to significantly affect the taste of the water. Hardness generally increases the mineral deposition. However, in this case, the water is indicated to be only slightly scale forming. Based on the above noted information, it is considered that treatment to reduce hardness will reduce the potential for scale forming as it affects TDS.

F. Antimony

Antimony was measured at levels of 0.0015 and 0.0064 mg/L after three and six hours, respectively, compared to the maximum acceptable concentration of 0.006 mg/L. The noted antimony level is only marginally above the allowable limit, which was set to prevent long term chronic exposure. The standard is set to protect against increased blood cholesterol and decreased blood glucose, as well as prevention of nausea, vomiting and diarrhea upon short-term exposure. Antimony can cause nausea, vomiting and diarrhea when present at very high concentrations (>30 mg/L). The risk to human health is through ingestion only (drinking, cooking, teeth brushing). In water, antimony has no taste, smell, or colour. It can only be detected through a chemical test. On November 2, 2023, the well was sampled for antimony to confirm the previous results. The well was flushed for a period of time (~1-2 hours) until the field turbidity was recorded to be less than 5 NTU. Final turbidity reading was ~2 NTU. At that time, a water sample was obtained and field filtered using a 0.45 micron filter, then stored in a laboratory supplied bottle with the appropriate preservative and submitted for laboratory testing. The results of the additional testing indicate that the test well antimony level is <0.0005 mg/L. A neighbouring well that services a developed property at 144 Wescar Lane was also sampled on Nov 3, 2023 and Dec 21, 2023 with corresponding antimony levels of 0.0049 mg/L and <0.0005 mg/L, which is within the allowable limit of 0.006 mg/L. The initial water sample at 144 Wescar Lane was not field filtered, the second sample on Dec 21, 2023 was field filtered.

Based on the recent testing, the well water does not have antimony present above allowable limits. One area well has antimony present within allowable limits. It is noted that antimony could be present from plumbing materials within antimony-containing plumbing materials, rather than from the water supply.

The Provincial Groundwater Monitoring Network (PGMN) was consulted and there are no wells that are close to the site. The closest well that is in a bedrock formation is about 8 km to the south with antimony reported to be well within the limits.

Based on what is known about the wells in the area, it is unlikely that antimony is sourced in the groundwater as the recent result indicates that antimony was not present in dissolved form in either the test well (151-159 Wescar Lane) or the neighbouring well (144 Wescar Lane). It is more likely that antimony was due to suspended particles in the water rather than from the aquifer. Antimony is unlikely to be naturally present in groundwater at levels that are above the drinking water standards.

G. Nitrites and Nitrates

Nitrite and Nitrate were measured in the test well during the pumping test at 3 and 6 hours, both indicate levels of <0.1 mg/L. Additionally, ammonia and total kjeldahl nitrogen were measured at 0.127 and between 0.301 and 0.405 mg/L. Based on the lab results, the background levels of nitrates can be considered to be 0 mg/L.

2.0 TERRAIN STUDY

Soils information was obtained from geotechnical boreholes put down at the subject site. The field work for this investigation was carried out on May 29 and 30, 2023, at which time eleven boreholes were put down at the site, identified as BH1 to BH11. Five boreholes encountered about 1.0 to 1.5 metres of fill, consisting of sand, gravel and trace organics, overlying grey silt over silty and/or fine to medium sand followed by glacial till to depths of 6.3 to 8.3 metres. Six boreholes were drilled to 1.5 metres depth and encountered fill overlying silt. Where encountered, water was observed at about 1.3 to 3.8 metres below the ground surface.

2.1 GROUNDWATER IMPACT ASSESSMENT

The background conditions in the onsite water well include testing of nitrite, nitrate, Total Kjeldahl Nitrogen (TKN) and ammonia. Nitrates and nitrites were <0.1 mg/L for the 3 and 6 hour water samples. Additionally, ammonia and Total Kjeldahl Nitrogen (TKN) were measured at 0.127 and between 0.301 and 0.405 mg/L. Based on the lab results, the background nitrate levels can be considered to be <0.1 mg/L and total nitrogen is less than 1 mg/L, indicating there is no current impact from nitrogen on the water supply well at the site.

The MOE D-5-4 Predictive Assessment for commercial/industrial development is designed to determine minimum lot size and maximum allowable flows. The City of Ottawa developed additional guidance on the application of the MECP D-5-4 Guidelines in a memo dated September 27, 2016, entitled *Carp Road Corridor – Nitrate Impact Assessment Recommendations*. The City of Ottawa confirmed in the Phase 3 Pre-consultation: Review Feedback (PC2023-0247, page 9) for this application that the septic impact assessment was eligible for the modified approach outlined in the above noted memo for the Carp Road Corridor.

4) The maximum allowable flow for each lot /block would be determined by the proponent as that which corresponds to a maximum number of users (rather than 1,000 L/day, as per Section 5.6.2 and rather than a calculated number based on Section 5.6.3).

The City of Ottawa has modified the predictive assessment in Section (4) (a) where the nitrate assessment using maximum allowable flow for each block/lot is determined through the maximum number of users where the OSSO indicates that the use of 75 L/day per employee is suitable.

As such, the predictive flow can be based on the maximum number of employees as follows. The proposed industrial development is anticipated to have a total of 60 employees once the two phases are constructed. The predicted sewage flow can be calculated as:

60 employees x 75 L/day = 4.500 L

Additionally, the City memo in Section (5) (a-d) indicates that the consideration of nitrogen reduction technology that is certified by a third party (CAN/BQN 3680-600 or NSF 245) allows the nitrate attenuation assessment to be predicted based on the (modified) minimum concentration of nitrate, for systems that reduce nitrate (as nitrogen) by a minimum of 50%.

So, to establish the sewage flow using the calculation in Section 5.6.3, the following calculations are provided (Attachment D).

Other infiltration factors that were used in the above noted calculations are provided below.

Infiltration is based on moisture surplus and incorporates factors including soils, topography, soil cover and impervious areas (infiltration reduction factors). For this calculation, the background nitrate was assumed to be 0.0 mg/L, as there is currently no development at the site.

The following provides the basis whereby the infiltration reduction factors for the site were chosen for the dilution calculations.

Topographic, soil and land cover infiltration factors were selected from *Table 2* of the MOE *Hydrological Technical Information Requirements for Land Development Applications*. The following is a discussion of each of the infiltration reduction factors chosen for the site.

The site is characterized by flat terrain, based on a topographical survey of the site and the post-development conditions indicate that slope is generally less than 6 percent. The topography factor that applies to the site is 0.30.

The type of land cover observed at the site at the time of site visits and by use of satellite imagery consists mostly of cultivated lands, with some mature trees on the southwest portion of the site. The land cover infiltration factor of 0.10 was selected, which corresponds to cultivated land.

A soil infiltration factor of 0.20 was chosen as the site is indicated to be underlain by silt and silty sand soils, which consist of the soils range from coarse (greater than 50% sand content) to fine textured silt (less than 50% coarse textured). The soil infiltration value that was used corresponds to combinations of clay and loam (glacial till), based on the expected med to low permeability of the soils encountered across the site.

In order to determine water surplus estimates for the site area, Environment Canada published values for Ottawa obtained for the years 1993 to 2003 was used. The expected moisture surplus or net potential infiltration for the site area was estimated 328 millimetres, for the sand to silt type soils that are expected for the site.

Hard Surfaced Area post-development was calculated as follows. The areas of the roofs of the buildings at the site occupy an area of some 3,566 square metres and are not available for infiltration. The parking area consists of asphaltic concrete surfaced areas (hard surfaces) of about 31,137 square metres. For asphalt, the runoff coefficient is 0.9. The gravel surfaced area occupies some 0 square metres with a corresponding runoff coefficient of 0.6. The Net Infiltration Area for the site was calculated as 14,677.7 square metres, which excludes all the expected hard surfaced areas.

The sewage system that is proposed for the development is an EcoFLO tertiary treatment system that is expected to reduce nitrates to 20 mg/L (50% denitrification).

The nitrate impact calculation, using a predicted actual sewage flow of 4,500 L/day indicates that the expected concentration of nitrate at the down gradient property boundary is some 8.4 mg/L, which is within the predicted impact of 10 mg/L. This level of sewage impact is based on a tertiary effluent quality of 20 mg/L N-NO₃. The maximum number of users, based on the long term impact being within 10 mg/L, would allow for a maximum number of employees of 83, which would result in

a combined impact of 9.99 mg/L N-NO_3 . The resulting sewage dilution calculations for the actual number of employees (60) and the maximum number of employees (83) are provided in Attachment D

Based on the above noted information, the expected impact at the down gradient property boundary of the site is expected to be within the allowable limits established by MECP, incorporating the sewage design considerations as discussed in the following section.

2.2 SEWAGE DESIGN CONSIDERATIONS

The sewage design for the site is shown on the D.B. Gray Engineering Drawing No. C-5 (rev. Feb.7, 2025) provided under separate cover as part of a Development Application with the City of Ottawa. The sewage design consists of the following: ECOFLO system with recirculation that provides denitrification.

The sewage design for the site must consist of a tertiary system capable of achieving at least 50% nitrogen removal through denitrification. The Ecoflo Coco Filter ECDn model with recirculation has been certified by a third party (such as CAN/BQN 3680-600 or NSF 245) to achieve a minimum of 50% reduction in nitrogen. The proposed sewage bed is located in the west portion of the site.

It is the responsibility of the owner to ensure that the certified denitrification sewage system is maintained indefinitely as is required by the City of Ottawa and the Ottawa Septic System Office (OSSO) and stipulated in the Carp Road Corridor Study memo as follows:

- A maintenance contract is required between the owner and a maintenance provider with the OSSO maintaining enforcement of these contracts; and
- Owner to contact OSSO regarding additional fees for monitoring and reporting requirements of the treatment system; and
- The City should include draft plan conditions that require the commendations of the nitrate
 attenuation assessment in the subdivision agreement such that future site plan control
 applications would also require nitrate reduction systems. In this case, as it is for SPC, this
 may involve the registering on title that the sewage system servicing of this property requires
 certified nitrate reduction systems (CAN/BQN 3680-600 or NSF 245).

3.0 WELLHEAD PROTECTION

During construction of the future building, the following is required to protect the integrity of the well casing:

- The well is shown to be within about 5 to 7 metres from the proposed building; and
- Well location shall be carefully marked to prevent any damage to the well casing. This could include the placement of temporary field stone/bollards and/or traffic cones; and
- During construction activities, wellhead protection measures should be in place to protect
 the annulus around the wellhead. This means that the excavation for the building shall be
 banked upwards to the well location to limit soil disturbance near the well. As the well
 casing is grouted to a depth of 12.5 metres, there is sufficient wellhead protection in place
 such that soil disturbance in the upper soils will not affect the sealing of the wellhead. Any
 disturbance of soils near the well must be immediately repaired and grading around the well
 should be regarded to ensure drainage away from the well.

After building construction, the grading around the wellhead shall be carried out as follows to comply with well siting requirements and be in accordance with the Ontario Regulation 903:

- The well casing must extend to greater than 400 millimetres above final finished grades around the well; and
- The ground surface shall be graded such that the well is the highest point on the ground surface within 3 metres radially from the exterior of the well casing and shall ensure that water does not collect or pond near the well head.

The supply well is located within the east portion of the site, close to the entrance while the location of the proposed septic system is within the west portion of the site, and is greater than 20 metres from the well location.

The well has been grouted and cased to a depth of about 12.5 metres below the existing ground surface, according to information provided on the well record (Attachment A). The well is physically separated from the driveway and parking lot by the building location. It is recommended that bollards or field stone are placed near the wellhead facing the parking lot to ensure well is physically protected from the access roadway. With these measures in place, it is considered that an adequate amount of wellhead protection is going to be in place to protect the water supply for the proposed light industrial use of the property. The well location is also appropriate for access in case of repairs and well maintenance.

Recommendations for wellhead protection include ensuring that potential contaminant sources are at least 15 metres or more from the well. Possible contaminant sources include; chemical storage, garage and related chemicals, such as antifreeze, gasoline, oils, vehicle/boat/equipment storage, sewer lines, septic systems, animal enclosures, manure or compost piles. If liquid chemicals, such as antifreeze, oil and gasoline/diesel, and their waste products, are to be stored at the site, they should be stored in containers approved for that purpose. The container(s) should be labelled with their contents. Secondary containment should be installed around all bulk liquid chemical or waste storage containers, to collect and contain leaks and spills from the tank and all connections. The sewage system and stormwater management areas must be greater than 15 metres from the well location.

Recommendations for well maintenance include; inspect wellhead annually to ensure that the casing is structurally sound, verify well cap is sealed and that surface water is not pooling around wellhead. The well is located such that it is easily accessible for maintenance/repairs. A lock on the well cap is useful to prevent vandalism.

Based on the results of this evaluation it is considered that the well in question should supply water of adequate quantity and quality for the proposed development with suitable treatment and wellhead protection as indicated above.

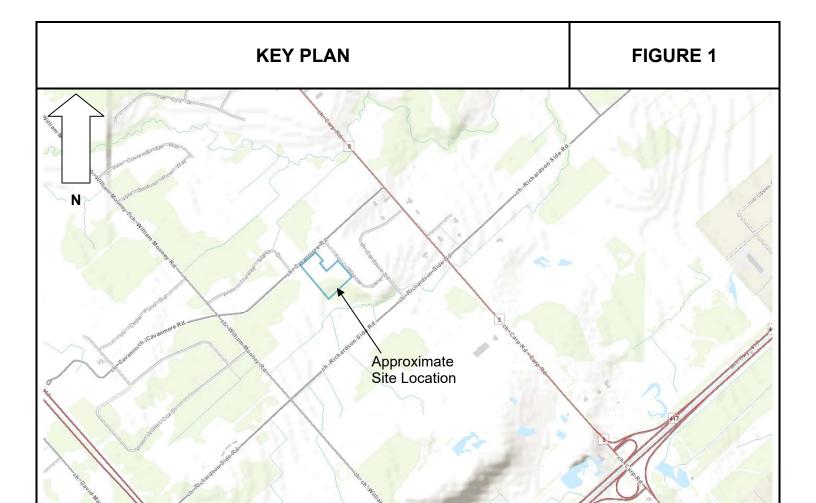
We trust this letter provides sufficient information for your purposes. If you have any questions concerning this letter, please do not hesitate to contact our office.

Yours truly, Kollaard Associates Inc.

Colleen Vermeersch, P. Eng.

Attachments: Figure 1 - Key Plan

Table I - Field Water Quality


Attachment A - Well Record and Certificate of Well Compliance

Attachment B - Pumping Test Data

Attachment C - Well Water Laboratory Test Results and LSI/RSI

Attachment D - Nitrate Dilution Calculations and Climate Data for infiltration

Attachment E -Site Servicing Plan (DB Gray Engineering)
- Ottawa Public Health Manganese Fact Sheet

NOT TO SCALE

Project No. 230403

Date ____August 2023

TABLE I
FIELD WATER QUALITY MEASUREMENTS
FOR TEST WELL 1

Time Since Pumping Test Started	Temperature (°C)	рН	Turbidity (NTU)	Total Dissolved Solids	Conductivity	*Free Chlorine
	(C)		(1410)		(μS)	
(min)				(ppm)		(ppm)
60	12.9	7.82	14.4	382	753	0.0 +/-
						0.03
120	13.2	7.66	13.2	375	742	-
180	12.9	7.62	5.67	371	749	0.0 +/-
						0.03
240	13.0	7.66	5.31	370	731	-
300	13.0	7.56	4.79	380	751	-
360	13.1	7.64	4.23	375	746	0.0 +/-
						0.03

^{*}tolerance within 3%

ATTACHMENT A

MOE WELL RECORD FOR TW1 PROVIDED BY WELL DRILLER

Certificate of Well Compliance

Engineer

TROY SAUNDERS DO HEREBY CERTIFY that I am licensed to drill
wells in the Province of Ontario, and that I have supervised the drilling of a well on the property
of SUNBELT RENTALS (name of landowner),
located at 151 WESCAR LANE (Legal description, Lot/Plan No.)
in the City of Ottawa (Geographic Township of
Lot, Concession, Plan #, S/L#
WE CERTIFY FURTHER that we are aware of the well drilling requirements, the guidelines,
recommendations and regulations of the Ministry of the Environment governing well installations
in the Province of Ontario, and the standards specified in any subdivision agreement and
hydrogeological report applicable to the site and City Standards.
·
AND WE DO HEREBY CERTIFY THAT the said well has been drilled, cased, and grouted
(cement or bentonite) as applicable and constructed in strict conformity with the standards
required.
Signed this 25th day of JULY / 23 Loy Lau SAUNDERS WELL DRILLING LTD Well Driller/Company
The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the
well and it was constructed in accordance with the specifications in O.Reg.903, this report and
the Hydrogeological Report with regards to casing length and grouting requirements.
Signed this 26th day of July 2023
allema

K Kd

Kollaard Associates
Engineers
P.O. Box 189
210 Prescott Street, Unit 1
Kemptville, Ontario K0G 1J0

