

**Engineers, Planners & Landscape Architects** 

## Engineering

Land/Site **Development** 

Municipal Infrastructure

Environmental/ Water Resources

Traffic/

Transportation

Recreational

#### **Planning**

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

**Expert Witness** (OLT)

Wireless Industry

# Landscape **Architecture**

Streetscapes & **Public Amenities** 

Open Space, Parks &

Recreation

Community & Residential

Commercial & Institutional

Environmental Restoration

# PROPOSED COMMERCIAL DEVELOPMENT **150 DUN SKIPPER DRIVE**

Servicing and Stormwater Management Report

# PROPOSED COMMERCIAL DEVELOPMENT

# 150 DUN SKIPPER DRIVE OTTAWA, ONTARIO

# SERVICING AND STORMWATER MANAGEMENT REPORT

Prepared By:

# **NOVATECH**

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> Issued: October 24, 2024 Revised: January 10, 2025

Novatech File: 124107 Report Ref: R-2024-074



January 10, 2025

City of Ottawa Planning, Real Estate and Economic Development Department Development Review – South Branch 110 Laurier Avenue West Ottawa, ON K1P 1J1

Attention: Mr. Tyler Cassidy

Reference: Servicing and Stormwater Management Report

Proposed Commercial Development 150 Dun Skipper Drive, Ottawa, Ontario

Novatech File No.: 124127

Enclosed is a copy of the revised 'Servicing and Stormwater Management Report' for the proposed commercial development located at 150 Dun Skipper Drive, in the City of Ottawa. This report addresses the approach to site servicing and stormwater management and is submitted in support of the Site Plan Control application.

Please contact the undersigned, should you have any questions or require additional information.

Yours truly,

**NOVATECH** 

WSairie

Miroslav Savic, P. Eng.

Senior Project Manager | Land Development Engineering

cc: Paul Paglialunga (Maverick Development Corporation)

# **TABLE OF CONTENTS**

| 1.0                             | INTRO                   | DDUCTION                                                                                                                                                                     | . 1               |
|---------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1.1<br>1.2<br>1.3<br>1.4<br>1.4 | 2 Pre<br>3 Pro<br>4 Bac | Description and Location -Consultation Information posed Development ckground Documents Se Servicing                                                                         | . 2<br>. 2<br>. 2 |
| 2.0                             | WATE                    | ER SERVICING                                                                                                                                                                 | . 3               |
|                                 |                         | sting Water Servicing<br>posed Water Servicing<br>Proposed Development Domestic Water Demands<br>Proposed Development Fire Protection System<br>Watermain Hydraulic Analysis | . 3<br>. 3<br>. 4 |
| 3.0                             | SANI                    | TARY SERVICING                                                                                                                                                               | . 7               |
|                                 |                         | sting Sanitary Sewerposed Sanitary Services                                                                                                                                  | . 7<br>. 7        |
| 4.0                             | STOR                    | M SERVICING AND STORMWATER MANAGEMENT                                                                                                                                        | . 9               |
| 4.                              | 1 Exis                  | sting Conditions                                                                                                                                                             | . 9               |
| 4.2                             |                         | rmwater Management Criteria                                                                                                                                                  |                   |
|                                 | 4.2.1<br>4.2.2          | Stormwater Quality ControlStormwater Quantity Control                                                                                                                        |                   |
|                                 |                         | posed Conditions                                                                                                                                                             |                   |
|                                 | 4.3.1                   | Area A-1 Direct Runoff                                                                                                                                                       | . 9               |
|                                 | 4.3.2                   | Area A-2 Direct Runoff                                                                                                                                                       |                   |
|                                 | 4.3.3<br>4.3.4          | Area A-3 Uncontrolled Site FlowsArea A-4 Uncontrolled Site Flows                                                                                                             |                   |
|                                 | 4.3.5                   | Area A-5 Uncontrolled Site Flows                                                                                                                                             |                   |
|                                 | 4.3.6                   | Area A-6 Controlled Site Flows                                                                                                                                               |                   |
|                                 | 4.3.7                   | Area A-7 Controlled Site Flows                                                                                                                                               |                   |
|                                 | 4.3.8                   | Area A-8 Controlled Site Flows                                                                                                                                               |                   |
|                                 | 4.3.9<br>4.3.10         | Area R1: Building A Controlled Flow Roof DrainsArea R2: Building B Controlled Flow Roof Drains                                                                               |                   |
|                                 | 4.3.11                  | Area R3: Building C Controlled Flow Roof Drains                                                                                                                              |                   |
|                                 | 4.3.12                  | Area R4: Building D Controlled Flow Roof Drains                                                                                                                              |                   |
|                                 | 4.3.13                  | Stormwater Flow Summary                                                                                                                                                      | 14                |
| 5.0                             | GEOT                    | ECHNICAL INVESTIGATIONS                                                                                                                                                      | 15                |
| 6.0                             | EROS                    | SION AND SEDIMENT CONTROL                                                                                                                                                    | 15                |
| 7 0                             | CONC                    | CLUSIONS AND RECOMMENDATIONS                                                                                                                                                 | 15                |

#### **LIST OF FIGURES**

Figure 1 Aerial Plan

# **LIST OF APPENDICIES**

Correspondence Appendix A Appendix B Site Plan Appendix C Water Demands, FUS Calculations, Boundary Conditions Appendix D Sanitary Flow Calculations Appendix E SWM Calculations, Excerpt from Pathways at Findlay Creek Design Brief IPEX Tempest LMF ICD Information Appendix F Flow Control Roof Drain Information Appendix G Appendix H **Development Servicing Study Checklist** Appendix J Drawings

#### **LIST OF DRAWINGS**

| General Plan of Services                    | (124107- GP) |
|---------------------------------------------|--------------|
| Grading and Erosion & Sediment Control Plan | (124107- GR) |
| Stormwater Management Plan                  | (124107-SWM) |

Novatech Page ii

#### 1.0 INTRODUCTION

Novatech has been retained to complete the site servicing and stormwater management design for the proposed commercial development located at 150 Dun Skipper Drive, in the City of Ottawa.

The proposed commercial development is the eastern part of the 150 Dun Skipper Drive site and will have frontage on Banks Street and Dun Skipper Drive. Residential development is proposed for the western part of the subject site, with frontage to Cedar Creek Drive. The residential portion of the site will be a future application.

This report addresses the approach to servicing and stormwater management and is being submitted in support of the Site Plan Control application for the commercial portion of the site. The residential development will be a subject of a separate Site Plan Control application.

# 1.1 Site Description and Location

The subject site is part of the Pathways and Findlay Creek subdivision development and is located on the north side Dun Skipper Drive, between Bank Street and Cedar Creek Drive.

The site is currently vacant, and it is covered by gravel and green areas. The legal description of the subject site is designated as Block 241, Registered Plan 4-M-1617, City of Ottawa.

SITE

Danish Politic

Danish P

Figure 1 – Aerial Plan provides an aerial view of the site.

#### 1.2 Pre-Consultation Information

Two pre-consultation meetings were held with the City of Ottawa. The Phase 1 pre-consultation meeting was held on March 11, 2024, at which time the client was advised of the general submission requirements. The Phase 2 pre-consultation was held on Aug 28, 2024. Refer to **Appendix A** for feedback from the City of Ottawa following the Phase 2 Phase 2 pre-consultation meeting.

#### 1.3 Proposed Development

The proposed commercial development will consist of five buildings, including a grocery store (Building A), discount store (Building B), retail store, dental office and quick service restaurants (Building C), and bank (Building D). The development will include a paved parking lot, loading bays, and landscaped areas. The site will have two access driveways off Bank Street and an access driveway off Don Skipper Drive. Refer to **Appendix B** for the proposed Site Plan.

The proposed development will be serviced by connecting to the existing watermain, sanitary and storm sewer stubs off Cedar Creek Drive that are constructed as a part of the subdivision servicing works. A servicing easement within the residential portion of the site will be required to service the proposed commercial development.

#### 1.4 Background Documents

The following documents were reviewed in preparation of the report:

- Geotechnical Investigation Proposed Commercial Development, 4828 Bank Street, prepared by Patterson Group (PG7262-2, October 1, 2024).
- Design Brief, Pathways at Findlay Creek, 4800 Bank Street (Remer Lands), Phase 1, Leitrim development Area, prepared by IBI (August 2017).
- City of Ottawa Sewer Design Guidelines (October 2012)
- Ottawa Design Guidelines Water Distribution (July 2010)

# 1.5 Site Servicing

The objective of the site servicing design is to provide proper sewage outlets, a suitable domestic water supply and to ensure that appropriate fire protection is provided for the proposed development. The servicing criteria, the expected sewage flows, and the water demands are to conform to the City of Ottawa municipal design guidelines for sewer and water distribution systems.

The City of Ottawa Servicing Study Guidelines for Development Applications requires that a Development Servicing Study Checklist be included to confirm that each applicable item is deemed complete and ready for review by City of Ottawa Infrastructure Approvals. Completed checklist is enclosed in **Appendix H** of the report.

The proposed commercial development will be serviced by connecting to the existing municipal watermain, sanitary sewer and storm sewer stubs off Cedar Creek Drive. The site services to the commercial site will be provided via the residential portion of the site. An 11m wide service easement on future residential property will be required to service the site.

#### 2.0 WATER SERVICING

#### 2.1 Existing Water Servicing

There is a 250mm diameter watermain stub connected to the existing 250mm diameter watermain in Cedar Creek Drive that was constructed to service the site as a part of the subdivision servicing works.

# 2.2 Proposed Water Servicing

The proposed development will be serviced by on site watermain system consisting of 250mm 200mm, and 150mm diameter watermains. A 250mm watermain will be extended through the future residential development land and connected to the 250mm diameter watermain stub. A second 250mm diameter watermain connection to the Cedar Creek Drive watermain will be provided on the south side of the existing water valve for redundancy. Two private fire hydrants will be provided on site for fire protection.

#### 2.2.1 Proposed Development Domestic Water Demands

The domestic water demands for the proposed development were calculated based on the following criteria from Section 8 of the Ontario Building Code and the peaking factors as per the City of Ottawa Water Distribution Design Guidelines.

- Grocery Store Water Demand
  - per each 9.25 m² of floor space excluding delicatessen, bakery and meat departments = 40L/day
  - o per each 9.25 m<sup>2</sup> of delicatessen floors space = 150 L/day
  - o per each 9.25 m<sup>2</sup> of bakery floors space = 190 L/day
  - o per each 9.25 m<sup>2</sup> of meat department floors space = 190 L/day
  - per water closed = 950 L/day
- Discount Store Water Demand
  - o per each 1.0 m<sup>2</sup> floor space = 5 L/day
- Retail Store Water Demand
  - o per each 1.0 m<sup>2</sup> floor space = 5 L/day
- Bank Water Demand
  - o per each 9.3m<sup>2</sup> floor space = 75 L/day
- Dental Office Water Demand
  - Per wet service chair = 275 L/day
- Quick Service Restaurant Water Demand
  - o per seat = 125 L/day
- Peak Factor
  - Max Dav = 1.5
  - Peak Hour = 1.8

The calculated water demands are summarized in **Table 2.1** below. Detailed calculations are included in **Appendix C**.

| Table | 21.            | Domest   | ic Water  | Demand    |
|-------|----------------|----------|-----------|-----------|
| Iabic | <b>4</b> . I . | DOILIESE | ic vvalei | Dellialiu |

| Proposed Development | Ave. Daily<br>Demand (L/s) | Max. Daily<br>Demand (L/s) | Peak Hour<br>Demand(L/s) |
|----------------------|----------------------------|----------------------------|--------------------------|
| Building A &B        | 0.33                       | 0.50                       | 0.89                     |
| Building C           | 0.14                       | 0.21                       | 0.37                     |
| Building D           | 0.04                       | 0.06                       | 0.12                     |
| Total Demand         | 0.51                       | 0.77                       | 1.38                     |

#### 2.2.2 Proposed Development Fire Protection System

The proposed Building A, Building B, and Building C will be sprinklered. The proposed Building D will not be sprinklered. Fire protection for the proposed buildings will be provided from two private fire hydrants. The hydrants have been located within 45m unobstructed path to the fire department siamese connection location on sprinklered buildings A, B, and C, and within 90m unobstructed path to the principal entrance of non-sprinklered building D.

The Fire Underwriters Survey (FUS) was used to estimate fire flow requirements for the proposed buildings. The fire flow calculations have been based on the building information provided by the client. Refer to **Appendix C** for E-mail correspondence with the client.

The calculated fire flow demands are summarized in **Table 2.2**. The detailed FUS fire flow calculations are included in **Appendix C**.

Table 2.2: Fire Underwriters Survey (FUS) Fire Flow

| Building A & B         | Building C            | Building D           |
|------------------------|-----------------------|----------------------|
| 183 L/s (11,000 L/min) | 100 L/s (6,000 L/min) | 67 L/s (4,000 L/min) |

#### 2.2.3 Future Residential Development Water Demands and Fire Flows

Future residential development will consist of two 6-storey apartment buildings. The theoretical water demands for the future residential development were calculated using number of units provided the architect and the design criteria from Section 4 – 'Water Distribution Systems' of the Ottawa Design Guidelines – Water Distribution.

The calculated water demands are summarized in **Table 2.3** below. Detailed calculations are included in **Appendix C**.

**Table 2.3: Residential Development Water Demand** 

| Future Residential Development | Ave. Daily   | Max. Daily   | Peak Hour   |
|--------------------------------|--------------|--------------|-------------|
|                                | Demand (L/s) | Demand (L/s) | Demand(L/s) |
| Domestic Water Demand          | 1.46         | 4.39         | 6.58        |

The Fire Underwriters Survey (FUS) was used to estimate fire flow requirements for the future residential development. The fire flow calculations are based on the building information provided by the client (non-combustible construction and fully sprinklered buildings).

The calculated fire flow demands are summarized in **Table 2.4**. The detailed FUS fire flow calculations are included in **Appendix C**.

Table 2.4: Future Residential Development Fire Underwriters Survey (FUS) Fire Flow

| Building 1             | Building 2             |
|------------------------|------------------------|
| 183 L/s (11,000 L/min) | 200 L/s (12,000 L/min) |

#### 2.2.4 Watermain Hydraulic Analysis

The above domestic water demands, and fire flow requirements were provided to the City of Ottawa. These values were used to generate the municipal watermain network boundary conditions at the twin service connection point at Cedar Creek Drive. **Table 2.5 and Table 2.6** summarize the information provided by the City for two conditions: Existing Condition (Pre-SUC Zone reconfiguration), and Future Condition (Post-SUC Zone Reconfiguration).

**Table 2.25: Existing Condition (Pre-SUC Zone Reconfiguration)** 

| Demand Scenario     | Head<br>(m) | Pressure<br>(psi)* |
|---------------------|-------------|--------------------|
| Maximum HGL         | 154.6       | 77.4               |
| Peak Hour           | 142.1       | 59.6               |
| Max Day + Fire Flow | 122.3       | 31.6               |

Table 2.26: Future Condition (Post-SUC Zone Reconfiguration)

| Demand Scenario     | Head<br>(m) | Pressure<br>(psi)* |
|---------------------|-------------|--------------------|
| Maximum HGL         | 147.3       | 67.0               |
| Peak Hour           | 144.7       | 63.3               |
| Max Day + Fire Flow | 138.3       | 54.2               |

The following design criteria were taken from Section 4.2.2 – 'Watermain Pressure and Demand Objectives' of the City of Ottawa Design Guidelines for Water Distribution:

- Maximum system pressure is not to exceed 552 kPa (80 psi)
- Minimum system pressures are to be >276 kPa (40 psi) under Peak Hour demand
- Minimum system pressures are to be >140 kPa (20 psi) under Max Day + Fire Flow demand

The hydraulic model EPANET was used for the purpose of analysing the performance of the proposed watermain. The model is based on the watermain boundary conditions provided by the City of Ottawa at the connection to the existing watermain stub off Cedar Creek Drive.

A schematic representation of the hydraulic network in enclosed in **Appendix C**. The schematic depicts the junction and pipe numbers used in the model.

The modelling highlights the system pressures during 1) Maximum Day + Fire Flow Demand, 2) Peak Hour Demand, and 3) Average Day Demand conditions. The fire flow demands, are applied

at the proposed fire hydrant locations (J5, and J9) and the domestic water demands are applied at the building services (J2, J7, and J10). The future residential development domestic water demands are applied at junction J12 where the building services will be connected to the proposed watermain.

It is anticipated that a multi-hydrant approach to firefighting will be required to supply adequate FUS fire flow to the proposed Building A, B, and C. Therefore, a maximum flow of 95 L/s (5,700 L/min) was modelled at junctions 5 and 9, based on the City of Ottawa Technical Bulletin ISTB-2018-02, Table 1 - Maximum Flow to be considered from a given hydrant. The combined maximum flow from the two on site hydrants exceeds the FUS fire flow requirements for the proposed development.

Furthermore, there are two existing blue bonnet municipal hydrants in Bank Street in vicinity of the subject site (one near the northeast corner and one near the southeast corner of the property) that can provide additional fire flow to the site if required.

**Tables 2.5, 2.6, and 2.7** summarize the demands and hydraulic model results under the various operating conditions. Refer to **Appendix C** for detailed modelling results.

Table 2.5: Hydraulic Model Results - Maximum Day + Fire Flow Demand

| Pressure Zone     | Operating Condition        | Minimum Pressure     |
|-------------------|----------------------------|----------------------|
| Current (Pre SUC) | Max Day + Fire Flow Demand | 138.8 kPa (20.1 psi) |
| Future (Post SUC) | Max Day + Fire Flow Demand | 259.8 kPa (42.9 psi) |

Table 2.6: Hydraulic Model Results – Peak Hour Demand

| Pressure Zone     | Operating Condition | Minimum Pressure     |
|-------------------|---------------------|----------------------|
| Current (Pre SUC) | Peak Hour Demand    | 404.7 kPa (58.7 psi) |
| Future (Post SUC) | Peak Hour Demand    | 430.2 kPa (62.4 psi) |

Table 2.7: Hydraulic Model Results – Average Day Demand

| Pressure Zone     | Operating Condition | Maximum Pressure     |
|-------------------|---------------------|----------------------|
| Current (Pre SUC) | Average Day Demand  | 560.3 kPa (81.3 psi) |
| Future (Post SUC) | Average Day Demand  | 488.7 kPa (70.9 psi) |

Based on the preceding analysis, the proposed watermain system will provide adequate system pressures to the proposed development. Due to high pressure (>80 psi) under the Pre SUC Pressure Zone Reconfiguration, a pressure reducing valve will be required to be installed in Building A & B water entry room as per the Ontario Building Code (OBC).

#### 3.0 SANITARY SERVICING

# 3.1 Existing Sanitary Sewer

There is a 300mm diameter sanitary service stub connected to the existing 300mm sewer in Cedar Creek Drive that was constructed to service the subject site as a part of the subdivision servicing works.

#### 3.2 Proposed Sanitary Services

The proposed commercial development will be serviced by on-site sanitary sewer system 200mm in diameter. A 250mm diameter sanitary sewer will be extended through future residential development lands and connected to the existing 300mm diameter sewer stub. A monitoring manhole will be provided near the property line as per the City of Ottawa standards. The proposed buildings will be provided with 150mm diameter services.

# 3.2.1 Peak Sanitary Flows

The theoretical peak sanitary flow for the proposed warehouse was calculated based on the following criteria from Section 8 of the Ontario Building Code and the peak factor and infiltration rate as per the City of Ottawa Sewer Design Guidelines.

- Grocery Store Sewage Volume
  - per each 9.25 m² of floor space excluding delicatessen, bakery and meat departments = 40L/day
  - o per each 9.25 m<sup>2</sup> of delicatessen floors space = 150 L/day
  - o per each 9.25 m<sup>2</sup> of bakery floors space = 190 L/day
  - o per each 9.25 m<sup>2</sup> of meat department floors space = 190 L/day
  - per water closed = 950 L/day
- Discount Store Sewage Volume
  - o per each 1.0 m² floor space = 5 L/day
- Retail Store Sewage Volume
  - o per each 1.0 m<sup>2</sup> floor space = 5 L/day
- Bank Water Sewage Volume
  - o per each 9.3m<sup>2</sup> floor space = 75 L/day
- Dental Office Sewage Volume
  - Per wet service chair = 275 L/day
- Quick Service Restaurant Sewage Volume
  - o per seat = 125 L/day
- Commercial Peak Factor = 1.5
- Infiltration Rate = 0.33 L/s/ha

The peak sanitary flow calculations are summarized below in **Table 3.1**. Detailed calculations are included in **Appendix D**.

**Table 3.1: Peak Sanitary Flow Summary** 

| Proposed Development | Peak Flow<br>(L/s) | Infiltration<br>Flow<br>(L/s) | Total Peak<br>Flow<br>(L/s) |
|----------------------|--------------------|-------------------------------|-----------------------------|
| Commercial           | 0.77               | 0.64                          | 1.40                        |

The proposed 200mm diameter sanitary sewer at a minimum slope of 0.40% has a full flow capacity of 21.6 L/s. Therefore, the proposed on-site sanitary sewer system has sufficient capacity to convey the peak sanitary flows from the proposed development.

#### 3.2.2 Future Residential Development Sanitary Flows

Future residential development will consist of two 6-storey apartment buildings. The peak sanitary flow for the future residential development were calculated using number of units provided the architect and the design criteria per The City of Ottawa Sewer Design Guidelines.

The peak sanitary flow calculations are summarized below in **Table 3.12**. Detailed calculations are included in **Appendix D**.

**Table 3.2: Future Residential Development Peak Sanitary Flow Summary** 

| Proposed Development | Peak Flow<br>(L/s) | Infiltration<br>Flow<br>(L/s) | Total Peak<br>Flow<br>(L/s) |
|----------------------|--------------------|-------------------------------|-----------------------------|
| Future Residential   | 4.97               | 0.33                          | 5.30                        |

# 3.2.3 Pathways at Findlay Creek Sanitary Flow Allotment

The Design Brief, Pathways at Findlay Creek, 4800 Bank Street (Remer Lands), Phase 1, Leitrim Development Area, prepared by IBI (August 2017) provides sanitary flow allotment for the subject site.

The peak sanitary flow from the subject site calculated in the IBI Design Brief is 3.46 L/s. Refer to **Appendix D** for a copy of the Sanitary Drainage Area Plan and the Sanitary Sewer Design sheet from the design brief.

The combined peak sanitary flow from the commercial and future residential developments exceeds the sanitary flow allotment for the sites by 3.24 L/s (1.40 + 5.30 - 3.46). Based on a review of the Sanitary Design Sheet from the IBI design brief, there is 21.6 L/s spare capacity in the downstream system to accommodate the proposed development.

As per discussions with the City of Ottawa, the City's Infrastructure Services Department has no immediate concerns with increasing the sanitary flows from the subject site. As requested by the City, the Sanitary Sewer Design Sheet for the subdivision has been updated using the increased sanitary flows from the site, and the current criteria from the City of Ottawa Sewer Design Guidelines (e.g. 280 L/c/day average flow, 0.33 L/s/ha infiltration). Based on the updated design sheet included in **Appendix D**, there is adequate capacity within the subdivision sewer system to accommodate increase in sanitary flows from the proposed commercial and residential developments.

Refer to **Appendix D** for e-mail correspondence with the City and the updated Sanitary Sewer Design Sheet.

#### 4.0 STORM SERVICING AND STORMWATER MANAGEMENT

# 4.1 Existing Conditions

There is a 900mm storm service stub connected to the existing 15000mm diameter storm sewer in Cedar Creek Drive that was constructed to service the site as a part of the subdivision servicing works.

# 4.2 Stormwater Management Criteria

#### 4.2.1 Stormwater Quality Control

Stormwater quality control for the site is provided downstream in the Findlay Creek Village Stormwater Facility. On-site stormwater quality measures are not required.

# 4.2.2 Stormwater Quantity Control

The stormwater quantity control criteria for the site are based on the Design Brief, Pathways at Findlay Creek, 4800 Bank Street (Remer Lands), Phase 1, Leitrim Development Area, prepared by IBI (August 2017).

The allowable release rate for the 3.01 ha block of land included in the subdivision design is 562 L/s. The allowable release rate is based on the 5-year flow, modeled in the IBI Design Brief. Refer to Section 4.9.2 Storm and Drainage Areas parameters - Future Lands and Table 4.4 from the IBI Design Brief included in **Appendix E** for details.

The above allowable release rate is prorated to the 1.93 ha commercial development site area as follows:  $(562 \text{ L/s} / 3.01 \text{ ha}) \times 1.93 \text{ ha} = 360 \text{ L/s}$ . All flows in excess of 360 L/s up to and including 1:100-year design event will be controlled and stored on site.

#### 4.3 Proposed Conditions

The proposed development will be serviced by an on-site storm sewer system connected to the existing 900mm dia. concrete storm sewer stubs. The on-site storm sewer system will include storm sewers ranging in size from 200mm to 825mm in diameter.

The proposed storm drainage and stormwater management design for the site is discussed in the following sections of the report.

#### 4.3.1 Area A-1 Direct Runoff

Stormwater runoff from this sub-catchment area will sheet drain to Bank Street. The post-development flow from area was calculated using the Rational Method to be 3.8 L/s during the 5-year design event and 7.7 L/s during the 100-year design event.

#### 4.3.2 Area A-2 Direct Runoff

Stormwater runoff from this sub-catchment area will sheet drain to Bank Street and Dun Skipper Drive. The post-development flow from area was calculated using the Rational Method to be 13.4 L/s during the 5-year design event and 26.7 L/s during the 100-year design event.

#### 4.3.3 Area A-3 Uncontrolled Site Flows

Stormwater runoff from this sub-catchment area will drain to the proposed trench drain in the Building A loading area and will flow uncontrolled to the Cedar Creek Drive storm sewer. The

post-development flow from this area was calculated using the Rational Method to be 8.9 L/s during the 5-year design event and 16.9 L/s during the 100-year design event.

#### 4.3.4 Area A-4 Uncontrolled Site Flows

Stormwater runoff from this sub-catchment area will drain to the proposed CB 4 and will flow uncontrolled to the Cedar Creek Drive storm sewer. The post-development flow from this area was calculated using the Rational Method to be 14.5 L/s during the 5-year design event, and 27.8 L/s during the 100-year design event.

#### 4.3.5 Area A-5 Uncontrolled Site Flows

Stormwater runoff from this sub-catchment area will drain to the proposed CB 5 and CBMH 8 and will flow uncontrolled to the Cedar Creek Drive storm sewer. The post-development flow from this area was calculated using the Rational Method to be 11.6 L/s during the 5-year design event, and 22.3 L/s during the 100-year design event.

#### 4.3.6 Area A-6 Controlled Site Flows

Stormwater runoff from this sub-catchment area will be captured by the proposed CB 1, CB 2, and CB 3 and will be attenuated by an ICD installed in the STMMH 102 outlet pipe. Adequate storage for all storms up-to and including the 100-year storm event will be provided underground in the oversized storm pipes, and on the parking lot surface. There will be no surface ponding during the 2-year storm event.

**Table 4.1** summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated water storage elevations in the system, storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

|                 | Controlled Site Flows from Area A-6    |              |                               |                                |                               |                            |  |  |
|-----------------|----------------------------------------|--------------|-------------------------------|--------------------------------|-------------------------------|----------------------------|--|--|
| Design<br>Event | ICD Type                               | Peak<br>Flow | Water<br>Storage<br>Elevation | Average<br>Flow (50%<br>Qpeak) | Storage<br>Volume<br>Required | Max<br>Storage<br>Provided |  |  |
| 2-Year          | _                                      | 11.0<br>L/s  | 0cm ponding<br>(96.32 m)      | 5.5 L/s                        | 21.4 m³                       |                            |  |  |
| 5-Year          | Tempest<br>Vortex LMF<br>ICD Model 105 | 14.7<br>L/s  | 11cm ponding<br>(97.28 m)     | 7.4 L/s                        | 28.9 m³                       | 73.40 m³                   |  |  |
| 100-Year        |                                        | 15.1<br>L/s  | 22cm ponding<br>(97.39 m)     | 7.6 L/s                        | 70.5 m³                       |                            |  |  |

Table 4.1: Stormwater Flows, ICD & Surface Storage

Refer to **Appendix E** for detailed SWM calculations and to **Appendix F** for ICD information.

#### 4.3.7 Area A-7 Controlled Site Flows

Stormwater runoff from this sub-catchment area will be captured by the proposed CBMH 1, CBMH 2, CBMH 3, and CBMH 7, and will be attenuated by an ICD installed in the outlet pipe of CBNH

3. Adequate storage for all storms up-to and including the 100-year storm event will be provided

underground in the oversized storm pipes, and on the parking lot surface. There will be no surface ponding during the 2-year storm event.

**Table 4.2** summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated water storage elevations in the system, storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

Table 4.2: Stormwater Flows, ICD & Surface Storage

|                 |                                            | A-7          |                               |                                |                               |                            |
|-----------------|--------------------------------------------|--------------|-------------------------------|--------------------------------|-------------------------------|----------------------------|
| Design<br>Event | ICD Type                                   | Peak<br>Flow | Water<br>Storage<br>Elevation | Average<br>Flow (50%<br>Qpeak) | Storage<br>Volume<br>Required | Max<br>Storage<br>Provided |
| 2-Year          |                                            | 25.8 L/s     | 0cm ponding<br>(97.20m)       | 12.9 L/s                       | 39.4 m³                       |                            |
| 5-Year          | Circular Plug<br>Type 91mm<br>dia. Orifice | 31.0 L/s     | 12cm ponding<br>(98.12 m)     | 15.5 L/s                       | 56.3 m <sup>3</sup>           | 177.5 m³                   |
| 100-Year        |                                            | 31.7 L/s     | 26cm ponding (98.26 m)        | 56.3 L/s                       | 137.6 m³                      |                            |

Refer to **Appendix E** for detailed SWM calculations.

#### 4.3.8 Area A-8 Controlled Site Flows

Stormwater runoff from this sub-catchment area will be captured by the proposed CBMH 4, CBMH 5, and CBMH 6. The flow will be attenuated by an ICD installed in the outlet pipe of CBMH 6.

Adequate storage for all storms up-to and including the 100-year storm event will be provided underground in the oversized storm pipes, and on the parking lot surface. There will be no surface ponding during the 2-year storm event.

**Table 4.3** summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated water storage elevations in the system, storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

Table 4.3: Stormwater Flows, ICD & Surface Storage

|                 |                            | A-8          | -8                            |                                |                               |                            |  |
|-----------------|----------------------------|--------------|-------------------------------|--------------------------------|-------------------------------|----------------------------|--|
| Design<br>Event | ICD Type                   | Peak<br>Flow | Water<br>Storage<br>Elevation | Average<br>Flow (50%<br>Qpeak) | Storage<br>Volume<br>Required | Max<br>Storage<br>Provided |  |
| 2-Year          | Circular Plug              | 92.0 L/s     | 0cm ponding<br>96.14 m        | 46.0 L/s                       | 28.4 m³                       |                            |  |
| 5-Year          | Type 226mm<br>dia. Orifice | 111.7 L/s    | 0cm ponding<br>96.47 m3       | 55.9 L/s                       | 42.0 m <sup>3</sup>           | 89.7 m³                    |  |
| 100-Year        |                            | 189.5 L/s    | 20cm<br>ponding               | 94.8 L/s                       | 87.6 m³                       |                            |  |

|                 | Controlled Site Flows from Area A-8 |              |                               |                                |                               |                            |  |  |
|-----------------|-------------------------------------|--------------|-------------------------------|--------------------------------|-------------------------------|----------------------------|--|--|
| Design<br>Event | ICD Type                            | Peak<br>Flow | Water<br>Storage<br>Elevation | Average<br>Flow (50%<br>Qpeak) | Storage<br>Volume<br>Required | Max<br>Storage<br>Provided |  |  |
|                 |                                     |              | 98.40 m                       |                                |                               |                            |  |  |

Refer to **Appendix E** for detailed SWM calculations.

#### 4.3.9 Area R1: Building A Controlled Flow Roof Drains

The post-development flow from Building A will be attenuated by six (6) Watts Adjustable flow control roof drains prior to being directed to the proposed storm service connected to Empress.

**Table 4.4** summarizes the post-development design flows from this sub-catchment area as well as the type of roof drains, the maximum anticipated ponding depths, storage volumes required, and storage volumes provided for both the 5-year and the 100-year design events.

Table 4.4: Design Flow and Roof Drain Table

| Roof Drain<br>ID | Number<br>of Roof<br>Drains | Watts Roof<br>Drain Model ID<br>(Weir Opening) | Flov | rolled<br>w per<br>n (L/s) | Pon<br>Depth | pproximate<br>Ponding<br>epth Above<br>trains (cm) |      | rage<br>ume<br>uired<br>n³) | Max.<br>Storage<br>Available |
|------------------|-----------------------------|------------------------------------------------|------|----------------------------|--------------|----------------------------------------------------|------|-----------------------------|------------------------------|
|                  | Dianis                      | (Well Opening)                                 | 5-Yr | 100-Yr                     | 5-Yr         | 100-Yr                                             | 5-Yr | 100-<br>Yr                  | (m³)                         |
| RD-1             | 1                           | RD-100-A-ADJ<br>(3/4 Exposed)                  | 1.34 | 1.58                       | 12           | 15                                                 | 11.2 | 24.8                        | 25.5                         |
| RD-2             | 1                           | RD-100-A-ADJ<br>(3/4 Exposed)                  | 1.10 | 1.34                       | 11           | 14                                                 | 8.2  | 18.0                        | 21.0                         |
| RD-3             | 1                           | RD-100-A-ADJ<br>(Fully Exposed)                | 1.26 | 1.58                       | 11           | 14                                                 | 13.2 | 28.3                        | 30.3                         |
| RD-4             | 1                           | RD-100-A-ADJ<br>(3/4 Exposed)                  | 1.10 | 1.34                       | 11           | 14                                                 | 9.7  | 21.1                        | 23.0                         |
| RD-5             | 1                           | RD-100-A-ADJ<br>(3/4 Exposed)                  | 1.10 | 1.34                       | 11           | 14                                                 | 8.5  | 18.7                        | 21.3                         |
| RD-6             | 1                           | RD-100-A-ADJ<br>(Fully Exposed)                | 1.26 | 1.89                       | 11           | 14                                                 | 14.8 | 30                          | 32.1                         |
| Total Roof       | 6                           | -                                              | 7.16 | 9.10                       | -            |                                                    | 65.6 | 141.0                       | 153.2                        |

Refer to **Appendix E** for detailed SWM calculations and to **Appendix G** for roof drain information. As indicated in the table above, the building roof will provide sufficient storage for both the 5-year and 100-year design events.

# 4.3.10 Area R2: Building B Controlled Flow Roof Drains

The post-development flow from Building B will be attenuated by three (3) Watts Adjustable flow control roof drains prior to being directed to the proposed storm service connected to Empress.

**Table 4.5** summarizes the post-development design flows from this sub-catchment area as well as the type of roof drains, the maximum anticipated ponding depths, storage volumes required, and storage volumes provided for both the 5-year and the 100-year design events.

Table 4.5: Design Flow and Roof Drain Table

| Roof Drain<br>ID | Number<br>of Roof<br>Drains | Watts Roof<br>Drain Model ID<br>(Weir Opening) | Flow per Depth |        | Flow per Depth Above Required |        | Max.<br>Storage<br>Available |        |       |
|------------------|-----------------------------|------------------------------------------------|----------------|--------|-------------------------------|--------|------------------------------|--------|-------|
|                  |                             | (**************************************        | 5-Yr           | 100-Yr | 5-Yr                          | 100-Yr | 5-Yr                         | 100-Yr | (m³)  |
| RD-1,2, &3       | 3                           | RD-100-A-ADJ<br>(1/2 Exposed)                  | 0.95           | 1.10   | 11                            | 13     | 17.1                         | 38.7   | 55.70 |
| Total Roof       | 3                           | -                                              | 2.85           | 3.30   | -                             | -      | 17.1                         | 38.7   | 55.70 |

Refer to **Appendix E** for detailed SWM calculations and to **Appendix G** for roof drain information. As indicated in the table above, the building roof will provide sufficient storage for both the 5-year and 100-year design events.

#### 4.3.11 Area R3: Building C Controlled Flow Roof Drains

The post-development flow from Building C will be attenuated by four (4) Watts Adjustable flow control roof drains prior to being directed to the proposed storm service connected to Empress.

**Table 4.6** summarizes the post-development design flows from this sub-catchment area as well as the type of roof drains, the maximum anticipated ponding depths, storage volumes required, and storage volumes provided for both the 5-year and the 100-year design events.

Table 4.6: Design Flow and Roof Drain Table

| Roof Drain<br>ID | Number<br>of Roof<br>Drains | Watts Roof<br>Drain Model ID<br>(Weir Opening) | Flov | rolled<br>w per<br>n (L/s) | Pon  | eximate<br>ding<br>Above<br>s (cm) | Vol<br>Req | rage<br>lume<br>luired<br>m³) | Max.<br>Storage<br>Available |
|------------------|-----------------------------|------------------------------------------------|------|----------------------------|------|------------------------------------|------------|-------------------------------|------------------------------|
|                  |                             | , ,                                            | 5-Yr | 100-Yr                     | 5-Yr | 100-Yr                             | 5-Yr       | 100-Yr                        | (m³)                         |
| RD-1             | 1                           | RD-100-A-ADJ<br>(1/2 Exposed)                  | 0.95 | 1.10                       | 11   | 14                                 | 5.7        | 12.9                          | 14.8                         |
| RD-2             | 1                           | RD-100-A-ADJ<br>(1/2 Exposed)                  | 0.95 | 1.10                       | 10   | 13                                 | 3.7        | 8.6                           | 11.2                         |
| RD-3             | 1                           | RD-100-A-ADJ<br>(1/2 Exposed)                  | 0.95 | 1.10                       | 10   | 13                                 | 3.7        | 8.6                           | 11.2                         |
| RD-4             | 1                           | RD-100-A-ADJ<br>(1/2Exposed)                   | 0.95 | 1.10                       | 11   | 14                                 | 5.1        | 11.7                          | 13.5                         |
| Total Roof       | 4                           | -                                              | 3.80 | 4.40                       | -    | -                                  | 18.2       | 41.7                          | 50.6                         |

Refer to **Appendix E** for detailed SWM calculations and to **Appendix G** for roof drain information. As indicated in the table above, the building roof will provide sufficient storage for both the 5-year and 100-year design events.

#### 4.3.12 Area R4: Building D Controlled Flow Roof Drains

The post-development flow from Building D will be attenuated by three (3) Watts Adjustable flow control roof drains prior to being directed to the proposed storm service connected to Empress.

**Table 4.6** summarizes the post-development design flows from this sub-catchment area as well as the type of roof drains, the maximum anticipated ponding depths, storage volumes required, and storage volumes provided for both the 5-year and the 100-year design events.

**Table 4.6: Design Flow and Roof Drain Table** 

| Roof Drain<br>ID | Number<br>of Roof<br>Drains | Watts Roof<br>Drain Model ID<br>(Weir Opening) | Flov | rolled<br>v per<br>n (L/s) | Pon  | eximate ading Above as (cm) | Vol<br>Req | rage<br>lume<br>luired<br>m³) | Max.<br>Storage<br>Available |
|------------------|-----------------------------|------------------------------------------------|------|----------------------------|------|-----------------------------|------------|-------------------------------|------------------------------|
|                  |                             | (**************************************        | 5-Yr | 100-Yr                     | 5-Yr | 100-Yr                      | 5-Yr       | 100-Yr                        | (m³)                         |
| RD-1             | 1                           | RD-100-A-ADJ<br>(1/2 Exposed)                  | 0.95 | 1.10                       | 11   | 14                          | 3.9        | 9.1                           | 11.2                         |
| RD-2             | 1                           | RD-100-A-ADJ<br>(1/4 Exposed)                  | 0.79 | 0.87                       | 10   | 13                          | 1.6        | 4.0                           | 5.9                          |
| RD-3             | 1                           | RD-100-A-ADJ<br>(1/2 Exposed)                  | 0.79 | 0.87                       | 10   | 13                          | 1.6        | 4.0                           | 5.4                          |
| Total Roof       | 3                           | -                                              | 2.53 | 2.84                       | •    |                             | 7.1        | 17.0                          | 22.5                         |

Refer to **Appendix E** for detailed SWM calculations and to **Appendix G** for roof drain information. As indicated in the table above, the building roof will provide sufficient storage for both the 5-year and 100-year design events.

#### 4.3.13 Stormwater Flow Summary

**Table 4.7** provides a summary of the total post-development flows from the site to be developed.

**Table 4.7: Stormwater Flows Summary** 

| Post - Development Site Flows |           |                      |                        |  |  |  |  |  |
|-------------------------------|-----------|----------------------|------------------------|--|--|--|--|--|
| Area ID                       | Area (ha) | 5-Year Flow<br>(L/s) | 100-Year<br>Flow (L/s) |  |  |  |  |  |
| A-1                           | 0.044     | 3.8                  | 7.7                    |  |  |  |  |  |
| A-2                           | 0.113     | 13.2                 | 26.3                   |  |  |  |  |  |
| A-3                           | 0.034     | 8.9                  | 16.9                   |  |  |  |  |  |
| A-4                           | 0.065     | 14.5                 | 27.8                   |  |  |  |  |  |
| A-5                           | 0.063     | 11.6                 | 22.3                   |  |  |  |  |  |
| A-6                           | 0.206     | 14.7                 | 15.1                   |  |  |  |  |  |
| A-7                           | 0.358     | 31.0                 | 31.7                   |  |  |  |  |  |
| A-8                           | 0.505     | 111.7                | 189.5                  |  |  |  |  |  |
| R-1                           | 0.304     | 7.16                 | 9.1                    |  |  |  |  |  |

| Totals : | 1.930 | 225.6 | 356.9 |
|----------|-------|-------|-------|
| R-4      | 0.046 | 2.5   | 2.8   |
| R-3      | 0.103 | 3.8   | 4.4   |
| R-2      | 0.089 | 2.9   | 3.3   |

As indicated in **Table 4.7** the total post-development flow from the site will be released from the proposed development at a combined maximum rate of 356.9 L/s during the 1:100-year design event, and 225.6 L/s during the 1:5-year event, both of which are less than or equal to the allowable flow for the site of 360 L/s.

The proposed storm sewer system has sufficient capacity to convey the post-development flows from the site. Refer to Storm Drainage Area Plan and Storm Sewer Design Sheet enclosed in **Appendix E**.

#### 5.0 GEOTECHNICAL INVESTIGATIONS

A geotechnical Investigation report has been prepared by Patterson Group for the proposed development. Refer to the Geotechnical Investigation Proposed Commercial Development, 4828 Bank Street, Report PG 7262-2, dated October 1, 2024).

#### 6.0 EROSION AND SEDIMENT CONTROL

Temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter socks (catch basin inserts) will be placed in existing and proposed catch basins and catch basin manholes, and will remain in place until vegetation has been established and construction is completed,
- Silt fencing will be placed along the surrounding construction limits,
- Mud mat will be installed at the site entrance.
- The contractor will be required to perform regular street sweeping and cleaning as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site.

Erosion and sediment control measures should be inspected daily and after every rain event to determine maintenance, repair, or replacement requirements. These measures will be implemented prior to the commencement of construction and maintained in good order until vegetation has been established.

# 7.0 CONCLUSIONS AND RECOMMENDATIONS

This report has been prepared in support of the Site Plan Control applications for the proposed development. The conclusions are as follows:

#### Watermain

- The proposed development will be serviced by an on-site watermain system connected to the existing 300mm diameter watermain stub off Cedar Creek Drive.
- The water supply for fire protection will be provided from the two on-site fire hydrants.

• The proposed watermain system will provide adequate water supply and pressures to the proposed development.

# Sanitary Servicing

- The proposed development will be serviced by an on-site sanitary sewer system connected to the existing 300mm diameter sanitary sewer stub off Cedar Creek Drive.
- There is adequate capacity within the proposed sanitary sewers and existing sanitary infrastructure to service the proposed development.

#### Stormwater Management

The following provides a summary of the storm sewer and stormwater management system:

- The proposed development will be serviced by an on-site storm sewer system connected to the existing 900mm diameter storm sewer stub off Cedar Creek Drive.
- Stormwater quality control for the site is provided downstream in the Findlay Creek Village Stormwater Facility.
- The proposed development will control the 100-year peak flows from the site to 5-year allowable release rate provided in the Pathways at Findley Creek subdivision design.
- There will be no surface ponding on the parking lot for the 2-year storm event.
- Parking lot is graded to ensure that ponding depths for storms greater than the 100-year event do not exceed 0.30m.
- Major overland flow routes are provided to Bank Street.

It is recommended that the proposed site servicing and stormwater management design be approved for implementation.

#### **NOVATECH**

Prepared by:



Miroslav Savic, P.Eng. Senior Project Manager Land Development Engineering Reviewed by:

PR

J. Lee Sheets, C.E.T.
Director
Land Development & Public Sector Infrastructure

| un Skipper Drive – Proposed C | Skipper Drive – Proposed Commercial Development |  |
|-------------------------------|-------------------------------------------------|--|
|                               |                                                 |  |
|                               |                                                 |  |
|                               |                                                 |  |
|                               |                                                 |  |
|                               |                                                 |  |
|                               |                                                 |  |
|                               |                                                 |  |
|                               |                                                 |  |
|                               |                                                 |  |
|                               | APPENDIX A                                      |  |
|                               | Correspondence                                  |  |



File No.: PC2024-0331

September 9, 2024

James Ireland Novatech Via email: j.ireland@novatech-eng.com

**Subject:** Phase 2 Pre-Consultation: Meeting Feedback

Proposed Site Plan Control Application – 150 Dun Skipper Drive

Please find below information regarding next steps as well as consolidated comments from the above-noted pre-consultation meeting held on August 28, 2024.

# **Pre-Consultation Preliminary Assessment**

|     | <br>       |                |                |   |
|-----|------------|----------------|----------------|---|
|     | <br>       | • 🖂            | . —            |   |
| 1 1 | 2          | - <b>3</b> (X) | <i>1</i> 1   1 | 5 |
|     | <b>∠</b> ⊔ | <b>5</b> 🖂     | <b></b>        | J |
|     |            |                |                |   |

One (1) indicates that considerable major revisions are required while five (5) suggests that the proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

# Next Steps

- 1. A review of the materials submitted for the above-noted pre-consultation has been undertaken and staff are satisfied that the information is consistent with previous direction provided and sufficient to move to a Phase 3 pre-consultation.
- 2. Please note that if your development proposal changes significantly in scope, design, or density between the Phase 2 pre-consultation review and Phase 3 pre-consultation submission, you may be required to repeat the Phase 2 pre-consultation process.
- 3. In your Phase 3 pre-consultation submission, please ensure that all comments detailed herein are addressed. A detailed cover letter stating how each comment has been addressed must be included with the submission materials. Please coordinate the numbering of your responses within the cover letter with the comment number(s) herein

# **Supporting Information and Material Requirements**

1. The attached **Study and Plan Identification List** outlines the information and material that has been further identified and/or confirmed, during this phase of preconsultation, as <u>required</u> (R) or <u>advised</u> (A) as part of a future complete application submission.



a. The required plans and studies must meet the City's Terms of Reference (ToR) and/or Guidelines, as available on <u>Ottawa.ca</u>. These ToR and Guidelines outline the specific requirements that must be met for each plan or study to be deemed adequate.

# **Overview Discussion**

- The proposal has been revised to no longer include the residential buildings on the western half of the property, known municipally as 1500 Cedar Creek Drive.
   The Cedar Creek Drive frontage is still intended for future residential development, but it will be part of a separate site plan control application.
- The current proposal is for a shopping centre with three single-storey buildings with a total GFA of 5,416 m<sup>2</sup>. A range of uses are proposed including a grocery store, restaurant and bank. A grocery store would anchor the site in Building A; the uses in the remaining Commercial Retail Units (CRUs) will be confirmed through leasing.
- It is the intent of the applicant to be zoning compliant and align with the Official Plan policies.
- The subject site falls within the Suburban Transect, with an Evolving Neighourhood Overlay and Mainstreet Corridor land use designation.
- The subject site falls within the Airport Vicinity Zone.



Figure 1 Proposed Subject Lands



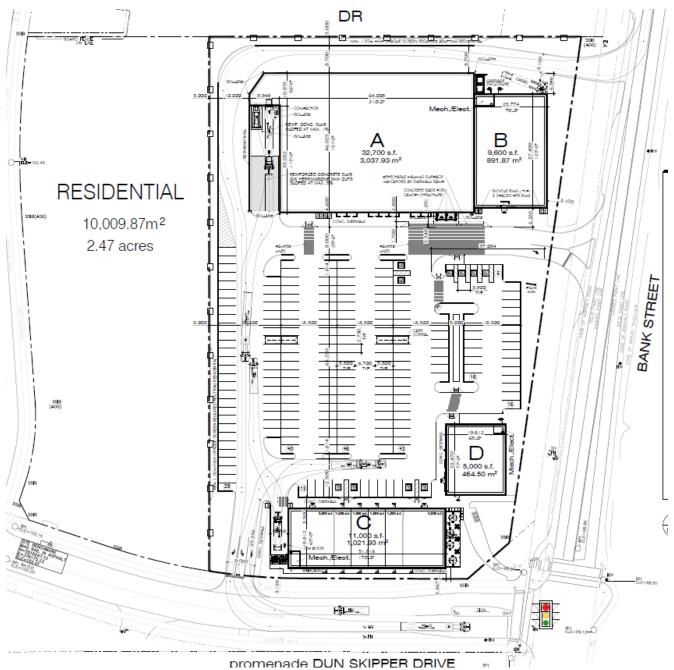



Figure 2 150 Dun Skipper Drive Proposed Site Plan (August 1, 2024)

# Planning - Samantha Gatchene (samantha.gatchene@ottawa.ca)

# Comments:

1. The subject property is also located within the Neighbourhood Overlay, Mainstreet Corridor land use designation. Mainstreet Corridors can accommodate higher density development, a greater degree of mixed-use and residential uses that integrate with a dense, mixed-use urban environment. The



maximum height along Mainstreet Corridors, within the Suburban Transect, is 9 storeys.

- 2. The subject property falls within the Leitrim CDP and is designated as a "mixed-use" centre with "high density residential" to the rear of the property. Under section 5.4 of the CDP, it notes that centres are located to be well connected to the residential neighbourhoods and are envisioned with street-related buildings that help to create beautiful, pedestrian friendly streets. The view of the centres shall be one of well-designed buildings, sidewalks, and pedestrian areas rich with amenities and tree lined streets, not dominated by parking.
- 3. The revisions to the site design are an improvement from the original proposal. The pedestrian walkway on the east side of the parking lot is appreciated along with the increased plantings and trees along the road frontages. The elimination of the proposed drive-throughs is appreciated.
- 4. The 1.5 metre opaque screen along the western edge of the site does not appear to be required by the zoning. It may be more appropriate to consider long-term fencing options when the lands intended for residential development on the west side (1500 Cedar Creek Drive) are developed. The purpose being to enable future connections between the properties.
- 5. The subject property falls within the Airport Vicinity Zone. Please contact Delroy Brown at YOW to confirm any studies or requirements: delroy.brown@yow.ca
- 6. The "Shopping Centre" parking provisions and minimum parking space rates at 3.6 per 100m<sup>2</sup> of gross leasable floor area is applicable.
- 7. Earth bins are proposed east of Building C, at the end of the loading space. All outdoor refuse collection and refuse loading areas contained within or accessed via a parking lot must be:
  - a. Located at least 9m from a ot line abutting a public street;
  - b. Located at least 3m from any other lot line; and
  - c. Screened by view by an opaque screen with a minmum height of 2.0 metres
  - d. Where an in-ground refuse container is provided, the screening requirement of Section (3) (c) above may be achieved with soft landscaping.
- 8. The Site Plan Terms of Reference must be adhered to: <a href="https://documents.ottawa.ca/sites/documents/files/site\_plan\_tor\_en.pdf">https://documents.ottawa.ca/sites/documents/files/site\_plan\_tor\_en.pdf</a>
- 9. It is recommended that a courtesy heads-up be provided to the local ward councillor Steve Desroches Ward 22 Riverside South Findlay Creek.



10. Review Urban Design Guidelines for Large-Format Retail to achieve high-quality architectural design for large-format retail buildings, a comfortable pedestrian environment and enhanced landscaping to minimize heat island effect.

# <u>Urban Design - Lisa Stern (lisa.stern@ottawa.ca)</u>

#### **Submission Requirements:**

- 10. Urban Design Brief is required. Please see attached customized Terms of Reference to guide the preparation.
  - a. The Urban Design Brief should be structured by generally following the headings highlighted under Section 3 – Contents of these Terms of Reference.
  - b. The proposal is not subject to the Urban Design Review Panel.
- 11. Additional drawings and studies are required as shown on the ASPIL. Please follow the terms of references ( <u>Planning application submission information and materials | City of Ottawa</u>) the prepare these drawings and studies. Two separate lists as per the different proposal heights, this includes:
  - a. Design Brief
  - b. Site Plan
  - c. Landscape Plan
  - d. Elevations
  - e. Floor plans (conceptual)

<u>Comments on Preliminary Design</u> Applicants are to provide a response to these comments in the Design Brief.

- 12. The following policy and guidelines apply:
  - a. Leitrim CDP Mixed Use Centre
  - b. Large Format Retail Guidelines
  - c. Bird Friendly Design Guidelines
- 13. For each of the Mixed Use areas along Bank Street, a composite site plan for the entire Mixed Use area must be approved prior to the first development application for the area. This composite site plan must demonstrate how all land uses will work together, including surrounding land uses, how the CDP's guidelines can be achieved, and how individual proposals will fit within the overall plan.
- 14. Consider providing public access through the site from Pingwi Place to Bank, as this will be a desire line for residents.
- 15. Removal of drive throughs and relocation of loading is appreciated.



- 16. Please provide CRU entrances on Bank Street. Please ensure that buildings are well glazed to provide active frontages. Blank walls are not appropriate.
- 17. Provide continuous walkway connections from parking and buildings to the ROW.
- 18. Please consider increasing the length of building wall along Bank Street would there be opportunity to swap building C and D?
- 19. Please consider additional locations for tree plantings. Please consider providing a wider landscape buffer along the west property line to accommodate tree planting.

Feel free to contact Lisa Stern, Urban Designer, for follow-up questions.

# **Engineering – Tyler Cassidy (tyler.cassidy@ottawa.ca)**

#### Comments:

- 20. The Stormwater Management Criteria, for the subject site, is to be based on the Design Brief, Pathways at Findlay Creek, 4800 Bank Street (Remer Lands), Phase 1, Leitrim Development Area, prepared by IBI (August 2017)
  - a. Pre-development flow is to be controlled to 562 L/s for the entire block (1140 Cedar Creek, 1500 Cedar Creek, 150 Dun Skipper and 4828 Bank). Release rate for the proposed site needs to be calculated based on the above-mentioned release rate.

#### 21. Available Services:

- a. Storm, sanitary and water services have been dropped at the west side of the site connecting to underground infrastructure along Cedar Creek Drive, consisting of:
  - i. 900mm concrete storm sewer
  - ii. 300mm concrete sanitary sewer
  - iii. 254mm PVC watermain
- b. These services are available to the proposed site through easements. Separate connections to the Cedar Creek Drive municipal services will also be permitted. Note the developer will be responsible to cap and abandon the existing service stubs if they are not used.
- 22. Water Boundary condition requests must include the location of the service (map or plan with connection location(s) indicated) and the expected loads required by



the proposed development, including calculations. Please provide the following information:

- a. Location of service
- b. Type of development and the amount of fire flow required (as per FUS).
- c. Average daily demand: I/s.
- d. Maximum daily demand: I/s.
- e. Maximum hourly daily demand: I/s.

A twin connection to the watermain on Cedar Creek Drive may be required if basic day demands exceed 50m3/day.

A DMA (W3.1) chamber, or a fireline water meter, may be required (input from the Water Operations Engineer is forthcoming – to be provided after initial review).

- 23. An MECP Environmental Compliance Approval for Municipal/Private Sewage Works will be required for the proposed development. Please contact the Ministry of the Environment, Conservation and Parks, Ottawa District Office to arrange a pre- submission consultation:
  - a. Charlie Primeau at (613) 521-3450, ext. 251 or Charlie Primeau@ontario.ca
  - b. An ECA will only be required if there are different owners for the Cedar Creek properties and the subject property.

#### 24. Stormwater

- a. As referenced above, SWM criteria should be based on the Design Brief, Pathways at Findlay Creek, 4800 Bank Street (Remer Lands), Phase 1, Leitrim Development Area, prepared by IBI (August 2017).
- b. Quality control is provided downstream by the Findlay Creek Village Stormwater Facility.
- c. Emergency overland flow is to be directed to Bank Street (per Design Brief).
- d. Area-Specific stormwater development charge applies to this development.

# 25. Sanitary:

a. Total flow of 3.46 L/s calculated from Design Brief.



b. Monitoring maintenance hole is required

# 26. Background studies

c. Design Brief, Pathways at Findlay Creek, 4800 Bank Street (Remer Lands), Phase 1, Leitrim Development Area, prepared by IBI (August 2017).

Feel free to contact Tyler Cassidy, P.Eng., Infrastructure Project Manager, for follow-up questions.

#### **Noise**

#### Comments:

27. The applicant was informed that it is best practice to review roadway noise for the proposed land use and has elected not to submit a noise study. No further comments.

Feel free to contact Josiane Gervais, TPM, for follow-up questions.

# <u>Transportation – Josiane Gervais (josiane.gervais@ottawa.ca)</u>

# <u>List of Studies and Plans Reviewed:</u>

☐ **TIA Scoping Report**, prepared by Novatech, dated August 2024.

#### Comments:

Note the following comments were provided to Novatech on August 16, 2024 via email.

# Transportation Engineering Services

- 28. Section 1.2 Proposed Development: Provide more information, if known, on the development plans for the residential lands located on the west side of the property in Appendix A.
- 29. Section 2.4.1 Trip Generation: Please note Land Use Code 850 is Supermarket. The Land Use Code for Shopping Center (with Yes supermarket sub-category) is 821. Please clarify which land use code is used and update Table 4.
- 30. Section 2.5 Access Design:
  - e. Regarding the proposed access locations, consider the following:
    - Bank Street is a designated Mainstreet Corridor (per Schedule B7) in the study area, and therefore Policy 6.2.1 4) b) applies, which states that for "development of lands with frontage on both a



Corridor and a parallel street or side street... vehicular access shall generally be provided from the parallel street or side street".

