Phase Two Environmental Site Assessment

214-224 Somerset Street East Ottawa, Ontario

Prepared for: Ottawa Community Housing Corporation

December 12, 2024

LOP24-025C

Table of Contents

1.	Executive Summary	1
2.	Introduction	5
	i. Site Description	5
	ii. Property Ownership	5
	iii. Applicable Site Condition Standard	6
3.	Background Information	7
	i. Physical Setting	7
	ii. Past Investigations	7
4.	Scope of Investigation	
	i. Overview of Site Investigation	
	ii. Media Investigation	
	iii. Phase One Conceptual Site Model	
	iv. Deviations from Sampling and Analysis Plan	
	v. Impediments	
5.	Investigation Method	
	i. General	15
	ii. Drilling	
	iii. Soil Sampling	
	iv. Field Screening Measurements	17
	v. Groundwater: Monitoring Well Installation	17
	vi. Groundwater: Field Measurement of Water Quality Parameters	
	vii. Groundwater: Sampling	
	viii. Sediment: Sampling	
	ix. Analytical Testing	
	x. Residue Management Procedures	
	xi. Elevation Surveying	
	xii. Quality Assurance and Quality Control Measures	
6.	Review and Evaluation	
	i. Geology	
	ii. Groundwater and Elevations and Flow Direction	
	iii. Groundwater: Hydraulic Gradients	
	iv. Course Grained Soil Texture	
	v. Soil Field Screening	
	vi. Soil Quality	
	vii. Groundwater Quality	
	viii. Sediment Quality	
	ix. Quality Assurance and Quality Control Results	

LOPERS & ASSOCIATES

x. Phase Two Conceptual Site Model	32
Conclusions	. 36
i. Signatures	. 38
Limitations	. 39
References	. 40
Appendices	41
	 x. Phase Two Conceptual Site Model Conclusions i. Signatures Limitations References Appendices

List of Figures

Figure 1:	Key Plan
Figure 2:	Site Plan
Figure 3:	Groundwater Flow Interpretation
Figure 4a:	Petroleum Hydrocarbons Soil Exceedances
Figure 4b:	Metals & Inorganics Soil Exceedances
Figure 4c:	Polycyclic Aromatic Hydrocarbons Soil Exceedances

List of Tables

Table 1a: Soil Exceedances – Petroleum Hydrocarbons	2
Table 1b: Soil Exceedances – Metals	2
Table 1c: Soil Exceedances – Polycyclic Aromatic Hydrocarbons	2
Table 2: Monitoring Well Construction Details	23
Table 3: Groundwater Table Elevations Measured on November 24, 2024	23
Table 4: Soil Samples Selected for Laboratory Analysis	25
Table 5a: Soil Exceedances – Petroleum Hydrocarbons	
Table 5b: Soil Exceedances – Metals	
Table 5c: Soil Exceedances – Polycyclic Aromatic Hydrocarbons	
Table 6: Groundwater Samples Selected for Laboratory Analysis	
Table 7a: Soil Exceedances – Petroleum Hydrocarbons	
Table 7b: Soil Exceedances – Metals	
Table 7c: Soil Exceedances – Polycyclic Aromatic Hydrocarbons	
Table 8a: Soil Exceedances – Petroleum Hydrocarbons	
Table 8b: Soil Exceedances – Metals	
Table 8c: Soil Exceedances – Polycyclic Aromatic Hydrocarbons	
Table 9: Soil Analytical Results	Following Text
Table 10: mSPLP Analytical Results	Following Text
Table 11: Groundwater Analytical Results	Following Text

List of Appendices

Appendix A – Sampling and Analysis Plan	Appendix D – Certificates of Equipment
Appendix B – Underground Utility Locates	Calibration
Appendix C – Borehole Logs	Appendix E – Laboratory Certificates of Analysis
	Appendix F – Qualifications of Assessors

1. Executive Summary

Lopers & Associates (Lopers) was retained by Ottawa Community Housing Corporation ("OCH") to complete a Phase Two Environmental Site Assessment (Phase Two ESA) update of the vacant properties with Civic address Nos. 214, 216, 218, 220, 222 and 224 Somerset Street East, Ottawa, Ontario ("Phase Two Property", "Property" or "Site").

This Phase Two ESA is being completed as part of due diligence requirements associated with the submission of a Development Application to the City of Ottawa Municipal Planning Department. Additionally, this Phase Two ESA was prepared to provide preliminary excess soil characterization for off-Site soil management during construction.

Lopers has previously completed a Phase One Environmental Site Assessment (Phase One ESA) (Reference No. LOP23-025B, dated June 21, 2023) for OCH at the Property. The Phase One ESA identified the presence of one potentially contaminating activity (PCA) at the Property which were interpreted to represent areas of potential environmental concern (APECs). There was evidence of non-native fill material observed during the subsurface drilling and sampling, completed as part of the 2023 Limited Environmental Soil and Groundwater Assessment (LESGA) and geotechnical investigation. The presence of imported fill material is suspected at the Phase Two Property and is associated with O.Reg. 153/04 PCA: Importation of fill material of unknown quality, represents PCA #1 and has been interpreted as APEC #1 for the Phase Two Property.

The Contaminants of Potential Concern ("CPCs") associated with the historical fill materials are PHCs, BTEXs, polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. Volatile Organic Compounds were also included as a CPC for the 2024 sampling and analysis, following an initial groundwater detection of PCE in the groundwater sample from BH1-23 in April 2023.

Based on the date of original development of the Site buildings, it was suspected that heating oil storage tanks may have been present at the Phase Two Property, although no documentation was found to that effect in records reviewed for the Phase One ESA. If historically present, the expected fill locations would have been in similar locations to the recently removed natural gas meters. The CPCs associated with fuel storage are PHCs and BTEXs, which had already been included for assessment for APEC #1.

A Phase Two ESA was recommended to assess the soil and groundwater quality in the vicinity of the identified APECs.

The scope of work for the Phase Two ESA included drilling six (6) boreholes at the Phase Two Property; this drilling and sampling program was completed concurrently with a geotechnical investigation completed by others. Five of the boreholes were instrumented with groundwater monitoring wells with screens installed in the overburden.

Twelve soil samples, including two duplicate samples, were submitted for laboratory analysis for a combination of PHCs, BTEXs, volatile organic compounds (VOCs), PAHs, metals and inorganics. One sample was also submitted for modified Synthetic Precipitate Leaching Procedure (mSPLP) for leachate characterization purposes.

Groundwater sampling of the monitoring wells at the Phase Two Property was completed. A total of eight groundwater samples, including a duplicate sample and 2 trip blanks, were submitted for laboratory analysis for a combination of PHCs, BTEXs, VOCs, PAHs, metals and inorganics.

The applicable site standard was determined to be the full depth generic site condition standard, in a non-potable groundwater condition, with course textured soil, for residential property use, as specified in Table 3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

The following soil samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 1a, Table 1b and 1c below:

		Exceeding Parameter:	F2 PHCs (C10-C16)	F3 PHCs (C16-C34)	F4G PHCs (gravimetric)
Sample	MECP Table 3 Site Condition Standards		98 ug/g	300 ug/g	2800 ug/g
Location	Sample ID	Sample Depth	Repo	rted Concentration	ı (ug/g)
BH2-24	BH2-24-AU1	0.0-0.6 m BGS	- 590		3,500
BH3-24	H3-24 BH3-24-AU1 0.0-0.6 m BGS		100	310	-

Table 1a: Soil Exceedances – Petroleum Hydrocarbons

Table 1b: Soil Exceedances - Metals

		Exceeding Parameter:	Lead	Conductivity	Sodium Absorption Ratio	
Sample	MECP Table	3 Site Condition Standards	120 ug/g	0.7 uS/cm	5	
Location Sample ID Sample Depth		Reported Concentration (ug/g)				
BH1-24	BH1-24-AU1	0.0-0.6 m BGS	220	-	-	
	BH2-24-AU1	0.0-0.6 m BGS	200	2.8	15	
BH2-24	BH2-24-SS3	1.5-2.1 m BGS	-	5.4	-	
	DUP2-10/29	Duplicate Sample of BH2-24- SS3	-	5.6	-	
BH3-24	BH3-24-SS3 1.5-2.1 m BGS		-	6.1	-	
BH4-24	24 BH4-24-AU1 0.0-0.6 m BGS		-	19	43	

Exceeding Parameter:			Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b/j) fluoranthene	Benzo(k) fluoranthene	Dibenzo(a,h) anthracene	Fluoranthene	Indeno(1,2,3-cd) pyrene
Sample	MECP Table 3 Site Condition Standards		0.15 ug/g	0.67 ug/g	0.5 ug/g	0.3 ug/g	0.78 ug/g	0.78 ug/g	0.1 ug/g	0.69 ug/g	0.38 ug/g
Location	Sample ID	Sample Depth	Reported Concentration (ug/g)								
BH1-23	BH1-23-SS1	0.1-0.6 m BGS	-	-	0.56	0.56	-	-	0.12	1.37	-
BH1-24	BH1-24-SS1	0.0-0.6 m BGS	-	-	0.72	0.65	0.81	-	-	1.7	0.48
BH2-24	BH2-24-AU1	0.0-0.6 m BGS	0.18	1.3	3.3	3.2	3.9	1.6	0.59	8.1	2.2
BH3-24	BH3-24-AU1	0.0-0.6 m BGS	-	-	-	-	-	-	-	0.74	-

 Table 1c: Soil Exceedances – Polycyclic Aromatic Hydrocarbons

BGS : Below ground surface

All of the other soil results for the Phase Two Property are in compliance with the applicable Site Condition Standards.

The following groundwater sample (and its duplicate) results were in exceedance of the site condition standards:

 BH2-24-GW1 and DUP-11/13, collected from a screen depth of approximately 3.1-6.1 m BGS, had chloride measurements of 2,900 ug/L in both samples, compared to the site condition standard of 2,300 ug/L.

This groundwater sample was collected in a location that would have been subject to road deicing activities with the application of salts applied to ground surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both and is suspected to exceed the site condition standard solely as a result of these activities. Based on this application and the exemption set forth in Section 49.1 of O.Reg. 153/04, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act. Based on additional groundwater analysis in other locations at the Phase Two Property, the presence of elevated chloride appears to be isolated into localized area(s) and is not considered to have migrated or impacted the Phase Two Property groundwater quality. All of the other groundwater samples collected as part of the 2023 LESGA and the current 2024 Phase Two ESA were in compliance with the Site Condition Standards.

The Phase Two Property (soil) is not in compliance with the site condition standards as of the certification date of November 24, 2024.

An environmental remediation program, including the bulk removal and off-site disposal of soil in excess of the site condition standards, is recommended for the Phase Two Property. The submission of a record of site condition will not be required since there will not be a change of land use of the Phase Two Property to a more sensitive use.

Given the scope and timeline for the proposed redevelopment and the requirements for specialized construction techniques to complete remediation of the Phase Two Property to meet the site condition standards, it is recommended that remediation be completed in conjunction with redevelopment of the Property. It should be noted that the proposed redevelopment includes excavation of approximately 1 to 3 m of surficial materials, which is expected to remove the impacted soil at the Phase Two Property.

