

Ottawa-Carleton District School Board

Phase Two Environmental Site Assessment 700 Spring Valley Drive Ottawa, Ontario

ER1087

November 25, 2024

CM3 Environmental Inc.

5710 Akins Road Ottawa, Ontario K2S 1B8

1.0 EXECUTIVE SUMMARY

CM3 Environmental Inc. (CM3) was retained by the Ottawa-Carleton District School Board (OCDSB) to complete a Phase Two Environmental Site Assessment (ESA) for the property located at 700 Spring Valley Drive in Ottawa, Ontario ("site" or "subject property"). The purpose of the Phase Two ESA was to identify contaminants of concern, if present, in soil in the areas of potential environmental concern (APECs). The Phase Two ESA was undertaken for due diligence purposes in support of a Site Plan Control application with the City of Ottawa. The Phase Two ESA was not completed in support of a record of site condition.

CM3 completed a Phase One ESA in November 2024 that identified one area of potential environmental concern (APEC) on-site related to the importation of fill materials of unknown quality. The contaminants of concern (COCs) were identified as petroleum hydrocarbons in the F1 to F4 fractions (PHCs), benzene, toluene, ethylbenzene and xylenes (BTEX), and metals. CM3 added sodium adsorption ration (SAR), electrical conductivity (EC), pH, and leachate analysis to the analytical suite for future excess soil management purposes. Potentially contaminated media included soil. If soil within the APEC was found to have elevated concentrations of COCs, an assessment of the on-site groundwater would be completed.

The investigation included the advancement of eight test pits to assess the soil conditions on-site. The overburden soil encountered at the site generally consisted of sand and organic soil (topsoil) overlying clay to a maximum observed depth of 1.52 meters below ground (m bg). Construction debris such as landscape fabric and concrete were observed during the test pit excavations. Bedrock and groundwater were not observed during the investigation. Based on the regional topography and the local presence of wetlands and waterbodies, the inferred regional groundwater flow direction was south.

The Phase Two ESA identified minor and localized exceedances of cobalt and vanadium in soil at the subject property. CM3 does not anticipate that there will be negative environmental impacts caused by these exceedances due to factors outlined in the conceptual site model (i.e. elevated background metals concentrations in the area).

During the construction phase of this project, these impacts should be managed by a Qualified Person (QP_{ESA}) under the MECP.

TABLE OF CONTENTS

1.0	Exe	ecutive Summary	i
2.0	Intr	oduction	1
	2.1	Site Description	1
	2.2	Property Ownership	1
	2.3	Current and Proposed Future Uses	1
	2.4	Applicable Site Condition Standard	1
3.0	Bac	ckground Information	3
	3.1	Physical Setting	3
	3.2	Past Investigations	3
4.0	Sco	ope of the Investigation	5
	4.1	Overview of Site Investigation	
	4.2	Media Investigated	
	4.3	Phase One Conceptual Site Model	
	4.4	Deviations From Sampling and Analysis Plan	
	4.5	Impediments	
5.0	Inv	estigation Method	7
	5.1	General	
	5.2	Drilling and Excavating	7
	5.3	Soil Sampling	
	5.4	Field Screening Measurements	
	5.5	Analytical Testing	
	5.6	Residue Management Procedures	7
	5.7	Elevation Surveying	8
	5.8	Quality Assurance and Quality Control Measures	8
6.0	Rev	/iew and Evaluation	9
	6.1	Geology	9
	6.2	Groundwater: Elevations and Flow Direction	
	6.3	Groundwater: Hydraulic Gradients	9
	6.4	Fine-Medium Soil Texture	9
	6.5	Soil: Field Screening	9
	6.6	Phase Two Soil Quality	9
	6.7	Ground Water Quality	10
	6.8	Quality Assurance and Quality Control Results	10
	6.9	Phase Two Conceptual Site Model	10
7.0	Coi	nclusions	12
	7.1	Signatures	13
8.0	Lim	nitations	14
9.0		erences	15

LIST OF TABLES

Table 1: Summary of Soil Analytical Results

LIST OF FIGURES

Figure 1: Site Location

Figure 2: Areas of Potential Environmental Concern

Figure 3: Test Pit Locations and Soil Quality

LIST OF APPENDICES

Appendix A: Test Pit Logs

Appendix B: Laboratory Certificates of Analysis

2.0 INTRODUCTION

CM3 was retained by the OCDSB to complete a Phase Two ESA for the property located at 700 Spring Valley Drive in Ottawa, Ontario. The purpose of the Phase Two ESA was to assess the soil quality within the APEC identified in CM3's November 2024 Phase One ESA report for the site. The Phase Two ESA was undertaken for due diligence purposes in support of a Site Plan Control application with the City of Ottawa.

2.1 Site Description

The subject property is located on the east side of Spring Valley Drive in Ottawa, Ontario. The legal description is Block 131, Plan 4M1465; City of Ottawa, and the property identification number is 04352-2047 (LT). The site location is provided as **Figure 1**.

The subject property is roughly rectangular in shape, apart from the north section which follows the curvature of Spring Valley Drive. The site is bound by open space to the north, Goldfinch Park to the east, Joshua Street to the south, and Spring Valley Drive to the west. The subject property is located in a primarily residential area and is approximately 2.83 hectares with no buildings or structures on-site. The property is grass covered with trees positioned sporadically throughout the site. Site features are shown on **Figure 2**.

2.2 Property Ownership

The owner of the subject property as of November 1, 2024, was the Ottawa-Carleton District School Board. CM3's main point of contact for the property owner was:

Barry Boyd
Project Officer, Architectural & Engineering
Design & Construction Services, Facilities Department
Ottawa-Carleton District School Board
(613)-596-8746
barry.boyd@ocdsb.ca

2.3 Current and Proposed Future Uses

The property is currently undeveloped. The development of a public school is proposed for the site.

2.4 Applicable Site Condition Standard

The environmental condition of the subject property was evaluated in comparison to the Ontario Ministry of Environment, Conservation and Parks (MECP) *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act,* under O. Reg. 153/04. The following site conditions were used in the selection of the appropriate site condition standards (SCS):

- No environmentally sensitive areas were located on site or in the immediate vicinity;
- The site is not considered a shallow soil property (i.e., bedrock is greater than 2 metres below grade);
- The site was not located within 30 m of a water body;
- Municipal water is used as the potable water source in the area;
- Land use at the site was considered institutional; and
- Surrounding land use was considered residential.

For the purposes of the Phase Two ESA, the Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition and institutional land use with coarse soils were selected for evaluation of the analytical results, based on the above.

3.0 BACKGROUND INFORMATION

3.1 Physical Setting

The site elevation is approximately 76.56 meters above sea level (m asl) and the site slopes downward to the south-south-west. The surrounding area slopes downward from north to south from 87 m asl to 69 m asl and downward from east to west from 86 m asl to 73 m asl.

Surface drainage at the site is expected to be primarily by infiltration. Small depressions were identified at the south, south-east, and south areas of the site. Stormwater that does not infiltrate likely flows overland to these depressions or to municipal catch basins located on Joshua Street, south of the site.

Soils at the site were described as offshore marine deposits of clay and silt with low permeability. Bedrock at the site was described as shale, limestone, dolostone, and siltstone, of the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, the Collingwood Member, and the Eastview Member.

Small depressions were identified at the south, south-east, and east sections of the site. The depressions were surrounded by tall grasses. Wetlands were not identified on-site in the Ministry of Natural Resources and Forestry (MNRF) Natural Heritage maps or on the ERIS PSR wetland map (**Appendix H**). Based on aerial photographs, it is presumed that the depressions formed naturally on-site within the last decade.

The Mer Bleue Bog (the bog) is located approximately 300 m south of the subject property and is an evaluated provincially significant wetland. The bog is an Area of Natural and Scientific Interest (ANSI). A watercourse is shown on the Ontario Base Map leading from the neighbouring property to the east (Goldfinch Park) to the bog (south).

Based on the regional topography and the local presence of wetlands and waterbodies, the inferred regional groundwater flow direction was south.

3.2 Past Investigations

The following environmental reports were available for review and are summarized below:

Two previous environmental reports were available for review and are summarized below:

1. CM3 Environmental. *Phase I Environmental Site Assessment, Spring Valley Drive at Joshua Street, Ottawa, Ontario.* Dated February 20, 2019.

CM3 was retained by the OCDSB to carry out a due diligence Phase I ESA at the subject property. At the time of the assessment, the site did not have a civic address and was owned by Claridge Homes. The Phase I ESA was performed in accordance with CSA standard Z768-01 and in general accordance with O. Reg. 153/04. The findings of the Phase I ESA did not identify any

PCAs on-site or within the Phase I study area. No APECs were identified on-site. CM3 did not recommend a Phase II ESA.