Ministry of the Environment, Ontario V Well Record Well Tag No. (Place Sticker and/or Print Below) Conservation and Parks Regulation 903 Ontario Water Resources Act A366326 Measurements recorded in: | Imperial Page Well Owner's Information Last Name/Organization First Name E-mail Address □ Well Constructed SUNBELT RENTALS OF CANADA by Well Owner Municipality 1NC Mailing Address (Street Number/Name) Province Postal Code Telephone No. (inc. area code) OTTAWA ONT SHEFFIELD RD KITOAS Well Location Address of Well Location (Street Number/Name) Township 6 TTAWA 151 WESCAR LANE County/District/Municipality City/Town/Village Postal Code Province OTTAWA Ontario KOAILO UTM Coordinates Zone, Easting NAD | 8 | 3 | 1 | 8 | 4 | 2 | 3 | Northing | 5015885 Municipal Plan and Sublot Number Other Overburden and Bedrock Materials/Abandonment Sealing Record (see instructions on the back of this form) Depth (m/ft) From To Most Common Material Other Materials BROWN 8 SAND GREY CLAY, SILTY STONES GREY LAYERS GREY CLAY & STONES 34 SAND 38 SAND, STONES PACKED TILL LIMESTONE 16C **Annular Space** Results of Well Yield Testing Type of Sealant Used (Material and Type) Volume Placed (m³/ft³) Depth Set at (m/ft) From To After test of well yield, water was Draw Down Recovery Time Water Level Time Water Level (min) (m/ft) (min) (m/ft) Clear and sand free 10053ft3 Other, specify CLEARING BENTONITE GROUT Static If pumping discontinued, give reason: 6.60 NEAT CEMENT 3.51 Pt 12.60 11,60 Pump intake set at (m/ft) 15.20 9,90 150 3 9.05 Pumping rate (I/min / GPM) Method of Construction Well Use Commercial 18,20 8.5 Public ☐ Not used Cable Tool ☐ Diamond **Duration of pumping** Rotary (Conventional Rotary (Reverse) Jetting Domestic Municipal Dewatering 18,60 A hrs + O min Driving Livestock Test Hole ☐ Monitoring Boring Irrigation al water level end of pumping (m/ft) Digging Cooling & Air Conditioning 10 7,45 18.45 X Air percussion Industrial Other, specify Other, specify 17.30 7010 If flowing give rate (I/min/GPM) Construction Record - Casing Status of Well 20 17.40 Open Hole OR Material (Galvanized, Fibreglass, Concrete, Plastic, Steel) Wall Thicknes (cm/in) Water Supply
Replacement Well Recommended pump rate (I/min/GPM) Inside Depth (m/ft) Recommended pump depth (m/ft) 7.45 25 6.85 From To Test Hole 30 6,80 Recharge Well 41 STEEL 0188 4 Dewatering Well 40 6,75 17.65 Observation and/or Monitoring Hole DPEN HOLF 160 Well production (I/min/GPM) 6.70 50 7,80 Alteration Disinfected? (Construction) Yes No 7,70 60 6,60 60 Abandoned. Insufficient Supply Construction Record - Screen Map of Well Location Abandoned, Poor Water Quality Please provide a map below following instructions on the back Outside Material (Plastic, Galvanized, Steel) Depth (m/ft) Diameter Abandoned, other, (cm/in) specify Other, specify Water Details Hole Diameter Water found at Depth Kind of Water: Fresh Muntested Depth (m/ft) Diameter 60 - (in) Gas Other, specify ORO TRACKED 93 ESCAR Water found at Depth Kind of Water: Fresh Muntested 100 Gas Other, specify YORO FRACED 160 Water found at Depth Kind of Water: Fresh Untested (m/ft) Gas Other, specify Well Contractor and Well Technician Information Business Name of Well Contractor SAUNDERS 8 WELL DRILLING Business Address (Street Number/Name) Comments: 1680 Province SCHEEL Postal Code BRAESIDE Business E-mail Address KOA160 Ministry Use Only ONT. Date Package Delivered Well owner's information Audit No. **Z**399159 area code) Name of Well Technician (Last Name, First Name) 20230761 16 SAUUDERS TROY
Signature of Techniquan and/or Contractor Date Submitted Date Work Completed X Yes 2023076 1004 ☐ No 2023081

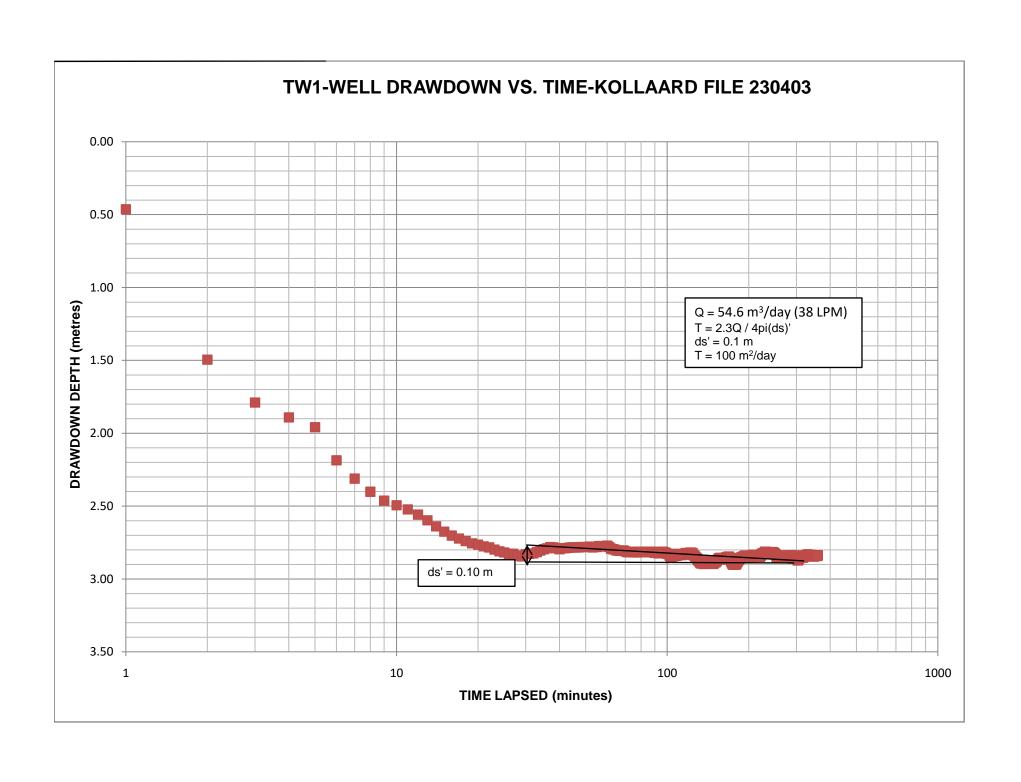
Ministry's Copy

0506E (2020/06)

© Queen's Printer for

ATTACHMENT B PUMPING TEST DATA FOR TW1

Kollaard File 230403 DRAWDOWN DATA TW1

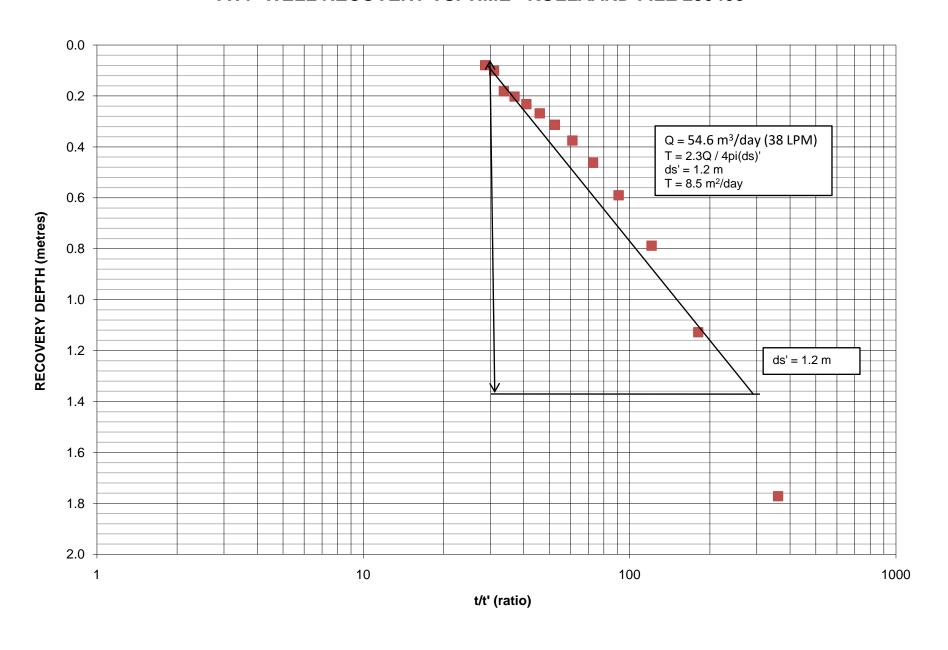

Pump Rate 38 litres/minute

Time Lapsed (minutes)	Abs Pres (kPa)	Temp (°C)	Water Level (m)	Drawdown (m)
0	414.732	10.063	-2.5	0.00
1	410.194	9.768	-2.963	0.46
2	400.069	9.472	-3.995	1.50
3	397.186	9.275	-4.289	1.79
4	396.184	9.176	-4.391	1.89
5	395.533	9.077	-4.458	1.96
6	393.303	8.978	-4.685	2.19
7	392.068	8.879	-4.811	2.31
8	391.184	8.779	-4.901	2.40
9	390.592	8.68	-4.962	2.46
10	390.27	8.68	-4.994	2.49
11	390	8.581	-5.022	2.52
12	389.649	8.581	-5.058	2.56
13 14	389.269 388.853	8.581 8.481	-5.097	2.60 2.64
15	388.502	8.481	-5.139 -5.175	2.68
16	388.239	8.481	-5.202	2.70
17	388.035	8.481	-5.222	2.72
18	387.86	8.481	-5.24	2.74
19	387.713	8.481	-5.255	2.76
20	387.626	8.481	-5.264	2.76
21	387.509	8.481	-5.276	2.78
22	387.443	8.382	-5.283	2.78
23	387.297	8.382	-5.298	2.80
24	387.18	8.382	-5.31	2.81
25	387.093	8.382	-5.318	2.82
26	387.005	8.382	-5.327	2.83
27	387.005	8.382	-5.327	2.83
28	386.888	8.382	-5.339	2.84
29	386.83	8.382	-5.345	2.85
30	386.976	8.382	-5.33	2.83
31	387.005	8.382	-5.327	2.83
32	387.034	8.382	-5.324	2.82
33	387.122	8.382	-5.315	2.82
34	387.239	8.382	-5.304	2.80
35	387.326	8.382	-5.295	2.80
36	387.385	8.382	-5.289	2.79
37	387.472	8.382	-5.28	2.78
38	387.443	8.382	-5.283	2.78
39	387.385	8.382	-5.289	2.79
40	387.326	8.382	-5.295	2.80
41	387.385	8.382	-5.289	2.79
42	387.385	8.382	-5.289	2.79
43 44	387.414 387.443	8.382 8.382	-5.286 -5.283	2.79 2.78
45	387.443	8.382	-5.283	2.78
46	387.443	8.382	-5.283	2.78
47	387.443	8.382	-5.283	2.78
48	387.472	8.382	-5.28	2.78
49	387.472	8.382	-5.28	2.78
50	387.472	8.382	-5.28	2.78
51	387.472	8.382	-5.28	2.78
52	387.502	8.382	-5.277	2.78
53	387.443	8.382	-5.283	2.78
54	387.472	8.382	-5.28	2.78
55	387.472	8.382	-5.28	2.78
56	387.531	8.382	-5.274	2.77
57	387.531	8.382	-5.274	2.77
58	387.531	8.382	-5.274	2.77
59	387.502	8.382	-5.277	2.78
60	387.56	8.382	-5.271	2.77
61	387.472 387.355	8.382	-5.28	2.78
62 63		8.382	-5.292	2.79 2.80
63 64	387.326 387.297	8.382 8.382	-5.295 -5.298	2.80
65	387.237	8.382	-5.304	2.80
66	387.239	8.382	-5.304	2.80
67	387.209	8.382	-5.307	2.81
68	387.209	8.382	-5.307	2.81
69	387.239	8.382	-5.304	2.80
70	387.18	8.382	-5.31	2.81
71	387.122	8.382	-5.315	2.82
72	387.122	8.382	-5.315	2.82
73	387.122	8.382	-5.315	2.82
74	387.122	8.382	-5.315	2.82
75	387.151	8.382	-5.312	2.81
76	387.093	8.382	-5.318	2.82
77	387.122	8.382	-5.315	2.82
78	387.093	8.382	-5.318	2.82
79	387.122	8.382	-5.315	2.82
80	387.151	8.382	-5.312	2.81
81	387.122	8.382	-5.315	2.82
82	387.151	8.382	-5.312	2.81
83	387.151	8.382	-5.312	2.81
84	387.151	8.382	-5.312	2.81
or.	207 422			
85 86	387.122 387.122	8.382 8.382	-5.315 -5.315	2.82 2.82

87	387.122	0 202	-5.315	2.82
		8.382		
88	387.151	8.382	-5.312	2.81
89	387.093	8.382	-5.318	2.82
90	387.063	8.382	-5.321	2.82
91	387.063	8.382	-5.321	2.82
92	387.122	8.382	-5.315	2.82
93	387.034	8.382	-5.324	2.82
94	387.093	8.382	-5.318	2.82
95	387.122	8.382	-5.315	2.82
96	387.151	8.382	-5.312	2.81
97	387.122	8.382	-5.315	2.82
98	387.093	8.382	-5.318	2.82
99	387.063	8.382	-5.321	2.82
100	387.005	8.382	-5.327	2.83
101	387.005	8.382	-5.327	2.83
102	386.888	8.382	-5.339	2.84
103	386.801	8.382	-5.348	2.85
104	386.83	8.382	-5.345	2.85
105	386.83	8.382	-5.345	2.85
106	386.888	8.382	-5.339	2.84
107	386.859	8.382	-5.342	2.84
108	386.976	8.382	-5.33	2.83
109	386.888	8.382	-5.339	2.84
110	387.005	8.382	-5.327	2.83
111	386.976	8.382	-5.33	2.83
112	386.947	8.382	-5.333	2.83
113	386.917	8.382	-5.336	2.84
114	386.947	8.382	-5.333	2.83
115	386.947	8.382	-5.333	2.83
116	386.976	8.382	-5.33	2.83
117	387.063	8.382	-5.321	2.82
118	387.034	8.382	-5.324	2.82
119	387.034	8.382	-5.324	2.82
			-5.321	
120	387.063	8.382		2.82
121	387.034	8.382	-5.324	2.82
122	387.093	8.382	-5.318	2.82
123	387.063	8.382	-5.321	2.82
124	387.063	8.382	-5.321	2.82
125	386.917	8.382	-5.336	2.84
126	386.888	8.382	-5.339	2.84
127	386.801	8.382	-5.348	2.85
128	386.742	8.382		2.85
			-5.354	
129	386.684	8.382	-5.36	2.86
130	386.567	8.382	-5.372	2.87
131	386.508	8.382	-5.378	2.88
132	386.421	8.382	-5.387	2.89
133	386.362	8.382	-5.393	2.89
134	386.421	8.382	-5.387	2.89
135	386.392	8.382	-5.39	2.89
136	386.333	8.382	-5.396	2.90
				2.90
137	386.333	8.382	-5.396	
138	386.392	8.382	-5.39	2.89
139	386.45	8.382	-5.384	2.88
140	386.421	8.382	-5.387	2.89
141	386.508	8.382	-5.378	2.88
142	386.508	8.382	-5.378	2.88
143	386.508	8.382	-5.378	2.88
144	386.479	8.382	-5.381	2.88
145	386.45	8.382	-5.384	2.88
146	386.421	8.382	-5.387	2.89
147	386.362	8.382	-5.393	2.89
148	386.333	8.382	-5.396	2.90
149	386.392	8.382	-5.39	2.89
150	386.45	8.382	-5.384	2.88
151	386.45	8.382	-5.384	2.88
152	386.508	8.382	-5.378	2.88
153	386.596	8.382	-5.369	2.87
154	386.625	8.382	-5.366	2.87
155	386.713	8.382	-5.357	2.86
156	386.713	8.382	-5.357	2.86
157	386.742	8.382	-5.354	2.85
158	386.713	8.382	-5.357	2.86
159	386.654	8.382	-5.357 -5.363	2.86
160	386.625	8.382	-5.366	2.87
161	386.625	8.382	-5.366	2.87
162	386.654	8.382	-5.363	2.86
163	386.684	8.382	-5.36	2.86
164	386.713	8.382	-5.357	2.86
165	386.771	8.382	-5.351	2.85
166	386.771	8.382	-5.351	2.85
167	386.801	8.382	-5.348	2.85
168	386.801	8.382	-5.348	2.85
169	386.83	8.382	-5.345	2.85
170	386.742	8.382	-5.354	2.85
171	386.742	8.382	-5.354	2.85
172	386.508	8.382	-5.378	2.88
173	386.421	8.382	-5.387	2.89
174	386.333	8.382	-5.396	2.90
175	386.275	8.382	-5.402	2.90
176	386.275	8.382	-5.402	2.90
177	386.304	8.382	-5.399	2.90
178	386.304	8.382	-5.399	2.90
179	386.275	8.382	-5.402	2.90