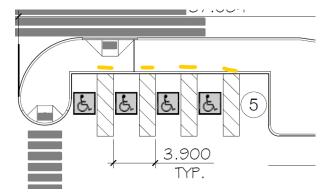
- ii. Bank Street also includes existing and planned cycling facilities, and therefore Policy 4.1.2 4) applies, which states that "development of land abutting an existing or planned cycling facility... will be designed to minimize vehicle access across the cycling facility in order to reduce potential conflict points, such as by providing vehicular access to parking and service areas from side streets or rear lanes."
- f. Therefore, the provision of two accesses on the Bank Street frontage are not supported, and TES does not recommend relief from Section 25(m)(i) of the Private Approach By-law. Modify the site plan to reduce the number of Bank Street accesses to a maximum of one, preferably zero. To replace the Bank Street access(es), consider an access through the reserved residential lands to/from Cedar Creek Drive.
- g. Clear throat length is measured from the ends of the driveway curb return radii at the roadway to the point of first conflict on-site. The measurement shown on the preliminary site plan considers the point of first conflict to be the first on-site drive aisle. However, the point of first conflict should be considered the wide crosswalk to/from the supermarket main entrance. Please correct measurement.
- h. Measure the clear throat length of the loading access and discuss its acceptability.
- Any remaining Bank Street access will need to assess the need for an auxiliary southbound right-turn lane for deceleration and storage on Bank Street.
- j. Assess the need for auxiliary turn lanes at the Dun Skipper Drive access.

# 31. Other Preliminary Site Plan Comments:

- k. For enhanced pedestrian access from the community, provide a pedestrian connection through the reserved residential lands to/from Cedar Creek Drive.
- I. Straighten (i.e. make perpendicular to the drive aisle) the north-south crosswalk on the north side of Building D.
- m. Provide additional pedestrian connections between the south side of Building C and the Dun Skipper Drive sidewalk.

# Traffic Engineering




32. No comments.

# **Transit Services**

33. Comments were not provided.

# Transportation Project Manager

- 34. Section 2.2.1: With the opening of O-Train Line 2 & 4, note OC Transpo will be revising it's overall transit service, the details can be found on the New Ways to Bus webpage.
- 35. Site Plan: Ensure TWSIs and curb returns are provided at the end of the access aisles noted in yellow below, as per AODA.



36. The following modules are to be included within the Strategy Report:

| Module                               | Criteria                 | Inclusion |
|--------------------------------------|--------------------------|-----------|
| Design Review Component              |                          |           |
| 4.1.1: Development for Sustainable   |                          |           |
| Modes                                | All                      | Yes       |
| 4.1.2: Circulation and Access        | All                      | Yes       |
| 4.1.3: New Street Networks           | Subdivisions Only        | No        |
| 4.2.1: Parking Supply                | All                      | Yes       |
| 4.2.2: Spillover                     | Module deleted           | No        |
| 4.3: Boundary Street Design          | All                      | Yes       |
| 4.5.1: Context for TDM               | All                      | Yes       |
| 4.5.2: Need and Opportunity          | All                      | Yes       |
| 4.5.3: TDM Program                   | All                      | Yes       |
| 3.2: Background Network Travel       | > 75 auto and/or transit |           |
| Demands                              | trips                    | Yes       |
| 3.3: Demand Rationalization          | > 75 auto trips          | Yes       |
| Network Impact Component             |                          |           |
| 4.6: Neighborhood Traffic Calming    | Reference criteria       | No        |
| 4.7.1: Transit Route Capacity        | > 75 transit trips       | No        |
| 4.7.2: Transit Priority Requirements | > 75 auto trips          | Yes       |
| 4.8: Network Concept                 | > 200 person trips       | No        |
| 4.9.1: Intersection Controls &       | > 75 outo tripo          |           |
| 4.4.2: Access Control)               | > 75 auto trips          | Yes       |
| 4.9.2: Intersection Design &         | > 75 auto trips          |           |
| 4.4.3: Access Design                 | / /5 auto trips          | Yes       |



37. Please address the above comments within the next submission and proceed to the Strategy Report. The applicant is strongly encouraged to submit the Strategy Report to the TPM <u>prior to formal</u> submission and allow for a 14 day circulation period. The Strategy Report must be submitted with the formal submission to deem complete.

New comments, following pre-consultation meeting held August 28, 2024.

- 38. On Site Plan, show dimensions for site elements, i.e. lane/aisle widths, access width and throat length, parking stalls, sidewalks, pedestrian pathways, etc.
- 39. No funding has been identified for widening Bank Street south of Blais Road. The timeline will be identified in the TMP update scheduled for 2025. The need for a southbound right turn lane should be assessed as part of the Strategy Report. If warrants are met, the applicant team is encouraged to initiate a discussion with the City prior to undertaking design work as the work would ultimately become throw-away.
- 40. Staff continue to encourage the applicant to reduce the number of accesses on Bank Street. Consideration can be given to modifying the access at the rear of the site to accommodate all vehicular traffic so that heavy vehicles and pedestrian movements do not conflict.
- 41. Show turning movements of WB-20 from Dun Skipper onto Bank Street.

Feel free to contact Josiane Gervais, Transportation Project Manager, for follow-up questions.

# <u>Environment – Mark Elliot (mark.elliot@ottawa.ca)</u>

#### Comments:

42. The potential presence of species-at-risk Butternut trees along the northern property line would trigger the need for an Environmental Impact Statement (EIS). However, as these trees are the only natural feature of concern, and a Tree Conservation Report (TCR) has been requested by Forestry (see below), the TCR can be accepted as a substitute for the EIS so long as it specifically addresses whether or not Butternut are present and is completed by a certified Butternut Health Assessor.

Please note that Butternut are *expected* to be in this area. Butternuts have been identified for this site in the Remer Idone Lands Environmental Management Plan (EMP). The field work that found these trees is more than 10 years old at this point, but it is likely that some of those trees remain on site.

Aside from the abovementioned Butternut, there do not appear to be any other issues that need to be flagged from the Remer Idone EMP, but the applicant is



- encouraged to review that document and ensure that this application meets the requirements within.
- 43. Any commerical development (aside from small restaurants) and all mid-rise or higher residential buildings will be required to adhere to the recommendations of the City's Bird Safe Design Guidelines.
- 44. Additional tree plantings to help meet the City's urban forest canopy guidelines, as well as to reduce the impacts of climate change and the urban heat island effect, are recommended. Please note that the City prefers that all plantings be of native and non-invasive species.
- 45. This site is in the Airport Bird Hazard zone, which affects the type of trees that should be planted. A list of plant species to avoid will be provided.

Feel free to contact Mark Elliot, Environmental Planner, for follow-up questions.

# Forestry - Hayley Murray (hayley.murray@ottawa.ca)

#### Comments:

- 46. The Landscape Plan (LP) must align with the Terms of Reference. The LP must also be prepared in conjunction with the Geotechnical Report. Include a note on the LP confirming this.
- 47. Submit a Tree Conservation Report aligning with Schedule E of the Tree Protection By-law.
- 48. The Tree Conservation Report must account for all protected trees with critical root zones extending into the development site. Provide an adequate tree retention plan for all healthy boundary and adjacently owned trees. Removal of a boundary or adjacently owned tree would require written permission from the adjacent property owner.
- 49. Increase tree cover on site to reduce the urban heat island effect (Section 2.2.3 of the Official Plan) and contribute to the 40% canopy cover target (Section 4.8.2. of the Official Plan). Section 4.1.4 of the Official Plan provides direction on surface parking lots. Policy 11 notes landscaping requirements shall be in addition to landscaping requirements in the right of way and around the perimeter of parking lots. Include regular spacing of tree islands that support the growth of mature shade trees. The current conceptual plan lacks future shade trees.
- 50. It's not recommended species are grouped in rows to prevent mortality gaps if for example disease or pest outbreaks occur. Please intermix species.
- 51. If these setbacks are feasible, please push trees either onto the property boundary or into the City Right of Way:



- n. Maintain 1.5m from sidewalk or MUP/cycle track or water service laterals.
- o. Maintain 2.5m from curb
- p. Coniferous species require a minimum 4.5m setback from curb, sidewalk or MUP/cycle track/pathway.
- q. Maintain 7.5m between large growing trees, and 4m between small growing trees. Park or open space planting should consider 10m spacing, except where otherwise approved in naturalization / afforestation areas.
- r. Adhere to Ottawa Hydro's planting guidelines (species and setbacks) when planting around overhead primary conductors.
- 52. Incorporate large canopy native species wherever possible. Prioritize street trees meeting this description, particularly where overhead wires are not present on Dun Skipper.

Feel free to contact Hayley Murray, Planning Forester, for follow-up questions.

# Other

- 1. The High-Performance Development Standard (HPDS) is a collection of voluntary and required standards that raise the performance of new building projects to achieve sustainable and resilient design and will be applicable to Site Plan Control and Plan of Subdivision applications.
  - a. The HPDS was passed by Council on April 13, 2022, but is not in effect at this time, as Council has referred the 2023 HPDS Update Report back to staff with the direction to bring forward an updated report to Committee at a later date. Please be advised that this is expected to occur in Q3 2024.
  - b. Please refer to the HPDS information at ottawa.ca/HPDS for more information.

# **Submission Requirements and Fees**

- 1. A Site Plan Control Complex application is required.
  - a. Additional information regarding fees related to planning applications can be found <a href="here">here</a>.
- 2. The attached **Study and Plan Identification List** outlines the information and material that has been identified as either required (R) or advised (A) as part of a future complete application submission.
  - a. The required plans and studies must meet the City's Terms of Reference (ToR) and/or Guidelines, as available on <a href="Ottawa.ca">Ottawa.ca</a>. These ToR and Guidelines outline the specific requirements that must be met for each plan or study to be deemed adequate.



3. <u>All</u> of the above comments or issues should be addressed to ensure the effectiveness of the application submission review.

We look forward to further discussing your project with you.

Should there be any questions, please do not hesitate to contact myself or the contact identified for the above areas / disciplines.

Yours Truly, Samantha Gatchene, MCIP, RPP

Encl. Study and Plan Identification List
Urban Design Brief Terms of Reference
Airport Bird Hazard Plant List

c.c. Tyler Cassidy, IPM
Josiane Gervais, TPM
Lisa Stern, Urban Design
Mark Elliott, Environment
Hayley Murray, Forestry



#### APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST

## Proposed Site Plan Control (Complex) Application – 150 Dun Skipper Drive – PC2024-0331

Legend: **R** = Required, the study or plan is required with application submission

A = Advised, the study or plan is advised to evaluate the application or satisfy a condition of approval/draft approval

1 - OPA, 2 - ZBA, 3 - Plan of Subdivision, 4 - Plan of Condominium, 5 - SPC

Core studies required for certain applications all the time (Remaining studies are site specific)

For information and guidance on preparing required studies and plans refer <a href="here:">here:</a>

| R           | Α           | Study/ Plan Name                        | Description                                                                                                                 |                                                                                                                                                    | Wh          | en Requi    | red         |             | Applicable Study Components                      |
|-------------|-------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|--------------------------------------------------|
| ıx          | ^           | Study/ Flair Name                       | Description                                                                                                                 | 1                                                                                                                                                  | 2           | 3           | 4           | 5           | & Other Comments                                 |
|             |             | 1. Environmental Site                   | Ensures development only takes place on sites where the                                                                     | $\boxtimes$                                                                                                                                        | $\boxtimes$ | $\boxtimes$ |             | $\boxtimes$ | Record of Site Condition                         |
|             |             | Assessment (Phase 1<br>& Phase 2)       | environmental conditions are suitable for the proposed use                                                                  | Study Tr<br>All cases                                                                                                                              | igger Deta  | ails:       |             |             | Yes □ No □                                       |
|             |             |                                         | Geotechnical design                                                                                                         | $\boxtimes$                                                                                                                                        |             | $\boxtimes$ | $\boxtimes$ | $\boxtimes$ |                                                  |
| $\boxtimes$ |             | 2. Geotechnical Study                   | requirements for the subsurface conditions                                                                                  | Study Trigger Details:<br>All cases                                                                                                                |             |             |             |             |                                                  |
|             |             | 3. Grading and                          | Grading relationships between connecting (or abutting)                                                                      |                                                                                                                                                    |             | $\boxtimes$ |             | $\boxtimes$ |                                                  |
|             |             | Drainage Plan                           | properties and surface runoff control                                                                                       | Study Tr<br>All cases                                                                                                                              | igger Deta  | ails:       |             |             |                                                  |
|             |             |                                         | A scientific study or evaluation                                                                                            |                                                                                                                                                    |             | $\boxtimes$ | $\boxtimes$ | $\boxtimes$ | Reasonable Use Study                             |
|             | $\boxtimes$ | 4. Hydrogeological and Terrain Analysis | that includes a description of the ground and surface hydrology, geology, terrain, affected landform and its susceptibility | Study Trigger Details: When developing on private services or whe urban development is in close proximity to existing private serviced development |             |             |             | ty to       | Yes □ No □  Groundwater Impact Study  Yes □ No □ |
|             | $\boxtimes$ | 5. Noise Control Study                  | Potential impacts of noise on a development                                                                                 | ⊠ ⊠ ⊠    Study Trigger Details:                                                                                                                    |             |             |             |             | · Vibration Study<br>Yes □ No □                  |
|             |             |                                         |                                                                                                                             | See Terms of Reference for full details.                                                                                                           |             |             |             |             |                                                  |

|             |                                        |                                                                                                                                                                                                          |                                                     | $\boxtimes$                                          | $\boxtimes$                                                                | $\boxtimes$                                         | $\boxtimes$    |                                                                           |  |
|-------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|----------------|---------------------------------------------------------------------------|--|
|             | 6. Rail Proximity Study                | Development on land adjacent to<br>all Protected Transportation<br>Corridors and facilities shown on<br>Schedule C2 of the Official Plan,<br>to follow rail safety and risk<br>mitigation best practices | Within the existing a corridors on land a Transport | and future<br>, as show<br>adjacent to<br>rtation Co | ails:  ment Zor  rapid tran  n on Anne  all Prote  rridors and  the Offici | nsit station<br>ex 2 of the<br>cted<br>d facilities | s and<br>OP OR | Rail Safety Report Yes □ No □  O-Train Network Proximity Study Yes □ No □ |  |
|             |                                        |                                                                                                                                                                                                          |                                                     | $\boxtimes$                                          | $\boxtimes$                                                                | $\boxtimes$                                         |                | Fluvial Geomorphological Report<br>Yes □ No ⊠                             |  |
|             |                                        |                                                                                                                                                                                                          |                                                     |                                                      |                                                                            |                                                     |                | Assessment of Adequacy of Public Services Yes □ No ⊠                      |  |
|             |                                        | Provides servicing details based on proposed scale of                                                                                                                                                    |                                                     |                                                      |                                                                            |                                                     |                | Servicing Options Report<br>Yes □ No ⊠                                    |  |
|             | 7. Site Servicing Study                | development with an engineering overview taking into consideration surrounding developments and connections.                                                                                             | Study Tr<br>All cases                               | igger Deta                                           | ails:                                                                      |                                                     |                | Erosion and Sediment Control Plan / Brief Yes ⊠ No □                      |  |
|             |                                        |                                                                                                                                                                                                          |                                                     |                                                      |                                                                            |                                                     |                | Hydraulic Water Main Analysis<br>Yes □ No ⊠                               |  |
|             |                                        |                                                                                                                                                                                                          |                                                     |                                                      |                                                                            |                                                     |                | Stormwater Management Report and Detailed Design Brief Yes ⊠ No □         |  |
|             |                                        | Assessment of slope stability and                                                                                                                                                                        |                                                     | $\boxtimes$                                          | $\boxtimes$                                                                | $\boxtimes$                                         | $\boxtimes$    |                                                                           |  |
|             | 8. Slope Stability Study               | measures to provide safe set-<br>back.                                                                                                                                                                   |                                                     |                                                      | ails:<br>al for Haza                                                       | ard Lands                                           | exists         | Retrogressive Landslide Analysis<br>Yes □ No □                            |  |
|             |                                        |                                                                                                                                                                                                          |                                                     | $\boxtimes$                                          | $\boxtimes$                                                                | $\boxtimes$                                         | $\boxtimes$    |                                                                           |  |
| $\boxtimes$ | 9. Transportation Impact<br>Assessment | Identify on and off-site measures to align a development with City transportation objectives.                                                                                                            | If the dev                                          | or if the d<br>Trigger; o                            | ails:<br>t generate<br>levelopme<br>or if the de                           | nt is locat                                         | ed in a        | Roadway Modification Functional Design Yes   No                           |  |

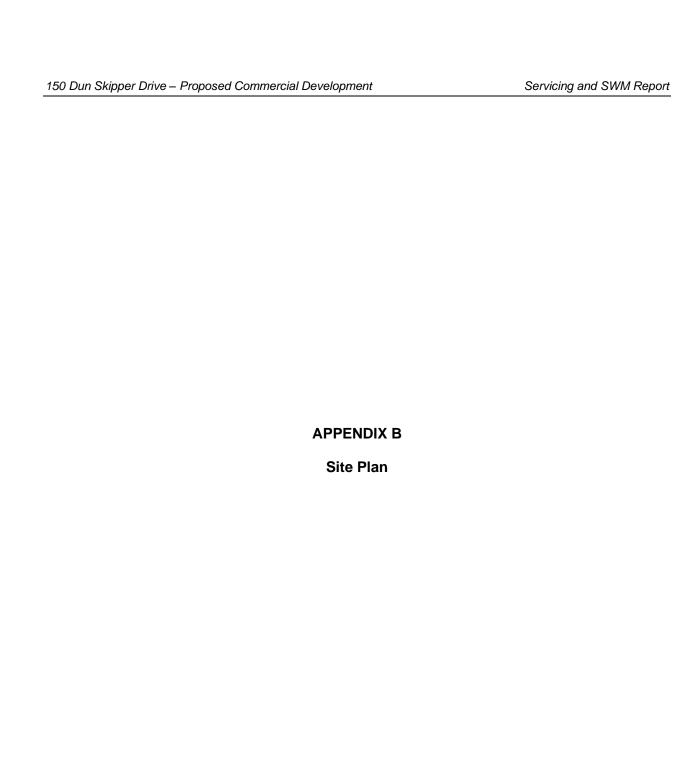
|  |                                  |                                                                                                                                                                                                                  |                                                                                  | $\boxtimes$                                                                                                                                                                                                                                                                                                                   | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\boxtimes$                                                                            | $\boxtimes$                                                        |  |
|--|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
|  | 10. Water Budget<br>Assessment   | Identify impact of land use changes on the hydrologic cycle and post-development mitigation targets.                                                                                                             | May be in application and / or sensitive required assessm                        | Study Trigger Details: May be required for site plan control applications for sites with private servicing and / or proximity to hydrogeologically-sensitive areas. Draft plans of subdivision are equired to integrate water budget assessments into supporting stormwater management plans and analysis for the study area. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                                                    |  |
|  | 11. Wellhead Protection<br>Study | Delineate a Wellhead Protection<br>Area (WHPA) and characterize<br>vulnerability for new communal<br>residential drinking water well<br>systems, in accordance with<br>Technical Rules under Clean<br>Water Act. | Required<br>drinking<br>municipa<br>(small w<br>Respons<br>or increa<br>municipa | igger Detad for all ne water wells, ne ater works sibility Agrased water all well or en new priva                                                                                                                                                                                                                             | ails: w commu systems; w private the private the private eement (Note that reques the private | nal reside<br>including<br>communa<br>uire a Mur<br>IRA), exp<br>om an ex<br>vate comi | ential<br>new<br>al wells<br>nicipal<br>ansions<br>isting<br>munal |  |

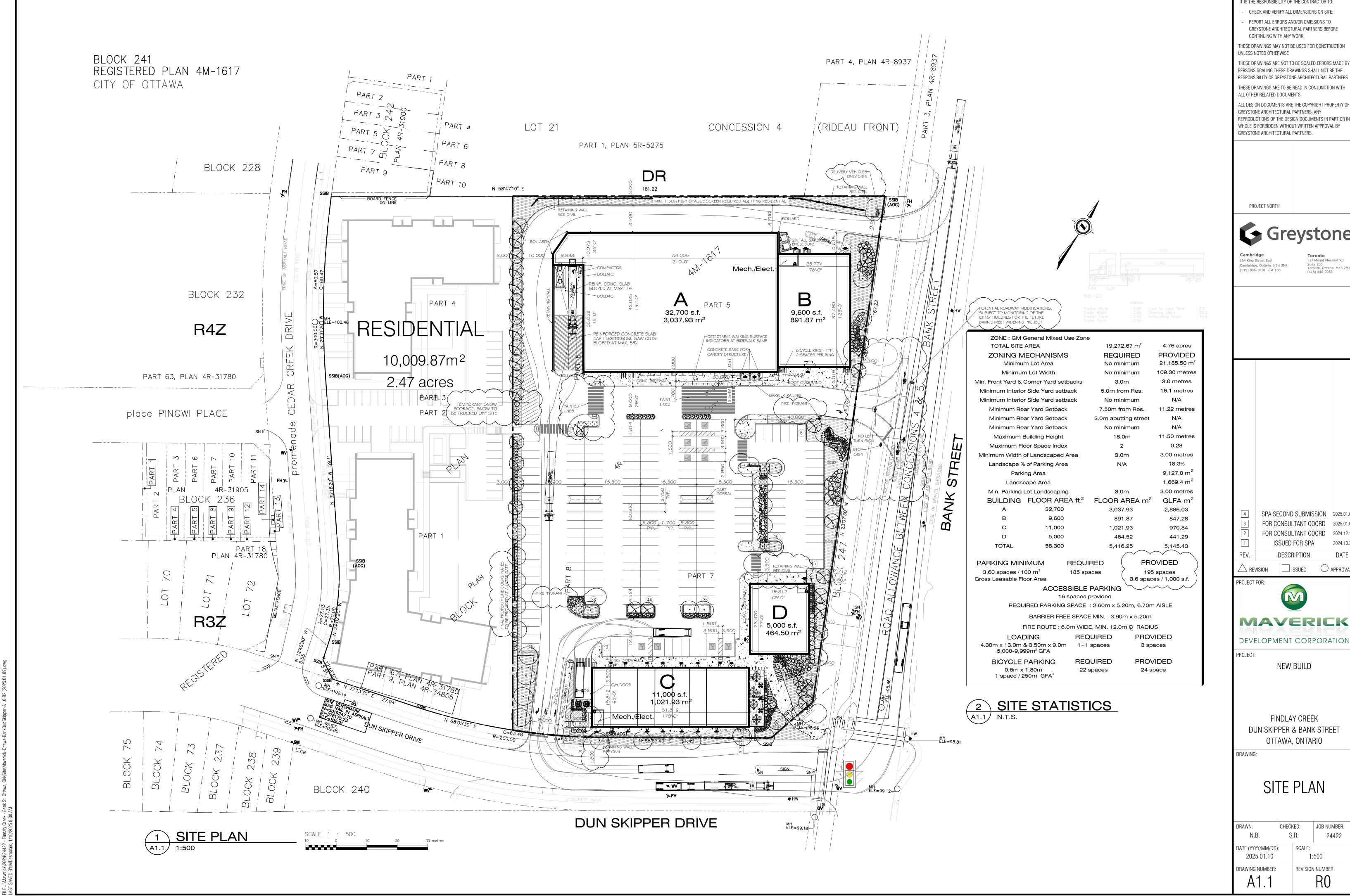
| R           | Α | Study/Plan Name                           | Description                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wh                                                                                                 | en Requi                                                                                        | red                                                                              | _                                  | Applicable Study Components |
|-------------|---|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|-----------------------------|
| , N         | ^ | Study/Flail Name                          | Description                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                  | 3                                                                                               | 4                                                                                | 5                                  | & Other Comments            |
|             |   |                                           |                                                                                                                              | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                                 |                                                                                  |                                    |                             |
|             |   | 12. Agrology and Soil<br>Capability Study | Confirm or recommend alterations to mapping of agricultural lands in the City.                                               | For the edidentification is demonstrated in the second sec | rigger Deta<br>expansion<br>ation of a ra<br>a comprel<br>nstrated the<br>irements f               | of a settle<br>new settle<br>hensive re<br>nat the lan                                          | ment area<br>eview; or v<br>d does no                                            | a<br>where it<br>ot meet           |                             |
|             |   |                                           |                                                                                                                              | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boxtimes$                                                                                        | $\boxtimes$                                                                                     | $\boxtimes$                                                                      | $\boxtimes$                        |                             |
|             |   | 13. Archaeological<br>Assessment          | Discover any archaeological resources on site, evaluate cultural heritage value and conservation strategies                  | When the archaeo archaeo Archaeo Study in outside of any ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rigger Deta<br>e land has<br>logical site<br>logical Re<br>dicates ar<br>of the histe<br>rchaeolog | s either: a<br>e; or the p<br>es; or whe<br>esource Po<br>chaeologi<br>oric core;<br>ical resou | otential to<br>re the Cit<br>otential M<br>cal potent<br>or upon d<br>rce during | y's<br>apping<br>tial,<br>iscovery |                             |
|             |   |                                           |                                                                                                                              | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boxtimes$                                                                                        |                                                                                                 |                                                                                  |                                    |                             |
| $\boxtimes$ |   | 14. Building Elevations                   | Visual of proposed development to understand facing of building including direction of sunlight, height, doors, and windows. | Study Trigger Details: Site Plan: for residential buildings with 25 or more residential units; or for residential buildings with less than 25 residential units, if the units are within the Urban area or the High-performance Development Standard threshold in the rural area.  Official Plan or Zoning By-law: if staff deem it necessary to determine compliance with OP policies, the Zoning By-law or City of Ottawa Urban Design Guidelines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |                                                                                                 |                                                                                  |                                    |                             |

|  |                                                       |                                                                                                                                                                                                                                  | $\boxtimes$                                                           | $\boxtimes$                                                                                                     | $\boxtimes$                                                                         | $\boxtimes$                                                             | $\boxtimes$                          |                                                                                 |
|--|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|
|  | 15. Heritage Impact<br>Assessment                     | Determine impacts of proposed development on cultural heritage resources.                                                                                                                                                        | Where of<br>the Onta<br>adjacent<br>30 metro<br>for any of<br>Canal U | rigger Deta<br>developme<br>ario Herita<br>t to, acros<br>es of a pro<br>developme<br>NESCO V<br>ped buffer     | ent or an a<br>ge Act is p<br>s the stree<br>otected he<br>ent adjace<br>Vorld Heri | proposed et from or ritage pro                                          | on,<br>within<br>perty; or<br>Rideau | Conservation Plan<br>Yes □ No □                                                 |
|  |                                                       |                                                                                                                                                                                                                                  |                                                                       | $\boxtimes$                                                                                                     | $\boxtimes$                                                                         | $\boxtimes$                                                             | $\boxtimes$                          |                                                                                 |
|  | 16. Heritage Act<br>Acknowledgement<br>Report         | A submission requirement to demonstrate that the <i>Ontario Heritage Act</i> requirements have been satisfied, to ensure that multiple applications are considered currently.                                                    | Where the Heritage submit a (designate Heritage to demo               | rigger Deta<br>he subject<br>e Register<br>a Heritage<br>ated herita<br>e Register<br>lish or ren<br>ted proper | t property<br>and the a<br>Permit Ap<br>ge proper<br>or provide<br>nove a bu        | pplicant no<br>oplication<br>ty listed of<br>e notice of<br>ilding (nor | nust<br>n the<br>of intent<br>n-     | Heritage Permit Application Yes □ No □  Notice of Intent to Demolish Yes □ No □ |
|  |                                                       | Mineral aggregate extraction activities; and to protect                                                                                                                                                                          | $\boxtimes$                                                           | $\boxtimes$                                                                                                     | $\boxtimes$                                                                         | $\boxtimes$                                                             | $\boxtimes$                          |                                                                                 |
|  | 17. Impact Assessment<br>Study – Mineral<br>Aggregate | known high quality mineral aggregate resources from development and activities that would preclude or hinder their existence (ability to be extracted) or expansion.                                                             | New De within the metres of                                           | rigger Det<br>velopmen<br>e Bedrock<br>of lands w<br>ee Area Ov                                                 | t within 50<br>c Overlay<br>ithin the S                                             | , or within                                                             | 300                                  |                                                                                 |
|  |                                                       | To identify or confirm known mineral deposits or petroleum                                                                                                                                                                       | $\boxtimes$                                                           | $\boxtimes$                                                                                                     | $\boxtimes$                                                                         | $\boxtimes$                                                             | $\boxtimes$                          |                                                                                 |
|  | 18. Impact Assessment<br>Study – Mining Hazards       | resources and significant areas of mineral potential.  To protect mineral and petroleum resources from development and activities which would preclude or hinder the establishment of new operations or access to the resources. |                                                                       | rigger Deta<br>pplicationa<br>ns.                                                                               |                                                                                     | nity to mir                                                             | ning                                 |                                                                                 |

|  |                                                                                     | To identify or confirm known                                                                                                                                                                                                    | $\boxtimes$                                                                                                                                                                                                                                                                                                                                       | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boxtimes$                                                  | $\boxtimes$                   |  |  |
|--|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|--|--|
|  | 19. Impact Assessment<br>Study – Waste Disposal<br>Sites / Former Landfill<br>Sites | proximity of existing or former waste disposal sites.  To ensure issues of public health, public safety and environmental impact are addressed.                                                                                 | raste disposal sites.  o ensure issues of public ealth, public safety and nvironmental impact are  Study Trigger Details:  For the establishment of any new Solid Waste Disposal Site or for a footprint expansion of an operating Solid Waste Disposal Site; or development within three kilometers of an operating or paperating Waste Disposal |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                               |  |  |
|  |                                                                                     |                                                                                                                                                                                                                                 | $\boxtimes$                                                                                                                                                                                                                                                                                                                                       | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boxtimes$                                                  | $\boxtimes$                   |  |  |
|  | 20. Landscape Plan                                                                  | A plan to demonstrate how the canopy cover, urban design, health, and climate change objectives of Official Plan will be met through tree planting and other site design elements.                                              | Site Plai<br>Condom<br>it is dem<br>compon<br>review of<br>A high-le<br>be requi                                                                                                                                                                                                                                                                  | ninium: alvalonstrated ent of a post the applicated concerned to supplicated to supplicate to supplicate to supplicate to supplicate the supplicated to supplicated to supplicate the supplicated to supplicated the supplicated to supplicate the supplicated to supplicated the supp | Subdivision  vays requinate that the land the la | red, exce<br>andscape<br>of relevan<br>dscape P<br>ng By-law | pt where t to the lan may and |  |  |
|  |                                                                                     |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                   | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                               |  |  |
|  | 21. Mature Neighbourhood<br>Streetscape Character<br>Analysis                       | In the Mature Neighbourhoods a Streetscape Character Analysis is required to determine the applicable zoning requirements.                                                                                                      | Study Trigger Details: Zoning By-law amendment application in areas covered by the Mature Neighbourhoods zoning overlay for applications of residential development of four storeys or less located in a R1, R2, R3, or R4 zone.                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                               |  |  |
|  |                                                                                     | Provincial land use planning                                                                                                                                                                                                    | $\boxtimes$                                                                                                                                                                                                                                                                                                                                       | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boxtimes$                                                  | $\boxtimes$                   |  |  |
|  | 22. Minimum Distance<br>Separation                                                  | tool that determines setback distances between livestock barns, manure storages or anaerobic digesters and surrounding land uses, with the objective of minimizing land use conflicts and nuisance complaints related to odour. |                                                                                                                                                                                                                                                                                                                                                   | rigger Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>ails</u> :<br>e Rural Ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ea, outsid                                                   | e of a                        |  |  |

|             |                                              | A tool to assess the                                                                                                                                   |                                                                                                                      |                                         | $\boxtimes$ | $\boxtimes$    |             |                                                    |
|-------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|----------------|-------------|----------------------------------------------------|
|             | 23. Parking Plan                             | sufficiency of on-street parking in plans of subdivision.                                                                                              |                                                                                                                      | rigger Deta<br>or revised<br>reets.     |             | subdivisio     | n with      |                                                    |
|             |                                              | A Plan of Survey depicts legal boundaries and is a                                                                                                     | $\boxtimes$                                                                                                          | $\boxtimes$                             | $\boxtimes$ | $\boxtimes$    |             |                                                    |
|             | 24. Plan of Survey                           | specialized map of a parcel of land and it delineates boundary locations, building locations, physical features and other items of spatial importance. |                                                                                                                      | rigger Deta<br>d for all <i>Pl</i>      |             | et application | ons.        |                                                    |
|             |                                              |                                                                                                                                                        |                                                                                                                      | $\boxtimes$                             | $\boxtimes$ |                |             |                                                    |
|             | 25. Plan of Subdivision                      | Proposed subdivision layout to be used for application approval                                                                                        | Study Trigger Details: Always required with the submission of plan of subdivision application.                       |                                         |             |                |             |                                                    |
|             |                                              |                                                                                                                                                        | Amendn                                                                                                               | uired with<br>nent applic<br>nse to ena | cation, wh  | ere such Z     | ZBLA is     |                                                    |
|             |                                              | Proposed condominium                                                                                                                                   |                                                                                                                      |                                         |             | $\boxtimes$    |             |                                                    |
|             | 26. Plan of Condominium                      | layout to be used for application approval                                                                                                             |                                                                                                                      | igger Deta<br>submission.               |             | of condon      | ninium      |                                                    |
|             |                                              | Provides the planning                                                                                                                                  | $\boxtimes$                                                                                                          | $\boxtimes$                             | $\boxtimes$ |                |             |                                                    |
|             | 27. Planning Rationale                       | justification in support of the<br>Planning Act application and<br>to assist staff and the public<br>in the review of the proposal.                    | Study Trigger Details: For all Official Plan amendment, Zoning Bylaw amendment, or plan of subdivision applications. |                                         |             |                |             | Integrated Environmental Review Summary Yes □ No □ |
|             |                                              | A checklist that shows a                                                                                                                               |                                                                                                                      |                                         | $\boxtimes$ |                | $\boxtimes$ |                                                    |
| $\boxtimes$ | 28. Preliminary Construction Management Plan | Construction Study Trigger Details:                                                                                                                    |                                                                                                                      |                                         |             | on             |             |                                                    |


|             |                                     |                                                                                                        | $\boxtimes$                                                                                                                                               | $\boxtimes$                                                                                                                             | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\boxtimes$                                                                                                                                               | $\boxtimes$                                           |                                                     |
|-------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|
|             | 29. Public Consultation<br>Strategy | Proposal to reach and collect public input as part of development application.                         | Study Tr<br>Official I<br>Amenda<br>required<br>Condom<br>Site Plan<br>lead in C                                                                          | rigger Deta<br>Plan Amer<br>nent and S                                                                                                  | ails: adment, Zo Subdivision cant Land iscretion on with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oning By-I<br>n: Always<br>only<br>of the City'<br>Business                                                                                               | aw<br>s file<br>and                                   |                                                     |
|             | 30. Shadow Analysis                 | A visual model of how the proposed development will cast its shadow.                                   | When the massing commer Two trig 1. Inside develop meters), storeys in height proximit shadow 2. Outside develop meters) sensitive develop shadow develop | e the Green ment is over less, but and/or may to a shad analysis not be area. When ment is not sensitive area is over 5 sensitive area. | ncrease in for a resince use.  Inbelt: proper 5 store opment proper sing and dow sensing and be received by the following proper store a proper a p | dential,  cosed ys in heigh roposal is sing an ind d is in close tive area, quested.  oposed ys in heigh imity to a seposed proximity industrial a shadow | nt (≤15<br>5<br>crease<br>se<br>a<br>nt (≤9<br>shadow |                                                     |
| $\boxtimes$ | 31. Site Plan                       | A Site Plan is a visual drawing that illustrates the proposed development of a site in two dimensions. | Site Pla                                                                                                                                                  | rigger Deta                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ⊠ layout of t                                                                                                                                             | ⊠                                                     | Site Plan Yes □ No □  Concept Plan – for Yes □ No □ |


|             |                                         |                                                                                                                                                                                                                | densities provides sites provides sites pro with mul more bu and/or a sites wit (such as vehicula sites whadjacent | ealm, build<br>s or massi<br>s changes<br>oposing mu<br>tiple lando<br>ildings, on<br>new publi<br>h propose<br>s active tra<br>r circulation<br>ere the de<br>t propertie<br>e integrate | ng of the plant to the plant to the plant to the park it or privation or accepted on or accepted may be | proposal nned confiduses; sit dedication te street(s to conner networks to tranut potential impacted | ext;<br>es<br>vo or<br>n,<br>ectivity<br>ks,<br>sit);<br>I on<br>by or | Facility Fit Plan Yes □ No □  A composite site plan is also required for the entire mixed-use area, including the planned residential lands along Cedar Creek Drive. |
|-------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\boxtimes$ | 32. Urban Design Brief                  | Illustrate how a development proposal represents high-quality and context sensitive design that implements policies of the Official Plan, relevant secondary plans, and Council approved plans and guidelines. | For all C<br>law ame<br>applicati<br>For SPC<br>resident<br>resident<br>resident<br>Urban a<br>Develop<br>area who | rigger Deta official Plan endment, a cons. capplication ial building ial units, o ial building ial units, if rea or the ement Star ere OP Po dential an                                   | ons: propo<br>gs with 25<br>r for propo<br>gs with les<br>the units<br>High-perfo<br>dard three         | sals for<br>or more<br>osals for<br>s than 25<br>are within<br>ormance<br>shold in the               | the<br>ne rural                                                        |                                                                                                                                                                      |
|             | 33. Urban Design Review<br>Panel Report | Demonstrates that a development proposal has attended an Urban Design Review Panel formal review meeting, received, and responded to the associated recommendations, if applicable                             | Required subject t                                                                                                 | rigger Deta<br>d for all pla<br>to UDRP r<br>RP Panel T                                                                                                                                   | anning act                                                                                              | accordan                                                                                             | ce with                                                                |                                                                                                                                                                      |
|             | 34. Wind Analysis                       | A visual model and a written evaluation of how a proposed development will impact pedestrian-level wind conditions.                                                                                            | Applicat<br>and/or m<br>building(                                                                                  | rigger Deta<br>ions seeki<br>nassing wh<br>(s), 10 stor<br>that is mo                                                                                                                     | ng an incr<br>nich is eith<br>reys or mo                                                                | ner: a tall<br>ore or a p                                                                            | oposed                                                                 |                                                                                                                                                                      |

|  |                                |                                                                                                                                     | five store | existing beys in heigor planned aces, water areas.                 | tht and is downised | adjacent t<br>developm | o<br>ent,   |  |
|--|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------|---------------------|------------------------|-------------|--|
|  |                                | The purpose of the Zoning                                                                                                           |            | $\boxtimes$                                                        |                     |                        | $\boxtimes$ |  |
|  | 35. Zoning Confirmation Report | Confirmation Report (ZCR) is<br>to identify all zoning<br>compliance issues, if any, at<br>the outset of a planning<br>application. |            | Study Trigger Details: Required for all SPC and ZBLA applications. |                     |                        |             |  |

| В | _ | Ctudy / Dian Name                 | Decerintian                                                                                                                                                                                                                             |             | Wh                                     | en Requi    | red     |             | Applicable Study Components                            |
|---|---|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|-------------|---------|-------------|--------------------------------------------------------|
| R | Α | Study / Plan Name                 | Description                                                                                                                                                                                                                             | 1           | 2                                      | 3           | 4       | 5           | & Other Comments                                       |
|   |   |                                   | Includes a community energy analysis, alongside                                                                                                                                                                                         |             |                                        |             |         |             |                                                        |
|   |   | 36. Community Energy Plan         | mitigation measures, and other associated information. The community energy analysis refers to the overall assessment process to identify on and off-site measures to align the design of the development with City climate objectives. | NOT I       | JIRED                                  |             |         |             |                                                        |
|   |   |                                   | The Energy Modeling Report is a Site Plan Control                                                                                                                                                                                       |             |                                        |             |         |             |                                                        |
|   |   | 37. Energy Modelling Report       | application submission requirement to show how climate change mitigation, and energy objectives will be met through exterior building design elements.                                                                                  | NOT I       | MPLEMEI                                | NTED & N    | OT REQI | JIRED       |                                                        |
|   |   |                                   | Assessment of environmental impacts of a                                                                                                                                                                                                | $\boxtimes$ | $\boxtimes$                            | $\boxtimes$ |         | $\boxtimes$ | Assessment of Landform Features                        |
|   |   | 38. Environmental Impact<br>Study | project and documents the existing natural features, identifies the potential environmental impacts,                                                                                                                                    | Is require  | igger Deta<br>ed when d<br>n is propos | levelopme   |         |             | Yes □ No □  Integrated Environmental Review Yes □ No □ |

|             |                                              | recommends ways to avoid and reduce the negative impacts, and proposes ways to enhance natural features and functions.                                                                                                   | designate the City's hazardo.  The EIS Environre provides features EIS is re                   | d distance ted lands, s Natural I us forest ty Decision mental Imps a checklist and adjacequired to soons under                                 | natural he Heritage S ypes for w Tool (Approact Study st of the nate ent areas support de              | eritage fea<br>System, of<br>vildland fir<br>endix 2 of<br>Guidelinatural her<br>within whevelopme                   | re. f the es) itage nich an                | Protocol for Wildlife Protection during Construction Yes □ No □  Significant Woodlands Guidelines for Identification, Evaluation, and Impact Assessment Yes □ No □                                                 |
|-------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 39. Environmental<br>Management Plan         | A comprehensive environmental planning document that identifies, evaluates, and mitigates the potential impacts of proposed development on the natural environment and its ecological functions at local planning stage. | Official F (area-sp where: ti condition based; ti planned subdivis impact of subdivis applicab | rigger Deta Plan amen pecific police here is signs upon where are p infrastruct ion that we on the infra ion within the ple Class E I has expir | dments for secondificant chair the or roposed could have structure the EMP structure the EMP structure | ndary pla<br>nange in the<br>riginal stuck<br>changes to<br>ed to serve<br>a signification<br>needs of<br>study area | n, he ldy was cice a ant another a, or the |                                                                                                                                                                                                                    |
|             | 40. High-performance<br>Development Standard | A collection of voluntary and required standards that raise performance of new building projects to achieve sustainable and resilient design                                                                             | □<br>NOT I                                                                                     | MPLEMEN                                                                                                                                         | □<br>NTED & N                                                                                          | □<br>IOT REQ                                                                                                         | UIRED                                      |                                                                                                                                                                                                                    |
| $\boxtimes$ | 41. Tree Conservation<br>Report              | Demonstrates how tree cover will be retained and protected on the site, including mature trees, stands of trees, and hedgerows.                                                                                          | Where the diameter is a tree Root Zoo                                                          | rigger Deta<br>here is a tr<br>r or greate<br>on an adja<br>ne (CRZ) e<br>ment site.                                                            | ree of 10 c<br>r on the s<br>acent site                                                                | ite and/or<br>that has a                                                                                             | if there                                   | Adjacently owned trees must be protected. Address the protection measures in this plan.  Required to address whether or not Butternut trees are present and is completed by a certified Butternut Health Assessor. |





IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO

**G**reystone

SPA SECOND SUBMISSION 2025.0 FOR CONSULTANT COORD 2025.01 FOR CONSULTANT COORD 2024.12.

JOB NUMBER: 24422

| 150 Dun Skipper Drive – Proposed Commercial Development | Servicing and SWM Repor |
|---------------------------------------------------------|-------------------------|
|                                                         | -                       |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
| APPENDIX C                                              |                         |
| Water Demands, FUS Calculations, Boundary Cond          | litions                 |
| , , , , , , , , , , , , , , , , , , ,                   |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |
|                                                         |                         |

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 124107

Project Name: 150 Dun Skipper Drive

Date: September 16, 2024

Input By: MS Reviewed By: NOVATECH
Engineers, Planners & Landscape Architects

Legend

Input by User

No Information or Input Required

**Building Description:** Building A&B (1-Storey Commercial)

| Step |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Choose         |                | Value Used | Total Fire<br>Flow |
|------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|------------|--------------------|
|      |                                           | Base Fire Flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \              |                |            | (L/min)            |
|      | Construction Ma                           | plier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |            |                    |
|      | Construction wa                           | Type V - Wood frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                | pilei      |                    |
|      | Coefficient                               | Type IV - Mass Timber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 1.5            |            |                    |
| 1    | related to type                           | Type III - Ordinary construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Varies<br>1    | 0.8        |                    |
|      | of construction                           | Type II - Ordinary construction  Type II - Non-combustible construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes            | 0.8            | 0.6        |                    |
|      | С                                         | Type I - Fire resistive construction (2 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 168            | 0.6            |            |                    |
|      | Floor Area                                | Type I - Fire resistive construction (2 hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 0.6            |            |                    |
|      | FIOOI Area                                | Building Area (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3930           |                |            |                    |
|      |                                           | Number of Floors/Storeys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3930           |                |            |                    |
|      | Α                                         | Protected Openings (1 hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |            |                    |
| 2    |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                | 0.000      |                    |
|      |                                           | Area of structure considered (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                | 3,930      |                    |
|      | F                                         | Base fire flow without reductions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |            | 11,000             |
|      | '                                         | $F = 220 C (A)^{0.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |            | 11,000             |
|      |                                           | Reductions or Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | harges         |                |            |                    |
|      | Occupancy haza                            | rd reduction or surcharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FUS Table 3    | Reduction/     | Surcharge  |                    |
|      | (1)                                       | Non-combustible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -25%           |            |                    |
| 3    |                                           | Limited combustible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | -15%           |            |                    |
| 3    |                                           | Combustible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes            | 0%             | 0%         | 11,000             |
|      |                                           | Free burning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 15%            |            |                    |
|      |                                           | Rapid burning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 25%            |            |                    |
|      | Sprinkler Reduction FUS Table 4 Reduction |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ction          |                |            |                    |
|      |                                           | Adequately Designed System (NFPA 13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes            | -30%           | -30%       |                    |
|      |                                           | Standard Water Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes            | -10%           | -10%       |                    |
| 4    | (2)                                       | Fully Supervised System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | -10%           |            | _                  |
|      |                                           | the same of the sa | Cumulati       | ive Sub-Total  | -40%       | 0                  |
|      |                                           | Area of Sprinklered Coverage (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0              | 0%             | 1070       |                    |
|      |                                           | raca er epriminerea eererage (iii )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _              | nulative Total | 0%         |                    |
|      | Exposure Surch                            | arge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FUS Table 6    |                | Surcharge  |                    |
|      |                                           | North Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >30m           |                | 0%         |                    |
|      |                                           | East Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >30m           |                | 0%         |                    |
| 5    | (3)                                       | South Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >30m           |                | 0%         | 0                  |
|      |                                           | West Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >30m           |                | 0%         |                    |
|      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cum            | ulative Total  | 0%         |                    |
|      | 1                                         | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |            |                    |
|      |                                           | Total Required Fire Flow, rounded to nea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rest 1000L/mii | n              | L/min      | 11,000             |
| 6    | (1) + (2) + (3)                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              | or             | L/s        | 183                |
| ю    | (1) 1 (2) 1 (0)                           | (2,000 L/min < Fire Flow < 45,000 L/min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |            |                    |

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 124107

Project Name: 150 Dun Skipper Drive

Date: September 16, 2024

Input By: MS Reviewed By: NOVATECH
Engineers, Planners & Landscape Architects

Legend

Input by User

No Information or Input Required

**Building Description:** Building C (1-Storey Commercial)

| Step |                     |                                                | Choose         |                | Value Used | Total Fire |
|------|---------------------|------------------------------------------------|----------------|----------------|------------|------------|
|      |                     | Base Fire Flo                                  | W.             |                |            | (L/min)    |
|      | Construction Ma     |                                                | vv             | Multi          | iplier     |            |
|      |                     | Type V - Wood frame                            |                | 1.5            | p.i.o.     |            |
|      | Coefficient         | Type IV - Mass Timber                          |                | Varies         |            |            |
| 1    | related to type     | Type III Ordinary construction                 |                | 1              | 0.8        |            |
|      | of construction     | Type II - Non-combustible construction         | Yes            | 0.8            |            |            |
|      | С                   | Type I - Fire resistive construction (2 hrs)   |                | 0.6            |            |            |
|      | Floor Area          |                                                | •              |                |            |            |
|      |                     | Building Area (m <sup>2</sup> )                | 1022           |                |            |            |
|      | Α                   | Number of Floors/Storeys                       | 1              |                |            |            |
| 2    | Α                   | Protected Openings (1 hr)                      |                |                |            |            |
|      |                     | Area of structure considered (m <sup>2</sup> ) |                |                | 1,022      |            |
|      | F                   | Base fire flow without reductions              |                |                |            | 6,000      |
|      | Г                   | $F = 220 \text{ C (A)}^{0.5}$                  |                |                |            | 0,000      |
|      |                     | Reductions or Surc                             | harges         |                |            |            |
|      | Occupancy haza      | rd reduction or surcharge                      | FUS Table 3    | Reduction      | /Surcharge |            |
|      |                     | Non-combustible                                |                | -25%           |            |            |
| 3    |                     | Limited combustible                            |                | -15%           |            |            |
| Ū    | (1)                 | Combustible                                    | Yes            | 0%             |            | 6,000      |
|      |                     | Free burning                                   |                | 15%            |            |            |
|      |                     | Rapid burning                                  |                | 25%            |            |            |
|      | Sprinkler Reduction |                                                | FUS Table 4    | Redu           | ction      |            |
|      |                     | Adequately Designed System (NFPA 13)           | Yes            | -30%           | -30%       |            |
|      | (2)                 | Standard Water Supply                          | Yes            | -10%           | -10%       |            |
| 4    |                     | Fully Supervised System                        |                | -10%           |            | 0          |
|      |                     |                                                | Cumulat        | ive Sub-Total  | -40%       | •          |
|      |                     | Area of Sprinklered Coverage (m²)              | 0              | 0%             |            |            |
|      |                     |                                                |                | nulative Total | 0%         |            |
|      | Exposure Surch      |                                                | FUS Table 6    |                | Surcharge  |            |
|      |                     | North Side                                     | >30m           |                | 0%         |            |
| _    | (3)                 | East Side                                      | >30m           |                | 0%         | 0          |
| 5    |                     | South Side                                     | >30m           |                | 0%         |            |
|      |                     | West Side                                      | >30m           |                | 0%         |            |
|      |                     |                                                | Cum            | nulative Total | 0%         |            |
|      |                     | Results                                        |                |                |            |            |
|      |                     | Total Required Fire Flow, rounded to nea       | rest 1000L/mir | n              | L/min      | 6,000      |
| 6    | (1) + (2) + (3)     | (2,000 L/min < Fire Flow < 45,000 L/min)       |                | or             | L/s        | 100        |
|      | ( , ( , ( )         | (2,000 L/IIIII) < FIIE FIOW < 45,000 L/IIIII)  |                | or             | USGPM      | 1,585      |

As per 2020 Fire Underwriter's Survey Guidelines

Novatech Project #: 124107

Project Name: 150 Dun Skipper Drive

Date: September 16, 2024

Input By: MS Reviewed By: NOVATECH
Engineers, Planners & Landscape Architects

Legend

Input by User

No Information or Input Required

**Building Description:** Building D (1-Storey Commercial)

| Step |                                             |                                                                                                                   | Choose                       |                           | Value Used     | Total Fire<br>Flow<br>(L/min) |
|------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|----------------|-------------------------------|
|      |                                             | Base Fire Flo                                                                                                     | w                            |                           |                | (4///////                     |
|      | Construction Ma                             | iterial                                                                                                           |                              | Mult                      | iplier         |                               |
| 1    | Coefficient related to type of construction | Type V - Wood frame Type IV - Mass Timber Type III - Ordinary construction Type II - Non-combustible construction | Yes                          | 1.5<br>Varies<br>1<br>0.8 | 0.8            |                               |
|      | С                                           | Type I - Fire resistive construction (2 hrs)                                                                      | res                          | 0.6                       |                |                               |
|      | Floor Area                                  |                                                                                                                   |                              |                           |                |                               |
| 2    | A                                           | Building Area (m²) Number of Floors/Storeys Protected Openings (1 hr)                                             | 465                          |                           |                |                               |
|      |                                             | Area of structure considered (m <sup>2</sup> )                                                                    |                              |                           | 465            |                               |
|      | F                                           | Base fire flow without reductions                                                                                 |                              |                           |                | 4,000                         |
|      |                                             | F = 220 C (A) <sup>0.5</sup> Reductions or Surc                                                                   | harges                       |                           |                |                               |
|      | Occupancy haza                              | ard reduction or surcharge                                                                                        | FUS Table 3                  | Reduction                 | /Surcharge     |                               |
| 3    | (1)                                         | Non-combustible Limited combustible Combustible Free burning                                                      | Yes                          | -25%<br>-15%<br>0%<br>15% |                | 4,000                         |
|      | 0                                           | Rapid burning                                                                                                     | 5110 T 11 4                  | 25%                       | ection         |                               |
|      | Sprinkler Reduc                             | Adequately Designed System (NFPA 13)                                                                              | FUS Table 4                  | -30%                      | ction          |                               |
| 4    |                                             | Standard Water Supply Fully Supervised System                                                                     |                              | -10%<br>-10%              |                |                               |
| ·    | (2)                                         | Area of Sprinklered Coverage (m²)                                                                                 | Cumulat                      | ive Sub-Total             | 0%             | 0                             |
|      |                                             | Area or opinimerea obverage (iii)                                                                                 |                              | nulative Total            | 0%             |                               |
|      | Exposure Surch                              | arge                                                                                                              | FUS Table 6                  |                           | Surcharge      |                               |
| 5    | (3)                                         | North Side East Side South Side West Side                                                                         | >30m<br>>30m<br>>30m<br>>30m |                           | 0%<br>0%<br>0% | 0                             |
|      |                                             |                                                                                                                   | Cun                          | l<br>nulative Total       | 0%             |                               |
|      |                                             | Results                                                                                                           |                              |                           | <u> </u>       |                               |
|      |                                             | Total Required Fire Flow, rounded to nea                                                                          | rest 1000L/mi                | n                         | L/min          | 4,000                         |
| 6    | (1) + (2) + (3)                             | (2,000 L/min < Fire Flow < 45,000 L/min)                                                                          |                              | or<br>or                  | L/s<br>USGPM   | <b>67</b> 1,057               |
|      |                                             |                                                                                                                   |                              | 01                        | JUGI IVI       | 1,007                         |

#### **Miro Savic**

From: Paul Paglialunga <paul@maverickdevelopments.com>

**Sent:** Friday, June 14, 2024 12:14 PM

To: Miro Savic Cc: Lee Sheets

**Subject:** RE: 150 Dun Skipper - FUS Building Construction Details

Miro,

Please see below

Thank you,

#### **Paul Paglialunga**

From: Miro Savic <m.savic@novatech-eng.com>

Sent: Friday, June 14, 2024 12:06 PM

To: Paul Paglialunga <paul@maverickdevelopments.com>

Cc: Lee Sheets < l.sheets@novatech-eng.com>

Subject: 150 Dun Skipper - FUS Building Construction Details

Paul,

I'm preparing the Fire Underwriters Survey (FUS) fire flow calculations for the proposed development and would like you to confirm some building construction details for each building (A, B, C, and D).