2. CM3 Environmental Inc. "Phase One Environmental Site Assessment, 3853 Cambrian Road, Ottawa, Ontario". November 25, 2024.

CM3 was retained by the OCDSB to carry out a Phase One ESA at the subject property in support of a Site Plan Control application. The Phase I ESA was performed in accordance with CSA standard Z768-01 and in general accordance with O. Reg. 153/04. One on-site PCA related to the importation of fill materials of unknown quality was identified. CM3 identified one APEC on the subject property related to the on-site PCA (imported fill).

4.0 SCOPE OF THE INVESTIGATION

4.1 Overview of Site Investigation

The purpose of the investigation was to assess the presence of potential contaminants of concern at the APEC, identified in the Phase One ESA, and to assess the general soil quality on-site for excess soil management. The site investigation was completed in general accordance with O. Reg. 153/04 and the Canadian Standards Association (CSA) Standard Z769-00 (R2008). The scope of work for the investigation included:

- The determination of the locations of all underground utilities by a third-party utility locator;
- The excavation of eight test pits;
- The continuous collection of soil samples during the test pit excavations for soil logging and on-site field screening;
- The selection of soil samples from all boreholes for laboratory analysis of one or more of PHCs, BTEX, metals, pH, SAR, EC, and leachate testing;
- The evaluation of the analytical results with respect to applicable site condition standards (SCS).

4.2 Media Investigated

The Phase Two ESA investigation included the sampling and analysis of soil in the APEC.

4.3 Phase One Conceptual Site Model

A Phase One conceptual site model (CSM) was developed based on the information collected as part of this investigation.

The subject property has remained undeveloped since its use for agriculture prior to 2007. Small depressions were identified at the south, south-east, and east sections of the site. The depressions were surrounded by tall grasses. Wetlands were not identified on-site in the Ministry of Natural Resources and Forestry (MNRF) Natural Heritage maps or on the ERIS PSR wetland map. Based on aerial photographs, it is presumed that the depressions formed naturally on-site within the last decade. A watercourse is shown on the Ontario Base Map leading from the neighbouring property to the east (Goldfinch Park) to the Mer Bleue Bog (to the south). Wetlands and ANSI were not identified within the Phase One study area. The site features are provided on **Figure 2**.

One PCA was identified on-site related to the potential use of the site for vehicle, equipment, and/or soils storage during the development of surrounding areas. Based on the evaluation of the PCA, one APEC was identified on-site related to the importation of fill materials of unknown quality. The APEC is provided on **Figure 3**.

Underground utilities were not identified at the site. Drainage at the subject property is likely by infiltration and by overland flow to depressions on-site and stormwater catch basins to the south on Joshua Street.

Soils at the site were described as offshore marine deposits of clay and silt with low permeability (Champlain Sea Deposits). Bedrock at the site was described as shale, limestone, dolostone, and siltstone, of the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, the Collingwood Member, and the Eastview Member.

4.4 Deviations From Sampling and Analysis Plan

The analysis of pH, SAR, EC, and synthetic precipitation leaching procedure for metals (mSPLP) were added to the sampling and analysis plan for future excess soil management purposes.

4.5 Impediments

Impediments were not encountered during the Phase Two site investigation.

5.0 INVESTIGATION METHOD

5.1 General

CM3 was on-site with Hodges Home Excavating (Hodges) of Kemptville, Ontario on September 4, 2024, to excavate test pits. CM3 collected soil samples during the test pit excavations for soil logging, field screening, and potential submission to the laboratory for the analysis of COCs.

5.2 Drilling and Excavating

A total of eight test pits (TP1 through TP9) were excavated on September 4, 2024. The excavations were completed by Hodges using a Yanmar ViO80 excavator. All test pits were excavated within APEC 1. The test pit locations are provided on **Figure 3**.

5.3 Soil Sampling

Soil samples were collected from 0.0 m bg to a maximum of 1.52 m bg. Samples were collected by hand from the excavator bucket using new nitrile gloves in between samples. Soil samples were logged for grain size, colour, moisture content, and visual or olfactory evidence of impacts.

At the time of recovery, a portion of each sample was placed into a polyethylene bag for headspace combustible vapour analysis. The remainder of each sample was placed into the appropriate laboratory supplied sample containers for the required analysis following MECP sampling protocols. The sample containers were placed into an ice chilled cooler pending submission to the laboratory for analysis.

5.4 Field Screening Measurements

The bagged soil samples were allowed to equilibrate to ambient temperature prior to combustible vapour readings being collected. The vapour concentrations were measured and recorded from the bag sample headspace using an RKI Eagle combustible vapour meter calibrated to hexane and operated in methane elimination mode. The intake probe of the vapour meter was inserted into the plastic bag and the highest vapour reading from each sample was recorded in parts per million (ppm). The results of the vapour analysis and field screening were used in the selection of samples for laboratory analysis.

5.5 Analytical Testing

Soil samples selected for analysis were submitted to Paracel Laboratories Limited (Paracel) of Ottawa, Ontario. Samples were submitted on the day of collection for regular turnaround.

5.6 Residue Management Procedures

Excavated soil was immediately used to backfill the test pit following the collecting of soil samples. The soil was placed and compacted in lifts to avoid extra soil being left on the ground surface.

5.7 Elevation Surveying

An elevation survey was not completed as part of this assessment. General topographic trends and the coordinates of the test pit excavations were noted.

5.8 Quality Assurance and Quality Control Measures

CM3 followed a quality assurance and quality control (QA/QC) program to ensure that the results of the Phase Two ESA were representative of site conditions. The QA/QC program included general field procedures to maintain sample integrity to demonstrate that the field sampling techniques were capable of yielding reproducible results. The general field QA/QC procedures included, but were not limited to:

- A new pair of disposable nitrile gloves was used for each sample collected;
- Sampling equipment was either single use or was dedicated to a specific location;
- Equipment that came into contact with the media to be collected (interface probe, stainless-steel trowel, etc.) was decontaminated between each monitoring location or sample;
- Clean, laboratory prepared sample containers containing the required preservatives were obtained from the laboratory for the proposed analyses;
- Sample containers were labelled prior to sample collection;
- Samples were placed in the appropriate sample containers for the selected analyses, following CM3 standard operating procedures and MECP protocols;
- Immediately following collection, all samples were stored in laboratory supplied coolers with the appropriate packing materials and ice packs, pending shipment to the laboratory; and
- Chain of Custody forms with CM3 contact information, date sampled, sample matrix, number and type of containers, and requested analyses travelled with all samples delivered to the laboratory for analysis.

All samples collected by CM3 were given unique sample identification and field staff recorded the location and identification of each sample collected using field logs and/or notebooks. Chain of Custody forms were filled out on site and travelled with all samples placed in coolers delivered to the laboratory for analysis. Each Chain of Custody included the CM3 contact information, date sampled, sample matrix, number and type of containers, and requested analyses.

Paracel is a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited laboratory that uses Ministry of Environment recognized methods to conduct analyses and follows an inhouse QA/QC program. Paracel employs method blanks, control standard samples, certified reference material standards, method spikes, replicates, duplicates and instrument blanks as part of their internal QA/QC programs. The results of the laboratory QA/QC are reported in the laboratory certificates. If the internal QA/QC criteria are not met, the laboratory either re-analyses the affected samples or qualifies the results.

6.0 REVIEW AND EVALUATION

6.1 Geology

The site geology was determined based on the test pit excavations and soil logging. Surface materials included topsoil with grass, typically underlain by clay, observed to a maximum depth of 1.52 m bg. Bedrock was not encountered during the investigation. The site stratigraphy is provided on the test pit logs, **Appendix A**.

6.2 Groundwater: Elevations and Flow Direction

Groundwater flow direction could not be determined based on the information collected as part of this assessment. The regional groundwater flow direction was inferred to be south toward the Mer Bleue bog.

6.3 Groundwater: Hydraulic Gradients

The hydraulic gradient was not calculated as part of this assessment.

6.4 Fine-Medium Soil Texture

Based on visual observations, the soil at the site consists of both coarse grained and fine grained soils. The soils were considered coarse grained for the comparison to the MECP SCS. The stratigraphy observed at the site is provided on the test pit logs, **Appendix A**.

6.5 Soil: Field Screening

A total of 16 soil samples were collected from test pits for field screening and combustible vapour analysis. The samples showed combustible vapour concentrations ranging from 0 ppm (not detected) to 120 ppm. The soil combustible vapour concentrations are included on the test pit logs, **Appendix A**.