Preparation of a soil management plan in accordance with O.Reg. 406/19 will be required as part of management of excess soil generated as part of construction activities.

2. Introduction

Lopers & Associates (Lopers) was retained by Ottawa Community Housing Corporation (OCH) to complete a Phase Two Environmental Site Assessment (Phase Two ESA) of the residential property with civic address Nos. 214, 216, 218, 220, 222 and 224 Somerset Street East, Ottawa, Ontario ("Phase Two Property", "Property" or "Site"). The location of the Phase Two Property within the City of Ottawa is presented on Figure 1: Key Plan.

i. Site Description

The Phase Two Property is legally described as Lot 24 and Part of Lot 25 (West Nelson Street) on Registered Plan 45224 in the City of Ottawa and has property identifier numbers of 04059-0120, 04205-0024 as obtained from the topographical plan of survey by Farley Smith & Denis Surveying Ltd. dated January 16, 2023. The boundaries of the Phase Two Property are presented on Figure 2: Site Plan.

Based on approximate dimensions obtained from the City of Ottawa's GIS mapping software, the Phase Two Property has an approximate area of 536 m² (0.05 Hectares) and a zoning designation of R4U C(480), which signifies a 4th density residential use zone. The Phase Two Property is located on the south side of Somerset Street East, immediately west of the Nelson Street intersection.

ii. Property Ownership

The Phase Two Property is currently owned by Ottawa Community Housing Corporation. This Phase Two ESA was commissioned by Mr. Barron Meyerhoffer, Director of Development for OCH. Ottawa Community Housing Corporation has a business address of 39 Auriga Drive, Ottawa, Ontario, K2E 7Y8 and a business telephone number of 613-731-1182.

Current and Proposed Future Use

The Phase Two Property has been vacant for several years and was historically developed and occupied for residential use. It is Lopers' understanding that OCH intends to redevelop the Phase Two Property for multi-tenant residential purposes, including the current concept for construction of one building approximately four storeys in height, with partial subgrade floors and/or utility rooms. It is understood that the buildings which currently occupy the Property will be demolished prior to redevelopment.

As redevelopment of the Phase Two Property will not involve a change in land use to a more stringent use, a record of site condition (RSC) will not be required to be filed with the Ministry of Environment, Conservation and Parks (MECP) for the Phase Two Property.

iii. Applicable Site Condition Standard

Through Ontario Regulation 153/04 (O.Reg. 153/04), the Ministry of Environment, Conservation and Parks (MECP) prescribes the conditions to determine the applicable site condition standard for a property.

The proposed future use of the Phase Two Property is for residential use.

The Phase Two Property and all other properties within 250 m of the property boundaries are supplied by the municipal drinking water system. There is no known agricultural use and there are no wells within 250 m of the property boundaries that are intended for use as a source of water for human consumption or agriculture. As such, the designation of non-potable groundwater setting is determined to be applicable [O.Reg. 153/04, section 35].

The soil and groundwater quality over the full depth of overburden was considered for this Phase Two ESA. The full depth generic site condition standards were selected for comparison for the Phase Two Property [O.Reg. 153/04, sections 36, 37, 38, 39 and 40].

The Phase Two Property is not situated within or adjacent to an area of natural significance and does not include any land within 30 m of an area of natural significance. The pH of the soil was analyzed as part of this Phase Two ESA and was found to range from 6.95 to 7.78. As such, the Phase Two Property is not considered to be an environmentally sensitive area [O.Reg. 153/04, section 41].

A layer of silty sand and gravel was encountered from near ground surface to 1.8 m below ground surface (BGS) and a layer of native glacial till, consisting of silty sand and gravel, cobbles and boulders was present above the bedrock, with an approximate thickness of 1.5 m. Both of these soil types would be classified as coarse grained soil with a total thickness of approximately 3.3 m. Silty clay was encountered between the shallow silty sand and gravel and the native glacial till; the silty clay would be classified as a fine grained soil, as reported through grain size analysis in the 2023 Paterson Geotechnical Investigation and had an approximate thickness of 5.1 m. It is interpreted that greater than 1/3 of the Property has coarse grained soil. For the purposes of this Phase Two ESA, the soil conditions are considered to be coarse grained, which provides a more conservative comparison to the MECP site condition standards than the fine-grained values [O.Reg. 153/04, section 42].

Review of the drilling program and borehole/monitoring well logs completed as part of this Phase Two ESA and previous investigations was completed. It was determined that over 2/3 of the Property has greater than 2 m of overburden soil. The Property is therefore not considered a shallow soil property [O.Reg. 153/04, section 43.1].

The Phase Two Property does not include and does not have any land located within 30 m of a water body. The MECP site condition standards for use within 30 m of a water body do not apply [O.Reg. 153/04, section 43.1].

The full depth generic site condition standards, with non-potable groundwater, course textured soil, for residential/parkland/institutional property use, as specified in Table 3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011 were determined to be the applicable site condition standards for the Property as part of this Phase Two ESA.

i. Physical Setting

The *Phase One Study Area* referred to in this section and the next section includes the Phase Two Property itself and properties with their boundaries within 250 m of the Phase Two Property limits.

No water bodies or areas of natural and scientific interest (ANSIs) were identified on the Phase Two Property or the Phase One Study Area.

The regional topography in the Phase One Study Area is undulating but generally slopes downward to the southeast, toward the Rideau River. The topography on the Phase Two Property slopes downward from northwest to southeast, with an approximate grade differential of 3 m across the Site. The Rideau River is located approximately 700 m east-northeast of the Phase Two Property, while the Rideau Canal is present approximately 400 m southwest.

Surface water flow is dominated by infiltration with some localized drainage directed towards catch basins in adjacent municipal rights-of-way to the north and east of the Property, which drain into the municipal stormwater sewer system.

No drinking water wells are located at the Phase Two Property. Three domestic water wells identified in the Phase One ESA were drilled in the 1950's, and since the Phase Two Study Area is now serviced by municipally treated drinking water it is not expected that any operational potable water supply wells remain in the Study Area. The Phase Two Property and Phase One Study Area are not located in the vicinity of any well-head protection areas or other designation identified by the City of Ottawa in its official plan for the protection of ground water. No private or agricultural water supply wells are located within the Study Area.

ii. Past Investigations

OCH provided the following four reports for review as part of this Phase One ESA:

 "Phase One Environmental Site Assessment, Proposed Residential Re-Development, 214-224 Somerset Street East, Ottawa, Ontario", dated June 21, 2023, completed by Lopers & Associates for OCH. ("2023 Lopers Phase One Environmental Site Assessment")

- "Limited Environmental Soil & Groundwater Assessment, Proposed Residential Re-Development, 214-224 Somerset Street East, Ottawa, ON", dated June 21, 2023, completed by Lopers & Associates for OCH. ("2023 Lopers Limited Environmental Soil & Groundwater Assessment")
- "Geotechnical Investigation, Proposed Residential Development, 214 Somerset Street East, Ottawa, Ontario", dated May 2, 2023, completed by Paterson Group Inc. for OCH. ("2023 Paterson Geotechnical Investigation")
- "Project Specific Designated Substance Report, 214-224 Somerset Street, Ottawa, ON", dated October 27, 2016, completed by CM3 Environmental Inc. for Read Jones Christofferson Ltd. ("2016 DSR Investigation")
- 5. "Designated Substance Survey, 214-224 Somerset Street East, Ottawa, ON", dated January 30, 2023, completed by Lopers & Associates for OCH ("2023 DSS Investigation")

2023 Lopers Phase One ESA

A Phase One ESA report was prepared for the Property in 2023: "Phase One Environmental Site Assessment, 214-224 Somerset Street East, Ottawa, Ontario" dated June 21, 2023 prepared for Ottawa Community Housing Corporation by Lopers & Associates. The Phase One ESA identified one potentially contaminating activity (PCA) at the Phase One Property:

There was evidence of non-native fill material observed during the subsurface drilling and sampling, completed as part of a concurrent Limited Environmental Soil & Groundwater Assessment and geotechnical investigation. The presence of imported fill material is suspected at the Phase One Property and is associated with O.Reg. 153/04 PCA: Importation of fill material of unknown quality, which represents PCA #1 and was interpreted as APEC #1 for the Phase One Property. This PCA #1 has resulted in soil with contaminant concentrations in excess of the MECP Table 3 Standards at the Site, as demonstrated in the LESGA (discussed further below).

Based on the location and orientation of the 15 PCAs identified at neighbouring properties in the Phase One Study Area, they were not considered to represent APECs for the Phase One Property.

It was noted that a detectable concentration of tetrachloroethylene (PCE) was reported in the groundwater monitoring well installed as part of the LESGA; future groundwater sampling and analysis completed as part of the Phase Two ESA are recommended to include VOCs.

2023 Lopers Limited Environmental Soil & Groundwater Assessment (LESGA)

Lopers completed a Limited Environmental Soil & Groundwater Assessment (LESGA) in conjunction with this Phase One ESA and the 2023 Paterson Geotechnical Investigation. The objectives of the LEGSA were to collect soil samples and groundwater for laboratory analysis from locations in the geotechnical boreholes/monitoring wells.

• It should be noted that the intended field program for the LESGA and concurrent geotechnical field investigation included 2 additional boreholes/monitoring wells, however,

due to Site access restrictions, the field investigation was limited to a single borehole/monitoring (BH1-23) near the southeast Property limits (see Figure 2).

The borehole (BH1-23) was drilled to an approximate depth of 8.4 meters below ground surface (m BGS). A groundwater monitoring well was installed in BH1-23, with its screened interval approximately 2.3 to 5.3 m BGS, intended to straddle the groundwater table.

Laboratory Analysis consisted of the following:

- 1 surficial soil sample analyzed for Petroleum Hydrocarbons (PHCs) and Benzene, Toluene, Ethylbenzene and Xylenes (BTEXs), Polycyclic Aromatic Hydrocarbons (PAHs) and Metals; and,
- 1 groundwater sample, collected near the center of the measured static water column. The groundwater sample was submitted for analysis of PHCs, VOCs including BTEXs, PAHs and Metals.

The soil sample of the fill material from BH1-23 was analyzed for PHCs, BTEXs, PAHs and metals, which are the contaminants of potential concern (CPCs) most commonly associated with fill material. The soil sample had reported concentrations of various PAHs in excess of their Site Condition Standards, as follows:

- Benzo(a)anthracene 0.56 ug/g vs. 0.36 ug/g;
- Benzo(a)pyrene 0.56 ug/g vs. 0.30 ug/g; and,
- Fluoranthene 1.37 ug/g vs. 0.69 ug/g.

All other soil parameters were in compliance with the MECP Table 3 residential land use standards. It was noted that the soil sample analyzed of the fill material from BH1-23 had a concentration of the F4 range of PHCs and various additional PAHs (to those noted above), in excess of the MECP Table 1 Background standards.