- Will the building structure be non-combustible (unprotected concrete/steel), or fire-resistive? Non-combustible
- If fire resistive, what will it be rated to? (ie 2 hours)
- Will the building be sprinklered? Bldgs A, B & C will be sprinklered.
- Building use/occupancy Bldg A Grocery, Bldg B Retail, Bldg C Retail & QSR, Bldg D Bank

Thank you,

Miroslav Savic, P.Eng., Senior Project Manager | Land Development Engineering

#### **NOVATECH**

Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 265

The information contained in this email message is confidential and is for exclusive use of the addressee.

| Grocery Store (Building A):                                                  |                              |
|------------------------------------------------------------------------------|------------------------------|
| Daily Volume per 9.25 m <sup>2</sup> of floor space, excluding delicatessen, |                              |
| bakery, and meet department                                                  | 40 L/day                     |
| Daily Volume per 9.25 m <sup>2</sup> of delicatessen floor space             | . ,<br>190 L/day             |
| Daily Volume per 9.25 m <sup>2</sup> of bakery floor space                   | 190 L/day                    |
| Daily Volume per 9.25 m <sup>2</sup> of meet department floor space          | 380 L/day                    |
| Daily Volume per Water Closet, and                                           | 950 L/day                    |
| Discount Store (Building B):                                                 |                              |
| Daily Volume per 1.0 m <sup>2</sup> of floor space                           | 5 L/day                      |
| Retail Store (Building C):                                                   |                              |
| Daily Volume per 1.0 m <sup>2</sup> of floor space                           | 5 L/day                      |
| Quick Service Restaurants (Builidng C):                                      |                              |
| Daily Volume per seat                                                        | 125 L/day                    |
| <u>Dental Office (Building C):</u>                                           |                              |
| Per wet service chair                                                        | 275 L/day                    |
| Bank (Building D):                                                           |                              |
| Daily Volume per 9.3 m <sup>2</sup> of floor space                           | 75 L/day                     |
| Grocery store floor area excluding delicatessen, bakery, and meet            |                              |
| department                                                                   | 2,745 m <sup>2</sup>         |
| Delicatessen floor area                                                      | 90 m <sup>2</sup>            |
| Bakery floor area                                                            | 133 m <sup>2</sup>           |
| Meet department floor area                                                   | 70 m <sup>2</sup>            |
| Number of grocery store water closets                                        | 5                            |
| Discount Store floor area                                                    | 892 m²                       |
| Retail Store floor area                                                      | 297 m <sup>2</sup>           |
| Quick Service Restaurants number of seats                                    | 70                           |
| Dental Office number of chairs                                               | 6                            |
| Bank floor area                                                              | 464 m <sup>2</sup>           |
| Total Daily Domand                                                           |                              |
| Total Daily Demand                                                           | 44,163 L/day                 |
| Average Day Demand                                                           | 44,163 L/day <b>0.51 L/s</b> |
|                                                                              | •                            |

| Daily Demands Per OBC Table 8.2.1.3. B                                       |                      |
|------------------------------------------------------------------------------|----------------------|
| Grocery Store (Building A):                                                  |                      |
| Daily Volume per 9.25 m <sup>2</sup> of floor space, excluding delicatessen, |                      |
| bakery, and meet department                                                  | 40 L/day             |
| Daily Volume per 9.25 m <sup>2</sup> of delicatessen floor space             | 190 L/day            |
| Daily Volume per 9.25 m <sup>2</sup> of bakery floor space                   | 190 L/day            |
| Daily Volume per 9.25 m <sup>2</sup> of meet department floor space          | 380 L/day            |
| Daily Volume per Water Closet, and                                           | 950 L/day            |
| Discount Store (Building B):                                                 |                      |
| Daily Volume per 1.0 m <sup>2</sup> of floor space                           | 5 L/day              |
| Grocery store floor area excluding delicatessen, bakery, and meet            |                      |
| department                                                                   | 2,745 m <sup>2</sup> |
| Delicatessen floor area                                                      | 90 m <sup>2</sup>    |
| Bakery floor area                                                            | 133 m <sup>2</sup>   |
| Meet department floor area                                                   | 70 m <sup>2</sup>    |
| Number of grocery store water closets                                        | 5                    |
| Discount Store floor area                                                    | 892 m <sup>2</sup>   |
| Total Daily Demand                                                           | 28,536 L/day         |
| Average Day Demand                                                           | 0.33 L/s             |
| Maximum Day Demand (1.5 x avg. day)                                          | 0.50 L/s             |
| Peak Hour Demand (1.8 x max. day)                                            | 0.89 L/s             |
|                                                                              |                      |

| /day<br><b>/s</b> |
|-------------------|
| /day              |
|                   |
|                   |
|                   |
| 1 <sup>2</sup>    |
| /day              |
|                   |
| /day              |
|                   |
| /day              |
|                   |
| ,                 |

# Daily Demands Per OBC Table 8.2.1.3. B

| Bank (Building D): |
|--------------------|
|--------------------|

| Daily Volume per 9.3 m <sup>2</sup> | of floor space | 75 L/day |
|-------------------------------------|----------------|----------|
|-------------------------------------|----------------|----------|

Bank floor area 464 m<sup>2</sup>

Total Daily Demand 3,742 L/day

| Average Day Demand                  | 0.04 L/s |
|-------------------------------------|----------|
| Maximum Day Demand (1.5 x avg. day) | 0.06 L/s |
| Peak Hour Demand (1.8 x max. day)   | 0.12 L/s |



Novatech Project #: 124107

Project Name: 150 Dun Skipper

Date: 11/17/2024

Input By: MS
Reviewed By:
Drawing Reference:

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Formula Method

Building Description: Building 1 (6-Storey Appartment Building)

|      |                 |                                                |                |                |            | Total Fire |
|------|-----------------|------------------------------------------------|----------------|----------------|------------|------------|
| Step |                 |                                                | Choose         |                | Value Used | Flow       |
|      |                 | Dana Fina I                                    | · · · · ·      |                |            | (L/min)    |
|      |                 | Base Fire F                                    | low            |                |            |            |
|      | Construction Ma |                                                | ı              | Multi          | iplier     |            |
|      | Coefficient     | Type V - Wood frame                            |                | 1.5            |            |            |
| 1    | related to type | Type IV - Mass Timber                          |                | Varies         |            |            |
|      | of construction | Type III - Ordinary construction               |                | 1              | 0.8        |            |
|      | С               | Type II - Non-combustible construction         | Yes            | 0.8            |            |            |
|      |                 | Type I - Fire resistive construction (2 hrs)   |                | 0.6            |            |            |
|      | Floor Area      |                                                |                |                |            |            |
|      |                 | Building Footprint (m <sup>2</sup> )           | 1996           |                |            |            |
|      | Α               | Number of Floors/Storeys                       | 6              |                |            |            |
| 2    | A               | Protected Openings (1 hr) if C<1.0             |                |                |            |            |
|      |                 | Area of structure considered (m <sup>2</sup> ) |                |                | 7,984      |            |
|      | F               | Base fire flow without reductions              |                |                |            | 46.000     |
|      | F               | $F = 220 \text{ C (A)}^{0.5}$                  |                |                |            | 16,000     |
|      |                 | Reductions or Su                               | ırcharges      |                | •          |            |
|      | Occupancy haza  | rd reduction or surcharge                      | FUS Table 3    | Reduction      | /Surcharge |            |
|      | (1)             | Non-combustible                                |                | -25%           |            |            |
| •    |                 | Limited combustible                            | Yes            | -15%           |            |            |
| 3    |                 | Combustible                                    |                | 0%             | -15%       | 13,600     |
|      |                 | Free burning                                   |                | 15%            |            |            |
|      |                 | Rapid burning                                  |                | 25%            |            |            |
|      | Sprinkler Reduc | tion                                           | FUS Table 4    | Redu           | ction      |            |
|      |                 | Adequately Designed System (NFPA 13)           | Yes            | -30%           | -30%       |            |
|      |                 | Standard Water Supply                          | Yes            | -10%           | -10%       | -5,440     |
| 4    | (0)             | Fully Supervised System                        | No             | -10%           |            |            |
|      | (2)             |                                                | Cumulat        | ive Sub-Total  | -40%       |            |
|      |                 | Area of Sprinklered Coverage (m²)              | 11976          | 100%           |            |            |
|      |                 |                                                | Cun            | nulative Total | -40%       |            |
|      | Exposure Surch  | arge                                           | FUS Table 5    |                | Surcharge  |            |
|      |                 | North Side                                     | 20.1 - 30 m    |                | 10%        |            |
| _    | (3)             | East Side                                      | >30m           |                | 0%         | 2,720      |
| 5    |                 | South Side                                     | >30m           |                | 0%         |            |
|      |                 | West Side                                      | 20.1 - 30 m    |                | 10%        |            |
|      |                 |                                                |                | nulative Total | 20%        |            |
|      | •               | Results                                        | <b>.</b>       |                |            |            |
|      |                 | Total Required Fire Flow, rounded to nea       | rest 1000L/min |                | L/min      | 11,000     |
| 6    | (1) + (2) + (3) | (2,000 L/min < Fire Flow < 45,000 L/min)       |                | or             | L/s        | 183        |
|      |                 | (2,000 L/IIIII) < FIIE FIOW < 45,000 L/IIIII)  |                | or             | USGPM      | 2,906      |



Novatech Project #: 124107

Project Name: 150 Dun Skipper

Date: 11/17/2024

Input By: MS Reviewed By:

Drawing Reference:

Legend: Input by User

No Input Required

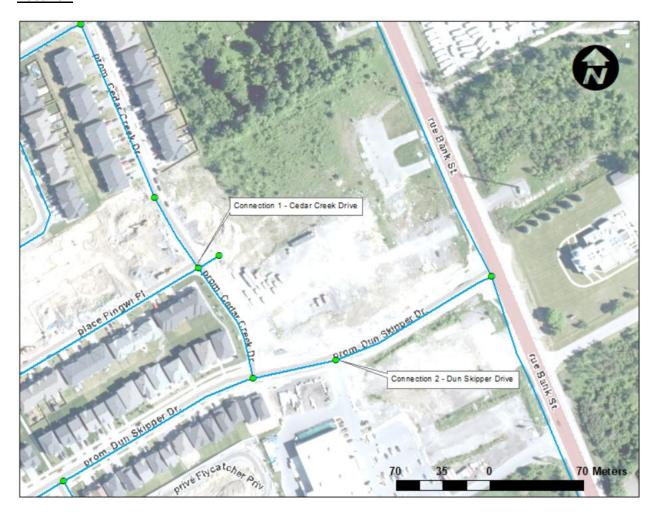
Reference: Fire Underwriter's Survey Guideline (2020)

Formula Method

**Building Description:** Building 2 (6-Storey Appartment Building)

|                                                              |                                 |                                                |             |                |            | Total Fire |
|--------------------------------------------------------------|---------------------------------|------------------------------------------------|-------------|----------------|------------|------------|
| Step                                                         |                                 |                                                | Choose      |                | Value Used | Flow       |
|                                                              |                                 |                                                |             |                |            | (L/min)    |
|                                                              |                                 | Base Fire F                                    | low         |                |            |            |
|                                                              | Construction Ma                 | terial                                         |             | Multi          | iplier     |            |
|                                                              | 0 (() - 1 1                     | Type V - Wood frame                            |             | 1.5            |            |            |
| 1                                                            | Coefficient related to type     | Type IV - Mass Timber                          |             | Varies         |            |            |
| 1                                                            | of construction                 | Type III - Ordinary construction               |             | 1              | 0.8        |            |
|                                                              | C                               | Type II - Non-combustible construction         | Yes         | 0.8            |            |            |
|                                                              | Ğ                               | Type I - Fire resistive construction (2 hrs)   |             | 0.6            |            |            |
|                                                              | Floor Area                      |                                                |             |                |            |            |
|                                                              |                                 | Building Footprint (m <sup>2</sup> )           | 1580        |                |            |            |
|                                                              | A                               | Number of Floors/Storeys                       | 6           |                |            |            |
| 2                                                            | A                               | Protected Openings (1 hr) if C<1.0             |             |                |            |            |
|                                                              |                                 | Area of structure considered (m <sup>2</sup> ) |             |                | 6,320      |            |
|                                                              | F                               | Base fire flow without reductions              |             |                |            | 44.000     |
|                                                              | Г                               | $F = 220 \text{ C (A)}^{0.5}$                  |             |                |            | 14,000     |
|                                                              |                                 | Reductions or Su                               | ırcharges   |                |            |            |
|                                                              | Occupancy haza                  | rd reduction or surcharge                      | FUS Table 3 | Reduction      | /Surcharge |            |
|                                                              | (1)                             | Non-combustible                                |             | -25%           |            |            |
| •                                                            |                                 | Limited combustible                            | Yes         | -15%           |            |            |
| 3                                                            |                                 | Combustible                                    |             | 0%             | -15%       | 11,900     |
|                                                              |                                 | Free burning                                   |             | 15%            |            |            |
|                                                              |                                 | Rapid burning                                  |             | 25%            |            |            |
|                                                              | Sprinkler Reduction FUS Table 4 |                                                | Reduction   |                |            |            |
|                                                              |                                 | Adequately Designed System (NFPA 13)           | Yes         | -30%           | -30%       | -4,760     |
|                                                              |                                 | Standard Water Supply                          | Yes         | -10%           | -10%       |            |
| 4                                                            |                                 | Fully Supervised System                        | No          | -10%           |            |            |
|                                                              | (2)                             |                                                | Cumulat     | ive Sub-Total  | -40%       |            |
|                                                              |                                 | Area of Sprinklered Coverage (m²)              | 9480        | 100%           |            |            |
|                                                              |                                 |                                                | Cun         | nulative Total | -40%       |            |
|                                                              | Exposure Surch                  | arge                                           | FUS Table 5 |                | Surcharge  |            |
|                                                              |                                 | North Side                                     | 10.1 - 20 m |                | 15%        |            |
| 5                                                            |                                 | East Side                                      | 10.1 - 20 m |                | 15%        |            |
| J                                                            | (3)                             | South Side                                     | 20.1 - 30 m |                | 10%        | 4,760      |
|                                                              |                                 | West Side                                      | >30m        |                | 0%         |            |
|                                                              |                                 |                                                | Cun         | nulative Total | 40%        |            |
|                                                              |                                 | Results                                        |             |                |            |            |
| Total Required Fire Flow, rounded to nearest 1000L/min L/min |                                 |                                                |             |                | 12,000     |            |
| 6                                                            | (1) + (2) + (3)                 | •                                              |             | or             | L/s        | 200        |
| Ü                                                            |                                 | (2,000 L/min < Fire Flow < 45,000 L/min)       |             | or             | USGPM      | 3,170      |

# 150 DUN SKIPPER DRIVE RESIDENTIAL DEVELOPMENT WATER DEMAND


| BUILDING 1 NUMBER OF UNITS                           |             |
|------------------------------------------------------|-------------|
| 1 BED                                                | 79          |
| Persons per 1 BED Unit                               | 1.4         |
| 2 BED                                                | 52          |
| Persons per 2 BED Unit                               | 2.7         |
|                                                      |             |
| BUILDING 2 NUMBER OF UNITS                           |             |
| 1 BED                                                | 66          |
| Persons per 1 BED Unit                               | 1.4         |
| 2 BED                                                | 40          |
| Persons per 2 BED Unit                               | 2.7         |
| reisons per 2 525 onic                               | 2.,         |
| Total Population                                     | 451         |
| Average Day Demand                                   | 280 L/c/day |
| Average Day Demand                                   | 126 m³/day  |
| Average Day Demand                                   | 1.46 L/s    |
| Maximum Day Demand (3.0 x Avg Day per MOE Table 3-3) | 4.39 L/s    |
| Peak Hour Demand (4.5 x Avg Day per MOE Table 3-3)   | 6.58 L/s    |
| , , , , , , , , , , , , , , , , , , , ,              | - , -       |

# Boundary Conditions Updated – 150 Dun Skipper Drive

## **Provided Information**

| Scenario             | Demand |        |  |  |  |
|----------------------|--------|--------|--|--|--|
| Scenario             | L/min  | L/s    |  |  |  |
| Average Daily Demand | 117    | 1.95   |  |  |  |
| Maximum Daily Demand | 305    | 5.09   |  |  |  |
| Peak Hour            | 472    | 7.87   |  |  |  |
| Fire Flow Demand #1  | 12,000 | 200.00 |  |  |  |

## **Location**



#### Results

### Scenario 1 – Twin connection off Cedar Creek Drive stub

### **Existing Condition (Pre- SUC Pressure Zone Reconfiguration)**

#### Connection 1 - Cedar Creek Drive

| Demand Scenario          | Head (m) | Pressure <sup>1</sup> (psi) |  |  |
|--------------------------|----------|-----------------------------|--|--|
| Maximum HGL              | 154.6    | 77.4                        |  |  |
| Peak Hour                | 142.1    | 59.6                        |  |  |
| Max Day plus Fire Flow 1 | 122.3    | 31.6                        |  |  |

<sup>&</sup>lt;sup>1</sup> Ground Elevation = 100.1 m

### **Future Condition (Post- SUC Pressure Zone Reconfiguration)**

#### Connection 1 - Cedar Creek Drive

| Demand Scenario          | Head (m) | Pressure <sup>1</sup> (psi) |
|--------------------------|----------|-----------------------------|
| Maximum HGL              | 147.3    | 67.0                        |
| Peak Hour                | 144.7    | 63.3                        |
| Max Day plus Fire Flow 1 | 138.3    | 54.2                        |

<sup>&</sup>lt;sup>1</sup> Ground Elevation = 100.1 m

## Scenario 2 – Two connections (Cedar Creek Drive stub & Dun Skipper Drive)

### **Existing Condition (Pre- SUC Pressure Zone Reconfiguration)**

#### Connection 1 - Cedar Creek Drive

| Demand Scenario          | Head (m) | Pressure <sup>1</sup> (psi) |  |  |
|--------------------------|----------|-----------------------------|--|--|
| Maximum HGL              | 154.6    | 77.4                        |  |  |
| Peak Hour                | 142.1    | 59.6                        |  |  |
| Max Day plus Fire Flow 1 | 122.4    | 31.6                        |  |  |
|                          |          |                             |  |  |

<sup>&</sup>lt;sup>1</sup> Ground Elevation = 100.1 m

#### Connection 2 – Dun Skipper Drive

| Demand Scenario          | Head (m) | Pressure <sup>1</sup> (psi) |
|--------------------------|----------|-----------------------------|
| Maximum HGL              | 154.6    | 77.5                        |
| Peak Hour                | 142.1    | 59.7                        |
| Max Day plus Fire Flow 1 | 123.6    | 33.4                        |

<sup>&</sup>lt;sup>1</sup> Ground Elevation = 100.1 m

#### **Future Condition (Post-SUC Pressure Zone Reconfiguration)**

#### Connection 1 - Cedar Creek Drive

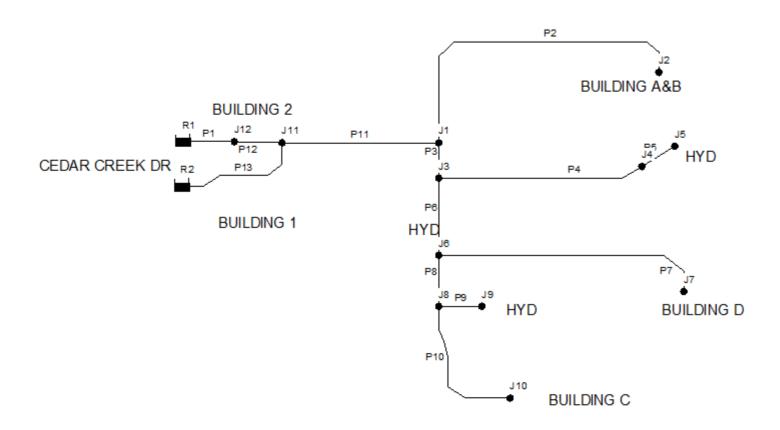
| Demand Scenario          | Head (m) | Pressure <sup>1</sup> (psi) |
|--------------------------|----------|-----------------------------|
| Maximum HGL              | 147.3    | 67.0                        |
| Peak Hour                | 144.7    | 63.3                        |
| Max Day plus Fire Flow 1 | 138.3    | 54.2                        |

<sup>&</sup>lt;sup>1</sup> Ground Elevation = 100.1 m

#### Connection 2 – Dun Skipper Drive

| Demand Scenario          | Head (m) | Pressure <sup>1</sup> (psi) |
|--------------------------|----------|-----------------------------|
| Maximum HGL              | 147.3    | 67.1                        |
| Peak Hour                | 144.6    | 63.2                        |
| Max Day plus Fire Flow 1 | 139.3    | 55.8                        |

<sup>&</sup>lt;sup>1</sup> Ground Elevation = 100.1 m


#### Notes

- 1. Demands for proposed Connection 1 at existing water main stub off Cedar Creek Drive were assigned to upstream junction at Cedar Creek Drive & Pingwi Place off the public looped watermains. The engineer must calculate headloss off the dead-end main.
- 2. Any connection to a watermain 400 mm or larger should be approved by DWS as per the Water Design Guidelines Section 2.4 Review by Drinking Water Services.

#### **Disclaimer**

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

# 150 DUN SKIPPER DRIVE



EPANET 2 Page 1

#### 150 DUN SKIPPER - COMMERCIAL DEVELOPMENT WATERMAIN MODELING RESULTS - CURRENT PRESSURE ZONE

Maximum Day + Fire Flow Demand

| Maximum Day 11 lie 110W Demand |           |        |        |          |       |      |  |
|--------------------------------|-----------|--------|--------|----------|-------|------|--|
| Network Table - Nodes          |           |        |        |          |       |      |  |
|                                | Elevation | Demand | Head   | Pressure |       |      |  |
| Node ID                        | m         | LPS    | m      | m        | kPa   | psi  |  |
| Junc J2                        | 97.48     | 0.5    | 117.66 | 20.18    | 198.0 | 28.7 |  |
| Junc J4                        | 98.3      | 0      | 115.56 | 17.26    | 169.3 | 24.6 |  |
| Junc J5                        | 98.55     | 95     | 113.78 | 15.23    | 149.4 | 21.7 |  |
| Junc J6                        | 99.06     | 0      | 116.43 | 17.37    | 170.4 | 24.7 |  |
| Junc J7                        | 99.85     | 0.06   | 116.43 | 16.58    | 162.6 | 23.6 |  |
| Junc J8                        | 99.38     | 0      | 116.19 | 16.81    | 164.9 | 23.9 |  |
| Junc J9                        | 99.4      | 95     | 113.55 | 14.15    | 138.8 | 20.1 |  |
| Junc J10                       | 100.15    | 0.21   | 116.19 | 16.04    | 157.4 | 22.8 |  |
| Junc J1                        | 98.35     | 0      | 117.66 | 19.31    | 189.4 | 27.5 |  |
| Junc J3                        | 98.56     | 0      | 117.15 | 18.59    | 182.4 | 26.5 |  |
| Junc J11                       | 100.75    | 3.8    | 121.73 | 20.98    | 205.8 | 29.9 |  |
| Junc J12                       | 100.85    | 4.93   | 121.83 | 20.98    | 205.8 | 29.9 |  |
| Resvr R1                       | 122.3     | -105.4 | 122.3  | 0        | 0.0   | 0.0  |  |
| Resvr R2                       | 122.3     | -94.1  | 122.3  | 0        | 0.0   | 0.0  |  |

#### Maximum Day + Fire Flow Demand

Network Table - Links

|          | Length | Diameter | Roughness | Flow   | Velocity | Unit Headloss |  |
|----------|--------|----------|-----------|--------|----------|---------------|--|
| Link ID  | m      | mm       |           | LPS    | m/s      | m/km          |  |
| Pipe P5  | 6.4    | 150      | 100       | 95     | 5.4      | 278.0         |  |
| Pipe P7  | 89.2   | 50       | 100       | 0.06   | 0.0      | 0.1           |  |
| Pipe P8  | 12.2   | 250      | 110       | 95.21  | 1.9      | 19.4          |  |
| Pipe P9  | 9.5    | 150      | 100       | 95     | 5.4      | 278.0         |  |
| Pipe P10 | 40.8   | 150      | 100       | 0.21   | 0.0      | 0.0           |  |
| Pipe P2  | 157.1  | 200      | 110       | 0.5    | 0.0      | 0.0           |  |
| Pipe P3  | 7.3    | 250      | 110       | 190.27 | 3.9      | 70.1          |  |
| Pipe P4  | 81.8   | 250      | 110       | 95     | 1.9      | 19.4          |  |
| Pipe P6  | 36.7   | 250      | 110       | 95.27  | 1.9      | 19.5          |  |
| Pipe P11 | 57.8   | 250      | 110       | 190.77 | 3.9      | 70.4          |  |
| Pipe P1  | 19.9   | 250      | 110       | 105.4  | 2.2      | 23.5          |  |
| Pipe P12 | 5      | 250      | 110       | 100.47 | 2.1      | 21.5          |  |
| Pipe P13 | 30.2   | 250      | 110       | 94.1   | 1.9      | 19.0          |  |
|          |        |          |           |        |          |               |  |

#### Peak Hour Demand

Network Table - Nodes

|          | Elevation | Demand | Head |      | Pressure |       |        |
|----------|-----------|--------|------|------|----------|-------|--------|
| Node ID  | m         | LPS    | m    |      | m        | kPa   | psi    |
| Junc J2  | 97.48     | 0.89   | 1    | 42.1 | 44.62    | 437.7 | 7 63.5 |
| Junc J4  | 98.3      | 0      | 1    | 42.1 | 43.8     | 429.7 | 7 62.3 |
| Junc J5  | 98.55     | 0      | 1    | 42.1 | 43.55    | 427.2 | 2 62.0 |
| Junc J6  | 99.06     | 0      | 1    | 42.1 | 43.04    | 422.2 | 2 61.2 |
| Junc J7  | 99.85     | 0.12   | 14   | 2.07 | 42.22    | 414.2 | 2 60.1 |
| Junc J8  | 99.38     | 0      | 1    | 42.1 | 42.72    | 419.1 | 1 60.8 |
| Junc J9  | 99.4      | 0      | 1    | 42.1 | 42.7     | 418.9 | 60.8   |
| Junc J10 | 100.15    | 0.37   | 1    | 42.1 | 41.95    | 411.5 | 5 59.7 |
| Junc J1  | 98.35     | 0      | 1    | 42.1 | 43.75    | 429.2 | 2 62.2 |
| Junc J3  | 98.56     | 0      | 1    | 42.1 | 43.54    | 427.1 | 1 61.9 |
| Junc J11 | 100.75    | 3.8    | 1    | 42.1 | 41.35    | 405.6 | 58.8   |
| Junc J12 | 100.85    | 6.58   | 1    | 42.1 | 41.25    | 404.7 | 58.7   |
| Resvr R1 | 142.1     | -6.54  | 1    | 42.1 | 0        | 0.0   | 0.0    |
| Resvr R2 | 142.1     | -5.22  | 1    | 42.1 | 0        | 0.0   | 0.0    |

#### Peak Hour Demand

Network Table - Links

|          | Length | Diameter | Roughness | Flow  | Velocity | Unit Headloss |
|----------|--------|----------|-----------|-------|----------|---------------|
| Link ID  | m      | mm       |           | LPS   | m/s      | m/km          |
| Pipe P5  | 6.4    | 150      | 100       | 0     | 0.0      | 0.0           |
| Pipe P7  | 89.2   | 50       | 100       | 0.12  | 0.1      | 0.3           |
| Pipe P8  | 12.2   | 250      | 110       | 0.37  | 0.0      | 0.0           |
| Pipe P9  | 9.5    | 150      | 100       | 0     | 0.0      | 0.0           |
| Pipe P10 | 40.8   | 150      | 100       | 0.37  | 0.0      | 0.0           |
| Pipe P2  | 157.1  | 200      | 110       | 0.89  | 0.0      | 0.0           |
| Pipe P3  | 7.3    | 250      | 110       | 0.49  | 0.0      | 0.0           |
| Pipe P4  | 81.8   | 250      | 110       | 0     | 0.0      | 0.0           |
| Pipe P6  | 36.7   | 250      | 110       | 0.49  | 0.0      | 0.0           |
| Pipe P11 | 57.8   | 250      | 110       | 1.38  | 0.0      | 0.0           |
| Pipe P1  | 19.9   | 250      | 110       | 6.54  | 0.1      | 0.1           |
| Pipe P12 | 5      | 250      | 110       | -0.04 | 0.0      | 0.0           |
| Pipe P13 | 30.2   | 250      | 110       | 5.22  | 0.1      | 0.1           |

#### 150 DUN SKIPPER - COMMERCIAL DEVELOPMENT WATERMAIN MODELING RESULTS - FUTURE PRESSURE ZONE (SUC)

Maximum Day + Fire Flow Demand

| Maximum Day 11 life 1 low Demand |            |        |        |          |       |      |  |  |  |  |  |  |  |
|----------------------------------|------------|--------|--------|----------|-------|------|--|--|--|--|--|--|--|
| Network Tab                      | le - Nodes |        |        |          |       |      |  |  |  |  |  |  |  |
|                                  | Elevation  | Demand | Head   | Pressure |       |      |  |  |  |  |  |  |  |
| Node ID                          | m          | LPS    | m      | m        | kPa   | psi  |  |  |  |  |  |  |  |
| Junc J2                          | 97.48      | 0.5    | 133.66 | 36.18    | 354.9 | 51.5 |  |  |  |  |  |  |  |
| Junc J4                          | 98.3       | 0      | 131.56 | 33.26    | 326.3 | 47.3 |  |  |  |  |  |  |  |
| Junc J5                          | 98.55      | 95     | 129.78 | 31.23    | 306.4 | 44.4 |  |  |  |  |  |  |  |
| Junc J6                          | 99.06      | 0      | 132.43 | 33.37    | 327.4 | 47.5 |  |  |  |  |  |  |  |
| Junc J7                          | 99.85      | 0.06   | 132.43 | 32.58    | 319.6 | 46.4 |  |  |  |  |  |  |  |
| Junc J8                          | 99.38      | 0      | 132.19 | 32.81    | 321.9 | 46.7 |  |  |  |  |  |  |  |
| Junc J9                          | 99.4       | 95     | 129.55 | 30.15    | 295.8 | 42.9 |  |  |  |  |  |  |  |
| Junc J10                         | 100.15     | 0.21   | 132.19 | 32.04    | 314.3 | 45.6 |  |  |  |  |  |  |  |
| Junc J1                          | 98.35      | 0      | 133.66 | 35.31    | 346.4 | 50.2 |  |  |  |  |  |  |  |
| Junc J3                          | 98.56      | 0      | 133.15 | 34.59    | 339.3 | 49.2 |  |  |  |  |  |  |  |
| Junc J11                         | 100.75     | 3.8    | 137.73 | 36.98    | 362.8 | 52.6 |  |  |  |  |  |  |  |
| Junc J12                         | 100.85     | 4.93   | 137.83 | 36.98    | 362.8 | 52.6 |  |  |  |  |  |  |  |
| Resvr R1                         | 138.3      | -105.4 | 138.3  | 0        | 0.0   | 0.0  |  |  |  |  |  |  |  |
| Resvr R2                         | 138.3      | -94.1  | 138.3  | 0        | 0.0   | 0.0  |  |  |  |  |  |  |  |

#### Maximum Day + Fire Flow Demand

Network Table - Links

| TTOTTION TODA | C =:::::C |          |           |        |          |               |
|---------------|-----------|----------|-----------|--------|----------|---------------|
|               | Length    | Diameter | Roughness | Flow   | Velocity | Unit Headloss |
| Link ID       | m         | mm       |           | LPS    | m/s      | m/km          |
| Pipe P5       | 6.4       | 150      | 100       | 95     | 5.4      | 278.0         |
| Pipe P7       | 89.2      | 50       | 100       | 0.06   | 0.0      | 0.1           |
| Pipe P8       | 12.2      | 250      | 110       | 95.21  | 1.9      | 19.4          |
| Pipe P9       | 9.5       | 150      | 100       | 95     | 5.4      | 278.0         |
| Pipe P10      | 40.8      | 150      | 100       | 0.21   | 0.0      | 0.0           |
| Pipe P2       | 157.1     | 200      | 110       | 0.5    | 0.0      | 0.0           |
| Pipe P3       | 7.3       | 250      | 110       | 190.27 | 3.9      | 70.1          |
| Pipe P4       | 81.8      | 250      | 110       | 95     | 1.9      | 19.4          |
| Pipe P6       | 36.7      | 250      | 110       | 95.27  | 1.9      | 19.5          |
| Pipe P11      | 57.8      | 250      | 110       | 190.77 | 3.9      | 70.4          |
| Pipe P1       | 19.9      | 250      | 110       | 105.4  | 2.2      | 23.5          |
| Pipe P12      | 5         | 250      | 110       | 100.47 | 2.1      | 21.5          |
| Pipe P13      | 30.2      | 250      | 110       | 94.1   | 1.9      | 19.0          |

#### Peak Hour Demand

Network Table - Nodes

|          | Elevation | Demand | Head |       | Pressure |      |        |
|----------|-----------|--------|------|-------|----------|------|--------|
| Node ID  | m         | LPS    | m    |       | m        | kPa  | psi    |
| Junc J2  | 97.48     | 0.89   |      | 144.7 | 47.22    | 463. | 2 67.2 |
| Junc J4  | 98.3      | 0      |      | 144.7 | 46.4     | 455. | 2 66.0 |
| Junc J5  | 98.55     | 0      |      | 144.7 | 46.15    | 452. | 7 65.7 |
| Junc J6  | 99.06     | 0      |      | 144.7 | 45.64    | 447. | 7 64.9 |
| Junc J7  | 99.85     | 0.12   | 1    | 44.67 | 44.82    | 439. | 7 63.8 |
| Junc J8  | 99.38     | 0      |      | 144.7 | 45.32    | 444. | 6 64.5 |
| Junc J9  | 99.4      | 0      |      | 144.7 | 45.3     | 444. | 4 64.5 |
| Junc J10 | 100.15    | 0.37   |      | 144.7 | 44.55    | 437. | 0 63.4 |
| Junc J1  | 98.35     | 0      |      | 144.7 | 46.35    | 454. | 7 65.9 |
| Junc J3  | 98.56     | 0      |      | 144.7 | 46.14    | 452. | 6 65.6 |
| Junc J11 | 100.75    | 3.8    |      | 144.7 | 43.95    | 431. | 1 62.5 |
| Junc J12 | 100.85    | 6.58   |      | 144.7 | 43.85    | 430. | 2 62.4 |
| Resvr R1 | 144.7     | -6.54  |      | 144.7 | 0        | 0.   | 0.0    |
| Resvr R2 | 144.7     | -5.22  |      | 144.7 | 0        | 0.   | 0.0    |

#### Peak Hour Demand

Network Table - Links

|          | Length | Diameter | Roughness | Flow  | Velocity | Unit Headloss |
|----------|--------|----------|-----------|-------|----------|---------------|
| Link ID  | m      | mm       |           | LPS   | m/s      | m/km          |
| Pipe P5  | 6.4    | 150      | 100       | 0     | 0.0      | 0.0           |
| Pipe P7  | 89.2   | 50       | 100       | 0.12  | 0.1      | 0.3           |
| Pipe P8  | 12.2   | 250      | 110       | 0.37  | 0.0      | 0.0           |
| Pipe P9  | 9.5    | 150      | 100       | 0     | 0.0      | 0.0           |
| Pipe P10 | 40.8   | 150      | 100       | 0.37  | 0.0      | 0.0           |
| Pipe P2  | 157.1  | 200      | 110       | 0.89  | 0.0      | 0.0           |
| Pipe P3  | 7.3    | 250      | 110       | 0.49  | 0.0      | 0.0           |
| Pipe P4  | 81.8   | 250      | 110       | 0     | 0.0      | 0.0           |
| Pipe P6  | 36.7   | 250      | 110       | 0.49  | 0.0      | 0.0           |
| Pipe P11 | 57.8   | 250      | 110       | 1.38  | 0.0      | 0.0           |
| Pipe P1  | 19.9   | 250      | 110       | 6.54  | 0.1      | 0.1           |
| Pipe P12 | 5      | 250      | 110       | -0.04 | 0.0      | 0.0           |
| Pipe P13 | 30.2   | 250      | 110       | 5.22  | 0.1      | 0.1           |

#### 150 DUN SKIPPER - COMMERCIAL DEVELOPMENT WATERMAIN MODELING RESULTS - MAXIMUM PRESSURE CHECK

Average Day Demand - Current Pressure Zone

| Network |          | Nodes |
|---------|----------|-------|
| NELWOIK | i abie - | Noues |

| Network Table - Nodes |           |        |      |       |          |       |      |  |  |  |  |  |
|-----------------------|-----------|--------|------|-------|----------|-------|------|--|--|--|--|--|
|                       | Elevation | Demand | Head |       | Pressure |       |      |  |  |  |  |  |
| Node ID               | m         | LPS    | m    |       | m        | kPa   | psi  |  |  |  |  |  |
| Junc J2               | 97.48     | 0.33   |      | 154.6 | 57.12    | 560.3 | 81.3 |  |  |  |  |  |
| Junc J4               | 98.3      | 0      |      | 154.6 | 56.3     | 552.3 | 80.1 |  |  |  |  |  |
| Junc J5               | 98.55     | 0      |      | 154.6 | 56.05    | 549.9 | 79.7 |  |  |  |  |  |
| Junc J6               | 99.06     | 0      |      | 154.6 | 55.54    | 544.8 | 79.0 |  |  |  |  |  |
| Junc J7               | 99.85     | 0.04   |      | 154.6 | 54.75    | 537.1 | 77.9 |  |  |  |  |  |
| Junc J8               | 99.38     | 0      |      | 154.6 | 55.22    | 541.7 | 78.6 |  |  |  |  |  |
| Junc J9               | 99.4      | 0      |      | 154.6 | 55.2     | 541.5 | 78.5 |  |  |  |  |  |
| Junc J10              | 100.15    | 0.14   |      | 154.6 | 54.45    | 534.2 | 77.5 |  |  |  |  |  |
| Junc J1               | 98.35     | 0      |      | 154.6 | 56.25    | 551.8 | 80.0 |  |  |  |  |  |
| Junc J3               | 98.56     | 0      |      | 154.6 | 56.04    | 549.8 | 79.7 |  |  |  |  |  |
| Junc J11              | 100.75    | 3.8    |      | 154.6 | 53.85    | 528.3 | 76.6 |  |  |  |  |  |
| Junc J12              | 100.85    | 1.46   |      | 154.6 | 53.75    | 527.3 | 76.5 |  |  |  |  |  |
| Resvr R1              | 154.6     | -3.15  |      | 154.6 | 0        | 0.0   | 0.0  |  |  |  |  |  |
| Resvr R2              | 154.6     | -2.62  |      | 154.6 | 0        | 0.0   | 0.0  |  |  |  |  |  |

# Average Day Demand - Future Pressure Zone (SUC) Network Table - Nodes

|          | Elevation | Demand | Head |       | Pressure |       |      |
|----------|-----------|--------|------|-------|----------|-------|------|
| Node ID  | m         | LPS    | m    |       | m        | kPa   | psi  |
| Junc J2  | 97.48     | 0.33   |      | 147.3 | 49.82    | 488.7 | 70.9 |
| Junc J4  | 98.3      | 0      |      | 147.3 | 49       | 480.7 | 69.7 |
| Junc J5  | 98.55     | 0      |      | 147.3 | 48.75    | 478.2 | 69.4 |
| Junc J6  | 99.06     | 0      |      | 147.3 | 48.24    | 473.2 | 68.6 |
| Junc J7  | 99.85     | 0.04   |      | 147.3 | 47.45    | 465.5 | 67.5 |
| Junc J8  | 99.38     | 0      |      | 147.3 | 47.92    | 470.1 | 68.2 |
| Junc J9  | 99.4      | 0      |      | 147.3 | 47.9     | 469.9 | 68.2 |
| Junc J10 | 100.15    | 0.14   |      | 147.3 | 47.15    | 462.5 | 67.1 |
| Junc J1  | 98.35     | 0      |      | 147.3 | 48.95    | 480.2 | 69.6 |
| Junc J3  | 98.56     | 0      |      | 147.3 | 48.74    | 478.1 | 69.3 |
| Junc J11 | 100.75    | 3.8    |      | 147.3 | 46.55    | 456.7 | 66.2 |
| Junc J12 | 100.85    | 1.46   |      | 147.3 | 46.45    | 455.7 | 66.1 |
| Resvr R1 | 147.3     | -3.15  |      | 147.3 | 0        | 0.0   | 0.0  |
| Resvr R2 | 147.3     | -2.62  |      | 147.3 | 0        | 0.0   | 0.0  |

| 450 Dun Skinner Drive - Brancoad Commencial Devalenment | Consistent and CM/M Danou |
|---------------------------------------------------------|---------------------------|
| 150 Dun Skipper Drive – Proposed Commercial Development | Servicing and SWM Repor   |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
| APPENDIX D                                              |                           |
| Sanitary Flow Calculation                               |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |
|                                                         |                           |

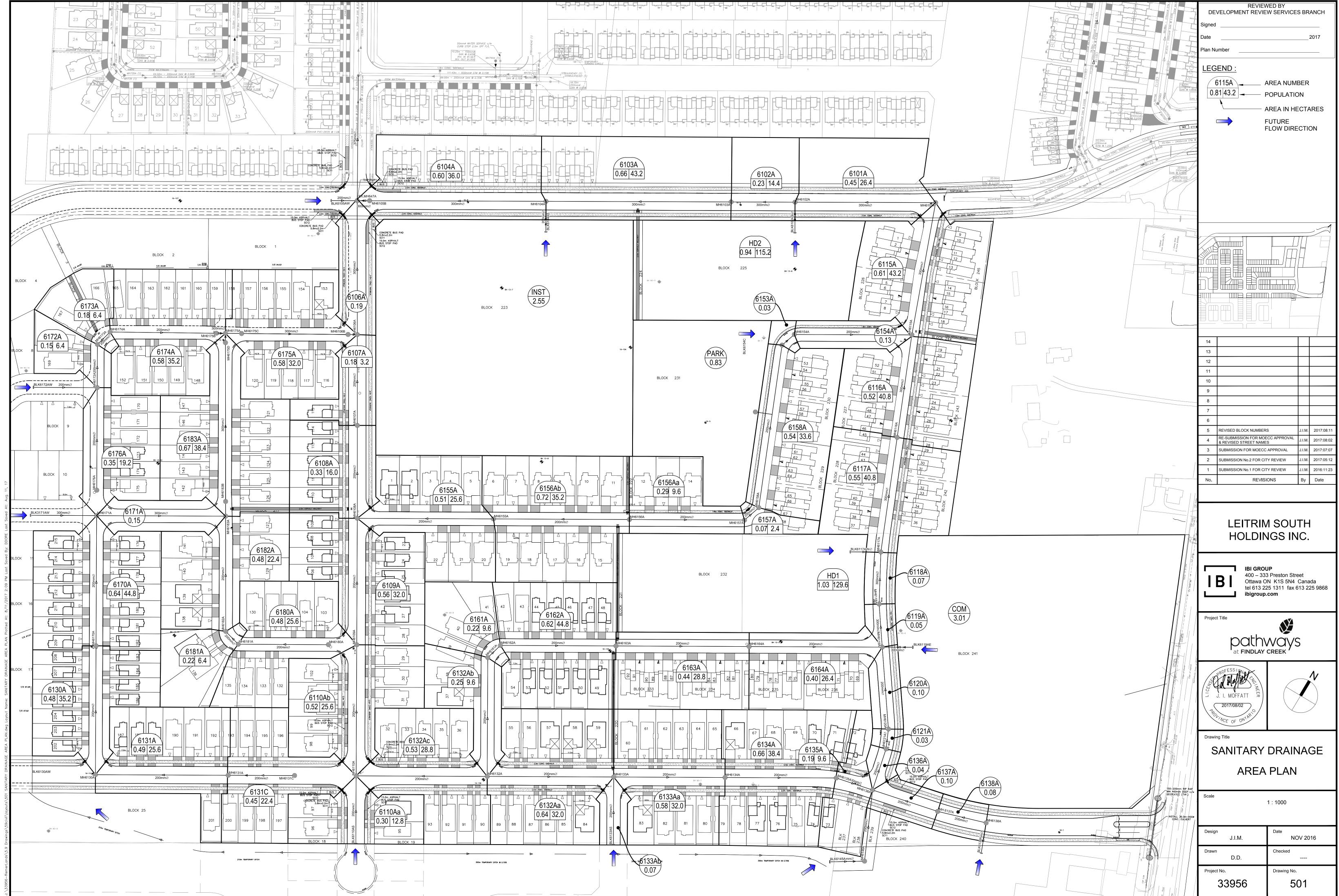
# **150 DUN SKIPPER DRIVE SANITARY FLOW**

| Daily Demands I et Obe l'able 0.2.1.3. D                                 |                      |
|--------------------------------------------------------------------------|----------------------|
| Grocery Store (Building A):                                              |                      |
| Daily Volume per each 9.25 m <sup>2</sup> of floor space, excluding      |                      |
| delicatessen, bakery, and meet department                                | 40 L/day             |
| Daily Volume per each 9.25 m <sup>2</sup> of delicatessen floor space    | 190 L/day            |
| Daily Volume per each 9.25 m <sup>2</sup> of bakery floor space          | 190 L/day            |
|                                                                          |                      |
| Daily Volume per each 9.25 m <sup>2</sup> of meet department floor space | 380 L/day            |
| Daily Volume per Water Closet, and                                       | 950 L/day            |
| Discount Store (Building B):                                             |                      |
| Daily Volume per each 1.0 m <sup>2</sup> of floor space                  | 5 L/day              |
| Retail Store (Building C):                                               |                      |
| Daily Volume per each 1.0 m <sup>2</sup> of floor space                  | 5 L/day              |
| Quick Service Restaurants (Builidng C):                                  |                      |
| Daily Volume per seat                                                    | 125 L/day            |
| Dental Office (Building C):                                              |                      |
| Per wet service chair                                                    | 275 L/day            |
| Bank (Building D):                                                       |                      |
| Daily Volume per each 9.3 m <sup>2</sup> of floor space                  | 75 L/day             |
|                                                                          |                      |
| Grocery store floor area excluding delicatessen, bakery, and meet        | 2 745 2              |
| department                                                               | 2,745 m <sup>2</sup> |
| Delicatessen floor area                                                  | 90 m <sup>2</sup>    |
| Bakery floor area                                                        | 133 m <sup>2</sup>   |
| Meet department floor area                                               | 70 m <sup>2</sup>    |
| Number of grocery store water closets                                    | 5                    |
| Discount Store floor area                                                | 892 m <sup>2</sup>   |
| Retail Store floor area                                                  | 297 m²               |
| Quick Service Restaurants number of seats                                | 70                   |
| Dental Office number of chairs                                           | 6                    |
| Bank floor area                                                          | 464 m <sup>2</sup>   |
| Tatal Daily Values                                                       | 44.462.1740          |
| Total Daily Volume Peaking Factor                                        | 44,163 L/day<br>1.5  |
| Peak Sanitary Flow                                                       | 0.77 L/s             |
| reak Salitaly Flow                                                       | 0.77 L/3             |
| Site Area                                                                | 1.93 ha              |
| Infiltration Allowance                                                   | 0.33 L/s/ha          |
| Peak Extraneous Flows                                                    | 0.64 L/s             |
|                                                                          |                      |
| Total Peak Sanitary Flow                                                 | 1.40 L/s             |

# 150 DUN SKIPPER DRIVE RESIDENTIAL SANITARY FLOW

| BUILDING 1 NUMBER OF UNITS   |               |
|------------------------------|---------------|
| 1 BED                        | 79            |
| Persons per 1 BED Unit       | 1.4           |
| 2 BED                        | 52            |
| Persons per 2 BED Unit       | 2.7           |
| BUILDING 2 NUMBER OF UNITS   |               |
| 1 BED                        | 66            |
| Persons per 1 BED Unit       | 1.4           |
| 2 BED                        | 40            |
| Persons per 2 BED Unit       | 2.7           |
| Total Population             | 451           |
| Average Daily Flow           | 280 L/c/day   |
| Average Daily Volume         | 126,392 L/day |
| Peak Factor (Harmon Formula) | 3.40          |
| Peak Sanitary Flow           | 4.97 L/s      |
| Site Area                    | 1.00 ha       |
| Infiltration Allowance       | 0.33 L/s/ha   |
| Peak Extraneous Flows        | 0.33 L/s      |
| Peak Sanitary Flow           | 5.30 L/s      |






IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Red text High level sanitary sewer

Remer Lands Phase 1 City of ottawa Leitrim South Holdings Inc. (Regional Group)

|                                        |                                                               |                    |                                                       | 1                                     |       | DECIDE     |                                       |                   | SIDENTIAL    |                  |              |                |               | 101 4 5 5 4 6          |                                       | INFILTRATION ALLOWANCE |              |                | ,               | TOTAL                     |                |                | PROPOSED SEWER DESIGN |            |              |                      |                |                  |
|----------------------------------------|---------------------------------------------------------------|--------------------|-------------------------------------------------------|---------------------------------------|-------|------------|---------------------------------------|-------------------|--------------|------------------|--------------|----------------|---------------|------------------------|---------------------------------------|------------------------|--------------|----------------|-----------------|---------------------------|----------------|----------------|-----------------------|------------|--------------|----------------------|----------------|------------------|
|                                        | LOCATION                                                      |                    |                                                       | AREA U                                |       |            | UNIT TYPES                            |                   | POPUL        | LATION           | PEAK         | PEAK           |               | ICI AREAS<br>AREA (Ha) | 5                                     | PEAK                   |              | A (Ha)         | FLOW            | FIXED FLOW (L/s)          | FLOW           | CAPACIT        | Y LENGTH              | DIA        | SLOPE        | VELOCITY             | AVAIL          | ABLE             |
| STREET                                 | AREA ID                                                       | FROM               | ТО                                                    | w/ Units                              | SF    | SD         | TH APT                                | AREA<br>w/o Units | IND          | CUM              | FACTOR       | FLOW           | INSTITUTIONAL | COMMERCIAL             | INDUSTRIAL                            | FLOW                   | IND          | CUM            | (L/s)           | IND CUM                   | (L/s)          | (L/s)          | (m)                   | (mm)       | (%)          | (full)               | CAPA           | CITY             |
| 2111=21                                |                                                               | MH                 | MH                                                    | (Ha)                                  | -     |            |                                       | (Ha)              |              |                  |              | (L/s)          | IND CUM       | IND CUM                | IND CUM                               | (L/s)                  |              | -              | ()              |                           | (=)            | ()             | ()                    | (,         | (/-/         | (m/s)                | L/s            | (%)              |
| Dun Skipper Road                       | 6132Aa                                                        | MH6132A            | MH6133A                                               | 0.64                                  | 10    |            |                                       |                   | 32.0         | 32.0             | 4.00         | 0.52           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.64         | 0.64           | 0.18            | 0.00                      | 0.70           | 43.28          | 82.00                 | 200        | 1.60         | 1.335                | 42.58          | 98.39%           |
|                                        |                                                               |                    |                                                       |                                       | DRAFT | 2016 UPDA  | TED SERVICEABILITY                    | REPORT            |              |                  |              |                |               |                        |                                       |                        |              |                |                 |                           |                |                |                       |            |              |                      |                |                  |
| Street No. 7                           | EXT2                                                          |                    | BLK6133AS                                             |                                       |       |            |                                       | 2.88              | 123.8        | 123.8            | 4.00         | 2.01           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 2.88         | 2.88           | 0.81            |                           |                |                |                       |            |              |                      |                |                  |
| Street No. 7                           | 6133Ab                                                        | BLK6133AS          | MH6133A                                               | 0.07                                  |       |            |                                       |                   | 0.0          | 123.8            | 4.00         | 2.01           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.07         | 2.95           | 0.83            | 0.00                      | 2.83           | 24.19          | 44.00                 | 200        | 0.50         | 0.746                | 21.36          | 88.29%           |
| Dun Skipper Road                       | 6133Aa                                                        | MH6133A            | MH6134A                                               | 0.58                                  | 10    |            |                                       |                   | 32.0         | 187.8            | 4.00         | 3.04           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.58         | 4.17           | 1.17            | 0.00                      | 4.21           | 37.48          | 72.14                 | 200        | 1.20         | 1.156                | 33.27          | 88.76%           |
| Dun Skipper Road  Dun Skipper Road     | 6134A<br>6135A                                                | MH6134A<br>MH6135A | MH6135A<br>MH6136A                                    | 0.66<br>0.19                          | 12    |            |                                       |                   | 38.4<br>9.6  | 226.2<br>235.8   | 4.00<br>4.00 | 3.67<br>3.82   | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.66<br>0.19 | 4.83<br>5.02   | 1.35<br>1.41    | 0.00                      | 5.02<br>5.23   | 28.63<br>28.63 | 72.09<br>24.81        | 200<br>200 | 0.70<br>0.70 | 0.883<br>0.883       | 23.61<br>23.40 | 82.47%<br>81.74% |
| Bull Oxipper Road                      | 010071                                                        | IVII 10 1007 C     | IVII 10 1007 C                                        | 0.10                                  | Ŭ     |            |                                       |                   | 5.0          | 200.0            | 4.00         | 0.02           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.10         | 0.02           | 1.41            | 0.00                      | 0.20           | 20.00          | 24.01                 | 200        | 0.70         | 0.000                | 20.40          | 01.7470          |
| Easement                               | EXT3                                                          | BLK6145A           | MH6146A                                               | 2.50                                  | DRAFT | 2016 UPDA  | TED SERVICEABILITY                    | REPORT            | 250.8        | 250.8            | 4.00         | 4.06           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 2.50         | 2.50           | 0.70            | 0.00                      | 4.76           | 21.64          | 22.70                 | 200        | 0.40         | 0.667                | 16.88          | 77.99%           |
| Easement                               |                                                               | MH6146A            | MH6136A                                               |                                       |       |            |                                       |                   | 0.0          | 250.8            | 4.00         | 4.06           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.00         | 2.50           | 0.70            | 0.00                      | 4.76           | 21.64          | 46.46                 | 200        | 0.40         | 0.667                | 16.88          | 77.99%           |
|                                        |                                                               |                    |                                                       |                                       | DRAFT | 2016 LIPDA | TED SERVICEABILITY                    | REPORT            |              |                  |              |                |               |                        |                                       |                        |              |                |                 |                           |                |                |                       |            |              |                      |                |                  |
|                                        | EXT4                                                          | BLK6138A           |                                                       |                                       | 5.0   | 2010 01 27 | TES CENTICE/ASIETT                    | 112. 011.         | 0.0          | 0.0              | 4.00         | 0.00           | 0.00          |                        | 0.00                                  | 3.53                   | 4.07         | 4.07           | 1.14            | 0.00                      | 4.67           | 20.24          | 20.00                 | 200        | 0.35         | 0.624                | 15.57          | 76.92%           |
| Dun Skipper Road Dun Skipper Road      | 6138A<br>6137A                                                | MH6138A<br>MH6137A | MH6137A<br>MH6136A                                    | 0.08                                  |       |            |                                       |                   | 0.0          | 0.0              | 4.00<br>4.00 | 0.00           | 0.00          | 4.07                   | 0.00                                  | 3.53                   | 0.08         | 4.15<br>4.25   | 1.16<br>1.19    | 0.00                      | 4.69<br>4.72   | 20.24          | 32.25<br>44.44        | 200        | 0.35<br>0.35 | 0.624<br>0.624       | 15.55<br>15.52 | 76.81%<br>76.67% |
| Duil Oxipper Road                      | 01374                                                         | WINDISTA           | WILLIAM                                               | 0.10                                  |       |            |                                       |                   | 0.0          | 0.0              | 4.00         | 0.00           | 0.00          | 4.07                   | 0.00                                  | 3.33                   | 0.10         | 4.23           | 1.13            | 0.00                      | 4.72           | 20.24          | 44.44                 | 200        | 0.55         | 0.024                | 10.02          | 70.0776          |
| Cedar Creek Drive<br>Cedar Creek Drive | 6136A<br>6121A                                                | MH6136A<br>MH6121A | MH6121A<br>MH6120A                                    | 0.04<br>0.03                          |       |            |                                       |                   | 0.0          | 486.6            | 3.98<br>3.98 | 7.85<br>7.85   | 0.00          | 4.07<br>4.07           | 0.00                                  | 3.53<br>3.53           | 0.04         | 11.81<br>11.84 | 3.31<br>3.32    | 0.00                      | 14.69          | 20.24<br>20.24 | 28.03<br>12.97        | 200<br>200 | 0.35         | 0.624<br>0.624       | 5.56<br>5.55   | 27.45%<br>27.41% |
| Cedar Creek Drive                      | 6120A                                                         | MH6120A            | MH6119A                                               | 0.03                                  |       |            |                                       |                   | 0.0          | 486.6<br>486.6   | 3.98         | 7.85           | 0.00          | 4.07                   | 0.00                                  | 3.53                   | 0.03         | 11.94          | 3.34            | 0.00                      | 14.69<br>14.72 | 20.24          | 53.29                 | 200        | 0.35<br>0.35 | 0.624                | 5.52           | 27.41%           |
| D: : DI                                | 040041                                                        | MUNICAGOA          | MII0404A                                              | 0.05                                  |       |            |                                       |                   |              | 0.0              | 4.00         | 0.40           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.05         | 0.05           | 0.07            | 0.00                      | 0.00           | 50.00          | 77.00                 | 000        | 0.70         | 4.704                | 50.00          | 00.000/          |
| Pingwi Place<br>Pingwi Place           | 6132Ab<br>6161A                                               | MH6132A<br>MH6161A | MH6161A<br>MH6162A                                    | 0.25<br>0.22                          | 3     |            |                                       |                   | 9.6<br>9.6   | 9.6<br>19.2      | 4.00<br>4.00 | 0.16<br>0.31   | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.25<br>0.22 | 0.25<br>0.47   | 0.07            | 0.00                      | 0.23           | 56.22<br>24.19 | 77.03<br>11.41        | 200<br>200 | 2.70<br>0.50 | 1.734<br>0.746       | 56.00<br>23.75 | 99.60%<br>98.17% |
| Pingwi Place                           | 6162A                                                         | MH6162A            | MH6163A                                               | 0.62                                  | 14    |            |                                       |                   | 44.8         | 64.0             | 4.00         | 1.04           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.62         | 1.09           | 0.31            | 0.00                      | 1.34           | 20.24          | 74.88                 | 200        | 0.35         | 0.624                | 18.90          | 93.37%           |
| Pingwi Place<br>Pingwi Place           | 6163A<br>6164A                                                | MH6163A<br>MH6164A | MH6164A<br>MH6119A                                    | 0.44                                  |       |            | 12                                    |                   | 28.8<br>26.4 | 92.8<br>119.2    | 4.00<br>4.00 | 1.50           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.44         | 1.53<br>1.93   | 0.43<br>0.54    | 0.00                      | 1.93<br>2.47   | 20.24          | 86.35<br>86.29        | 200<br>200 | 0.35<br>0.75 | 0.624<br>0.914       | 18.31<br>27.16 | 90.46%<br>91.66% |
|                                        |                                                               |                    |                                                       | 0.10                                  |       |            |                                       |                   |              |                  |              |                |               |                        |                                       |                        |              |                |                 |                           |                |                |                       |            |              |                      |                |                  |
| Block 429                              | COM                                                           | BLK6119AE          | MH6119A                                               |                                       |       |            |                                       |                   | 0.0          | 0.0              | 4.00         | 0.00           | 0.00          | 3.01 3.01              | 0.00                                  | 2.61                   | 3.01         | 3.01           | 0.84            | 0.00                      | 3.46           | 45.12          | 20.00                 | 300        | 0.20         | 0.618                | 41.66          | 92.34%           |
| Cedar Creek Drive Cedar Creek Drive    | 6119A<br>6118A                                                | MH6119A<br>MH6118A | MH6118A<br>MH6117A                                    | 0.05<br>0.07                          |       |            |                                       |                   | 0.0          | 605.8<br>605.8   | 3.93<br>3.93 | 9.64<br>9.64   | 0.00          | 7.08<br>7.08           | 0.00                                  | 6.15<br>6.15           | 0.05         | 16.93<br>17.00 | 4.74<br>4.76    | 0.00                      | 20.53          | 45.12<br>45.12 | 28.01<br>33.76        | 300<br>300 | 0.20         | 0.618<br>0.618       | 24.58<br>24.57 | 54.49%<br>54.45% |
|                                        |                                                               |                    |                                                       |                                       |       |            |                                       |                   |              |                  |              |                |               |                        |                                       |                        |              |                |                 |                           |                |                |                       |            |              |                      |                |                  |
| Block 443                              | HD1                                                           | BLK6117AW          | MH6117A                                               | 1.03                                  |       |            |                                       |                   | 129.6        | 129.6            | 4.00         | 2.10           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 1.03         | 1.03           | 0.29            | 0.00                      | 2.39           | 20.24          | 20.00                 | 200        | 0.35         | 0.624                | 17.85          | 88.20%           |
| Cedar Creek Drive Cedar Creek Drive    | 6117A<br>6116A                                                | MH6117A<br>MH6116A | MH6116A<br>MH6115A                                    | 0.55<br>0.52                          |       |            | 17                                    |                   | 40.8<br>40.8 | 776.2<br>817.0   | 3.87<br>3.85 | 12.16<br>12.76 | 0.00          | 7.08<br>7.08           | 0.00                                  | 6.15<br>6.15           | 0.55<br>0.52 | 18.58<br>19.10 | 5.20<br>5.35    | 0.00                      | 23.51<br>24.25 | 45.12<br>59.68 | 75.05<br>67.16        | 300<br>300 | 0.20         | 0.618<br>0.818       | 21.60<br>35.43 | 47.89%<br>59.36% |
| Gedar Greek Brive                      | OTTOA                                                         | WITOTTOA           | WITOTTOA                                              | 0.52                                  |       |            | 17                                    |                   | 40.0         | 017.0            | 3.03         | 12.70          | 0.00          | 7.00                   | 0.00                                  | 0.13                   | 0.52         | 13.10          | 3.33            | 0.00                      | 24.25          | 39.00          | 07.10                 | 300        | 0.55         | 0.010                | 33.43          | 33.3070          |
| Salamander Way                         | 6156Aa<br>6157A                                               | MH6156A<br>MH6157A | MH6157A<br>MH6158A                                    | 0.29<br>0.07                          | 3     |            | 1                                     |                   | 9.6<br>2.4   | 9.6              | 4.00<br>4.00 | 0.16<br>0.19   | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.29         | 0.29           | 0.08            | 0.00                      | 0.24           | 31.55          | 74.63                 | 200        | 0.85         | 0.973<br>1.055       | 31.31          | 99.25%<br>99.14% |
| Salamander Way Salamander Way          | 6158A                                                         | MH6158A            | MH6153A                                               | 0.54                                  |       |            | 14                                    |                   | 33.6         | 12.0<br>45.6     | 4.00         | 0.74           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.54         | 0.36<br>0.90   | 0.10            | 0.00                      | 0.99           | 34.22<br>56.22 | 12.28<br>106.46       | 200<br>200 | 1.00<br>2.70 | 1.734                | 33.92<br>55.23 | 98.24%           |
| Block 436                              | PARK                                                          | BLK6153C           | MH6153A                                               |                                       |       |            |                                       | 0.83              | 0.0          | 0.0              | 4.00         | 0.00           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.83         | 0.83           | 0.23            | 0.00                      | 0.23           | 24.19          | 13.25                 | 200        | 0.50         | 0.746                | 23.96          | 99.04%           |
| Salamander Way                         | 6153A                                                         | MH6153A            | MH6154A                                               | 0.03                                  |       |            |                                       |                   | 0.0          | 45.6             | 4.00         | 0.74           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.03         | 1.76           | 0.49            | 0.00                      | 1.23           | 28.63          | 10.53                 | 200        | 0.70         | 0.883                | 27.40          | 95.70%           |
| Salamander Way                         | 6154A                                                         | MH6154A            | MH6115A                                               | 0.13                                  |       |            |                                       |                   | 0.0          | 45.6             | 4.00         | 0.74           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.13         | 1.89           | 0.53            | 0.00                      | 1.27           | 24.19          | 76.18                 | 200        | 0.50         | 0.746                | 22.93          | 94.76%           |
| Cedar Creek Drive                      | 6115A                                                         | MH6115A            | MH6101A                                               | 0.61                                  |       |            | 18                                    |                   | 43.2         | 905.8            | 3.83         | 14.04          | 0.00          | 7.08                   | 0.00                                  | 6.15                   | 0.61         | 21.60          | 6.05            | 0.00                      | 26.24          | 59.68          | 87.15                 | 300        | 0.35         | 0.818                | 33.44          | 56.04%           |
| Miikana Road                           | 6101A                                                         | MH6101A            | MH6102A                                               | 0.45                                  |       |            | 11                                    |                   | 26.4         | 932.2            | 3.82         | 14.42          | 0.00          | 7.08                   | 0.00                                  | 6.15                   | 0.45         | 22.05          | 6.17            | 0.00                      | 26.74          | 59.68          | 91.17                 | 300        | 0.35         | 0.818                | 32.94          | 55.19%           |
| Plack 426                              | HD2                                                           | DI KC103AC         | MHC102A                                               | 0.04                                  |       |            |                                       |                   | 115.0        | 115.0            | 4.00         | 4.07           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.04         | 0.04           | 0.26            | 0.00                      | 0.10           | 20.24          | 20.00                 | 200        | 0.25         | 0.624                | 10.11          | 89.48%           |
| Block 436                              | HD2                                                           | BLK6102AS          |                                                       | 0.94                                  |       |            |                                       |                   | 115.2        | 115.2            | 4.00         | 1.87           | 0.00          | 0.00                   | 0.00                                  | 0.00                   | 0.94         | 0.94           | 0.26            | 0.00                      | 2.13           | 20.24          | 20.00                 | 200        | 0.35         | 0.624                | 18.11          |                  |
| Miikana Road<br>Miikana Road           | 6102A<br>6103A                                                | MH6102A<br>MH6103A | MH6103A<br>MH6104A                                    | 0.23<br>0.66                          |       |            | 6<br>18                               |                   | 14.4<br>43.2 | 1061.8<br>1105.0 | 3.78<br>3.77 | 16.27<br>16.88 | 0.00          | 7.08<br>7.08           | 0.00                                  | 6.15<br>6.15           | 0.23<br>0.66 | 23.22<br>23.88 | 6.50<br>6.69    | 0.00                      | 28.92<br>29.72 | 59.68<br>59.68 | 41.44<br>120.00       | 300<br>300 | 0.35<br>0.35 | 0.818<br>0.818       | 30.76<br>29.97 | 51.54%<br>50.21% |
| Willikaria Noad                        | 0103A                                                         | WILIOTOSA          | WITOTOTA                                              | 0.00                                  |       |            | 10                                    |                   | 45.2         | 1103.0           |              |                |               | 7.00                   | 0.00                                  | 0.13                   | 0.00         | 25.00          | 0.09            | 0.00                      | 25.12          | 39.00          | 120.00                | 300        | 0.55         | 0.010                | 23.31          | 30.2176          |
| Block 450                              | INST                                                          | BLK6104AS          | MH6104A                                               |                                       |       |            |                                       |                   | 0.0          | 0.0              | 4.00         | 0.00           | 2.55 2.55     | 0.00                   | 0.00                                  | 2.21                   | 2.55         | 2.55           | 0.71            | 0.00                      | 2.93           | 20.24          | 20.00                 | 200        | 0.35         | 0.624                | 17.32          | 85.54%           |
| Miikana Road                           | 6104A                                                         | MH6104A            |                                                       | 0.60                                  |       |            | 15                                    |                   | 36.0         | 1141.0           |              | 17.39          | 2.55          |                        | 0.00                                  | 8.36                   | 0.60         | 27.03          | 7.57            | 0.00                      | 33.32          | 59.68          | 114.40                | 300        | 0.35         | 0.818                | 26.36          | 44.17%           |
| Miikana Road                           |                                                               | MH6105B            | EX. MH647A                                            |                                       |       |            |                                       |                   | 0.0          | 1141.0           | 3.76         | 17.39          | 2.55          | 7.08                   | 0.00                                  | 8.36                   | 0.00         | 27.03          | 7.57            | 0.00                      | 33.32          | 45.12          | 8.00                  | 300        | 0.20         | 0.618                | 11.80          | 26.15%           |
| Kelly Farm Drive                       |                                                               | EX. MH647A         | EX. MH742A                                            | 0.28                                  |       |            | 5                                     |                   | 12.0         | 3538.6           | 3.38         | 48.46          | 2.55          | 7.08                   | 0.00                                  | 8.36                   | 0.28         | 75.56          | 21.16           | 0.00                      | 77.97          | 101.84         | 80.31                 | 375        | 0.31         | 0.893                | 23.87          | 23.43%           |
|                                        |                                                               |                    | +                                                     |                                       |       | -          |                                       | -                 |              |                  |              |                |               |                        |                                       |                        |              |                |                 |                           |                | +              |                       |            |              |                      |                |                  |
| Docian Parameters:                     |                                                               |                    |                                                       | Notos:                                |       |            |                                       |                   |              |                  | Designed:    |                | WY            | No.                    |                                       |                        |              |                | Revision        |                           |                |                |                       |            |              | Date                 |                |                  |
| Design Farameters:                     | sign Parameters:  Notes:  1. Mannings coefficient (n) = 0.013 |                    |                                                       |                                       |       | Designed:  |                                       | vv ī              | No.<br>1.    |                  |              |                | C             | City Submission        |                                       |                        |              |                |                 |                           | 11/23/2016     |                |                       |            |              |                      |                |                  |
| Residential                            |                                                               | ICI Areas          | ICI Areas 2. Demand (per capita): 350 L/day 300 L/day |                                       |       |            | <u> </u>                              |                   |              | 2.               |              |                |               | C                      | City Submission                       | n No. 2                |              |                |                 |                           |                | 5/12/2017      |                       |            |              |                      |                |                  |
| SF 3.2 p/p/u<br>TH/SD 2.4 p/p/u        | INST 50,0                                                     | 00 L/Ha/day        | Peak Factor<br>1.5                                    |                                       |       |            | 0.28 L/s/Ha                           |                   |              |                  | Checked:     |                | JM            | 3.<br>4.               |                                       |                        |              | Updated St     | City Submission | n No. 3<br>MOE Submission |                |                |                       |            |              | 7/5/2017<br>8/3/2017 |                |                  |
| APT 1.9 p/p/u                          | COM 50,0                                                      | 00 L/Ha/day        | 1.5                                                   | Harmon Formula = $1+(14/(4+P^{0.5}))$ |       |            |                                       |                   |              | 7.               |              |                |               | Spaciou Ol             |                                       |                        |              |                |                 |                           |                | 5,5,2011       |                       |            |              |                      |                |                  |
| Other 43 p/p/Ha                        |                                                               | 00 L/Ha/day        | MOE Chart where P = population in thousands           |                                       |       |            |                                       | Dwg. Refe         | erence:      | 501, 501A        | ]            | ile Reference: |               |                        |                                       |                        | Date:        |                |                 |                           |                |                | Sheet No:             |            |              |                      |                |                  |
|                                        | 17000 L/Ha/day                                                |                    |                                                       |                                       |       |            |                                       |                   |              |                  |              |                |               |                        | 33956.5.7.1                           |                        |              |                |                 | 5/10/2017                 |                |                |                       |            |              | 2 of 2               |                |                  |
|                                        |                                                               |                    |                                                       |                                       |       |            | · · · · · · · · · · · · · · · · · · · |                   |              |                  |              |                | · ·           | -                      | · · · · · · · · · · · · · · · · · · · |                        |              |                |                 |                           |                |                |                       |            |              |                      |                |                  |