180	386.333	8.382	-5.396	2.90
181	386.421	8.382	-5.387	2.89
182	386.479	8.382	-5.381	2.88
183	386.567	8.382	-5.372	2.87
184	386.596	8.382	-5.369	2.87
185	386.713	8.382	-5.357	2.86
	386.684			
186		8.382	-5.36	2.86
187	386.742	8.382	-5.354	2.85
188	386.771	8.382	-5.351	2.85
189	386.771	8.382	-5.351	2.85
190	386.801	8.382	-5.348	2.85
191	386.83	8.382	-5.345	2.85
192	386.83	8.382	-5.345	2.85
193	386.859	8.382	-5.342	2.84
194	386.888	8.382	-5.339	2.84
195	386.859	8.382	-5.342	2.84
196	386.859	8.382	-5.342	2.84
197	386.83	8.382	-5.345	2.85
198	386.801	8.382	-5.348	2.85
199	386.888	8.382	-5.339	2.84
200	386.771	8.382	-5.351	2.85
201	386.713	8.382	-5.357	2.86
202	386.742	8.382	-5.354	2.85
203	386.771	8.382	-5.351	2.85
204	386.801	8.382	-5.348	2.85
205	386.83	8.382	-5.345	2.85
206	386.83	8.382	-5.345	2.85
207	386.947	8.382	-5.333	2.83
208	386.83	8.382	-5.345	2.85
209	386.801	8.382	-5.348	2.85
210	386.83	8.382	-5.345	2.85
211	386.888	8.382	-5.339	2.84
212	386.801	8.382	-5.348	2.85
213	386.917	8.382	-5.336	2.84
214	386.947	8.382	-5.333	2.83
215	386.888	8.382	-5.339	2.84
216	386.947	8.382	-5.333	2.83
217	386.859	8.382	-5.342	2.84
218	386.83	8.382	-5.345	2.85
219	386.888	8.382	-5.339	2.84
220	386.801	8.382	-5.348	2.85
221	386.947	8.382	-5.333	2.83
222	386.888	8.382	-5.339	2.84
223	387.005	8.382	-5.327	2.83
224	387.005	8.382	-5.327	2.83
225	387.005	8.382	-5.327	2.83
226	387.063	8.382	-5.321	2.82
227	387.005	8.382	-5.327	2.83
228	387.034	8.382	-5.324	2.82
229	387.093	8.382	-5.318	2.82
230	387.151	8.382	-5.312	2.81
231	387.093	8.382	-5.318	2.82
232	387.151	8.382	-5.312	2.81
233	387.034	8.382	-5.324	2.82
234	387.093	8.382	-5.318	2.82
235	387.093	8.382	-5.318	2.82
236	387.093	8.382	-5.318	2.82
237	387.063	8.382	-5.321	2.82
238	387.093	8.382	-5.318	2.82
239	387.034	8.382	-5.324	2.82
240	387.063	8.382	-5.321	2.82
241	387.093	8.382	-5.318	2.82
242	387.034	8.382	-5.324	2.82
243	387.063	8.382	-5.321	2.82
244	387.005	8.382	-5.327	2.83
245	387.034	8.382	-5.324	2.82
246	387.122	8.382	-5.315	2.82
247	387.063	8.382	-5.321	2.82
248	387.063	8.382	-5.321	2.82
249	387.034	8.382	-5.324	2.82
250	387.034	8.382	-5.324	2.82
251	386.976	8.382	-5.33	2.83
252	386.917	8.382	-5.336	2.84
253	386.83	8.382	-5.345	2.85
254	386.771	8.382	-5.351	2.85
255	386.742	8.382	-5.354	2.85
256	386.713	8.382	-5.357	2.86
257	386.713	8.382	-5.357	2.86
258	386.713	8.382	-5.357	2.86
259	386.742	8.382	-5.354	2.85
260	386.771	8.382	-5.351	2.85
261	386.771	8.382	-5.351	2.85
262	386.801	8.382	-5.348	2.85
263	386.771	8.382	-5.351	2.85
264	386.801	8.382	-5.348	2.85
265	386.859	8.382	-5.342	2.84
266	386.888	8.382	-5.339	2.84
267	386.888	8.382	-5.339	2.84
268	386.888	8.382	-5.339	2.84
269	386.888	8.382	-5.339	2.84
270	386.83	8.382	-5.345	2.85
271	386.771	8.382	-5.351	2.85
272	386.742	8.382	-5.354	2.85
		-		

272	200 742	0.202	F 354	2.05
273	386.742	8.382	-5.354	2.85
274	386.801	8.382	-5.348	2.85
275	386.83	8.382	-5.345	2.85
276	386.859	8.382	-5.342	2.84
	386.888	8.382	-5.339	2.84
277				
278	386.83	8.382	-5.345	2.85
279	386.859	8.382	-5.342	2.84
280	386.859	8.382	-5.342	2.84
281	386.83	8.382	-5.345	2.85
282	386.859	8.382	-5.342	2.84
283	386.888	8.382	-5.339	2.84
284	386.888	8.382	-5.339	2.84
285	386.859	8.382	-5.342	2.84
286	386.888	8.382	-5.339	2.84
287	386.917	8.382	-5.336	2.84
288	386.801	8.382	-5.348	2.85
289	386.83	8.382	-5.345	2.85
290	386.684	8.382	-5.36	2.86
291	386.713	8.382	-5.357	2.86
292	386.771	8.382	-5.351	2.85
293	386.83	8.382	-5.345	2.85
294	386.771	8.382	-5.351	2.85
295	386.859	8.382	-5.342	2.84
296	386.859	8.382	-5.342	2.84
297	386.859	8.382	-5.342	2.84
298	386.888	8.382	-5.339	2.84
299	386.859	8.382	-5.342	2.84
300	386.888	8.382	-5.339	2.84
301	386.859	8.382	-5.342	2.84
302	386.654	8.382	-5.363	2.86
303	386.567	8.382	-5.372	2.87
304	386.567	8.382	-5.372	2.87
305	386.625			2.87
		8.382	-5.366	
306	386.625	8.382	-5.366	2.87
307	386.684	8.382	-5.36	2.86
308	386.742	8.382	-5.354	2.85
	386.742			
309		8.382	-5.354	2.85
310	386.83	8.382	-5.345	2.85
311	386.771	8.382	-5.351	2.85
312	386.859	8.382	-5.342	2.84
313		8.382	-5.351	
	386.771			2.85
314	386.771	8.382	-5.351	2.85
315	386.771	8.382	-5.351	2.85
316	386.771	8.382	-5.351	2.85
317	386.742			
		8.382	-5.354	2.85
318	386.771	8.382	-5.351	2.85
319	386.801	8.382	-5.348	2.85
320	386.859	8.382	-5.342	2.84
321	386.859	8.382	-5.342	2.84
322	386.83	8.382	-5.345	2.85
323	386.888	8.382	-5.339	2.84
324	386.859	8.382	-5.342	2.84
325	386.917	8.382	-5.336	2.84
326	386.859	8.382	-5.342	2.84
327	386.888	8.382	-5.339	2.84
328	386.917	8.382	-5.336	2.84
329	386.917	8.382	-5.336	2.84
				-
330	386.976	8.382	-5.33	2.83
331	386.947	8.382	-5.333	2.83
332	386.917	8.382	-5.336	2.84
333	386.947	8.382	-5.333	2.83
			-5.339	
334	386.888	8.382		2.84
335	386.888	8.382	-5.339	2.84
336	386.888	8.382	-5.339	2.84
337	386.83	8.382	-5.345	2.85
338	386.888	8.382	-5.339	2.84
339	386.947	8.382	-5.333	2.83
340	386.947	8.382	-5.333	2.83
341	386.917	8.382	-5.336	2.84
342	386.859	8.382	-5.342	2.84
343	386.859	8.382	-5.342	2.84
344	386.917	8.382	-5.336	2.84
345	386.83	8.382	-5.345	2.85
346	386.83	8.382	-5.345	2.85
347				2.84
	386.859	8.382	-5.342	-
348	386.83	8.382	-5.345	2.85
349	386.83	8.382	-5.345	2.85
350	386.83	8.382	-5.345	2.85
351	386.859	8.382	-5.342	2.84
352	386.859	8.382	-5.342	2.84
353	386.859	8.382	-5.342	2.84
354	386.888	8.382	-5.339	2.84
355	386.888	8.382	-5.339	2.84
356	386.859	8.382	-5.342	2.84
357	386.888	8.382	-5.339	2.84
358	386.888	8.382	-5.339	2.84
359	386.917	8.382	-5.336	2.84
360	386.888	8.382	-5.339	2.84



Kollaard File 230403

RECOVERY DATA TW-1

t'	t' t / t'		Temp	Water Level	Drawdown	Recovery
		(kPa)	(°C)	(m)	(m)	(%)
1	361.0	397.351	8.382	-4.272	1.77	38%
2	181.0	403.671	8.382	-3.628	1.13	60%
3	121.0	407.009	8.382	-3.288	0.79	72%
4	91.0	408.942	8.382	-3.09	0.59	79%
5	73.0	410.201	8.382	-2.962	0.46	84%
6	61.0	411.051	8.382	-2.875	0.38	87%
7	52.4	411.666	8.382	-2.813	0.31	89%
8	46.0	412.106	8.382	-2.768	0.27	91%
9	41.0	412.457	8.382	-2.732	0.23	92%
10	37.0	412.75	8.382	-2.702	0.20	93%
11	33.7	412.955	8.382	-2.681	0.18	94%
12	31.0	413.755	8.481	-2.6	0.10	96%
13	28.7	413.96	8.481	-2.579	0.08	97%

TW1- WELL RECOVERY VS. TIME - KOLLAARD FILE 230403

ATTACHMENT C

RESULTS OF LABORATORY TESTING OF WELL WATER SAMPLES

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS: 3652844

WORK REQUEST : 100231719 Report Date : 2023-08-03

Kollaard Associates Inc. 210 Prescott St., Box 189

Kemptville, ON K0G 1J0

Attention: Colleen Vermeersch

Reception Date: 2023-07-26 Project: 230403

Sampler: NA

PO Number: Not Applicable

Temperature: 13 °C

Analysis	Quantity	External Method
Alkalinity (Water, Automated)	2	Modified from SM 2320 B
Ammonia, Total (Water, Colorimetry)	2	Modified from EPA 350.1
Chloride (Water, IC)	2	Modified from SM 4110 B and C
Colour, Apparent (Water, Spectrophotometry)	2	Modified from SM 2120 C
Colour, True (Water, Spectrophotometry)	2	Modified from SM 2120 C
Conductivity (Water, Automated)	2	Modified from SM 2510 B
DOC (Water, IR)	2	Modified from SM 5310 B
Fluoride (Water, Auto/ISE)	2	Modified from SM 4500-F A and 4500-F C
Hardness (Water, Calculation Only)	2	SM 2340 B
Ion Balance (Water, Calculation)	2	Modified from SM1030 E
Lab Filtration (Water, Sample Preparation)	2	Lab Prep
Metals Scan (Water, ICP/MS)	2	Modified from EPA 200.8
Metals Scan (Water, ICP/OES)	2	Modified from SM 3120 B
Nitrate (Water, IC)	2	Modified from SM 4110 B and C
Nitrite (Water, IC)	2	Modified from SM 4110 B and C
pH (25°C) (Water, Automated)	2	Modified from SM 4500-H+ B
Phenols (Water, Colorimetry)	2	Modified from EPA 420.2
Sulphate (Water, IC)	2	Modified from SM 4110 B and C
Sulphide (Water, Colorimetry)	2	Modified from SM 4500-S2 D
* Tannins and Lignins (Subcontract)	2	
TDS (Estimated)	2	Modified from SM 2510 A
Total Kjeldahl Nitrogen (Water, Colorimetry)	2	Modified from EPA 351.2
Turbidity (Water, Turbidimeter)	2	Modified from SM 2130 B

Criteria:

A: Ontario Regulation 169/03 (Non-Regulated Drinking Water)

Sample status upon receipt :

7100668 7100669

Compliant

Certificate Comments:

7100668

S2- MRL was elevated for the samples in this BCDA report due to matrix interference, a dilution was done. CI spk not available due to high native analyte concentration for all the samples in this BCDA report.

Notes:

- All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated.
- Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/
- Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Legend:

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

RL : Reporting limit N/A : Not applicable * : Analysis conducted by external subcontracting QC : Reference material (QC) 1 : Results in annex ^ : Analysis not accredited

OFFICIAL CERTIFICATE OF ANALYSIS - EXCEEDENCE SUMMARY

Client: Kollaard Associates Inc.

Sample No Colour, Apparent (Wa	Client Sample			11.76	Exceeded Criteria			
Sample No	Identification	Analyte	Result	Units	Α	В	С	
Colour, Appar	ent (Water, Spectrophoto	metry)						
7100668	TW1-3 hrs	Colour (Apparent)	37	TCU	5			
7100669	TW1-6 hrs	Colour (Apparent)	27	TCU	5			
Hardness (Wa	ter, Calculation Only)							
7100668	TW1-3 hrs	Hardness as CaCO3 (Calculation)	336	mg/L	80-100			
7100669	TW1-6 hrs	Hardness as CaCO3 (Calculation)	339	mg/L	80-100			
Metals Scan (Water, ICP/MS)							
7100669	TW1-6 hrs	Antimony	0.0064	mg/L	0.006			
7100668	TW1-3 hrs	Iron	1.58	mg/L	0.3			
7100669	TW1-6 hrs	Iron	1.58	mg/L	0.3			
7100668	TW1-3 hrs	Manganese	0.15	mg/L	0.05			
7100669	TW1-6 hrs	Manganese	0.15	mg/L	0.05			
TDS (Estimate	ed)							
7100668	TW1-3 hrs	TDS (Estimated) [^]	515	mg/L	500			
7100669	TW1-6 hrs	TDS (Estimated)^	522	mg/L	500			
Turbidity (Wat	ter, Turbidimeter)							
7100668	TW1-3 hrs	Turbidity	23.2	NTU	5			
7100669	TW1-6 hrs	Turbidity	20.2	NTU	5			

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS

Client: Kollaard Associates Inc.

Project: 230403				Eurofins Sam				·	tion Date: 2023-07
			7100668	7100669					
			Drinking water	Drinking water					
			2023-07-25	2023-07-25					
			Client S	Sample Identii	ng Date :	TW1-3 hrs	TW1-6 hrs		
Anions				Criteria					
	RL	Unit	Α	В	С				
Chloride	0.5	mg/L	250			52.3	54.3		
Nitrate (as Nitrogen)	0.1	mg/L	10.0			<0.1	<0.1		
Nitrite (as Nitrogen)	0.1	mg/L	1.0			<0.1	<0.1		
Sulphate	1	mg/L	500			35	36		
				Eurofins Sam	nple No :	7100668	7100669		
					Matrix :	Drinking	Drinking		
						water	water		
				Samplin	ng Date :	2023-07-25	2023-07-25		
			Client S	Sample Identif		TW1-3 hrs	TW1-6 hrs		
Calculations			Criteria						
	RL	Unit	Α	В	С				
Hardness as CaCO3 (Calculation)	1	mg/L	80-100			336	339		
Ion Balance (Calculation)^	0.1					0.94	0.92		
				Eurofins Sam	nole No :	7100668	7100669		
				Luioiiiis Saiii	Matrix:	Drinking	Drinking		
					iviatiix .	water	water		
				Samplin	ng Date :	2023-07-25	2023-07-25		
			Client S	Sample Identi	-	TW1-3 hrs	TW1-6 hrs		
General Chemistry				Criteria					
-	RL	Unit	Α	В	С				
Alkalinity (as CaCO3)	5	mg/L	500			343	357		
Colour (Apparent)	2	TCU	5			37	27		
Colour (True)	2	TCU				3	3		
Conductivity @ 25°C	5	μS/cm				793	803		
Dissolved Organic Carbon	0.5	mg/L	5			3.3	3.7		
Fluoride	0.1	mg/L	1.5			0.38	0.38		
pH @ 25°C	1		6.5-8.5			7.61	7.62		
Sulphide (S2-)	0.01	mg/L	0.05			<0.05	<0.05		
						<0.5	<0.5		
Tannins and Lignins*		NTU	5			23.2	20.2		

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS

Client: Kollaard Associates Inc.

Eurofins Sample No :							7100669		
		Drinking water	Drinking water						
		2023-07-25	2023-07-25						
	TW1-3 hrs	TW1-6 hrs							
Metals				Sample Ider Criteria					
	RL	Unit	Α	В	С				
Metals Scan (Water, ICP/MS)									
Aluminum	0.01	mg/L	0.1			<0.01	<0.01		
Antimony	0.0005	mg/L	0.006			0.0015	0.0064		
Arsenic	0.001	mg/L	0.01			<0.001	<0.001		
Barium	0.001	mg/L	1			0.283	0.287		
Beryllium	0.0005	mg/L				<0.0005	<0.0005		
Boron	0.01	mg/L	5			0.02	0.02		
Cadmium	0.0001	mg/L	0.005			<0.0001	0.0001		
Chromium	0.001	mg/L	0.05			<0.001	<0.001		
Cobalt	0.0002	mg/L				<0.0002	<0.0002		
Copper	0.001	mg/L	1			<0.001	<0.001		
Iron	0.03	mg/L	0.3			1.58	1.58		
Lead	0.001	mg/L	0.01			<0.001	<0.001		
Manganese	0.01	mg/L	0.05			0.15	0.15		
Mercury	0.0001	mg/L	0.001			<0.0001	<0.0001		
Molybdenum	0.005	mg/L				<0.005	0.005		
Nickel	0.005	mg/L				<0.005	<0.005		
Selenium	0.001	mg/L	0.05			<0.001	<0.001		
Silver	0.0001	mg/L				<0.0001	<0.0001		
Strontium	0.001	mg/L				0.496	0.493		
Thallium	0.0001	mg/L				0.0001	0.0005		
Uranium	0.001	mg/L	0.02			<0.001	0.002		
Vanadium	0.001	mg/L				<0.001	<0.001		
Zinc	0.01	mg/L	5			<0.01	<0.01		
•	1 2.2.	<u> </u>			<u> </u>			<u> </u> 	
				Eurofins Sa	imple No :	7100668	7100669		
					Matrix :	Drinking water	Drinking water		
				Samn	ling Date :	2023-07-25	2023-07-25		
			Cliont	-	-		TW1-6 hrs		
Metals, Water, ICP/OES			Ciletit	Sample Ider	iuiicatiUII .	1 44 1-9 1118	1441-01112		
माठावाउ, गगवाडा, 101 /023	RL	Unit	Α	Criteria B	С				
Matala Casa (Matan 100/050)	112	Oint							
Metals Scan (Water, ICP/OES)	4	mg/L				92	93		
Calcium	1	mg/L				25	26		
Magnesium	1	-							
Potassium	1	mg/L	200			1	1		
Sodium	1	mg/L	200			41	42		

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS

Client: Kollaard Associates Inc.