6.6 Phase Two Soil Quality

A total of eight soil samples were analyzed for one or more COCs. The soil sample analytical results are summarized in **Table 1**. The test pit locations and soil quality are provided on **Figure 3**. The soil sample laboratory reports are provided in **Appendix B**.

APEC 1 - Entire Site

Test pit TP1 through TP8 were advanced in APEC 1 to cover the entire site. Soil samples TP1 S2, TP2 S1, TP3 S2, TP4 S1, TP5 S2, TP6 S1, TP7 S2, TP8 S1 were analyzed for PHCs, BTEX, metals, SAR, EC, pH. TP2 S1, TP4 S1, and TP8 S1 were analyzed for mSPLP.

Sample TP1 S2 exceeded the MECP Table 3 SCS for cobalt and vanadium. All other samples analyzed met the MECP SCS for COCs.

6.7 Ground Water Quality

Based on the soil analytical results, groundwater at the site is not expected to be impacted.

6.8 Quality Assurance and Quality Control Results

Field duplicates were not collected during the Phase Two ESA. However, all samples were collected following industry protocols and CM3's internal QA/QC procedures. All samples were received by the laboratory withing the specified holding time for the requested analyses. The laboratory did not identify any samples that did not meet the appropriate protocols with respect to container type, preservation method, or storage requirement.

The laboratory employs method blanks, control standard samples, certified reference material standards, method spikes, replicates, duplicates, and instrument blanks as part of their internal QA/QC programs. The results of the laboratory QA/QC are reported in the laboratory certificates. If the internal QA/QC criteria are not met, the laboratory either re-analyses the affected samples or qualifies the results.

The method quality control blanks, method spikes and laboratory duplicate results reported as part of the laboratory QA/QC measures were within the laboratory accepted criteria. No qualifiers were provided for any of the soil analysis. The laboratory QA/QC results for the soil analyses are provided in the laboratory reports, **Appendix B**.

6.9 Phase Two Conceptual Site Model

One PCA was identified on-site related to the importation of fill materials of unknown quality. The on-site PCA resulted in an APEC that encompassed the subject property. The APEC is shown on **Figure 2**.

The site has remained undeveloped. No underground utility services were identified on-site.

The overburden soil encountered at the site consisted of sand and organic soil (topsoil) overlying clay to a maximum observed depth of 1.52 m bg. Construction debris (e.g., landscape fabric and concrete) were observed during the test pit excavation TP1. Bedrock and groundwater were not observed during the investigation.

Surface drainage at the site is expected to be primarily by infiltration. Small depressions were identified at the south, south-east, and south areas of the site. Stormwater that does not infiltrate likely flows overland to these depressions or to municipal catch basins located on Joshua Street, south of the site.

Section 35 of O. Reg. 153/04, non-potable SCS, are applicable to the subject property based on the following:

• The subject property is not in a designated wellhead protection area.

Section 41 of O. Reg. 153/04, environmentally sensitive areas SCS does not apply to the subject property based on the following:

- the subject property:
 - o was not within an area of natural significance,
 - o did not include or is adjacent to an area of natural significance,
 - o did not include land within 30 metres of an area of natural significance.

Section 43.1 of O. Reg. 153/04, shallow soil property or water body SCS, are not applicable to the subject property based on the following:

- Bedrock at the subject property is greater than 2.0 m bg,
- The subject property is not within 30 m of a water body.

The development of a public school is proposed for the site and includes sports fields and parking lots. The development plans have not reached final approval.

The Phase Two ESA identified the following contaminants with concentrations that exceeded the applicable SCS in soil:

TP1 – Central west section of the site. 23.7 μ g/g cobalt vs 22 μ g/g cobalt (SCS) and 107 μ g/g vanadium vs 86 μ g/g vanadium (SCS).

The reason for the slightly elevated concentrations may be explained in multiple reports/studies including "Background Metals in Champlain Sea Sediments: Updates from 2019 Drilling and Sampling Program Eastern Ontario – Ottawa Region" prepared by Geofirma Engineering for the City of Ottawa. Please refer to Section 9 - References.

The reports indicate that concentrations of cobalt, barium, chromium, and vanadium are greater in the former Champlain Sea Basin in eastern Ontario than other parts of Ontario. The subject property is within the Champlain Sea Basin. Based on the above, the elevated concentrations of cobalt and vanadium identified in the soil sample "TP1 S2" may be naturally occurring and not from an anthropogenic source. The report suggests updated (region specific) background values for cobalt and vanadium of 28 μ g/g and 122 μ g/g, respectively. The elevated concentrations identified on-site are below the updated background concentrations suggested in the report.

Additionally, the elevated concentrations of cobalt and vanadium appear to be localized and marginally exceed the applicable SCS at this site. Based on the above, CM3 does not anticipate that there will be negative environmental impacts caused by these exceedances.

With respect to groundwater, the above report states "The relative absence of metal exceedances in groundwater samples compared to the soil chemistry results suggests that the elevated metals concentrations that are observed in the fine-grained Champlain Sea sediments generally remain immobile and do not desorb readily into the groundwater". As such it is unlikely that groundwater impacts are present.

7.0 CONCLUSIONS

CM3 Environmental Inc. was retained by the OCDSB to complete a Phase Two ESA for the property located at 700 Spring Valley Drive in Ottawa, Ontario. The purpose of the Phase Two ESA was to assess concentrations of contaminants of concern in soil, if present. The Phase Two ESA was undertaken for due diligence purposes in support of a Site Plan Control application with the City of Ottawa. The Phase Two ESA was not completed in support of a record of site condition.

The investigation included the advancement of eight test pits to assess soil conditions at the site. The results of the Phase Two ESA investigation are summarized as follows:

Site Characterization

- The overburden soil generally consisted of sand and organic soil (topsoil) overlying clay to a maximum observed depth of 1.52 m bg.
- Bedrock and groundwater were not encountered during the investigation.
- On-site groundwater flow direction could not be determined based on the information gathered in this assessment. The inferred regional groundwater flow direction was south toward the Mer Bleue Bog.

Soil Quality

- Eight soil samples (TP1 S2, TP2 S1, TP3 S2, TP4 S1, TP5 S2, TP6 S1, TP7 S2, TP8 S1) were collected from APEC 1 and analyzed for COCs.
- Sample "TP1 S2" slightly **exceeded** the SCS for cobalt and vanadium. All other soil samples analyzed met the SCS for COCs.
- Based on evidence of elevated Background Metals in Champlain Sea Sediments (refer to the Conceptual Site Model and References), it is CM3's opinion that the general soil quality at the site is adequate for the proposed land use.

Groundwater Quality

Based on factors explained in the conceptual site model, specifically, documented
evidence in Champlain Sea Sediments of: "The relative absence of metal exceedances in
groundwater samples compared to the soil chemistry results suggests that the elevated
metals concentrations that are observed in the fine-grained Champlain Sea sediments
generally remain immobile and do not desorb readily into the groundwater", CM3 does not
expect groundwater at the site to be impacted by COCs.

The Phase Two ESA identified minor and localized exceedances of cobalt and vanadium in soil at the subject property. CM3 does not anticipate that there will be negative environmental impacts caused by these exceedances due to factors outlined in the conceptual site model (i.e. elevated background metals concentrations).

During the construction phase of this project, these impacts should be managed by a Qualified Person (QP_{ESA}) under the MECP.

7.1 Signatures

This Phase Two ESA was completed under supervision of Mr. Marc MacDonald, P.Eng. of CM3 Environmental Inc. Mr. MacDonald is a Qualified Person as defined in O. Reg. 153/04 and confirms that this report includes all findings and conclusions of the Phase Two ESA.

We trust that the above is satisfactory for your purposes at this time. Please feel free to contact the undersigned if you have any questions.

Yours sincerely,

CM3 Environmental Inc.

Ethan Risk, B.Eng., EIT Project Manager

Marc MacDonald, P.Eng. QP_{ESA}, EP Principal

MMac Doald

8.0 LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by CM3 Environmental Inc. for the Ottawa-Carleton District School Board. It is intended for the sole and exclusive use of the Ottawa-Carleton District School Board, its affiliated companies and partners and their respective insurers, agents, employees and advisors. Any use, reliance on, or decision made by any person other than the Ottawa-Carleton District School Board based on this report is the sole responsibility of such other person. CM3 Environmental Inc. and the Ottawa-Carleton District School Board make no representation or warranty to any other person with regard to this report and the work referred to in this report, and they accept no duty of care to any other person or any liability or responsibility whatsoever for any losses, expenses, damages, fines, penalties or other harm that may be suffered or incurred by any other person as a result of the use of, reliance on, any decision made or any action taken based on this report or the work referred to in this report.