The groundwater sample from BH1-23 was analyzed for PHCs, VOCs, PAHs, metals and inorganics which are the contaminants of potential concern (CPCs) most commonly associated with identified PCAs at neighbouring properties during the Phase One ESA historical research. The groundwater sample had all CPCs reported in compliance with the MECP Table 3 Site Condition Standards. It was noted that the tetrachloroethylene (PCE) was detected in the monitoring well (BH1-23), at a concentration of 0.8 ug/L compared to its Site Condition Standard of 1.6 ug/L. PCE was therefore present but at a concentration of half of the Site Condition Standard.

Given that PCA #1 was identified (Importation of Fill Material of Unknown Quality), which was interpreted as an APEC #1 for the Site, and this PCA #1 has resulted in soil in excess of the MECP Table 3 Standards at the Site, as demonstrated in the LESGA, a Phase Two ESA in accordance with O.Reg. 153/04 was recommended for the Site.

2023 Paterson Geotechnical Investigation

A Geotechnical Investigation report was prepared by Paterson in 2023. Lopers supervised the fieldwork for the Geotechnical drilling investigation in April of 2023. One borehole was drilled to a depth of approximately 8.4 m below ground surface (BGS). Soil conditions were generally found to consist of a thin layer of asphalt over silty sand and gravel fill (0.6 m BGS), followed by silty sand and gravel with clay to approximately 1.8 m BGS. Silty clay was encountered from approximately 1.8 to 6.9 m BGS, the clay was underlain by approximately 1.5 m of sand and gravel glacial till, followed by inferred bedrock at approximately 8.4 m BGS.

2016 DSR Investigation and 2023 DSS Investigation

The Site was occupied by three vacant three-Storey residential buildings with partial basement levels at the time of the 2016 DSR & 2023 DSS. Each of the three buildings at the Site had an approximate footprint area of 1,320 m². Based on these reports, the Site buildings were identified to have been constructed in 1902 and had been used as residential rooming housing since that time. No PCAs were identified during completion of the 2016 DSR & 2023 DSS.

There were no discrepancies identified in review of documentation, information or data from previous investigations. As such, previous investigations are considered to be of adequate quality such that they can be relied upon for the purposes of this Phase Two ESA.

4. Scope of Investigation

i. Overview of Site Investigation

This Phase Two ESA was designed to meet the general requirements of O.Reg. 153/04 as amended, with details of scope presented in Lopers' letters entitled:

- "Proposal for Phase One Environmental Site Assessment & Coordination and Field Supervision of Drilling Program, Proposed Residential Re-Development, 214-224 Somerset Street East, Ottawa, ON,", dated March 7, 2023, reference No. reference No. PRO-025B-23-OCH.
- "Proposal for Phase Two Environmental Site Assessment & Supplemental Soil Sampling and Analysis for Future Soil Management Considerations, Proposed Residential Re-Development, 214-224 Somerset Street East, Ottawa, ON", dated October 3, 2024, reference No. PRO-024C-24-OCH.

The scope of work for investigation was discussed with OCH and a sampling and analysis plan (SAP) was prepared to achieve the objectives of the Phase Two ESA; the SAP is provided in Appendix A.

Underground utility locates were completed through Ontario 1-Call to identify any active public services on the Phase Two Property. The only active underground utility services identified at the Property were water and sewer connections present in underground trenches running north towards Somerset Street East and a fiber optic cable in the northeast corner of the Property. Copies of the underground locates are provided in Appendix B. Natural gas meters had been removed with the natural gas lines capped; these connections were present on the north side of the Site buildings.

On March 30, 2023, one borehole (BH1-23) was drilled at the Phase Two Property. Five additional boreholes (BH1-24, BH2-24, BH3s-24, BH3d-24 and BH4-24) were drilled at the Phase Two Property on October 28 and 29, 2024. The boreholes were drilled using a rubber track mounted CME 55 drill rig operated by George Downing Estate Drilling. Soil samples were collected using stainless steel split spoons. Soil samples recovered during the sampling program were screened in the field for volatile vapour concentrations, as well as visual and olfactory observations. Representative and 'worst case' samples were selected and containerized for laboratory analysis.

A total of five groundwater monitoring wells (BH1-23, BH1-24, BH2-24, BH3s-24, BH3d-24) were installed on the southeast, southwest, north-central and northeast portions of the Phase Two Property. The boreholes which were instrumented with groundwater monitoring wells were drilled to the localized depths ranging from 6.1 to 9.1 m BGS and were screened with the intent to straddle the shallow groundwater table. When possible, these groundwater monitoring wells were developed on the day of drilling by removing at least three well volumes or by purging the wells dry three times.

The locations of the boreholes/monitoring wells drilled/installed as part of this Phase Two ESA as well as existing monitoring wells at the Phase Two Property are presented on Figure 2: Site Plan. The rationale for the placement of the boreholes/monitoring wells is provided below:

BH1-23 was drilled in the laneway on the southeast portion of the Phase Two Property. This borehole was placed in a location to assess fill quality at the Site (APEC #1) and for geotechnical assessment purposes. This borehole was instrumented with a groundwater monitoring well, with its screen installed within soil which was observed to be wet during the drilling/soil sample collection in an attempt to straddle the shallow groundwater table.

BH1-24 was drilled in landscaped area in the southwest portion of the Phase Two Property. This borehole was placed in a location to assess fill quality at the Site (APEC #1) and for geotechnical assessment purposes. This borehole was instrumented with a groundwater monitoring well, with its screen installed within soil which was observed to be wet during the drilling/soil sample collection.

BH2-24 was drilled in the north-central portion of the Phase Two Property, near the former natural gas connection to 218 Somerset Street East. This borehole was placed in a location to assess fill quality at the Site (APEC #1) and for geotechnical assessment purposes. This borehole

location would also have been suitable for an assessment of historical heating oil storage/filling, assuming that the Site buildings were possibly historically heated using furnace oil.

BH3s-24 was drilled in the northeast portion of the Phase Two Property, near the former natural gas connection to 222 Somerset Street East. This borehole was placed in a location to assess fill quality at the Site (APEC #1) and for geotechnical assessment purposes. This borehole location would also have been suitable for an assessment of historical heating oil storage/filling, assuming that the Site buildings were possibly historically heated using furnace oil.

BH3d-24 was drilled in immediately adjacent to BH3s-24 in the northeast portion of the Phase Two Property. This borehole was instrumented with a deeper monitoring well for geotechnical and hydrogeological assessment purposes.

BH4-24 was hand dug with a stainless-steel shovel in the northwest portion of the Phase Two Property. This borehole was placed in a location to assess fill quality at the Site (APEC #1).

Soil samples were selected for laboratory analysis of the contaminants of potential concern (CPCs) based on APECs and CPCs identified in the Phase One ESA, as described in Section 3.ii. above as well as field screening observations.

An initial groundwater monitoring and sampling event of the groundwater monitoring well BH1-23 was completed at the Phase Two Property on April 6, 2023. Two additional groundwater monitoring and sampling events were completed on November 13, 2024 and November 24, 2024, for the monitoring well (BH1-23, BH1-24, BH2-24 and BH3d-24) installed as part of this Phase Two ESA; BH3s-24 was found to be dry until at least four weeks following installation.

Static groundwater levels were measured 14 days after installation, prior to disturbance of the water column. During purging, water quality parameters were measured at regular intervals to monitor groundwater quality stabilization; once groundwater quality parameters stabilized (were within approximately 10% on successive readings), groundwater samples were collected. Groundwater samples were selected for laboratory analysis of select CPCs based on APECs and CPCs identified in the Phase One ESA.

An elevation survey was completed of the boreholes/monitoring wells drilled at the Phase Two Property by Paterson Group. The boreholes/monitoring wells were surveyed relative to geodetic elevations. Ground surface elevations were surveyed between 60.0 m above sea level (m ASL) in the southeast portion of the Property to 65.2 m ASL in the northwest portion of the Property.

ii. Media Investigation

Based on the finding of the Phase One ESA, the following media were investigated:

Soil quality at the Phase Two Property was investigated through the collection of soil samples at varying depths facilitated by drilling using a track mounted CME drill rig with stainless-steel split spoon sampling.

Groundwater quality at the Phase Two Property was investigated through the installation of five monitoring wells. The monitoring wells were installed to the localized depths ranging from approximately 4.6 and 9.0 m BGS and were screened to straddle the shallow groundwater table. The monitoring wells of interest at the Phase Two Property have their monitoring well screens installed within weathered overburden and are expected to straddle the shallow groundwater aquifer. The wells were sampled via low-flow procedures using a peristaltic pump.

There were no natural surface water bodies at the Phase Two Property, and as such no sediment sampling was completed as part of the Phase Two ESA.

iii. Phase One Conceptual Site Model

The Phase One Property, which has the same location orientation and property boundaries as the Phase Two Property, is located at Civic Nos. Nos. 214, 216, 218, 220, 222 and 224 Somerset Street East, Ottawa, Ontario and has an approximate area of 536 m² (0.05 Hectares).

The Phase One Property was undeveloped prior to 1914 when construction of the present-day residential buildings was completed on the north portion of the Phase One Property. The remaining undeveloped area on the south portion of the Phase One Property is landscaped/vegetated. An asphalt pedestrian pathway is present to the south of the Site building, which is a shared easement with the neighbouring property to the south.

The Property is used for residential purposes (although currently uninhabited) and is zoned for residential use. The Phase One Property was transferred to Ottawa Community Housing Corporation (OCH) in 2004. It is understood that the intended future use is for residential purposes. The Phase One Property is immediately surrounded by residential properties to the south and west, by Nelson Street followed by Community/Parkland to the east and by Somerset Street East followed by residential properties to the north.

The Phase One Study Area includes the Phase One Property and extends to properties with boundaries within 250 m of the Phase One Property limits. Based on a review of the Phase One Property and properties in the Phase One Study Area, their associated historical and/or current uses and operations and physical characteristics of the Phase One Study Area, it was determined that an assessment of properties within 250 m of the Phase One property was sufficient to meet the objectives of the scope of this investigation for a Phase One ESA.

No water bodies or areas of natural significance are located at the Phase One Property or in the Phase One Study Area. No drinking water wells are located at the Phase One Property and the Phase One Study Area is serviced by municipally treated non-potable water.

The regional topography in the Phase One Study Area is undulating but generally slopes downward to the southeast, toward the Rideau River. The topography on the Phase One Property slopes downward from northwest to southeast, with an approximate grade differential of 3 m across the Site. The Rideau River is located approximately 700 m east-northeast of the Phase One Property, while the Rideau Canal is present approximately 400 m southwest. Based on the historical research and a concurrent geotechnical drilling investigation, general stratigraphy of the Phase One Property and Phase One Study Area consists of sand and gravel fill, followed by silty clay, which was underlain by silty sand and gravel (Glacial Till). The overburden soil is underlain by shale bedrock at depths ranging from 8 to 15 m BGS. Groundwater is expected at a depth of approximately 2 to 4 m BGS and flow in a predominantly east-southeast direction; however, local groundwater flow is expected to be influenced by local and regional topography.