Project: 230403 Reception Date: 2023-07-26

1 10,000 . 200 100							 1011 Date: 2020 01 2
	Eurofins	Sample No :	7100668	7100669			
		Matrix:	Drinking	Drinking			
			water	water			
	Sar	mpling Date :	2023-07-2	5 2023-07-25			
Client Sample Identification :		TW1-3 hr	s TW1-6 hrs				
Nutrients	RL	Unit					
Ammonia (Total, as Nitrogen)	0.02	mg/L	0.127	0.127			
Total Kjeldahl Nitrogen	0.1	mg/L	0.405	0.301			
	Eurofins Sample No :		7100668	7100669			
Matrix:			Drinking	Drinking			
Sampling Date : Client Sample Identification :			water	water			
			2023-07-2	5 2023-07-25			
			TW1-3 hr	s TW1-6 hrs			
Phenols-4AAP	RL	Unit					
Phenols-4AAP	0.001	mg/L	<0.001	<0.001			
	7100668	7100669					
	Eurofins Sample No : Matrix :			Drinking water			
	Sar	mpling Date :	2023-07-2	5 2023-07-25			
Clier		dentification:	TW1-3 hr	s TW1-6 hrs			
Sample Preparation	RL	Unit					
Lab Filtration			<y></y>	<y></y>			
			E	urofins Sample No :	7100668	7100669	
	Matrix:						
					water	water	
				Sampling Date :	2023-07-25	2023-07-25	
			Client Sa	mple Identification :	TW1-3 hrs	TW1-6 hrs	
Solids				Criteria			
	RL	Unit	A	ВС			
TDS (Estimated) [^]	5	mg/L	500		515	522	

Approved by:

Raheleh Zafari, Ottawa, Environmental Chemist, PhD

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Kollaard Associates Inc.

Parameter	Unit	RL	Blank		QC		Matrix Spike		licate
	Offit			Recovery %	Range %	Recovery %	Range %	RPD %	Range %
Alkalinity (Water, Automated)									
Me	ethod : Alkalinity (water, ti			,		T-WI45398.			
Alkalinity (as CaCO3)	mg/L	5	<5	97	95-105			1	0-20
	Associated San	nples : 71006	68, 7100669				A	Prep Date Analysis Date	: 2023-07-28 : 2023-07-3
Ammonia, Total (Water, Colorimetry)									
	Method : Ammonia (Nater, Colorii	metry). Interna	al method: OTT-	I-NUT-WI46	201.			
Ammonia (Total, as Nitrogen)	mg/L	0.02	<0.020	103	80-120	108	80-120	-	0-20
	Associated San	nples : 71006	68, 7100669				A	Prep Date Analysis Date	: 2023-07-28 : 2023-07-28
Chloride (Water, IC)									
	Method : Anions (Wate	er, Ion Chrom	atography). In	ternal method: C	DTT-I-IC-WI	45985.			
Chloride	mg/L	0.5	<0.5	96	88-112			3	0-20
	Associated San	nples : 71006	68, 7100669				A	Prep Date Analysis Date	: 2023-07-31 : 2023-08-01
Colour, Apparent (Water, Spectrophoto	ometry)								
	Method : Colour (Water,	Spectrophot	ometric). Inter	nal method: OT	T-I-SPEC-W	(145980.			
Colour (Apparent)	TCU	2	<2	103	90-110			4	0-40
	Associated San	nples : 71006	68, 7100669				A	Prep Date Analysis Date	: 2023-07-31 : 2023-07-31
Colour, True (Water, Spectrophotomet	ry)								
	Method : Colour (Water,	· ·	ometric). Inter	nal method: OT	T-I-SPEC-W	/145980.			
Colour (True)	TCU	2	<2	103	90-110			-	0-40
	Associated San	nples : 71006	68, 7100669				A	Prep Date Analysis Date	: 2023-07-31 : 2023-07-31
Conductivity (Water, Automated)									
	Method : Conductivit	y (Water, Aut	otitrator). Inter	nal Method: OT	T-I-AT-WI45	398.			
Conductivity @ 25°C	uS/cm	5	<5	100	80-120			0	0-20
	Associated San	nples : 71006	68, 7100669				A	Prep Date Analysis Date	: 2023-07-28 : 2023-07-31
DOC (Water, IR)									
Metho	od : Organic carbon (wate	r, IR, combus	stion). Internal	method:	OTT-I-L	DEM-WI46148.			
Dissolved Organic Carbon	mg/L	0.5	<0.5	105	84-115	97	80-120	17	0-15
	Associated San	nples : 71006	68, 7100669				A	Prep Date Analysis Date	: 2023-07-27 : 2023-07-28
Fluoride (Water, Auto/ISE)									
Me	ethod : Fluoride by autotiti	rator, ion sele	ctive electrode	e. Internal metho	od: OTT-I-A	T-WI45398.			
Fluoride	mg/L	0.1	<0.10	105	80-120			3	0-20
	Associated San	nples : 71006	68, 7100669				A	Prep Date Analysis Date	: 2023-07-28 : 2023-07-31

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Kollaard Associates Inc.

Project: 230403 Reception Date: 2023-07-26

	11.7	RL	Blank	QC		Matrix Spike		Duplicate	
Parameter	Unit			Recovery %	Range %	Recovery %	Range %	RPD %	Range %
Metals Scan (Water, ICP/MS)									
	Method : Me	tals (Water, IC	P/MS). Interna	al method: AMM	ITFQE1.				
Aluminum	mg/L	0.01	<0.01	100	80-120	-	70-130	-	0-20
Antimony	mg/L	0.0005	<0.0005	87	80-120	83	70-130	-	0-20
Arsenic	mg/L	0.001	<0.001	92	80-120	102	70-130	-	0-20
Barium	mg/L	0.001	<0.001	100	80-120	104	70-130	-	0-20
Beryllium	mg/L	0.0005	<0.0005	101	80-120	107	70-130	-	0-20
Boron	mg/L	0.01	<0.01	100	80-120	106	70-130	-	0-20
Cadmium	mg/L	0.0001	<0.0001	99	80-120	107	70-130	-	0-20
Chromium	mg/L	0.001	<0.001	120	80-120	101	70-130	-	0-20
Cobalt	mg/L	0.0002	<0.0002	102	80-120	102	70-130	-	0-20
Copper	mg/L	0.001	<0.001	100	80-120	104	70-130	-	0-20
Iron	mg/L	0.03	<0.03	100	80-120	-	70-130	-	0-20
Lead	mg/L	0.001	<0.001	100	80-120	105	70-130	-	0-20
Manganese	mg/L	0.01	<0.01	100	80-120	-	70-130	-	0-20
Mercury	mg/L	0.0001	<0.0001	100	80-120	-	70-130	-	0-20
Molybdenum	mg/L	0.005	<0.005	90	80-120	92	70-130	-	0-20
Nickel	mg/L	0.005	<0.005	100	80-120	107	70-130	-	0-20
Selenium	mg/L	0.001	<0.001	94	80-120	102	70-130	-	0-20
Silver	mg/L	0.0001	<0.0001	117	80-120	93	70-130	-	0-20
Strontium	mg/L	0.001	<0.001	100	80-120	-	70-130	-	0-20
Thallium	mg/L	0.0001	<0.0001	101	80-120	104	70-130	-	0-20
Uranium	mg/L	0.001	<0.001	100	80-120	101	70-130	-	0-20
Vanadium	mg/L	0.001	<0.001	100	80-120	105	70-130	-	0-20
Zinc	mg/L	0.01	<0.01	100	80-120	109	70-130	-	0-20

Associated Samples: 7100668

Prep Date: 2023-07-31 Analysis Date: 2023-08-01

							А	naiysis Dale	e. 2023-06-01
	Method : Met	als (Water, IC	CP/MS). Internal	method: AM	IMTFQE1.				
Aluminum	mg/L	0.01	<0.01	100	80-120	114	70-130	-	0-20
Antimony	mg/L	0.0005	<0.0005	87	80-120	87	70-130	-	0-20
Arsenic	mg/L	0.001	<0.001	92	80-120	108	70-130	-	0-20
Barium	mg/L	0.001	<0.001	100	80-120	89	70-130	1	0-20
Beryllium	mg/L	0.0005	<0.0005	101	80-120	111	70-130	-	0-20
Boron	mg/L	0.01	<0.01	100	80-120	118	70-130	-	0-20
Cadmium	mg/L	0.0001	<0.0001	99	80-120	104	70-130	-	0-20
Chromium	mg/L	0.001	<0.001	120	80-120	103	70-130	-	0-20
Cobalt	mg/L	0.0002	<0.0002	102	80-120	99	70-130	-	0-20
Copper	mg/L	0.001	<0.001	100	80-120	92	70-130	-	0-20
Iron	mg/L	0.03	< 0.03	100	80-120	107	70-130	1	0-20
Lead	mg/L	0.001	<0.001	100	80-120	97	70-130	-	0-20
Manganese	mg/L	0.01	<0.01	100	80-120	106	70-130	5	0-20
Mercury	mg/L	0.0001	<0.0001	100	80-120	78	70-130	-	0-20
Molybdenum	mg/L	0.005	<0.005	90	80-120	103	70-130	-	0-20
Nickel	mg/L	0.005	<0.005	100	80-120	99	70-130	-	0-20
Selenium	mg/L	0.001	<0.001	94	80-120	106	70-130	-	0-20
Silver	mg/L	0.0001	<0.0001	117	80-120	87	70-130	-	0-20
Strontium	mg/L	0.001	<0.001	100	80-120	107	70-130	0	0-20
Thallium	mg/L	0.0001	<0.0001	101	80-120	98	70-130	-	0-20
Uranium	mg/L	0.001	<0.001	100	80-120	102	70-130	-	0-20

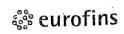
146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Kollaard Associates Inc.

Devenueten	Unit	DI	Blank	QC		Matrix	Spike	Dupl	icate
Parameter	Ullit	RL	DIGIIK	Recovery %	Range %	Recovery %	Range %	RPD %	Range %
Metals Scan (Water, ICP/MS)									
	Method : Met	als (Water, I	CP/MS). Intern	al method: AM	MTFQE1.				
Vanadium	mg/L	0.001	<0.001	100	80-120	110	70-130	-	0-20
Zinc	mg/L	0.01	<0.01	100	80-120	94	70-130	-	0-20
	Associated	I Samples : 7	100669				,	Prep Date: Analysis Date:	: 2023-07-3 : 2023-08-0
Metals Scan (Water, ICP/OES)									
	Method : Metals (\	Nater, ICP/O	ES). Internal n	nethod: OTT-I-I	MET-WI4849	1.			
Calcium	mg/L	1	<1	104	86-115	101	70-130	0	0-20
Magnesium	mg/L	1	<1	105	91-109	102	70-130	0	0-20
Potassium	mg/L	1	<1	105	87-113	105	70-130	-	0-20
Sodium	mg/L	1	<1	105	85-115	102	70-130	1	0-20
	Associated San	nples : 71006	68, 7100669				,	Prep Date: Analysis Date:	: 2023-08-02 : 2023-08-02
Nitrate (Water, IC)									
	Method : Anions (Wate	er, Ion Chrom	atography). Int	ernal method:	OTT-I-IC-WI	45985.			
Nitrate (as Nitrogen)	mg/L	0.1	<0.1	101	92-110	101	80-120	-	0-20
	Associated San	nples : 71006	68, 7100669					Prep Date: Analysis Date:	2023-07-3 2023-08-0
Nitrite (Water, IC)									
	Method : Anions (Wate	er, Ion Chrom	atography). Int	ernal method:	OTT-I-IC-WI	45985.			
Nitrite (as Nitrogen)	mg/L	0.1	<0.1	98	90-110	94	80-120	-	0-20
	Associated San	nples : 71006	68, 7100669				,	Prep Date: Analysis Date:	2023-07-3 2023-08-0
pH (25°C) (Water, Automated)									
	Method : pH (Water	r, Automated	Meter). Interna	al method: OT	T-I-AT-WI453	98.			
oH @ 25°C		1	5.79	100	97-103			1	0-20
	Associated San	nples : 71006	68, 7100669				,	Prep Date: Analysis Date:	: 2023-07-28 : 2023-07-3
Phenols (Water, Colorimetry)									
Dhamala 444D	Method : Phenols (W						70.400		0.00
Phenols-4AAP	mg/L	0.001	<0.001	104	77-125	103	70-130	- D D	0-20
	Associated San	1pies : 71006	68, 7100669				,	Analysis Date:	: 2023-07-3° : 2023-07-3°
Sulphate (Water, IC)									
	Method : Anions (Wate	er, Ion Chrom	atography). Int		OTT-I-IC-WI			I	
Sulphate	mg/L	1	<1	90	90-110	91	80-120	0	0-20
	Associated San	nples : 71006	68, 7100669				,	Prep Date: Analysis Date:	: 2023-07-31 : 2023-08-01
Sulphide (Water, Colorimetry)	Mathead Codelida 00	(14/-4 0-1-	of the A. A. A. A. A. A.	-14b4- OT	T / 0050 W	45004			
Culphide (C2.)	Method : Sulphide, S2-					145931.			0-20
Sulphide (S2-)	mg/L	0.01	<0.01	93	80-120			- D D	
	Associated San	ipies : 71006	68, 7100669				,	e: Prep Date :Analysis Date	: 2023-07-3 ⁻ : 2023-07-3 ⁻
Total Kjeldahl Nitrogen (Water, Colorim	netry)						·	, 2 200.	
Total Njeluani Mili Ogen (Water, Colonii	Method : TKN (Wa	ater colorime	etrv) Internal n	nethod: OTT-I-I	NUT-WI4620	1			
Total Kjeldahl Nitrogen	mg/L	0.1	<0.100	114	70-130	97	70-130	9	0-20
	Associated San					01			: 2023-07-28
	, issociated Sail	1000 . 7 1000	55, 7 100009				,	Analysis Date:	

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692


OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Kollaard Associates Inc.

Project: 230403 Reception Date: 2023-07-26

_ ,	11.24	it RL	Blank	QC		Matrix Spike		Duplicate			
Parameter	Unit			Recovery %	Range %	Recovery %	Range %	RPD %	Range %		
Turbidity (Water, Turbidimeter)											
Meth	Method : Turbidity (Water, Turbidimeter). Internal method: OTT-I-TUR-WI46288.										
Turbidity	NTU	0.1	<0.1	101	80-120			2	0-20		
Associated Samples : 7100668, 7100669 Prep Date: 202: Analysis Date: 202:											

Where RPD % is reported as "-" the calculation is not available because one or both of the duplicates is within 5 times the RL.

DRINKING WATER CHAIN-OF-CUSTODY

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

100231719

CLIENT INFORMATION)N				1. 2 V II	Waterworks Name:		: (1) (1) (1) (1) (1)		WATE	RWOR	KS INF	ORMA	T(0			
ompany: Köllaard Associates Inc.			# 3663 #5444			Waterworks #:		are en				(1.3), (4.7)			Printed	On:	2023-07-26 15:59:40
ontett: Colleen Vermeersch		**************************************	Marine.			Contact:				7000					Section 1	No.	
Address: 210 Prescott St, Kemptville, On K0G 1J0	- C		1247	4-3572	10.00	Address:	Jan Jan			10 to 10	第四篇	in the second		KBB.		12.4	
acprove. 0/13-000-0320 ext200			- 1	1871.0	e characta nima	Telephone:		NEW A				2.2.5.1 2.4.0.1	ax:		OF BUT STORY		
:mail #1:				.		Cell Phone:	rugan <u>i pa</u>	To be a second	alecting . Fig. 1. re	The state of							
Project: 230403	-		Quote #	17031	4	Email #1:						, ;	#2:				
PO#: REGULATION/GUIDELINEI	REQUIR	ED N			19) (17) (17)				UT.	RN-AF	OUND	TIME (Busine	ess Da	ys).	T.	
	[7]	Private V	/ell	П	lone	1 Day* (10			2 Day** (4 4	3-S Days (√	5-7 Days	-	L
U. neg 170	×	Other:		<u>.</u>		Please contact the labora pesticides may take up to	tory in ad	vance to de	termine ru	sh availat	ility. Surch	arges may bout TAT i	apply to re	ush servic	e. Note tha	t some test	s (i.e. O. Reg. 170 Schedule 24
0, neg 518/319		Odici.	JII. SA	Sample	Details	pesticides may take up to	D. W. C.	S	imple A	nalysis	Require	d 🔭		Field	Measure	ments	
The optimal temperature conditions during transport must be less than 10' 5ample(s) cannot be frozen. Note that for drinking water samples, all exceedances will be reported where (and how) the application legislation requires. The COC must be complete upon submission of the samples, there will be a \$25 surcharge if required information is missing (required fields are shaded in grey).	nple Type Code (see.	ample? Yes N= No	DE/MOH Reportable? Yes: N=No	f.Containers	L Code/Watertrax	Sample Location	ubdivision:parameters	ollaard ubdivisionbacteria	ollaard Special Metals	rue colour				otal Chlorine	Free Chlorine	Field Turbidity	Sample RN# (Lab Use Only)
Sample ID Date/Time Collecte	Admin Student 10	ere region, to a r	ž,	. 9	. <u>R</u>	(i.e. Kitchen, POE) wellhead	(Ø:	₹ .	<i>y</i>	<i>→</i>	1	AND STREET	()	-	0.00		7100668
TW1-3 hrs 07-25 // 12:30	table Militaries	200 1 2 200 2	N N	9	<u> </u>	wellhead	1	1	1	1					0.00	4.2	69
TW1-6 hrs 007-25/,153) PV		3111	1.39.14 1.31.98		Weintead	,			1		}	1 11		1.1.		
				7 AH	·	 	67. 43. i	A1991 1 Avents	LAUTE !	1	-	5-01-1007 3 6	, ta	·			
				4.15			-			1							
5.5			1.75				-	1				is and the			:		
		原 图10 ·		12.203 12.244			,				1	Á					4
			Lat.		1 0	 	E and a second			1	1					3 5	
	(n) (1) (1) (n) (6) (3) (3) (1)	92 (3.15) On (5#10)	Canal			 	1, 1 49,00		5	1	l la rawless i men	1					
			* (* * * * * * * * * * * * * * * * * *	· 化科学》 《学校解》				The T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		()	2	1				
Sample:TVpe:Codes for Drinking Water: RW = Raw Water; TW =	Treated	Water at	Point o	f Entry t	l o distribution,	TW:NT = Untreate	d Wate	rat Poi	nt of En	ry to d	stributi	oh) DW	= Distri	button	RP = Re	šidentia	Plumbing, NRP.=Non-
Residential Plumbing, S.= Standing, F.= Flushed, PW/=Private W.	ell 🔻				推广的				arg ris		#.Ur	Tarrier S	STATE OF THE				
PRINT			, sign			DATE	/TIME		192	TEMP (Ġ) >, · ·	сомм		o for	r mot	ale v	vere field
Joey		v										filt.	TIPLE	ion 5	na Oʻ	aio V 15 ri	nicron filter
Sampled By: Relinquished By:		N.						. //d (7	· - ·	1 1111	əı ç u	uəli	ilg U.	 ∪. []	NO OTT INTO
Received By:					_54	17/26/	<u> 23</u>	121	_)	<u>) </u>		7.				