# **Miro Savic**

From: Cassidy, Tyler <tyler.cassidy@ottawa.ca>
Sent: Friday, November 8, 2024 12:46 PM

To: Miro Savic Cc: Lee Sheets

**Subject:** RE: 150 Dun Skipper - Downstream Sanitary Sewer Capacity (124107)

Hi Miro,

That will suffice.

Regards,

## Tyler Cassidy, P.Eng

Infrastructure Project Manager,

Planning, Development and Building Services department (PDBS)/ Direction générale des services de la planification, de l'aménagement et du bâtiment (DGSPAB) - South Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

613.580.2424 ext./poste 12977, Tyler.Cassidy@ottawa.ca

From: Miro Savic <m.savic@novatech-eng.com>

Sent: November 08, 2024 12:39 PM

**To:** Cassidy, Tyler <tyler.cassidy@ottawa.ca> **Cc:** Lee Sheets <1.sheets@novatech-eng.com>

Subject: RE: 150 Dun Skipper - Downstream Sanitary Sewer Capacity (124107)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Tyler,

We can update the sanitary design sheet for the sewer segments included in the Pathway at Findley Creek design brief. Will that suffice?

We have no design information further downstream.

Regards,

Miroslav Savic, P.Eng., Senior Project Manager | Land Development Engineering

#### NOVATECH

Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 205

The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Cassidy, Tyler < tyler.cassidy@ottawa.ca>
Sent: Friday, November 8, 2024 11:18 AM

**To:** Miro Savic <<u>m.savic@novatech-eng.com</u>> **Cc:** Lee Sheets <<u>l.sheets@novatech-eng.com</u>>

Subject: RE: 150 Dun Skipper - Downstream Sanitary Sewer Capacity (124107)

Hi Miro,

I've confirmed with our Infrastructure Services department that we don't have any immediate concerns with increasing wastewater flows from this block. As for additional requirements, we request that you provide an **updated design sheet** which includes the downstream sewer segments through the Findlay Creek Subdivision. Please confirm there are no issues introduced downstream of this development due to the increased wastewater flows from this block.

If you have any other questions, please let me know.

Thank you,

## Tyler Cassidy, P.Eng

Infrastructure Project Manager,

Planning, Development and Building Services department (PDBS)/ Direction générale des services de la planification, de l'aménagement et du bâtiment (DGSPAB) - South Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste 12977, Tyler.Cassidy@ottawa.ca

From: Cassidy, Tyler

Sent: November 01, 2024 11:42 AM

To: Miro Savic < m.savic@novatech-eng.com > Cc: Lee Sheets < l.sheets@novatech-eng.com >

Subject: RE: 150 Dun Skipper - Downstream Sanitary Sewer Capacity (124107)

Hi Miro,

I've sent your wastewater demands over to our Infrastructure Services (IS) department, we should have a response early next week on capacity. I should note that with an increased wastewater peak flow, we may need to do a deeper analysis and confirm SAN HGL freeboard within the subdivision, however I'll send any additional requirements once I hear back from IS.

Thank you,

## Tyler Cassidy, P.Eng

Infrastructure Project Manager,

Planning, Development and Building Services department (PDBS)/ Direction générale des services de la planification, de l'aménagement et du bâtiment (DGSPAB) - South Branch

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1

613.580.2424 ext./poste 12977, Tyler.Cassidy@ottawa.ca

From: Miro Savic <m.savic@novatech-eng.com>

Sent: October 29, 2024 10:47 AM

**To:** Cassidy, Tyler < tyler.cassidy@ottawa.ca > **Cc:** Lee Sheets < l.sheets@novatech-eng.com >

Subject: 150 Dun Skipper - Downstream Sanitary Sewer Capacity (124107)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hello Tyler,

Please find the attached preliminary sanitary flow calculations for the purpose of conformation of available capacity in the downstream sanitary sewer system. The combined peak sanitary flow from the commercial and residential developments (6.58 L/s) exceeds the flow allocated to this block of land (3.46 L/s) by 3.12 L/s.

Based on a review of *Design Brief, Pathways at Findlay Creek, 4800 Bank Street (Remer Lands), Phase 1, Leitrim development Area, prepared by IBI (August 2017)*, there is enough spare capacity in the downstream system up to the exiting 375mm diameter sewer in Kelly Farm Drive to accommodate the proposed development. Refer to the attached Sanitary Drainage Area Plan and Sanitary Sewer Design Sheet from the design brief.

Can you please confirm if there are any capacity constraints in the municipal sanitary sewer systems further downstream.

# 27. Sewer (sanitary and storm)

a. If sanitary demands are greater than what was allocated for this block (cumulatively) in the subdivision level study, then confirmation of avai capacity must be confirmed. Contact the Infrastructure Project Manag Tyler Cassidy, P.Eng., with proposed sanitary demands.

Regards,

Miroslav Savic, P.Eng., Senior Project Manager | Land Development Engineering NOVATECH

Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 205

The information contained in this email message is confidential and is for exclusive use of the addressee.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

# UPDATED SANITARY SEWER DESIGN SHEET



Novatech Project #: 124107
Project Name: 150 Dun Skipper Drive
Date: 12/11/2024
Input By: JAK
Reviewed By: MS
Drawing Reference: Pathways at Findlay Creek Sanitary Drainage Area Plan

Design Input by User
As-Bull Input by User
Cumutalive Cell
Calculated Design Cell Output
City of Ottawa - Sewer Design Guidelines (2012 and TBs)
MOE - Design Guidelines for Sewage Works (2008)

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Location  |               |           |                            |                   |             |             |             | Demand  |                          |       |        |                 |       |                                   |         |                       |                           |              | Design Capacity |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|---------------|-----------|----------------------------|-------------------|-------------|-------------|-------------|---------|--------------------------|-------|--------|-----------------|-------|-----------------------------------|---------|-----------------------|---------------------------|--------------|-----------------|-------|-------------------------|------------|---------------------------|-------------------|--------------|---------------|-------------------|-------------------------|------------------|--------|
| Part      |                   |           |               |           |                            |                   |             | Reside      | ential Flow |         |                          |       |        |                 |       |                                   | In      | dustrial / Commercial | / Institutional (ICI) Flo | low          |                 |       |                         |            |                           | Total Design Flow |              | Proposed Sewe | er Pipe Sizing /  | Design                  | Available Capaci | city   |
| Second   Column   C   | Street            | Area ID   |               |           | Semis / 1 Bedroom          | 2 Bedroom Park    | Population  |             |             | Peaking | Peak Design<br>Pop. Flow |       |        | Industrial Area |       | Average Design<br>Industrial Flow | Peaking |                       | Commercial /              | Commercial / | Institutional   |       | Peak Design<br>ICI Flow | Extraneous | Design<br>Extraneous Flow |                   |              | (mm) and      | Design C<br>Grade | Capacity Full Fit Veloc | ty               | (0/)   |
| Second Column   Second Colum   |                   |           |               |           | Towns Apts                 | Apts Area         | (in 1000's) | (in 1000's) |             |         |                          | (ha.) | (ha.)  | (ha.)           | (ha.) | (L/s)                             | ractor  | (ha.)                 |                           |              |                 | (ha.) |                         |            |                           |                   | (m)          | material      |                   |                         | Lis (%           | ,76)   |
| Column   C   | Dun Skipper Road  | 6132Aa    | MH6132A MH    | 16133A    | 10                         |                   | 0.034       | 0.034       | 0.11        | 3.68    | 0.41                     | 0.640 | 0.640  | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 0.640      | 0.21                      | 0.62              | 82.0         | 200 PVC       | 1.60              | 43.3 1.33               | 42.66 98.5       | J.58%  |
| Column   C   |                   |           |               |           | DRAFT 2016 LIPDATED SERVI  | CEARII ITY REPORT |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Part      | Street No. 7      | EXT2      | BL            | K6133AS   | DIAF 1 2010 OF DATED SERVI | CEABIETT REPORT   | 0.124       | 0.124       | 0.40        | 3.57    | 1.43                     | 0.000 | 0.640  | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 2.880      | 0.95                      | 2.38              |              |               |                   |                         |                  | _      |
| Column   C   | Street No. 7      | 6133Ab    | BLK6133AS MF  | 16133A    |                            |                   |             | 0.124       | 0.40        | 3.57    | 1.43                     | 0.070 | 0.710  |                 |       |                                   |         |                       |                           |              | 1.00            | 0.000 |                         | 2.950      |                           |                   | 44.0         | 200 PVC       | 0.50              | 24.2 0.75               | 21.79 90.0       | ).05%  |
| Column   C   | Day Oliver - Band | 04004 -   | MUCADO A MU   | 104044    | 40                         |                   | 0.004       | 0.400       | 0.00        | 0.50    | 0.40                     | 0.500 | 4.000  | 0.000           | 0.000 | 0.00                              | 4.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 4.470      | 4.00                      | 0.57              | 70.4         | 000 Pt (0     | 1.00              | 27.5                    | 20.00            | 0.400/ |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |           |               |           | 12                         |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           | 0.07              |              |               |                   |                         |                  | 5 22%  |
| Marce   Marc   |                   |           |               |           | 3                          |                   |             |             |             |         |                          |       |        |                 |       |                                   |         | 0.000                 |                           |              |                 |       |                         |            |                           |                   |              |               | 0.70              |                         |                  | 4.61%  |
| Marce   Marc   |                   |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Encoment          | EYT3      | BLK6145A ME   | 16146A    | DRAFT 2016 UPDATED SERVI   | CEABILITY REPORT  | 0.251       | 0.261       | 0.91        | 3.40    | 2.94                     | 2 500 | 4.640  | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 2 500      | 0.83                      | 3.66              | 22.7         | 200 PMC       | 0.40              | 21.6 0.6                | 17.00 93.0       | 2 00%  |
| State   Stat   |                   | LATO      |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           | 0.00              |              |               |                   |                         |                  |        |
| State   Stat   |                   |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Columbia    |                   | EVTA      | DI KO420A MI  | IC400A    | DRAFT 2016 UPDATED SERVI   | CEABILITY REPORT  | 0.000       | 0.000       | 0.00        | 0.00    | 0.00                     | 0.000 | 4.040  | 0.000           | 0.000 | 0.00                              | 4.50    | 4.070                 | 4.070                     | 4.00         | 4.50            | 4.070 | 4.00                    | 4.070      | 4.04                      | 0.00              | 00.0         | 000 Pk (0     | 0.05              | 20.0                    | 40.00            | 0.500/ |
| September 1916 1916 1916 1916 1916 1916 1916 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dun Skipper Road  |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       | 0.00                              | 1.00    | 4.070                 |                           |              |                 |       | 1.00                    |            | 1.04                      |                   |              |               |                   |                         |                  |        |
| Control of the cont   |                   |           | MH6137A MH    | 16136A    |                            |                   |             |             |             | 3.80    |                          |       |        |                 |       |                                   |         |                       |                           |              | 1.50            |       |                         |            | 1.40                      |                   |              |               |                   |                         |                  |        |
| Control of the cont   |                   |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Part Seed from   Part   |                   |           |               |           |                            |                   |             |             |             |         |                          | 0.0.0 |        |                 |       |                                   |         |                       |                           |              | 1.50            |       |                         |            | 0.00                      |                   |              |               |                   |                         |                  |        |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              | 1.50            |       |                         |            | 0.01                      |                   |              |               |                   |                         |                  |        |
| Page      |                   |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Page      |                   |           |               |           | 3                          |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Figure 1.00 Miles  |                   |           |               |           | 14                         |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| The case of the    |                   |           |               |           | 12                         |                   | 0.032       | 0.100       | 0.33        | 3.59    | 1.17                     | 0.440 |        | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 |                         | 1.530      | 0.50                      | 1.67              | 86.3         | 200 PVC       | 0.35              | 20.2 0.67               | 18.57 91.7       | 1.73%  |
| Case Code Cine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pingwi Place      | 6164A     | MH6164A MH    | 16119A    | 11                         |                   | 0.030       | 0.130       | 0.42        | 3.57    | 1.50                     | 0.400 | 6.920  | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 1.930      | 0.64                      | 2.14              | 86.3         | 200 PVC       | 0.75              | 29.6 0.91               | 27.49 92.7       | 77%    |
| Color Color Date   Fig.   Color Date   Fig.   Color Color Date   Fig.   Co   | Block 429         | COM + RES | BLK6119AE MI  | H6119A    | 145                        | 92                | 0.451       | 0.451       | 1.46        | 3 40    | 4.97                     | 1,000 | 7 920  | 0.000           | 0.000 | 0.00                              | 1.50    | 1 930                 | 1 930                     | 0.63         | 1.50            | 1 930 | 0.94                    | 1 930      | 0.64                      | 6.54              | 20.0         | 300 PVC       | 0.20              | 45.1 0.60               | 38 57 85 /       | 5 49%  |
| Control Cont   |                   |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Back St. P. B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   | 28.0         |               | 0.20              |                         |                  |        |
| Cade Own Dive 9117A 199117A 19 | Cedar Creek Drive | 6118A     | MH6118A MF    | 16117A    |                            |                   | 0.000       | 0.624       | 2.02        | 3.34    | 6.75                     | 0.070 | 8.040  | 0.000           | 0.000 | 0.00                              | 1.50    | 0.000                 | 4.070                     | 1.32         | 1.50            | 4.070 | 2.92                    | 15.920     | 5.25                      | 14.92             | 33.8         | 300 PVC       | 0.20              | 45.1 0.62               | 30.20 66.9       | .93%   |
| Cotter Control | Block 443         | HD1       | BLK6117AW MF  | 16117A    |                            |                   | 0.130       | 0.130       | 0.42        | 3.57    | 1.50                     | 1.030 | 9.070  | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 1.030      | 0.34                      | 1.84              | 20.0         | 200 PVC       | 0.35              | 20.2 0.67               | 18.40 90.9       | J.92%  |
| Cotter Control |                   |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Selective Way   515Aa   Mel 157A   Mel 157   |                   |           |               |           | 17                         |                   |             |             |             | 0.20    | 0.02                     |       |        |                 |       |                                   | 1.00    |                       |                           |              |                 |       |                         |            |                           | 10.27             | 75.1<br>67.2 | 0001 00       | 0.20              | 45.1 0.62<br>59.7 0.8°  |                  |        |
| Submorder Way 1917A Mel9157A M | OCAL CICAR SINC   | 011071    | IIII IOTTOX   | 10110/1   |                            |                   | 0.040       | 0.040       | 2.74        | 0.20    | 0.07                     | 0.020 | 10.140 | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 4.070                     | 1.02         | 1.00            | 4.070 | 1.50                    | 10.020     | 0.00                      | 10.50             | U.L          | 000110        | 0.00              | 0.02                    | 42.70            | .0070  |
| Submander Way 6159A MH615SA MH |                   |           |               |           | 3                          |                   |             |             |             | 0.70    |                          |       |        |                 |       |                                   | 1.00    | 0.000                 |                           |              | 1.00            |       |                         |            |                           |                   |              |               |                   | 31.5 0.97               |                  |        |
| Black 456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |           |               |           | 1 1                        |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Statementer Way 6153A NH6153A  | Salamanuer vv ay  | UIJOM     | WI IO IOOA MF | IO I JOAN | 14                         |                   | 0.036       | 0.001       | 0.10        | 3.03    | 0.00                     | 0.540 | 11.040 | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 0.900      | 0.30                      | 0.90              | 100.0        | 200 FVC       | 2.70              | JU.Z 1.73               | 33.33 98.4       | .4070  |
| Salmander Way 6154A MH6154A MH | Block 436         | PARK      | BLK6153C MF   | 16153A    |                            |                   | 0.000       | 0.000       | 0.00        | 3.80    | 0.00                     | 0.830 | 11.870 | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 0.830      | 0.27                      | 0.27              | 13.3         | 200 PVC       | 0.50              | 24.2 0.75               | 23.92 98.8       | s.87%  |
| Salmander Way 6154A MH6154A MH | Salamandar W.e.   | 61534     | MH6153A MAL   | 1615/A    |                            |                   | 0.000       | 0.051       | 0.16        | 3.65    | 0.60                     | 0.030 | 11.070 | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 1.760      | 0.59                      | 1.19              | 10.5         | 200 BVC       | 0.70              | 29.6                    | 27.45            | 5 99%  |
| Cedar Creek Drive 615A MH6115A MH6101A 18 0.049 0.944 3.06 3.25 9.96 0.610 11.810 0.000 0.00 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 0.00 1.50 0.000 0.00 1.50 0.000 0.00 1.50 0.000 0.00 1.50 0.000 0.000 0.00 1.50 0.000 0.000 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Galaffidhudi Way  | J 133A    | IO ISSA MF    | 10 104A   |                            |                   | 0.000       | 0.001       | 0.10        | 3.03    | 0.00                     | 0.030 | 11.070 | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 1.700      | 0.30                      | 1.10              | 10.5         | 2001 VC       | 3.70              | 25.0 0.88               | 27.43 95.8       | .0070  |
| Mikana Road 610A MH6102A H11 0 0.030 0.974 3.16 3.25 10.25 0.450 12.260 0.000 0.00 1.50 0.000 0.00 1.50 0.000 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Salamander Way    | 6154A     | MH6154A MH    | 16115A    |                            |                   | 0.000       | 0.051       | 0.16        | 3.65    | 0.60                     | 0.130 | 11.200 | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 1.890      | 0.62                      | 1.22              | 76.2         | 200 PVC       | 0.50              | 24.2 0.75               | 22.97 94.9       | .94%   |
| Mikana Road 610A MH6102A H11 0 0.030 0.974 3.16 3.25 10.25 0.450 12.260 0.000 0.00 1.50 0.000 0.00 1.50 0.000 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coder Crook Drive | 61150     | MH6115A MAL   | 16101A    | 10                         |                   | 0.040       | 0.044       | 3.06        | 2.25    | 9.06                     | 0.610 | 11.910 | 0.000           | 0.000 | 0.00                              | 1.50    | 0.000                 | 4.070                     | 1 22         | 1.50            | 4.070 | 1.09                    | 20.520     | 6.77                      | 19.71             | 97.2         | 300 BVC       | 0.25              | 50.7                    | 40.08            | 9 6694 |
| Block 436 HD2 BLK6102AS MH6102A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cedar Creek Drive | JIIJA     | MF ACTION     | IUIUIA    | 16                         |                   | 0.049       | 0.944       | 3.00        | 3.25    | 9.90                     | 0.610 | 11.810 | 0.000           | 0.000 | 0.00                              | 1.30    | 0.000                 | 4.070                     | 1.32         | 1.00            | 4.070 | 1.98                    | 20.520     | 0.77                      | 10./1             | 01.2         | 300 FVC       | 0.33              | 38.1 0.82               | 40.98 68.6       | .0076  |
| Mikana Road 6102A MH6102A MH6103A 6 0.016 1.106 3.58 3.22 11.53 0.230 13.430 0.000 0.000 1.50 0.000 4.070 1.32 1.50 4.070 1.98 22.140 7.31 20.81 41.4 300 PVC 0.35 59.7 0.82 38.87 65.13% MH6103A MH61 | Miikana Road      | 6101A     | MH6101A MH    | 16102A    | 11                         |                   | 0.030       | 0.974       | 3.16        | 3.25    | 10.25                    | 0.450 | 12.260 | 0.000           | 0.000 | 0.00                              | 1.50    | 0.000                 | 4.070                     | 1.32         | 1.50            | 4.070 | 1.98                    | 20.970     | 6.92                      | 19.15             | 91.2         | 300 PVC       | 0.35              | 59.7 0.82               | 40.54 67.9       | .92%   |
| Mikana Road 6102A MH6102A MH6103A 6 0.016 1.106 3.58 3.22 11.53 0.230 13.430 0.000 0.000 1.50 0.000 4.070 1.32 1.50 4.070 1.98 22.140 7.31 20.81 41.4 300 PVC 0.35 59.7 0.82 38.87 65.13% MH6103A MH61 | Plant 430         | HD2       | BI KE10346    | 161024    |                            |                   | 0.445       | 0.445       | 0.27        | 2.50    | 124                      | 0.040 | 12 200 | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 0.040      | 0.24                      | 1.05              | 20.0         | 200 BVC       | 0.35              | 20.2                    | 19.00            | 1 96%  |
| Milkana Road 6103A MH6103A MH6 | BIOCK 430         | III Z     | DLR01UZAS MF  | 10 102A   |                            |                   | 0.115       | 0.115       | 0.37        | 3.58    | 1.34                     | 0.940 | 13.200 | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.000                     | 0.00         | 1.00            | 0.000 | 0.00                    | 0.940      | 0.31                      | 1.00              | 20.0         | 200 PVC       | 0.35              | 20.2 0.62               | 18.60 91.8       | .00%   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |           | 6                          |                   |             |             |             |         |                          |       |        |                 |       |                                   |         | 0.000                 |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Block 450 INST BLK6104AS MH6104A 0.000 0.000 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Miikana Road      | 6103A     | MH6103A MH    | 16104A    | 18                         |                   | 0.049       | 1.154       | 3.74        | 3.21    | 12.00                    | 0.660 | 14.090 | 0.000           | 0.000 | 0.00                              | 1.50    | 0.000                 | 4.070                     | 1.32         | 1.50            | 4.070 | 1.98                    | 22.800     | 7.52                      | 21.50             | 120.0        | 300 PVC       | 0.35              | 59.7 0.82               | 38.18 63.9       | .98%   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Block 450         | INST      | BLK6104AS MH  | 16104A    |                            |                   | 0.000       | 0.000       | 0.00        | 3.80    | 0.00                     | 0.000 | 14.090 | 0.000           | 0.000 | 0.00                              | 1.50    | 2.550                 | 2.550                     | 0.83         | 1.50            | 2.550 | 1.24                    | 2.550      | 0.84                      | 2.08              | 20.0         | 200 PVC       | 0.35              | 20.2 0.6                | 18.16 89         | 9.72%  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |           |                            |                   |             |             |             |         |                          |       |        |                 |       |                                   |         |                       |                           |              |                 |       |                         |            |                           |                   |              |               |                   |                         |                  |        |
| Mikma Road 6 104A MH6105A MH6105B 15 0.041 1.195 3.87 3.20 12.38 0.500 14.690 0.000 0.00 1.50 0.000 6.620 2.15 1.50 6.620 3.22 25.950 8.56 24.17 114.4 30 PVC 0.35 59.7 0.52 35.52 59.51 45.90 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1.195 0.000 1 | William Food      | 6104A     |               |           | 15                         |                   | 0.01        | 1.100       | 0.07        | 0.20    | 12.00                    |       | 14.000 | 0.000           | 0.000 | 0.00                              | 1.00    | 0.000                 | 0.020                     | 2.10         | 1.00            | 0.020 | U.LL                    | 20.000     | 0.00                      |                   |              |               |                   |                         |                  |        |
| Mikana Road MH6105B EX.MH647A 0.000 1.195 3.87 3.20 12.38 0.000 14.690 0.000 0.00 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0.000 1.50 0 | Milkana Road      |           | MH61U5B EX    | . MHb4/A  |                            |                   | 0.000       | 1.195       | 3.87        | 3.20    | 12.38                    | 0.000 | 14.690 | 0.000           | 0.000 | 0.00                              | 1.50    | 0.000                 | 6.620                     | 2.15         | 1.50            | 6.620 | 3.22                    | 25.950     | 8.56                      | 24.17             | 8.0          | 300 PVC       | 0.20              | 45.1 0.62               | 20.95 46.4       | .43%   |
| Kelly Farm Drive EX. MH647A EX. MH742A 5 0.0014 3.539 11.47 2.90 33.31 0.280 14.970 0.000 0.00 1.50 0.000 6.620 2.15 1.50 6.620 3.22 75.560 24.93 61.46 80.3 375 PVC 0.31 101.8 0.89 40.38 39.65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kelly Farm Drive  |           | EX. MH647A EX | . MH742A  | 5                          |                   | 0.014       | 3.539       | 11.47       | 2.90    | 33.31                    | 0.280 | 14.970 | 0.000           | 0.000 | 0.00                              | 1.50    | 0.000                 | 6.620                     | 2.15         | 1.50            | 6.620 | 3.22                    | 75.560     | 24.93                     | 61.46             | 80.3         | 375 PVC       | 0.31              | 101.8 0.89              | 40.38 39.€       | 1.65%  |

#### Demand Equation / Parameters

Q(p) + Q(ici) + Q(e) (P x q x M x K / 86,400) 280 L/per person/day

4. M = Harmon Formula Circ.

5. K = 0.8

6. Park flow is considered equivalent to a single unit / ha

Park Demand = 4 single unit equivalent / park ha (~ 3,600 L/ha/day)

7. Q(ci) = ICI Area x ICI Flow x ICI Peak

8. Q(e) = 0.33 L/s/ha (design)

# 58 145 92 0.000 1.660 1.660 5.38 3.12 16.77 15.800 15.800 0.000 0.000 0.00 1.50 8.550 2.77 1.50 8.550 4.16 24.350 8.04 28.96 2010.9

Q(D) = Peak Design Flow (L/s)
Q(p) = Peak Design Population Flow (L/s)
Q(q) = Average Population Flow (L/s)

 
 Singles
 Semis / Towns
 1 Bedroom Apts
 2 Bedroom Apts

 3.4
 2.7
 1.4
 2.7
 | P = Residential Population = | 3.4 |
q = Average Capita Flow |
M = Harmon Formula |
K = Harmon Correction Factor |
Q(e) = Industrial / Commercial / Institutional Flow (Us) |
Q(e) = Extraneous Flow (Us) |

Institutional / Commercial / Industrial

Design = 
 Industrial
 Commercial / Institutional

 28000
 28000
 L/gross ha/day
 ICI Peak \* 1.5 \* ICI Peak = 1.0 Default, 1.5 if ICI in contributing area is >20% (design only)

#### Capacity Equation

**Q full =**  $1000^{\circ}(1/n)^{\circ}A_p^{*}R^{2/3} \cdot So^{0.5}$ 

## Definitions

Q full = Capacity (L/s)
n = Manning coefficient of roughness (0.013)
A<sub>p</sub> = Pipe flow area (m<sup>2</sup>)
R = Phydratic Radius of wetted area (dia /4 for full pipes)
So = Pipe slope/gradient

| 150 Dun Skipper Drive – Proposed Commercial Development  | Servicing and SWM Report |
|----------------------------------------------------------|--------------------------|
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
| APPENDIX E                                               |                          |
|                                                          |                          |
| SWM Calculations, Excerpt from Pathways at Findlay Creel | k Design Brief           |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
|                                                          |                          |
| Novatech                                                 |                          |
|                                                          |                          |

Project #: 124011

Project Name: 100 Bill Leathem Drive

Location: Ottawa



# Proposed Commercial Development 150 Dun Skipper Drive

| Allowable Flow                                   |           |                |  |  |  |  |  |  |
|--------------------------------------------------|-----------|----------------|--|--|--|--|--|--|
|                                                  |           | Allowable Flow |  |  |  |  |  |  |
| Description                                      | Area (ha) | 5-year (L/s)   |  |  |  |  |  |  |
| Allowable Flow per IBI Design Brief <sup>1</sup> | 3.010     | 562            |  |  |  |  |  |  |
| Allocated Flow for Commercial Site               | 1.930     | 360            |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Design Brief, Pathways at Findlay Creek, 4800 Bank Street (Remer Lands), Phase 1, Leitrim Development Area, prepared by IBI (August 2017).

| •    |                                  |            | •          | Po          | ost - Develo   | oment Site F     | lows        | •             | •          |              |                                    |          |          |
|------|----------------------------------|------------|------------|-------------|----------------|------------------|-------------|---------------|------------|--------------|------------------------------------|----------|----------|
| Area | Description                      | Area (ha)  | A imp (ha) | A perv (ha) | C <sub>5</sub> | C <sub>100</sub> | Uncontrolle | ed Flow (L/s) | Controlled | d Flow (L/s) | Storage Required (m <sup>3</sup> ) |          | Provided |
| Alcu | Bescription                      | Area (IIa) | C=0.9      | C=0.2       | -5             | 9100             | 5-year      | 100-year      | 5-year     | 100-year     | 5-year                             | 100-year | (3)      |
| A-1  | Direct Runoff                    | 0.044      | 0.006      | 0.038       | 0.30           | 0.35             | 3.8         | 7.7           | -          | -            | -                                  | -        | -        |
| A-2  | Direct Runoff                    | 0.113      | 0.033      | 0.080       | 0.40           | 0.47             | 13.2        | 26.3          | -          | -            | -                                  | -        | -        |
| A-3  | Uncontrolled Site Flows          | 0.034      | 0.034      | 0.000       | 0.90           | 1.00             | 8.9         | 16.9          | -          | -            | -                                  | -        | -        |
| A-4  | Uncontrolled Site Flows          | 0.065      | 0.053      | 0.012       | 0.77           | 0.86             | 14.5        | 27.8          | -          | -            | -                                  | -        | -        |
| A-5  | Uncontrolled Site Flows          | 0.063      | 0.039      | 0.024       | 0.63           | 0.71             | 11.6        | 22.3          | -          | -            | -                                  | -        | -        |
| A-6  | Controlled Site Flows            | 0.206      | 0.164      | 0.042       | 0.76           | 0.85             | -           | -             | 14.7       | 15.1         | 28.9                               | 70.5     | 73.4     |
| A-7  | Controlled Site Flows            | 0.358      | 0.344      | 0.014       | 0.87           | 0.97             | -           | -             | 31.0       | 31.7         | 56.3                               | 137.6    | 177.5    |
| A-8  | Controlled Site Flows            | 0.505      | 0.483      | 0.022       | 0.87           | 0.97             | -           | -             | 111.7      | 189.5        | 42.8                               | 89.4     | 89.7     |
| R-1  | Building A Controlled Roof Flows | 0.304      | 0.304      | 0.000       | 0.90           | 1.00             | -           | -             | 7.16       | 9.1          | 65.6                               | 141.0    | 153.2    |
| R-2  | Building B Controlled Roof Flows | 0.089      | 0.089      | 0.000       | 0.90           | 1.00             | -           | -             | 2.9        | 3.3          | 17.1                               | 38.7     | 55.7     |
| R-3  | Building C Controlled Roof Flows | 0.103      | 0.103      | 0.000       | 0.90           | 1.00             | -           | -             | 3.8        | 4.4          | 18.2                               | 41.7     | 50.6     |
| R-4  | Building D Controlled Roof Flows | 0.046      | 0.046      | 0.000       | 0.90           | 1.00             |             | -             | 2.5        | 2.8          | 7.1                                | 17.0     | 22.5     |
|      | Totals :                         | 1.930      | -          | -           | -              | -                | 51.9        | 101.0         | 173.7      | 255.9        | 236.1                              | 536.0    | 622.6    |
|      |                                  |            |            |             |                |                  | Total Storm | water Flows : | 225.6      | 356.9        |                                    |          |          |

Overcontrolled

34

| Proposed Co  | mmercial   | Developme  | ent        |                   |       |
|--------------|------------|------------|------------|-------------------|-------|
| Novatech Pro |            |            |            |                   |       |
| REQUIRED S   | TORAGE -   | - 1:5 YEAR | EVENT      |                   |       |
| AREA A-1     | Direct Rur | noff       |            |                   |       |
| OTTAWA IDF   | CURVE      |            |            |                   |       |
| Area =       | 0.044      | ha         | Qallow =   | 3.8               | L/s   |
| C =          | 0.30       |            | Vol(max) = | 0.0               | $m^3$ |
|              |            |            | , ,        |                   |       |
| Time         | Intensity  | Q          | Qnet       | Vol               |       |
| (min)        | (mm/hr)    | (L/s)      | (L/s)      | (m <sup>3</sup> ) |       |
| 5            | 141.18     | 5.10       | 1.34       | 0.40              |       |
| 10           | 104.19     | 3.77       | 0.00       | 0.00              |       |
| 15           | 83.56      | 3.02       | -0.75      | -0.67             |       |
| 20           | 70.25      | 2.54       | -1.23      | -1.47             |       |
| 25           | 60.90      | 2.20       | -1.56      | -2.35             |       |
| 30           | 53.93      | 1.95       | -1.82      | -3.27             |       |
| 35           | 48.52      | 1.75       | -2.01      | -4.23             |       |
| 40           | 44.18      | 1.60       | -2.17      | -5.20             |       |
| 45           | 40.63      | 1.47       | -2.30      | -6.20             |       |
| 50           | 37.65      | 1.36       | -2.40      | -7.21             |       |
| 55           | 35.12      | 1.27       | -2.50      | -8.24             |       |
| 60           | 32.94      | 1.19       | -2.57      | -9.27             |       |
| 65           | 31.04      | 1.12       | -2.64      | -10.31            |       |
| 70           | 29.37      | 1.06       | -2.70      | -11.36            |       |
| 75           | 27.89      | 1.01       | -2.76      | -12.41            |       |
| 80           | 26.56      | 0.96       | -2.81      | -13.47            |       |
| 85           | 25.37      | 0.92       | -2.85      | -14.53            |       |
| 90           | 24.29      | 0.88       | -2.89      | -15.59            |       |
|              |            |            |            |                   |       |

| Proposed Commercial Development |            |       |            |         |       |  |  |  |  |  |  |
|---------------------------------|------------|-------|------------|---------|-------|--|--|--|--|--|--|
| Novatech Pro                    | •          |       |            |         |       |  |  |  |  |  |  |
| REQUIRED S                      |            |       | R EVENT    |         |       |  |  |  |  |  |  |
| AREA A-1                        | Direct Rui | noff  |            |         |       |  |  |  |  |  |  |
| OTTAWA IDF                      | CURVE      |       |            |         |       |  |  |  |  |  |  |
| Area =                          | 0.044      | ha    | Qallow =   | 7.7     | L/s   |  |  |  |  |  |  |
| C =                             | 0.35       |       | Vol(max) = | 0.0     | $m^3$ |  |  |  |  |  |  |
|                                 |            |       |            |         |       |  |  |  |  |  |  |
| Time                            | Intensity  | Q     | Qnet       | Vol     |       |  |  |  |  |  |  |
| (min)                           | (mm/hr)    | (L/s) | (L/s)      | $(m^3)$ |       |  |  |  |  |  |  |
| 5                               | 242.70     | 10.46 | 2.76       | 0.83    |       |  |  |  |  |  |  |
| 10                              | 178.56     | 7.69  | 0.00       | 0.00    |       |  |  |  |  |  |  |
| 15                              | 142.89     | 6.16  | -1.54      | -1.38   |       |  |  |  |  |  |  |
| 20                              | 119.95     | 5.17  | -2.53      | -3.03   |       |  |  |  |  |  |  |
| 25                              | 103.85     | 4.47  | -3.22      | -4.83   |       |  |  |  |  |  |  |
| 30                              | 91.87      | 3.96  | -3.74      | -6.72   |       |  |  |  |  |  |  |
| 35                              | 82.58      | 3.56  | -4.14      | -8.69   |       |  |  |  |  |  |  |
| 40                              | 75.15      | 3.24  | -4.46      | -10.69  |       |  |  |  |  |  |  |
| 45                              | 69.05      | 2.98  | -4.72      | -12.74  |       |  |  |  |  |  |  |
| 50                              | 63.95      | 2.76  | -4.94      | -14.81  |       |  |  |  |  |  |  |
| 55                              | 59.62      | 2.57  | -5.12      | -16.91  |       |  |  |  |  |  |  |
| 60                              | 55.89      | 2.41  | -5.29      | -19.03  |       |  |  |  |  |  |  |
| 65                              | 52.65      | 2.27  | -5.43      | -21.16  |       |  |  |  |  |  |  |
| 70                              | 49.79      | 2.15  | -5.55      | -23.30  |       |  |  |  |  |  |  |
| 75                              | 47.26      | 2.04  | -5.66      | -25.46  |       |  |  |  |  |  |  |
| 80                              | 44.99      | 1.94  | -5.76      | -27.63  |       |  |  |  |  |  |  |
| 85                              | 42.95      | 1.85  | -5.84      | -29.80  |       |  |  |  |  |  |  |
| 90                              | 41.11      | 1.77  | -5.92      | -31.98  |       |  |  |  |  |  |  |
|                                 |            |       |            |         |       |  |  |  |  |  |  |

| Proposed Co  | mmercial   | Developme | ent        |                   |       |
|--------------|------------|-----------|------------|-------------------|-------|
| Novatech Pro |            |           |            |                   |       |
| REQUIRED S   |            |           | EVENT      |                   |       |
| AREA A-2     | Direct Rui | noff      |            |                   |       |
| OTTAWA IDF   | CURVE      |           |            |                   |       |
| Area =       | 0.113      | ha        | Qallow =   | 13.2              | L/s   |
| C =          | 0.40       |           | Vol(max) = | 0.0               | $m^3$ |
|              |            |           | , ,        |                   |       |
| Time         | Intensity  | Q         | Qnet       | Vol               |       |
| (min)        | (mm/hr)    | (L/s)     | (L/s)      | (m <sup>3</sup> ) |       |
| 5            | 141.18     | 17.94     | 4.70       | 1.41              |       |
| 10           | 104.19     | 13.24     | 0.00       | 0.00              |       |
| 15           | 83.56      | 10.62     | -2.62      | -2.36             |       |
| 20           | 70.25      | 8.93      | -4.31      | -5.17             |       |
| 25           | 60.90      | 7.74      | -5.50      | -8.25             |       |
| 30           | 53.93      | 6.85      | -6.39      | -11.49            |       |
| 35           | 48.52      | 6.16      | -7.07      | -14.85            |       |
| 40           | 44.18      | 5.61      | -7.62      | -18.30            |       |
| 45           | 40.63      | 5.16      | -8.08      | -21.80            |       |
| 50           | 37.65      | 4.78      | -8.45      | -25.36            |       |
| 55           | 35.12      | 4.46      | -8.77      | -28.96            |       |
| 60           | 32.94      | 4.19      | -9.05      | -32.59            |       |
| 65           | 31.04      | 3.94      | -9.29      | -36.24            |       |
| 70           | 29.37      | 3.73      | -9.51      | -39.92            |       |
| 75           | 27.89      | 3.54      | -9.69      | -43.62            |       |
| 80           | 26.56      | 3.37      | -9.86      | -47.34            |       |
| 85           | 25.37      | 3.22      | -10.01     | -51.07            |       |
| 90           | 24.29      | 3.09      | -10.15     | -54.82            |       |
|              |            |           |            |                   |       |

|              | Proposed Commercial Development |             |            |                   |       |  |  |  |  |  |  |  |
|--------------|---------------------------------|-------------|------------|-------------------|-------|--|--|--|--|--|--|--|
| Novatech Pro | ject No. 1                      | 24107       |            |                   |       |  |  |  |  |  |  |  |
| REQUIRED S   | TORAGE -                        | · 1:100 YEA | R EVENT    |                   |       |  |  |  |  |  |  |  |
| AREA A-2     | Direct Rur                      | noff        |            |                   |       |  |  |  |  |  |  |  |
| OTTAWA IDF   | CURVE                           |             |            |                   |       |  |  |  |  |  |  |  |
| Area =       | 0.113                           | ha          | Qallow =   | 26.3              | L/s   |  |  |  |  |  |  |  |
| C =          | 0.47                            |             | Vol(max) = | 0.0               | $m^3$ |  |  |  |  |  |  |  |
|              |                                 |             |            |                   |       |  |  |  |  |  |  |  |
| Time         | Intensity                       | Q           | Qnet       | Vol               |       |  |  |  |  |  |  |  |
| (min)        | (mm/hr)                         | (L/s)       | (L/s)      | (m <sup>3</sup> ) |       |  |  |  |  |  |  |  |
| 5            | 242.70                          | 35.76       | 9.45       | 2.83              |       |  |  |  |  |  |  |  |
| 10           | 178.56                          | 26.31       | -0.01      | 0.00              |       |  |  |  |  |  |  |  |
| 15           | 142.89                          | 21.05       | -5.26      | -4.73             |       |  |  |  |  |  |  |  |
| 20           | 119.95                          | 17.67       | -8.64      | -10.37            |       |  |  |  |  |  |  |  |
| 25           | 103.85                          | 15.30       | -11.01     | -16.52            |       |  |  |  |  |  |  |  |
| 30           | 91.87                           | 13.54       | -12.78     | -23.00            |       |  |  |  |  |  |  |  |
| 35           | 82.58                           | 12.17       | -14.15     | -29.71            |       |  |  |  |  |  |  |  |
| 40           | 75.15                           | 11.07       | -15.24     | -36.58            |       |  |  |  |  |  |  |  |
| 45           | 69.05                           | 10.17       | -16.14     | -43.58            |       |  |  |  |  |  |  |  |
| 50           | 63.95                           | 9.42        | -16.89     | -50.68            |       |  |  |  |  |  |  |  |
| 55           | 59.62                           | 8.78        | -17.53     | -57.85            |       |  |  |  |  |  |  |  |
| 60           | 55.89                           | 8.24        | -18.08     | -65.09            |       |  |  |  |  |  |  |  |
| 65           | 52.65                           | 7.76        | -18.56     | -72.38            |       |  |  |  |  |  |  |  |
| 70           | 49.79                           | 7.34        | -18.98     | -79.71            |       |  |  |  |  |  |  |  |
| 75           | 47.26                           | 6.96        | -19.35     | -87.09            |       |  |  |  |  |  |  |  |
| 80           | 44.99                           | 6.63        | -19.69     | -94.49            |       |  |  |  |  |  |  |  |
| 85           | 42.95                           | 6.33        | -19.99     | -101.93           |       |  |  |  |  |  |  |  |
| 90           | 41.11                           | 6.06        | -20.26     | -109.39           |       |  |  |  |  |  |  |  |
|              |                                 |             |            |                   |       |  |  |  |  |  |  |  |

| Proposed Commercial Development<br>Novatech Project No. 124107 |           |              |            |                   |       |  |  |  |  |  |  |
|----------------------------------------------------------------|-----------|--------------|------------|-------------------|-------|--|--|--|--|--|--|
|                                                                |           |              |            |                   |       |  |  |  |  |  |  |
| REQUIRED S                                                     | _         |              |            |                   |       |  |  |  |  |  |  |
|                                                                |           | led Site Flo | ws         |                   |       |  |  |  |  |  |  |
| OTTAWA IDF                                                     |           |              |            |                   |       |  |  |  |  |  |  |
| Area =                                                         | 0.034     | ha           | Qallow =   | 8.9               | L/s   |  |  |  |  |  |  |
| C =                                                            | 0.90      |              | Vol(max) = | 0.0               | $m^3$ |  |  |  |  |  |  |
|                                                                |           |              |            |                   |       |  |  |  |  |  |  |
| Time                                                           | Intensity | Q            | Qnet       | Vol               |       |  |  |  |  |  |  |
| (min)                                                          | (mm/hr)   | (L/s)        | (L/s)      | (m <sup>3</sup> ) |       |  |  |  |  |  |  |
| 5                                                              | 141.18    | 12.01        | 3.15       | 0.94              |       |  |  |  |  |  |  |
| 10                                                             | 104.19    | 8.86         | 0.00       | 0.00              |       |  |  |  |  |  |  |
| 15                                                             | 83.56     | 7.11         | -1.76      | -1.58             |       |  |  |  |  |  |  |
| 20                                                             | 70.25     | 5.98         | -2.89      | -3.46             |       |  |  |  |  |  |  |
| 25                                                             | 60.90     | 5.18         | -3.68      | -5.52             |       |  |  |  |  |  |  |
| 30                                                             | 53.93     | 4.59         | -4.28      | -7.70             |       |  |  |  |  |  |  |
| 35                                                             | 48.52     | 4.13         | -4.74      | -9.95             |       |  |  |  |  |  |  |
| 40                                                             | 44.18     | 3.76         | -5.10      | -12.25            |       |  |  |  |  |  |  |
| 45                                                             | 40.63     | 3.46         | -5.41      | -14.60            |       |  |  |  |  |  |  |
| 50                                                             | 37.65     | 3.20         | -5.66      | -16.98            |       |  |  |  |  |  |  |
| 55                                                             | 35.12     | 2.99         | -5.88      | -19.39            |       |  |  |  |  |  |  |
| 60                                                             | 32.94     | 2.80         | -6.06      | -21.82            |       |  |  |  |  |  |  |
| 65                                                             | 31.04     | 2.64         | -6.22      | -24.27            |       |  |  |  |  |  |  |
| 70                                                             | 29.37     | 2.50         | -6.36      | -26.73            |       |  |  |  |  |  |  |
| 75                                                             | 27.89     | 2.37         | -6.49      | -29.21            |       |  |  |  |  |  |  |
| 80                                                             | 26.56     | 2.26         | -6.60      | -31.70            |       |  |  |  |  |  |  |
| 85                                                             | 25.37     | 2.16         | -6.71      | -34.20            |       |  |  |  |  |  |  |
| 90                                                             | 24.29     | 2.07         | -6.80      | -36.70            |       |  |  |  |  |  |  |
|                                                                |           |              |            |                   |       |  |  |  |  |  |  |

| Proposed Commercial Development Novatech Project No. 124107 |             |              |            |                   |       |  |  |  |  |  |  |
|-------------------------------------------------------------|-------------|--------------|------------|-------------------|-------|--|--|--|--|--|--|
| Novatech Pro                                                | oject No. 1 | 24107        |            |                   |       |  |  |  |  |  |  |
| REQUIRED S                                                  |             |              |            |                   |       |  |  |  |  |  |  |
|                                                             |             | led Site Flo | ws         |                   |       |  |  |  |  |  |  |
| OTTAWA IDF                                                  | CURVE       |              |            |                   |       |  |  |  |  |  |  |
| Area =                                                      | 0.034       | ha           | Qallow =   | 16.9              | L/s   |  |  |  |  |  |  |
| C =                                                         | 1.00        |              | Vol(max) = | 0.0               | $m^3$ |  |  |  |  |  |  |
|                                                             |             |              |            |                   |       |  |  |  |  |  |  |
| Time                                                        | Intensity   | Q            | Qnet       | Vol               |       |  |  |  |  |  |  |
| (min)                                                       | (mm/hr)     | (L/s)        | (L/s)      | (m <sup>3</sup> ) |       |  |  |  |  |  |  |
| 5                                                           | 242.70      | 22.94        | 6.06       | 1.82              |       |  |  |  |  |  |  |
| 10                                                          | 178.56      | 16.88        | 0.00       | 0.00              |       |  |  |  |  |  |  |
| 15                                                          | 142.89      | 13.51        | -3.37      | -3.04             |       |  |  |  |  |  |  |
| 20                                                          | 119.95      | 11.34        | -5.54      | -6.65             |       |  |  |  |  |  |  |
| 25                                                          | 103.85      | 9.82         | -7.07      | -10.60            |       |  |  |  |  |  |  |
| 30                                                          | 91.87       | 8.68         | -8.20      | -14.76            |       |  |  |  |  |  |  |
| 35                                                          | 82.58       | 7.81         | -9.08      | -19.06            |       |  |  |  |  |  |  |
| 40                                                          | 75.15       | 7.10         | -9.78      | -23.47            |       |  |  |  |  |  |  |
| 45                                                          | 69.05       | 6.53         | -10.35     | -27.96            |       |  |  |  |  |  |  |
| 50                                                          | 63.95       | 6.04         | -10.84     | -32.51            |       |  |  |  |  |  |  |
| 55                                                          | 59.62       | 5.64         | -11.25     | -37.11            |       |  |  |  |  |  |  |
| 60                                                          | 55.89       | 5.28         | -11.60     | -41.75            |       |  |  |  |  |  |  |
| 65                                                          | 52.65       | 4.98         | -11.91     | -46.43            |       |  |  |  |  |  |  |
| 70                                                          | 49.79       | 4.71         | -12.18     | -51.14            |       |  |  |  |  |  |  |
| 75                                                          | 47.26       | 4.47         | -12.41     | -55.87            |       |  |  |  |  |  |  |
| 80                                                          | 44.99       | 4.25         | -12.63     | -60.62            |       |  |  |  |  |  |  |
| 85                                                          | 42.95       | 4.06         | -12.82     | -65.39            |       |  |  |  |  |  |  |
| 90                                                          | 41.11       | 3.89         | -13.00     | -70.18            |       |  |  |  |  |  |  |
|                                                             |             |              |            |                   |       |  |  |  |  |  |  |