There was evidence of non-native fill material observed during the subsurface drilling and sampling, completed as part of a concurrent Limited Environmental Soil & Groundwater Assessment and geotechnical investigation. The presence of imported fill material is suspected at the Phase One Property and is associated with O.Reg. 153/04 PCA: Importation of fill material of unknown quality, which represents PCA #1 and has been interpreted as APEC #1 for the Phase One Property. This PCA #1 has resulted in soil with contaminant concentrations in excess of the MECP Table 3 Standards at the Site, as demonstrated in the 2023 Lopers LESGA.

The Contaminants of Potential Concern ("CPCs") associated with the historical fill materials are PHCs, BTEXs, polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. Volatile Organic Compounds were included as a CPC for the 2024 sampling and analysis, following an initial groundwater detection of PCE in the groundwater sample from BH1-23 in April 2023.

Based on the location and orientation of the 15 PCAs identified at neighbouring properties in the Phase One Study Area, they are not considered to represent APECs for the Phase One Property.

Underground utility service trenches are present at the Phase One Property. The existing underground utility corridors have the potential to affect contaminant distribution and transport at the Phase One Property.

iv. Deviations from Sampling and Analysis Plan

Borehole/Monitoring well locations were limited on the north (Somerset Street East) portion of the Phase Two Property; obstructions included overhead electricity connections, overhead entry canopies and municipal water connections and/or natural gas service shut-offs. BH4-24 could not be drilled in the northwest corner of the Phase Two Property as initially proposed; instead, a shallow borehole was hand dug with a stainless-steel shovel to 0.6 m BGS to recover representative shallow fill samples.

The monitoring well installed in BH3s-24 was intended to straddle the shallow groundwater table, however, this monitoring well was repeatedly monitored to be dry. A deeper groundwater monitoring well, BH3d-24, was installed immediately adjacent to BH3s-24, which was sampled for an assessment of groundwater quality in the absence of groundwater in BH3s-24. A return Site visit was conducted for sampling of BH3d-24 on November 24, 2024, while the other groundwater monitoring wells were sampled on November 13, 2024.

There were no other deviations to the Sampling and Analysis Plan (SAP) as part of this Phase Two ESA.

v. Impediments

As noted above, overhead electricity connections and underground service shut-offs restricted investigation locations, however, it was determined that the overall objectives of the Phase Two ESA and Excess Soil Characterization were completed. There were no substantial impediments encountered as part of this Phase Two ESA.

5. Investigation Method

i. General

The investigation method for this Phase Two ESA involved an assessment of the soil and/or groundwater quality for the associated CPCs in the vicinity of the APECs identified during the Phase One ESA.

Soil was investigated at the Phase Two Property by drilling boreholes at the Site. The boreholes were drilled using a track mounted CME 55 drill rig operated by George Downing Estate Drilling. Soil samples were collected using stainless steel split spoons. Soil samples recovered during the sampling program were screened in the field for volatile vapour concentrations, as well as visual and olfactory observations. Representative and 'worst case' samples were selected and containerized for laboratory analysis for the CPCs.

Groundwater was assessed using the four groundwater monitoring wells which were installed as part of this Phase Two ESA and concurrent geotechnical investigation. The wells were developed following installation. Static groundwater levels were measured in the monitoring wells prior to disturbance of the water column on the day of sampling. Groundwater samples were collected with a peristaltic pump using low-flow procedures and were submitted for laboratory analysis for the CPCs.

An elevation survey was completed of the boreholes/monitoring wells drilled as part of the Phase Two Property. An elevation survey was completed of the boreholes/monitoring wells drilled at the Phase Two Property by Paterson Group. The boreholes/monitoring wells were surveyed relative to geodetic elevations.

The following sections provide further detailed information regarding the investigation methodology completed as part of the Phase Two ESA.

ii. Drilling

The 2023 LESGA drilling field program was completed on March 30, 2023 under the direction of Mr. Luke Lopers, P.Eng. The 2024 drilling field program was completed on October 28 and 29,

2024 under the direction of Paterson Group and full-time supervision by Lopers. Six boreholes were drilled for the Phase Two ESA and/or for the concurrent Paterson Group Geotechnical Investigation by the drilling subcontractor George Downing Estate Drilling, located at 410 Principale Rue, Grenville-Sur-la-Rouge, Quebec, JOV 1B0. The drill rig used for the Phase Two ESA was a track mounted CME 55 drill, equipped with hollow stem augers and stainless-steel split spoons.

Samples were collected using stainless-steel split spoons from the near surface to the full depth of drilling. Split spoon samples, collected in 0.6 m segments, were recovered at continuous 0.76 m intervals; the additional 0.16 m between split spoon samples was over-drilled to provide undisturbed field measurement of geotechnical parameters (blow counts, shear vanes) and to prevent cave in materials from stratigraphic units above the intended sampling intervals from being collected at unrepresentative depths during sampling.

The split spoons, which were the only media to come into contact with the soil samples, were washed using soap and water and a scrub brush between samples to minimize the potential for cross-contamination among samples. The field technician used sterile nitrile gloves, which were changed prior to the handling of each soil sample to further reduce the potential of cross-contamination. The flights of the hollow stem augers were cleaned manually following each borehole.

iii. Soil Sampling

As described above, soil samples were recovered using stainless steel split spoons.

Soil samples were initially collected in Ziploc bags for initial screening as part of sample selection. Soil samples selected for laboratory analysis were collected in dedicated clear glass jars prepared and provided by the analytical laboratory. Soil samples collected for BTEXs/VOCs and the F1 range of PHCs analysis were collected using a dedicated graduated syringe provided by the laboratory and placed directly into a glass vial with a known quantity of methanol preservative. Analytes and associated preservatives were specified on each jar/vial by the laboratory. Each jar/vial sample set was provided with a unique sample identifier, project number and date of sampling in the field.

Detailed soil descriptions of the stratigraphy for each borehole/monitoring are included on the borehole logs provided in Appendix C.

Based on the observations of soil samples collected during the Phase Two ESA and LESGA field programs, there were five stratigraphic units identified at the Phase Two Property, which include:

- Asphalt
- Silty Sand & Gravel (Fill)
- Silty Clay and Sand (Backfill in certain locations)
- Sand with Gravel (Glacial Till)

LOPERS & ASSOCIATES

Detailed geological and physical descriptions of these stratigraphic units are provided in Section 6.i Geology of this report.

iv. Field Screening Measurements

Initial field screening of the soil samples consisted of visual and olfactory observations made at the time of sample collection during the drilling program.

Additional field screening of the soil samples was completed using an RKI Instruments Model Eagle-2 combustible gas detector ("RKI Eagle"). The RKI Eagles used for soil sample screening as part of this Phase Two ESA were obtained from Maxim Environmental and Safety Inc. and calibrated by Maxim on March 27, 2023 and October 24, 2024. The RKI Eagle is capable of measuring combustible vapours at concentrations ranging from 0 parts per million (PPM) to 50% of the lower explosive limit (LEL). The RKI Eagle is also capable of measuring VOC vapours at concentrations ranging from 0 ppm. The readings of the RKI Eagle are shown on the Test Pit and Borehole Logs in Appendix C. Additional equipment and calibration information for the RKI Eagle is provided on the certificate of calibration included in Appendix D.

Where soil samples were selected in a borehole within an APEC and the SAP identified proposed soil analysis in that borehole, the field screening was used as follows to select the appropriate sample for laboratory analysis.

- 1. Select sample with evidence of visual and/or olfactory indications of suspected contamination, such as staining, PHC odours or deleterious fill material.
- 2. Select sample with most significant elevated soil vapour concentration.
- 3. Select sample based on stratigraphy and/or moisture content, as certain CPCs are generally expected to be found in these defined conditions (i.e. fill material at shallow depths or PHC impacts near the groundwater table interface).
- v. Groundwater: Monitoring Well Installation

Installation of monitoring wells in BH1-23, BH1-24, BH2-24, BH3s-24 and BH3d-24 were completed by George Downing Estate Drilling. The wells were installed using slotted PVC No. 10 monitoring well screens, which were 32 or 51 mm in inside diameter; these screens were installed at depths intended to straddle the shallow groundwater table in each of the aforementioned boreholes. Well screens were either 1.5 or 3.0 m in length in the monitoring wells installed as part of this Phase Two ESA. The monitoring wells were extended to approximately 1 m above (BH1-24) or 0.15 m below (BH1-23, BH2-24, BH3s-24 and BH3d-24) the surface grade with PVC riser, also 32 or 51 mm in diameter. A threaded PVC end cap was installed at the base of the screen to prevent sediment infiltration, while a J-Plug was installed at the top of the riser.

The annular space in each monitoring well was backfilled with clean silica sand up to approximately 0.3 m above the monitoring well screens. A layer of bentonite chips was then used to make a hydraulic seal above the sand pack to near the ground surface. The monitoring

wells were completed with steel stickup protective casings, which were backfilled with sand to stabilize the casings. Below grade installations were completed with protective flushmount casings, while above grade installations were completed with protective steel stickup boxes.

Development of each of the monitoring wells was completed using dedicated Waterra low density polyethylene (LDPE) tubing and a Waterra footvalve. The monitoring wells were developed on March 30, 2024 and October 29, 2024 by purging the wells dry at least three times. The wells were left to stabilize for up to 14 days prior to groundwater sampling.

vi. Groundwater: Field Measurement of Water Quality Parameters

Measurements of the groundwater quality field parameters were completed to determine stabilization of these parameters prior to sampling. These measurements were completed using a Horiba U-52 groundwater quality measurement device ("Horiba") or YSI Pro Plus Quatro groundwater quality measurement device ("YSI"). The Horiba/YSI used for groundwater quality parameter stabilization measurements as part of this Phase Two ESA was obtained from Maxim Environmental and Safety Inc. and were calibrated on April 4, 2023 and November 12, 2024. The Horiba/YSI is capable of measuring temperature, pH, conductivity, turbidity, dissolved oxygen and oxidation reduction potential. Additional equipment and calibration information for the Horiba/YSI are provided on the certificate of calibration included in Appendix D.

Field measurement of water quality parameters were collected at regular intervals (0 L, 0.5 well volumes, 1 well volume, 2 well volumes, etc.) during purging of the monitoring wells prior to sampling. The Horiba/YSI was placed in a flow-through cell and water quality parameters were measured until they were found to stabilize to within approximately 10% of the previous measurements prior to sample collection.

vii. Groundwater: Sampling

An initial groundwater sampling event of the groundwater monitoring well BH1-23 was completed on April 6, 2023 as part of the 2023 LESGA. Lopers completed a groundwater sampling event of 3 groundwater monitoring wells (BH1-23, BH1-24, BH2-24) on November 13, 2024; at that time BH3s-24 was found to be dry and BH3d-24 could not be accessed. Lopers completed a return monitoring event of all monitoring wells for groundwater elevations and sampling of BH3d-24 on November 24, 2024.

All of these monitoring wells have their screens set in the overburden and were installed with the intention of straddling the shallow aquifer.

Stabilized groundwater levels were measured in each of the groundwater monitoring wells prior to disturbance of the water column prior to sampling. The dedicated Waterra LDPE tubing and footvalve was removed from each of the monitoring wells and 6 m Waterra LDPE tubing was placed in each of the monitoring wells. The LDPE tubing was connected to a dedicated length of silicon tubing, run through a peristaltic pump set to low flow (approximately 0.2-0.5 L/minute) during purging and sampling while monitoring groundwater level to minimize the drop in head.