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS: 3646570

WORK REQUEST : 100231726 Report Date : 2023-07-28

Kollaard Associates Inc. 210 Prescott St., Box 189

Kemptville, ON K0G 1J0

Attention: Colleen Vermeersch

Reception Date: 2023-07-26 Project: 230403

Sampler: NA

PO Number: Not Applicable

Temperature: 13 °C

Analysis	Quantity	External Method
E.Coli and Total Coliforms (DC Plate)	2	Modified from MECP E3407
Heterotrophic Plate Count (mHPC)	2	Modified from SM 9215 D

Criteria:

A: Ontario Regulation 169/03 (Non-Regulated Drinking Water)

Sample status upon receipt :

7100695 7100697 **Compliant**

Notes

- All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated.
- Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/
- Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Legend:

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS

Client: Kollaard Associates Inc.

Project: 230403 Reception Date: 2023-07-26

				Eurofins	Sample No :	7100695	7100697	
	Matrix : Sampling Date :						Drinking water	
							2023-07-25	
			Client	Sample I	dentification :	TW1-3 hrs	TW1-6 hrs	
Microbiology (DC Plate)				Criter	ia			
	RL	Unit	Α	В	С			
COIi and Total Coliforms (DC Plate)								
Escherichia coli (DC)	0	CFU/100mL	0			0	0	
Total Coliforms (DC)	0	CFU/100mL	0			0	0	
	Eurofins	Sample No :	710069	95	7100697			
		Matrix :	Drinkin water	•	Drinking water			
	Sa	mpling Date :	2023-07	-25	2023-07-25			
Client	Sample I	dentification:	TW1-3	hrs	TW1-6 hrs			
Microbiology (mHPC Plate)	RL	Unit						
Heterotrophic Plate Count (mHPC)	0	CFU/1 mL	31		37			

Approved by:

Raheleh Zafari

Ottawa, Environmental Chemist, PhD

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Kollaard Associates Inc.

Project: 230403 Reception Date: 2023-07-26

•							•		
	11-9	Unit DI Blank QC M		Matrix S	Matrix Spike		licate		
Parameter	Unit	RL	Blank	Recovery %	Range %	Recovery %	Range %	RPD %	Range %
E.Coli and Total Coliforms (DC Plate)									
Method	: Total Coliforms and E.C	oli by MF (V	Vater, DC plate). Internal meth	nod: OTT-M-	BAC-WI45296			
Escherichia coli (DC)	CFU/100mL	0	0						-
Total Coliforms (DC)	CFU/100mL	0	0						-
	Associated Samp	oles : 71006	95, 7100697				A	Prep Date analysis Date	: 2023-07-2 : 2023-07-2
Metho	od : Heterotrophic Plate C	ount by MF ((mHPC Media).	Internal metho	d: OTT-M-B	AC-WI45296.			
Heterotrophic Plate Count (mHPC)	CFU/1 mL	0	0					0	0-30
	Associated Samp	oles : 71006	95, 7100697				A	Prep Date nalysis Date	: 2023-07-2 : 2023-07-2

Where RPD % is reported as "-" the calculation is not available because one or both of the duplicates is within 5 times the RL.

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order : WT2323228 Page : 1 of 6

Client Laboratory : ALS Environmental - Waterloo : Kollaard Associates Inc.

Contact · Colleen Vermeersch **Account Manager** : Costas Farassoglou

> : 210 Prescott Street Unit 1 Address : 60 Northland Road, Unit 1 Kemptville ON Canada K0G1J0

Waterloo, Ontario Canada N2V 2B8

Telephone : 613 860 0923 Telephone : 613 225 8279 Project : 230403 **Date Samples Received** : 27-Jul-2023 09:45 **Date Analysis Commenced** : 31-Jul-2023 PO : 230403

C-O-C number Issue Date : 02-Aug-2023 09:50 Sampler : CLIENT

Site

Quote number : SOA 2022

No. of samples received : 1 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department Sarah Birch **VOC Section Supervisor** VOC, Waterloo, Ontario

Page : 2 of 6 Work Order : WT2323228

Client : Kollaard Associates Inc.

Project : 230403

No Breaches Found

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or egual to the Guideline Upper Limit.

 Page
 :
 3 of 6

 Work Order
 :
 WT2323228

Client : Kollaard Associates Inc.

Project : 230403

Analytical Results Evaluation

Matrix: Water		Client	sample ID	200100#2 101	 	 	
iviatiix. vvater		Opens of the co	ala 4 a /4; u	WESCAR LANE			
		Sampling	aate/time	26-Jul-2023 14:00	 	 	
			ub-Matrix	Water	 	 	
Analyte	CAS Number	Method/Lab	Unit	WT2323228-001	 	 	
Volatile Organic Compounds							
Acetone	67-64-1	E611D/WT		<20	 	 	
Benzene	71-43-2	E611D/WT	μg/L	<0.50	 	 	
Bromodichloromethane	75-27-4	E611D/WT		0.71	 	 	
Bromoform	75-25-2	E611D/WT	μg/L	<0.50	 	 	
Bromomethane	74-83-9	E611D/WT		<0.50	 	 	
Carbon tetrachloride	56-23-5	E611D/WT	μg/L	<0.20	 	 	
Chlorobenzene	108-90-7	E611D/WT		<0.50	 	 	
Chloroform		E611D/WT	μg/L	18.0	 	 	
Dibromochloromethane	124-48-1	E611D/WT		<0.50	 	 	
Dibromoethane, 1,2-	106-93-4	E611D/WT	μg/L	<0.20	 	 	
Dichlorobenzene, 1,2-	95-50-1	E611D/WT		<0.50	 	 	
Dichlorobenzene, 1,3-	541-73-1	E611D/WT	μg/L	<0.50	 	 	
Dichlorobenzene, 1,4-	106-46-7	E611D/WT		<0.50	 	 	
Dichlorodifluoromethane	75-71-8	E611D/WT	μg/L	<0.50	 	 	
Dichloroethane, 1,1-	75-34-3	E611D/WT		<0.50	 	 	
Dichloroethane, 1,2-	107-06-2	E611D/WT	μg/L	<0.50	 	 	
Dichloroethylene, 1,1-	75-35-4	E611D/WT		<0.50	 	 	
Dichloroethylene, cis-1,2-	156-59-2	E611D/WT	μg/L	<0.50	 	 	
Dichloroethylene, trans-1,2-	156-60-5	E611D/WT		<0.50	 	 	
Dichloromethane	75-09-2	E611D/WT	μg/L	<1.0	 	 	
Dichloropropane, 1,2-	78-87-5	E611D/WT		<0.50	 	 	
Dichloropropylene, cis+trans-1,3-	542-75-6	E611D/WT	μg/L	<0.50	 	 	
Dichloropropylene, cis-1,3-	10061-01-5	E611D/WT		<0.30	 	 	
Dichloropropylene, trans-1,3-	10061-02-6	E611D/WT	μg/L	<0.30	 	 	
Ethylbenzene	100-41-4	E611D/WT		<0.50	 	 	
Hexane, n-	110-54-3	E611D/WT	μg/L	0.51	 	 	
Methyl ethyl ketone [MEK]	78-93-3	E611D/WT		<20	 	 	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D/WT	μg/L	<20	 	 	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D/WT		<0.50	 	 	

Page : 4 of 6
Work Order : WT2323228

Client : Kollaard Associates Inc.

Project : 230403

Analytical Results Evaluation

Matrix: Water		Client	sample ID	230403#2 151 WESCAR LANE	 	 	
		Sampling	date/time	26-Jul-2023 14:00	 	 	
		S	ub-Matrix	Water	 	 	
Analyte	CAS Number	Method/Lab	Unit	WT2323228-001	 	 	
Volatile Organic Compounds							
Styrene	100-42-5	E611D/WT	μg/L	<0.50	 	 	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D/WT		<0.50	 	 	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D/WT	μg/L	<0.50	 	 	
Tetrachloroethylene	127-18-4	E611D/WT		<0.50	 	 	
Toluene	108-88-3	E611D/WT	μg/L	0.65	 	 	
Trichloroethane, 1,1,1-	71-55-6	E611D/WT		<0.50	 	 	
Trichloroethane, 1,1,2-	79-00-5	E611D/WT	μg/L	<0.50	 	 	
Trichloroethylene	79-01-6	E611D/WT		<0.50	 	 	
Trichlorofluoromethane	75-69-4	E611D/WT	μg/L	<0.50	 	 	
Vinyl chloride	75-01-4	E611D/WT		<0.50	 	 	
Xylene, m+p-	179601-23-1	E611D/WT	μg/L	0.54	 	 	
Xylene, o-	95-47-6	E611D/WT		<0.30	 	 	
Xylenes, total	1330-20-7	E611D/WT	μg/L	0.54	 	 	
BTEX, total		E611D/WT		1.2	 	 	
Volatile Organic Compounds Surrogat	es						
Bromofluorobenzene, 4-	460-00-4	E611D/WT	%	97.6	 	 	
Difluorobenzene, 1,4-	540-36-3	E611D/WT		100	 	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 5 of 6 Work Order : WT2323228

Client : Kollaard Associates Inc.

Project : 230403

Summary of Guideline Limits

Analyte	CAS Number	Unit	ONDWS AO/OG	ONDWS MAC			
Volatile Organic Compounds							
Acetone	67-64-1	μg/L					
Benzene	71-43-2	μg/L		1 μg/L			
Bromodichloromethane	75-27-4	μg/L					
Bromoform	75-25-2	μg/L					
Bromomethane	74-83-9	μg/L					
BTEX, total		μg/L					
Carbon tetrachloride	56-23-5	μg/L		2 μg/L			
Chlorobenzene	108-90-7	μg/L	30 μg/L	80 μg/L			
Chloroform	67-66-3	μg/L					
Dibromochloromethane	124-48-1	μg/L					
Dibromoethane, 1,2-	106-93-4	μg/L					
Dichlorobenzene, 1,2-	95-50-1	μg/L	3 μg/L	200 μg/L			
Dichlorobenzene, 1,3-	541-73-1	μg/L					
Dichlorobenzene, 1,4-	106-46-7	μg/L	1 μg/L	5 μg/L			
Dichlorodifluoromethane	75-71-8	μg/L					
Dichloroethane, 1,1-	75-34-3	μg/L					
Dichloroethane, 1,2-	107-06-2	μg/L		5 μg/L			
Dichloroethylene, 1,1-	75-35-4	μg/L		14 μg/L			
Dichloroethylene, cis-1,2-	156-59-2	μg/L					
Dichloroethylene, trans-1,2-	156-60-5	μg/L					
Dichloromethane	75-09-2	μg/L		50 μg/L			
Dichloropropane, 1,2-	78-87-5	μg/L					
Dichloropropylene, cis+trans-1,3-	542-75-6	μg/L					
Dichloropropylene, cis-1,3-	10061-01-5	μg/L					
Dichloropropylene, trans-1,3-	10061-02-6	μg/L					
Ethylbenzene	100-41-4	μg/L	2.4 μg/L	140 μg/L			
Hexane, n-	110-54-3	μg/L					
Methyl ethyl ketone [MEK]	78-93-3	μg/L					
Methyl isobutyl ketone [MIBK]	108-10-1	μg/L					
Methyl-tert-butyl ether [MTBE]	1634-04-4	μg/L		15 μg/L			
Styrene	100-42-5	μg/L					
Tetrachloroethane, 1,1,1,2-	630-20-6	μg/L					
Tetrachloroethane, 1,1,2,2-	79-34-5	μg/L					
Tetrachloroethylene	127-18-4	μg/L		10 μg/L			
Toluene	108-88-3	μg/L	24 μg/L	60 μg/L			
Trichloroethane, 1,1,1-	71-55-6	μg/L					
Trichloroethane, 1,1,2-	79-00-5	μg/L					

Page : 6 of 6 Work Order : WT2323228

Client : Kollaard Associates Inc.

Project : 230403

Analyte	CAS Number	Unit	ONDWS AO/OG	ONDWS MAC			
Volatile Organic Compounds - Continued							
Trichloroethylene	79-01-6	μg/L		5 μg/L			
Trichlorofluoromethane	75-69-4	μg/L					
Vinyl chloride	75-01-4	μg/L		1 μg/L			
Xylene, m+p-	179601-23-1	μg/L					
Xylene, o-	95-47-6	μg/L					
Xylenes, total	1330-20-7	μg/L	300 μg/L	90 μg/L			
Volatile Organic Compounds Surrogates							
Bromofluorobenzene, 4-	460-00-4	%					
Difluorobenzene, 1,4-	540-36-3	%					

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

ONDWS Ontario Drinking Water Regulation (JAN, 2020)

AO/OG Aesthetic Objective/Operational Guideline

MAC Schedule 1 (Microbiological) and 2 (Chemical) Standards (JAN,2020)

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **WT2323228** Page : 1 of 5

Client : Kollaard Associates Inc. Laboratory : ALS Environmental - Waterloo

Contact : Colleen Vermeersch : Costas Farassoglou

Address : 210 Prescott Street Unit 1 Address : 60 Northland Road, Unit 1

Kemptville ON Canada K0G1J0 Waterloo, Ontario Canada N2V 2B8

 Telephone
 : 613 860 0923
 Telephone
 : 613 225 8279

 Project
 : 230403
 Date Samples Received
 : 27-Jul-2023 09:45

 PO
 : 230403
 Issue Date
 : 02-Aug-2023 09:50

Quote number : SOA 2022

No. of samples received :1

No. of samples analysed :1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Site

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

No Analysis Holding Time Outliers exist.

 Outliers: Frequency of Quality Control S Quality Control Sample Frequency Outliers occur- 	Samples please see following pages for full de	tails.	

Page : 3 of 5 Work Order · WT2323228

Client : Kollaard Associates Inc.

Project : 230403

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water

Evaluation: **x** = Holding time exceedance : ✓ = Within Holding Time

viatrix. Water						raidation. • –	i lolding time excee	dance,	- vvitiiii	Tioluling Till
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass vial (sodium bisulfate) 230403#2 151 WESCAR LANE	E611D	26-Jul-2023	31-Jul-2023	14 days	5 days	1	31-Jul-2023	9 days	0 days	√

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 4 of 5 Work Order : WT2323228

Client : Kollaard Associates Inc.

Project : 230403

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluation	n: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Count				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1063174	1	19	5.2	5.0	✓
Laboratory Control Samples (LCS)							
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1063174	1	19	5.2	5.0	✓
Method Blanks (MB)							
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1063174	1	19	5.2	5.0	✓
Matrix Spikes (MS)							
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1063174	0	19	0.0	5.0	k

Page : 5 of 5 Work Order : WT2323228

Client : Kollaard Associates Inc.

Project : 230403

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VOCs (Eastern Canada List) by Headspace GC-MS	E611D ALS Environmental - Waterloo	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VOCs Preparation for Headspace Analysis	EP581 ALS Environmental - Waterloo	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the GC/MS-FID system.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order :WT2323228

Client : Kollaard Associates Inc.
Contact : Colleen Vermeersch
Address : 210 Prescott Street Unit 1

Kemptville ON Canada K0G1J0

Telephone

Project : 230403 PO : 230403 C-O-C number :----

Sampler : CLIENT 613 860 0923

Site :--

Quote number : SOA 2022

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 8

Laboratory : ALS Environmental - Waterloo

Account Manager : Costas Farassoglou

Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :613 225 8279

Date Samples Received : 27-Jul-2023 09:45

Date Analysis Commenced : 31-Jul-2023

Issue Date : 02-Aug-2023 09:50

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Sarah Birch VOC Section Supervisor Waterloo VOC, Waterloo, Ontario

Page : 2 of 8

Work Order: WT2323228

Client : Kollaard Associates Inc.

Project : 230403

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 8 Work Order : WT2323228

Client : Kollaard Associates Inc.

Project : 230403

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report								
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
/olatile Organic Co	mpounds (QC Lot: 1	063174)												
WT2323178-001	Anonymous	Acetone	67-64-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR				
		Benzene	71-43-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Bromodichloromethane	75-27-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Bromoform	75-25-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Bromomethane	74-83-9	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Carbon tetrachloride	56-23-5	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR				
		Chlorobenzene	108-90-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Chloroform	67-66-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dibromochloromethane	124-48-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dibromoethane, 1,2-	106-93-4	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR				
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichlorobenzene, 1,3-	541-73-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichlorodifluoromethane	75-71-8	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichloroethane, 1,1-	75-34-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichloroethane, 1,2-	107-06-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichloroethylene, 1,1-	75-35-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichloromethane	75-09-2	E611D	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR				
		Dichloropropane, 1,2-	78-87-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR				
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR				
		Ethylbenzene	100-41-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Hexane, n-	110-54-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	<20	<20	0	Diff <2x LOR				
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR				
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Styrene	100-42-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				

Page

4 of 8 WT2323228 Work Order:

Client Kollaard Associates Inc.

Project 230403

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report									
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Volatile Organic Co	mpounds (QC Lot: 1063	174) - continued												
WT2323178-001	Anonymous	Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Tetrachloroethylene	127-18-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Toluene	108-88-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Trichloroethane, 1,1,1-	71-55-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Trichloroethane, 1,1,2-	79-00-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Trichloroethylene	79-01-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Trichlorofluoromethane	75-69-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Vinyl chloride	75-01-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR				
		Xylene, m+p-	179601-23-1	E611D	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR				
		Xylene, o-	95-47-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR				

Page : 5 of 8 Work Order : WT2323228

Client : Kollaard Associates Inc.