| Proposed Co                      | mmercial                          | Developme | ent        |                   | Proposed Commercial Development |  |  |  |  |  |  |  |  |  |  |  |
|----------------------------------|-----------------------------------|-----------|------------|-------------------|---------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Novatech Pro                     | Novatech Project No. 124107       |           |            |                   |                                 |  |  |  |  |  |  |  |  |  |  |  |
| REQUIRED S                       | REQUIRED STORAGE - 1:5 YEAR EVENT |           |            |                   |                                 |  |  |  |  |  |  |  |  |  |  |  |
| AREA A-4 Uncontrolled Site Flows |                                   |           |            |                   |                                 |  |  |  |  |  |  |  |  |  |  |  |
| OTTAWA IDF                       | CURVE                             |           |            |                   |                                 |  |  |  |  |  |  |  |  |  |  |  |
| Area =                           | 0.065                             | ha        | Qallow =   | 14.5              | L/s                             |  |  |  |  |  |  |  |  |  |  |  |
| C =                              | 0.77                              |           | Vol(max) = | 0.0               | $m^3$                           |  |  |  |  |  |  |  |  |  |  |  |
|                                  |                                   |           |            |                   |                                 |  |  |  |  |  |  |  |  |  |  |  |
| Time                             | Intensity                         | Q         | Qnet       | Vol               |                                 |  |  |  |  |  |  |  |  |  |  |  |
| (min)                            | (mm/hr)                           | (L/s)     | (L/s)      | (m <sup>3</sup> ) |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 5                                | 141.18                            | 19.66     | 5.15       | 1.55              |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 10                               | 104.19                            | 14.51     | 0.00       | 0.00              |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 15                               | 83.56                             | 11.64     | -2.87      | -2.59             |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 20                               | 70.25                             | 9.78      | -4.73      | -5.67             |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 25                               | 60.90                             | 8.48      | -6.03      | -9.04             |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 30                               | 53.93                             | 7.51      | -7.00      | -12.60            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 35                               | 48.52                             | 6.76      | -7.75      | -16.28            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 40                               | 44.18                             | 6.15      | -8.36      | -20.06            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 45                               | 40.63                             | 5.66      | -8.85      | -23.90            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 50                               | 37.65                             | 5.24      | -9.27      | -27.80            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 55                               | 35.12                             | 4.89      | -9.62      | -31.74            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 60                               | 32.94                             | 4.59      | -9.92      | -35.72            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 65                               | 31.04                             | 4.32      | -10.19     | -39.73            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 70                               | 29.37                             | 4.09      | -10.42     | -43.77            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 75                               | 27.89                             | 3.88      | -10.63     | -47.82            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 80                               | 26.56                             | 3.70      | -10.81     | -51.90            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 85                               | 25.37                             | 3.53      | -10.98     | -55.99            |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 90                               | 24.29                             | 3.38      | -11.13     | -60.09            |                                 |  |  |  |  |  |  |  |  |  |  |  |
|                                  |                                   |           |            |                   |                                 |  |  |  |  |  |  |  |  |  |  |  |

| Proposed Commercial Development |           |              |            |                   |       |  |  |  |  |  |  |
|---------------------------------|-----------|--------------|------------|-------------------|-------|--|--|--|--|--|--|
| Novatech Pro                    | •         |              |            |                   |       |  |  |  |  |  |  |
| REQUIRED S                      |           |              |            |                   |       |  |  |  |  |  |  |
| AREA A-4                        | Uncontrol | led Site Flo | ws         |                   |       |  |  |  |  |  |  |
| OTTAWA IDF                      | CURVE     |              |            |                   |       |  |  |  |  |  |  |
| Area =                          | 0.065     | ha           | Qallow =   | 27.8              | L/s   |  |  |  |  |  |  |
| C =                             | 0.86      |              | Vol(max) = | 0.0               | $m^3$ |  |  |  |  |  |  |
|                                 |           |              |            |                   |       |  |  |  |  |  |  |
| Time                            | Intensity | Q            | Qnet       | Vol               |       |  |  |  |  |  |  |
| (min)                           | (mm/hr)   | (L/s)        | (L/s)      | (m <sup>3</sup> ) |       |  |  |  |  |  |  |
| 5                               | 242.70    | 37.78        | 9.98       | 2.99              |       |  |  |  |  |  |  |
| 10                              | 178.56    | 27.80        | -0.01      | 0.00              |       |  |  |  |  |  |  |
| 15                              | 142.89    | 22.25        | -5.56      | -5.00             |       |  |  |  |  |  |  |
| 20                              | 119.95    | 18.67        | -9.13      | -10.96            |       |  |  |  |  |  |  |
| 25                              | 103.85    | 16.17        | -11.64     | -17.46            |       |  |  |  |  |  |  |
| 30                              | 91.87     | 14.30        | -13.50     | -24.30            |       |  |  |  |  |  |  |
| 35                              | 82.58     | 12.86        | -14.95     | -31.39            |       |  |  |  |  |  |  |
| 40                              | 75.15     | 11.70        | -16.11     | -38.65            |       |  |  |  |  |  |  |
| 45                              | 69.05     | 10.75        | -17.05     | -46.05            |       |  |  |  |  |  |  |
| 50                              | 63.95     | 9.96         | -17.85     | -53.54            |       |  |  |  |  |  |  |
| 55                              | 59.62     | 9.28         | -18.52     | -61.12            |       |  |  |  |  |  |  |
| 60                              | 55.89     | 8.70         | -19.10     | -68.77            |       |  |  |  |  |  |  |
| 65                              | 52.65     | 8.20         | -19.61     | -76.47            |       |  |  |  |  |  |  |
| 70                              | 49.79     | 7.75         | -20.05     | -84.22            |       |  |  |  |  |  |  |
| 75                              | 47.26     | 7.36         | -20.45     | -92.01            |       |  |  |  |  |  |  |
| 80                              | 44.99     | 7.00         | -20.80     | -99.84            |       |  |  |  |  |  |  |
| 85                              | 42.95     | 6.69         | -21.12     | -107.70           |       |  |  |  |  |  |  |
| 90                              | 41.11     | 6.40         | -21.40     | -115.58           |       |  |  |  |  |  |  |
|                                 |           |              |            |                   |       |  |  |  |  |  |  |

| Proposed Commercial Development   |                                  |       |            |                   |       |  |  |  |  |
|-----------------------------------|----------------------------------|-------|------------|-------------------|-------|--|--|--|--|
|                                   | Novatech Project No. 124107      |       |            |                   |       |  |  |  |  |
| REQUIRED STORAGE - 1:5 YEAR EVENT |                                  |       |            |                   |       |  |  |  |  |
|                                   | AREA A-5 Uncontrolled Site Flows |       |            |                   |       |  |  |  |  |
| OTTAWA IDF                        |                                  |       |            |                   |       |  |  |  |  |
| Area =                            | 0.063                            | ha    | Qallow =   | 11.6              | L/s   |  |  |  |  |
| C =                               | 0.63                             |       | Vol(max) = | 0.0               | $m^3$ |  |  |  |  |
|                                   |                                  |       |            |                   |       |  |  |  |  |
| Time                              | Intensity                        | Q     | Qnet       | Vol               |       |  |  |  |  |
| (min)                             | (mm/hr)                          | (L/s) | (L/s)      | (m <sup>3</sup> ) |       |  |  |  |  |
| 5                                 | 141.18                           | 15.66 | 4.10       | 1.23              |       |  |  |  |  |
| 10                                | 104.19                           | 11.56 | 0.00       | 0.00              |       |  |  |  |  |
| 15                                | 83.56                            | 9.27  | -2.29      | -2.06             |       |  |  |  |  |
| 20                                | 70.25                            | 7.79  | -3.76      | -4.52             |       |  |  |  |  |
| 25                                | 60.90                            | 6.75  | -4.80      | -7.20             |       |  |  |  |  |
| 30                                | 53.93                            | 5.98  | -5.58      | -10.04            |       |  |  |  |  |
| 35                                | 48.52                            | 5.38  | -6.18      | -12.97            |       |  |  |  |  |
| 40                                | 44.18                            | 4.90  | -6.66      | -15.97            |       |  |  |  |  |
| 45                                | 40.63                            | 4.51  | -7.05      | -19.04            |       |  |  |  |  |
| 50                                | 37.65                            | 4.18  | -7.38      | -22.14            |       |  |  |  |  |
| 55                                | 35.12                            | 3.90  | -7.66      | -25.28            |       |  |  |  |  |
| 60                                | 32.94                            | 3.65  | -7.90      | -28.45            |       |  |  |  |  |
| 65                                | 31.04                            | 3.44  | -8.11      | -31.64            |       |  |  |  |  |
| 70                                | 29.37                            | 3.26  | -8.30      | -34.86            |       |  |  |  |  |
| 75                                | 27.89                            | 3.09  | -8.46      | -38.09            |       |  |  |  |  |
| 80                                | 26.56                            | 2.95  | -8.61      | -41.33            |       |  |  |  |  |
| 85                                | 25.37                            | 2.81  | -8.74      | -44.59            |       |  |  |  |  |
| 90                                | 24.29                            | 2.69  | -8.86      | -47.86            |       |  |  |  |  |
|                                   |                                  |       |            |                   |       |  |  |  |  |

| Proposed Commercial Development  |                                     |       |            |         |       |  |  |  |  |
|----------------------------------|-------------------------------------|-------|------------|---------|-------|--|--|--|--|
| Novatech Pro                     | •                                   |       |            |         |       |  |  |  |  |
|                                  | REQUIRED STORAGE - 1:100 YEAR EVENT |       |            |         |       |  |  |  |  |
| AREA A-5 Uncontrolled Site Flows |                                     |       |            |         |       |  |  |  |  |
| OTTAWA IDF                       | CURVE                               |       |            |         |       |  |  |  |  |
| Area =                           | 0.063                               | ha    | Qallow =   | 22.3    | L/s   |  |  |  |  |
| C =                              | 0.71                                |       | Vol(max) = | 0.0     | $m^3$ |  |  |  |  |
|                                  |                                     |       |            |         |       |  |  |  |  |
| Time                             | Intensity                           | Q     | Qnet       | Vol     |       |  |  |  |  |
| (min)                            | (mm/hr)                             | (L/s) | (L/s)      | $(m^3)$ |       |  |  |  |  |
| 5                                | 242.70                              | 30.36 | 8.02       | 2.41    |       |  |  |  |  |
| 10                               | 178.56                              | 22.34 | -0.01      | 0.00    |       |  |  |  |  |
| 15                               | 142.89                              | 17.88 | -4.47      | -4.02   |       |  |  |  |  |
| 20                               | 119.95                              | 15.01 | -7.34      | -8.80   |       |  |  |  |  |
| 25                               | 103.85                              | 12.99 | -9.35      | -14.03  |       |  |  |  |  |
| 30                               | 91.87                               | 11.49 | -10.85     | -19.53  |       |  |  |  |  |
| 35                               | 82.58                               | 10.33 | -12.01     | -25.23  |       |  |  |  |  |
| 40                               | 75.15                               | 9.40  | -12.94     | -31.06  |       |  |  |  |  |
| 45                               | 69.05                               | 8.64  | -13.70     | -37.00  |       |  |  |  |  |
| 50                               | 63.95                               | 8.00  | -14.34     | -43.03  |       |  |  |  |  |
| 55                               | 59.62                               | 7.46  | -14.88     | -49.12  |       |  |  |  |  |
| 60                               | 55.89                               | 6.99  | -15.35     | -55.26  |       |  |  |  |  |
| 65                               | 52.65                               | 6.59  | -15.76     | -61.45  |       |  |  |  |  |
| 70                               | 49.79                               | 6.23  | -16.11     | -67.68  |       |  |  |  |  |
| 75                               | 47.26                               | 5.91  | -16.43     | -73.94  |       |  |  |  |  |
| 80                               | 44.99                               | 5.63  | -16.71     | -80.23  |       |  |  |  |  |
| 85                               | 42.95                               | 5.37  | -16.97     | -86.54  |       |  |  |  |  |
| 90                               | 41.11                               | 5.14  | -17.20     | -92.88  |       |  |  |  |  |
|                                  |                                     |       |            |         |       |  |  |  |  |

| Proposed Comr    | nercial Deve | elopment  | Storage Calculations Using Average |              |              |
|------------------|--------------|-----------|------------------------------------|--------------|--------------|
| Novatech Project |              |           | Release Rate Eq                    | ual to 50% ( | of the Qpeak |
| REQUIRED STO     |              |           |                                    |              |              |
|                  | Controlled S | ite Flows |                                    |              |              |
| OTTAWA IDF CI    | URVE         |           | Qpeak =                            | 11.0         | L/s          |
| Area =           | 0.206        | ha        | Qavg =                             | 5.5          | L/s          |
| C =              | 0.76         |           | Vol(max) =                         | 21.4         | m3           |
|                  |              |           | (Vol calculated fo                 | r Qavg)      |              |
| Time             | Intensity    | Q         | Qnet                               | Vol          |              |
| (min)            | (mm/hr)      | (L/s)     | (L/s)                              | (m3)         |              |
| 5                | 103.57       | 44.92     | 39.42                              | 11.83        |              |
| 10               | 76.81        | 33.31     | 27.81                              | 16.69        |              |
| 15               | 61.77        | 26.79     | 21.29                              | 19.16        |              |
| 20               | 52.03        | 22.56     | 17.06                              | 20.48        |              |
| 25               | 45.17        | 19.59     | 14.09                              | 21.13        |              |
| 30               | 40.04        | 17.37     | 11.87                              | 21.36        |              |
| 35               | 36.06        | 15.64     | 10.14                              | 21.29        |              |
| 40               | 32.86        | 14.25     | 8.75                               | 21.01        |              |
| 45               | 30.24        | 13.11     | 7.61                               | 20.56        |              |
| 50               | 28.04        | 12.16     | 6.66                               | 19.98        |              |
| 55               | 26.17        | 11.35     | 5.85                               | 19.30        |              |
| 60               | 24.56        | 10.65     | 5.15                               | 18.54        |              |
| 65               | 23.15        | 10.04     | 4.54                               | 17.71        |              |
| 70               | 21.91        | 9.50      | 4.00                               | 16.81        |              |
| 75               | 20.81        | 9.03      | 3.53                               | 15.87        |              |
| 90               | 18.14        | 7.87      | 2.37                               | 12.79        |              |
| 105              | 16.13        | 7.00      | 1.50                               | 9.43         |              |
| 120              | 14.56        | 6.32      | 0.82                               | 5.87         |              |
| 135              | 13.30        | 5.77      | 0.27                               | 2.16         |              |
| 150              | 12.25        | 5.31      | -0.19                              | -1.68        |              |
|                  |              |           |                                    |              |              |

| roposed Com                                                                                  | mercial Deve | elopment   | Storage Calculation                    | ons Using A | verage |
|----------------------------------------------------------------------------------------------|--------------|------------|----------------------------------------|-------------|--------|
| Novatech Project No. 124107 REQUIRED STORAGE - 1:5 YEAR EVENT AREA A-6 Controlled Site Flows |              |            | Release Rate Equal to 50% of the Qpeak |             |        |
| OTTAWA IDE C                                                                                 |              | ite i iows | Qpeak =                                | 14.7        | L/s    |
| Area =                                                                                       | 0.206        | ha         | Qavg =                                 | 7.4         | L/s    |
| C =                                                                                          | 0.76         | iid        | Vol(max) =                             | 28.9        | m3     |
| Ü                                                                                            | 00           |            | (Vol calculated for                    |             | 1110   |
| Time                                                                                         | Intensity    | Q          | Qnet                                   | Vol         |        |
| (min)                                                                                        | (mm/hr)      | (L/s)      | (L/s)                                  | (m3)        |        |
| 5                                                                                            | 141.18       | 61.23      | 53.88                                  | 16.16       |        |
| 10                                                                                           | 104.19       | 45.19      | 37.84                                  | 22.70       |        |
| 15                                                                                           | 83.56        | 36.24      | 28.89                                  | 26.00       |        |
| 20                                                                                           | 70.25        | 30.47      | 23.12                                  | 27.74       |        |
| 25                                                                                           | 60.90        | 26.41      | 19.06                                  | 28.59       |        |
| 30                                                                                           | 53.93        | 23.39      | 16.04                                  | 28.87       |        |
| 35                                                                                           | 48.52        | 21.04      | 13.69                                  | 28.75       |        |
| 40                                                                                           | 44.18        | 19.16      | 11.81                                  | 28.35       |        |
| 45                                                                                           | 40.63        | 17.62      | 10.27                                  | 27.73       |        |
| 50                                                                                           | 37.65        | 16.33      | 8.98                                   | 26.94       |        |
| 55                                                                                           | 35.12        | 15.23      | 7.88                                   | 26.01       |        |
| 60                                                                                           | 32.94        | 14.29      | 6.94                                   | 24.97       |        |
| 65                                                                                           | 31.04        | 13.46      | 6.11                                   | 23.84       |        |
| 70                                                                                           | 29.37        | 12.74      | 5.39                                   | 22.63       |        |
| 75                                                                                           | 27.89        | 12.09      | 4.74                                   | 21.35       |        |
| 90                                                                                           | 24.29        | 10.53      | 3.18                                   | 17.19       |        |
| 105                                                                                          | 21.58        | 9.36       | 2.01                                   | 12.66       |        |
| 120                                                                                          | 19.47        | 8.44       | 1.09                                   | 7.87        |        |
| 135                                                                                          | 17.76        | 7.70       | 0.35                                   | 2.87        |        |
| 150                                                                                          | 16.36        | 7.10       | -0.25                                  | -2.29       |        |

|            | nercial Dev  |              | Storage Calculation |            |              |
|------------|--------------|--------------|---------------------|------------|--------------|
|            | ct No. 12410 |              | Release Rate Eq     | ual to 50% | of the Qpeak |
|            |              | 00 YEAR EVEN | Г                   |            |              |
|            | ontrolled S  | ite Flows    |                     |            |              |
| AWA IDF CI |              |              | Qpeak =             | 15.1       | L/s          |
| Area =     | 0.206        | ha           | Qavg =              | 7.6        | L/s          |
| C =        | 0.85         |              | Vol(max) =          | 70.5       | m3           |
|            |              |              | (Vol calculated for |            |              |
| Time       | Intensity    | Q            | Qnet                | Vol        |              |
| (min)      | (mm/hr)      | (L/s)        | (L/s)               | (m3)       |              |
| 5          | 242.70       | 117.74       | 110.19              | 33.06      |              |
| 10         | 178.56       | 86.62        | 79.07               | 47.44      |              |
| 15         | 142.89       | 69.32        | 61.77               | 55.59      |              |
| 20         | 119.95       | 58.19        | 50.64               | 60.77      |              |
| 25         | 103.85       | 50.38        | 42.83               | 64.24      |              |
| 30         | 91.87        | 44.57        | 37.02               | 66.63      |              |
| 35         | 82.58        | 40.06        | 32.51               | 68.27      |              |
| 40         | 75.15        | 36.45        | 28.90               | 69.37      |              |
| 45         | 69.05        | 33.50        | 25.95               | 70.06      |              |
| 50         | 63.95        | 31.02        | 23.47               | 70.42      |              |
| 55         | 59.62        | 28.92        | 21.37               | 70.53      |              |
| 60         | 55.89        | 27.12        | 19.57               | 70.43      |              |
| 65         | 52.65        | 25.54        | 17.99               | 70.16      |              |
| 70         | 49.79        | 24.15        | 16.60               | 69.73      |              |
| 75         | 47.26        | 22.92        | 15.37               | 69.18      |              |
| 90         | 41.11        | 19.94        | 12.39               | 66.92      |              |
| 105        | 36.50        | 17.71        | 10.16               | 63.98      |              |
| 120        | 32.89        | 15.96        | 8.41                | 60.53      |              |
| 135        | 30.00        | 14.55        | 7.00                | 56.71      |              |
| 150        | 27.61        | 13.39        | 5.84                | 52.60      |              |

| Structures | Size (mm) | Area (m²) | T/G   | Inv IN | Inv OUT |
|------------|-----------|-----------|-------|--------|---------|
| STMMH 102  | 1219      | 1.17      | 97.35 | 95.10  | 94.97   |
| STMMH 100  | 1219      | 1.17      | 97.24 | -      | 95.23   |
|            |           |           |       |        |         |

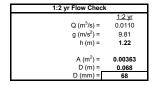
|            | Storage           | Total S           |                   |                   | Storage           | Surface           |                   |                   | Underground<br>Storage |                   | torage Table      | Area A-6: S |           |
|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|-------------------|-------------|-----------|
| 1          | Total             | Ponding           | 3 3               | CE                | 3 2               | CE                | B 1               | CI                | Combined               | STMMH 100         | STMMH 102         | System      |           |
|            | Volume            | Volume            | Volume            | Area              | Volume            | Area              | Volume            | Area              | Volume                 | Volume            | Volume            | Depth       | Elevation |
|            | (m <sup>3</sup> ) | (m <sup>3</sup> ) | (m <sup>3</sup> ) | (m <sup>2</sup> ) | (m <sup>3</sup> ) | (m <sup>2</sup> ) | (m <sup>3</sup> ) | (m <sup>2</sup> ) | (m <sup>3</sup> )      | (m <sup>3</sup> ) | (m <sup>3</sup> ) | (m)         | (m)       |
| Design Hea | 0                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                      | -                 | -                 | 0.00        | 94.97     |
| -          | 1.9               | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 1.93                   | -0.11             | 0.20              | 0.17        | 95.14     |
| 0.04       | 9.8               | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 9.81                   | 0.16              | 0.47              | 0.40        | 95.37     |
| 0.27       | 19.8              | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 19.85                  | 0.60              | 0.90              | 0.77        | 95.74     |
| 0.64       | 21.6              | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 21.62                  | 1.48              | 1.79              | 1.53        | 96.50     |
| 1.40       | 22.8              | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 22.79                  | 2.07              | 2.37              | 2.03        | 97.00     |
| 1.90       | 22.9              | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 22.90                  | 2.07              | 2.49              | 2.13        | 97.10     |
| 2.00       | 22.9              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 22.90                  | 2.07              | 2.49              | 2.20        | 97.17     |
| 2.07       | 26.4              | 3.45              | 1.15              | 28.68             | 1.19              | 29.82             | 1.11              | 27.68             | 22.90                  | 2.07              | 2.49              | 2.28        | 97.25     |
| 2.15       | 33.6              | 10.74             | 3.48              | 64.80             | 3.74              | 72.00             | 3.52              | 68.87             | 22.90                  | 2.07              | 2.49              | 2.33        | 97.30     |
| 2.20       | 48.3              | 25.42             | 8.08              | 119.15            | 8.84              | 131.88            | 8.50              | 130.36            | 22.90                  | 2.07              | 2.49              | 2.38        | 97.35     |
| 2.30       | 73.4              | 50.50             | 15.82             | 190.18            | 17.49             | 214.48            | 17.19             | 217.00            | 22.90                  | 2.07              | 2.49              | 2.43        | 97.40     |

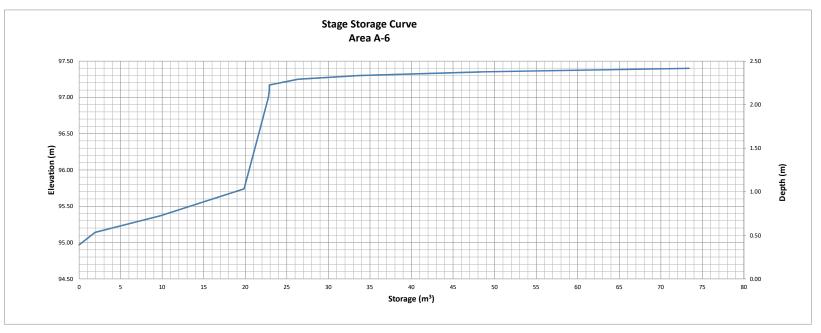
 PI = 3.141592654

 pipe LD.=
 609

 U/G Storage Pipe Volume

 End Area
 0.291
 (m²)


 Total Length
 63.0
 (m)


 Pipe Volume
 18.4
 (m³)

| Tempest Vortex LMF ICD 105 |
|----------------------------|
| 1:100 Yr                   |
| Flow (L/s) = 15.1          |
| Head (m) = 2.29            |
| Elevation (m) = 97.39      |
| Outlet Pipe Dia.(mm) = 254 |
| Volume (m3) = 70.5         |
| 1:5 Yr                     |
| Flow (L/s) = 14.7          |
| Head (m) = 2.18            |
| Elevation (m) = 97.28      |
| Outlet Pipe Dia.(mm) = 254 |
| Volume (m3) = 28.9         |
| 1:2 Yr                     |
| Flow (L/s) = 11.0          |
| Head (m) = 1.22            |
| Elevation (m) = 96.32      |
| Outlet Pipe Dia.(mm) = 254 |
| Volume (m3) = 21.4         |

| Q=0.62xAx(2g                   | Size - 1:100 yr Flor | . Gilook   |
|--------------------------------|----------------------|------------|
| Q=0.62XAX(2g                   | 1:100 vr             | Flow Check |
| $Q (m^3/s) =$                  | 0.0151               | 0.0151     |
| $Q (m^3/s) =$<br>$g (m/s^2) =$ | 9.81                 | 9.81       |
| h (m) =                        | 2.29                 | 2.29       |
| A (m <sup>2</sup> ) =          | 0.003631063          | 0.00363    |
| D (m) =                        | 0.067994209          | 0.06800    |
| D (mm) =                       | 68                   | 68.0       |

| 1:5 yr Flow Check     |         |
|-----------------------|---------|
|                       | 1:5 yr  |
| $Q (m^3/s) =$         | 0.0147  |
| $g(m/s^2) =$          | 9.81    |
| h (m) =               | 2.18    |
| A (m <sup>2</sup> ) = | 0.00363 |
| D (m) =               | 0.068   |
| D (mm) =              | 68      |





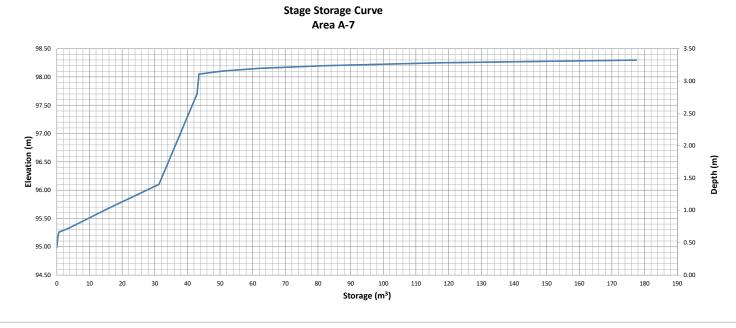
| Proposed Com   |                |                | Storage Calculations Using Average |                |              |
|----------------|----------------|----------------|------------------------------------|----------------|--------------|
| Novatech Proje |                |                | Release Rate Ed                    | qual to 50%    | of the Qpeak |
|                | Controlled S   |                |                                    |                |              |
| OTTAWA IDF C   |                |                | Qpeak =                            | 25.8           | L/s          |
| Area =         | 0.358          | ha             | Qavg =                             | 12.9           | L/s          |
| C =            | 0.87           |                | Vol(max) =                         | 39.4           | m3           |
|                |                |                | (Vol calculated for                | or Qavg)       |              |
| Time           | Intensity      | Q              | Qnet                               | Vol            |              |
| (min)          | (mm/hr)        | (L/s)          | (L/s)                              | (m3)           |              |
| 5              | 103.57         | 89.87          | 76.97                              | 23.09          |              |
| 10             | 76.81          | 66.64          | 53.74                              | 32.25          |              |
| 15             | 61.77          | 53.60          | 40.70                              | 36.63          |              |
| 20             | 52.03          | 45.15          | 32.25                              | 38.70          |              |
| 25             | 45.17          | 39.19          | 26.29                              | 39.44          |              |
| 30             | 40.04          | 34.75          | 21.85                              | 39.32          |              |
| 35             | 36.06          | 31.29          | 18.39                              | 38.62          |              |
| 40             | 32.86          | 28.52          | 15.62                              | 37.48          |              |
| 45             | 30.24          | 26.24          | 13.34                              | 36.01          |              |
| 50             | 28.04          | 24.33          | 11.43                              | 34.29          |              |
| 55             | 26.17          | 22.71          | 9.81                               | 32.37          |              |
| 60             | 24.56          | 21.31          | 8.41                               | 30.27          |              |
| 65             | 23.15          | 20.09          | 7.19                               | 28.03          |              |
| 70<br>75       | 21.91          | 19.01          | 6.11                               | 25.68          |              |
| 75<br>90       | 20.81<br>18.14 | 18.06<br>15.74 | 5.16<br>2.84                       | 23.22<br>15.35 |              |
| 105            | 16.14          | 15.74          | 1.10                               | 6.92           |              |
| 120            | 14.56          | 12.64          | -0.26                              | -1.91          |              |
| 135            | 13.30          | 11.54          | -1.36                              | -11.04         |              |
| 150            | 12.25          | 10.63          | -2.27                              | -20.42         |              |
| .50            | .2.20          | .0.00          |                                    | _5             |              |

| Proposed Com   | mercial Dev  | elopment  | Storage Calculati   | ons Using / | Average      |
|----------------|--------------|-----------|---------------------|-------------|--------------|
| Novatech Proje |              |           | Release Rate Eq     | ual to 50%  | of the Qpeak |
| REQUIRED STO   |              |           |                     |             |              |
|                | Controlled S | ite Flows |                     |             |              |
| OTTAWA IDF C   | URVE         |           | Qpeak =             | 31.0        | L/s          |
| Area =         | 0.358        | ha        | Qavg =              | 15.5        | L/s          |
| C =            | 0.87         |           | Vol(max) =          | 56.3        | m3           |
|                |              |           | (Vol calculated for | or Qavg)    |              |
| Time           | Intensity    | Q         | Qnet                | Vol         |              |
| (min)          | (mm/hr)      | (L/s)     | (L/s)               | (m3)        |              |
| 5              | 141.18       | 122.50    | 107.00              | 32.10       |              |
| 10             | 104.19       | 90.41     | 74.91               | 44.94       |              |
| 15             | 83.56        | 72.50     | 57.00               | 51.30       |              |
| 20             | 70.25        | 60.96     | 45.46               | 54.55       |              |
| 25             | 60.90        | 52.84     | 37.34               | 56.01       |              |
| 30             | 53.93        | 46.79     | 31.29               | 56.33       |              |
| 35             | 48.52        | 42.10     | 26.60               | 55.86       |              |
| 40             | 44.18        | 38.34     | 22.84               | 54.81       |              |
| 45             | 40.63        | 35.25     | 19.75               | 53.33       |              |
| 50             | 37.65        | 32.67     | 17.17               | 51.51       |              |
| 55             | 35.12        | 30.48     | 14.98               | 49.42       |              |
| 60             | 32.94        | 28.58     | 13.08               | 47.11       |              |
| 65             | 31.04        | 26.94     | 11.44               | 44.60       |              |
| 70             | 29.37        | 25.49     | 9.99                | 41.94       |              |
| 75             | 27.89        | 24.20     | 8.70                | 39.14       |              |
| 90             | 24.29        | 21.07     | 5.57                | 30.10       |              |
| 105            | 21.58        | 18.73     | 3.23                | 20.33       |              |
| 120            | 19.47        | 16.89     | 1.39                | 10.02       |              |
| 135            | 17.76        | 15.41     | -0.09               | -0.69       |              |
| 150            | 16.36        | 14.20     | -1.30               | -11.72      |              |
|                |              |           |                     |             |              |
|                |              |           |                     |             |              |

| oposed Com   |              |              | Storage Calculati   |            |             |
|--------------|--------------|--------------|---------------------|------------|-------------|
| vatech Proje |              |              | Release Rate Eq     | ual to 50% | of the Qpea |
|              | Controlled S | 00 YEAR EVEN | N I                 |            |             |
| TAWA IDF C   |              | ite i iows   | Qpeak =             | 31.7       | L/s         |
| Area =       | 0.358        | ha           | Qavg =              | 15.9       | L/s         |
| C =          | 0.97         |              | Vol(max) =          | 137.6      | m3          |
|              |              |              | (Vol calculated for |            |             |
| Time         | Intensity    | Q            | Qnet                | Vol        |             |
| (min)        | (mm/hr)      | (L/s)        | (L/s)               | (m3)       |             |
| 5            | 242.70       | 234.26       | 218.41              | 65.52      |             |
| 10           | 178.56       | 172.35       | 156.50              | 93.90      |             |
| 15           | 142.89       | 137.92       | 122.07              | 109.87     |             |
| 20           | 119.95       | 115.78       | 99.93               | 119.91     |             |
| 25           | 103.85       | 100.23       | 84.38               | 126.58     |             |
| 30           | 91.87        | 88.67        | 72.82               | 131.08     |             |
| 35           | 82.58        | 79.71        | 63.86               | 134.10     |             |
| 40           | 75.15        | 72.53        | 56.68               | 136.04     |             |
| 45           | 69.05        | 66.65        | 50.80               | 137.16     |             |
| 50           | 63.95        | 61.73        | 45.88               | 137.64     |             |
| 55           | 59.62        | 57.55        | 41.70               | 137.61     |             |
| 60           | 55.89        | 53.95        | 38.10               | 137.16     |             |
| 65           | 52.65        | 50.82        | 34.97               | 136.36     |             |
| 70           | 49.79        | 48.06        | 32.21               | 135.27     |             |
| 75           | 47.26        | 45.61        | 29.76               | 133.93     |             |
| 90           | 41.11        | 39.68        | 23.83               | 128.69     |             |
| 105          | 36.50        | 35.23        | 19.38               | 122.08     |             |
| 120          | 32.89        | 31.75        | 15.90               | 114.48     |             |
| 135          | 30.00        | 28.95        | 13.10               | 106.14     |             |
| 150          | 27.61        | 26.65        | 10.80               | 97.20      |             |

| Structures | Size (mm) | Area (m²) | T/G   | Inv IN | Inv OUT |
|------------|-----------|-----------|-------|--------|---------|
| CBMH 3     | 1524      | 1.82      | 98.00 | 95.12  | 94.99   |
| CBMH 2     | 1524      | 1.82      | 98.00 | 95.20  | 95.18   |
| CBMH 1     | 1524      | 1.82      | 98.00 | 95.28  | 95.26   |
| CBMH 7     | 1524      | 1.82      | 98.00 | -      | 95.32   |

|           |        |                   |                   |                   |                   |                         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -           | Pipe Volume     | 12.3              | (m <sup>3</sup> ) |
|-----------|--------|-------------------|-------------------|-------------------|-------------------|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------|-----------------|-------------------|-------------------|
|           |        | Area A-7: Sto     | rage Table        |                   |                   | Undergrou<br>nd Storage |                   |                   |                   | Surface           | Storage           |                   |                   |                   | Total             | Storage           |             | PI = pipe I.D.= | 3.14159265<br>762 | 54                |
|           | System | CBMH 3            | CBMH 2            | CBMH 1            | CBMH 7            | Combined                | CBN               | 4H 3              | CBN               | ЛН 2              | CBN               | 1H 1              | CBN               | ЛН 7              | Ponding           | Total             | 1           | U/G Sto         | rage Pipe         | Volume            |
| Elevation | Depth  | Volume            | Volume            | Volume            | Volume            | Volume                  | Area              | Volume            | Area              | Volume            | Area              | Volume            | Area              | Volume            | Volume            | Volume            |             | End Area        | 0.456             | (m <sup>2</sup> ) |
| (m)       | (m)    | (m <sup>3</sup> )       | (m <sup>2</sup> ) | (m <sup>3</sup> ) | (m <sup>2</sup> ) | (m <sup>3</sup> ) | (m <sup>2</sup> ) | (m <sup>3</sup> ) | (m <sup>2</sup> ) | (m <sup>3</sup> ) | (m <sup>3</sup> ) | (m <sup>3</sup> ) | Design Head | Total Length    | 27.1              | (m)               |
| 94.99     | 0.00   | -                 | -                 | -                 | -                 | -                       | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 0                 | -           | Pipe Volume     | 12.4              | (m <sup>3</sup> ) |
| 95.12     | 0.13   | 0.24              | -                 | -                 | -                 | 0.24                    | -                 | -                 | -                 | -                 | -                 | -                 | -                 | _                 | -                 | 0.2               | 0.00        | ·               |                   | , ,               |
| 95.18     | 0.19   | 0.35              | 0.00              | -                 | -                 | 0.35                    | -                 | -                 | -                 | -                 | -                 | -                 | -                 | _                 | -                 | 0.3               | 0.06        | PI =            | 3.14159265        | 54                |
| 95.26     | 0.27   | 0.49              | 0.15              | 0.00              | -                 | 0.64                    | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 0.6               | 0.14        | pipe I.D.=      | 762               |                   |
| 95.32     | 0.33   | 0.60              | 0.26              | 0.11              | 0.00              | 3.43                    | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 3.4               | 0.56        | U/G Sto         | rage Pipe         | Volume            |
| 95.68     | 0.69   | 1.26              | 0.91              | 0.77              | 0.66              | 15.91                   | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 15.9              | 0.56        | End Area        | 0.456             | (m <sup>2</sup> ) |
| 96.10     | 1.11   | 2.02              | 1.68              | 1.53              | 1.42              | 31.28                   | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 31.3              | 0.98        | Total Length    | 13.3              | (m)               |
| 97.00     | 2.01   | 3.67              | 3.32              | 3.17              | 3.06              | 37.84                   | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 37.8              | 1.88        | Pipe Volume     | 6.1               | (m <sup>3</sup> ) |
| 97.70     | 2.71   | 4.94              | 4.60              | 4.45              | 4.33              | 42.95                   | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | 42.9              | 2.58        |                 |                   |                   |
| 98.00     | 3.01   | 4.94              | 4.60              | 4.45              | 4.88              | 43.49                   | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 0.00              | 43.5              | 2.88        |                 |                   |                   |
| 98.05     | 3.06   | 4.94              | 4.60              | 4.45              | 4.88              | 43.49                   | 15.24             | 0.38              | 27.95             | 0.70              | 12.54             | 0.31              | 0.00              | 0.00              | 1.39              | 43.5              | 2.93        |                 |                   |                   |
| 98.10     | 3.11   | 4.94              | 4.60              | 4.45              | 4.88              | 43.49                   | 43.36             | 1.85              | 72.84             | 3.22              | 40.17             | 1.63              | 0.00              | 0.00              | 6.70              | 50.2              | 2.98        |                 |                   |                   |
| 98.15     | 3.16   | 4.94              | 4.60              | 4.45              | 4.88              | 43.49                   | 89.93             | 5.18              | 125.52            | 8.18              | 83.14             | 4.71              | 0.00              | 0.00              | 18.07             | 61.6              | 3.03        |                 |                   |                   |
| 98.20     | 3.21   | 4.94              | 4.60              | 4.45              | 4.88              | 43.49                   | 152.09            | 11.23             | 191.45            | 16.10             | 142.82            | 10.36             | 20.21             | 0.51              | 38.70             | 82.2              | 3.08        |                 |                   |                   |
| 98.25     | 3.26   | 4.94              | 4.60              | 4.45              | 4.88              | 43.49                   | 246.86            | 21.20             | 284.08            | 27.99             | 221.31            | 19.47             | 64.90             | 2.63              | 73.92             | 117.4             | 3.13        |                 |                   |                   |
| 98.30     | 3.31   | 4.94              | 4.60              | 4.45              | 4.88              | 43.49                   | 373.89            | 36.72             | 422.67            | 45.66             | 479.03            | 36.97             | 122.53            | 7.32              | 133.99            | 177.5             | 3.18        |                 |                   |                   |


| PI =         | 3.141592654   |                   |
|--------------|---------------|-------------------|
| pipe I.D.=   | 762           |                   |
| U/G St       | orage Pipe Vo |                   |
| End Area     | 0.456         | (m <sup>2</sup> ) |
| Total Length | 26.9          | (m)               |
| Pipe Volume  | 12.3          | (m <sup>3</sup> ) |
| PI =         | 3.141592654   |                   |
| pipe I.D.=   | 762           |                   |
| U/G St       | orage Pipe Vo | lum               |
| End Area     | 0.456         | (m <sup>2</sup> ) |
| Total Length | 27.1          | (m)               |
| Pipe Volume  | 12.4          | (m <sup>3</sup> ) |
| PI =         | 3.141592654   |                   |
| nino I D =   | 762           |                   |

| 98.30    | 3.31            | 4.94       | 4.60 |
|----------|-----------------|------------|------|
|          |                 |            | .    |
| Circula  | r Plug Type 91n | nm Orifice |      |
| 1:100 Yr |                 |            |      |
|          | Flow (L/s) =    |            |      |
|          | Head (m) =      | 3.14       |      |
|          | Elevation (m) = | 98.26      |      |
| Outlet P | ipe Dia.(mm) =  | 254        |      |
|          | Volume (m3) =   | 137.6      |      |
| 1:5 Yr   |                 |            |      |
|          | Flow (L/s) =    | 31.0       |      |
|          | Head (m) =      | 3.00       |      |
|          | Elevation (m) = | 98.12      |      |
| Outlet P | ipe Dia.(mm) =  | 254        |      |
|          | Volume (m3) =   | 56.3       |      |
| 1:2 Yr   |                 |            |      |
|          | Flow (L/s) =    | 25.8       |      |
|          | Head (m) =      | 2.08       |      |
|          | Elevation (m) = |            |      |
| Outlet P | ipe Dia.(mm) =  | 254        |      |
|          | Volume (m3) =   | 39.4       |      |
| •        | •               | •          |      |

| Q=0.62xAx(2g                     | Size - 1:100 yr Flo | JJ.K       |
|----------------------------------|---------------------|------------|
| Q=0.02XAX(2 <u>Q</u>             | 1:100 yr            | Flow Check |
| $Q (m^3/s) = g (m/s^2) =$        | 0.0317              | 0.0317     |
| g (m/s <sup>2</sup> ) =          | 9.81                | 9.81       |
| h (m) =                          | 3.14                | 3.14       |
| A (m <sup>2</sup> ) =            | 0.006510973         | 0.00650    |
| A (m <sup>2</sup> ) =<br>D (m) = | 0.091049591         | 0.09100    |
| D (mm) =                         | 91                  | 91.0       |

| 1:5 yr Flow Chec      | k       |
|-----------------------|---------|
|                       | 1:5 yr  |
| $Q(m^3/s) =$          | 0.0310  |
| $g(m/s^2) =$          | 9.81    |
| h (m) =               | 3.00    |
| A (m <sup>2</sup> ) = | 0.00650 |
| D (m) =               | 0.091   |
| D (mm) =              | 91      |

| 1:2 yr Flow Check       | i .     |
|-------------------------|---------|
|                         | 1:2 yr  |
| $Q (m^3/s) =$           | 0.0258  |
| g (m/s <sup>2</sup> ) = | 9.81    |
| h (m) =                 | 2.08    |
|                         |         |
| $A (m^2) =$             | 0.00650 |
| D (m) =                 | 0.091   |
| D (mm) =                | 91      |

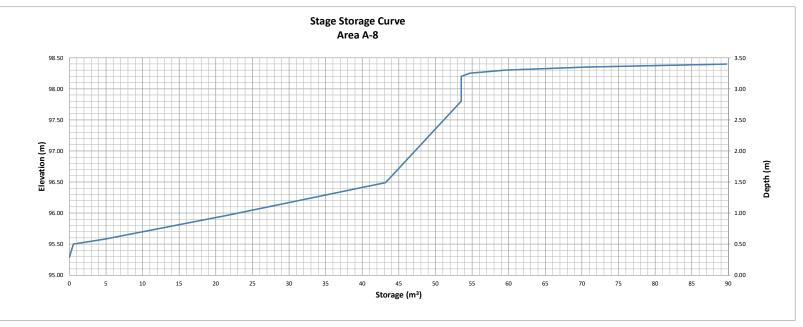


| Proposed Comp<br>Novatech Proje |                             |            | Storage Calculations Using Average<br>Release Rate Equal to 50% of the Qpeak |         |            |  |
|---------------------------------|-----------------------------|------------|------------------------------------------------------------------------------|---------|------------|--|
| REQUIRED STO<br>AREA A-8        | DRAGE - 1:2<br>Controlled S | YEAR EVENT |                                                                              |         | л по цровк |  |
| OTTAWA IDF C                    | URVE                        |            | Qpeak =                                                                      | 92.0    | L/s        |  |
| Area =                          | 0.505                       | ha         | Qavg =                                                                       | 46.0    | L/s        |  |
| C =                             | 0.87                        |            | Vol(max) =                                                                   | 28.7    | m3         |  |
|                                 |                             |            | (Vol calculated for                                                          | r Qavg) |            |  |
| Time                            | Intensity                   | Q          | Qnet                                                                         | Vol     |            |  |
| (min)                           | (mm/hr)                     | (L/s)      | (L/s)                                                                        | (m3)    |            |  |
| 5                               | 103.57                      | 126.43     | 80.43                                                                        | 24.13   |            |  |
| 10                              | 76.81                       | 93.76      | 47.76                                                                        | 28.65   |            |  |
| 15                              | 61.77                       | 75.40      | 29.40                                                                        | 26.46   |            |  |
| 20                              | 52.03                       | 63.51      | 17.51                                                                        | 21.02   |            |  |
| 25                              | 45.17                       | 55.14      | 9.14                                                                         | 13.70   |            |  |
| 30                              | 40.04                       | 48.88      | 2.88                                                                         | 5.19    |            |  |
| 35                              | 36.06                       | 44.02      | -1.98                                                                        | -4.16   |            |  |
| 40                              | 32.86                       | 40.12      | -5.88                                                                        | -14.12  |            |  |
| 45                              | 30.24                       | 36.91      | -9.09                                                                        | -24.53  |            |  |
| 50                              | 28.04                       | 34.23      | -11.77                                                                       | -35.31  |            |  |
| 55                              | 26.17                       | 31.95      | -14.05                                                                       | -46.38  |            |  |
| 60                              | 24.56                       | 29.98      | -16.02                                                                       | -57.68  |            |  |
| 65                              | 23.15                       | 28.26      | -17.74                                                                       | -69.18  |            |  |
| 70                              | 21.91                       | 26.75      | -19.25                                                                       | -80.86  |            |  |
| 75                              | 20.81                       | 25.41      | -20.59                                                                       | -92.67  |            |  |
| 90                              | 18.14                       | 22.15      | -23.85                                                                       | -128.81 |            |  |
| 105                             | 16.13                       | 19.69      | -26.31                                                                       | -165.73 |            |  |
| 120                             | 14.56                       | 17.78      | -28.22                                                                       | -203.21 |            |  |
| 135                             | 13.30                       | 16.23      | -29.77                                                                       | -241.14 |            |  |
| 150                             | 12.25                       | 14.96      | -31.04                                                                       | -279.40 |            |  |
|                                 |                             |            |                                                                              |         |            |  |

| Proposed Comr   | nercial Deve | elopment  | Storage Calculati   | ons Using A  | verage       |
|-----------------|--------------|-----------|---------------------|--------------|--------------|
| Novatech Projec |              |           | Release Rate Eq     | ual to 50% o | of the Qpeak |
| REQUIRED STO    |              |           |                     |              |              |
|                 | ontrolled S  | ite Flows |                     |              |              |
| OTTAWA IDF C    | JRVE         |           | Qpeak =             | 111.7        | L/s          |
| Area =          | 0.505        | ha        | Qavg =              | 55.9         | L/s          |
| C =             | 0.87         |           | Vol(max) =          | 42.8         | m3           |
|                 |              |           | (Vol calculated for | r Qavg)      |              |
| Time            | Intensity    | Q         | Qnet                | Vol          |              |
| (min)           | (mm/hr)      | (L/s)     | (L/s)               | (m3)         |              |
| 5               | 141.18       | 172.34    | 116.49              | 34.95        |              |
| 10              | 104.19       | 127.19    | 71.34               | 42.80        |              |
| 15              | 83.56        | 102.00    | 46.15               | 41.53        |              |
| 20              | 70.25        | 85.76     | 29.91               | 35.89        |              |
| 25              | 60.90        | 74.34     | 18.49               | 27.73        |              |
| 30              | 53.93        | 65.83     | 9.98                | 17.96        |              |
| 35              | 48.52        | 59.23     | 3.38                | 7.09         |              |
| 40              | 44.18        | 53.94     | -1.91               | -4.59        |              |
| 45              | 40.63        | 49.60     | -6.25               | -16.89       |              |
| 50              | 37.65        | 45.96     | -9.89               | -29.66       |              |
| 55              | 35.12        | 42.88     | -12.97              | -42.82       |              |
| 60              | 32.94        | 40.21     | -15.64              | -56.29       |              |
| 65              | 31.04        | 37.89     | -17.96              | -70.02       |              |
| 70              | 29.37        | 35.85     | -20.00              | -83.98       |              |
| 75              | 27.89        | 34.04     | -21.81              | -98.13       |              |
| 90              | 24.29        | 29.65     | -26.20              | -141.49      |              |
| 105             | 21.58        | 26.35     | -29.50              | -185.88      |              |
| 120             | 19.47        | 23.76     | -32.09              | -231.02      |              |
| 135             | 17.76        | 21.69     | -34.16              | -276.73      |              |
| 150             | 16.36        | 19.97     | -35.88              | -322.89      |              |

| UIRED STO | ct No. 12410  |         |                    |              | •            |
|-----------|---------------|---------|--------------------|--------------|--------------|
|           |               |         | Release Rate Eq    | ual to 50% c | of the Qpeak |
|           | Controlled Si |         | •                  |              |              |
| AWA IDF C |               | teriows | Qpeak =            | 189.5        | L/s          |
| Area =    | 0.505         | ha      | Qavg =             | 94.8         | L/s          |
| C =       | 0.97          | 110     | Vol(max) =         | 89.4         | m3           |
| -         |               |         | (Vol calculated fo |              | -            |
| Time      | Intensity     | Q       | Qnet               | Vol          |              |
| (min)     | (mm/hr)       | (L/s)   | (L/s)              | (m3)         |              |
| 5         | 242.70        | 329.60  | 234.85             | 70.45        |              |
| 10        | 178.56        | 242.49  | 147.74             | 88.64        |              |
| 15        | 142.89        | 194.05  | 99.30              | 89.37        |              |
| 20        | 119.95        | 162.90  | 68.15              | 81.78        |              |
| 25        | 103.85        | 141.03  | 46.28              | 69.42        |              |
| 30        | 91.87         | 124.76  | 30.01              | 54.02        |              |
| 35        | 82.58         | 112.14  | 17.39              | 36.53        |              |
| 40        | 75.15         | 102.05  | 7.30               | 17.52        |              |
| 45        | 69.05         | 93.77   | -0.98              | -2.64        |              |
| 50        | 63.95         | 86.85   | -7.90              | -23.70       |              |
| 55        | 59.62         | 80.97   | -13.78             | -45.47       |              |
| 60        | 55.89         | 75.91   | -18.84             | -67.84       |              |
| 65        | 52.65         | 71.50   | -23.25             | -90.69       |              |
| 70        | 49.79         | 67.62   | -27.13             | -113.96      |              |
| 75        | 47.26         | 64.17   | -30.58             | -137.59      |              |
| 90        | 41.11         | 55.83   | -38.92             | -210.17      |              |
| 105       | 36.50         | 49.56   | -45.19             | -284.67      |              |
| 120       | 32.89         | 44.67   | -50.08             | -360.56      |              |
| 135       | 30.00         | 40.74   | -54.01             | -437.51      |              |
| 150       | 27.61         | 37.50   | -57.25             | -515.28      |              |

| Structures | Size (mm) | Area (m²) | T/G   | Inv IN | Inv OUT |
|------------|-----------|-----------|-------|--------|---------|
| CBMH 6     | 1829      | 2.63      | 98.20 | 95.44  | 95.29   |
| CBMH 5     | 1829      | 2.63      | 98.20 | 95.52  | 95.50   |
| CBMH 4     | 1829      | 2.63      | 98.20 | -      | 95.58   |


|          | Storage                 | Total                     | Surface Storage |              |                |                     | Underground<br>Storage |              | able                       | A-8: Storage T           | Area A                   |                          |                        |               |
|----------|-------------------------|---------------------------|-----------------|--------------|----------------|---------------------|------------------------|--------------|----------------------------|--------------------------|--------------------------|--------------------------|------------------------|---------------|
| Design H | Total<br>Volume<br>(m³) | Ponding<br>Volume<br>(m³) | Volume<br>(m³)  | Area<br>(m²) | Volume<br>(m³) | CBN<br>Area<br>(m²) | Volume<br>(m³)         | Area<br>(m²) | Combined<br>Volume<br>(m³) | CBMH 4<br>Volume<br>(m³) | CBMH 5<br>Volume<br>(m³) | CBMH 6<br>Volume<br>(m³) | System<br>Depth<br>(m) | Elevation (m) |
| -        | 0                       | -                         | -               | -            | -              | -                   | -                      | -            | -                          | -                        | -                        | -                        | 0.00                   | 95.29         |
| 0.06     | 0.6                     | -                         | -               | -            | -              | -                   | -                      | -            | 0.55                       | -                        | -                        | 0.55                     | 0.21                   | 95.50         |
| 0.14     | 4.8                     | -                         | -               | -            | -              | -                   | -                      | -            | 4.83                       | 0.00                     | 0.21                     | 0.76                     | 0.29                   | 95.58         |
| 0.52     | 21.5                    | -                         | -               | -            | -              | -                   | -                      | -            | 21.49                      | 1.00                     | 1.21                     | 1.76                     | 0.67                   | 95.96         |
| 1.05     | 43.2                    | -                         | -               | -            | -              | -                   | -                      | -            | 43.18                      | 2.39                     | 2.60                     | 3.15                     | 1.20                   | 96.49         |
| 1.56     | 47.2                    | -                         | -               | -            | -              | -                   | -                      | -            | 47.20                      | 3.73                     | 3.94                     | 4.49                     | 1.71                   | 97.00         |
| 2.36     | 53.5                    | -                         | -               | -            | -              | -                   | -                      | -            | 53.51                      | 5.83                     | 6.04                     | 6.59                     | 2.51                   | 97.80         |
| 2.56     | 53.5                    | -                         | -               | -            | -              | -                   | -                      | -            | 53.51                      | 5.83                     | 6.04                     | 6.59                     | 2.71                   | 98.00         |
| 2.76     | 53.5                    | 0.00                      | 0.00            | 0.00         | 0.00           | 0.00                | 0.00                   | 0.00         | 53.51                      | 5.83                     | 6.04                     | 6.59                     | 2.91                   | 98.20         |
| 2.81     | 54.7                    | 1.19                      | 0.35            | 14.13        | 0.46           | 18.48               | 0.38                   | 15.18        | 53.51                      | 5.83                     | 6.04                     | 6.59                     | 2.96                   | 98.25         |
| 2.86     | 59.5                    | 5.99                      | 1.77            | 42.41        | 2.33           | 56.22               | 1.89                   | 45.29        | 53.51                      | 5.83                     | 6.04                     | 6.59                     | 3.01                   | 98.30         |
| 2.91     | 70.4                    | 16.86                     | 4.97            | 85.59        | 6.58           | 113.94              | 5.31                   | 91.36        | 53.51                      | 5.83                     | 6.04                     | 6.59                     | 3.06                   | 98.35         |
| 2.96     | 89.7                    | 36.22                     | 10.66           | 141.97       | 14.22          | 191.36              | 11.35                  | 150.17       | 53.51                      | 5.83                     | 6.04                     | 6.59                     | 3.11                   | 98.40         |

| Circular Plug Type 226mm Orifice |  |
|----------------------------------|--|
| 1:100 Yr                         |  |
| Flow (L/s) = 189.5               |  |
| Head (m) = 2.96                  |  |
| Elevation (m) = 98.40            |  |
| Outlet Pipe Dia.(mm) = 305       |  |
| Volume (m3) = 89.4               |  |
| 1:5 Yr                           |  |
| Flow (L/s) = 111.7               |  |
| Head (m) = 1.03                  |  |
| Elevation (m) = 96.47            |  |
| Outlet Pipe Dia.(mm) = 305       |  |
| Volume (m3) = 42.8               |  |
| 1:2 Yr                           |  |
| Flow (L/s) = 92.0                |  |
| Head (m) = 0.70                  |  |
| Elevation (m) = 96.14            |  |
| Outlet Pipe Dia.(mm) = 305       |  |
| Volume (m3) = 28.7               |  |

| Orifice Size - 1:100 yr Flow Check |             |            |  |  |  |
|------------------------------------|-------------|------------|--|--|--|
| Q=0.62xAx(2g                       | h)^0.5      |            |  |  |  |
|                                    | 1:100 yr    | Flow Check |  |  |  |
| $Q (m^3/s) =$                      | 0.1895      | 0.1895     |  |  |  |
| g (m/s²) =                         | 9.81        | 9.81       |  |  |  |
| h (m) =                            | 2.96        | 2.96       |  |  |  |
| A (m <sup>2</sup> ) =              | 0.040124132 | 0.04011    |  |  |  |
| D (m) =                            | 0.226025731 | 0.22600    |  |  |  |
| D (mm) =                           | 226         | 226.0      |  |  |  |

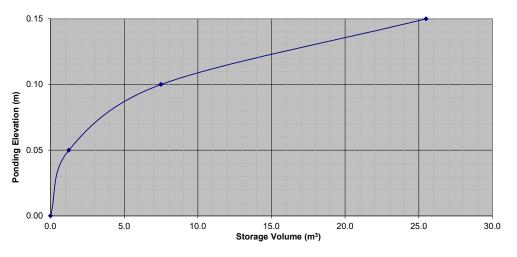
| 1:5 yr Flow Check       | (       |
|-------------------------|---------|
|                         | 1:5 yr  |
| $Q (m^3/s) =$           | 0.1117  |
| g (m/s <sup>2</sup> ) = | 9.81    |
| h (m) =                 | 1.03    |
| A (m <sup>2</sup> ) =   | 0.04011 |
| D (m) =                 | 0.226   |
| D (mm) =                | 226     |

| 1:2 yr Flow Check       |         |
|-------------------------|---------|
|                         | 1:2 yr  |
| $Q (m^3/s) =$           | 0.0920  |
| g (m/s <sup>2</sup> ) = | 9.81    |
| h (m) =                 | 0.70    |
| 2.                      |         |
| A (m <sup>2</sup> ) =   | 0.04011 |
| D (m) =                 | 0.226   |
| D (mm) =                | 226     |