The monitoring wells were purged on the day of sampling while water quality parameters were measured as noted above.

Groundwater samples were collected in dedicated amber glass bottles and vials or plastic bottles prepared and provided by the analytical laboratory. Analytes and associated preservatives were specified on each bottle by the laboratory. Each bottle sample set was provided with a unique sample identifier, project number and date of sampling in the field. Samples for PHCs, BTEXs, VOCs, PAHs and general chemistry were unfiltered, while metals samples were field filtered using a dedicated 0.45 µm Waterra filter for each sample.

The field technician changed dedicated sterile nitrile gloves prior to initiating the sampling operation at each monitoring well to minimize the potential for cross-contamination.

viii. Sediment: Sampling

There were no natural surface water bodies at the Phase Two Property, and as such no sediment sampling was completed as part of the Phase Two ESA.

ix. Analytical Testing

Soil and groundwater analytical testing was conducted by Paracel Laboratories Ltd. (Paracel) and Bureau Veritas (BV Labs). Paracel and BV Labs are accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) and the National Institute of Standards and Technology (NIST), Standard Services Division, National Voluntary Laboratory Accreditation Program (NVLAP) for specific environmental and IAQ tests listed in the Scopes of Accreditation registered with each association. For the scope of accreditation under CALA Membership Number 1262, Paracel and BV Labs are accredited for analysis including, but not limited to: metals, organics, conventionals, bacteria, mold, and asbestos in various matrices.

x. Residue Management Procedures

No excess soil cuttings were generated as part of the drilling program.

Groundwater from well development and purging was initially placed in a graduated plastic bucket for observations and volume measurements and then was transferred to a dedicated 205 L drum, which was stored in the southwest portion of the Property. This drum was marked with a wax crayon indicating the origin location(s) of the water containerized within.

Fluids from equipment cleaning and decontamination were containerized within the purge water drum.

xi. Elevation Surveying

An elevation survey was completed of the boreholes/monitoring wells drilled as part of the Phase Two Property. An elevation survey was completed of the boreholes/monitoring wells drilled at the Phase Two Property by Paterson Group. The boreholes/monitoring wells were surveyed relative to geodetic elevations.

xii. Quality Assurance and Quality Control Measures

Soil samples were collected in dedicated clear glass jars prepared and provided by the analytical laboratory. Soil samples collected for BTEXs/VOCs and the F1 range of PHCs analysis were collected using dedicated graduated syringes provided by the laboratory and placed directly into a glass vial with methanol preservative. Analytes and associated preservatives were specified on each jar/vial by the laboratory. Each jar/vial sample set was provided with a unique sample identifier, project number and date of sampling in the field.

Groundwater samples were collected in dedicated amber glass bottles and vials or plastic bottles prepared and provided by the analytical laboratory. Analytes and associated preservatives were specified on each bottle by the laboratory. Each bottle sample set was provided with a unique sample identifier, project number and date of sampling in the field.

Following sample collection, the soil and groundwater samples were stored in an ice pack chilled cooler to minimize volatilization and begin the cooling process on the day of sampling. On each day of sample collection, following completion of the fieldwork, samples were delivered directly to the analytical laboratory. Standard chain of custody procedures were used to maintain a custody record of soil and groundwater samples between the field technician and the analytical laboratory.

The split spoons, which were the only media to come into contact with the soil samples, were washed using soap and water and a scrub brush between samples to minimize the potential for cross-contamination among samples. The field technician used sterile nitrile gloves, which were changed prior to the handling of each soil sample to prevent cross-contamination. The field technician changed dedicated sterile nitrile gloves prior to initiating work at each monitoring well and changed gloves prior to groundwater sample collection to minimize the potential for cross-contamination.

Trip blank water samples for VOCs were submitted for laboratory analysis from the groundwater sampling events completed on November 13, 2024 and November 24, 2024. No detectable VOC concentrations were reported in the trip blank water samples.

The soil samples DUP-10/29 (BH3-24-SS11) and DUP2-10/29 (BH2-24-SS3) were submitted to the laboratory as blind field duplicate samples (of their respective samples). The relative percent difference (RPD) for individual parameters soil duplicate results to original sample results were generally 0 to 12%, which meets the required ratio. The Chromium VI sample results from DUP2-10/29 (BH2-24-SS3) had an RPD of 50%, however it should be noted that both results were within 1 order of magnitude of the laboratory method detection limit, and both results were lower than the background standards for Chromium VI. These samples were analyzed for PHCs, VOCs (including BTEXs), PAHs and metals & inorganics, which provide a blind quality assurance and quality control QA/QC validation for all soil parameters analyzed as part of this Phase Two ESA.

The groundwater sample DUP-11/13 was submitted to the laboratory as a blind field duplicate sample of BH2-24-GW1. The RPD of groundwater duplicate results to original sample results for metals was generally 0 to 13%, which meets the required ratio or 67%. For Cadmium, however the results were within 1 order of magnitude of the laboratory method detection limit, and both results were lower than the background standards for Cadmium. There were no deviations in groundwater duplicate ratios of PHC, VOC or PAH parameters, which were all not detected at the laboratory method detection limits. These samples were analyzed for PHCs, VOCs (including BTEXs), PAHs and metals & inorganics, which provide a blind quality assurance and quality control QA/QC validation for all groundwater parameters analyzed as part of this Phase Two ESA.

No equipment blank of groundwater was required since the groundwater samples only came in contact with dedicated tubing.

6. Review and Evaluation

i. Geology

Based on the observations of soil samples collected during the Phase Two ESA and LESGA field programs, there were five stratigraphic units identified at the Phase Two Property, which include:

Asphalt

A thin layer of asphalt, approximately 0.05 m in thickness, was encountered at the ground surface in borehole location BH1-23.

Silty Sand & Gravel (Fill)

A layer of silty sand and gravel and with some clay fill material, ranging from approximately 0.6 to 1.8 m in thickness, was encountered immediately below the asphalt layer in BH1-23 and at ground surface in the other boreholes. This material was generally compact and was found to be moist, becoming wet at approximately 1.2 m BGS. No odours, staining or evidence of deleterious fill or debris were observed in this layer. Possibly asphalt pieces were observed in the fill samples from BH2-24 and BH4-24. Five samples were submitted for laboratory analysis from this layer.

Silty Clay

A layer of silty clay, ranging from approximately 4.8 to 6.9 m in thickness, was encountered below the silty sand & gravel (Fill) layer in all of the boreholes. This material was identified to consist of silty clay, was firm becoming soft with depth and was generally brown to grey in colour. This layer was encountered at varying moisture conditions, generally moist at shallow

depths becoming wet at depths ranging from approximately 3.8 to 5.3 m BGS. Five samples were submitted for laboratory analysis from this layer.

Sand (Backfill, in certain locations)

A layer of backfill sand was encountered between 2 layers of silty clay in BH3s-24 and BH3d-24. This material was identified to consist of coarse-grained sand, was loose and was grey. Lopers interprets that the backfill sand was previously placed as bedding for historic underground utility services. This material was generally moist to wet. No odours, staining or evidence of deleterious fill were observed in this layer.

Sand with Gravel (Glacial Till)

A layer of sand with gravel with some silt (Glacial Till), ranging from approximately 1.8 to 3.4 m in thickness, was encountered below the silty clay layer in all boreholes (advanced deeper than 6 m BGS). This material was identified to consist of sand and gravel with some silt, which was wet, compact and grey. A layer of Clayey Sand was also identified at a depth of 8.1 m BGS below the Silty Clay layer in BH1-24; based on other drilling investigation locations at the Phase Two Property, Lopers interprets that the Clayey Sand is a component of the identified glacial till. No odours, staining or evidence of deleterious fill were observed in this layer. Two samples were submitted for laboratory analysis from this layer.

Bedrock

Bedrock was interbedded limestone and/or shale bedrock, which was encountered at approximately 8.4 to 12.1 m below ground surface.

Aquifer

The shallow (unconfined) aquifer is the aquifer of interest based on the nature of APECs and PCAs identified for the Phase Two Property. Based on observations and measured groundwater monitoring data collected as part of this investigation, the aquifer is present in the silty clay geological unit and extends to the glacial till unit beneath.

Based on moisture contents observed in the soil samples collected as part of this Phase Two ESA, it is expected that seasonal and annual variability affect the groundwater table elevation in the shallow aquifer.

ii. Groundwater and Elevations and Flow Direction

Based on the nature of the primary CPCs identified for groundwater at the Phase Two Property (including light non-aqueous phase liquids (LNAPLs) possibly present in historical fuel storage tanks, the screened intervals for the groundwater monitoring wells were installed to straddle the shallow groundwater table within the overburden.

An elevation survey was completed of the boreholes/monitoring wells drilled as part of the Phase Two Property. An elevation survey was completed of the boreholes/monitoring wells

drilled at the Phase Two Property by Paterson Group. The boreholes/monitoring wells were surveyed relative to geodetic elevations.

A shallow groundwater aquifer was present within the overburden at the Phase Two Property. Given that the groundwater table was found in the silty clay geological unit in all monitoring wells at the Phase Two Property, it is inferred that the same shallow aquifer exists across these units and can be used for a determination of localized groundwater flow direction and hydraulic gradient. Monitoring well construction details are presented in Table 2 below.

Monitoring Well	Ground Surface Elevation (m AMSL)	Top of Piezometer Elevation (m AMSL)	Screen Elevation (m AMSL)	Sand Pack Elevation (m AMSL)	Bentonite Seal (m AMSL)
BH1-23	60.01	59.87	54 62 - 57 67	54 62 - 57 97	57 97- 59 27
5111 20	00.01	00.07			
BH1-24	61.12	61.80	55.59 - 58.64	55.59 - 58.94	58.94 - 59.55
BH2-24	64.13	64.05	58.00 - 61.05	58.00 - 61.35	61.35 - 62.26
BH3s-24	62.81	62.68	56.95 - 60.00	60.00 - 60.30	60.30 - 60.91
BH3d-24	62.78	62.71	53.81 – 56.86	53.81 - 57.16	57.16 - 57.77

Table 2: Monitoring Well Construction Details

m AMSL – metres Above Mean Sea Level

On November 24, 2024, following a period of 25 days for stabilization after drilling and developing the monitoring wells and 11 days following an initial groundwater sampling event, the groundwater levels were measured in all monitoring wells and are presented in Table 3 below. The groundwater table was measured at depths ranging between 3.23 to 6.41 m BGS on November 24, 2024.