Project : 230403

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water


nalyte	CAS Number	Method	LOR	Unit	Result	Qualifier
olatile Organic Compounds (QCLot:	1063174)					
Acetone	67-64-1	E611D	20	μg/L	<20	
Benzene	71-43-2	E611D	0.5	μg/L	<0.50	
Bromodichloromethane	75-27-4	E611D	0.5	μg/L	<0.50	
Bromoform	75-25-2	E611D	0.5	μg/L	<0.50	
Bromomethane	74-83-9	E611D	0.5	μg/L	<0.50	
Carbon tetrachloride	56-23-5	E611D	0.2	μg/L	<0.20	
Chlorobenzene	108-90-7	E611D	0.5	μg/L	<0.50	
Chloroform	67-66-3	E611D	0.5	μg/L	<0.50	
Dibromochloromethane	124-48-1	E611D	0.5	μg/L	<0.50	
Dibromoethane, 1,2-	106-93-4	E611D	0.2	μg/L	<0.20	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	μg/L	<0.50	
Dichlorobenzene, 1,3-	541-73-1	E611D	0.5	μg/L	<0.50	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	μg/L	<0.50	
Dichlorodifluoromethane	75-71-8	E611D	0.5	μg/L	<0.50	
Dichloroethane, 1,1-	75-34-3	E611D	0.5	μg/L	<0.50	
Dichloroethane, 1,2-	107-06-2	E611D	0.5	μg/L	<0.50	
Dichloroethylene, 1,1-	75-35-4	E611D	0.5	μg/L	<0.50	
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	μg/L	<0.50	
Dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	μg/L	<0.50	
Dichloromethane	75-09-2	E611D	1	μg/L	<1.0	
Dichloropropane, 1,2-	78-87-5	E611D	0.5	μg/L	<0.50	
Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	μg/L	<0.30	
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	μg/L	<0.30	
Ethylbenzene	100-41-4	E611D	0.5	μg/L	<0.50	
Hexane, n-	110-54-3	E611D	0.5	μg/L	<0.50	
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	<20	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	μg/L	<20	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	μg/L	<0.50	
Styrene	100-42-5	E611D	0.5	μg/L	<0.50	
Fetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	μg/L	<0.50	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	μg/L	<0.50	
Tetrachloroethylene	127-18-4	E611D	0.5	μg/L	<0.50	

Page : 6 of 8 Work Order : WT2323228

Client : Kollaard Associates Inc.

Project: 230403

Sub-Matrix: Water

 Page
 :
 7 of 8

 Work Order
 :
 WT2323228

Client : Kollaard Associates Inc.

Project: 230403

ALS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot: 1063	3174)								
Acetone	67-64-1	E611D	20	μg/L	100 μg/L	97.9	70.0	130	
Benzene	71-43-2	E611D	0.5	μg/L	100 μg/L	89.6	70.0	130	
Bromodichloromethane	75-27-4	E611D	0.5	μg/L	100 μg/L	93.6	70.0	130	
Bromoform	75-25-2	E611D	0.5	μg/L	100 μg/L	94.9	70.0	130	
Bromomethane	74-83-9	E611D	0.5	μg/L	100 μg/L	97.7	60.0	140	
Carbon tetrachloride	56-23-5	E611D	0.2	μg/L	100 μg/L	90.8	70.0	130	
Chlorobenzene	108-90-7	E611D	0.5	μg/L	100 μg/L	89.6	70.0	130	
Chloroform	67-66-3	E611D	0.5	μg/L	100 μg/L	92.3	70.0	130	
Dibromochloromethane	124-48-1	E611D	0.5	μg/L	100 μg/L	87.7	70.0	130	
Dibromoethane, 1,2-	106-93-4	E611D	0.2	μg/L	100 μg/L	88.2	70.0	130	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	μg/L	100 μg/L	89.9	70.0	130	
Dichlorobenzene, 1,3-	541-73-1	E611D	0.5	μg/L	100 μg/L	90.4	70.0	130	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	μg/L	100 μg/L	88.8	70.0	130	
Dichlorodifluoromethane	75-71-8	E611D	0.5	μg/L	100 μg/L	90.0	60.0	140	
Dichloroethane, 1,1-	75-34-3	E611D	0.5	μg/L	100 μg/L	95.0	70.0	130	
Dichloroethane, 1,2-	107-06-2	E611D	0.5	μg/L	100 μg/L	87.8	70.0	130	
Dichloroethylene, 1,1-	75-35-4	E611D	0.5	μg/L	100 μg/L	99.0	70.0	130	
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	μg/L	100 μg/L	94.8	70.0	130	
Dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	μg/L	100 μg/L	105	70.0	130	
Dichloromethane	75-09-2	E611D	1	μg/L	100 μg/L	92.8	70.0	130	
Dichloropropane, 1,2-	78-87-5	E611D	0.5	μg/L	100 μg/L	93.4	70.0	130	
Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	μg/L	100 μg/L	82.7	70.0	130	
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	μg/L	100 μg/L	84.1	70.0	130	
Ethylbenzene	100-41-4	E611D	0.5	μg/L	100 μg/L	95.4	70.0	130	
Hexane, n-	110-54-3	E611D	0.5	μg/L	100 μg/L	103	70.0	130	
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	100 μg/L	81.3	70.0	130	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	μg/L	100 μg/L	78.3	70.0	130	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	μg/L	100 μg/L	92.0	70.0	130	
Styrene	100-42-5	E611D	0.5	μg/L	100 μg/L	87.8	70.0	130	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	μg/L	100 μg/L	90.5	70.0	130	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	μg/L	100 μg/L	98.1	70.0	130	
Tetrachloroethylene	127-18-4	E611D	0.5	μg/L	100 μg/L	94.4	70.0	130	
Toluene	108-88-3	E611D	0.5	μg/L	100 μg/L	93.3	70.0	130	

Page

8 of 8 WT2323228 Work Order:

Client Kollaard Associates Inc.

Project 230403

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCL	ot: 1063174) - continued								
Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	μg/L	100 μg/L	91.2	70.0	130	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	μg/L	100 μg/L	90.7	70.0	130	
Trichloroethylene	79-01-6	E611D	0.5	μg/L	100 μg/L	98.9	70.0	130	
Trichlorofluoromethane	75-69-4	E611D	0.5	μg/L	100 μg/L	84.6	60.0	140	
Vinyl chloride	75-01-4	E611D	0.5	μg/L	100 μg/L	98.5	60.0	140	
Xylene, m+p-	179601-23-1	E611D	0.4	μg/L	200 μg/L	94.5	70.0	130	
Xylene, o-	95-47-6	E611D	0.3	μg/L	100 μg/L	94.8	70.0	130	
I									

ALS Environmental

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here

Page

COC Number: 17 -

jo

eport To	WWW.alsgiobal.com Contact and company name below will appear on the final report		oort Forma	/ Distribution		level E		Environmental Division		(4)
ompany:	Kollaard Associates (27196)	Select Report Format:	ormat: 🛂 F		EDD (DIGITAL	Regular [R] Standard TAT if receive	Š.	100		
ontact	Colleen Vermeersch	Quality Control	Quality Control (QC) Report with Report	eport 🗸 🗸	_	4 day [P4-20%]		Work Order Control	œ	
hone:	613.860.0923, ext.230		5	- provide details bel	ow if box checked	_		1 63636)	
	Company address below will appear on the final report	Select Distribution:	ion: L EMAIL	MAII	FAX	tuB)	(Laboi		=	
treet.	210 Prescott Street, Unit 1 P.O. Box 189	Email 1 or Fax	colleen@kollaard.ca	ca		Date and Time Required for all E&P TATs:	Ts:			Γ
ity/Province:	Kemptville, Ontario	Email 2				For tests that can not be performed according to the service le	ne service le			
ostal Code:	K0G 1J0	Email 3					Analy			
nvoice To	Same as Report To		Invoice Distribution	stribution		Indicate Filtered (F), Preserved (P) or Filter	(P) or Filter		=	
	Copy of Invoice with Report	Select Invoice [Select Invoice Distribution: EMAIL	IL MAIL	- FAX					
Company:	Kollaard Associates Inc.	Email 1 or Fax admin	admin@kollaard.ca	в			Teleph	Telephone: +1 519 886 8819		
contact	admin@kollaard.ca	Email 2					7		T eb	
	ct	iio	Oil and Gas Required	as Required Fields (client use)	nse)				ivo.	
ALS Account # / Quote #:	# / Quote #: Q71021	AFE/Cost Center:		HO#					e bi	
Job #:		Major/Minor Code:		Routing Code:					leas	SAE
PO / AFE:	230403	Requisitioner:								INIA
SD:		Location:								TNO
ALS Lab Wo	ALS Lab Work Order # (lab use only): 1 172733	ALS Contact:		Sampler:						3 OF C
ALS Sample # (lab use only)	Sample Identif	Coordinates in the report)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	\\OC\$			SAMPLE	NUMBER
	235408#3 151	wesar land	26-Jul-23	14:00	Water	^				
		Special Instructions / Specify Criteria to add on	add on report by clic	report by clicking on the drop-down list below	-down list below	SAMPLECO	SAMPLE CONDITION AS RECEIVED (lab use only)	VED (lab use only)		
Drinkin	(esi	oele)	(electronic COC only)		\neg		SIF Observations Y	Yes No		П
re samples to	Are samples taken from a Regulated DW System? Offtane R	Ontario Regulation 153/64 April 16, 2014 Standards	On facto Now Line	Lina		tce Packs defice Cubes Custody seaf intact Cooling Initiated		Yes 📙 No		П
ne samules fr	Table 5, Posts	e-Full depth residen	Pital standards, course grained o	alled colle		INIITIAL COOLER TEMPERATURES ℃	၁ ဇ	FINAL COOLER TEMPERATURES °C	ATURES °C	
			Water Standards	Handard	5	13.9	ف	6		
,	I SHIPMENT REL		INITIAL SHIPMEN	T RECEPTION (SHIPMENT RECE	FINAL SHIPMENT RECEPTION (lab use only)		
Releasedroy	7	Time: Received by:	K	Date: 07/1	7/23	Time: Received by:	Date:	Date: 04128 123	Time:	
A PLANT	SER PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	MATION	MHI	WHITE - LABORATORY COPY		YELLOW - CLIENT COPY		-	SEPT	217 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW). System, please submit using an Authorized DW COC form.

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS: 3752603

WORK REQUEST : 100254385 Report Date : 2023-11-10

Kollaard Associates Inc. 210 Prescott St., Box 189

Kemptville, ON K0G 1J0

Attention: Colleen Vermeersch

Reception Date: 2023-11-03 Project: 230403 Sampler: NA

PO Number: Not Applicable

Temperature: 8 °C

Analysis	Quantity	External Method
Metals Scan (Water, ICP/MS)	2	Modified from EPA 200.8

Criteria:

A: Ontario Regulation 169/03 (Non-Regulated Drinking Water)

Sample status upon receipt :

7351862 7351863 **Compliant**

Notes

- All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated.
- Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/
- Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Legend:

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS

Client: Kollaard Associates Inc.

Project: 230403 Reception Date: 2023-11-03

				Eurofins Sa	ample No :	7351862	7351863		
					Matrix :	Drinking water	Drinking water		
				Samp	oling Date :	2023-11-02	2023-11-02		
			Client S	Sample Idei	ntification :	151 Wescar	144 Wescar		
Metals				Criteria		Lane-TW1	Lane		
	RL	Unit	Α	В	С				
Antimony	0.0005	mg/L	0.006			<0.0005	0.0049		

Approved by :

Raheleh Zafari,

Ottawa, Environmental Chemist, PhD

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Kollaard Associates Inc.

Project: 230403 Reception Date: 2023-11-03

							•		
_ ,	11-26	DI	District	QC		Matrix S	Spike	Dupl	icate
Parameter	Unit	RL	Blank	Recovery %	Range %	Recovery %	Range %	RPD %	Range %
Metals Scan (Water, ICP/MS)									
	Method : Met	als (Water, I	CP/MS). Interna	l method: AMN	ITFQE1.				
Antimony	mg/L	0.0005	<0.0005	94	80-120	108	70-130	-	0-20
	Associated Sam	ples : 73518	62, 7351863					Prep Date:	2023-11-09
							,	Analysis Date:	2023-11-03

Where RPD % is reported as "-" the calculation is not available because one or both of the duplicates is within 5 times the RL.

DRINKING WATER CHAIN-OF-CUSTODY

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

Eurofins Workorder #

	CLIENT INFORMATIO	V			1	. 41.7				, 11,	WATE	RWO	RKSINF	ORM			100	254385
Company: Kollaard Associates Inc.		.4	1.00-2-0-00	20000	-0.000		Waterworks Name:	**	10		*			, 9	l	n (188)	uuuiiii	
Contact: Colleen Vermeersch	, 1						Waterworks #:		380 00	r 3	, r				1			
Address: 210 Prescott St, Kemptville	e, On K0G 1J0	•	**			~.	Contact:	X.					• 10		1	- 11 11111	Hillin	William and
Telephone: 613-860-0923 ext230	Fax:					-	Address:	223	1-12						Pri	nted O	<u>n:</u>	2023-11-03 16:43:06
Email #1:	#2:			330	3		Telephone:							Fax:				
Project: 230403							Cell Phone:				6	;				100		2050
PO #:	-			Quote#	: 1703	14	Email #1:	1.50						#2:				
REGU	LATION/GUIDELINE RE	QUIRE	D	i i i	N.P.	2:	1		5.	т	JRN-AR	OUND	TIME	(Busin	ess Da	ys)		
O. Reg 170 O. Reg 170 15.	d odwsog gcdwd	H	Private \ Other;	Vell		None .	1 Day ⁴ [16] Please contact the labor pesticides may take up	atory in ad	Vance to de	2 Day** etermine r). Please se	ush avallab	ility. Surch	3-5 Days narges may about TAT	apply to	•	-	(Standare	i) ts (i.e. O. Reg. 170 Schedule 24
The optimal temperature conditions during tran	snort must be less than 10°C.				Samp	le Details			Sa	mple A	nalysis	Require	ed .		Field N	Vieasure	ments	
Sample(s) cannot be frozen. Note that for drinklexceedances will be reported where (and how) requires. The COC must be complete upon submiss there will be a \$25 surcharge if required (required fields are shaded in grey).	ng water samples, all the application legislation sion of the samples,	Sample Type Code (see below)	Resample? Y = Yes N = No	MOE/MOH Reportable? Y = Yes N = No	# of Containers	sPL Code/Watertrax	Sample Location	Antimony					00		otal Chlorine	Free Chlorine	Field Turbidity	Sample RN# (Lab Use Only)
Sample ID	Date/Time Collected	Sam belo	Resz Y=\	M30 Y≡ Y	10 11	SPL	(i.e. Kitchen, POE)	Ant							Ĕ	a.F	Fiel	005.00
151 Wescar Lane-TW1	Nov 2/23 12pm	PW	Ν	N	1		wellhead	/			<u> </u>		<u> </u>	1				7351862
144 bescachere	1000 2/23 12pm	PW	N	N	1	_	wellhead	1	 				1		1		<u> </u>	- 63
				_				11.0000 0.0			<u> </u>		1					
	1 12 1	len -		Dil.					1				1		<u> </u>			
				ļ				<u> </u>					-	į				
	*		ļ .		<u> </u>					, p ,	 		<u> </u>	i <u></u>	-			
					ļ			ļ				<u>!</u>	1		ļ	-		
					<u> </u>						<u>}</u>		<u> </u>		1			
	The state of the s	, , ,						ļ <u>.</u>	<u> </u>		L					<u> </u>		
				<u>L.</u>					<u> </u>]		<u> </u>		- 54	Distri		DD - Day	idostial	Diumbing NOD - Nos
Sample Type Codes for Drinking Water: Residential Plumbing, S = Standing, F = Fl			ater at	Point of	Entry t	o distribution,	TW-NT = Untreate	ed Wate	r at Poin	it of Eni	ry to ais	tributic	in, DW:	= DIŞTITI	oution, i	ne.= ne:	sidentiai	Fidinoling, NRF = Non-
PRINT				SIGN			DATE/	TIME		T	TEMP (°C	1	сомм	ENTS:		_		
Sampled By: Connor Ibach Relinquished By:	jud	. ,		- <			Nov 3/23	e 9°			7,9							ere field nicron filter
Received By:		ĵ			+	/ 	1000 3123				<u> </u>	<u></u>	l			2		

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS: 3797058

WORK REQUEST : 100261741 Report Date : 2024-01-02

Kollaard Associates Inc. 210 Prescott St., Box 189

Kemptville, ON K0G 1J0

Attention: Colleen Vermeersch

Reception Date: 2023-12-21 Project: 230403 Sampler: NA

PO Number: Not Applicable

Temperature: 14 °C

Analysis	Quantity	External Method
Metals Scan (Water, ICP/MS)	1	Modified from EPA 200.8

Criteria:

A: Ontario Regulation 169/03 (Non-Regulated Drinking Water)

Sample status upon receipt :

7448839 Compliant

Notes

- All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated.
- Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/
- Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Legend:

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS

Client: Kollaard Associates Inc.

Project: 230403 Reception Date: 2023-12-21

				Eurofins Sa	ample No :	7448839		
					Matrix :	Drinking water		
				Samp	ling Date :	2023-12-21		
			Client Sample Identification :		144 Wescar			
Metals			Criteria		Lane			
	RL	Unit	Α	В	С			
Antimony	0.0005	mg/L	0.006			<0.0005		

Approved by:

Emma-Dawn Ferguson, Enviromental Chemist

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Client: Kollaard Associates Inc.

Project: 230403 Reception Date: 2023-12-21

Parameter Unit RL Blank QC Matrix Spike Dupl											
Parameter	Unit	KL	Віапк	Recovery %	Range %	Recovery %	Range %	RPD %	Range %		
Metals Scan (Water, ICP/MS)											
Method : Metals (Water, ICP/MS). Internal method: AMMTFQE1.											
Antimony	mg/L	0.0005	<0.0005	82	80-120	99	70-130	-	0-20		
Associated Samples : 7448839 Prep Date: 2023-12-2											
Analysis Date: 2024-01-02											

Where RPD % is reported as "-" the calculation is not available because one or both of the duplicates is within 5 times the RL.