150 DUN SKIPPER DRIVE PROJECT NO: 124107 REQUIRED STORAGE - 1:5 YEAR EVENT AREA R-1 Controlled Roof Drain RD 1

| AINEA IN-I     |           | Controlle | a Roor Brain | 110 1 |     |
|----------------|-----------|-----------|--------------|-------|-----|
| OTTAWA IDF CUR | VE        |           |              |       |     |
| Area =         | 0.054     | ha        | Qallow =     | 1.34  | L/s |
| C =            | 0.90      |           | Vol(max) =   | 11.2  | m3  |
|                |           |           |              |       |     |
| Time           | Intensity | Q         | Qnet         | Vol   |     |
| (min)          | (mm/hr)   | (L/s)     | (L/s)        | (m3)  |     |
| 5              | 141.18    | 19.00     | 17.66        | 5.30  |     |
| 10             | 104.19    | 14.02     | 12.68        | 7.61  |     |
| 15             | 83.56     | 11.24     | 9.90         | 8.91  |     |
| 20             | 70.25     | 9.45      | 8.11         | 9.74  |     |
| 25             | 60.90     | 8.20      | 6.86         | 10.28 |     |
| 30             | 53.93     | 7.26      | 5.92         | 10.65 |     |
| 35             | 48.52     | 6.53      | 5.19         | 10.90 |     |
| 40             | 44.18     | 5.95      | 4.61         | 11.05 |     |
| 45             | 40.63     | 5.47      | 4.13         | 11.14 |     |
| 50             | 37.65     | 5.07      | 3.73         | 11.18 |     |
| 55             | 35.12     | 4.73      | 3.39         | 11.18 |     |
| 60             | 32.94     | 4.43      | 3.09         | 11.14 |     |
| 65             | 31.04     | 4.18      | 2.84         | 11.07 |     |
| 70             | 29.37     | 3.95      | 2.61         | 10.97 |     |
| 75             | 27.89     | 3.75      | 2.41         | 10.86 |     |
| 90             | 24.29     | 3.27      | 1.93         | 10.41 |     |
| 105            | 21.58     | 2.90      | 1.56         | 9.86  |     |
| 120            | 19.47     | 2.62      | 1.28         | 9.22  |     |
|                |           |           |              |       |     |
|                |           |           |              |       |     |


150 DUN SKIPPER DRIVE PROJECT NO: 124107
REQUIRED STORAGE - 1:100 YEAR EVENT
AREA R-1
Controlled Roof

| AREA R-1      | Controlled Roof Drain RD 1 |       |            |       |     |  |
|---------------|----------------------------|-------|------------|-------|-----|--|
| OTTAWA IDF CL | JRVE                       |       |            |       |     |  |
| Area =        | 0.054                      | ha    | Qallow =   | 1.58  | L/s |  |
| C =           | 1.00                       |       | Vol(max) = | 24.8  | m3  |  |
| Time          | Intensity                  | Q     | Qnet       | Vol   |     |  |
| (min)         | (mm/hr)                    | (L/s) | (L/s)      | (m3)  |     |  |
| 5             | 242.70                     | 36.43 | 34.85      | 10.46 |     |  |
| 10            | 178.56                     | 26.81 | 25.23      | 15.14 |     |  |
| 15            | 142.89                     | 21.45 | 19.87      | 17.88 |     |  |
| 20            | 119.95                     | 18.01 | 16.43      | 19.71 |     |  |
| 25            | 103.85                     | 15.59 | 14.01      | 21.01 |     |  |
| 30            | 91.87                      | 13.79 | 12.21      | 21.98 |     |  |
| 35            | 82.58                      | 12.40 | 10.82      | 22.72 |     |  |
| 40            | 75.15                      | 11.28 | 9.70       | 23.28 |     |  |
| 45            | 69.05                      | 10.37 | 8.79       | 23.72 |     |  |
| 50            | 63.95                      | 9.60  | 8.02       | 24.06 |     |  |
| 55            | 59.62                      | 8.95  | 7.37       | 24.32 |     |  |
| 60            | 55.89                      | 8.39  | 6.81       | 24.52 |     |  |
| 65            | 52.65                      | 7.90  | 6.32       | 24.66 |     |  |
| 70            | 49.79                      | 7.47  | 5.89       | 24.76 |     |  |
| 75            | 47.26                      | 7.09  | 5.51       | 24.81 |     |  |
| 90            | 41.11                      | 6.17  | 4.59       | 24.79 |     |  |
| 105           | 36.50                      | 5.48  | 3.90       | 24.56 |     |  |
| 120           | 32.89                      | 4.94  | 3.36       | 24.18 |     |  |

| ١ | Natts Accutrol Flow | Control Roof Drains | RD-100-A-ADJ se   | et to 3/4 Exp    | osed     |          |
|---|---------------------|---------------------|-------------------|------------------|----------|----------|
| Γ | Design Event        | Flow/Drain (L/s)    | Total Flow (L/s)  | Ponding (cm)     | Storag   | ge (m³)  |
| ı | Design Event        | i low/Dialli (L/3)  | 10tai 1 10W (L/5) | Folialing (Cili) | Required | Provided |
| Г | 1:5 Year            | 1.34                | 1.34              | 12               | 11.2     | 25.5     |
| I | 1:100 Year          | 1.58                | 1.58              | 15               | 24.8     | 25.5     |

| Roof Drain Storage Table for Building A RD-1 |                |                |  |  |  |
|----------------------------------------------|----------------|----------------|--|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |  |
| 0.00                                         | 0              | 0              |  |  |  |
| 0.05                                         | 49.6           | 1.2            |  |  |  |
| 0.10                                         | 200.4          | 7.5            |  |  |  |
| 0.15                                         | 519.7          | 25.5           |  |  |  |

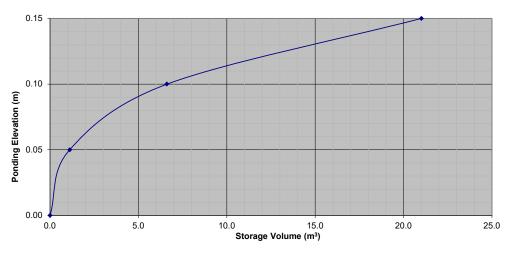
Stage Storage Curve: Area R-1 Controlled Roof Drain #1



PROJECT NO: 124107 REQUIRED STORAGE - 1:5 YEAR EVENT

| REQUIRED STORAGE - 1:5 YEAR EVENT |           |           |              |      |     |
|-----------------------------------|-----------|-----------|--------------|------|-----|
| AREA R-1                          |           | Controlle | d Roof Drain | RD 2 |     |
| OTTAWA IDF CUR                    | VE        |           |              |      |     |
| Area =                            | 0.041     | ha        | Qallow =     | 1.10 | L/s |
| C =                               | 0.90      |           | Vol(max) =   | 8.2  | m3  |
|                                   |           |           |              |      |     |
| Time                              | Intensity | Q         | Qnet         | Vol  |     |
| (min)                             | (mm/hr)   | (L/s)     | (L/s)        | (m3) |     |
| 5                                 | 141.18    | 14.33     | 13.23        | 3.97 |     |
| 10                                | 104.19    | 10.58     | 9.48         | 5.69 |     |
| 15                                | 83.56     | 8.48      | 7.38         | 6.64 |     |
| 20                                | 70.25     | 7.13      | 6.03         | 7.24 |     |
| 25                                | 60.90     | 6.18      | 5.08         | 7.62 |     |
| 30                                | 53.93     | 5.47      | 4.37         | 7.87 |     |
| 35                                | 48.52     | 4.93      | 3.83         | 8.03 |     |
| 40                                | 44.18     | 4.49      | 3.39         | 8.13 |     |
| 45                                | 40.63     | 4.12      | 3.02         | 8.17 |     |
| 50                                | 37.65     | 3.82      | 2.72         | 8.17 |     |
| 55                                | 35.12     | 3.57      | 2.47         | 8.14 |     |
| 60                                | 32.94     | 3.34      | 2.24         | 8.08 |     |
| 65                                | 31.04     | 3.15      | 2.05         | 8.00 |     |
| 70                                | 29.37     | 2.98      | 1.88         | 7.90 |     |
| 75                                | 27.89     | 2.83      | 1.73         | 7.79 |     |
| 90                                | 24.29     | 2.47      | 1.37         | 7.38 |     |
| 105                               | 21.58     | 2.19      | 1.09         | 6.87 |     |
| 120                               | 19.47     | 1.98      | 0.88         | 6.31 |     |
|                                   |           |           |              |      |     |

150 DUN SKIPPER DRIVE


PROJECT NO: 124107 REQUIRED STORAGE - 1:100 YEAR EVENT

| REQUIRED STORAGE - 1:100 TEAR EVENT |           |           |              |       |     |  |
|-------------------------------------|-----------|-----------|--------------|-------|-----|--|
| AREA R-1                            |           | Controlle | d Roof Drain | RD 2  |     |  |
| OTTAWA IDF CU                       | IRVE      |           |              |       |     |  |
| Area =                              | 0.041     | ha        | Qallow =     | 1.34  | L/s |  |
| C =                                 | 1.00      |           | Vol(max) =   | 18.0  | m3  |  |
| <b>T</b>                            | 1         | 0         | 0            | 17.1  |     |  |
| Time                                | Intensity | Q         | Qnet         | Vol   |     |  |
| (min)                               | (mm/hr)   | (L/s)     | (L/s)        | (m3)  |     |  |
| 5                                   | 242.70    | 27.38     | 26.04        | 7.81  |     |  |
| 10                                  | 178.56    | 20.14     | 18.80        | 11.28 |     |  |
| 15                                  | 142.89    | 16.12     | 14.78        | 13.30 |     |  |
| 20                                  | 119.95    | 13.53     | 12.19        | 14.63 |     |  |
| 25                                  | 103.85    | 11.71     | 10.37        | 15.56 |     |  |
| 30                                  | 91.87     | 10.36     | 9.02         | 16.24 |     |  |
| 35                                  | 82.58     | 9.32      | 7.98         | 16.75 |     |  |
| 40                                  | 75.15     | 8.48      | 7.14         | 17.13 |     |  |
| 45                                  | 69.05     | 7.79      | 6.45         | 17.41 |     |  |
| 50                                  | 63.95     | 7.21      | 5.87         | 17.62 |     |  |
| 55                                  | 59.62     | 6.73      | 5.39         | 17.77 |     |  |
| 60                                  | 55.89     | 6.31      | 4.97         | 17.87 |     |  |
| 65                                  | 52.65     | 5.94      | 4.60         | 17.93 |     |  |
| 70                                  | 49.79     | 5.62      | 4.28         | 17.96 |     |  |
| 75                                  | 47.26     | 5.33      | 3.99         | 17.96 |     |  |
| 90                                  | 41.11     | 4.64      | 3.30         | 17.81 |     |  |
| 105                                 | 36.50     | 4.12      | 2.78         | 17.50 |     |  |
| 120                                 | 32.89     | 3.71      | 2.37         | 17.07 |     |  |
| I                                   |           |           |              |       |     |  |

| Watts Accutrol Flow Control Roof Drains: RD-100-A-ADJ set to 3/4 Exposed |                    |                   |                  |          |          |
|--------------------------------------------------------------------------|--------------------|-------------------|------------------|----------|----------|
| Design Event                                                             | Flow/Drain (L/s)   | Total Flow (L/s)  | Ponding (cm)     | Storag   | je (m³)  |
| Design Event                                                             | i low/Dialli (L/3) | 10tai 1 10W (L/S) | Folialing (Cili) | Required | Provided |
| 1:5 Year                                                                 | 1.10               | 1.10              | 11               | 8.2      | 21.0     |
| 1:100 Year                                                               | 1.34               | 1.34              | 14               | 18.0     | 21.0     |

| Roof Drain Storage Table for Building A RD-2 |                       |                |  |  |
|----------------------------------------------|-----------------------|----------------|--|--|
| Elevation                                    | Area RD 1 Total Volum |                |  |  |
| m                                            | m <sup>2</sup>        | m <sup>3</sup> |  |  |
| 0.00                                         | 0                     | 0              |  |  |
| 0.05                                         | 44.4                  | 1.1            |  |  |
| 0.10                                         | 175.6                 | 6.6            |  |  |
| 0.15                                         | 400.5                 | 21.0           |  |  |

Stage Storage Curve: Area R-1 Controlled Roof Drain #2



150 DUN SKIPPER DRIVE PROJECT NO: 124107 REQUIRED STORAGE - 1:5 YEAR EVENT AREA R-1 Controlled Roof Drain RD 3 OTTAWA IDF CURVE Area = 0.060 ha Qallow = 1.26 L/s C = 0.90Vol(max) = 13.2 m3 Q Qnet Vol Time Intensity (mm/hr) (L/s) (L/s) (m3) (min) 5 141.18 21.09 19.83 5.95 10 104.19 15.57 14.31 8.58 15 83.56 12.48 11.22 10.10 20 70.25 10.50 9.24 11.08 25 60.90 9.10 7.84 11.76 30 53.93 8.06 6.80 12.23 35 48.52 7.25 5.99 12.58 40 44.18 6.60 5.34 12.82 45 40.63 6.07 4.81 12.99 50 37.65 5.63 4.37 13.10 55 35.12 5.25 3.99 13.16 60 32.94 4.92 3.66 13.18

4.64

4.39

4.17

3.63

3.22

2.91

3.38

3.13

2.91

2.37

1.96

1.65

13.17

13.14

13.08

12.79

12.38

11.87

150 DUN SKIPPER DRIVE PROJECT NO: 124107

65

70

75

90

105

120

REQUIRED STORAGE - 1:100 YEAR EVENT

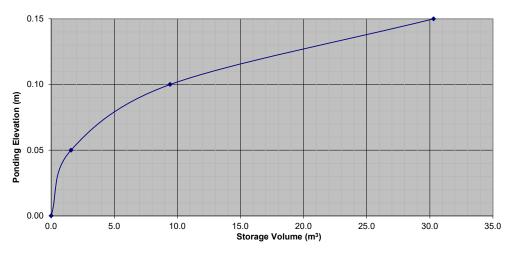
31.04

29.37

27.89

24.29

21.58


19.47

| AREA R-1      |           | Controlle | d Roof Drain | RD 3  |     |
|---------------|-----------|-----------|--------------|-------|-----|
| OTTAWA IDF CU | RVE       |           |              |       |     |
| Area =        | 0.060     | ha        | Qallow =     | 1.58  | L/s |
| C =           | 1.00      |           | Vol(max) =   | 28.3  | m3  |
|               |           |           |              |       |     |
| Time          | Intensity | Q         | Qnet         | Vol   |     |
| (min)         | (mm/hr)   | (L/s)     | (L/s)        | (m3)  |     |
| 5             | 242.70    | 40.29     | 38.71        | 11.61 |     |
| 10            | 178.56    | 29.64     | 28.06        | 16.84 |     |
| 15            | 142.89    | 23.72     | 22.14        | 19.93 |     |
| 20            | 119.95    | 19.91     | 18.33        | 22.00 |     |
| 25            | 103.85    | 17.24     | 15.66        | 23.49 |     |
| 30            | 91.87     | 15.25     | 13.67        | 24.61 |     |
| 35            | 82.58     | 13.71     | 12.13        | 25.47 |     |
| 40            | 75.15     | 12.47     | 10.89        | 26.15 |     |
| 45            | 69.05     | 11.46     | 9.88         | 26.68 |     |
| 50            | 63.95     | 10.62     | 9.04         | 27.11 |     |
| 55            | 59.62     | 9.90      | 8.32         | 27.45 |     |
| 60            | 55.89     | 9.28      | 7.70         | 27.72 |     |
| 65            | 52.65     | 8.74      | 7.16         | 27.92 |     |
| 70            | 49.79     | 8.27      | 6.69         | 28.08 |     |
| 75            | 47.26     | 7.84      | 6.26         | 28.19 |     |
| 90            | 41.11     | 6.82      | 5.24         | 28.32 |     |
| 105           | 36.50     | 6.06      | 4.48         | 28.22 |     |
| 120           | 32.89     | 5.46      | 3.88         | 27.94 |     |
|               |           |           |              |       |     |

| Ī | Watts Accutrol Flow Control Roof Drains: |                                   |                  | RD-100-A-ADJ set to Fully Exposed |          |          |
|---|------------------------------------------|-----------------------------------|------------------|-----------------------------------|----------|----------|
| ſ | Design Event                             | Flow/Drain (L/s) Total Flow (L/s) |                  | Ponding (cm)                      | Storag   | ge (m³)  |
| L | Design Event                             | Tiow/Diam (L/s)                   | Total Flow (L/S) | Folialing (Cili)                  | Required | Provided |
| I | 1:5 Year                                 | 1.26                              | 1.26             | 11                                | 13.2     | 30.3     |
| ı | 1:100 Year                               | 1.58                              | 1.58             | 14                                | 28.3     | 30.3     |

| Roof Drain Storage Table for Building A RD-3 |                |                |  |  |
|----------------------------------------------|----------------|----------------|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |
| 0.00                                         | 0              | 0              |  |  |
| 0.05                                         | 62.8           | 1.6            |  |  |
| 0.10                                         | 251.2          | 9.4            |  |  |
| 0.15                                         | 584.2          | 30.3           |  |  |

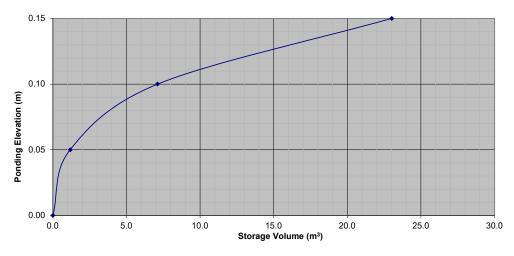
## Stage Storage Curve: Area R-1 Controlled Roof Drain #3



PROJECT NO: 124107 REQUIRED STORAGE - 1:5 YEAR EVENT

| AREA R-1       |           | Controlle | d Roof Drain | KU 4 |     |
|----------------|-----------|-----------|--------------|------|-----|
| OTTAWA IDF CUR |           |           |              |      |     |
| Area =         | 0.046     | ha        | Qallow =     | 1.10 | L/s |
| C =            | 0.90      |           | Vol(max) =   | 9.7  | m3  |
|                |           |           |              |      |     |
| Time           | Intensity | Q         | Qnet         | Vol  |     |
| (min)          | (mm/hr)   | (L/s)     | (L/s)        | (m3) |     |
| 5              | 141.18    | 16.23     | 15.13        | 4.54 |     |
| 10             | 104.19    | 11.98     | 10.88        | 6.53 |     |
| 15             | 83.56     | 9.61      | 8.51         | 7.66 |     |
| 20             | 70.25     | 8.08      | 6.98         | 8.37 |     |
| 25             | 60.90     | 7.00      | 5.90         | 8.85 |     |
| 30             | 53.93     | 6.20      | 5.10         | 9.18 |     |
| 35             | 48.52     | 5.58      | 4.48         | 9.41 |     |
| 40             | 44.18     | 5.08      | 3.98         | 9.55 |     |
| 45             | 40.63     | 4.67      | 3.57         | 9.64 |     |
| 50             | 37.65     | 4.33      | 3.23         | 9.69 |     |
| 55             | 35.12     | 4.04      | 2.94         | 9.70 |     |
| 60             | 32.94     | 3.79      | 2.69         | 9.68 |     |
| 65             | 31.04     | 3.57      | 2.47         | 9.63 |     |
| 70             | 29.37     | 3.38      | 2.28         | 9.56 |     |
| 75             | 27.89     | 3.21      | 2.11         | 9.48 |     |
| 90             | 24.29     | 2.79      | 1.69         | 9.14 |     |
| 105            | 21.58     | 2.48      | 1.38         | 8.70 |     |
| 120            | 19.47     | 2.24      | 1.14         | 8.20 |     |
|                |           |           |              |      |     |

150 DUN SKIPPER DRIVE


PROJECT NO: 124107 REQUIRED STORAGE - 1:100 YEAR EVENT

| REA R-1       |                                                                                                                                                       | Controlle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d Roof Drain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RD 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OTTAWA IDF CL | IRVE                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Area =        | 0.046                                                                                                                                                 | ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qallow =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C =           | 1.00                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vol(max) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Time          | Intensity                                                                                                                                             | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qnet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (min)         | (mm/hr)                                                                                                                                               | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (L/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5             | 242.70                                                                                                                                                | 31.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10            | 178.56                                                                                                                                                | 22.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15            | 142.89                                                                                                                                                | 18.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20            | 119.95                                                                                                                                                | 15.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25            | 103.85                                                                                                                                                | 13.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30            | 91.87                                                                                                                                                 | 11.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35            | 82.58                                                                                                                                                 | 10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40            | 75.15                                                                                                                                                 | 9.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45            | 69.05                                                                                                                                                 | 8.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50            | 63.95                                                                                                                                                 | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 55            | 59.62                                                                                                                                                 | 7.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60            | 55.89                                                                                                                                                 | 7.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 65            | 52.65                                                                                                                                                 | 6.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 70            | 49.79                                                                                                                                                 | 6.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 75            | 47.26                                                                                                                                                 | 6.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 90            | 41.11                                                                                                                                                 | 5.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 105           | 36.50                                                                                                                                                 | 4.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 120           | 32.89                                                                                                                                                 | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | OTTAWA IDF CU<br>Area =<br>C =<br>Time<br>(min)<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70<br>75<br>90<br>105 | OTTAWA IDF CURVE           Area =         0.046           C =         1.00           Time (min) (mm/hr)         5           5         242.70           10         178.56           15         142.89           20         119.95           25         103.85           30         91.87           35         82.58           40         75.15           45         69.05           50         63.95           55         59.62           60         55.89           65         52.65           70         49.79           75         47.26           90         41.11           105         36.50 | OTTAWA IDF CURVE           Area =         0.046         ha           C =         1.00           Time (min)         Intensity (mm/hr)         Q (L/s)           5         242.70         31.01           10         178.56         22.81           15         142.89         18.26           20         119.95         15.32           25         103.85         13.27           30         91.87         11.74           35         82.58         10.55           40         75.15         9.60           45         69.05         8.82           50         63.95         8.17           55         59.62         7.62           60         55.89         7.14           65         52.65         6.73           70         49.79         6.36           75         47.26         6.04           90         41.11         5.25           105         36.50         4.66 | OTTAWA IDF CURVE           Area = C = 1.00         0.046 ha (L/s)         Qallow = Vol(max) =           Time (min) (mm/hr) (mm/hr) (mm/hr)         Q (L/s) (L/s) (L/s)         Quester (L/s) (L/s)           5 242.70         31.01         29.67           10 178.56         22.81         21.47           15 142.89         18.26         16.92           20 119.95         15.32         13.98           25 103.85         13.27         11.93           30 91.87         11.74         10.40           35 82.58         10.55         9.21           40 75.15         9.60         8.26           45 69.05         8.82         7.48           50 63.95         8.17         6.83           55 59.62         7.62         6.28           60         55.89         7.14         5.80           65         52.65         6.73         5.39           70 49.79         6.36         5.02           75 47.26         6.04         4.70           90 41.11         5.25         3.91           105         36.50         4.66         3.32 | OTTAWA IDF CURVE           Area =         0.046         ha         Qallow =         1.34           C =         1.00         Vol(max) =         21.1           Time Intensity (min) (mm/hr) (L/s) (L/s) (ms)         Q Qnet (L/s) (ms)         Vol (L/s) (ms)           5         242.70         31.01         29.67         8.90           10         178.56         22.81         21.47         12.88           15         142.89         18.26         16.92         15.22           20         119.95         15.32         13.98         16.78           25         103.85         13.27         11.93         17.89           30         91.87         11.74         10.40         18.71           35         82.58         10.55         9.21         19.34           40         75.15         9.60         8.26         19.83           45         69.05         8.82         7.48         20.20           50         63.95         8.17         6.83         20.49           55         59.62         7.62         6.28         20.72           60         55.89         7.14         5.80         20.88 | OTTAWA IDF CURVE           Area =         0.046 ha         Qallow =         1.34 L/s Vol(max) =         21.1 m3           Time (min) (mm/hr) (mm/hr) (mm/hr) (L/s) (L/s) (mm/hr) (L/s) (L/s) (mm/hr)         Q Qnet (mm/hr) (mm/hr) (L/s) (mm/hr) (mm/hr)         Vol (mm/hr)         Q Qnet (mm/hr) (mm |

| ľ | Watts Accutrol Flow Control Roof Drains: |                    |                   | RD-100-A-ADJ set to 3/4 Exposed |          |          |  |
|---|------------------------------------------|--------------------|-------------------|---------------------------------|----------|----------|--|
| I | Design Event                             | Flow/Drain (L/s)   | Total Flow (L/s)  | Ponding (cm)                    | Storag   | je (m³)  |  |
| ı | Design Event                             | i low/braili (L/s) | 10tai 1 10W (L/5) | Folialing (Cili)                | Required | Provided |  |
| I | 1:5 Year                                 | 1.10               | 1.10              | 11                              | 9.7      | 23.0     |  |
| L | 1:100 Year                               | 1.34               | 1.34              | 14                              | 21.1     | 23.0     |  |

| Roof Drain Storage Table for Building A RD-4 |                |                |  |  |
|----------------------------------------------|----------------|----------------|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |
| 0.00                                         | 0              | 0              |  |  |
| 0.05                                         | 47.2           | 1.2            |  |  |
| 0.10                                         | 189.8          | 7.1            |  |  |
| 0.15                                         | 446.5          | 23.0           |  |  |

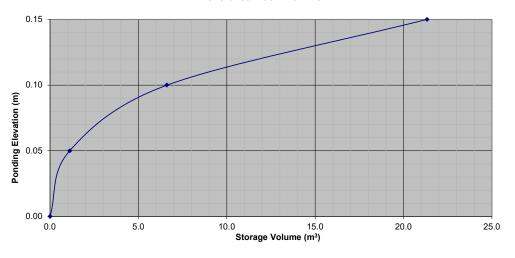
Stage Storage Curve: Area R-1 Controlled Roof Drain #4



PROJECT NO: 124107 REQUIRED STORAGE - 1:5 YEAR EVENT

| REQUIRED STOR  | AGE - 1:5 | YEAR EVE  | ENT           |      |     |
|----------------|-----------|-----------|---------------|------|-----|
| AREA R-1       |           | Controlle | ed Roof Drain | RD 5 |     |
| OTTAWA IDF CUF | RVE       |           |               |      |     |
| Area =         | 0.042     | ha        | Qallow =      | 1.10 | L/s |
| C =            | 0.90      |           | Vol(max) =    | 8.5  | m3  |
|                |           |           |               |      |     |
| Time           | Intensity | Q         | Qnet          | Vol  |     |
| (min)          | (mm/hr)   | (L/s)     | (L/s)         | (m3) |     |
| 5              | 141.18    | 14.78     | 13.68         | 4.10 |     |
| 10             | 104.19    | 10.90     | 9.80          | 5.88 |     |
| 15             | 83.56     | 8.74      | 7.64          | 6.88 |     |
| 20             | 70.25     | 7.35      | 6.25          | 7.50 |     |
| 25             | 60.90     | 6.37      | 5.27          | 7.91 |     |
| 30             | 53.93     | 5.64      | 4.54          | 8.18 |     |
| 35             | 48.52     | 5.08      | 3.98          | 8.35 |     |
| 40             | 44.18     | 4.62      | 3.52          | 8.46 |     |
| 45             | 40.63     | 4.25      | 3.15          | 8.51 |     |
| 50             | 37.65     | 3.94      | 2.84          | 8.52 |     |
| 55             | 35.12     | 3.68      | 2.58          | 8.50 |     |
| 60             | 32.94     | 3.45      | 2.35          | 8.45 |     |
| 65             | 31.04     | 3.25      | 2.15          | 8.38 |     |
| 70             | 29.37     | 3.07      | 1.97          | 8.29 |     |
| 75             | 27.89     | 2.92      | 1.82          | 8.18 |     |
| 90             | 24.29     | 2.54      | 1.44          | 7.79 |     |
| 105            | 21.58     | 2.26      | 1.16          | 7.30 |     |
| 120            | 19.47     | 2.04      | 0.94          | 6.75 |     |
|                |           |           |               |      |     |

150 DUN SKIPPER DRIVE


PROJECT NO: 124107 REQUIRED STORAGE - 1:100 YEAR EVENT

| REQUIRED STORAGE - 1:100 YEAR EVENT |           |           |              |       |     |
|-------------------------------------|-----------|-----------|--------------|-------|-----|
| AREA R-1                            |           | Controlle | d Roof Drain | RD 5  |     |
| OTTAWA IDF CU                       | JRVE      |           |              |       |     |
| Area =                              | 0.042     | ha        | Qallow =     | 1.34  | L/s |
| C =                                 | 1.00      |           | Vol(max) =   | 18.7  | m3  |
| Time                                | Intensity | Q         | Qnet         | Vol   |     |
| (min)                               | (mm/hr)   | (L/s)     | (L/s)        | (m3)  |     |
| 5                                   | 242.70    | 28.22     | 26.88        | 8.06  |     |
| 10                                  | 178.56    | 20.76     | 19.42        | 11.65 |     |
| 15                                  | 142.89    | 16.62     | 15.28        | 13.75 |     |
| 20                                  | 119.95    | 13.95     | 12.61        | 15.13 |     |
| 25                                  | 103.85    | 12.08     | 10.74        | 16.10 |     |
| 30                                  | 91.87     | 10.68     | 9.34         | 16.82 |     |
| 35                                  | 82.58     | 9.60      | 8.26         | 17.35 |     |
| 40                                  | 75.15     | 8.74      | 7.40         | 17.76 |     |
| 45                                  | 69.05     | 8.03      | 6.69         | 18.06 |     |
| 50                                  | 63.95     | 7.44      | 6.10         | 18.29 |     |
| 55                                  | 59.62     | 6.93      | 5.59         | 18.46 |     |
| 60                                  | 55.89     | 6.50      | 5.16         | 18.58 |     |
| 65                                  | 52.65     | 6.12      | 4.78         | 18.65 |     |
| 70                                  | 49.79     | 5.79      | 4.45         | 18.69 |     |
| 75                                  | 47.26     | 5.50      | 4.16         | 18.70 |     |
| 90                                  | 41.11     | 4.78      | 3.44         | 18.58 |     |
| 105                                 | 36.50     | 4.24      | 2.90         | 18.30 |     |
| 120                                 | 32.89     | 3.83      | 2.49         | 17.89 |     |
|                                     |           |           |              |       |     |

| Watts Accutrol Flow Control Roof Drains: |                                   |                   | RD-100-A-ADJ se                               | et to 3/4 Exp | osed         |        |         |
|------------------------------------------|-----------------------------------|-------------------|-----------------------------------------------|---------------|--------------|--------|---------|
| Design Event                             | Flow/Drain (L/s) Total Flow (L/s) |                   | ent Flow/Drain (L/s) Total Flow (L/s) Ponding |               | Ponding (cm) | Storag | je (m³) |
| Design Event                             | i low/Dialli (L/3)                | 10tai 1 10W (L/S) | Folialing (Cili)                              | Required      | Provided     |        |         |
| 1:5 Year                                 | 1.10                              | 1.10              | 11                                            | 8.5           | 21.3         |        |         |
| 1:100 Year                               | 1.34                              | 1.34              | 14                                            | 18.7          | 21.3         |        |         |

| Roof Drain Storage Table for Building A RD-5 |                |                |  |  |
|----------------------------------------------|----------------|----------------|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |
| 0.00                                         | 0              | 0              |  |  |
| 0.05                                         | 44.4           | 1.1            |  |  |
| 0.10                                         | 175.7          | 6.6            |  |  |
| 0.15                                         | 412.8          | 21.3           |  |  |

# Stage Storage Curve: Area R-1 Controlled Roof Drain #5



REQUIRED STORAGE - 1:5 YEAR EVENT

AREA R-1 Controlled Roof Drain RD 6 OTTAWA IDF CURVE Qallow = 1.26 Area = 0.065 ha L/s C = 0.90Vol(max) = 14.8 m3 Q Qnet Time Intensity Vol (mm/hr) (L/s) (L/s) (m3) (min) 5 141.18 23.03 21.77 6.53 10 104.19 16.99 15.73 9.44 15 83.56 13.63 12.37 11.13 20 70.25 11.46 10.20 12.24 25 60.90 9.93 8.67 13.01 30 53.93 8.80 7.54 13.57 35 48.52 7.91 6.65 13.97 40 44.18 7.21 5.95 14.27 45 40.63 6.63 5.37 14.49 50 37.65 6.14 4.88 14.64

5.73

5.37

5.06

4.79

4.55

3.96

3.52

3.18

4.47

4.11

3.80

3.53

3.29

2.70

2.26

1.92

14.75

14.81

14.83

14.83

14.80

14.59

14.24

13.79

150 DUN SKIPPER DRIVE

55

60

65

70

75

90

105

120

105

120

PROJECT NO: 124107

REQUIRED STORAGE - 1:100 YEAR EVENT AREA R-1 Controlled Roof Drain RD 6

36.50

32.89

35.12

32.94

31.04

29.37

27.89

24.29

21.58

19.47

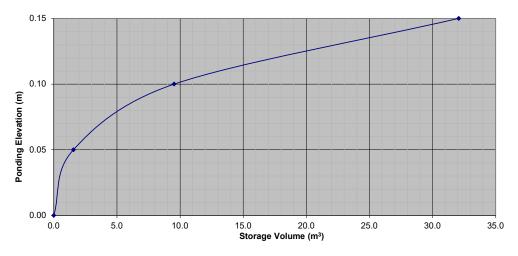
OTTAWA IDF CURVE Area = 0.065 ha Qallow = 1.89 L/s C = 1.00 Vol(max) = 30.0 m3 Time Intensity Q Qnet Vol (min) (mm/hr) (L/s) (L/s) (m3) 242.70 12.63 5 43.99 42.10 10 178.56 32.36 30.47 18.28 15 142.89 25.90 24.01 21.61 20 119.95 21.74 19.85 23.82 25 103.85 25.40 18.82 16.93 30 91.87 16.65 14.76 26.57 35 82.58 14.97 13.08 27.46 40 75.15 13.62 11.73 28.15 45 69.05 12.51 10.62 28.69 50 63.95 9.70 11.59 29.10 55 59.62 10.81 8.92 29.42 60 55.89 10.13 8.24 29.66 65 52.65 9.54 7.65 29.84 49.79 70 9.02 7.13 29.96 75 47.26 8.56 6.67 30.03 90 41.11 7.45 5.56 30.03

6.61

5.96

4.72

4.07


29.76

29.32

| Watts Accutrol Flow Control Roof Drains:       |                    |                  | RD-100-A-ADJ set to Fully Exposed |          |          |  |
|------------------------------------------------|--------------------|------------------|-----------------------------------|----------|----------|--|
| Design Event Flow/Drain (L/s) Total Flow (L/s) |                    | Ponding (cm)     | Storage (m <sup>3</sup> )         |          |          |  |
| Design Event                                   | i low/blaili (L/5) | Total Flow (L/S) | Folialing (Cili)                  | Required | Provided |  |
| 1:5 Year                                       | 1.26               | 1.26             | 11                                | 14.8     | 32.1     |  |
| 1:100 Year                                     | 1.89               | 1.89             | 14                                | 30.0     | 32.1     |  |

| Roof Drain Storage Table for Building A RD-6 |                |                |  |  |  |  |
|----------------------------------------------|----------------|----------------|--|--|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |  |  |
| 0.00                                         | 0              | 0              |  |  |  |  |
| 0.05                                         | 62.2           | 1.6            |  |  |  |  |
| 0.10                                         | 256.6          | 9.5            |  |  |  |  |
| 0.15                                         | 645.2          | 32.1           |  |  |  |  |

Stage Storage Curve: Area R-1 Controlled Roof Drain #6

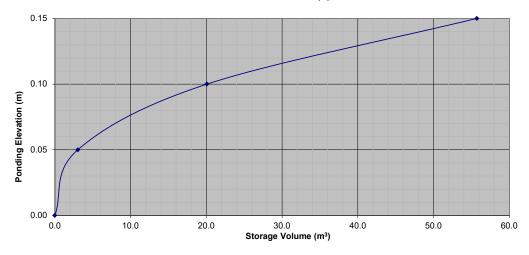


REQUIRED STORAGE - 1:5 YEAR EVENT

AREA R-2 Controlled Roof Drain RD 1, RD 2, RD 3

| AREA R-2       | Controlled Roof Draili RD 1, RD 2, RD 3 |       |            |       |     |  |  |
|----------------|-----------------------------------------|-------|------------|-------|-----|--|--|
| OTTAWA IDF CUP | RVE                                     |       |            |       |     |  |  |
| Area =         | 0.090                                   | ha    | Qallow =   | 2.85  | L/s |  |  |
| C =            | 0.90                                    |       | Vol(max) = | 17.1  | m3  |  |  |
|                |                                         |       |            |       |     |  |  |
| Time           | Intensity                               | Q     | Qnet       | Vol   |     |  |  |
| (min)          | (mm/hr)                                 | (L/s) | (L/s)      | (m3)  |     |  |  |
| 5              | 141.18                                  | 31.89 | 29.04      | 8.71  |     |  |  |
| 10             | 104.19                                  | 23.53 | 20.68      | 12.41 |     |  |  |
| 15             | 83.56                                   | 18.87 | 16.02      | 14.42 |     |  |  |
| 20             | 70.25                                   | 15.87 | 13.02      | 15.62 |     |  |  |
| 25             | 60.90                                   | 13.75 | 10.90      | 16.36 |     |  |  |
| 30             | 53.93                                   | 12.18 | 9.33       | 16.79 |     |  |  |
| 35             | 48.52                                   | 10.96 | 8.11       | 17.03 |     |  |  |
| 40             | 44.18                                   | 9.98  | 7.13       | 17.11 |     |  |  |
| 45             | 40.63                                   | 9.18  | 6.33       | 17.08 |     |  |  |
| 50             | 37.65                                   | 8.50  | 5.65       | 16.96 |     |  |  |
| 55             | 35.12                                   | 7.93  | 5.08       | 16.77 |     |  |  |
| 60             | 32.94                                   | 7.44  | 4.59       | 16.53 |     |  |  |
| 65             | 31.04                                   | 7.01  | 4.16       | 16.23 |     |  |  |
| 70             | 29.37                                   | 6.63  | 3.78       | 15.89 |     |  |  |
| 75             | 27.89                                   | 6.30  | 3.45       | 15.52 |     |  |  |
| 90             | 24.29                                   | 5.49  | 2.64       | 14.23 |     |  |  |
| 105            | 21.58                                   | 4.87  | 2.02       | 12.76 |     |  |  |
| 120            | 19.47                                   | 4.40  | 1.55       | 11.14 |     |  |  |
|                |                                         |       |            |       |     |  |  |

150 DUN SKIPPER DRIVE


PROJECT NO: 124107 REQUIRED STORAGE - 1:100 YEAR EVENT

| AREA R-2      | Controlled Roof Drain RD 1, RD 2, RD 3 |       |            |       |     |  |  |
|---------------|----------------------------------------|-------|------------|-------|-----|--|--|
| OTTAWA IDF CU | RVE                                    |       |            |       |     |  |  |
| Area =        | 0.090                                  | ha    | Qallow =   | 3.30  | L/s |  |  |
| C =           | 1.00                                   |       | Vol(max) = | 38.7  | m3  |  |  |
|               |                                        |       |            |       |     |  |  |
| Time          | Intensity                              | Q     | Qnet       | Vol   |     |  |  |
| (min)         | (mm/hr)                                | (L/s) | (L/s)      | (m3)  |     |  |  |
| 5             | 242.70                                 | 60.91 | 57.61      | 17.28 |     |  |  |
| 10            | 178.56                                 | 44.81 | 41.51      | 24.91 |     |  |  |
| 15            | 142.89                                 | 35.86 | 32.56      | 29.30 |     |  |  |
| 20            | 119.95                                 | 30.10 | 26.80      | 32.16 |     |  |  |
| 25            | 103.85                                 | 26.06 | 22.76      | 34.14 |     |  |  |
| 30            | 91.87                                  | 23.06 | 19.76      | 35.56 |     |  |  |
| 35            | 82.58                                  | 20.72 | 17.42      | 36.59 |     |  |  |
| 40            | 75.15                                  | 18.86 | 15.56      | 37.34 |     |  |  |
| 45            | 69.05                                  | 17.33 | 14.03      | 37.88 |     |  |  |
| 50            | 63.95                                  | 16.05 | 12.75      | 38.25 |     |  |  |
| 55            | 59.62                                  | 14.96 | 11.66      | 38.49 |     |  |  |
| 60            | 55.89                                  | 14.03 | 10.73      | 38.62 |     |  |  |
| 65            | 52.65                                  | 13.21 | 9.91       | 38.66 |     |  |  |
| 70            | 49.79                                  | 12.50 | 9.20       | 38.62 |     |  |  |
| 75            | 47.26                                  | 11.86 | 8.56       | 38.52 |     |  |  |
| 90            | 41.11                                  | 10.32 | 7.02       | 37.89 |     |  |  |
| 105           | 36.50                                  | 9.16  | 5.86       | 36.91 |     |  |  |
| 120           | 32.89                                  | 8.26  | 4.96       | 35.68 |     |  |  |
|               |                                        |       |            |       |     |  |  |

| Watts Accutrol Flow | RD-100-A-ADJ set to 1/2 Exposed |                  |                 |          |          |
|---------------------|---------------------------------|------------------|-----------------|----------|----------|
| Design Event        | Flow/Drain (L/s)                | Total Flow (L/s) | Ponding (cm)    | Storag   | ge (m³)  |
| Design Event        | 1 low/Diam (L/3)                | Total Flow (L/3) | Politing (CIII) | Required | Provided |
| 1:5 Year            | 0.95                            | 2.85             | 11              | 17.1     | 55.7     |
| 1:100 Year          | 1.10                            | 3.30             | 13              | 38.7     | 55.7     |

| Roof Drain Storage Table for Building B RD-1,2,3 |                |                |  |  |  |
|--------------------------------------------------|----------------|----------------|--|--|--|
| Elevation Area RD 1 Total Volume                 |                |                |  |  |  |
| m                                                | m <sup>2</sup> | m <sup>3</sup> |  |  |  |
| 0.00                                             | 0              | 0              |  |  |  |
| 0.05                                             | 121.2          | 3.0            |  |  |  |
| 0.10                                             | 560.7          | 20.1           |  |  |  |
| 0.15                                             | 865.1          | 55.7           |  |  |  |

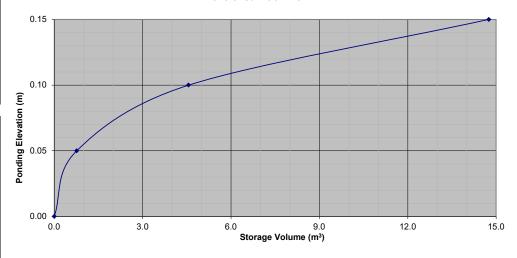
Stage Storage Curve: Area R-2 Controlled Roof Drain #1,2,&3



PROJECT NO: 124107 REQUIRED STORAGE - 1:5 YEAR EVENT

| REQUIRED STORAGE - 1:5 YEAR EVENT |           |           |               |      |     |  |  |
|-----------------------------------|-----------|-----------|---------------|------|-----|--|--|
| AREA R-3                          |           | Controlle | ed Roof Drain | RD 1 |     |  |  |
| OTTAWA IDF CUF                    | RVE       |           |               |      |     |  |  |
| Area =                            | 0.030     | ha        | Qallow =      | 0.95 | L/s |  |  |
| C =                               | 0.90      |           | Vol(max) =    | 5.7  | m3  |  |  |
|                                   |           |           |               |      |     |  |  |
| Time                              | Intensity | Q         | Qnet          | Vol  |     |  |  |
| (min)                             | (mm/hr)   | (L/s)     | (L/s)         | (m3) |     |  |  |
| 5                                 | 141.18    | 10.64     | 9.69          | 2.91 |     |  |  |
| 10                                | 104.19    | 7.85      | 6.90          | 4.14 |     |  |  |
| 15                                | 83.56     | 6.30      | 5.35          | 4.81 |     |  |  |
| 20                                | 70.25     | 5.29      | 4.34          | 5.21 |     |  |  |
| 25                                | 60.90     | 4.59      | 3.64          | 5.46 |     |  |  |
| 30                                | 53.93     | 4.06      | 3.11          | 5.60 |     |  |  |
| 35                                | 48.52     | 3.66      | 2.71          | 5.68 |     |  |  |
| 40                                | 44.18     | 3.33      | 2.38          | 5.71 |     |  |  |
| 45                                | 40.63     | 3.06      | 2.11          | 5.70 |     |  |  |
| 50                                | 37.65     | 2.84      | 1.89          | 5.66 |     |  |  |
| 55                                | 35.12     | 2.65      | 1.70          | 5.60 |     |  |  |
| 60                                | 32.94     | 2.48      | 1.53          | 5.52 |     |  |  |
| 65                                | 31.04     | 2.34      | 1.39          | 5.42 |     |  |  |
| 70                                | 29.37     | 2.21      | 1.26          | 5.30 |     |  |  |
| 75                                | 27.89     | 2.10      | 1.15          | 5.18 |     |  |  |
| 90                                | 24.29     | 1.83      | 0.88          | 4.75 |     |  |  |
| 105                               | 21.58     | 1.63      | 0.68          | 4.26 |     |  |  |
| 120                               | 19.47     | 1.47      | 0.52          | 3.72 |     |  |  |
|                                   |           |           |               |      |     |  |  |

150 DUN SKIPPER DRIVE


PROJECT NO: 124107
REQUIRED STORAGE - 1:100 YEAR EVENT
AREA R-3 Controlled Roof

| REGUINED OTO  | REGULAR OF ORAGE - 1.100 FEAR EVENT |           |              |       |     |  |  |
|---------------|-------------------------------------|-----------|--------------|-------|-----|--|--|
| AREA R-3      |                                     | Controlle | d Roof Drain | KD 1  |     |  |  |
| OTTAWA IDF CU | RVE                                 |           |              |       |     |  |  |
| Area =        | 0.030                               | ha        | Qallow =     | 1.10  | L/s |  |  |
| C =           | 1.00                                |           | Vol(max) =   | 12.9  | m3  |  |  |
|               |                                     |           |              |       |     |  |  |
| Time          | Intensity                           | Q         | Qnet         | Vol   |     |  |  |
| (min)         | (mm/hr)                             | (L/s)     | (L/s)        | (m3)  |     |  |  |
| 5             | 242.70                              | 20.32     | 19.22        | 5.77  |     |  |  |
| 10            | 178.56                              | 14.95     | 13.85        | 8.31  |     |  |  |
| 15            | 142.89                              | 11.96     | 10.86        | 9.78  |     |  |  |
| 20            | 119.95                              | 10.04     | 8.94         | 10.73 |     |  |  |
| 25            | 103.85                              | 8.69      | 7.59         | 11.39 |     |  |  |
| 30            | 91.87                               | 7.69      | 6.59         | 11.86 |     |  |  |
| 35            | 82.58                               | 6.91      | 5.81         | 12.21 |     |  |  |
| 40            | 75.15                               | 6.29      | 5.19         | 12.46 |     |  |  |
| 45            | 69.05                               | 5.78      | 4.68         | 12.64 |     |  |  |
| 50            | 63.95                               | 5.35      | 4.25         | 12.76 |     |  |  |
| 55            | 59.62                               | 4.99      | 3.89         | 12.84 |     |  |  |
| 60            | 55.89                               | 4.68      | 3.58         | 12.89 |     |  |  |
| 65            | 52.65                               | 4.41      | 3.31         | 12.90 |     |  |  |
| 70            | 49.79                               | 4.17      | 3.07         | 12.89 |     |  |  |
| 75            | 47.26                               | 3.96      | 2.86         | 12.85 |     |  |  |
| 90            | 41.11                               | 3.44      | 2.34         | 12.64 |     |  |  |
| 105           | 36.50                               | 3.06      | 1.96         | 12.32 |     |  |  |
| 120           | 32.89                               | 2.75      | 1.65         | 11.91 |     |  |  |
|               |                                     |           |              |       |     |  |  |

| Watts Accutrol Flow                      | RD-100-A-ADJ set to 1/2 Exposed   |                  |                 |              |          |
|------------------------------------------|-----------------------------------|------------------|-----------------|--------------|----------|
| Design Event Flow/Drain (L/s) Total Flow |                                   | Total Flow (L/s) | Ponding (cm)    | Storage (m³) |          |
| Design Event                             | 1 low/brain (£/3) Total 1 low (£/ |                  | r onding (citi) | Required     | Provided |
| 1:5 Year                                 | 0.95                              | 0.95             | 11              | 5.7          | 14.8     |
| 1:100 Year                               | 1.10                              | 1.10             | 14              | 12.9         | 14.8     |

| Roof Drain Storage Table for Building C RD-1 |                |                |  |  |  |  |
|----------------------------------------------|----------------|----------------|--|--|--|--|
| Elevation Area RD 1 Total Volume             |                |                |  |  |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |  |  |
| 0.00                                         | 0              | 0              |  |  |  |  |
| 0.05                                         | 30.5           | 0.8            |  |  |  |  |
| 0.10                                         | 121.4          | 4.6            |  |  |  |  |
| 0.15                                         | 286.4          | 14.8           |  |  |  |  |

# Stage Storage Curve: Area R-3 Controlled Roof Drain #1

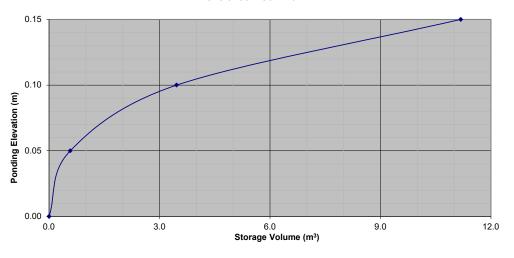


REQUIRED STORAGE - 1:5 YEAR EVENT

AREA R-3 Controlled Roof Drain RD 2 OTTAWA IDF CURVE Area = 0.022 ha Qallow = 0.95 L/s C = 0.90Vol(max) = 3.7 m3 Q Qnet Vol Time Intensity (min) (mm/hr) (L/s) (L/s) (m3) 2.07 5 141.18 7.86 6.91 10 104.19 5.80 4.85 2.91 15 83.56 4.65 3.70 3.33 20 70.25 3.91 2.96 3.55 25 60.90 3.39 3.66 2.44 30 53.93 3.00 2.05 3.70 35 48.52 2.70 1.75 3.68 40 44.18 2.46 1.51 3.63 45 40.63 2.26 1.31 3.54 50 37.65 2.10 1.15 3.44 55 35.12 1.96 1.01 3.32 60 32.94 1.83 0.88 3.18 65 31.04 1.73 0.78 3.04 70 29.37 1.64 0.69 2.88 75 27.89 1.55 0.60 2.71 90 24.29 1.35 0.40 2.17 105 21.58 1.20 0.25 1.59 120 19.47 1.08 0.13 0.97

150 DUN SKIPPER DRIVE

PROJECT NO: 124107


REQUIRED STORAGE - 1:100 YEAR EVENT

| REGULES OF OTOTAL THE TENED OF |           |           |              |      |     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------|------|-----|--|
| AREA R-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | Controlle | d Roof Drain | RD 2 |     |  |
| OTTAWA IDF CU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RVE       |           |              |      |     |  |
| Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.022     | ha        | Qallow =     | 1.10 | L/s |  |
| C =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00      |           | Vol(max) =   | 8.6  | m3  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |           |              |      |     |  |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intensity | Q         | Qnet         | Vol  |     |  |
| (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mm/hr)   | (L/s)     | (L/s)        | (m3) |     |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 242.70    | 15.02     | 13.92        | 4.18 |     |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 178.56    | 11.05     | 9.95         | 5.97 |     |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 142.89    | 8.84      | 7.74         | 6.97 |     |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.95    | 7.42      | 6.32         | 7.59 |     |  |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103.85    | 6.43      | 5.33         | 7.99 |     |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91.87     | 5.68      | 4.58         | 8.25 |     |  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82.58     | 5.11      | 4.01         | 8.42 |     |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75.15     | 4.65      | 3.55         | 8.52 |     |  |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69.05     | 4.27      | 3.17         | 8.57 |     |  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.95     | 3.96      | 2.86         | 8.57 |     |  |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59.62     | 3.69      | 2.59         | 8.55 |     |  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55.89     | 3.46      | 2.36         | 8.49 |     |  |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.65     | 3.26      | 2.16         | 8.42 |     |  |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.79     | 3.08      | 1.98         | 8.32 |     |  |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.26     | 2.92      | 1.82         | 8.21 |     |  |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.11     | 2.54      | 1.44         | 7.80 |     |  |
| 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.50     | 2.26      | 1.16         | 7.30 |     |  |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.89     | 2.04      | 0.94         | 6.74 |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |           |              |      |     |  |

| Watts Accutrol Flow Control Roof Drains: |                                                |                   | RD-100-A-ADJ set to 1/2 Exposed |          |          |  |
|------------------------------------------|------------------------------------------------|-------------------|---------------------------------|----------|----------|--|
| Design Event                             | Design Event Flow/Drain (L/s) Total Flow (L/s) |                   | Ponding (cm)                    | Storag   | ge (m³)  |  |
| Design Event                             | Tiow/Diam (E/3) Total Flow (E/3                | 10tai 1 10W (L/5) | Folialing (Cili)                | Required | Provided |  |
| 1:5 Year                                 | 0.95                                           | 0.95              | 10                              | 3.7      | 11.2     |  |
| 1:100 Year                               | 1.10                                           | 1.10              | 13                              | 8.6      | 11.2     |  |

| Roof Drain Storage Table for Building C RD-2 |                |                |  |  |
|----------------------------------------------|----------------|----------------|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |
| 0.00                                         | 0              | 0              |  |  |
| 0.05                                         | 23.0           | 0.6            |  |  |
| 0.10                                         | 92.4           | 3.5            |  |  |
| 0.15                                         | 216.3          | 11.2           |  |  |

Stage Storage Curve: Area R-3 Controlled Roof Drain #2

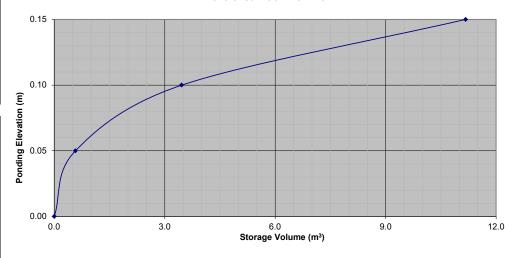


REQUIRED STORAGE - 1:5 YEAR EVENT

AREA R-3 Controlled Roof Drain RD 3 OTTAWA IDF CURVE Area = 0.022 ha Qallow = 0.95 L/s C = 0.90 Vol(max) = 3.7 m3 Q Qnet Vol Time Intensity (min) (mm/hr) (L/s) (L/s) (m3) 5 141.18 7.89 6.94 2.08 10 104.19 5.82 4.87 2.92 15 83.56 4.67 3.72 3.35 20 70.25 3.93 2.98 3.57 25 3.68 60.90 3.40 2.45 30 53.93 3.01 2.06 3.72 35 48.52 2.71 1.76 3.70 40 44.18 2.47 1.52 3.65 45 40.63 2.27 1.32 3.57 50 37.65 2.10 1.15 3.46 55 35.12 1.96 1.01 3.34 60 32.94 1.84 0.89 3.21 65 31.04 1.74 0.79 3.06 70 29.37 1.64 0.69 2.90 75 27.89 1.56 0.61 2.74 90 24.29 1.36 0.41 2.20 105 21.58 1.21 0.26 1.61 120 19.47 1.09 0.14 0.99

150 DUN SKIPPER DRIVE

PROJECT NO: 124107


REQUIRED STORAGE - 1:100 YEAR EVENT

| AREA R-3      |           | Controlle | d Roof Drain | RD 3 |     |
|---------------|-----------|-----------|--------------|------|-----|
| OTTAWA IDF CU | RVE       |           |              |      |     |
| Area =        | 0.022     | ha        | Qallow =     | 1.10 | L/s |
| C =           | 1.00      |           | Vol(max) =   | 8.6  | m3  |
|               |           |           |              |      |     |
| Time          | Intensity | Q         | Qnet         | Vol  |     |
| (min)         | (mm/hr)   | (L/s)     | (L/s)        | (m3) |     |
| 5             | 242.70    | 15.07     | 13.97        | 4.19 |     |
| 10            | 178.56    | 11.09     | 9.99         | 5.99 |     |
| 15            | 142.89    | 8.87      | 7.77         | 7.00 |     |
| 20            | 119.95    | 7.45      | 6.35         | 7.62 |     |
| 25            | 103.85    | 6.45      | 5.35         | 8.02 |     |
| 30            | 91.87     | 5.71      | 4.61         | 8.29 |     |
| 35            | 82.58     | 5.13      | 4.03         | 8.46 |     |
| 40            | 75.15     | 4.67      | 3.57         | 8.56 |     |
| 45            | 69.05     | 4.29      | 3.19         | 8.61 |     |
| 50            | 63.95     | 3.97      | 2.87         | 8.61 |     |
| 55            | 59.62     | 3.70      | 2.60         | 8.59 |     |
| 60            | 55.89     | 3.47      | 2.37         | 8.54 |     |
| 65            | 52.65     | 3.27      | 2.17         | 8.46 |     |
| 70            | 49.79     | 3.09      | 1.99         | 8.37 |     |
| 75            | 47.26     | 2.93      | 1.83         | 8.26 |     |
| 90            | 41.11     | 2.55      | 1.45         | 7.85 |     |
| 105           | 36.50     | 2.27      | 1.17         | 7.35 |     |
| 120           | 32.89     | 2.04      | 0.94         | 6.79 |     |
|               |           |           |              |      |     |

| Watts Accutrol Flow Control Roof Drains: |                    |                   | RD-100-A-ADJ se | et to 1/2 Exp | osed     |
|------------------------------------------|--------------------|-------------------|-----------------|---------------|----------|
| Design Event                             | Flow/Drain (L/s)   | Total Flow (L/s)  | Ponding (cm)    | Storag        | je (m³)  |
| Design Event                             | i low/biaili (L/3) | 10tai 1 10W (L/3) | ronaing (citi)  | Required      | Provided |
| 1:5 Year                                 | 0.95               | 0.95              | 10              | 3.7           | 11.2     |
| 1:100 Year                               | 1.10               | 1.10              | 13              | 8.6           | 11.2     |

| Roof Drain Storage Table for Building C RD-3 |                |                |  |  |  |
|----------------------------------------------|----------------|----------------|--|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |  |
| 0.00                                         | 0              | 0              |  |  |  |
| 0.05                                         | 23.0           | 0.6            |  |  |  |
| 0.10                                         | 92.3           | 3.5            |  |  |  |
| 0.15                                         | 216.1          | 11.2           |  |  |  |