Table 3: Groundwater Table Elevations Measured on November 24, 2024

Monitoring Well	Ground Surface Elevation (m AMSL)	Top of Piezometer Elevation (m AMSL)	Depth to Groundwater (m below TOP)	Groundwater Table Elevation (m AMSL)	Depth to Groundwater (m BGS)
BH1-23	60.01	59.87	4.02	55.85	4.16
BH1-24	61.12	61.80	4.01	57.79	3.33
BH2-24	64.13	64.05	3.23	60.82	3.31
BH3s-24	62.81	62.68	DRY @ 5.60	-	DRY @ 5.73
BH3d-24	62.78	62.71	6.41	56.30	6.48

m AMSL – metres Below Referenced to Datum

m BGS – metres below Ground Surface

LOPERS & ASSOCIATES

Based on the measured groundwater table elevations in the monitoring wells BH1-23, BH1-24 and BH2-24 measured on November 24, 2024, the local groundwater flow direction at the Phase Two Property was towards the southeast as shown on Figure 3.

Three groundwater monitoring well water table elevations are required to triangulate groundwater elevations and determine an approximate groundwater flow direction. The groundwater table elevations in BH1-23, BH1-24 and BH2-24 were used for a determination of groundwater flow direction. The groundwater table elevation recorded from BH3d-24 was treated as an outlier. These groundwater monitoring wells were the primary monitoring wells used for assessment of the APECs identified in the Phase One ESA. Based on the measured groundwater table elevations in these monitoring wells, the local groundwater flow direction at the Phase Two Property is towards the southeast. The interpreted groundwater elevation contours and groundwater flow direction are shown in Figure 3: Groundwater Flow Interpretation. This interpreted local groundwater flow direction is reasonable based on the local topography, which includes an elevation drop of approximately 4 m from the northwest to the southeast corners of the Property.

No observations or indications of free product were observed in any of the monitoring wells accessed as part of this Phase Two ESA, as measured with an interface probe during water level measurements, and through observations of the purge water during development and sampling of the monitoring wells.

The historic underground utility corridors have the potential to affect contaminant distribution and transport, as they would create preferential pathways for lateral migration. Based on the depth to groundwater observed in the monitoring wells as part of Phase Two ESA, observed between 3.23 to 6.41 m BGS, it is unlikely that migration of contaminants (if present) through underground utility service trenches (generally approximately 2 to 3 m BGS) would have been significant.

iii. Groundwater: Hydraulic Gradients

The horizontal hydraulic gradient was determined by plotting groundwater contours interpreted from groundwater elevations presented in Table 3 and then by dividing the difference in hydraulic head by the lateral separation distance in the groundwater contours. Based on the measured groundwater elevations on November 24, 2024, from BH1-23, BH1-24 and BH2-24, the horizontal hydraulic gradient at the Phase Two Property is approximately 0.22 m/m.

iv. Course Grained Soil Texture

A substantial layer of native glacial till, consisting of silty sand and gravel, which would be classified as coarse-grained soil, is present underlaying a silty clay unit to full depth to bedrock at the Phase Two Property while sand and gravel fill is present near surface elsewhere at the Property. It is interpreted that greater than 1/3 of the Phase Two Property has coarse grained soil. For the purposes of this Phase Two ESA, the soil conditions are considered to be coarse

grained, which provides a more conservative comparison to the MECP site condition standards than the fine-grained values.

v. Soil Field Screening

Initial field screening of the soil samples consisted of visual and olfactory observations made at the time of sample collection during the drilling program. Additional field screening of the soil samples was completed using an RKI Eagle gas detector. Combustible soil vapour screening concentrations in the soil samples were found to range from 0 to 25 ppm, which is low and generally not considered indicative of significant PHC or VOC contamination.

vi. Soil Quality

Location and Depth of Soil Samples

The following soil samples, which were collected from the boreholes drilled as part of this Phase Two ESA and the 2023 LESGA, were submitted for laboratory analysis.

Sample Location	Sample ID	Sample Depth (m BGS)	Analytical Parameters
	PU1 22 551		RUCa RTEVa RAHa Matala & Inorganica
DH1-23	ВП1-23-331	0.1 - 0.0	FICS, DIEAS, FAITS, Metals & morganics
BH1-24	BH1-24-SS1	0.0 - 0.6	PHCs, BTEXs, PAHs, Metals & Inorganics
	BH1-24-SS6	3.8 – 4.4	VOCs
BH2-24	BH2-24-AU1	0.0 - 0.6	PHCs, BTEXs, PAHs, Metals & Inorganics
	BH2-24-SS3	1.5 – 2.1	PHCs, BTEXs, PAHs, Metals & Inorganics
	DUP2-10/29	1.5 – 2.1	PAHs, Metals & Inorganics
	(Duplicate of BH2-24-SS3)		
	BH2-24-SS8	5.3 – 5.9	VOCs
BH3-24	BH3-24-AU1	0.0 - 0.6	PHCs, BTEXs, PAHs, Metals & Inorganics
	BH3-24-SS3	1.5 – 2.1	PHCs, BTEXs, PAHs, Metals & Inorganics
	BH3-24-SS11	7.6 – 8.2	VOCs
	DUP-10/29 (Duplicate of BH3-24-SS11)	7.6 – 8.2	VOCs
BH4-24	BH4-24-GS1	0.0 - 0.6	Metals & Inorganics

 Table 4: Soil Samples Selected for Laboratory Analysis

Comparison of Soil Analytical Results to Applicable Site Conditions Standards

The analytical soil results were compared to the generic full-depth soil site condition standards, with non-potable groundwater, course textured soil, for residential property use, as specified in Table 3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

The aforementioned soil samples selected for laboratory analysis were submitted to Paracel or BV Labs under chain of custody on the day of completion of the drilling program(s). The laboratory certificates of analysis (Paracel/BV Labs Report #s 2313385, R8394673 and R8397239) are provided in Appendix E.

The following soil samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 5a, Table 5b and Table 5c:

Table 5a: Soil Exceedances – Petroleum Hydrocarbons

		Exceeding Parameter:	F2 PHCs (C10-C16)	F3 PHCs (C16-C34)	F4G PHCs (gravimetric)
Sample	MECP Table	3 Site Condition Standards	98 ug/g	300 ug/g	2800 ug/g
Location	Sample ID	Sample Depth	Repo	rted Concentration	ı (ug/g)
BH2-24	BH2-24-AU1	0.0-0.6 m BGS	- 590		3,500
BH3-24	B-24 BH3-24-AU1 0.0-0.6 m BGS		100	310	-

Table 5b: Soil Exceedances - Metals

Exceeding Parameter:			Lead Conductivity		Sodium Absorption Ratio	
Sample Location	MECP Table 3 Site Condition Standards		120 ug/g	0.7 uS/cm	5	
	Sample ID	ample ID Sample Depth		Reported Concentration (ug/g)		
BH1-24	BH1-24-AU1	0.0-0.6 m BGS	220	-	-	
	BH2-24-AU1	0.0-0.6 m BGS	200	2.8	15	
BH2-24	BH2-24-SS3	1.5-2.1 m BGS	-	5.4	-	
	DUP2-10/29	Duplicate Sample of BH2-24- SS3	-	5.6	-	
BH3-24	BH3-24-SS3	1.5-2.1 m BGS	-	6.1	-	
BH4-24	BH4-24-AU1	0.0-0.6 m BGS	-	19	43	

 Table 5c: Soil Exceedances – Polycyclic Aromatic Hydrocarbons

Exceeding Parameter:			Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b/j) fluoranthene	Benzo(k) fluoranthene	Dibenzo(a,h) anthracene	Fluoranthene	Indeno(1,2,3-cd) pyrene
Sample Location	MECP Table 3 Site Condition Standards		0.15 ug/g	0.67 ug/g	0.5 ug/g	0.3 ug/g	0.78 ug/g	0.78 ug/g	0.1 ug/g	0.69 ug/g	0.38 ug/g
	Sample ID	Sample Depth	Reported Concentration (ug/g)								
BH1-23	BH1-23-SS1	0.1-0.6 m BGS	-	-	0.56	0.56	-	-	0.12	1.37	-
BH1-24	BH1-24-SS1	0.0-0.6 m BGS	-	-	0.72	0.65	0.81	-	-	1.7	0.48
BH2-24	BH2-24-AU1	0.0-0.6 m BGS	0.18	1.3	3.3	3.2	3.9	1.6	0.59	8.1	2.2
BH3-24	BH3-24-AU1	0.0-0.6 m BGS	-	-	-	-	-	-	-	0.74	-

All of the other soil results for the Phase Two Property are in compliance with the applicable Site Condition Standards. A full summary of the soil analytical results and comparison to the

applicable Site Condition Standards are presented in Table 9: Soil Analytical Results following the text of this report. Spatial depiction of the soil exceedances at the Phase Two Property are depicted in Figures 4a through 4c.

Comparison of mSPLP Analytical Results to O.Reg. 406/19

A leachate characterization sample was selected for laboratory analysis of modified Synthetic Precipitate Leaching Procedure (mSPLP) analysis for leachate metals & inorganics, leachate VOCs and leachate organics (semi-volatiles and polychlorinated biphenyls (PCBs). This sample was comprised of a composite of worst-case samples, as determined by field screening parameters, from BH2-24 and BH3-24.

The aforementioned composite soil sample selected for mSPLP laboratory analysis was submitted to BV Labs under chain of custody on October 29, 2024. The laboratory certificate of analysis (BV Labs Report # R8397239) is provided in Appendix E.

The analytical leachate results were compared to the O.Reg. 406/19 Table 2.1 and Table 3.1 Leachate Standards for residential/parkland/institutional property use, volume independent. The analyzed leachate sample was in compliance with these criteria. A full summary of the leachate analytical results and comparison to the applicable site condition standards are presented in Table 10: Leachate Analytical Results following the text of this report.

Contaminants of Concern

There was evidence of non-native fill material observed down to a depth of 1.8 m BGS, during the subsurface drilling and sampling, completed as part of the 2023 LESGA and geotechnical investigation. The presence of imported fill material was suspected at the Phase Two Property and is associated with O.Reg. 153/04 PCA: Importation of fill material of unknown quality, which represents PCA #1 and has been interpreted as APEC #1 for the Phase Two Property.

The Contaminants of Potential Concern ("CPCs") associated with the historical fill materials are PHCs, BTEXs, polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. Volatile Organic Compounds were included as a CPC for the 2024 sampling and analysis, following an initial groundwater detection of PCE in the groundwater sample from BH1-23 in April 2023.

Based on the date of original development of the Site buildings, it was suspected that historical heating oil storage tanks may have been present at the Phase Two Property, although no documentation was found to that effect in records reviewed for the Phase One ESA. If historically present, the expected fill locations would have been in similar locations to the recently removed natural gas meters. The CPCs associated with fuel storage are PHCs and BTEXs, which had already been included for assessment for APEC #1.

The contaminants of concern for a particular sample were based on the relative location and depth of the sample, visual and/or olfactory observations and combustible vapour screening concentrations.

Contaminants Related to Chemical and Biological Transformations

Contaminants related to chemical and biological transformations were not suspected to be present at the Phase Two Property and were not identified as part of the Phase Two ESA soil analysis.

Soil Serving as a Source of Contaminant Mass Contributing to Groundwater

Based on the analytical results, there is no soil that serves as a source of contaminant mass contributing to groundwater at the Phase Two Property.