The investigation undertaken by CM3 Environmental Inc. with respect to this report and any conclusions or recommendations made in this report reflect CM3 Environmental Inc.'s judgement based on the site conditions observed at the time of the site inspection on the date(s) set out in this report and on information available at the time of preparation of this report. This report has been prepared for specific application to this site and it is based, in part, upon visual observation of the site, as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future site conditions, portions of the site which were unavailable for direct investigation, locations which were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Substances other than those addressed by the investigation described in this report may exist within the site and substances addressed by the investigation may exist in areas of the site not investigated.

If site conditions or applicable standards change or if any additional information becomes available at a future date, modifications to the findings, conclusions and recommendations in this report may be necessary.

Other than by the **Ottawa-Carleton District School Board**, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of CM3 Environmental Inc. Nothing in this report is intended to constitute or provide a legal opinion.

9.0 REFERENCES

Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, Ontario Ministry of Environment, 2004.

Guide for Completing Phase Two Site Assessments under Ontario Regulation 153/04, Ontario Ministry of Environment, June 2011.

Guide for Completing Phase One Site Assessments under Ontario Regulation 153/04, Ontario Ministry of Environment, June 2011.

Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, Ontario Ministry of Environment, December 1996.

Ontario Regulation 153/04 (made under the Environmental Protection Act), as amended, Ontario Ministry of Environment, 2004.

Ontario Regulation 903 (made under Ontario Water Resources Act, R.S.O. 1990, c. O.40), as amended, Ontario Ministry of Environment, 2003.

Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Ontario Ministry of Environment, April, 2011.

City of Ottawa Online Mapping Tool. Available online at: https://maps.ottawa.ca/geoottawa/

Ontario Ministry of Natural Resources and Forestry Natural Heritage Interactive Mapping Tool. Available online at: https://www.lioapplications.lrc.gov.on.ca/Natural Heritage/index.html?viewer=Natural Heritage. Natural Heritage&locale=en-CA

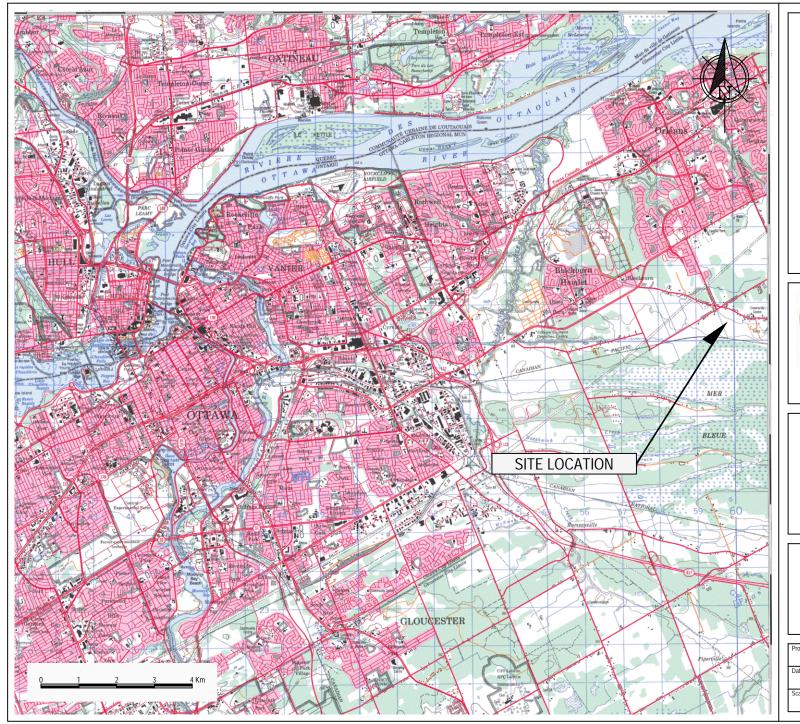
Rational for the Development of Soil and Ground Water Standards for Use at Contaminated Sites in Ontario. Standards Development Branch, Ontario Ministry of the Environment. April 2011.

Sterling and Raven (Geofirma), Brent Loney and Asia Reid (Dillon), Brad Carew (City of Ottawa) Elevated Background Metals Concentrations in Champlain Sea Clay - Ottawa Region 2017

Geofirma Engineering Ltd. and Dillon Consulting Ltd. (2018). Elevated Background Concentrations in Fine-Grained Champlain Sea Deposits, Eastern Ontario – Ottawa Regions. Prepared for: City of Ottawa, Infrastructure Policy Unit.

Morgan, C. (2023a). (rep.). (S. Sterling, Ed.) Geofirma Background Metals in Champlain Sea Sediments: Updates from 2019 Drilling and Sampling Program Eastern Ontario – Ottawa Region (pp. 1–115). Ottawa, ON: Geofirma Engineering.

FIGURES


Phase Two Environmental Site Assessment

700 Spring Valley Drive

Ottawa, Ontario

Ottawa-Carleton District School Board

ER1087

5710 AKINS ROAD, OTTAWA, ON K2S 1B8

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 700 SPRING VALLEY DRIVE, OTTAWA, ONTARIO

SITE LOCATION

	Project:	Drawn By:
	ER1087	KS
	Date:	Reviewed By:
	NOV 2024	ER
1	Scale:	Figure:
	AS SHOWN	1

UNKNOWN QUALITY (ENTIRE SITE)

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 700 SPRING VALLEY DRIVE, OTTAWA, ONTARIO

AREA OF POTENTIAL ENVIRONMENTAL CONCERN

Scale 1:1000

10 20 30
(Approx. When plotted 11x17)

Project: ER1087	Drawn By: KS
Date: NOV 2024	Reviewed By: ER
Scale: 1:1000	Figure:

PHASE I SITE TEST PIT

SOIL SAMPLES ANALYSED:

CONTAMINANTS OF CONCERN NOT DETECTED

CONTAMINANTS OF CONCERN < MECP TABLE 3 SCS

CONTAMINANTS OF CONCERN > MECP TABLE 3 SCS

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 700 SPRING VALLEY DRIVE, OTTAWA, ONTARIO

SOIL QUALITY

Scale 1:1000

Project:	Drawn By:
ER1087	KS
Date: NOV 2024	Reviewed By: ER
Scale: 1:1000	Figure:

TABLES

Phase Two Environmental Site Assessment

700 Spring Valley Drive

Ottawa, Ontario

Ottawa-Carleton District School Board

ER1087

TABLE 1: Summary of Soil Analytical Results Phase Two Environmental Site Assessment 700 Spring Valley Drive, Ottawa, ON ER1087

Sample ID >			TP1-S2	TP2-S1	TP3-S2	TP4-S1	TP5-S2	TP6-S1	TP7-S2	TP8-S1
Parameter	MDL	MECP								
Depth (m bg) >		Table 3	0.61 - 1.22	0 - 0.61	0.61 - 1.22	0 - 0.61	0.61 - 1.22	0 - 0.61	0.61 - 1.22	0 - 0.61
HSVL (ppm) > Sample Date >		SCS	120 04-Sep-24	25 04-Sep-24	50 04-Sep-24	30 04-Sep-24	0 04-Sep-24	0 04-Sep-24	0 04-Sep-24	0 04-Sep-24
General Inorganics										
SAR	0.01	5	0.96	0.29	0.28	0.13	1.35	1.31	1.44	0.37
Conductivity (uS/cm)	5	700	173	149	95	141	191	292	317	178
pH	0.05	5 to 9	6.8	6.72	6.75	6.81	6.76	6.79	6.87	6.97
Metals										
Antimony	1	7.5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Arsenic	1	18	3.7	2.6	2.3	2.6	2.8	3.6	2.9	1.8
Barium	1	390	321	125	174	84.6	196	141	123	49.2
Beryllium	0.5	4	0.8	0.5	0.6	ND (0.5)	0.6	0.7	0.5	ND (0.5)
Boron	5	120	9.5	5.5	5.5	ND (5.0)	5.4	10.2	5.6	ND (5.0)
Cadmium	0.5	1.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Chromium	5	160	114	59	75.4	44.4	83.1	68	61.2	25.8
Cobalt	1	22	23.7	11.6	14	8.9	17.2	14.1	11.8	5.4
Copper	5	140	46	20.9	17.2	16.6	23.1	29.5	22.5	10.3
Lead	1	120	8	7	9.2	6.4	7.8	7.7	6.8	3.3
Molybdenum	1	6.9	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Nickel	5	100	61.7	31	33.8	23.5	39.8	42.1	32.2	13.6
Selenium	1	2.4	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Silver	0.3	20	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)
Thallium	1	1	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Uranium	1	23	ND (1.0)	ND (1.0)	1.5	ND (1.0)	1.2	1.1	ND (1.0)	ND (1.0)
Vanadium	10	86	107	50.3	62.7	40.2	75.6	53.5	52	24.4
Zinc	20	340	126	61.9	89.3	46.2	87.1	70.4	62.4	27.1
Volatiles										
Benzene	0.02	0.21	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Ethylbenzene	0.02	2	ND (0.02)	ND (0.02)	ND (0.02) ND (0.05)	ND (0.02)	ND (0.05)	ND (0.05)	ND (0.02)	ND (0.02)
Toluene	0.05	2.3	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
m/p-Xylene	0.05	NV	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
o-Xylene	0.05	NV	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Xylenes, total	0.05	3.1	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Hydrocarbons										
F1 PHCs (C6-C10)	7	55	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)
F2 PHCs (C10-C16)	4	98	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)
F3 PHCs (C16-C34)	8	300	ND (4) ND (8)	ND (4) ND (8)	ND (4) ND (8)	ND (4) ND (8)	ND (4) ND (8)	ND (4) ND (8)	ND (4) ND (8)	ND (4) ND (8)
F4 PHCs (C34-C50)	6	2800	ND (6)	ND (6)	ND (6)	ND (6)	ND (6)	ND (6)	ND (6)	ND (6)
. ()	-		(-/	(-/	(-/	(-/	(-/	(-/	(-/	(-/