Stage Storage Curve: Area R-3 Controlled Roof Drain #3



PROJECT NO: 124107 REQUIRED STORAGE - 1:5 YEAR EVENT

| TEQUITED OF OR |           |           |               |      |     |
|----------------|-----------|-----------|---------------|------|-----|
| AREA R-3       |           | Controlle | ed Roof Drain | RD 4 |     |
| OTTAWA IDF CUR | :VE       |           |               |      |     |
| Area =         | 0.028     | ha        | Qallow =      | 0.95 | L/s |
| C =            | 0.90      |           | Vol(max) =    | 5.1  | m3  |
|                |           |           |               |      |     |
| Time           | Intensity | Q         | Qnet          | Vol  |     |
| (min)          | (mm/hr)   | (L/s)     | (L/s)         | (m3) |     |
| 5              | 141.18    | 9.86      | 8.91          | 2.67 |     |
| 10             | 104.19    | 7.28      | 6.33          | 3.80 |     |
| 15             | 83.56     | 5.84      | 4.89          | 4.40 |     |
| 20             | 70.25     | 4.91      | 3.96          | 4.75 |     |
| 25             | 60.90     | 4.25      | 3.30          | 4.95 |     |
| 30             | 53.93     | 3.77      | 2.82          | 5.07 |     |
| 35             | 48.52     | 3.39      | 2.44          | 5.12 |     |
| 40             | 44.18     | 3.09      | 2.14          | 5.13 |     |
| 45             | 40.63     | 2.84      | 1.89          | 5.10 |     |
| 50             | 37.65     | 2.63      | 1.68          | 5.04 |     |
| 55             | 35.12     | 2.45      | 1.50          | 4.96 |     |
| 60             | 32.94     | 2.30      | 1.35          | 4.86 |     |
| 65             | 31.04     | 2.17      | 1.22          | 4.75 |     |
| 70             | 29.37     | 2.05      | 1.10          | 4.62 |     |
| 75             | 27.89     | 1.95      | 1.00          | 4.49 |     |
| 90             | 24.29     | 1.70      | 0.75          | 4.03 |     |
| 105            | 21.58     | 1.51      | 0.56          | 3.51 |     |
| 120            | 19.47     | 1.36      | 0.41          | 2.95 |     |
|                |           |           |               |      |     |

150 DUN SKIPPER DRIVE PROJECT NO: 124107 REQUIRED STORAGE - 1:100 YEAR EVENT

| AREA R-3       |           | Controlle | d Roof Drain | RD 4  |     |
|----------------|-----------|-----------|--------------|-------|-----|
| OTTAWA IDF CUI | RVE       |           |              |       |     |
| Area =         | 0.028     | ha        | Qallow =     | 1.10  | L/s |
| C =            | 1.00      |           | Vol(max) =   | 11.7  | m3  |
|                |           |           |              |       |     |
| Time           | Intensity | Q         | Qnet         | Vol   |     |
| (min)          | (mm/hr)   | (L/s)     | (L/s)        | (m3)  |     |
| 5              | 242.70    | 18.83     | 17.73        | 5.32  |     |
| 10             | 178.56    | 13.85     | 12.75        | 7.65  |     |
| 15             | 142.89    | 11.09     | 9.99         | 8.99  |     |
| 20             | 119.95    | 9.31      | 8.21         | 9.85  |     |
| 25             | 103.85    | 8.06      | 6.96         | 10.44 |     |
| 30             | 91.87     | 7.13      | 6.03         | 10.85 |     |
| 35             | 82.58     | 6.41      | 5.31         | 11.15 |     |
| 40             | 75.15     | 5.83      | 4.73         | 11.35 |     |
| 45             | 69.05     | 5.36      | 4.26         | 11.50 |     |
| 50             | 63.95     | 4.96      | 3.86         | 11.59 |     |
| 55             | 59.62     | 4.63      | 3.53         | 11.64 |     |
| 60             | 55.89     | 4.34      | 3.24         | 11.65 |     |
| 65             | 52.65     | 4.08      | 2.98         | 11.64 |     |
| 70             | 49.79     | 3.86      | 2.76         | 11.61 |     |
| 75             | 47.26     | 3.67      | 2.57         | 11.55 |     |
| 90             | 41.11     | 3.19      | 2.09         | 11.29 |     |
| 105            | 36.50     | 2.83      | 1.73         | 10.91 |     |
| 120            | 32.89     | 2.55      | 1.45         | 10.46 |     |
|                |           |           |              |       |     |

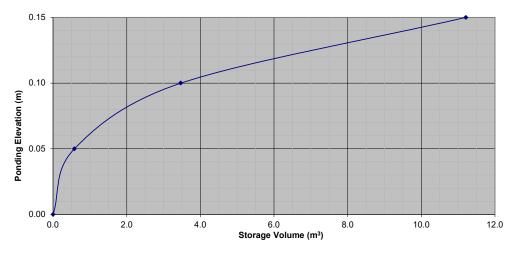
| Watts Accutrol Flow | Control Roof Drains                 | s:   | RD-100-A-ADJ se                               | et to 1/2 Exp | osed         |        |         |
|---------------------|-------------------------------------|------|-----------------------------------------------|---------------|--------------|--------|---------|
| Design Event        | t Flow/Drain (L/s) Total Flow (L/s) |      | Design Event Flow/Drain (L/s) Total Flow (L/s |               | Ponding (cm) | Storag | ge (m³) |
| Design Event        |                                     |      | Folialing (Cili)                              | Required      | Provided     |        |         |
| 1:5 Year            | 0.95                                | 0.95 | 11                                            | 5.1           | 13.5         |        |         |
| 1:100 Year          | 1.10                                | 1.10 | 14                                            | 11.7          | 13.5         |        |         |

| Roof Drain Storage Table for Building C RD-4 |                |                |  |  |  |
|----------------------------------------------|----------------|----------------|--|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |  |
| 0.00                                         | 0              | 0              |  |  |  |
| 0.05                                         | 27.7           | 0.7            |  |  |  |
| 0.10                                         | 110.5          | 4.2            |  |  |  |
| 0.15                                         | 264.3          | 13.5           |  |  |  |

Stage Storage Curve: Area R-3 Controlled Roof Drain #4



| REQUIRED STORAGE - 1:5 YEAR EVENT |           |           |               |      |     |
|-----------------------------------|-----------|-----------|---------------|------|-----|
| AREA R-4                          |           | Controlle | ed Roof Drain | RD 1 |     |
| OTTAWA IDF CUR                    | RVE       |           |               |      |     |
| Area =                            | 0.023     | ha        | Qallow =      | 0.95 | L/s |
| C =                               | 0.90      |           | Vol(max) =    | 3.9  | m3  |
|                                   |           |           |               |      |     |
| Time                              | Intensity | Q         | Qnet          | Vol  |     |
| (min)                             | (mm/hr)   | (L/s)     | (L/s)         | (m3) |     |
| 5                                 | 141.18    | 8.18      | 7.23          | 2.17 |     |
| 10                                | 104.19    | 6.04      | 5.09          | 3.05 |     |
| 15                                | 83.56     | 4.84      | 3.89          | 3.50 |     |
| 20                                | 70.25     | 4.07      | 3.12          | 3.75 |     |
| 25                                | 60.90     | 3.53      | 2.58          | 3.87 |     |
| 30                                | 53.93     | 3.13      | 2.18          | 3.92 |     |
| 35                                | 48.52     | 2.81      | 1.86          | 3.91 |     |
| 40                                | 44.18     | 2.56      | 1.61          | 3.86 |     |
| 45                                | 40.63     | 2.35      | 1.40          | 3.79 |     |
| 50                                | 37.65     | 2.18      | 1.23          | 3.70 |     |
| 55                                | 35.12     | 2.04      | 1.09          | 3.58 |     |
| 60                                | 32.94     | 1.91      | 0.96          | 3.45 |     |
| 65                                | 31.04     | 1.80      | 0.85          | 3.31 |     |
| 70                                | 29.37     | 1.70      | 0.75          | 3.16 |     |
| 75                                | 27.89     | 1.62      | 0.67          | 3.00 |     |
| 90                                | 24.29     | 1.41      | 0.46          | 2.47 |     |
| 105                               | 21.58     | 1.25      | 0.30          | 1.89 |     |
| 120                               | 19.47     | 1.13      | 0.18          | 1.28 |     |


150 DUN SKIPPER DRIVE PROJECT NO: 124107 REQUIRED STORAGE - 1:100 YEAR EVENT

|              |           |           | · - · · ·    |      |     |  |
|--------------|-----------|-----------|--------------|------|-----|--|
| AREA R-4     |           | Controlle | d Roof Drain | RD 1 |     |  |
| OTTAWA IDF C | URVE      |           |              |      |     |  |
| Area =       | 0.023     | ha        | Qallow =     | 1.10 | L/s |  |
| C =          | 1.00      |           | Vol(max) =   | 9.1  | m3  |  |
| Time         | Intensity | Q         | Qnet         | Vol  |     |  |
| (min)        | (mm/hr)   | (L/s)     | (L/s)        | (m3) |     |  |
| 5            | 242.70    | 15.63     | 14.53        | 4.36 |     |  |
| 10           | 178.56    | 11.50     | 10.40        | 6.24 |     |  |
| 15           | 142.89    | 9.20      | 8.10         | 7.29 |     |  |
| 20           | 119.95    | 7.72      | 6.62         | 7.95 |     |  |
| 25           | 103.85    | 6.69      | 5.59         | 8.38 |     |  |
| 30           | 91.87     | 5.92      | 4.82         | 8.67 |     |  |
| 35           | 82.58     | 5.32      | 4.22         | 8.86 |     |  |
| 40           | 75.15     | 4.84      | 3.74         | 8.97 |     |  |
| 45           | 69.05     | 4.45      | 3.35         | 9.03 |     |  |
| 50           | 63.95     | 4.12      | 3.02         | 9.05 |     |  |
| 55           | 59.62     | 3.84      | 2.74         | 9.04 |     |  |
| 60           | 55.89     | 3.60      | 2.50         | 9.00 |     |  |
| 65           | 52.65     | 3.39      | 2.29         | 8.93 |     |  |
| 70           | 49.79     | 3.21      | 2.11         | 8.84 |     |  |
| 75           | 47.26     | 3.04      | 1.94         | 8.74 |     |  |
| 90           | 41.11     | 2.65      | 1.55         | 8.35 |     |  |
| 105          | 36.50     | 2.35      | 1.25         | 7.87 |     |  |
| 120          | 32.89     | 2.12      | 1.02         | 7.33 |     |  |
|              |           |           |              |      |     |  |

| Watts Accutrol Flow | Control Roof Drains               | s:                                 | RD-100-A-ADJ se | et to 1/2 Exp | osed     |
|---------------------|-----------------------------------|------------------------------------|-----------------|---------------|----------|
| Design Event        | Flow/Drain (L/s) Total Flow (L/s) |                                    | Ponding (cm)    | Storag        | je (m³)  |
| Design Event        | i low/Dialli (L/3)                | Flow/Dialii (L/S) Total Flow (L/S) |                 | Required      | Provided |
| 1:5 Year            | 0.95                              | 0.95                               | 11              | 3.9           | 11.2     |
| 1:100 Year          | 1.10                              | 1.10                               | 14              | 9.1           | 11.2     |

| Roof Drain Storage Table for Building D RD-1 |                |                |  |  |
|----------------------------------------------|----------------|----------------|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |
| 0.00                                         | 0              | 0              |  |  |
| 0.05                                         | 23.2           | 0.6            |  |  |
| 0.10                                         | 92.3           | 3.5            |  |  |
| 0.15                                         | 217.4          | 11.2           |  |  |

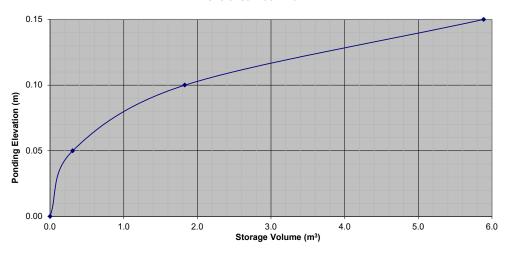
# Stage Storage Curve: Area R-4 Controlled Roof Drain #1



REQUIRED STORAGE - 1:5 YEAR EVENT AREA R-4 Controlled Roof Drain RD 2 OTTAWA IDF CURVE Area = 0.012 ha Qallow = 0.79 L/s C = 0.90Vol(max) = 1.6 m3 Q Qnet Vol Time Intensity (min) (mm/hr) (L/s) (L/s) (m3) 5 141.18 4.29 3.50 1.05 10 104.19 3.17 2.38 1.43 15 83.56 2.54 1.75 1.58 20 70.25 2.14 1.35 1.61 25 60.90 1.85 1.06 1.59 30 53.93 1.64 0.85 1.53 35 48.52 1.47 0.68 1.44 40 44.18 1.34 0.55 1.33 45 40.63 1.24 0.45 1.20 50 37.65 1.14 0.35 1.06 55 35.12 1.07 0.28 0.92 60 32.94 1.00 0.21 0.76 65 31.04 0.94 0.15 0.60 70 29.37 0.89 0.10 0.43 75 27.89 0.85 0.06 0.26 90 24.29 0.74 -0.05 -0.28 105 21.58 0.66 -0.13 -0.84 120 19.47 0.59 -0.20 -1.43

150 DUN SKIPPER DRIVE

PROJECT NO: 124107


REQUIRED STORAGE - 1:100 YEAR EVENT

| AREA R-4 Controlled Roof Drain RD 2 |           |       |            |      |     |  |  |  |  |
|-------------------------------------|-----------|-------|------------|------|-----|--|--|--|--|
| OTTAWA IDF CL                       | JRVE      |       |            |      |     |  |  |  |  |
| Area =                              | 0.012     | ha    | Qallow =   | 0.87 | L/s |  |  |  |  |
| C =                                 | 1.00      |       | Vol(max) = | 4.0  | m3  |  |  |  |  |
|                                     |           |       |            |      |     |  |  |  |  |
| Time                                | Intensity | Q     | Qnet       | Vol  |     |  |  |  |  |
| (min)                               | (mm/hr)   | (L/s) | (L/s)      | (m3) |     |  |  |  |  |
| 5                                   | 242.70    | 8.20  | 7.33       | 2.20 |     |  |  |  |  |
| 10                                  | 178.56    | 6.03  | 5.16       | 3.10 |     |  |  |  |  |
| 15                                  | 142.89    | 4.83  | 3.96       | 3.56 |     |  |  |  |  |
| 20                                  | 119.95    | 4.05  | 3.18       | 3.82 |     |  |  |  |  |
| 25                                  | 103.85    | 3.51  | 2.64       | 3.96 |     |  |  |  |  |
| 30                                  | 91.87     | 3.10  | 2.23       | 4.02 |     |  |  |  |  |
| 35                                  | 82.58     | 2.79  | 1.92       | 4.03 |     |  |  |  |  |
| 40                                  | 75.15     | 2.54  | 1.67       | 4.00 |     |  |  |  |  |
| 45                                  | 69.05     | 2.33  | 1.46       | 3.95 |     |  |  |  |  |
| 50                                  | 63.95     | 2.16  | 1.29       | 3.87 |     |  |  |  |  |
| 55                                  | 59.62     | 2.01  | 1.14       | 3.77 |     |  |  |  |  |
| 60                                  | 55.89     | 1.89  | 1.02       | 3.66 |     |  |  |  |  |
| 65                                  | 52.65     | 1.78  | 0.91       | 3.54 |     |  |  |  |  |
| 70                                  | 49.79     | 1.68  | 0.81       | 3.41 |     |  |  |  |  |
| 75                                  | 47.26     | 1.60  | 0.73       | 3.27 |     |  |  |  |  |
| 90                                  | 41.11     | 1.39  | 0.52       | 2.80 |     |  |  |  |  |
| 105                                 | 36.50     | 1.23  | 0.36       | 2.29 |     |  |  |  |  |
| 120                                 | 32.89     | 1.11  | 0.24       | 1.74 |     |  |  |  |  |
|                                     |           |       |            |      |     |  |  |  |  |

| Watts Accutrol Flow | Control Roof Drains | RD-100-A-ADJ set to 1/4 Exposed       |                 |          |          |  |  |  |
|---------------------|---------------------|---------------------------------------|-----------------|----------|----------|--|--|--|
| Design Event        | Flow/Drain (L/s)    | ain (L/s) Total Flow (L/s) Ponding (c |                 | Storag   | je (m³)  |  |  |  |
| Design Event        | riowibiani (Lis)    | Total Flow (L/3)                      | r onding (citi) | Required | Provided |  |  |  |
| 1:5 Year            | 0.79                | 0.79                                  | 10              | 1.6      | 5.9      |  |  |  |
| 1:100 Year          | 0.87                | 0.87                                  | 13              | 4.0      | 5.9      |  |  |  |

| Roof Drain Storage Table for Building D RD-2 |                |                |  |  |  |  |  |  |  |
|----------------------------------------------|----------------|----------------|--|--|--|--|--|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |  |  |  |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |  |  |  |  |  |
| 0.00                                         | 0              | 0              |  |  |  |  |  |  |  |
| 0.05                                         | 12.3           | 0.3            |  |  |  |  |  |  |  |
| 0.10                                         | 48.6           | 1.8            |  |  |  |  |  |  |  |
| 0.15                                         | 113.7          | 5.9            |  |  |  |  |  |  |  |

# Stage Storage Curve: Area R-4 Controlled Roof Drain #2

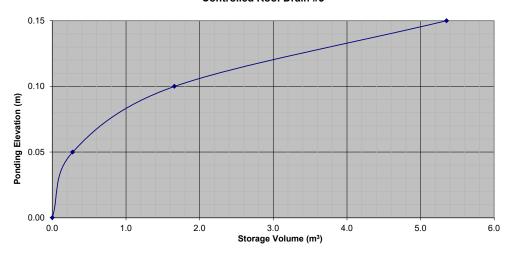


PROJECT NO: 124107 REQUIRED STORAGE - 1:5 YEAR EVENT

| AGE - 1:5 | TEAR EV                                                                                                                                  | ENI                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                     |        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|           | Controlle                                                                                                                                | ed Roof Drain                                                                                                                                                             | RD 3                                                                                                                                                                                                                                                                                                                                |        |
| RVE       |                                                                                                                                          |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                     |        |
| 0.012     | ha                                                                                                                                       | Qallow =                                                                                                                                                                  | 0.79                                                                                                                                                                                                                                                                                                                                | L/s    |
| 0.90      |                                                                                                                                          | Vol(max) =                                                                                                                                                                | 1.6                                                                                                                                                                                                                                                                                                                                 | m3     |
|           |                                                                                                                                          |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                     |        |
| Intensity | Q                                                                                                                                        | Qnet                                                                                                                                                                      | Vol                                                                                                                                                                                                                                                                                                                                 |        |
| (mm/hr)   | (L/s)                                                                                                                                    | (L/s)                                                                                                                                                                     | (m3)                                                                                                                                                                                                                                                                                                                                |        |
| 141.18    | 4.24                                                                                                                                     | 3.45                                                                                                                                                                      | 1.03                                                                                                                                                                                                                                                                                                                                |        |
| 104.19    | 3.13                                                                                                                                     | 2.34                                                                                                                                                                      | 1.40                                                                                                                                                                                                                                                                                                                                |        |
| 83.56     | 2.51                                                                                                                                     | 1.72                                                                                                                                                                      | 1.55                                                                                                                                                                                                                                                                                                                                |        |
| 70.25     | 2.11                                                                                                                                     | 1.32                                                                                                                                                                      | 1.58                                                                                                                                                                                                                                                                                                                                |        |
| 60.90     | 1.83                                                                                                                                     | 1.04                                                                                                                                                                      | 1.56                                                                                                                                                                                                                                                                                                                                |        |
| 53.93     | 1.62                                                                                                                                     | 0.83                                                                                                                                                                      | 1.49                                                                                                                                                                                                                                                                                                                                |        |
| 48.52     | 1.46                                                                                                                                     | 0.67                                                                                                                                                                      | 1.40                                                                                                                                                                                                                                                                                                                                |        |
| 44.18     | 1.33                                                                                                                                     | 0.54                                                                                                                                                                      | 1.29                                                                                                                                                                                                                                                                                                                                |        |
| 40.63     | 1.22                                                                                                                                     | 0.43                                                                                                                                                                      | 1.16                                                                                                                                                                                                                                                                                                                                |        |
| 37.65     | 1.13                                                                                                                                     | 0.34                                                                                                                                                                      | 1.02                                                                                                                                                                                                                                                                                                                                |        |
| 35.12     | 1.05                                                                                                                                     | 0.26                                                                                                                                                                      | 0.87                                                                                                                                                                                                                                                                                                                                |        |
| 32.94     | 0.99                                                                                                                                     | 0.20                                                                                                                                                                      | 0.72                                                                                                                                                                                                                                                                                                                                |        |
| 31.04     | 0.93                                                                                                                                     | 0.14                                                                                                                                                                      | 0.55                                                                                                                                                                                                                                                                                                                                |        |
| 29.37     | 0.88                                                                                                                                     | 0.09                                                                                                                                                                      | 0.39                                                                                                                                                                                                                                                                                                                                |        |
| 27.89     | 0.84                                                                                                                                     | 0.05                                                                                                                                                                      | 0.21                                                                                                                                                                                                                                                                                                                                |        |
| 24.29     | 0.73                                                                                                                                     | -0.06                                                                                                                                                                     | -0.33                                                                                                                                                                                                                                                                                                                               |        |
| 21.58     | 0.65                                                                                                                                     | -0.14                                                                                                                                                                     | -0.89                                                                                                                                                                                                                                                                                                                               |        |
| 19.47     | 0.58                                                                                                                                     | -0.21                                                                                                                                                                     | -1.48                                                                                                                                                                                                                                                                                                                               |        |
|           | RVE 0.012 0.90 Intensity (mm/hr) 141.18 104.19 83.56 70.25 60.90 53.93 48.52 44.18 40.63 37.65 35.12 32.94 31.04 29.37 27.89 24.29 21.58 | RVE 0.012 ha 0.90 lintensity (L/s) 141.18 4.24 104.19 3.13 83.56 2.51 70.25 2.146 44.18 1.33 40.63 1.22 37.65 1.25 32.94 0.99 31.04 0.93 29.37 0.88 27.89 0.73 21.58 0.65 | RVE 0.012 ha Qallow = 0.90 Qonet (mm/hr) (L/s) (L/s) 141.18 4.24 3.45 104.19 3.13 2.34 83.56 2.51 1.72 70.25 2.11 1.32 60.90 1.83 1.04 53.93 1.62 0.83 48.52 1.46 0.67 44.18 1.33 0.54 40.63 1.22 0.43 37.65 1.31 37.65 1.05 0.26 32.94 0.99 0.20 31.04 0.93 0.14 29.37 0.88 0.09 27.89 0.84 0.05 24.29 0.73 -0.06 21.58 0.65 -0.14 | No.012 |

150 DUN SKIPPER DRIVE

PROJECT NO: 124107


REQUIRED STORAGE - 1:100 YEAR EVENT AREA R-4 Controlled Roof Drain RD 3

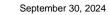
| AREA R-4      |           | Controlle | ed Roof Drain | RD 3 |     |  |
|---------------|-----------|-----------|---------------|------|-----|--|
| OTTAWA IDF CU | IRVE      |           |               |      |     |  |
| Area =        | 0.012     | ha        | Qallow =      | 0.87 | L/s |  |
| C =           | 1.00      |           | Vol(max) =    | 4.0  | m3  |  |
|               |           |           |               |      |     |  |
| Time          | Intensity | Q         | Qnet          | Vol  |     |  |
| (min)         | (mm/hr)   | (L/s)     | (L/s)         | (m3) |     |  |
| 5             | 242.70    | 8.10      | 7.23          | 2.17 |     |  |
| 10            | 178.56    | 5.96      | 5.09          | 3.05 |     |  |
| 15            | 142.89    | 4.77      | 3.90          | 3.51 |     |  |
| 20            | 119.95    | 4.00      | 3.13          | 3.76 |     |  |
| 25            | 103.85    | 3.46      | 2.59          | 3.89 |     |  |
| 30            | 91.87     | 3.06      | 2.19          | 3.95 |     |  |
| 35            | 82.58     | 2.75      | 1.88          | 3.96 |     |  |
| 40            | 75.15     | 2.51      | 1.64          | 3.93 |     |  |
| 45            | 69.05     | 2.30      | 1.43          | 3.87 |     |  |
| 50            | 63.95     | 2.13      | 1.26          | 3.79 |     |  |
| 55            | 59.62     | 1.99      | 1.12          | 3.69 |     |  |
| 60            | 55.89     | 1.86      | 0.99          | 3.58 |     |  |
| 65            | 52.65     | 1.76      | 0.89          | 3.46 |     |  |
| 70            | 49.79     | 1.66      | 0.79          | 3.32 |     |  |
| 75            | 47.26     | 1.58      | 0.71          | 3.18 |     |  |
| 90            | 41.11     | 1.37      | 0.50          | 2.71 |     |  |
| 105           | 36.50     | 1.22      | 0.35          | 2.19 |     |  |
| 120           | 32.89     | 1.10      | 0.23          | 1.64 |     |  |
|               |           |           |               |      |     |  |

| Watts Accutrol Flow | Control Roof Drains | RD-100-A-ADJ set to 1/4 Exposed |                 |          |          |  |  |  |
|---------------------|---------------------|---------------------------------|-----------------|----------|----------|--|--|--|
| Design Event        | Flow/Drain (L/s)    | Total Flow (L/s)                | Ponding (cm)    | Storag   | je (m³)  |  |  |  |
| Design Event        | i iowibiani (Lis)   | Total Flow (E/3)                | r onding (citi) | Required | Provided |  |  |  |
| 1:5 Year            | 0.79                | 0.79                            | 10              | 1.6      | 5.4      |  |  |  |
| 1:100 Year          | 0.87                | 0.87                            | 13              | 4.0      | 5.4      |  |  |  |

| Roof Drain Storage Table for Building D RD-3 |                |                |  |  |  |  |  |  |  |
|----------------------------------------------|----------------|----------------|--|--|--|--|--|--|--|
| Elevation                                    | Area RD 1      | Total Volume   |  |  |  |  |  |  |  |
| m                                            | m <sup>2</sup> | m <sup>3</sup> |  |  |  |  |  |  |  |
| 0.00                                         | 0              | 0              |  |  |  |  |  |  |  |
| 0.05                                         | 11.1           | 0.3            |  |  |  |  |  |  |  |
| 0.10                                         | 44.2           | 1.7            |  |  |  |  |  |  |  |
| 0.15                                         | 103.6          | 5.4            |  |  |  |  |  |  |  |

Stage Storage Curve: Area R-4 Controlled Roof Drain #3




# 150 Dun Skipper Drive - Commercial Development 1:5 yr Storm Design Sheet

 PROJECT NO:
 124107

 DESIGNED BY:
 MA

 CHECKED BY:
 MS

 DATE:
 Septemb





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                         |            |            |                |                   |                      |                    |                   |       |                     | CONTROLLED         | PEAK               |                      |                 |              |          |                   |                                |                          |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|------------|------------|----------------|-------------------|----------------------|--------------------|-------------------|-------|---------------------|--------------------|--------------------|----------------------|-----------------|--------------|----------|-------------------|--------------------------------|--------------------------|---------------------------|
| AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FROM MH            | ТО МН                                   | Total Area | C=<br>0.20 | C =<br>0.90    | INDIV<br>2.78 AC  | ACCUM<br>2.78 AC     | CONC.<br>(min)     | CONC. INTENSITY   |       | FLOW*<br>Q<br>(L/s) | FLOW<br>Q<br>(L/s) | TYPE<br>OF<br>PIPE | PIPE<br>SIZE<br>(mm) | PIPE ID<br>(mm) | GRADE<br>(%) | LENGTH   | CAPACITY<br>(L/s) | FULL FLOW<br>VELOCITY<br>(m/s) | TIME OF<br>FLOW<br>(min) | PERCENTAGE<br>OF CAPACITY |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                         |            |            |                |                   |                      |                    |                   |       |                     |                    |                    |                      |                 |              |          |                   |                                |                          |                           |
| A-6.1 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CB 1               | STMMH 100                               | 0.044      | 0.006      | 0.038          | 0.10              | 0.10                 | 10.00              | 104.19            |       | 10.3                | PVC                | 200                | 203.2                | 1.00            | 3.1          | 34.2     | 1.06              | 0.05                           | 30%                      |                           |
| A-6.2 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CB 2               | STM SEWER                               | 0.042      | 0.008      | 0.034          | 0.09              | 0.09                 | 10.00              | 104.19            |       | 9.4                 | PVC                | 200                | 203.2                | 2.00            | 4.4          | 48.4     | 1.49              | 0.05                           | 19%                      |                           |
| 71 012 01100111101100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02.2               |                                         | 0.0.2      | 0.000      | 0.001          | 0.00              | 0.00                 | 10.00              | 101.10            |       | 0.1                 |                    | 200                | 200.2                | 2.00            |              | 10.1     | 1.10              | 0.00                           | 1070                     |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STMMH 100          | STMMH 102                               |            |            |                |                   | 0.19                 | 10.05              | 103.93            |       | 19.6                | CONC               | 600                | 609.6                | 0.20            | 64.4         | 286.5    | 0.98              | 1.09                           | 7%                       |                           |
| A-6.3 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CB 3               | STMMH 102                               | 0.120      | 0.032      | 0.088          | 0.24              | 0.24                 | 10.00              | 104.19            |       | 24.8                | PVC                | 200                | 203.2                | 1.00            | 4.5          | 34.2     | 1.06              | 0.07                           | 72%                      |                           |
| A-6.3 Officontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | СВЗ                | STIVIIVITI 102                          | 0.120      | 0.032      | 0.000          | 0.24              | 0.24                 | 10.00              | 104.19            |       | 24.0                | FVC                | 200                | 203.2                | 1.00            | 4.5          | 34.2     | 1.00              | 0.07                           | 1270                     |                           |
| Controlled Flow From A-6.1 - A-6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STMMH 102          | STMMH 104                               |            | A-6.1 - A- | 6.3 is control | ed to a maximu    | m of 15 L/s by IC    | D in the outlet p  | pipe of STMMH 102 | 15.0  | 15.0                | PVC                | 250                | 254.0                | 0.50            | 11.8         | 43.9     | 0.87              | 0.23                           | 34%                      |                           |
| D 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4.5              | OT1 11 11 10 1                          | 0.004      |            | D 4 12 2       |                   |                      | (- L DD 44 (- D    | D. 40             |       | 0.4                 | D) (O              |                    | 222.2                | 0.00            |              | 10.1     | 4.40              | 0.00                           | 100/                     |                           |
| R-1 Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAP                | STMMH 104                               | 0.304      |            | R-1 IS CO      | ntrolled to a ma  | ximum of 9.07 L/     | S by RD A1 to R    | D A6              | 9.1   | 9.1                 | PVC                | 200                | 203.2                | 2.00            | 2.8          | 48.4     | 1.49              | 0.03                           | 19%                      |                           |
| Controlled A-6.1 - A-6.3 + Controlled R-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STMMH 104          | STMMH 106                               |            |            |                |                   |                      |                    |                   | 24.1  | 24.1                | PVC                | 450                | 457.2                | 0.25            | 16.1         | 148.7    | 0.91              | 0.30                           | 16%                      |                           |
| Same and At Six At Six At South Six At Six A | STMMH 106          | STMMH 118                               |            |            |                |                   |                      |                    |                   | 24.1  | 24.1                | PVC                | 450                | 457.2                |                 | 61.2         | 148.7    | 0.91              | 1.13                           | 16%                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                         |            |            |                |                   |                      |                    |                   |       |                     |                    |                    |                      |                 |              |          |                   |                                |                          |                           |
| R-2 Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAP                | STMMH 108                               | 0.089      |            | R-2 is co      | ntrolled to a ma  | ximum of 3.30 L/     | s by RD B1 to R    | D B3              | 3.3   | 3.3                 | PVC                | 200                | 203.2                | 1.00            | 12.8         | 34.2     | 1.06              | 0.20                           | 10%                      |                           |
| A-4 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CB 4               | STMMH 108                               | 0.065      | 0.013      | 0.053          | 0.14              | 0.14                 | 10.00              | 104.19            |       | 14.4                | PVC                | 250                | 254.0                | 1.00            | 14.8         | 62.0     | 1.22              | 0.20                           | 23%                      |                           |
| A-4 Officialioned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CB 4               | 311/11/11/11/100                        | 0.003      | 0.013      | 0.055          | 0.14              | 0.14                 | 10.00              | 104.19            |       | 14.4                | FVC                | 250                | 234.0                | 1.00            | 14.0         | 02.0     | 1.22              | 0.20                           | 23%                      |                           |
| A-3 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trench Drain       | STM SEWER                               | 0.034      |            | 0.034          | 0.09              | 0.09                 | 10.00              | 104.19            |       | 8.9                 | PVC                | 200                | 203.2                | 0.50            | 46.5         | 24.2     | 0.75              | 1.04                           | 37%                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                         |            |            |                |                   |                      |                    |                   |       |                     |                    |                    |                      |                 |              |          |                   |                                |                          |                           |
| Uncontrolled A-4 - A-3 + Controlled R-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STMMH 108          | STMMH 118                               |            |            |                |                   | 0.22                 | 11.04              | 99.01             |       | 25.4                | PVC                | 300                | 304.8                | 0.70            | 88.9         | 84.4     | 1.16              | 1.28                           | 30%                      |                           |
| A-7.1 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBMH 7             | CBMH 1                                  | 0.092      |            | 0.092          | 0.23              | 0.23                 | 10.00              | 104.19            |       | 24.0                | CONC               | 750                | 762.0                | 0.20            | 18.6         | 519.4    | 1.14              | 0.27                           | 5%                       |                           |
| A-7.2 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBMH 1             | CBMH 2                                  | 0.080      |            | 0.080          | 0.20              | 0.43                 | 10.27              | 102.78            |       | 44.2                | CONC               | 750                |                      |                 | 28.6         | 519.4    | 1.14              | 0.42                           | 9%                       |                           |
| A-7.3 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBMH 2             | CBMH 3                                  | 0.092      | 0.002      | 0.090          | 0.23              | 0.66                 | 10.69              | 100.68            |       | 66.1                | CONC               | 750                | 762.0                | 0.20            | 28.4         | 519.4    | 1.14              | 0.42                           | 13%                      |                           |
| Controlled Flow From A-7.1 - A-7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBMH 3             | STMMH 116                               |            | A-7.1 - A  | -7.4 is contro | lled to a maximu  | um of 28.4 L/s by    | / ICD in the outle | et pipe of CBMH 3 | 28.4  | 28.4                | PVC                | 250                | 254.0                | 1.00            | 7.0          | 62.0     | 1.22              | 0.10                           | 46%                      |                           |
| A-8.1 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBMH 4             | CBMH 5                                  | 0.161      | 0.001      | 0.160          | 0.40              | 0.40                 | 10.00              | 104.19            |       | 41.8                | CONC               | 000                | 914.4                | 0.20            | 28.6         | 844.6    | 1.20              | 0.37                           | 5%                       |                           |
| A-8.1 Uncontrolled A-8.2 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CBMH 5             | CBMH 6                                  | 0.161      | 0.001      | 0.160          | 0.40              | 0.40                 | 10.00              | 102.28            |       | 86.1                | CONC               |                    | 914.4                | 0.20            | 28.4         | 844.6    | 1.29<br>1.29      | 0.37                           | 10%                      |                           |
| Controlled Flow From A-8.1 - A-8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CBMH 6             | STMMH 114                               | 0.177      |            |                |                   |                      |                    | et pipe of CBMH 6 | 187.1 | 187.1               | PVC                | 300                | 304.8                | 4.00            | 7.0          | 201.8    | 2.77              | 0.04                           | 93%                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                         |            |            |                |                   |                      |                    |                   |       |                     |                    |                    |                      |                 |              |          |                   |                                |                          |                           |
| R-4 Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAP                | STMMH 110                               | 0.046      |            | R-4 is co      | ntrolled to a ma  | ximum of 2.84 L/     | s by RD D1 to R    | D D3              | 2.8   | 2.8                 | PVC                | 200                | 203.2                | 1.00            | 23.4         | 34.2     | 1.06              | 0.37                           | 8%                       |                           |
| R-3 Controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAP                | STMMH 110                               | 0.103      |            | P 2 is as      | ntrolled to a ma  | ximum of 4.40 L/     | o by PD C1 to P    | D C4              | 4.4   | 4.4                 | PVC                | 200                | 203.2                | 1.00            | 13.0         | 34.2     | 1.06              | 0.21                           | 120/                     |                           |
| Controlled R-4 + Controlled R-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STMMH 110          | STMMH 112                               | 0.103      |            | K-3 IS CC      | introlled to a ma | XIIIIUIII OI 4.40 L/ | S by KD CT to K    | .D C4             | 7.2   | 7.2                 | PVC                | 250                | 254.0                | 0.50            | 46.6         | 43.9     | 1.06<br>0.87      | 0.21                           | 13%<br>17%               |                           |
| Controlled IV 1 Y Controlled IV C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>5</b> 111111111 | 011111111111111111111111111111111111111 |            |            |                |                   |                      |                    |                   |       |                     |                    |                    | 20110                | 0.00            |              | 10.0     | 0.0.              | 0.00                           | ,0                       |                           |
| A-9 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CB 5               | CBMH 8                                  | 0.019      | 0.005      | 0.014          | 0.04              | 0.04                 | 10.00              | 104.19            |       | 3.9                 | PVC                | 200                |                      | 1.00            | 13.1         | 34.2     | 1.06              | 0.21                           | 12%                      |                           |
| A-5 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CBMH 8             | STMMH 112                               | 0.043      | 0.019      | 0.025          | 0.07              | 0.11                 | 10.21              | 103.11            |       | 11.3                | PVC                | 250                | 254.0                | 1.00            | 10.7         | 62.0     | 1.22              | 0.15                           | 18%                      |                           |
| Controlled R-4 & R-3 + A-5 Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STMMH 112          | STMMH 114                               |            |            |                |                   |                      |                    |                   | 7.2   | 18.5                | PVC                | 250                | 254.0                | 1.35            | 43.8         | 72.1     | 1.42              | 0.51                           | 26%                      |                           |
| Controlled IX-4 & IX-5 + A-5 Officiality lied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STIVIIVII I I IZ   | 311/11/11/11/14                         |            |            |                |                   |                      |                    |                   | 1.2   | 10.5                | FVC                | 230                | 234.0                | 1.55            | 40.0         | 12.1     | 1.42              | 0.51                           | 2076                     |                           |
| Controlled R-4 & R-3 + Controlled A-8.1 - A-8.3 + A-5<br>Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STMMH 114          | STMMH 116                               |            |            |                |                   |                      | 1                  |                   | 194.3 | 205.6               | PVC                | 450                | 457.2                | 1.25            | 17.8         | 332.5    | 2.03              | 0.15                           | 62%                      |                           |
| Controlled R-4 & R-3, A-7.1 - A-7.4, A-8.1 - A-8.3, A-5<br>Uncontrolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STMMH 116          | STMMH 118                               |            |            |                |                   |                      | I I                | I.                | 222.7 | 234.0               | PVC                | 450                | 457.2                | 1.25            | 8.8          | 332.5    | 2.03              | 0.07                           | 70%                      |                           |
| Controlled R-1-R-4, A-6.1 - A-6.3, A-7.1 - A-7.4, A-8.1 - A-8.3, Uncontrolled A-3 - A-5, A-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STMMH 118          | STMMH 120                               |            |            |                |                   |                      | 1                  |                   | 250.1 | 284.7               | CONC               | 825                | 838.2                | 0.20            | 56.8         | 669.7    | 1.21              | 0.78                           | 37%                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | <u> </u>                                | 1          |            | l l            |                   |                      | <u> </u>           | <u> </u>          | 1     |                     |                    |                    |                      | l               | <u> </u>     | <u> </u> | <u> </u>          |                                | <u> </u>                 |                           |

#### NOTES

Definitions

Q = 2.78 AIR

Q = Peak Flow, in Litres per second (L/s)

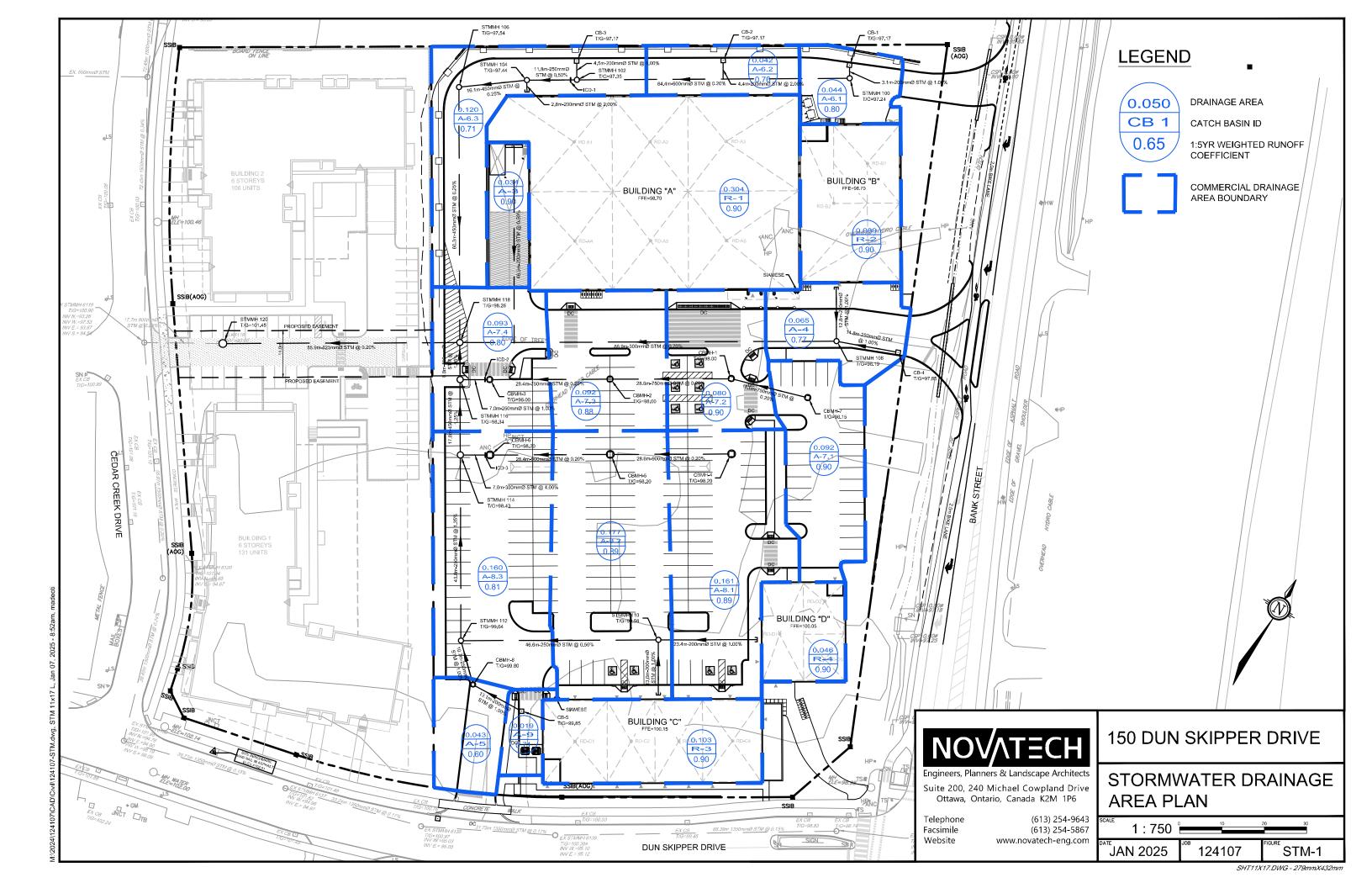
A = Area in hectares (ha)

I = Rainfall Intensity (mm/h)

R = Runoff Coefficient

Notes:

1) City of Ottawa Rainfall-Intensity Curve


2) Min Velocity = 0.80 m/sec.

3) 5 year Intensity =  $998.071 / (Time in min + 6.053)^{0.814}$ 

M:\2024\124107\DATA\Calculations\STM124107-StmDesignSheet-5yr.xls

<sup>1)</sup> Refer to Novatech Drawing 124107-GP for storm structure designations, storm pipe details and control structure tables.

<sup>2)</sup> Refer to Novatech Drawing 124107-SWM for the on-site tributary drainage areas and Figure STM-1 for specific sewer design sheet pipe segment breakdowns.



imperviousness ratios for the units were calculated for a typical street and rear yard segment (calculations are enclosed in **Appendix D**). Runoff coefficient values used in the rational method design are also based on these values. The high density townhouses, commercial sites, school and park and were assigned impervious rates of 86%, 79%, 79% and 14%, respectively.

#### Infiltration

Infiltration losses were selected to be consistent with the OSDG. The Horton values are as follows:  $f_0 = 76.2 \text{ mm/h}$ ,  $f_0 = 13.2 \text{ mm/h}$ ,  $k = 0.00115 \text{ s}^{-1}$ .

# **Subcatchment Width**

The catchment width was based on the conveyance route length of the drainage area and multiplied by two. The multiplier of two was only used if the drainage area had runoff contribution from both sides of the drainage area. For the future external areas, the subcatchment width of 225 m/ha was used.

## **Slope**

The ground slope was based upon the average slope for both impervious and pervious area. Generally, the slope is approximately 2% (0.02 m/m). This assumes a slope of approximately 1% for impervious or road surfaces and 3% for pervious surfaces (lot grading).

# **Initial Abstraction (Detention Storage)**

Detention storage depths of 1.5 mm and 4.67 mm were used for impervious and pervious areas, respectively. These values are consistent with the OSDG.

### Manning's Roughness

Manning's roughness coefficients of 0.013 and 0.25 were used for impervious and pervious areas, respectively.

#### **Baseflow**

No baseflow components were assumed for any of the areas contributing runoff to the minor system within the DDSWMM model.

#### **Minor System Capture**

The minor system for Phase 1 Pathways at Findlay Creek is connected to the south sub-trunk storm sewer which is tributary to the western trunk and Findlay Creek Village Stormwater Facility western inlet. As noted previously, most of the street segments within the subject site are continuous grade and there is limited saw-tooth road grade patterns with on-site detention (see **Drawing 751**). Inlet control devices (ICDs) are proposed to limit the flow into the minor system during the 100 year event. For those segments on continuous grade, ICDs are proposed to protect the minor system during storm events greater than the 100 year. The sizing and placement of the ICDs within the subject site were determined as part of this evaluation.

As noted in **Section 4.8**, the inflow rate for the CBs located at most of the low points within Phase 1 were increased to maintain the major system flow dynamic depth at 0.35 m throughout the site.

In addition to the capture rate of the site, consideration is taken with respect to the design of the subject site as it relates to the overall LDA, which includes a hydraulic connection between the storm and sanitary system via the sanitary overflows.

REVISED: AUGUST, 2017 20

# 4.9 Hydrological Evaluation

Hydrological analysis of the proposed dual drainage system was conducted using DDSWMM. This technique offers a single storm event flow generation and routing. Land use, selected modeling routines, and input parameters are discussed in the following sections. A model schematic is presented on **Drawing 700** and model files are included in **Appendix E**. It should be noted that hydrographs generated by the DDSWMM model were downloaded to the XPSWMM model to evaluate the hydraulic performance of the proposed local system and the overall LDA.

For ease hydrological modeling of the site, Phase 1 Pathways at Findlay Creek has been evaluated using two DDSWMM models. These are referred to as Phase 1 East and Phase 1 West. The respective model catchments are indicated on **Drawing 700**. It should be noted that the models are interconnected via a major flow hydrograph from street segment S6105A in Phase 1 East entered in the Phase 1 West model.

#### 4.9.1 Land Use

Phase 1 Pathways at Findlay Creek will be developed with a mix of single family units and townhouses. The land use of Phase 1 also includes a park area, a school, two high density stacked townhouse sites and commercial sites.

There are several future external areas to Phase 1 Pathways at Findlay Creek which include the following assumed land use; residential, high density stacked townhomes and a portion of future Earl Armstrong Road (an arterial road). **Table 4.2** includes a summary of the future external areas and their inflow rates. The DDSWMM schematic is presented in **Drawing 700**.

# 4.9.2 Storms and Drainage Area Parameters

The main hydrological parameters for the subject site and external areas are summarized below and in **Table 4.4**. Supporting calculations are presented in **Appendix E**.

#### **Design Storms**

The site was evaluated using the following storm events:

- 2, 5 and 100 year 3 hour Chicago storm events (10 minute time step), as per the OSDG;
- 100 year 24 hour SCS Type II storm event (103.2 mm) as per OSDG;
- July 1, 1979 Historical storm (5 minute time step) as per the OSDG;
- 100 year 24 hour Type II storm event (103.2 mm) with 20% increase for Climate Change consideration, as per OSDG; and
- 100 year 3 hour Chicago storm event (10 minute time step) with 20% increase for Climate Change consideration, as per the OSDG.

#### Area and Imperviousness

Catchment areas for the subject site are based on the rational method spreadsheet with some minor modifications for modeling purposes. See **Drawing 700** for the catchment areas used in the DDSWMM modeling for the subject site.

Imperviousness for the subject site was determined by obtaining the footprint of the model units intended for the site and placing the maximum footprint on the lots. For the subject site, the

REVISED: AUGUST, 2017

Based on the optimization exercise, the average inflow rate from the subject site (street and rear yard segments only) is 254 l/s/ha, during the 100 year storm event, excluding external or future lands. **Table 4.4** summarizes and compares the 2 and 5 year modeled flow versus the ICD flow.

#### ICD Restricted Inflow

The City has requested specific ICD sizes to be specified for use on the site. These ICD sizes are documented in City of Ottawa MS-18.4 Inlet Control Devices (ICD's, March 2017). Within the aforementioned document eight (8) ICD sizes are noted. The following table summarizes the ICD sizes assigned to the site including the head assumed and associated flowrate.

Table 4.3 Standard ICD Sizes, Heads and Flowrates

| ICD Diameter (mm) | Orifice Area (m²) | Assumed Fixed Head (m) | Flowrate (I/s) |  |  |
|-------------------|-------------------|------------------------|----------------|--|--|
| Street Seg        | ments with Pon    | ding and Continuous    | Grade          |  |  |
| Vortex            | n/a               | n/a                    | 6              |  |  |
| 83                | 0.0054            | 1.65                   | 19             |  |  |
| 94                | 0.0069            | 1.65                   | 24             |  |  |
| 102               | 0.0082            | 1.65                   | 28             |  |  |
| 108               | 0.0092            | 1.65                   | 32             |  |  |
| 127               | 0.0127            | 1.65                   | 44             |  |  |
| 152               | 0.0181            | 1.65                   | 63             |  |  |
| 178               | 0.0249            | 0.0249 1.65            |                |  |  |
|                   | Rear Yard         | d Segments             |                |  |  |
| Vortex            | n/a               | n/a                    | 6              |  |  |
| 83                | 0.0054            | 1.35                   | 17             |  |  |
| 94                | 0.0069            | 1.35                   | 22             |  |  |
| 102               | 0.0082            | 1.35                   | 26             |  |  |
| 108               | 0.0092            | 1.35                   | 29             |  |  |
| 127               | 0.0127            | 1.35                   | 40             |  |  |
| 152               | 0.0181            | 1.35                   | 57             |  |  |
| 178               | 0.0249            | 1.35                   | 78             |  |  |

The standard ICDs were assigned to each CB within Phase 1. There are exceptions to the above related either to the head assumed for and ICD, capacity of the CB lead or the capacity of the CBs grates dictating the inflow. Any exemptions to the above ICDs are noted in **Table 4.3**.

The ICD size, head and flow is provided on **Drawing 010**. To accommodate the fixed head for the ICDs, the invert of the CBs were adjusted. The table provided on **Drawing 010** presents the inverts of the CBs for the site.

Street and rear yard segments were considered independently. For Phase 1 East, the restricted inflow from street segments is 2028 l/s, which an average flow rate of 339 l/s/ha during the 100 year event. From the rear yards for Phase 1 East, the flow into the minor system is 496 l/s, which is an average flow rate of 152 l/s/ha during the 100 year event.

REVISED: AUGUST, 2017 21

For Phase 1 West, the restricted inflow from street segments is 1363 l/s, which an average flow rate of 268 l/s/ha during the 100 year event. From the rear yards for Phase 1 West, the flow into the minor system is 1090 l/s, which is an average flow rate of 208 l/s/ha during the 100 year event.

For the Phase 1 site, the total restricted inflow from street segments is 3391 l/s, which is an average flow rate of 306 l/s/ha during the 100 year event. The total restricted inflow to the minor system for the entire Phase 1 for the rear yards is 1586 l/s, which is an average inflow rate of 186 l/s/ha during the 100 year event.

The total ICD inflow to the minor system from the Phase 1 site (streets and rear yards) is 4977 l/s from a total area of 19.59 ha. The average restricted inflow is 254 l/s/ha. This is greater than the 218 l/s/ha noted within the 2016 Updated Serviceability Report. As noted in **Section 4.8** under the heading *Summary of Dual Drainage Design*, there is a major system restriction on-site where at S6106 where the depth of static ponding is 0.27 m. During the 100 year storm event, 0.35 m total dynamic and static depth cannot exceed 0.35 m. The maximum dynamic flow to push the allowable 0.08 m extra of flow over the spill crest is approximately 70 l/s. Taking into consideration that the majority of the site upstream is continuous grade with limited inflow at sag locations leading to this downstream intersection (Kelly Farm Drive and Miikana Road), the minor system inflow at all sags and rear yards was increased to meet the maximum 0.35 m depth of total ponding at street segment S6106.

## **Major System**

As noted in **Section 4.8**, the major system was modeled with DDSWMM. The majority of the subject site is continuous grade with some saw-tooth design grade pattern with inlet control devices (ICDs) installed at the catchbasins within low points. The saw-tooth design is based on maximum 350 mm separation between the low point at the catchbasin and high point overflow at the downstream end of the segment. The flow is attenuated within these localized low points with potential overflow cascading to the next downstream segment. Rear yard segments have a saw-tooth pattern with some storage available, but the storage is not accounted for as part of the analysis.

#### Street segments

For those street segments which have continuous grade profiles, the computer simulations were based on the approach-capture characteristics of the catchbasin with the constraint that during the critical storms the maximum cascading flow would not exceed 350 mm.

For those street segments with saw-tooth profiles, the computer simulations were based on the constraint that during the 100 year storm event the maximum depth of ponding or cascading flow would not exceed 350 mm. This was achieved by adjusting the spacing of catchbasins and providing shallower sags where possible. This design allows more major flow to cascade to the next downstream segment while ensuring a maximum depth of 350 mm.

Where surface storage is available, the storage-outflow characteristics for each low point were taken into consideration in DDSWMM. The evaluation was undertaken assuming static conditions. The ponding plan for the subject site is presented on **Drawing 751**. Major flow from Phase 1 Pathways at Findlay Creek is conveyed to the Leitrim Core Wetland Buffer via the one major system outlet.

#### Rear yards

Similar to street segments, rear yards for the subject site were considered independently and rear yard catch basins were also incorporated into the DDSWMM model. Storage volume in rear yards

REVISED: AUGUST, 2017

was not accounted for as available on-site storage. Inlet restriction was also proposed for rear yards and overflow from the rear yards cascades to a major system street segment via swales.

## Major System Storage Attenuation and Routing (Double Routing)

For street segments, the cascading overflow to the next segment or low point, utilizes the static storage available plus an additional amount of storage equivalent to the depth required for the flow to carry over the high point. The attenuation in street sags was evaluated to account for static storage and, if overflow occurs, dynamic storage. Within this report it is referred to as double routing.

The DDSWMM model does not have a direct way of coding double routing since it does not allow the user to code dynamic storage over the high point. For this analysis, an alternative method was employed where the overflow from a street segment (regular static storage at a sag) is conveyed to a dummy segment. In other words, a regular low point segment was provided with a downstream dummy segment for further flow attenuation to account for the dynamic ponding during overflow.

The dummy segment does not have any drainage area attributes associated with it since it is a segment for routing. In addition, there is no inflow to the minor system from these dummy segments. The overflow hydrograph from the upstream catchment is routed in the dummy segment to the next "real" downstream segment. The dummy segments have specific characteristics which are noted below:

- Segment Length equivalent to length of maximum static storage from the street segment contributing to it.
- Road Type equivalent to appropriate right-of-way characteristics from the segment contributing to it, and with a minimum longitudinal slope of 0.01% (0.0001 m/m).

The double routing method noted above applied to DDSWMM, is a feasible method outlined in the February 2014 Technical Bulletin ISDTB 2014-01.

The dummy segments for major system routing were applied to the analysis of the subject site. The segments are referenced as D1, D2, D3, etc. within the DDSWMM modelling file. The DDSWMM schematic presented in **Drawing 700** does not show the dummy segments, but DDSWMM computer output file shows the dummy segments immediately following the corresponding major segment which cascades into that dummy segment.

#### **Future Lands**

In addition to the above noted assumptions with respect to Phase 1 Pathways at Findlay Creek, the following assumptions were used to model the minor and major system flow from the future areas which are tributary to and contribute flow (minor and major) to the subject site. A summary of the areas, storages, inflows and parameter assumptions are provided in **Table 4.4**.