Light or Dense Non-Aqueous Phase Liquids

The groundwater analytical results (discussed below) do not indicate the presence of light or dense non-aqueous phase liquids at the Phase Two Property.

vii. Groundwater Quality

Locations and Sample Depth Interval of Groundwater Samples

The groundwater samples were collected using a peristaltic pump with tubing lowered to between the top and approximate (vertical) center of the water column within each monitoring well and withdrawing the water at low flow rates. The groundwater sample locations, screen depths and parameters analyzed are presented in Table 6 below.

Sample Location	Groundwater Table Elevation (m AMSL)	Screen Elevation (m AMSL)	Analytical Parameters
BH1-23	55.85	54.62 - 57.67	PHCs, VOCs (including BTEXs), PAHs, Metals & Inorganics
BH1-24	57.79	55.59 – 58.64	PHCs, VOCs (including BTEXs), PAHs, Metals & Inorganics
BH2-24	60.82	58.00 - 61.05	PHCs, VOCs (including BTEXs), PAHs, Metals & Inorganics
BH3s-24	-	56.95 - 60.00	No sample collected – dry.
BH3d-24	56.30	53.81 – 56.86	PHCs, VOCs (including BTEXs), PAHs

Table 6: Groundwater Samples Selected for Laboratory Analysis

m AMSL – metres Above Mean Sea Level

Field Filtering

Samples for PHCs, BTEXs, VOCs, PAHs and general chemistry were unfiltered, while metals samples were field filtered using a dedicated 0.45 µm Waterra filter for each sample.

Comparison of Groundwater Analytical Results to Applicable Site Conditions Standards

The analytical groundwater results were compared to the generic full-depth soil site condition standards, with non-potable groundwater, course textured soil, for residential property use, as specified in Table 3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

The groundwater samples selected for laboratory analysis were submitted to Paracel or BV Labs under chain of custody on April 6, 2023, November 13, 2024 and November 14, 2024. The laboratory certificates of analysis (Paracel/BV Labs Report #s 2315005, R8412924 and R8428514) are provided in Appendix E. The following groundwater sample (and its duplicate) results were in exceedance of the site condition standards:

 BH2-24-GW1 and DUP-11/13, collected from a screen depth of approximately 3.1-6.1 m BGS, had chloride measurements of 2,900 ug/L in both samples, compared to the site condition standard of 2,300 ug/L.

This groundwater sample was collected in a location that would have been subject to road deicing activities with the application of salts applied to ground surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both and is suspected to exceed the site condition standard solely as a result of these activities. Based on this application and the exemption set forth in Section 49.1 of O.Reg. 153/04, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act. Based on additional groundwater analysis in other locations at the Phase Two Property, the presence of elevated chloride appears to be isolated into localized area(s) and is not considered to have migrated or impacted the Phase Two Property groundwater quality.

All of the other groundwater samples collected as part of the 2023 LESGA and the current 2024 Phase Two ESA were in compliance with the Site Condition Standards.

A full summary of the groundwater analytical results and comparison to the applicable Site Condition Standards are presented in Table 11: Groundwater Analytical Results following the text of this report.

Contaminants of Concern

There was evidence of non-native fill material observed during the subsurface drilling and sampling, completed as part of the 2023 LESGA and geotechnical investigation. The presence of imported fill material is suspected at the Phase Two Property and is associated with O.Reg. 153/04 PCA: Importation of fill material of unknown quality, which represents PCA #1 and has been interpreted as APEC #1 for the Phase Two Property.

The Contaminants of Potential Concern ("CPCs") associated with the historical fill materials are PHCs, BTEXs, polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. Volatile Organic Compounds were included as a CPC for the 2024 sampling and analysis, following an initial groundwater detection of PCE in the groundwater sample from BH1-23 in April 2023.

Based on the date of original development of the Site buildings, it was suspected that historical heating oil storage tanks may have been present at the Phase Two Property, although their historic presence was never documented during the Phase One ESA. If historically present, the expected fill locations would have been in similar locations to the recently removed natural gas meters. The CPCs associated with fuel storage are PHCs and BTEXs, which had already been included for assessment for APEC #1.

The contaminants of concern for a particular sample were based on the location and depth of the sample with respect to the APECs, visual and/or olfactory observations of soil samples collected which could have come into contact with the groundwater table.

Contaminants Related to Chemical and Biological Transformations

Contaminants related to chemical and biological transformations were not suspected to be present at the Phase Two Property and were not identified as part of the Phase Two ESA groundwater analysis.

Soil Serving as a Source of Contaminant Mass Contributing to Groundwater

Based on the analytical results, there is no soil that serves as a source of contaminant mass contributing to groundwater at the Phase Two Property.

Light or Dense Non-Aqueous Phase Liquids

The presence of measurable levels LNAPL and/or DNAPL free product were not observed at the Phase Two Property, as measured with an interface probe and with observations of the purge water recovered from the monitoring wells.

The analytical groundwater results do not indicate the suspected presence of dense nonaqueous phase liquids at the Phase Two Property.

viii. Sediment Quality

There were no natural surface water bodies at the Phase Two Property, and as such no sediment sampling was completed as part of the Phase Two ESA.

ix. Quality Assurance and Quality Control Results

Duplicate Samples

The soil samples DUP-10/29 (BH3-24-SS11) and DUP2-10/29 (BH2-24-SS3) were submitted to the laboratory as blind field duplicate samples (of their respective samples). The relative percent difference (RPD) for individual parameters soil duplicate results to original sample results were

generally 0 to 12%, which meets the required ratio. The Chromium VI sample results from DUP2-10/29 (BH2-24-SS3) had an RPD of 50%, however it should be noted that both results were within 1 order of magnitude of the laboratory method detection limit, and both results were lower than the background standards for Chromium VI. These samples were analyzed for PHCs, VOCs (including BTEXs), PAHs and metals & inorganics, which provide a blind quality assurance and quality control QA/QC validation for all soil parameters analyzed as part of this Phase Two ESA.

The groundwater sample DUP-11/13 was submitted to the laboratory as a blind field duplicate sample of BH2-24-GW1. The RPD of groundwater duplicate results to original sample results for metals was generally 0 to 13%, which meets the required ratio except for an RPD of 67% for Cadmium, however the results were within 1 order of magnitude of the laboratory method detection limit, and both results were lower than the background standards for Cadmium. There were no deviations in groundwater duplicate ratios of PHC, VOC or PAH parameters, which were all not detected at the laboratory method detection limits. These samples were analyzed for PHCs, VOCs (including BTEXs), PAHs and metals & inorganics, which provide a blind quality assurance and quality control QA/QC validation for all groundwater parameters analyzed as part of this Phase Two ESA.

Blanks

Trip blank water samples for VOCs were submitted for laboratory analysis from the groundwater sampling events completed on November 13, 2024 and November 24, 2024. No detectable VOC concentrations were reported in the trip blank water samples.

Laboratory Qualifying Statements

The laboratory made no qualifying statements regarding the sample handling or submission as part of this Phase Two ESA. Any laboratory remarks in certificates of analysis are related to internal QA and is not expected to impact the validity of any of the data.

Data Quality

All certificates of analysis were received pursuant to clause 47 (2) (b) of O.Reg. 153/04 and comply with subsection 47 (3) of O.Reg. 153/04.

The overall quality of the field data from the investigation with respect to the data quality objectives, demonstrate that decision-making was not affected, and the overall objectives of the investigation and the assessment were met.

x. Phase Two Conceptual Site Model

There was evidence of non-native fill material observed down to a depth of 1.8 m BGS during the subsurface drilling and sampling, completed as part of the 2023 LESGA and geotechnical investigation. The presence of imported fill material is suspected at the Phase Two Property and is associated with O.Reg. 153/04 PCA: Importation of fill material of unknown quality, which represents PCA #1 and has been interpreted as APEC #1 for the Phase Two Property.

The Contaminants of Potential Concern ("CPCs") associated with the historical fill materials are PHCs, BTEXs, polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. Volatile Organic Compounds were included as a CPC for the 2024 sampling and analysis, following an initial groundwater detection of PCE in the groundwater sample from BH1-23 in April 2023.

Based on the date of original development of the Site buildings, it was suspected that historical heating oil storage tanks may have been present at the Phase Two Property, although their historic presence was never documented during the Phase One ESA. If historically present, the expected fill locations would have been in similar locations to the recently removed natural gas meters. The CPCs associated with fuel storage are PHCs and BTEXs, which had already been included for assessment for APEC #1.

The only active underground utility services identified at the Property were water and sewer connections present in underground trenches running north towards Somerset Street East and a fiberoptic cable in the northeast corner of the Property. Natural gas meters had been removed with the natural gas lines capped; these connections were present on the north side of the Site buildings. The historic underground utility corridors have the potential to affect contaminant distribution and transport, as they would create preferential pathways for lateral migration. Based on the depth to groundwater observed in the monitoring wells as part of Phase Two ESA, observed between 3.23 to 6.41 m BGS, it is unlikely that migration of contaminants (if present) through underground utility service trenches (generally approximately 2 to 3 m BGS) would have been significant.

The overburden stratigraphy of the Phase Two Property is present in five geological units, including asphalt or topsoil layers at ground surface, silty sand and gravel (fill) layer, Silty Clay, a sand and gravel (Till) layer present across the Property and an intermittent sand (backfill) layer within the Silty Clay layer.

The shallow (unconfined) aquifer is the aquifer of interest based on the nature of APECs and PCAs identified for the Phase Two Property. Based on observations and measured groundwater monitoring data collected as part of this investigation, the aquifer is present in the silty clay geological unit and extends to the glacial till unit beneath. The aquifer is expected to have a relatively low permeability compared to fill materials at shallow depths and the glacial till layer beneath.

LOPERS & ASSOCIATES

The overburden soil is underlain by interbedded limestone and/or shale bedrock, which was encountered at approximately 8.4 to 12.1 m below ground surface.

The groundwater table was measured at depths ranging between 3.23 to 6.41 m BGS on November 24, 2024. The shallow groundwater aquifer was present within the silty clay overburden at the Phase Two Property. Given that the groundwater table was found in the silty clay in each of the shallow monitoring wells at the Phase Two Property, it is inferred that the same shallow aquifer exists across these units and can be used for a determination of groundwater flow direction and hydraulic gradient. The horizontal hydraulic gradient at the Phase Two Property was calculated to be approximately 0.22 m/m with a localized groundwater flow direction towards the southeast.

The proposed redevelopment of the Phase Two Property includes the current concept for construction of one building approximately four storeys in height, with partial subgrade floors and/or utility rooms. It is understood that the buildings which currently occupy the Property will be demolished prior to redevelopment.

The Phase Two Property and all other properties within 250 m of the property boundaries are supplied by Ottawa's municipal potable water supply system. There were no identified agricultural uses and there are no wells within 250 m of the property boundaries that are intended for use as a source of water for human consumption or agriculture. As such, the designation of non-potable groundwater setting is determined to be applicable [O.Reg. 153/04, section 35].

The Phase Two Property is not situated within or adjacent to an area of natural significance and does not include any land within 30 m of an area of natural significance. The pH of the soil was analyzed as part of this Phase Two ESA and was found to range from 6.95 to 7.78. As such, the Phase Two Property is not considered to be an environmentally sensitive area [O.Reg. 153/04, section 41].