INVILLS mig/Kg - all concentrations provided in parts per million (milligrams per kilogram) apart from general inorganics MDL - reported analytical method detection limit HSVL - headspace vapour level (combustible vapour meter, calibrated to hexane)

m bg - metres below grade

ppm - parts per million

NV - no standard listed

"<" or "ND ()" - less than detection limits indicated (refer to laboratory report)

NA - not applicable

MECP Table 3 SCS - Ontario Ministry of Environment, Conservation and Parks (MECP) Soil,

Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. April, 2011.

Full Depth Generic Site Condition Standards in a Non-Potable Ground Water

Condition, institutional land use, coarse textured soil. **Bold / Italic** - indicates concentration above applicable MECP Table 3 SCS

<u>0.5</u> - MDL above applicable MECP Table 3 SCS (refer to laboratory reports)

APPENDIX A TESTPIT LOGS

Phase Two Environmental Site Assessment

700 Spring Valley Drive

Ottawa, Ontario

Ottawa-Carleton District School Board

ER1087

		C	n	12	CLIENT: Ottawa-Carleton District School Be	pard			TEST	PIT	Ľ	OG	
CN	⁄l³ JOI	_enviro	onm ER	ental 1076	PROJECT: 700 Spring Valley Drive, Ottawa, O	N	SURFACI	TESTPIT NO: E ELEVATION:	TP1				
DEPTH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE	SOIL DESCRIPTION			D TEST DATA C VAPOUR LE (ppmv) 100		TESTPIT	WATER LEVEL	WELL COMPLETION NOTES	DEPTH (m)
		TP1 S1		70 70 70 70 70 70 70 70 70 70 70 70 70 7	SAND AND ORGANIC SOIL loose, brown, dry CLAY soft, grey, dry, landscape fabric debris around 0.91 n	n bg.		60					-
1-		TP1 S2						120					-1.0
					End of testpit at 1.22 m								
		LING MET			anmar ViO 80 Notes: ■	GRAB SAM	IPLE						
	DRIL	L DATE: 2	2024 5	Septembe	er 4 LOGGED BY: ER					S	Shee	et 1 of 1	

			n	12		ENT: Ottawa-Carleton Distric	ct School Board				TES	TPI	ΤL	OG	
	2	_environ	onn	nenta		OJECT: 700 Spring Valley Drive	e, Ottawa, ON		OUDE: 5		TP2				
CN	1	B NO:	EF	R1076				+	SURFACE		^	-	ا بے		
DEPTH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE		SOIL DESCRIPTION		1	ORGANIO		EVEL	TESTPIT	WATER LEVEL	WELL COMPLETION NOTES	DEPTH (m)
		TP2 S1		2	SAND A loose, b	AND ORGANIC SOIL brown, dry ey, dry		-		25					-
1-		TP2 S2													-1.0
					End of t	testpit at 1.22 m									
	DRIL	LING MET	 HOD:	Ya	anmar ViO 80	0	Notes: GRAB S	AMPL	<u>: : : : : :</u> E	: :	<u> </u>				
	DRIL	L DATE:	2024	Septemb	er 4	LOGGED BY: ER							Shee	et 1 of 1	

		C		12	CLIENT: Ottawa-Carleton Distric	t School Board		TES		ΓL	OG	
CN	⁄/³ JOI	_enviro	onm ER	ental	PROJECT: 700 Spring Valley Drive,	, Ottawa, ON	TES SURFACE ELE	STPIT NO: TP3 VATION:				
DEPTH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE	SOIL DESCRIPTION		FIELD TE ORGANIC VA (pp	ST DATA	TESTPIT	WATER LEVEL	WELL COMPLETION NOTES	DEPTH (m)
	-	TP3 S1			SAND AND ORGANIC SOIL piled topsoil, loose, dry, brown			45				
1-		TP3 S2			SAND AND SILT loose, dry, brown			;5Q				-1.0
					End of testpit at 1.22 m							
	DRIL	LING METH	HOD:	Ya	anmar ViO 80	Notes: GRAB SAM	PLE		1			
	DRIL	L DATE: 2	2024 5	Septembe	er 4 LOGGED BY: ER					Shee	et 1 of 1	

		C		12	CLIENT: Ottawa-Carleton Distric	t School Board			PIT	LOG	
CN	⁄/³ JO∣	_enviro	onm ER	ental 1076	PROJECT: 700 Spring Valley Drive,	, Ottawa, ON	TESTPIT NO: TF SURFACE ELEVATION:	4			
DEPTH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE	SOIL DESCRIPTION		FIELD TEST DATA ORGANIC VAPOUR LEVE (ppmv) 1 10	TESTPIT	COMPLETION WATER LEVEL	WELL COMPLETION NOTES	DEPTH (m)
	-	TP4 S1					30,				
1-		TP4 S2					5 4				-1.0
					End of testpit at 1.22 m						
		LING METH				Notes: GRAB SAM	PLE				
	DRIL	L DATE: 2	2024 5	Septemb	per 4 LOGGED BY: ER				Sh	neet 1 of 1	

		C	n	12	CLIENT: Ottawa-Carleton Distri	ct School Board								ΓPI	ΓL	.OG	
CN	∕l³ JOI	_enviro	onm ER	ental 1076	PROJECT: 700 Spring Valley Drive	e, Ottawa, ON		SUF	RFAG		PIT NO	Р	5				
DEPTH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE	SOIL DESCRIPTION		1			IIC \	T DA OUR v)		100	TESTPIT COMPLETION	WATER LEVEL	WELL COMPLETION NOTES	DEPTH (m)
		TP5 S1			SAND AND ORGANIC SOIL loose, dry, brown		æ										-
1-		TP5 S2					A										-1.0
					End of testpit at 1.22 m												
		LING METH			anmar ViO 80	Notes: GRAB SAM	ИPLE	Ξ									ı
	DRIL	L DATE: 2	2024 5	Septemb	per 4 LOGGED BY: ER										Shee	et 1 of 1	

		C	n	13		CLIENT: Ottawa-Carleton Distri	ct School Board								ГРΙ	ΓL	OG	
	3	enviro	onm	ental		PROJECT: 700 Spring Valley Drive	e, Ottawa, ON			ים וי		TPIT NO	P	3				
CN		3 NO:		1076								'ATION ST DA		T	z	E		
DEPTH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE		SOIL DESCRIPTION		1	OI		ANIC	POUR nv)	/EL	00	TESTPIT COMPLETION	WATER LEVEL	WELL COMPLETION NOTES	DEPTH (m)
					SAN	ND AND ORGANIC SOIL le clay, loose, dry, grey/brown												
-		TP6 S1			soft,	dry, grey		Ą										-
-																		-
-		TP6 S2						P										-
1-									- :									-1.0
					End	of testpit at 1.22 m												
	DRIL	LING METI	HOD:	Ya	nmar Vi	iO 80	Notes: GR	RAB SAMPI	LE			 •						1
	DRIL	L DATE: 2	2024 5	Septembe	er 4	LOGGED BY: ER										Shee	et 1 of 1	