DRINKING WATER CHAIN-OF-CUSTODY

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

100261741

81 11 E 11 E 11 E 1 E E E E E E E E E E
<u> </u>

		CLIENT INFORMATIO	N						11,3000		. 1	WAT	ERWO	RKS INF	ORM	ATION		- 1111	
Company: Kolla	aard Associates Inc.			3353		9,0	n e	Waterworks Name:		8			10	i.	4				
Contact: Colleen Vermeersch						Waterworks #:									P	Printed On: 2023-12-22 1			
Address: 210 Prescott St, Kemptville, On K0G 1J0								Contact:											
Telephone: 613	3-860-0923 ext230	Fax:						Address:											
Email #1: #2:					Telephone: Fäx:														
Project: 23040)3		-					Cell Phone:		200 2000000	300 53		200			2			
PO #:				_	Quote#	: 1703	314	Emall #1:				E			#2:				
-11	REGUL	ATION/GUIDELINE RE	QUIRE	D		, a 2			1 11		T	JRN-A	ROUNI	TIME	Busin	ess Da	ys)		
O. Reg 17		✓ opwsog GCDWQ	H	Private V Other:	Vell		None	1 Day* (10 Please contact the labor pesticides may take up t	tory in a			rush avalla			apply to s	1	16	(Standard	i) ts (I.e. O. Reg. 170 Schedule 24
The optimal tem	perature conditions during trans	port must be less than 10°C.	28854		5 <i>d</i>	Samp	le Details	Sample Analysis Requir						red 💉 🔭 Field Meas				ements	
Sample(s) cannot exceedances will requires. The COC must there will be a	the frozen. Note that for drinkin be reported where (and how) the be complete upon submissi \$25 surcharge if required in is are shaded in grey).	g water samples, all the application legislation on of the samples,	Sample Type Code (see below)	Resample? Y = Yes N = No	MOE/MOH Reportable? Y=Yes N=No	# of Containers	SPL Code/Watertrax	Sample Location	Subdivision parameters	Kollaard Subdivisionbacteria	Kollaard Special Metals	true colour	Antimony, Sb			fotal Chlorine	Free Chlorine	Field Turbidity	Sample RN# (Lab Use Only)
	Sample 1D	Date/Time Collected	Sa Belo	Resa Y=1	MO!	* 0	142	(i.e. Kitchen, POE)	g.	Sub	<u>s</u>	星	Anti			Tota	F.	Flek	
14	4 Wescar Lane	12-21 /	PW	N	N	1		POE					1			-		-	7448839
							4									-		-	
					32 S		v en		77		1			<u> </u>					
a)						11								1			8		
	52 70 v			W 62 6	0.000	-							1	1	arra				
3,1 a 11						4		-			TITLIAMITHIN)		S	Ì					
-									-				i		***************************************				
Sample Type C Residential Plu	odes for Drinking Water: RV mbing, S = Standing, F = Flu	V = Raw Water, TW = Tre shed, PW = Private Well	ated Wa	ater at f	oint of		o distribution,	TW-NT = Untreated	i Wate	r at Poir	nt of Ent	ry to di	stributio	on, DW =	Distrib	L oution, F	I IP ≈ Res	idential	Plumbing, NRP = Non-
- 1. E	PRINT				SIGN	1 4		DATE/1	IME			TEMP (*	C)·	COMME		93		ē.	<u> </u>
Sampled By:	Isaac Bacon				70.00				- 111 - 11 T										ere field icron filter
Relinquished By:			(4)		- 6000	100	81	12/211-	13			4							

Ryznar Stability Index

$$RSI = 2(pH_s) - pH$$

RSI $<< 6 \rightarrow$ the scale tendency increases as the index decreases

RSI >> 7 → the calcium carbonate formation probably does not lead to a protective corrosion inhibitor film

RSI >> 8 → mild steel corrosion becomes an increasing problem

Langelier Saturation Index

$$LSI = pH - pH_s$$

If LSI is negative → no potential to scale, the water will dissolve CaCO₃

If LSI is positive → scale can form and CaCO₃ precipitation may occur

If LSI is close to zero → borderline scale potential, water quality or temperature change or evaporation could change the index

where pH measured from sample

pH_s = pH at saturation in calcite or calcium carbonate

$$pH_{s} = (9.3 + A + B) - (C + D)$$

$$A = \frac{\log_{10}[TDS] - 1}{10}$$

$$B = -13.12 \times \log_{10}(^{\circ}C + 273) + 34.55$$

$$C = \log_{10}[Ca^{2+}asCaCO_{3}] - 0.4$$

$$D = \log_{10}[alkalinityasCaCO_{3}]$$

pH hardness [mg/l as CaCo₃] Alkalinity [mg/l as CaCo₃] total dissolved solids [mg/l] temperature (°C)

 $\rightarrow \rightarrow$ RSI $\rightarrow \rightarrow$ LSI

TW1-3hr	TW1-6hr
7.61	7.62
336	339
343	357
515	552
12.9	13.1
6.66	6.60
0.48	0.51

ATTACHMENT D

SEWAGE EFFLUENT DILUTION CALCULATIONS AND CLIMATE DATA

January 2025 230403

SEPTIC EFFLUENT DILUTION CALCULATIONS USING PREDICTED NUMBER OF EMPLOYEES

Number of Lots 1
Gross Site Area 46267 m²
Env. Can. Water Surplus (NPI-glacial till) 328 mm

Hard Surface Area (Post-Development)

Building Area 3566 m 2 Run off from Hard (asphalt) surfaced areas (31,137 m2, C=0.9) 31,137 gravel area (semi-pervious, C=0.6) $\underline{0}$ 34703

Net Infiltration Area = Gross Site Area - Hard Surface Area (Post-Development)

11564 m²

Recharge = NIA x NPI 3792.992 m3/year 10391.759 L/day

Number of employees 60

Sewage Demand (for sewage impact considerations) 75 L/day/employee

Total actual average daily sewage flow 4500 L/day

Total average daily sewage flow 1,643 m³/year

Infiltration Reduction Factor:

Topography (flat)0.30Soil (medium combination of clay and loam)0.20Cover (cultivated)0.10Total IRF0.60

treated effluent nitrate level 20 mg/l

Typical Expected Nitrate Concentration using Average Daily Sewage Design Flow

Volume of Effluent Per Year x Nitrate mg/L NO_3 = 8.4 mg/L NO_3 -N

Number of Lots x Volume Effluent Per Year + (Net Infiltration Area x NPI x IRF)

January 2025 230403

SEPTIC EFFLUENT DILUTION CALCULATIONS USING MAXIMUM NUMBER OF EMPLOYEES

Number of Lots 1
Gross Site Area 46267 m²
Env. Can. Water Surplus (NPI-glacial till) 328 mm

Hard Surface Area (Post-Development)

Building Area 3566 m 2 Run off from Hard (asphalt) surfaced areas (31,137 m2, C=0.9) 31,137 gravel area (semi-pervious, C=0.6) $\underline{0}$ 34703

Net Infiltration Area = Gross Site Area - Hard Surface Area (Post-Development)

11564 m²

Recharge = NIA x NPI 3792.992 m3/year 10391.759 L/day

Number of employees 83

Sewage Demand (for sewage impact considerations) 75 L/day/employee

Total actual average daily sewage flow 6225 L/day

Total average daily sewage flow 2,272 m³/year

Infiltration Reduction Factor:

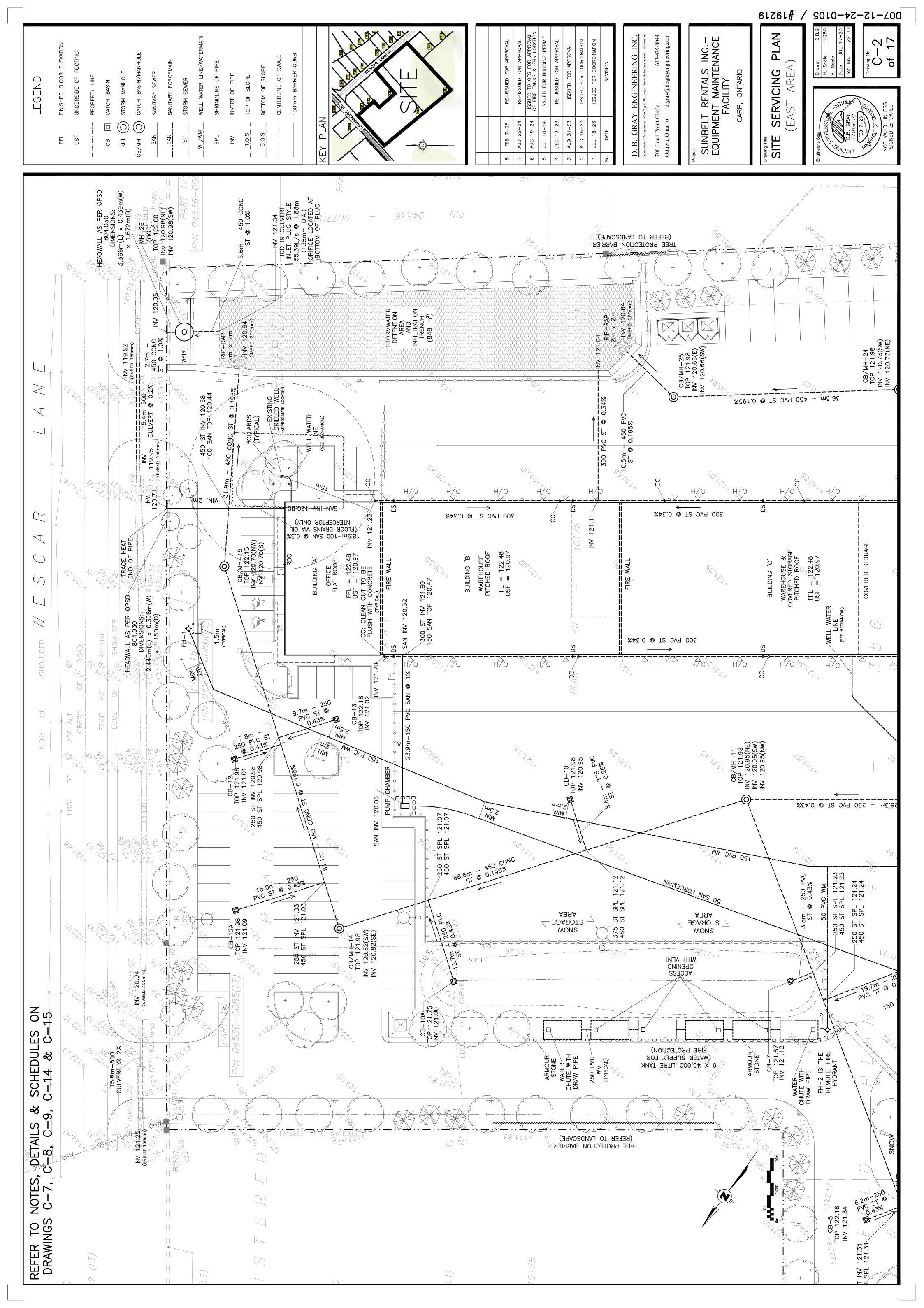
Topography (flat)0.30Soil (medium combination of clay and loam)0.20Cover (cultivated)0.10Total IRF0.60

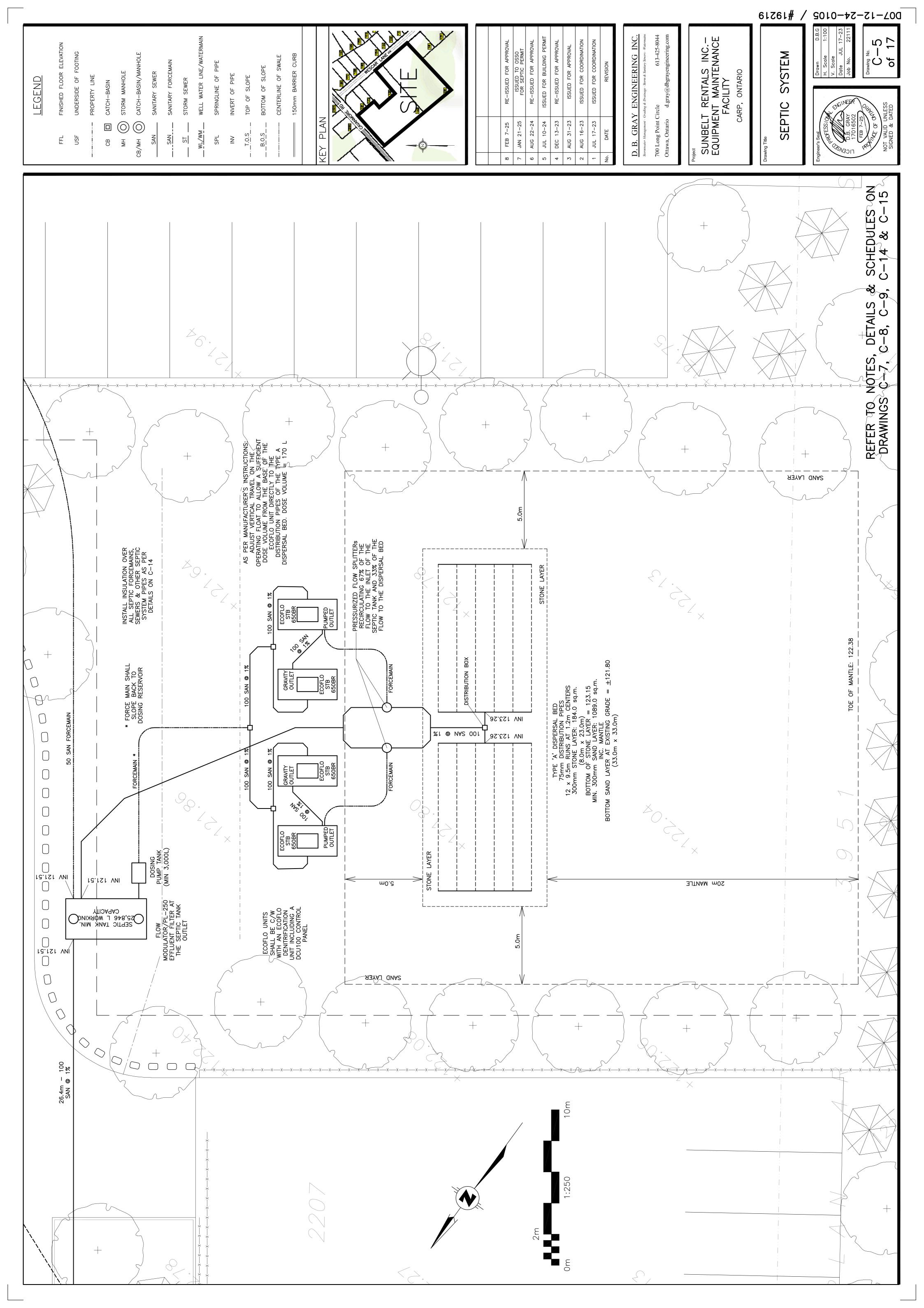
treated effluent nitrate level 20 mg/l

Typical Expected Nitrate Concentration using Average Daily Sewage Design Flow

Volume of Effluent Per Year x Nitrate mg/L NO₃

 $= 10.0 \text{ mg/L NO}_3\text{-N}$


Number of Lots x Volume Effluent Per Year + (Net Infiltration Area x NPI x IRF)


case ()	E .	
oll Type:		Slacial Till
		200 millimetres
aterrion	ang capacity.	200 minimos co
Year	Surplus (mm)	
1983	379.0	- (
1984	386.7	/
1985	268.4	
1986	473.4	
1987	240.6	
1988	289.3	
1989		1
1990	381.6	
1991	335 8	
1992		
1993		
1994		
1995	300.4	
1996	384.0	
1997	341.1	
1998	240.5	
1999	199.6	
2000	329.3	
2001	222.2	
2002	353.2	

ATTACHMENT E

SITE SERVICING PLANS (DB GRAY ENGINEERING)

ATTACHMENT F

OTTAWA PUBLIC HEALTH MANGANESE IN DRINKING WATER FACT SHEET

Manganese in Drinking Water Fact Sheet

WHAT IS MANGANESE?

Manganese is a naturally occurring element that is an essential nutrient for humans and animals. It is found in many foods, as well as in air, water, soil, and rocks. Manganese makes up 0.1% of the Earth's crust, and can be found as a component of other minerals like sulfides, oxides, carbonates, and silicates. Manganese is used in the manufacture of various products including iron and steel alloys, batteries, glass, fireworks, fertilizers, cosmetics, paints, and cleaning and disinfection products. Manganese can also be purchased as a nutritional supplement.

HOW DOES MANGANESE GET INTO DRINKING WATER?

Manganese is naturally occurring in many surface and ground waters. Manganese can also be dissolved from soils, sand and rocks to enter surface and ground waters.¹ Human activities like mining, industrial discharges, or landfills may also contribute to manganese in surface and ground waters.^{1,2} In general, manganese can be found at higher concentrations in groundwater compared to surface water.² Some lakes and reservoirs can also have higher levels of manganese due to natural water chemistry.²

Permanganate, a compound that contains manganese, may also be added to water during the treatment of drinking water to remove other chemicals (e.g., for the removal of iron).^{2,3}

HOW DOES MANGANESE INTAKE AFFECT MY HEALTH?

Too much or too little manganese in your body can lead to health problems.