Commercial Sites (DDSWMM ID: COM and EXT4)

These commercial areas were assumed to be restricted to the 5 year modeled flow. It was also assumed that full on-site storage will be provided in both sites (all major flow contained on-site up to and including the 100 year event). Emergency overflow for both sites will be routed to Bank Street (DDSWMM ID BANK).

REVISED: AUGUST, 2017

### Park Site (DDSWMM ID: PARK1)

This park area is assumed to be restricted to the 5 year modeled flow. It was also assumed that the balance of flow generated by the park area itself would be fully stored on-site up to, and including, the 100 year event. Emergency overflow will be routed to DDSWMM ID S6164.

### School Site (DDSWMM ID: INST)

This school site is assumed to be restricted to 5 year modeled flow. It was also assumed that full on-site storage will be provided in the school site (all major flow contained on-site up to and including the 100 year event). Emergency overflow will be routed to DDSWMM ID S6105A.

### High Density Residential (DDSWMM ID: HD1 and HD2)

There are two high density residential areas proposed for the site and each have different assumptions regarding stormwater management.

Due to its location in Phase 1, HD1 has an inflow restricted to the 5 year modeled flow. Due to the topography of the site, full on-site storage of the 100 year storm event may be difficult, however, some on-site detention would benefit the Phase 1 major system. Therefore, it is assumed that a minimum of 100 m³ could be reasonably accommodated on-site. The major flow exceeding this storage would be conveyed onto the street which has been accommodated and accounted for in the modeling. During detail design, the on-site storage should be optimized and effort should be made to provide additional storage, if possible. Major flow from the site is to S6117A.

The second high density residential site, HD2, is located adjacent to Miikana Road. The minor system inflow from this site was assumed to the 5 year modeled flow. Due to site topography, on-site detention should be provided to the 100 year storm event (112 m³). During detail design, the on-site storage should be optimized. The emergency overflow outlet from this site is to S6102A.

### Future Earl Armstrong (DDSWMM ID: EA)

A small portion of the future Earl Armstrong Road was assumed to be serviced through the Pathways at Findlay Creek and Idone site. An area of 2.06 ha is assumed to be serviced. Future Earl Armstrong is an arterial road and therefore has a 10 year level of service. The assumed inflow rate is 523 l/s with 12.57 m³ of storage available within the road right-of-way. The overflow route for Earl Armstrong was assumed to be Bank Street (DDSWMM ID BANK).

 Future Residential Lands (DDSWMM ID: EXT1A, EXT1B, EXT2, EXT3, S631A, EXT7, EXT8B, EXT8AA, EXT8AB, EXT8AC and EXT8AD)

The future residential lands upstream and downstream of Phase 1 were assumed to contribute minor to the south sub-trunk and major flow to the northern outlet to the Leitrim Core Wetland Buffer. The future areas were delineated into separate areas based on preliminary grading plans. The impervious values are consistent with those for Phase 1 street segments. Street segment slopes are based on preliminary grading.

Inlet restriction for future areas EXT1A, EXT1B, EXT2, EXT3 and EXT7 was assumed to be the 5 year modeled flow. EXT1A, EXT1B and EXT2 were assumed to have be a continuous grade based on topography. Some on-site storage was assumed for EXT 3 and EXT7 (125 m³ and 6.3 m³, respectively).

Future external areas S631A and EXT8B are downstream and receive major flow from Phase 1. For these areas, there was some on-site detention assumed (8.8 m³/ha) and the on-site

REVISED: AUGUST, 2017

restriction was assumed to be the 5 year modeled flow. The major flow from these future areas will be conveyed to the northern major flow outlet to the Leitrim Core Wetland Buffer from the south.

Future external areas EXT8AA, EXT8AB, EXT8AC and EXT8AD are located along Miikana Road and most of the major flow from Phase 1 will be conveyed to these areas. These areas will be sawtooth design and on-site storage will be available. Based on preliminary grading, the drainage areas were delineated and preliminary ponding plan developed (see **Drawing 751**). The details of these areas are provided in **Table 4.4**. The preliminary minor system inflow rate is the 5 year modeled flow for the areas with the exception of EXT8AD which is 150 l/s. The inflow rates will be optimized during detail design to provide a maximum 0.35 m of total ponding (static and dynamic) during the 100 year storm event. Since this is future outlet for major flow for Phase 1, a preliminary velocity x depth has been provided in **Tables 4.5 and 4.6**.

Once detail design is undertaken for all the future lands, a detailed minor and major system evaluation will be completed and any downstream areas to which major flow is contributed will be re-evaluated.

**Drawing 700** presents the future external areas contributing major and minor flow to the subject site including their segment IDs.

**Table 4.4** summarizes the main hydrological parameters used in the DDSWMM model. The drainage area plan (DDSWMM schematic) is presented in **Drawing 700**. A summary of the determination of the parameters used in the DDSWMM model and model output files are enclosed in **Appendix E**.

### Summary of Hydrology Modeling Output Files

For ease of review, the following is a reference list of the computer modeling output files including names and storm event evaluated. The modeling output files are on the enclosed CD in **Appendix E**.

### **DDSWMM**

### Phase 1 East

- 33956-PH1E-3CHI2.dat/out
- 33956-PH1E-3CHI5.dat/out
- 33956-PH1E-3CHI100.dat/out
- 33956-PH1E-24SCS100.dat/out
- 33956-PH1E-JULY-79.dat/out
- 33956-PH1E-3CHI120.dat/out
- 33956-PH1E-24SCS120.dat/out

### Phase 1 West

- 33956-PH1W-3CHI2.dat/out
- 33956-PH1W-3CHI5.dat/out
- 33956-PH1W-3CHI100.dat/out
- 33956-PH1W-24SCS100.dat/out
- 33956-PH1W-JULY-79.dat/out
- 33956-PH1W-3CHI120.dat/out

• 33956-PH1W-24SCS120.dat/out

### **SWMHYMO**

- RPH1Evxd.dat/out
- RPH1Wvxd.dat/out

Table 4.4 Hydrological Parameters and Modeling Results

(DDSWMM Output File Names listed below)

| Drainage      | Area         |                          |                   |                     |                          |                           | Road                    | Max.                         | Minor System Restriction            |                                     |                       |  |
|---------------|--------------|--------------------------|-------------------|---------------------|--------------------------|---------------------------|-------------------------|------------------------------|-------------------------------------|-------------------------------------|-----------------------|--|
| Segment<br>ID | Area<br>(ha) | Downstream<br>Segment ID | XPSWMM<br>Node ID | IMP<br>Ratio<br>(%) | Segment<br>Length<br>(m) | Subcatchment<br>Width (m) | ROW<br>Cross<br>Section | Storage<br>Available<br>(m³) | 2 Year<br>Modeled<br>Flow<br>(I/s)* | 5 Year<br>Modeled<br>Flow<br>(I/s)* | ICD<br>Flow<br>(I/s)* |  |
|               |              |                          |                   | Phase               | 1 Pathway                | s at Findlay Cre          | ek                      |                              |                                     |                                     |                       |  |
| Street Seg    | gments       | – East*                  |                   |                     |                          |                           |                         |                              |                                     |                                     |                       |  |
| S6132B        | 0.20         | S6133A                   | S6132B            | 70                  | 50                       | 100                       | 24                      | n/a                          | 7                                   | 10                                  | 12                    |  |
| S6133B        | 0.20         | S6133A                   | BLK6133S          | 70                  | 77                       | 154                       | 18                      | n/a                          | 58                                  | 76                                  | 76                    |  |
| S6133A        | 0.30         | S6146                    | S6133             | 70                  | 74                       | 148                       | 24                      | n/a                          | 42                                  | 55                                  | 56                    |  |
| S6135         | 0.18         | S6120A                   | S6135             | 70                  | 88                       | 88                        | 24                      | n/a                          | 3                                   | 5                                   | 6                     |  |
| S6146         | 0.20         | S6120B                   | S6146             | 70                  | 117                      | 117                       | 24                      | n/a                          | 20                                  | 26                                  | 28                    |  |
| S6120A        | 0.09         | S6164B                   | S6120             | 70                  | 68                       | 68                        | 20                      | n/a                          | 11                                  | 14                                  | 19                    |  |
| S6120B        | 0.08         | S6118B                   | S6120             | 70                  | 68                       | 68                        | 20                      | n/a                          | 35                                  | 44                                  | 44                    |  |
| S6132C        | 0.17         | S6162                    | S6132A            | 70                  | 68                       | 136                       | 18                      | n/a                          | 12                                  | 15                                  | 25                    |  |
| S6162         | 0.22         | S6163                    | S6162             | 70                  | 62                       | 124                       | 18                      | 40.20                        | 40                                  | 56                                  | 56                    |  |
| S6163         | 0.23         | S6164A                   | S6163             | 70                  | 70                       | 140                       | 18                      | n/a                          | 13                                  | 17                                  | 25                    |  |
| S6164A        | 0.24         | S6164B                   | S6164             | 70                  | 76                       | 152                       | 18                      | n/a                          | 18                                  | 24                                  | 25                    |  |
| S6164B        | 0.14         | S6118A                   | S6164             | 70                  | 60                       | 120                       | 18                      | 0.14                         | 65                                  | 97                                  | 97                    |  |
| S6118A        | 0.08         | S6117A                   | S6119             | 70                  | 94                       | 94                        | 20                      | n/a                          | 6                                   | 8                                   | 19                    |  |
| S6118B        | 0.06         | S6117B                   | S6119             | 70                  | 62                       | 62                        | 20                      | n/a                          | 38                                  | 50                                  | 63                    |  |
| S6117A        | 0.14         | S6116A                   | S6117             | 70                  | 85                       | 85                        | 20                      | n/a                          | 10                                  | 12                                  | 19                    |  |
| S6117B        | 0.13         | S6116B                   | S6117             | 70                  | 85                       | 85                        | 20                      | n/a                          | 30                                  | 42                                  | 44                    |  |
| S6116A        | 0.15         | S6115C                   | S6116             | 70                  | 81                       | 81                        | 20                      | n/a                          | 12                                  | 16                                  | 19                    |  |
| S6116B        | 0.17         | S6115B                   | S6116             | 70                  | 81                       | 81                        | 20                      | n/a                          | 27                                  | 40                                  | 44                    |  |
| S6156B        | 0.24         | S6158A                   | S6156B            | 70                  | 83                       | 166                       | 18                      | n/a                          | 14                                  | 17                                  | 25                    |  |
| S6158A        | 0.18         | S6158B                   | S6158             | 70                  | 71                       | 71                        | 18                      | n/a                          | 18                                  | 25                                  | 25                    |  |
| S6158B        | 0.17         | S6154                    | S6158             | 70                  | 63                       | 63                        | 18                      | n/a                          | 16                                  | 21                                  | 25                    |  |
| S6154         | 0.16         | S6115C                   | S6154             | 70                  | 69                       | 138                       | 18                      | 3.44                         | 44                                  | 68                                  | 72                    |  |
| S6115C        | 0.05         | S6115A                   | S6115             | 70                  | 22                       | 22                        | 18                      | n/a                          | 10                                  | 14                                  | 19                    |  |
| S6115A        | 0.14         | S6102B                   | S6115             | 70                  | 67                       | 67                        | 20                      | n/a                          | 11                                  | 15                                  | 19                    |  |
| S6115B        | 0.18         | S6102B                   | S6115             | 70                  | 88                       | 88                        | 20                      | 0.28                         | 102                                 | 212                                 | 245                   |  |
| S6101B        | 0.05         | S6115B                   | S6101             | 70                  | 36                       | 36                        | 24                      | n/a                          | 1                                   | 1                                   | 6                     |  |
| S6101A        | 0.09         | S6102B                   | S6101             | 70                  | 47                       | 47                        | 24                      | n/a                          | 0                                   | 0                                   | 0                     |  |

| Drainage      | Area         |                          |                   | Road                | Max.                     | Minor System Restriction  |                         |                              |                                     |                                     |                       |
|---------------|--------------|--------------------------|-------------------|---------------------|--------------------------|---------------------------|-------------------------|------------------------------|-------------------------------------|-------------------------------------|-----------------------|
| Segment<br>ID | Area<br>(ha) | Downstream<br>Segment ID | XPSWMM<br>Node ID | IMP<br>Ratio<br>(%) | Segment<br>Length<br>(m) | Subcatchment<br>Width (m) | ROW<br>Cross<br>Section | Storage<br>Available<br>(m³) | 2 Year<br>Modeled<br>Flow<br>(I/s)* | 5 Year<br>Modeled<br>Flow<br>(I/s)* | ICD<br>Flow<br>(I/s)* |
| S6102B        | 0.18         | S6102A                   | S6102             | 70                  | 48                       | 96                        | 24                      | 9.50                         | 56                                  | 79                                  | 126                   |
| S6102A        | 0.16         | S6103                    | S6102             | 70                  | 47                       | 94                        | 24                      | 4.76                         | 21                                  | 29                                  | 107                   |
| S6103         | 0.16         | S6104B                   | S6103             | 70                  | 46                       | 92                        | 24                      | 6.18                         | 21                                  | 29                                  | 126                   |
| S6104B        | 0.16         | S6104A                   | S6104             | 70                  | 47                       | 94                        | 24                      | 5.90                         | 21                                  | 29                                  | 126                   |
| S6104A        | 0.16         | S6105C                   | S6104             | 70                  | 46                       | 92                        | 24                      | 6.21                         | 21                                  | 29                                  | 48                    |
| S6105C        | 0.16         | S6105B                   | S6105             | 70                  | 47                       | 94                        | 24                      | 4.78                         | 21                                  | 29                                  | 95                    |
| S6105B        | 0.16         | S6105A                   | S6105             | 70                  | 46                       | 92                        | 24                      | 7.39                         | 21                                  | 29                                  | 88                    |
| S6105A        | 0.16         | EXT8AA                   | S6105             | 70                  | 48                       | 96                        | 24                      | 4.64                         | 21                                  | 29                                  | 126                   |
| S6138A        | 0.07         | S6138B                   | S6138             | 70                  | 31                       | 62                        | 24                      | n/a                          | 2                                   | 3                                   | 12                    |
| S6138B        | 0.06         | S6140A                   | S6138             | 70                  | 26                       | 52                        | 24                      | n/a                          | 4                                   | 5                                   | 12                    |
| S6140A        | 0.09         | S6140B                   | S6140             | 70                  | 39                       | 78                        | 24                      | n/a                          | 5                                   | 8                                   | 12                    |
| S6140B        | 0.08         | S6140C                   | S6140             | 70                  | 32                       | 64                        | 24                      | n/a                          | 7                                   | 9                                   | 12                    |
| S6140C        | 0.15         | BANK                     | S6140             | 70                  | 35                       | 70                        | 24                      | n/a                          | 9                                   | 13                                  | 25                    |
|               | ı            |                          |                   | I                   |                          | Total Flow                | for Stree               | t Segments                   | – Phase 1                           | East (I/s)                          | 2028                  |
| Street Se     | gments       | - West <sup>†</sup>      |                   |                     |                          |                           |                         |                              |                                     |                                     |                       |
| S6110B        | 0.16         | S6110A                   | BLK6110S          | 70                  | 81                       | 81                        | 24                      | n/a                          | 14                                  | 17                                  | 19                    |
| S6110C        | 0.17         | S6110D                   | BLK6110S          | 70                  | 81                       | 81                        | 24                      | n/a                          | 14                                  | 17                                  | 19                    |
| S6132A        | 0.21         | S6110D                   | S6132             | 70                  | 61                       | 122                       | 24                      | n/a                          | 12                                  | 17                                  | 25                    |
| S6110A        | 0.14         | S6108A                   | S6110             | 70                  | 72                       | 72                        | 24                      | n/a                          | 15                                  | 19                                  | 19                    |
| S6110D        | 0.15         | S6155B                   | S6110             | 70                  | 72                       | 72                        | 24                      | n/a                          | 18                                  | 23                                  | 24                    |
| S6155B        | 0.30         | S6108B                   | S6155             | 70                  | 95                       | 186                       | 18                      | 0.64                         | 86                                  | 127                                 | 168                   |
| S6108A        | 0.15         | S6108B                   | S6108             | 70                  | 85                       | 85                        | 24                      | n/a                          | 6                                   | 9                                   | 19                    |
| S6156C        | 0.11         | S6155A                   | S6156             | 70                  | 56                       | 56                        | 18                      | n/a                          | 6                                   | 9                                   | 19                    |
| S6156D        | 0.10         | S6155B                   | S6156             | 70                  | 56                       | 56                        | 18                      | n/a                          | 6                                   | 8                                   | 19                    |
| S6155A        | 0.13         | S6108B                   | S6155             | 70                  | 76                       | 76                        | 18                      | n/a                          | 9                                   | 11                                  | 19                    |
| S6108B        | 0.21         | S6107                    | S6108             | 70                  | 61                       | 122                       | 24                      | n/a                          | 31                                  | 41                                  | 43                    |
| S6131B        | 0.30         | S6131A                   | S6131B            | 70                  | 86                       | 172                       | 24                      | n/a                          | 16                                  | 21                                  | 25                    |
| S6131A        | 0.19         | S6130B                   | S6131             | 70                  | 57                       | 114                       | 24                      | n/a                          | 10                                  | 14                                  | 25                    |
| S6130B        | 0.13         | S6170B                   | S6130             | 70                  | 81                       | 81                        | 18                      | n/a                          | 17                                  | 22                                  | 24                    |
| S6170B        | 0.14         | S631A                    | S6170             | 70                  | 74                       | 74                        | 18                      | n/a                          | 21                                  | 28                                  | 28                    |
| S6170C        | 0.10         | S6170B                   | S6170             | 70                  | 83                       | 83                        | 20                      | n/a                          | 0                                   | 0                                   | 0                     |
| S6130A        | 0.12         | S6170A                   | S6130             | 70                  | 81                       | 81                        | 18                      | n/a                          | 7                                   | 9                                   | 19                    |
| S6170A        | 0.12         | S631A                    | S6170             | 70                  | 87                       | 87                        | 18                      | n/a                          | 11                                  | 14                                  | 19                    |
| S6171         | 0.15         | S631A                    | S6171             | 70                  | 90                       | 90                        | 20                      | 1.27                         | 20                                  | 25                                  | 25                    |
| S6181         | 0.29         | S6182                    | S6181             | 70                  | 80                       | 160                       | 18                      | n/a                          | 15                                  | 19                                  | 25                    |

| Drainage      | Area         |                          |                   |                     | _                        |                           | Road                    | Max.                         | Minor System Restric                |                                     |                       |
|---------------|--------------|--------------------------|-------------------|---------------------|--------------------------|---------------------------|-------------------------|------------------------------|-------------------------------------|-------------------------------------|-----------------------|
| Segment<br>ID | Area<br>(ha) | Downstream<br>Segment ID | XPSWMM<br>Node ID | IMP<br>Ratio<br>(%) | Segment<br>Length<br>(m) | Subcatchment<br>Width (m) | ROW<br>Cross<br>Section | Storage<br>Available<br>(m³) | 2 Year<br>Modeled<br>Flow<br>(l/s)* | 5 Year<br>Modeled<br>Flow<br>(I/s)* | ICD<br>Flow<br>(I/s)* |
| S6182         | 0.20         | S6183B                   | S6182             | 70                  | 66                       | 132                       | 18                      | n/a                          | 21                                  | 28                                  | 30                    |
| S6183B        | 0.26         | S6183A                   | S6183             | 70                  | 91                       | 182                       | 18                      | n/a                          | 20                                  | 27                                  | 30                    |
| S6183A        | 0.12         | S6107                    | S6183             | 70                  | 41                       | 82                        | 18                      | 2.20                         | 53                                  | 79                                  | 181                   |
| S6175         | 0.18         | S6106                    | S6175             | 70                  | 90                       | 90                        | 20                      | n/a                          | 9                                   | 12                                  | 19                    |
| S6107         | 0.25         | S6106                    | S6107             | 70                  | 72                       | 166                       | 24                      | 13.51                        | 80                                  | 122                                 | 249                   |
| S6106         | 0.24         | EXT8AA                   | S6106             | 70                  | 93                       | 186                       | 24                      | 66.46                        | 44                                  | 62                                  | 172                   |
| S6176         | 0.05         | S6173                    | S6176             | 70                  | 47                       | 47                        | 18                      | n/a                          | 3                                   | 4                                   | 6                     |
| S6172         | 0.11         | S6173                    | S6172             | 70                  | 76                       | 76                        | 18                      | n/a                          | 6                                   | 8                                   | 19                    |
| S6173         | 0.31         | EXT8AD                   | S6173             | 70                  | 75                       | 150                       | 18                      | 10.42                        | 51                                  | 72                                  | 72                    |
|               |              |                          |                   |                     |                          | Total Flow                | for Street              | t Segments                   | – Phase 1                           | West (I/s)                          | 1363                  |
|               |              |                          |                   |                     |                          | Total                     | Flow for                | Street Segr                  | ments – Ph                          | ase 1 (l/s)                         | 3391                  |
| Rear Yard     | l Segme      | ents – East*             |                   |                     |                          |                           |                         |                              |                                     |                                     |                       |
| R6132C        | 0.27         | R6132A                   | S6132B            | 49                  | 57                       | 114                       | swale                   | n/a                          | 25                                  | 34                                  | 40                    |
| R6132A        | 0.43         | R6132D                   | S6132B            | 49                  | 108                      | 216                       | swale                   | n/a                          | 41                                  | 56                                  | 57                    |
| R6133         | 0.16         | R6134                    | S6133             | 49                  | 76                       | 76                        | swale                   | n/a                          | 15                                  | 21                                  | 22                    |
| R6134         | 0.20         | S6146                    | S6134             | 49                  | 60                       | 60                        | swale                   | n/a                          | 18                                  | 25                                  | 26                    |
| R6163         | 0.24         | R6164                    | S6163             | 49                  | 57                       | 114                       | swale                   | n/a                          | 23                                  | 31                                  | 40                    |
| R6164         | 0.33         | R6120                    | S6164             | 49                  | 76                       | 152                       | swale                   | n/a                          | 31                                  | 43                                  | 57                    |
| R6120         | 0.14         | S6120A                   | S6120             | 49                  | 34                       | 68                        | swale                   | n/a                          | 13                                  | 18                                  | 22                    |
| R6132B        | 0.34         | S6132C                   | S6132A            | 49                  | 72                       | 144                       | swale                   | n/a                          | 32                                  | 44                                  | 57                    |
| R6156C        | 0.11         | S6156B                   | S6156B            | 49                  | 57                       | 57                        | swale                   | n/a                          | 10                                  | 14                                  | 17                    |
| R6158         | 0.25         | R6154                    | S6158             | 49                  | 58                       | 116                       | swale                   | n/a                          | 23                                  | 33                                  | 40                    |
| R6154         | 0.26         | S6154                    | S6154             | 49                  | 64                       | 128                       | swale                   | n/a                          | 24                                  | 34                                  | 40                    |
| R6116A        | 0.14         | R6116B                   | S6116             | 49                  | 63                       | 63                        | swale                   | n/a                          | 13                                  | 18                                  | 22                    |
| R6116B        | 0.13         | R6101                    | S6116             | 49                  | 62                       | 62                        | swale                   | n/a                          | 12                                  | 17                                  | 17                    |
| R6101         | 0.15         | S6101B                   | S6101             | 49                  | 78                       | 78                        | swale                   | n/a                          | 14                                  | 20                                  | 22                    |
| R6102         | 0.12         | S6102B                   | S6102             | 49                  | 65                       | 65                        | swale                   | n/a                          | 11                                  | 16                                  | 17                    |
|               |              |                          |                   |                     |                          | Total Flow for            | Rear Yar                | d Segments                   | s – Phase 1                         | East (I/s)                          | 496                   |
| Rear Yard     | Segme        | ents - West <sup>†</sup> |                   |                     |                          |                           |                         |                              |                                     |                                     |                       |
| R6132D        | 0.11         | S6132A                   | S6132             | 49                  | 32                       | 32                        | Swale                   | n/a                          | 10                                  | 14                                  | 57                    |
| R6109         | 0.31         | R6155                    | S6109             | 49                  | 53                       | 106                       | Swale                   | n/a                          | 28                                  | 40                                  | 78                    |
| R6156A        | 0.30         | R6155                    | S6156             | 49                  | 64                       | 128                       | Swale                   | n/a                          | 28                                  | 39                                  | 78                    |
| R6155         | 0.54         | S6155B                   | S6155             | 49                  | 92                       | 153                       | Swale                   | n/a                          | 49                                  | 68                                  | 78                    |
| R6156B        | 0.14         | R6108A                   | S6156             | 49                  | 49                       | 49                        | Swale                   | n/a                          | 13                                  | 18                                  | 22                    |
| R6108A        | 0.21         | S6108B                   | S6108             | 49                  | 109                      | 109                       | Swale                   | n/a                          | 20                                  | 28                                  | 78                    |

| Drainage      | Area         | a                        |                   | 1140                | 6                        |                           | Road                    | Max.                         | Minor System Restriction            |                                     |                       |
|---------------|--------------|--------------------------|-------------------|---------------------|--------------------------|---------------------------|-------------------------|------------------------------|-------------------------------------|-------------------------------------|-----------------------|
| Segment<br>ID | Area<br>(ha) | Downstream<br>Segment ID | XPSWMM<br>Node ID | IMP<br>Ratio<br>(%) | Segment<br>Length<br>(m) | Subcatchment<br>Width (m) | ROW<br>Cross<br>Section | Storage<br>Available<br>(m³) | 2 Year<br>Modeled<br>Flow<br>(I/s)* | 5 Year<br>Modeled<br>Flow<br>(I/s)* | ICD<br>Flow<br>(I/s)* |
| R6182         | 0.31         | R6183                    | S6182             | 49                  | 72                       | 115                       | Swale                   | n/a                          | 29                                  | 40                                  | 78                    |
| R6183         | 0.26         | R6108B                   | S6183             | 49                  | 32                       | 64                        | Swale                   | n/a                          | 23                                  | 32                                  | 78                    |
| R6108B        | 0.25         | S6107                    | S6108             | 70                  | 65                       | 100                       | Swale                   | n/a                          | 32                                  | 45                                  | 78                    |
| R6131B        | 0.54         | S6131B                   | S6131B            | 49                  | 107                      | 183                       | Swale                   | n/a                          | 49                                  | 69                                  | 78                    |
| R6181         | 0.47         | R6170                    | S6181             | 49                  | 101                      | 195                       | Swale                   | n/a                          | 44                                  | 61                                  | 78                    |
| R6130         | 0.10         | R6170                    | S6130             | 49                  | 37                       | 37                        | Swale                   | n/a                          | 9                                   | 13                                  | 19                    |
| R6170         | 0.25         | R6171                    | S6170             | 49                  | 47                       | 94                        | Swale                   | n/a                          | 23                                  | 32                                  | 40                    |
| R6171         | 0.32         | S6170C                   | S6171             | 49                  | 66                       | 132                       | Swale                   | n/a                          | 30                                  | 41                                  | 57                    |
| R6106         | 0.27         | S6106                    | S6106             | 49                  | 68                       | 136                       | Swale                   | n/a                          | 25                                  | 35                                  | 78                    |
| R6173         | 0.40         | EXT8AD                   | S6173             | 49                  | 68                       | 136                       | Swale                   | n/a                          | 37                                  | 51                                  | 57                    |
| R6176B        | 0.21         | R6176A                   | S6176             | 49                  | 45                       | 90                        | Swale                   | n/a                          | 20                                  | 27                                  | 29                    |
| R6176A        | 0.25         | S6172                    | S6176             | 49                  | 50                       | 70                        | Swale                   | n/a                          | 23                                  | 29                                  | 29                    |
|               | •            |                          |                   |                     |                          | Total Flow for            | Rear Yard               | Segments                     | – Phase 1                           | West (I/s)                          | 1090                  |
|               |              |                          |                   |                     |                          | Total Flo                 | w for Rea               | r Yard Segr                  | nents – Ph                          | ase 1 (l/s)                         | 1586                  |
|               |              |                          |                   |                     | Total                    | Flow from Stree           | et and Rea              | r Yard Seg                   | ments –Ph                           | ase 1 (l/s)                         | 4977                  |
| Future Ex     | cternal i    | Areas                    |                   |                     |                          |                           |                         |                              |                                     |                                     |                       |
| EXT2          | 2.72         | S6133B                   | BLK6133S          | 64                  | 306                      | 612                       | 18                      | n/a                          | 304                                 | 424                                 | 86                    |
| EXT3          | 2.50         | S6146                    | BLK6145           | 79                  | 281                      | 563                       | 24                      | 125.00                       | 336                                 | 469                                 | 469                   |
| HD1           | 1.02         | S6117A                   | BLK6117B          | 86                  | 115                      | 230                       | n/a                     | 100.00                       | 148                                 | 206                                 | 206                   |
| PARK1         | 0.83         | S6154                    | S6153             | 14                  | 93                       | 187                       | swale                   | 150.00                       | 23                                  | 33                                  | 38                    |
| HD2           | 0.94         | S6102A                   | S6102             | 86                  | 106                      | 212                       | n/a                     | 115.00                       | 136                                 | 190                                 | 190                   |
| INST          | 2.55         | S6105C                   | S6104             | 79                  | 287                      | 574                       | n/a                     | 290.00                       | 343                                 | 479                                 | 476                   |
| EA            | 2.06         | BANK                     | BLK900            | 79                  | 232                      | 464                       | n/a                     | 12.57                        | 277                                 | 387                                 | 523                   |
| EXT4          | 4.06         | BANK                     | BLK900            | 79                  | 457                      | 914                       | n/a                     | 462.00                       | 546                                 | 762                                 | 760                   |
| COM           | 3.01         | BANK                     | S6119             | 79                  | 339                      | 677                       | n/a                     | 345.00                       | 405                                 | 565                                 | 562                   |
| EXT1A         | 0.23         | S6110B                   | BLK6110S          | 79                  | 26                       | 52                        | 24                      | n/a                          | 12                                  | 15                                  | 19                    |
| EXT1B         | 0.21         | S6110C                   | BLK6110S          | 79                  | 24                       | 47                        | 24                      | n/a                          | 11                                  | 14                                  | 19                    |
| S631A         | 2.12         | EXT8B                    | BLK3171W          | 79                  | 239                      | 477                       | 20                      | 18.60                        | 334                                 | 471                                 | 467                   |
| EXT8B         | 4.38         | EXT8AD                   | BLK6105W          | 79                  | 493                      | 986                       | 24                      | 38.43                        | 590                                 | 822                                 | 809                   |
| EXT8AA        | 0.26         | EXT8AB                   | BLK6105W          | 79                  | 60                       | 120                       | 24                      | 3.80                         | 38                                  | 53                                  | 52                    |
| EXT8AB        | 0.46         | EXT8AC                   | BLK6105W          | 79                  | 61                       | 122                       | 24                      | 6.74                         | 63                                  | 88                                  | 88                    |
| EXT8AC        | 0.57         | EXT8AD                   | BLK6105W          | 79                  | 58                       | 116                       | 24                      | 6.74                         | 76                                  | 106                                 | 105                   |
| LATONO        |              |                          |                   |                     | !                        |                           |                         |                              |                                     | 1                                   |                       |
| EXT8AD        | 0.24         | OUT                      | BLK6105W          | 79                  | 61                       | 122                       | 24                      | 17.85                        | 35                                  | 49                                  | 150                   |

Notes: \* Pathways at Findlay Creek Phase 1 East modeled flow is from the DDSWMM output file 33956-PH1E-3CHI2.out, 33956-PH1E-3CHI5.out and 33956-PH1E-3CHI100.out which are all presented on the CD in Appendix E.

REVISED: AUGUST, 2017

| Servicing and SWM Report |
|--------------------------|
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
| nation                   |
| nation                   |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |

# IPEX Tempest™ Inlet Control Devices

**Municipal Technical Manual Series** 

Vol. I, 2nd Edition

© 2012 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 2441 Royal Windsor Drive, Mississauga, Ontario, Canada, L5J 4C7.

The information contained here within is based on current information and product design at the time of publication and is subject to change without notification. IPEX does not guarantee or warranty the accuracy, suitability for particular applications, or results to be obtained therefrom.



### PRODUCT INFORMATION: TEMPEST LOW, MEDIUM FLOW (LMF) ICD

### **Purpose**

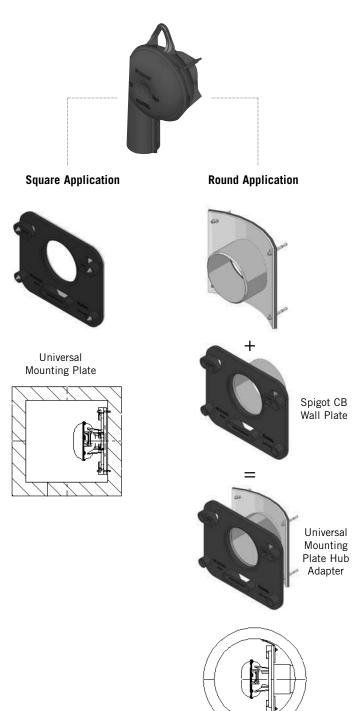
To control the amount of storm water runoff entering a sewer system by allowing a specified flow volume out of a catch basin or manhole at a specified head. This approach conserves pipe capacity so that catch basins downstream do not become uncontrollably surcharged, which can lead to basement floods, flash floods and combined sewer overflows.

### **Product Description**

Our LMF ICD is designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter and larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 14 preset flow curves, the LMF ICD has the ability to provide flow rates: 2lps – 17lps (31gpm – 270gpm)

### **Product Function**


The LMF ICD vortex flow action allows the LMF ICD to provide a narrower flow curve using a larger orifice than a conventional orifice plate ICD, making it less likely to clog. When comparing flows at the same head level, the LMF ICD has the ability to restrict more flow than a conventional ICD during a rain event, preserving greater sewer capacity.

### **Product Construction**

Constructed from durable PVC, the LMF ICD is light weight 8.9 Kg (19.7 lbs).

### **Product Applications**

Will accommodate both square and round applications:





**Chart 1: LMF 14 Preset Flow Curves** 

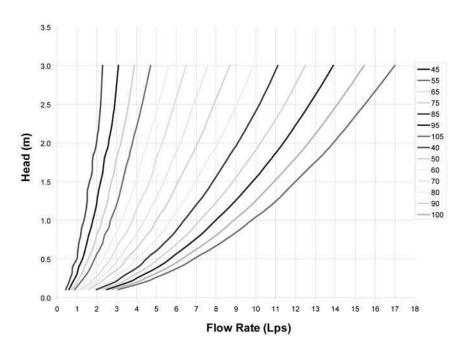
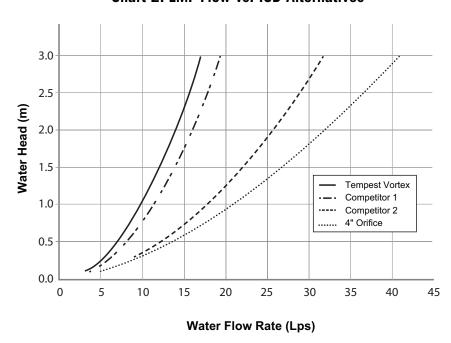




Chart 2: LMF Flow vs. ICD Alternatives





### PRODUCT INSTALLATION

# Instructions to assemble a TEMPEST LMF ICD into a Square Catch Basin:

### STEPS:

- 1. Materials and tooling verification:
  - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
  - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers,
     (4) nuts, universal mounting plate, ICD device.
- 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- 5. Install the universal mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal mounting plate and has created a seal.

### **WARNING**

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

# Instructions to assemble a TEMPEST LMF ICD into a Round Catch Basin:

### STEPS:

- 1. Materials and tooling verification.
  - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
  - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2".
   Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of the CB wall plate, then slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the mounting plate and has created a seal.

## **WARNING**

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut back the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C
   (32°F) or in a high humidity environment. Refer to
   the IPEX solvent cement guide to confirm the
   required curing time or visit the IPEX Online Solvent
   Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.



### PRODUCT TECHNICAL SPECIFICATION

### General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand

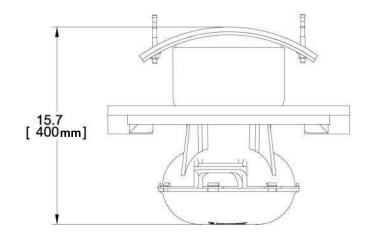
ICD's shall have no moving parts.

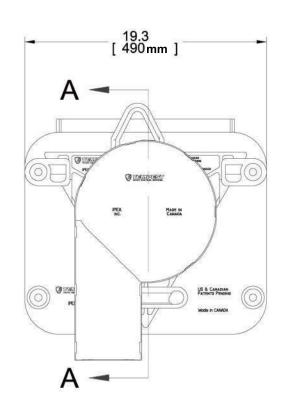
### **Materials**

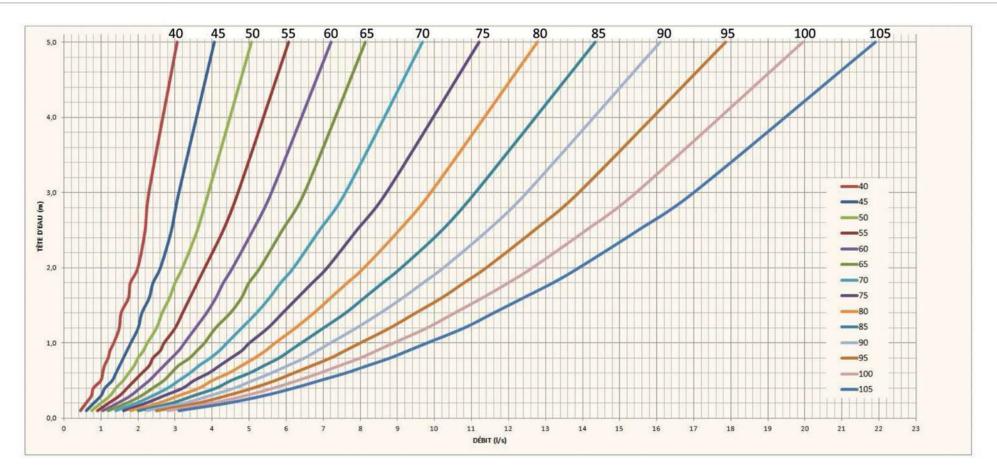
ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

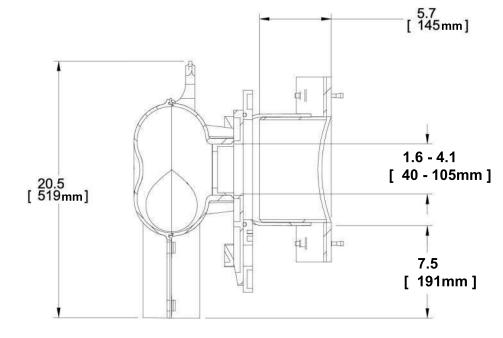
The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

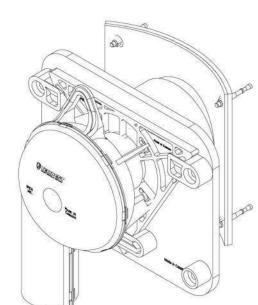
The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.


All hardware will be made from 304 stainless steel.


### **Dimensioning**


The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.


### Installation


Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.











**SECTION A-A** 



1-2014

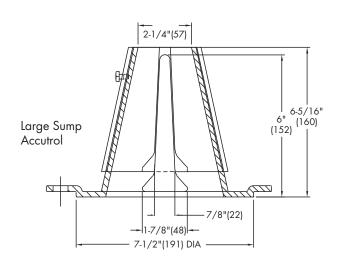
Servicing and SWM Report

**Flow Control Roof Drain Information** 



# Adjustable Accutrol Weir

# Adjustable Flow Control for Roof Drains


### ADJUSTABLE ACCUTROL (for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

### **EXAMPLE:**

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2"of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm (per inch of head)  $\times$  2 inches of head] + 2-1/2 gpm (for the third inch of head) = 12-1/2 gpm.



Upper Cone

Fixed Weir

Adjustable

1/2 Weir Opening Exposed Shown Above

TABLE 1. Adjustable Accutrol Flow Rate Settings

| Wain Ononing            | 1" | 2"      | 3"         | 4"      | 5"      | 6" |
|-------------------------|----|---------|------------|---------|---------|----|
| Weir Opening<br>Exposed |    | Flow Ro | ate (galle | ons per | minute) |    |
| Fully Exposed           | 5  | 10      | 15         | 20      | 25      | 30 |
| 3/4                     | 5  | 10      | 13.75      | 17.5    | 21.25   | 25 |
| 1/2                     | 5  | 10      | 12.5       | 15      | 17.5    | 20 |
| 1/4                     | 5  | 10      | 11.25      | 12.5    | 13.75   | 15 |
| Closed                  | 5  | 5       | 5          | 5       | 5       | 5  |

| Job Name     | Contractor            |
|--------------|-----------------------|
| Job Location | Contractor's P.O. No. |
|              |                       |
| Engineer     | Representative        |

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

**WATTS** 

A Watts Water Technologies Company

**USA:** Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca

Latin America: Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com

| 50 Dun Skipper Drive – Proposed Commercial Development | Servicing and SWM Report |
|--------------------------------------------------------|--------------------------|
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
| APPENDIX H                                             |                          |
| Development Servicing Study C                          | hecklist                 |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |
|                                                        |                          |





## Servicing study guidelines for development applications

### 4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

### 4.1 General Content

Executive Summary (for larger reports only).

Proposed phasing of the development, if applicable.

| Date and revision number of the report.                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location map and plan showing municipal address, boundary, and layout of proposed development.                                                                                                                                                                                                                                                                                              |
| Plan showing the site and location of all existing services.                                                                                                                                                                                                                                                                                                                                |
| Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.                                                                                                                                                                           |
| Summary of Pre-consultation Meetings with City and other approval agencies.                                                                                                                                                                                                                                                                                                                 |
| Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.                                                                                                      |
| Statement of objectives and servicing criteria.                                                                                                                                                                                                                                                                                                                                             |
| Identification of existing and proposed infrastructure available in the immediate area.                                                                                                                                                                                                                                                                                                     |
| Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).                                                                                                                                                                              |
| Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths. |
| Identification of potential impacts of proposed piped services on private services (such as wells and sentic fields on adjacent lands) and mitigation required to address potential impacts                                                                                                                                                                                                 |

Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme





| Reference to geotechnical studies and recommendations concerning servicing.                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All preliminary and formal site plan submissions should have the following information:  • Metric scale                                                                                                                                                                                                  |
| North arrow (including construction North)                                                                                                                                                                                                                                                               |
| ∘ Key plan                                                                                                                                                                                                                                                                                               |
| Name and contact information of applicant and property owner                                                                                                                                                                                                                                             |
| Property limits including bearings and dimensions                                                                                                                                                                                                                                                        |
| ∘ Existing and proposed structures and parking areas                                                                                                                                                                                                                                                     |
| ∘ Easements, road widening and rights-of-way                                                                                                                                                                                                                                                             |
| ∘ Adjacent street names                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                          |
| 4.2 Development Servicing Report: Water                                                                                                                                                                                                                                                                  |
| Confirm consistency with Master Servicing Study, if available                                                                                                                                                                                                                                            |
| Availability of public infrastructure to service proposed development                                                                                                                                                                                                                                    |
| Identification of system constraints                                                                                                                                                                                                                                                                     |
| Identify boundary conditions                                                                                                                                                                                                                                                                             |
| Confirmation of adequate domestic supply and pressure                                                                                                                                                                                                                                                    |
| Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.                                                                                        |
| Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.                                                                                                                                                    |
| Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design                                                                                                                                               |
| Address reliability requirements such as appropriate location of shut-off valves                                                                                                                                                                                                                         |
| Check on the necessity of a pressure zone boundary modification.                                                                                                                                                                                                                                         |
| Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range |



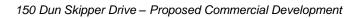


| Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.                                                                        |
| Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.                                                                                                                                                                                                                          |
| Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.                                                                                                                                                                                      |
| 4.3 Development Servicing Report: Wastewater                                                                                                                                                                                                                                                                           |
| Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).                                          |
| Confirm consistency with Master Servicing Study and/or justifications for deviations.                                                                                                                                                                                                                                  |
| Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.                                                                                                |
| Description of existing sanitary sewer available for discharge of wastewater from proposed development.                                                                                                                                                                                                                |
| Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)                                                                                           |
| Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.                                                                                                                                                                 |
| Description of proposed sewer network including sewers, pumping stations, and forcemains.                                                                                                                                                                                                                              |
| Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality). |
| Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.                                                                                                                                                                         |
| Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.                                                                                                                                                                                                                       |
| Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.                                                                                                                                               |
| Special considerations such as contamination, corrosive environment etc.                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                        |





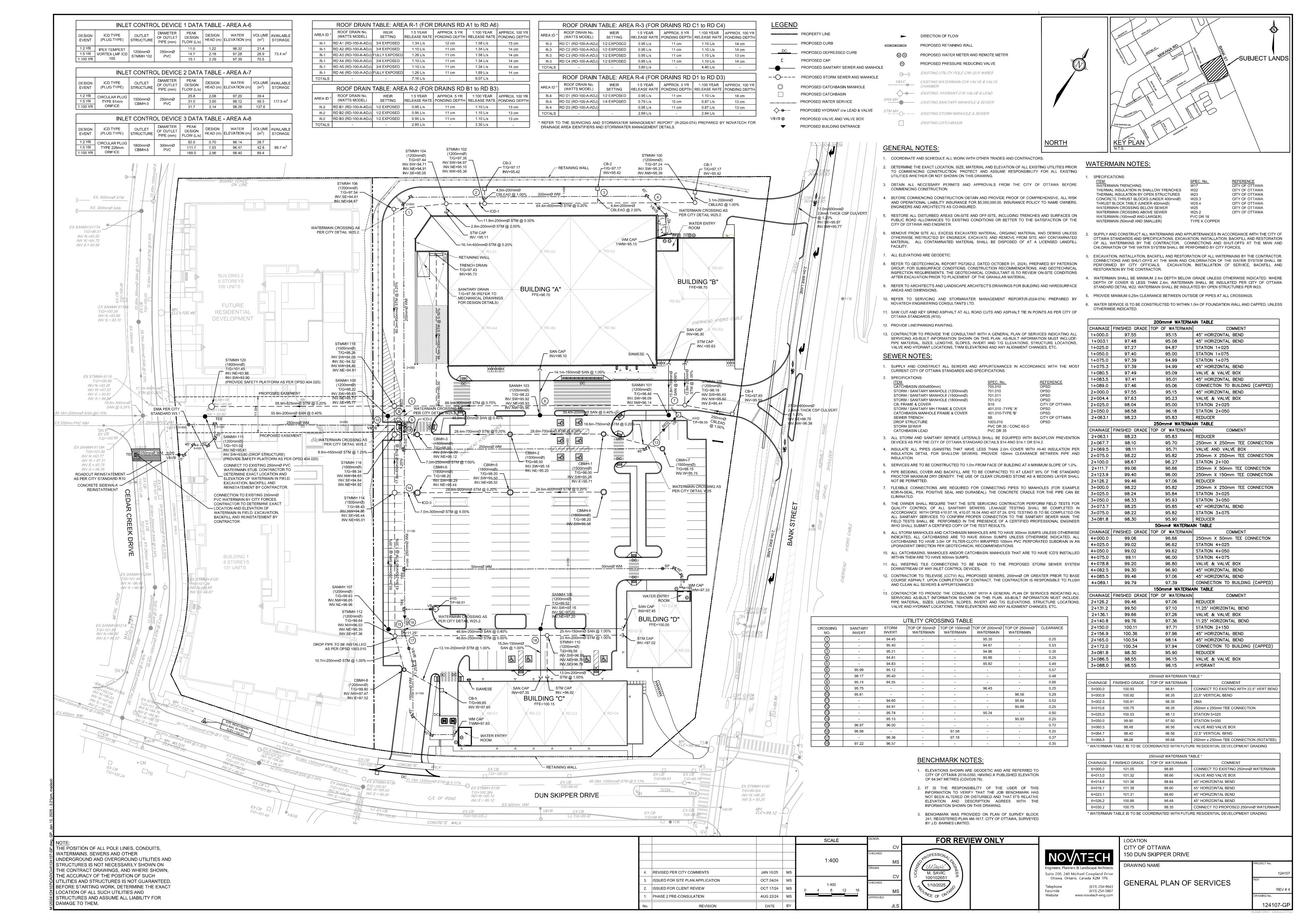
### 4.4 Development Servicing Report: Stormwater Checklist

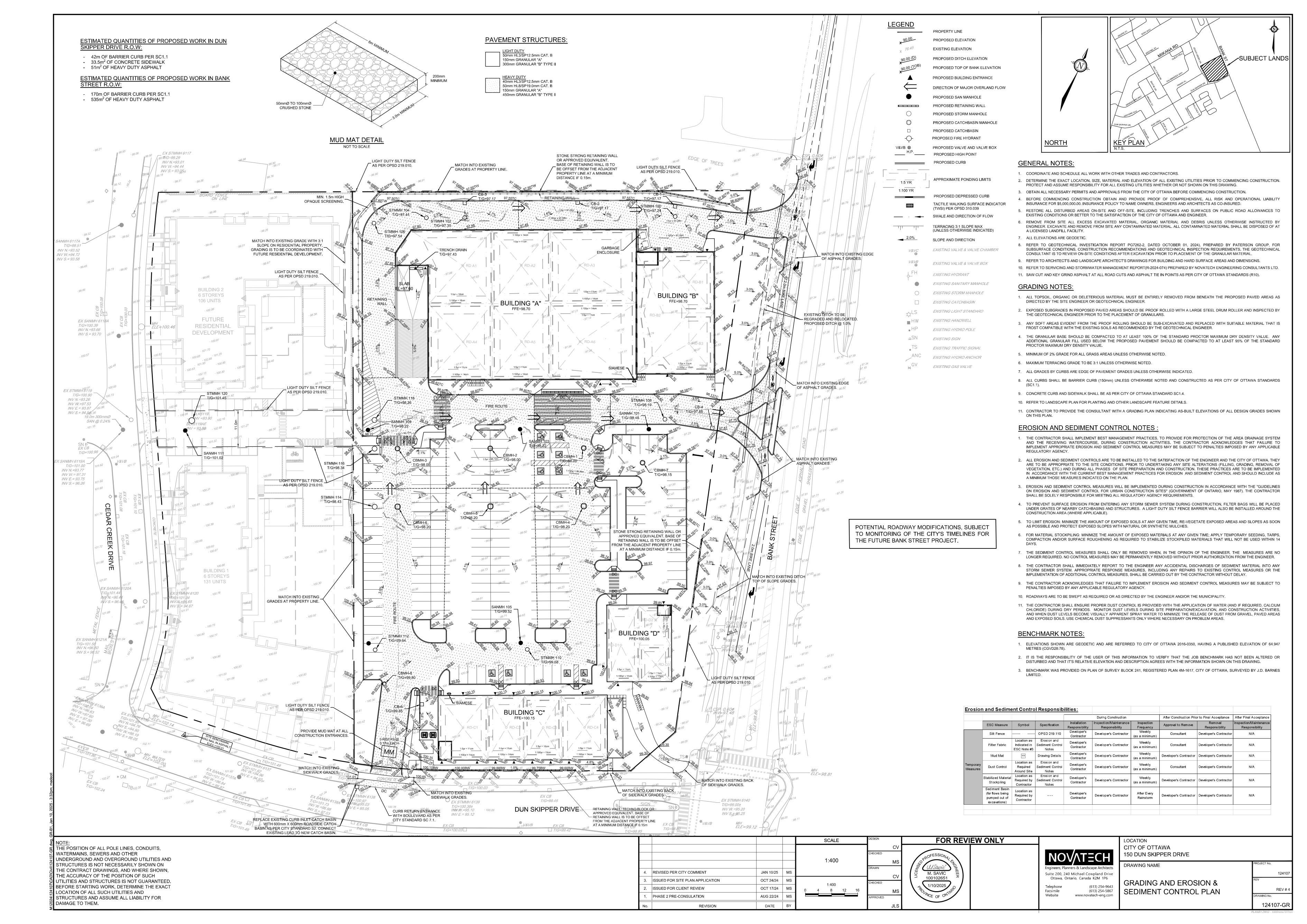

| drain, right-of-way, watercourse, or private property)                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis of available capacity in existing public infrastructure.                                                                                                                                                                                                                                                                                                                                                                        |
| A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.                                                                                                                                                                                                                                                                                             |
| Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects. |
| Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.                                                                                                                                                                                                                                                                        |
| Description of the stormwater management concept with facility locations and descriptions with references and supporting information.                                                                                                                                                                                                                                                                                                    |
| Set-back from private sewage disposal systems.                                                                                                                                                                                                                                                                                                                                                                                           |
| Watercourse and hazard lands setbacks.                                                                                                                                                                                                                                                                                                                                                                                                   |
| Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.                                                                                                                                                                                                                                                                                      |
| Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.                                                                                                                                                                                                                                                                                                                                           |
| Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).                                                                                                                                                                                                                                                                         |
| Identification of watercourses within the proposed development and how watercourses will be protected or, if necessary, altered by the proposed development with applicable approvals.                                                                                                                                                                                                                                                   |
| Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.                                                                                                                                                                                                                                       |
| Any proposed diversion of drainage catchment areas from one outlet to another.                                                                                                                                                                                                                                                                                                                                                           |
| Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.                                                                                                                                                                                                                                                                                                         |
| If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 year return period storm event.                                                                                                                                                                                                                                               |
| Identification of potential impacts to receiving watercourses                                                                                                                                                                                                                                                                                                                                                                            |
| Identification of municipal drains and related approval requirements.                                                                                                                                                                                                                                                                                                                                                                    |
| Descriptions of how the conveyance and storage capacity will be achieved for the development.                                                                                                                                                                                                                                                                                                                                            |
| 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.                                                                                                                                                                                                                                                                       |

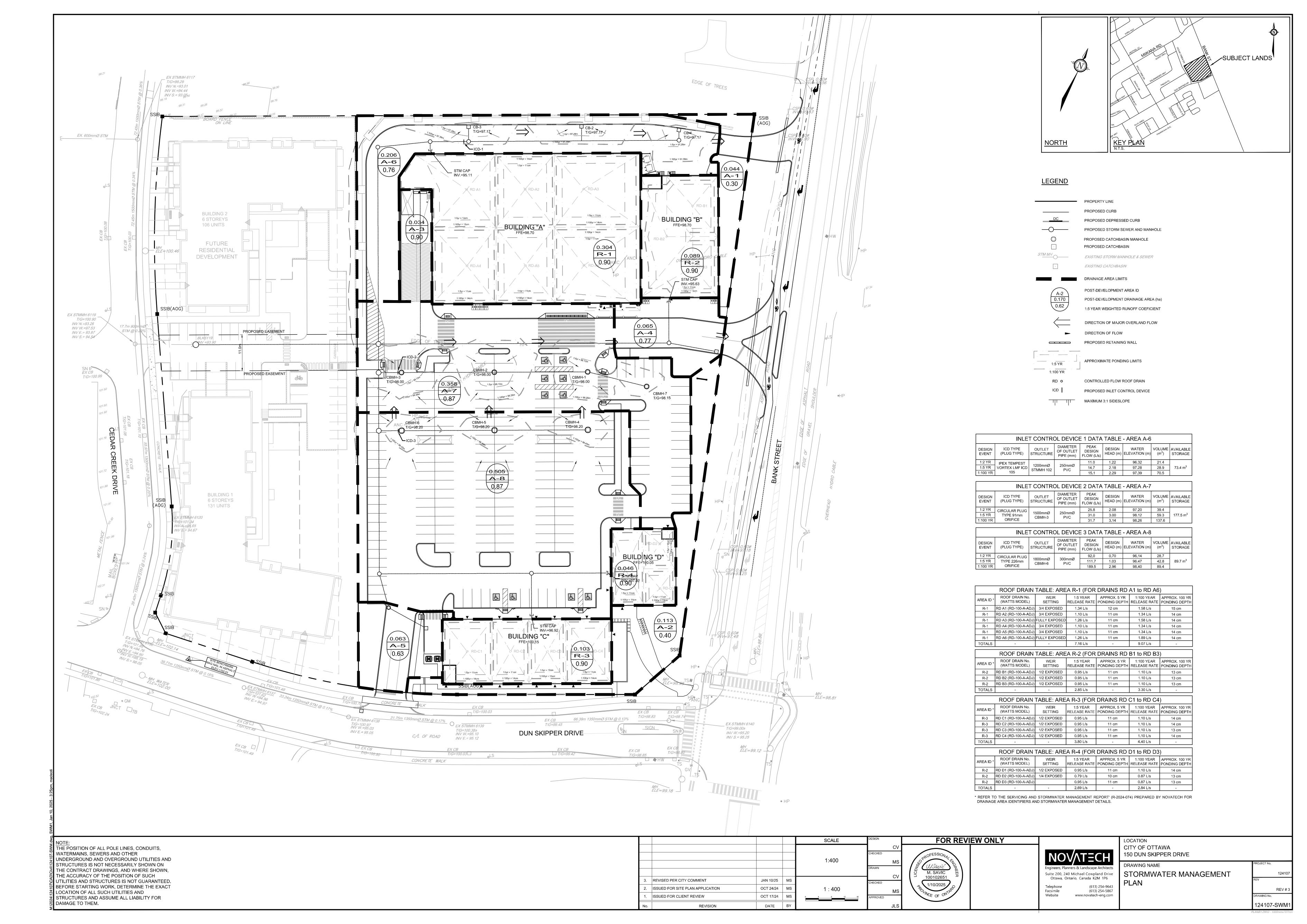




| Inclusion of hydraulic analysis including hydraulic grade line elevations.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.                                                                                                                                                                                                                                                                                                                                                                                       |
| Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.                                                                                                                                                                                        |
| Identification of fill constraints related to floodplain and geotechnical investigation.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.5 Approval and Permit Requirements: Checklist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:                                                                                                                                                                                                                                                                |
| Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act. |
| Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Changes to Municipal Drains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.6 Conclusion Checklist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Clearly stated conclusions and recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.                                                                                                                                                                                                                                                                                                                                                        |
| All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario                                                                                                                                                                                                                                                                                                                                                                                                                             |


Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme





Servicing and SWM Report

### **APPENDIX J**

**Drawings** 