		C		13	CLIENT: Ottawa-Carleton Distr	ict School Board								TPI	ΓL	OG	
CN	∕l³ JOI	_enviro	onm ER	ental 1076	PROJECT: 700 Spring Valley Driv	ve, Ottawa, ON	s	SURF		TPIT N /ATION		P	7				
DEPTH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE	SOIL DESCRIPTION		OF 1		NIC				100	TESTPIT COMPLETION	WATER LEVEL	WELL COMPLETION NOTES	DEPTH (m)
		TP7 S1			SAND some clay, loose, moist, grey		4										-
1-		TP7 S2					P										-1.0
					End of testpit at 1.22 m												
	DRIL	LING METH	HOD:	Ya	anmar ViO 80	Notes: GRAB SAM	MPLE	<u>:</u>		<u> </u>	 :	-::					1
	DRIL	L DATE: 2	2024 5	Septembe	er 4 LOGGED BY: ER										Shee	et 1 of 1	

CLIENT: Ottawa-Carleton District School Board PROJECT:						ct School Board	TESTPIT LOG														
CM	³ JOE	_enviro				PROJECT: 700 Spring Valley Drive	e, Ottawa, ON		S	URF	ACE	TE ELI	STPIT EVATIO	NO: DN:	Т	P8	3				
										F	IELI	D TI	EST [DAT	Ά			NO N	VEL		
E) H	Ē	빌	NOO	ΓΥPE		SOIL DESCRIPTION			OF	RG/	ANIC		APOU	IR L	.EV	EL		빌	R	WELL	(m) H
DEPTH (m)	SAMPLE TYPE	SAMPLE ID	SPT COUNT	SOIL TYPE				1					mv) 10			10	ا	COMPLETION	WATER LEVEL	WELL COMPLETION NOTES	DEPTH (m)
	0)	0)		1 21 1/2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	SAN	ND ne organic soil, loose, dry, brown			:					:	:	- 10			_		
				<u> </u>										:	:						
				12 · <u>1.12</u> ·										:	:						
-														:	:						-
				77. 7. 77. 77. 77. 7										:	:						
		TP8 S1		12 × 14			4	þ						:	:						
				<u>110 11</u>										:	:						
-				1.1.1.1									:	:	:						
				V 777									:	:							
				<u> </u>										:							
4				71.7		_															-
					SAN	se, dry, grey							:	:	:						
														:							
1-								L	:	: :	-: :	: <u>:</u> -		<u> </u>	:						-1.0
		TP8 S2						þ						:	:						
													:	:	:						
													:	:							
									:				:		:						
														:							
-														:							-
	_					of testpit at 1.52 m		-	- :		::			:	-						
													:	:							
									:					:							
														:							
									:				:	:	:						
														:	:						
														:							
	ND"	L IN O 1 15-5				50.00			-			::		:							Ш
	JKIL	LING METI	HOD:	Ya	anmar V	IO 80	Notes: GRAB SAM	ΙPΙ	_E												
[DRIL	L DATE: 2	2024 \$	Septemb	er 4	LOGGED BY: ER												;	Shee	et 1 of 1	

APPENDIX B

LABORATORY CERTIFICATES OF ANALYSIS

Phase Two Environmental Site Assessment

700 Spring Valley Drive

Ottawa, Ontario

Ottawa-Carleton District School Board

ER1087

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

CM3 Environmental Inc.

5710 Akins Road Ottawa, ON K2S 1B8

Attn: Ethan Risk

Client PO: 700 Spring Valley Drive

Project: ER1087

Custody: 73630

Report Date: 11-Sep-2024

Order Date: 4-Sep-2024

Order #: 2436274

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID						
2436274-01	TP1 S2						
2436274-02	TP2 S1						
2436274-03	TP3 S2						
2436274-04	TP4 S1						
2436274-05	TP5 S2						
2436274-06	TP6 S1						
2436274-07	TP7 S2						
2436274-08	TP8 S1						

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Client: CM3 Environmental Inc.

Order #: 2436274

Report Date: 11-Sep-2024

Order Date: 4-Sep-2024

Project Description: ER1087

Certificate of Analysis

Client PO: 700 Spring Valley Drive

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	6-Sep-24	6-Sep-24
Conductivity	MOE E3138 - probe @25 °C, water ext	9-Sep-24	10-Sep-24
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	6-Sep-24	6-Sep-24
PHC F1	CWS Tier 1 - P&T GC-FID	6-Sep-24	6-Sep-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	6-Sep-24	6-Sep-24
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	9-Sep-24	9-Sep-24
REG 406: Metals, leachate	mSPLP EPA 6020 - Digestion - ICP-MS	9-Sep-24	9-Sep-24
SAR	Calculated	9-Sep-24	10-Sep-24
Solids, %	CWS Tier 1 - Gravimetric	6-Sep-24	9-Sep-24

Certificate of Analysis

Client: CM3 Environmental Inc.
Client PO: 700 Spring Valley Drive

Report Date: 11-Sep-2024 Order Date: 4-Sep-2024

Project Description: ER1087

	<u>а</u> <u>.</u> Г	TD4 00	TD0 04	TD0 00	TD/ 04	T	
	Client ID:	TP1 S2	TP2 S1	TP3 S2	TP4 S1		
	Sample Date:	04-Sep-24 09:00	04-Sep-24 09:00	04-Sep-24 09:00	04-Sep-24 09:00	-	-
	Sample ID:	2436274-01 Soil	2436274-02 Soil	2436274-03 Soil	2436274-04 Soil		
	Matrix:	2011	5011	5011	2011		
Physical Characteristics	MDL/Units						
Physical Characteristics	0.1 % by Wt.	74.0	04.4	70.0	1 05.0	1	
% Solids	0.1 % by vvt.	74.0	81.4	76.0	85.0	-	-
mSPLP Leachate Metals	0.5//		.0.5	T	0.5		
Antimony	0.5 ug/L	-	<0.5	-	<0.5	-	-
Arsenic	1.0 ug/L	-	3.3	-	<1.0	-	-
Barium	1.0 ug/L	-	212	-	50.8	-	-
Beryllium	0.5 ug/L	-	<0.5	-	<0.5	-	-
Boron	10.0 ug/L	-	26.0	-	36.4	-	-
Cadmium	0.2 ug/L	-	<0.2	-	<0.2	-	-
Chromium	1.0 ug/L	-	27.6	-	9.1	-	-
Cobalt	0.5 ug/L	-	7.7	-	1.7	-	-
Copper	0.5 ug/L	-	28.1	-	7.1	-	-
Lead	0.2 ug/L	-	8.1	-	1.6	-	-
Molybdenum	0.5 ug/L	-	<0.5	-	<0.5	-	-
Nickel	1.0 ug/L	-	20.1	-	6.1	-	-
Selenium	1.0 ug/L	-	<1.0	-	<1.0	-	-
Silver	0.2 ug/L	-	<0.2	-	<0.2	-	-
Thallium	0.5 ug/L	-	<0.5	-	<0.5	-	-
Uranium	0.2 ug/L	-	0.8	-	0.4	-	-
Vanadium	0.5 ug/L	-	30.0	-	8.6	-	-
Zinc	5.0 ug/L	-	47.3	-	13.0	-	-
General Inorganics							
SAR	0.01 N/A	0.96	0.29	0.28	0.13	-	-
Conductivity	5 uS/cm	173	149	95	141	-	-
рН	0.05 pH Units	6.80	6.72	6.75	6.81	-	-
Metals							

Certificate of Analysis

Xylenes, total

Client: CM3 Environmental Inc.
Client PO: 700 Spring Valley Drive

Report Date: 11-Sep-2024 Order Date: 4-Sep-2024

Project Description: ER1087

	г		T	 			
	Client ID:	TP1 S2	TP2 S1	TP3 S2	TP4 S1		
	Sample Date:	04-Sep-24 09:00	04-Sep-24 09:00	04-Sep-24 09:00	04-Sep-24 09:00	-	-
	Sample ID:	2436274-01	2436274-02	2436274-03	2436274-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	3.7	2.6	2.3	2.6	-	-
Barium	1.0 ug/g	321	125	174	84.6	-	-
Beryllium	0.5 ug/g	0.8	0.5	0.6	<0.5	-	-
Boron	5.0 ug/g	9.5	5.5	5.5	<5.0	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium	5.0 ug/g	114	59.0	75.4	44.4	-	-
Cobalt	1.0 ug/g	23.7	11.6	14.0	8.9	-	-
Copper	5.0 ug/g	46.0	20.9	17.2	16.6	-	-
Lead	1.0 ug/g	8.0	7.0	9.2	6.4	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Nickel	5.0 ug/g	61.7	31.0	33.8	23.5	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	<1.0	1.5	<1.0	-	-
Vanadium	10.0 ug/g	107	50.3	62.7	40.2	-	-
Zinc	20.0 ug/g	126	61.9	89.3	46.2	-	-
Volatiles	•						
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
			,				•

< 0.05

< 0.05

< 0.05

0.05 ug/g

< 0.05

Certificate of Analysis

Client: CM3 Environmental Inc.