Manganese deficiency: Manganese deficiency is rare and symptoms are not well defined. Health effects observed in individuals with diets very low in manganese include skin rashes, slow nail growth, reduced bone density, loss of pigmentation in hair, and low cholesterol levels.²

Manganese excess: There are few reports of adverse health effects from people who ingest too much manganese from food and water.¹ Recent evidence reviewed by Health Canada indicates that high levels of manganese in drinking water may impact memory and learning, behaviour, and fine motor control in infants and young children.^{2,4} Formula-fed infants may be more susceptible to health risks if water with high concentrations of manganese is used to prepare formula. This is because infant brains are rapidly developing, they drink more water in proportion to their body weight, and they absorb more manganese and are less able to remove it from their bodies compared to other age groups.³ For adults

and older children, short term exposure to manganese in drinking water at levels slightly above the guideline is unlikely to cause negative health effects.³

Health Canada notes that exposure to manganese while showering (either through breathing in water vapour or absorption through skin) is likely to be negligible.²

WHAT ARE THE LEVELS OF MANGANESE FOUND IN CANADIANS?

For most Canadians, diet is the main source of manganese. The Canadian Health Measures Survey (CHMS) is a national survey that collects information about the general health of Canadians and includes measurements of chemicals in blood and urine samples. The objective of the chemical measurements in the CHMS survey is to establish baseline levels in the Canadian population. Given that manganese is an essential trace element, its presence in the blood and urine of Canadians is expected. Manganese in blood and urine can be interpreted as an indicator of exposure, but does not necessarily mean that health effects will occur. Data collected from 2007 to 2011 for the CHMS found that the average levels of manganese measured in the blood of people in the Canadian population (aged 3 to 79) ranged from $8.8-11~\mu g/L$. More information on the CHMS and the levels of manganese in Canadians can be obtained by visiting the Canadian Biomonitoring Dashboard.

ARE THERE STANDARDS FOR MANGANESE IN DRINKING WATER?

The Ontario Drinking Water Standard (ODWS) published in 2006 sets an aesthetic objective for manganese in drinking water at 0.05 mg/L.⁷ The aesthetic objective is not intended to prevent health effects (e.g., not a health-based standard), but instead is intended to prevent the discolouration and staining of fixtures, and the undesirable taste caused by higher levels of manganese in water.

The Canadian Drinking Water Guideline for manganese developed by Health Canada stipulates a maximum acceptable concentration (MAC) in drinking water of 0.12 mg/L and an aesthetic objective of 0.02 mg/L.² The MAC is a health-based value intended to be protective of neurological effects in infants, the most sensitive population, and therefore it is also protective for chronic exposure in children and adults.²

ARE THERE OTHER STANDARDS OR GUIDELINE VALUES FOR MANGANESE?

The main source of exposure to manganese is via food, with grains, nuts and vegetables contributing the most to a person's daily intake of manganese. The average dietary intakes of manganese across all age groups according to the Canadian Total Diet Study (TDS) were estimated to range between 44.0 to 61.3 μ g/kg of bodyweight per day (based on data gathered from different Canadian cities for the TDS).² Health Canada has also established Adequate Intake Levels for manganese ranging with age or lifestage from 0.003 to 2.6 mg/day and Tolerable Upper Intake Levels ranging from 2 to 11 mg/day.⁸

Infant formula sold in Canada is regulated to contain a minimum of 5 μ g of manganese per 100 available kilocalories (equivalent to 3.33 μ g per 100 mL of ready-to-feed formula); a maximum amount of manganese has not been set for infant formula.

HOW CAN I TELL IF MY DRINKING WATER HAS HIGH MANGANESE LEVELS?

Water testing is the only way to know if manganese is present. Although water with elevated levels of manganese may impart a bitter metallic taste, tint water purplish brown or black (water discolouration may occur at concentrations as low as 0.005 to 0.02 mg/L), and stain laundry and plumbing fixtures;^{2,10,11} but these issues can also be caused by other chemicals.

WHAT SHOULD I DO IF A HIGH LEVEL OF MANGANESE IS FOUND IN MY WELL WATER?

For households who do not obtain their drinking water from a municipal source, a residential drinking water treatment device may be an option to reduce manganese concentrations in drinking water. Options can be explored with professionals specialized in water treatment, but examples of treatment processes effective at removing manganese include reverse osmosis, ion exchange (including water softeners and other cation exchange systems) and oxidizing filters.² As with any water treatment system, it is important to follow the manufacturer's recommendations for operation and maintenance (e.g., replacement of filter media).

REFERENCES

- United States Environmental Protection Agency (US EPA). Drinking Water Health Advisory for Manganese [Internet]. 2004. Available from: https://www.epa.gov/sites/default/files/2014-09/documents/support_cc1_magnese_dwreport_0.pdf
- 2. Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document Manganese [Internet]. 2019. Available from: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-guideline-technical-document-manganese.html
- 3. Health Canada. Water Talk Manganese in drinking water [Internet]. 2023. Available from: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/water-talk-manganese.html
- 4. HealthLink British Columbia. Manganese in Drinking Water [Internet]. Available from: https://www.healthlinkbc.ca/healthlinkbc-files/manganese-drinking-water
- Health Canada. Second Report on Human Biomonitoring of Environmental Chemicals in Canada: Manganese [Internet]. 2013. Available from: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/second-report-human-biomonitoring-environmental-chemicals-canada-health-canada-2013.html#a8.9

- 6. Government of Canada. Canadian Biomonitoring Dashboard [Internet]. 2024. Available from: https://health-infobase.canada.ca/biomonitoring/about.html
- 7. Ontario Ministry of the Environment, Conservation and Parks. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines [Internet]. 2006. Available from: https://wcwc.ca/wp-content/uploads/2021/08/Technical-Support-Document-for-Ontario-Drinking-Water-Standards-Objectives-and-Guidelines.pdf
- 8. Health Canada. Dietary reference intakes tables: Reference values for elements [Internet]. 2023. Available from: https://www.canada.ca/en/health-canada/services/food-nutrition/healthyeating/dietary-reference-intakes/tables/reference-values-elements.html#tbl2
- 9. Government of Canada. Food and Drug Regulations (C.R.C., c. 870) [Internet]. Available from: https://lois-laws.justice.gc.ca/eng/regulations/C.R.C.%2C_c._870/page-53.html
- 10. United States Environmental Protection Agency (US EPA). Secondary Drinking Water Standards: Guidance for Nuisance Chemicals [Internet]. 2024. Available from: https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals
- 11. World Health Organization (WHO). Manganese in drinking-water: Background document for development of WHO Guidelines for drinking-water quality [Internet]. 2021. Available from: https://www.who.int/publications/i/item/WHO-HEP-ECH-WSH-2021.5

Please note: This fact sheet was created by Ottawa Public Health in consultation with Public Health Ontario.

Manganese in Drinking Water Fact Sheet [Last updated: September 12, 2024]

Fiche de renseignements sur le manganèse dans l'eau potable

QU'EST-CE QUE LE MANGANÈSE?

Le manganèse est un élément naturel qui constitue un nutriment essentiel pour les humains et les animaux. On le trouve dans de nombreux aliments, ainsi que dans l'air, l'eau, le sol et les roches.¹ Le manganèse représente 0,1 % de la croûte terrestre et peut être présent dans d'autres minéraux tels que les sulfures, les oxydes, les carbonates et les silicates.² Le manganèse est utilisé dans la fabrication de divers produits, notamment les alliages de fer et d'acier, les batteries, le verre, les feux d'artifice, les engrais, les cosmétiques, les peintures et les produits de nettoyage et de désinfection.¹,² Le manganèse peut également être acheté sous forme de supplément alimentaire.²

COMMENT LE MANGANÈSE SE RETROUVE-T-IL DANS L'EAU POTABLE?

Le manganèse est naturellement présent dans de nombreuses eaux de surface et souterraines. Le manganèse peut également être dissous à partir des sols, du sable et des roches et pénétrer dans les eaux de surface et souterraines.¹ Les activités humaines telles que l'exploitation minière, les rejets industriels ou les décharges peuvent également contribuer à la présence de manganèse dans les eaux de surface et les eaux souterraines.¹,² En général, les concentrations de manganèse sont plus élevées dans les eaux souterraines que dans les eaux de surface.² Certains lacs et bassins peuvent également présenter des niveaux plus élevés de manganèse en raison de la chimie naturelle de l'eau.²

Le permanganate, un composé qui contient du manganèse, peut également être ajouté à l'eau pendant le traitement de l'eau potable pour éliminer d'autres produits chimiques (par exemple, pour éliminer le fer).^{2,3}

COMMENT LA CONSOMMATION DE MANGANÈSE AFFECTE-T-ELLE MA SANTÉ?

Un excès ou un manque de manganèse dans l'organisme peut entraîner des problèmes de santé.

Carence en manganèse : La carence en manganèse est rare et les symptômes ne sont pas bien définis. Les effets sur la santé observés chez les personnes ayant une alimentation très pauvre en manganèse comprennent des éruptions cutanées, une croissance lente des ongles, une densité osseuse réduite, une perte de pigmentation des cheveux et un faible taux de cholestérol.²

Excès de manganèse : Peu de rapports font état d'effets néfastes sur la santé des personnes qui consomment trop de manganèse provenant des aliments et de l'eau. Des éléments de preuves récents

examinés par Santé Canada indiquent que des niveaux élevés de manganèse dans l'eau potable peuvent avoir des répercussions sur la mémoire et l'apprentissage, le comportement et le contrôle de la motricité fine chez les nourrissons et les jeunes enfants.^{2,4} Les bébés nourris à l'aide de préparations pour nourrissons peuvent être davantage exposés à des risques pour la santé si de l'eau contenant de fortes concentrations de manganèse est utilisée pour préparer les biberons. En effet, le cerveau des nourrissons se développe rapidement, ils boivent plus d'eau par rapport à leur poids corporel, ils absorbent plus de manganèse et sont moins aptes à l'éliminer de leur corps que les autres groupes d'âge.³ Pour les adultes et les enfants plus âgés, une exposition à court terme au manganèse dans l'eau potable à des niveaux légèrement supérieurs à ceux des directives ne devrait pas avoir d'effets négatifs sur la santé.³

Santé Canada note que l'exposition au manganèse sous la douche (soit par l'inhalation de vapeur d'eau ou par l'absorption par la peau) est probablement négligeable.²

QUELS SONT LES NIVEAUX DE MANGANÈSE CHEZ LES CANADIENS?

Pour la plupart des Canadiens, l'alimentation est la principale source de manganèse. L'Enquête canadienne sur les mesures de la santé (ECMS) est une enquête nationale qui recueille des renseignements sur la santé générale des Canadiens et comprend la mesure des substances chimiques dans des échantillons de sang et d'urine.⁵ L'objectif de la mesure des substances chimiques effectuée dans le cadre de l'ECMS est d'établir des niveaux de référence dans la population canadienne. Le manganèse étant un oligo-élément essentiel, sa présence dans le sang et l'urine des Canadiens est attendue. La présence de manganèse dans le sang et l'urine peut être interprétée comme un indicateur d'exposition, mais ne signifie pas nécessairement qu'il y aura des effets sur la santé.⁵ Les données recueillies de 2007 à 2011 dans le cadre de l'ECMS ont révélé que les taux moyens de manganèse sanguin de la population canadienne (personnes âgées de 3 à 79 ans) allaient de 8,8 à 11 μg/L.⁶ De plus amples renseignements sur l'ECMS et les niveaux de manganèse chez les Canadiens peuvent être obtenus en consultant le Tableau de bord sur la biosurveillance canadienne.⁶

Y A-T-IL DES NORMES POUR LE MANGANÈSE DANS L'EAU POTABLE?

Les Normes de qualité de l'eau potable de l'Ontario publiées en 2006 fixent un objectif d'ordre esthétique pour le manganèse dans l'eau potable à 0,05 mg/l.⁷ Cet objectif n'est pas destiné à prévenir les effets sur la santé (il ne s'agit pas d'une norme liée à la santé), mais plutôt à prévenir la décoloration et la coloration des appareils sanitaires, ainsi que le goût indésirable causé par des niveaux élevés de manganèse dans l'eau.

Les Recommandations pour la qualité de l'eau potable au Canada établissent une concentration maximale acceptable (CMA) de 0,12 mg/L pour le manganèse dans l'eau potable et un objectif d'ordre esthétique de 0,02 mg/L.² La CMA est une valeur basée sur la santé qui vise à protéger les effets neurologiques chez les nourrissons, la population la plus sensible. De ce fait, elle vise également à protéger les enfants et les adultes en cas d'exposition chronique.²

EXISTE-T-IL D'AUTRES NORMES OU DIRECTIVES POUR LE MANGANÈSE?

La principale source d'exposition au manganèse est l'alimentation, les céréales, les noix et les légumes. Ces aliments contribuent le plus à l'apport quotidien en manganèse. Selon l'étude canadienne sur l'alimentation totale (EAT), les apports alimentaires moyens en manganèse pour tous les groupes d'âge ont été estimés entre 44,0 et 61,3 µg/kg de poids corporel par jour (d'après les données recueillies dans différentes villes canadiennes dans le cadre de l'EAT).² Santé Canada a également établi des apports suffisants en manganèse allant de 0,003 à 2,6 mg/jour en fonction de l'âge ou de l'étape de la vie et l'apport maximal tolérable (AMT) allant de 2 à 11 mg/jour.⁸

Les préparations pour nourrissons vendues au Canada sont réglementées et doivent contenir au minimum 5 µg de manganèse pour 100 kilocalories utilisables (ce qui équivaut à 3,33 µg pour 100 ml de préparations prêtes à servir); aucune quantité maximale de manganèse dans les préparations pour nourrissons n'a été établie.⁹

COMMENT PUIS-JE SAVOIR SI MON EAU POTABLE PRÉSENTE DES NIVEAUX ÉLEVÉS DE MANGANÈSE?

L'analyse de l'eau est le seul moyen de savoir si elle contient du manganèse. Cependant, l'eau contenant des niveaux élevés de manganèse peut avoir un goût métallique amer, une couleur pourpre, brune ou noire (la décoloration de l'eau peut se produire à des concentrations aussi faibles que 0,005 à 0,02 mg/L), et peut tacher la lessive et les appareils sanitaires. ^{2,10,11} Ces problèmes peuvent également être causés par d'autres produits chimiques.

QUE DOIS-JE FAIRE SI UN NIVEAU ÉLEVÉ DE MANGANÈSE EST DÉTECTÉ DANS L'EAU DE MON PUITS?

Pour les ménages qui ne s'approvisionnent pas en eau potable auprès d'une source municipale, un dispositif résidentiel de traitement de l'eau potable peut être une option pour réduire les concentrations de manganèse dans l'eau potable. Les options peuvent être étudiées avec des professionnels spécialisés dans le traitement de l'eau, mais des exemples de procédés de traitement efficaces pour éliminer le manganèse comprennent l'osmose inversée, l'échange d'ions (y compris les adoucisseurs d'eau et d'autres systèmes d'échange de cations) et les filtres oxydants.² Comme pour tout système de traitement de l'eau, il est important de suivre les recommandations du fabricant en matière de fonctionnement et d'entretien (par exemple, le remplacement du matériau filtrant).

RÉFÉRENCES

 United States Environmental Protection Agency (US EPA). Drinking Water Health Advisory for Manganese. 2004. Document publié sur la page: https://www.epa.gov/sites/default/files/2014-09/documents/support_cc1_magnese_dwreport_0.pdf

- Santé Canada. Recommandations pour la qualité de l'eau potable au Canada: document technique le manganèse. 2019. Sur Internet: https://www.canada.ca/fr/santecanada/services/publications/vie-saine/recommandations-pour-qualite-eau-potable-canadadocument-technique-manganese.html
- 3. Santé Canada. *Parlons d'eau Le manganèse dans l'eau potable*. 2023. Sur Internet : https://www.canada.ca/fr/sante-canada/services/sante-environnement-milieu-travail/rapports-publications/qualite-eau/manganese-dans-eau-potable.html
- 4. HealthLink British Columbia. *Manganese in Drinking Water*. Sur Internet: https://www.healthlinkbc.ca/healthlinkbc-files/manganese-drinking-water
- 5. Santé Canada. Deuxième rapport sur la biosurveillance humaine des substances chimiques de l'environnement au Canada. 2013. Sur Internet : https://www.canada.ca/fr/sante-canada/services/sante-environnement-milieu-travail/rapports-publications/contaminants-environnementaux/deuxieme-rapport-biosurveillance-humaine-substances-chimiques-environnement-canada-sante-canada-2013.html#a8.9
- 6. Gouvernement du Canada. *Tableau de bord sur la biosurveillance canadienne*. 2024. Sur Internet : https://sante-infobase.canada.ca/biosurveillance/a-propos.html
- 7. Ministère de l'Environnement, de la Protection de la nature et des Parcs de l'Ontario. Document de soutien technique pour les normes, objectifs et lignes directrices de l'Ontario en matière d'eau potable. 2006. Document publié sur la page : https://wcwc.ca/wp-content/uploads/2021/08/Technical-Support-Document-for-Ontario-Drinking-Water-Standards-Objectives-and-Guidelines.pdf (en anglais seulement)
- 8. Santé Canada. *Tableaux des apports nutritionnels de référence : Valeurs de référence relatives aux éléments*. 2023. Sur Internet : https://www.canada.ca/fr/sante-canada/services/aliments-nutrition/saine-alimentation/apports-nutritionnels-reference/tableaux/valeurs-reference-relatives-elements.html#tbl2
- 9. Gouvernement du Canada. *Règlement sur les aliments et drogues (C.R.C., ch. 870)*. Sur Internet : https://lois-laws.justice.gc.ca/fra/reglements/C.R.C.%2C_ch._870/page-53.html
- 10. United States Environmental Protection Agency (US EPA). Secondary Drinking Water Standards: Guidance for Nuisance Chemicals. 2024. Sur Internet: https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals
- 11. Organisation mondiale de la Santé. *Manganese in drinking-water: Background document for development of WHO Guidelines for drinking-water quality*. 2021. Sur Internet: https://www.who.int/publications/i/item/WHO-HEP-ECH-WSH-2021.5 (en anglais seulement)

Remarque : le contenu de cette fiche de renseignements a été fourni par Santé publique Ontario et adopté par Santé publique Ottawa aux fins d'utilisation dans les documents de communication sur les risques du bureau de santé publique.

Fiche de renseignements sur le manganèse dans l'eau potable [Dernière mise à jour : le 12 septembre 2024]