Report Date: 11-Sep-2024

Order Date: 4-Sep-2024

Project Description: ER1087

Client PO: 700 Spring Valley Drive

	Client ID: Sample Date: Sample ID: Matrix:	TP1 S2 04-Sep-24 09:00 2436274-01 Soil	TP2 S1 04-Sep-24 09:00 2436274-02 Soil	TP3 S2 04-Sep-24 09:00 2436274-03 Soil	TP4 S1 04-Sep-24 09:00 2436274-04 Soil	-	-
	MDL/Units		3011	3011	3011		
Volatiles							•
Toluene-d8	Surrogate	116%	120%	120%	117%	-	-
Hydrocarbons						-	
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	<6	<6	-	-

Certificate of Analysis

Client: CM3 Environmental Inc.
Client PO: 700 Spring Valley Drive

Report Date: 11-Sep-2024 Order Date: 4-Sep-2024

Project Description: ER1087

	Client ID:	TP5 S2	TP6 S1	TP7 S2	TP8 S1		
	Sample Date:	04-Sep-24 09:00	04-Sep-24 09:00	04-Sep-24 09:00	04-Sep-24 09:00	-	_
	Sample ID:	2436274-05	2436274-06	2436274-07	2436274-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics	1			•	'		
% Solids	0.1 % by Wt.	75.5	79.0	80.1	85.1	-	-
mSPLP Leachate Metals							
Antimony	0.5 ug/L	-	-	-	<0.5	-	-
Arsenic	1.0 ug/L	-	-	-	1.1	-	-
Barium	1.0 ug/L	-	-	-	45.5	-	-
Beryllium	0.5 ug/L	-	-	-	<0.5	-	-
Boron	10.0 ug/L	-	-	-	39.9	-	-
Cadmium	0.2 ug/L	-	-	-	<0.2	-	-
Chromium	1.0 ug/L	-	-	-	9.2	-	-
Cobalt	0.5 ug/L	-	-	-	2.0	-	-
Copper	0.5 ug/L	-	-	-	10.0	-	-
Lead	0.2 ug/L	-	-	-	2.1	-	-
Molybdenum	0.5 ug/L	-	-	-	<0.5	-	-
Nickel	1.0 ug/L	-	-	-	6.7	-	-
Selenium	1.0 ug/L	-	-	-	<1.0	-	-
Silver	0.2 ug/L	-	-	-	<0.2	-	-
Thallium	0.5 ug/L	-	-	-	<0.5	-	-
Uranium	0.2 ug/L	-	-	-	0.4	-	-
Vanadium	0.5 ug/L	-	-	-	9.5	-	-
Zinc	5.0 ug/L	-	-	-	14.9	-	-
General Inorganics	+			•	'		
SAR	0.01 N/A	1.35	1.31	1.44	0.37	-	-
Conductivity	5 uS/cm	191	292	317	178	-	-
pH	0.05 pH Units	6.76	6.79	6.87	6.97	-	-

Certificate of Analysis

Client: CM3 Environmental Inc.

Client PO: 700 Spring Valley Drive

Report Date: 11-Sep-2024 Order Date: 4-Sep-2024

Project Description: ER1087

	Client ID:	TP5 S2	TP6 S1	TP7 S2	TP8 S1		
	Sample Date:	04-Sep-24 09:00	04-Sep-24 09:00	04-Sep-24 09:00	04-Sep-24 09:00	-	-
	Sample ID:	2436274-05	2436274-06	2436274-07	2436274-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Metals					•		
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	2.8	3.6	2.9	1.8	-	-
Barium	1.0 ug/g	196	141	123	49.2	-	-
Beryllium	0.5 ug/g	0.6	0.7	0.5	<0.5	-	-
Boron	5.0 ug/g	5.4	10.2	5.6	<5.0	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium	5.0 ug/g	83.1	68.0	61.2	25.8	-	-
Cobalt	1.0 ug/g	17.2	14.1	11.8	5.4	-	-
Copper	5.0 ug/g	23.1	29.5	22.5	10.3	-	-
Lead	1.0 ug/g	7.8	7.7	6.8	3.3	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Nickel	5.0 ug/g	39.8	42.1	32.2	13.6	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	1.2	1.1	<1.0	<1.0	-	-
Vanadium	10.0 ug/g	75.6	53.5	52.0	24.4	-	-
Zinc	20.0 ug/g	87.1	70.4	62.4	27.1	-	-
Volatiles	•		•	•	•	•	•
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-

Certificate of Analysis

Client: CM3 Environmental Inc.

Report Date: 11-Sep-2024

Order Date: 4-Sep-2024

Project Description: ER1087

Client PO: 700 Spring Valley Drive

	Client ID: Sample Date: Sample ID: Matrix: MDL/Units	TP5 S2 04-Sep-24 09:00 2436274-05 Soil	TP6 S1 04-Sep-24 09:00 2436274-06 Soil	TP7 S2 04-Sep-24 09:00 2436274-07 Soil	TP8 S1 04-Sep-24 09:00 2436274-08 Soil	-	-
Volatiles	•						•
Toluene-d8	Surrogate	122%	122%	119%	118%	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	<6	<6	-	-

Certificate of Analysis

Client: CM3 Environmental Inc.
Client PO: 700 Spring Valley Drive

Report Date: 11-Sep-2024

Order Date: 4-Sep-2024

Project Description: ER1087

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics								
Conductivity	ND	5	uS/cm					
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
mSPLP Leachate Metals			5-5					
Antimony	ND	0.5	ug/L					
Arsenic	ND	1.0	ug/L					
Barium	ND	1.0	ug/L					
Beryllium	ND	0.5	ug/L					
Boron	ND	10.0	ug/L					
Cadmium	ND	0.2	ug/L					
	110		J. =					

Client: CM3 Environmental Inc.

Order #: 2436274

Certificate of Analysis

Report Date: 11-Sep-2024

Order Date: 4-Sep-2024

Client PO: 700 Spring Valley Drive

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Chromium	ND	1.0	ug/L					
Cobalt	ND	0.5	ug/L					
Copper	ND	0.5	ug/L					
Lead	ND	0.2	ug/L					
Molybdenum	ND	0.5	ug/L					
Nickel	ND	1.0	ug/L					
Selenium	ND	1.0	ug/L					
Silver	ND	0.2	ug/L					
Thallium	ND	0.5	ug/L					
Uranium	ND	0.2	ug/L					
Vanadium	ND	0.5	ug/L					
Zinc	ND	5.0	ug/L					
Volatiles								
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.51		%	106	50-140			

Certificate of Analysis

Client: CM3 Environmental Inc.
Client PO: 700 Spring Valley Drive

Report Date: 11-Sep-2024 Order Date: 4-Sep-2024

Project Description: ER1087

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	0.95	0.01	N/A	0.96			8.0	30	
Conductivity	248	5	uS/cm	255			2.7	5	
рН	6.78	0.05	pH Units	6.80			0.3	2.3	
Hydrocarbons		_	,	40			40.4	40	
F1 PHCs (C6-C10)	50	7	ug/g	42			16.1	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals									
Antimony	2.2	1.0	ug/g	2.4			6.3	30	
Arsenic	13.0	1.0	ug/g	13.4			2.8	30	
Barium	109	1.0	ug/g	114			4.0	30	
Beryllium	0.6	0.5	ug/g	0.6			7.1	30	
Boron	7.6	5.0	ug/g	8.0			5.4	30	
Cadmium	0.6	0.5	ug/g	0.7			10.6	30	
Chromium	23.9	5.0	ug/g	24.0			0.5	30	
Cobalt	5.8	1.0	ug/g	5.8			0.3	30	
Copper	28.0	5.0	ug/g	28.0			0.1	30	
Lead	179	1.0	ug/g	214			17.8	30	
Molybdenum	1.6	1.0	ug/g	1.6			3.3	30	
Nickel	16.2	5.0	ug/g	15.8			2.1	30	
Selenium	ND	1.0	ug/g	1.1			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	38.2	10.0	ug/g	37.8			1.1	30	
Zinc	185	20.0	ug/g	186			0.6	30	
mSPLP Leachate Metals									
Antimony	ND	0.5	ug/L	ND			NC	50	
Arsenic	3.40	1.0	ug/L	3.31			2.6	50	

Certificate of Analysis

Client: CM3 Environmental Inc.

Report Date: 11-Sep-2024 Order Date: 4-Sep-2024

Project Description: ER1087

Client PO: 700 Spring Valley Drive

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Barium	209	3.4	ug/L	212		_	1.1	50	
Beryllium	ND	0.5	ug/L	ND			NC	50	
Boron	26.6	10.0	ug/L	26.0			2.1	50	
Cadmium	ND	0.2	ug/L	ND			NC	50	
Chromium	28.0	1.0	ug/L	27.6			1.3	50	
Cobalt	7.54	0.5	ug/L	7.74			2.6	50	
Copper	26.5	0.5	ug/L	28.1			5.5	50	
Lead	7.98	0.2	ug/L	8.09			1.4	50	
Molybdenum	ND	0.5	ug/L	ND			NC	50	
Nickel	19.2	1.0	ug/L	20.1			4.6	50	
Selenium	ND	1.0	ug/L	ND			NC	50	
Silver	ND	0.2	ug/L	ND			NC	50	
Thallium	ND	0.5	ug/L	ND			NC	50	
Uranium	0.77	0.2	ug/L	0.82			6.0	50	
Vanadium	30.1	0.5	ug/L	30.0			0.3	50	
Zinc	48.0	5.0	ug/L	47.3			1.4	50	
Physical Characteristics									
% Solids	74.0	0.1	% by Wt.	76.2			2.9	25	
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	0.209	0.05	ug/g	0.220			5.2	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	1.00	0.05	ug/g	1.06			5.5	50	
o-Xylene	0.158	0.05	ug/g	0.161			1.4	50	
Surrogate: Toluene-d8	4.39		%		105	50-140			

Report Date: 11-Sep-2024

Order Date: 4-Sep-2024

Project Description: ER1087

Certificate of Analysis

Client: CM3 Environmental Inc. Client PO: 700 Spring Valley Drive

Mothod Quality Control: Snike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	195	7	ug/g	ND	113	85-115			
F2 PHCs (C10-C16)	115	4	ug/g	ND	106	60-140			
F3 PHCs (C16-C34)	246	8	ug/g	ND	92.8	60-140			
F4 PHCs (C34-C50)	180	6	ug/g	ND	108	60-140			
Metals									
Arsenic	57.2	1.0	ug/g	5.4	104	70-130			
Barium	96.9	1.0	ug/g	45.5	103	70-130			
Beryllium	53.9	0.5	ug/g	ND	107	70-130			
Boron	53.3	5.0	ug/g	ND	100	70-130			
Cadmium	47.6	0.5	ug/g	ND	94.7	70-130			
Chromium	62.8	5.0	ug/g	9.6	106	70-130			
Cobalt	54.0	1.0	ug/g	2.3	103	70-130			
Copper	59.5	5.0	ug/g	11.2	96.6	70-130			
ead	121	1.0	ug/g	85.4	71.0	70-130			
Nolybdenum	53.0	1.0	ug/g	ND	105	70-130			
lickel	56.7	5.0	ug/g	6.3	101	70-130			
Selenium	50.5	1.0	ug/g	ND	100	70-130			
Silver	41.8	0.3	ug/g	ND	83.3	70-130			
Γhallium	46.9	1.0	ug/g	ND	93.6	70-130			
Jranium	51.1	1.0	ug/g	ND	102	70-130			
/anadium	67.2	10.0	ug/g	15.1	104	70-130			
Zinc	120	20.0	ug/g	74.5	91.6	70-130			
nSPLP Leachate Metals									
Antimony	36.9	0.5	ug/L	ND	73.0	60-130			
Arsenic	50.8	1.0	ug/L	3.31	95.1	70-130			
Barium	257	1.0	ug/L	212	91.2	70-130			
Beryllium	47.7	0.5	ug/L	ND	94.5	70-130			
Boron	68.0	10.0	ug/L	26.0	84.1	70-130			
Cadmium	47.6	0.2	ug/L	ND	95.0	70-130			
Chromium	76.3	1.0	ug/L	27.6	97.3	70-130			

Report Date: 11-Sep-2024

Order Date: 4-Sep-2024

Project Description: ER1087

Certificate of Analysis

Client: CM3 Environmental Inc. Client PO: 700 Spring Valley Drive

Method Quality Control: Spike

method edunity bontron opike										
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes	
Cobalt	53.2	0.5	ug/L	7.74	91.0	70-130				
Copper	67.2	0.5	ug/L	28.1	78.2	70-130				
Lead	52.5	0.2	ug/L	8.09	88.8	70-130				
Molybdenum	47.7	0.5	ug/L	ND	95.0	70-130				
Nickel	62.4	1.0	ug/L	20.1	84.5	70-130				
Selenium	49.2	1.0	ug/L	ND	97.7	70-130				
Silver	44.0	0.2	ug/L	ND	88.0	70-130				
Thallium	43.8	0.5	ug/L	ND	87.6	70-130				
Uranium	51.9	0.2	ug/L	0.82	102	70-130				
Vanadium	81.3	0.5	ug/L	30.0	103	70-130				
Zinc	91.8	5.0	ug/L	47.3	88.9	70-130				
Volatiles										
Benzene	3.61	0.02	ug/g	ND	90.2	60-130				
Ethylbenzene	3.73	0.05	ug/g	ND	93.1	60-130				
Toluene	3.91	0.05	ug/g	ND	97.7	60-130				
m,p-Xylenes	7.52	0.05	ug/g	ND	93.9	60-130				
o-Xylene	3.61	0.05	ug/g	ND	90.3	60-130				
Surrogate: Toluene-d8	8.50		%		106	50-140				

Report Date: 11-Sep-2024

Order Date: 4-Sep-2024

Project Description: ER1087

Certificate of Analysis

Client: CM3 Environmental Inc.
Client PO: 700 Spring Valley Drive

Qualifier Notes:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Paracel Order Number Chain Of Custody (Lab Use Only) (Lab Use Only)

LABORATOR	ES LTD.							24	36	,2-	14			Nō	736	30	
Contact Name: ELLAND Processing Processing				Project Ref: 700 SPTING Valley Drive								Pageof					
CTMAN NIX				Quote #: OCDS/3								Turnaround Time					
5710 AKINS	Road, (Offewa		PO #:		R108>							1 0	1 day		□ 3	day
Telephone: 613 - 304 -				E-ma	"ef	han @cm	3 Cenvironi	Mis	fa1.	Can)			2 day Required	l:	X R	tegular
REG 153/04 REG 406/19		Regulation		Matrix	Tuno	S (Soil/Sod) CW (C							10-11		4-038	4 1	
Table 1 Res/Park Med/Fine REG 558 PWQO				Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer)								Re	quired Analysis				
☐ Table 2 ☐ Ind/Comm ☐ Coarse	□ CCME	☐ MISA	P (Paint) A (Air) O (O				her)	Z.	Τ	Г				~	Т		Т
☐ Table 3 ☐ Agri/Other	□ SU - Sani	☐ SU - Storm	l lei					1	X	3				(Mesta)S			
Table	Mun:						Taken	1		5	01						
For RSC: Yes No	Other:		Matrix	Air Volume	of Co			PHC	PEEX	Metals	AR	7	PH	MSLP			
Sample ID/Location Name			-		#	Date	Time	0	_		SA	M	\rightarrow	8			
			2	Ø	12	24/09/04	AM	X	X	×	乂	×	X				
			H	1	1		-	1	1	1	(į		×			
3 TP3 SZ 4 TP4 SI			\vdash	1				Ш	Ш								
11 () (4	1	H-			Ш		Ш				X			
5 TPS SZ			+	1	Ш												
7 TP7 52			+	H	Ш			Ш		\perp		\perp					
0.1			+	1							1/		1				
8 TPB 31			V	V	V	V	J	V	\forall	V	V	V	0	X			
.0																, ,	
mments;																. 1	
liamilahad 2 (6)	1											Method		very:			
inquished By (Sign):	Km	Received at De	oot:	1			Received at Lab:	ΛΛ	g ago	SS	V	erified/	By:				
linquished By (Print): Ethon RISX Date/Time:			200)4/2) ii	U' 38	2///					ate/Tir	50 ime: 1 000(/ 2)0				
e/Time: 74/09/64	2:50 P	M Temperature:	- out) - (10	21		Temperature:	FOR	11.	°C		H Veril	fied:	Sept	5, 20	24 2	2:53/2
ain of Cuetody /Blank) when	7				-		11/1/11	1.1	0	788			7547				200