A layer of silty sand and gravel was encountered from near ground surface to 1.8 m BGS and a layer of native glacial till, consisting of silty sand and gravel, cobbles and boulders was present above the bedrock, with an approximate thickness of 1.5 m. Both of these soil types would be classified as coarse grained soil with a total thickness of approximately 3.3 m. Silty clay was encountered between the shallow silty sand and gravel and the native glacial till; the silty clay would be classified as a fine grained soil, as reported through grain size analysis in the 2023 Paterson Geotechnical Investigation and had an approximate thickness of 5.1 m. It is interpreted that greater than 1/3 of the Property has coarse grained soil. For the purposes of this Phase Two ESA, the soil conditions are considered to be coarse grained, which provides a more conservative comparison to the MECP site condition standards than the fine-grained values [O.Reg. 153/04, section 42].

Review of the drilling program and borehole/monitoring well logs completed as part of this Phase Two ESA and previous investigations was completed. It was determined that over 2/3 of
the Property has greater than 2 m of overburden soil. The Property is not considered a shallow soil property [O.Reg. 153/04, section 43.1].

The Phase Two Property does not include and does not have any land located within 30 m of a water body. The MECP site condition standards for use within 30 m of a water body do not apply [O.Reg. 153/04, section 43.1].

The full depth generic site condition standards, with non-potable groundwater, course textured soil, for residential/parkland/institutional property use, as specified in Table 3 of the MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011 were determined to be the applicable site condition standards for the Property as part of this Phase Two ESA.

The following soil samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 7a, Table 7b and Table 7c below:

		Exceeding Parameter:	F2 PHCs (C10-C16)	F3 PHCs (C16-C34)	F4G PHCs (gravimetric)	
Sample	MECP Table	3 Site Condition Standards	98 ug/g	300 ug/g	2800 ug/g	
Location	Sample ID	Sample Depth	Repo	rted Concentration	ı (ug/g)	
BH2-24	BH2-24-AU1	0.0-0.6 m BGS	-	590	3,500	
BH3-24	3-24 BH3-24-AU1 0.0-0.6 m BGS		100	310	-	

Table 7a: Soil Exceedances – Petroleum Hydrocarbons

Table 7b: Soil Exceedances - Metals

		Exceeding Parameter:	Lead	Conductivity	Sodium Absorption Ratio
Sample	MECP Table	3 Site Condition Standards	120 ug/g	0.7 uS/cm	5
Location	Sample ID	Sample Depth	Repo	rted Concentration	n (ug/g)
BH1-24	BH1-24-AU1	0.0-0.6 m BGS	220	-	-
	BH2-24-AU1	0.0-0.6 m BGS	200	2.8	15
BH2-24	BH2-24-SS3	1.5-2.1 m BGS	-	5.4	-
	DUP2-10/29	Duplicate Sample of BH2-24- SS3	-	5.6	-
BH3-24	BH3-24-SS3	1.5-2.1 m BGS	-	6.1	-
BH4-24	BH4-24-AU1 0.0-0.6 m BGS		-	19	43

	Exce	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b/j) fluoranthene	Benzo(k) fluoranthene	Dibenzo(a,h) anthracene	Fluoranthene	Indeno(1,2,3-cd) pyrene	
MECP Table 3 Site Condition Sample Standards				0.67 ug/g	0.5 ug/g	0.3 ug/g	0.78 ug/g	0.78 ug/g	0.1 ug/g	0.69 ug/g	0.38 ug/g
Location	Sample ID	Sample Depth			Rep	orted C	oncentra	ation (เ	ug/g)		
BH1-23	BH1-23-SS1	0.1-0.6 m BGS	-	-	0.56	0.56	-	-	0.12	1.37	-
BH1-24	BH1-24-SS1	0.0-0.6 m BGS	-	-	0.72	0.65	0.81	-	-	1.7	0.48
BH2-24	BH2-24-AU1	0.0-0.6 m BGS	0.18	1.3	3.3	3.2	3.9	1.6	0.59	8.1	2.2
BH3-24	BH3-24-AU1	0.0-0.6 m BGS	-	-	-	-	-	-	-	0.74	-

 Table 7c: Soil Exceedances – Polycyclic Aromatic Hydrocarbons

All of the other soil results for the Phase Two Property are in compliance with the applicable Site Condition Standards.

The following groundwater sample (and its duplicate) results were in exceedance of the site condition standards:

 BH2-24-GW1 and DUP-11/13, collected from a screen depth of approximately 3.1-6.1 m BGS, had chloride measurements of 2,900 ug/L in both samples, compared to the site condition standard of 2,300 ug/L.

This groundwater sample was collected in a location that would have been subject to road deicing activities with the application of salts applied to ground surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both and is suspected to exceed the site condition standard solely as a result of these activities. Based on this application and the exemption set forth in Section 49.1 of O.Reg. 153/04, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act. Based on additional groundwater analysis in other locations at the Phase Two Property, the presence of elevated chloride appears to be isolated into localized area(s) and is not considered to have migrated or impacted the Phase Two Property groundwater quality.

All of the other groundwater samples collected as part of the 2023 LESGA and the current 2024 Phase Two ESA were in compliance with the Site Condition Standards.

The Phase Two Property (soil) is not in compliance with the site condition standards as of the certification date of November 24, 2024.

7. Conclusions

The following soil samples had exceedance concentrations reported compared to their respective Site Condition Standards, as noted in Table 8a, Table 8b and Table 8c as follows:

Table 8a: Soll Exceedances – Petroleum Hydrocarbon	Table 8	8a: Soil	Exceedances -	- Petroleum	Hydrocarbon
--	---------	----------	----------------------	-------------	-------------

		Exceeding Parameter:	F2 PHCs (C10-C16)	F3 PHCs (C16-C34)	F4G PHCs (gravimetric)
Sample	MECP Table	3 Site Condition Standards	98 ug/g	300 ug/g	2800 ug/g
Location	Sample ID	Sample Depth	Repo	rted Concentration	ı (ug/g)
BH2-24	BH2-24-AU1	0.0-0.6 m BGS	-	590	3,500
BH3-24	H3-24 BH3-24-AU1 0.0-0.6 m BGS		100	310	-

Table 8b: Soil Exceedances - Metals

		Exceeding Parameter:	Lead	Conductivity	Sodium Absorption Ratio
Sample	MECP Table	3 Site Condition Standards	120 ug/g	0.7 uS/cm	5
Location	Sample ID	Sample Depth	Repo	n (ug/g)	
BH1-24	BH1-24-AU1	0.0-0.6 m BGS	220	-	-
	BH2-24-AU1	0.0-0.6 m BGS	200	2.8	15
BH2-24	BH2-24-SS3	1.5-2.1 m BGS	-	5.4	-
	DUP2-10/29	Duplicate Sample of BH2-24- SS3	-	5.6	-
BH3-24	BH3-24-SS3	1.5-2.1 m BGS	-	6.1	-
BH4-24	BH4-24-AU1 0.0-0.6 m BGS		-	19	43

Table 8c: Soil Exceedances – Polycyclic Aromatic Hydrocarbons

	Exce	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b/j) fluoranthene	Benzo(k) fluoranthene	Dibenzo(a,h) anthracene <mark></mark>	Fluoranthene	Indeno(1,2,3-cd) pyrene	
MECP Table 3 Site Condition Sample Standards		0.15 ug/g	0.67 ug/g	0.5 ug/g	0.3 ug/g	0.78 ug/g	0.78 ug/g	0.1 ug/g	0.69 ug/g	0.38 ug/g	
Location	Sample ID	Sample Depth			Rep	orted C	oncentr	ation (ı	ug/g)		
BH1-23	BH1-23-SS1	0.1-0.6 m BGS	-	-	0.56	0.56	-	-	0.12	1.37	-
BH1-24	BH1-24-SS1	0.0-0.6 m BGS	-	-	0.72	0.65	0.81	-	-	1.7	0.48
BH2-24	BH2-24-AU1	0.0-0.6 m BGS	0.18	1.3	3.3	3.2	3.9	1.6	0.59	8.1	2.2
BH3-24	BH3-24-AU1	0.0-0.6 m BGS	-	-	-	-	-	-	-	0.74	-

All of the other soil results for the Phase Two Property are in compliance with the applicable Site Condition Standards.

The following groundwater sample (and its duplicate) results were in exceedance of the site condition standards:

 BH2-24-GW1 and DUP-11/13, collected from a screen depth of approximately 3.1-6.1 m BGS, had chloride measurements of 2,900 ug/L in both samples, compared to the site condition standard of 2,300 ug/L.

This groundwater sample was collected in a location that would have been subject to road deicing activities with the application of salts applied to ground surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both and is suspected to exceed the site condition standard solely as a result of these activities. Based on this application and the exemption set forth in Section 49.1 of O.Reg. 153/04, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act. Based on additional groundwater analysis in other locations at the Phase Two Property, the presence of elevated chloride appears to be isolated into localized area(s) and is not considered to have migrated or impacted the Phase Two Property groundwater quality. All of the other groundwater samples collected as part of the 2023 LESGA and the current 2024 Phase Two ESA were in compliance with the Site Condition Standards.

The Phase Two Property (soil) is not in compliance with the site condition standards as of the certification date of November 24, 2024.

An environmental remediation program, including the bulk removal and off-site disposal of soil in excess of the site condition standards, is recommended for the Phase Two Property. The submission of a record of site condition will not be required since there will not be a change of land use of the Phase Two Property to a more sensitive use.

Given the scope and timeline for the proposed redevelopment and the requirements for specialized construction techniques to complete remediation of the Phase Two Property to meet the site condition standards, it is recommended that remediation be completed in conjunction with redevelopment of the Property. It should be noted that the proposed redevelopment includes excavation of approximately 1 to 3 m of surficial materials, which is expected to remove the impacted soil at the Phase Two Property.

Preparation of a soil management plan in accordance with O.Reg. 406/19 will be required as part of management of excess soil generated as part of construction activities.

i. Signatures

The Qualified Person for this study is Mr. Luke Lopers, P. Eng. Mr. Lopers has been a Professional Engineer, registered in Ontario since 2012 and has been working on environmental site assessments since 2006. Mr. Lopers has been an author, project manager and/or peer reviewer for hundreds of Phase One ESAs and Phase Two ESAs as well as previously filed RSCs.

The reviewer for this study is Mr. Don Plenderleith, P.Eng. Mr. Plenderleith is a Professional Engineer registered in Ontario since 1994 and has authored and/or reviewed hundreds of Phase One and Two ESAs in Ontario and the rest of Canada. The qualifications of the assessor/Qualified Person and reviewer are included in Appendix G.

Sincerely,

Don Plenderletto L. A. LOPERS Don Plenderleith, P.Eng., QPESA Luke Lopers, P.Eng., QPESA NCEOF

8. Limitations

The findings and conclusions of this Phase Two ESA are based on the information provided and/or reviewed as part of this study.

This Phase Two ESA has been completed with the standard of care generally expected in the industry for a study of this nature.

This Phase Two ESA has been prepared for the sole use of Ottawa Community Housing Corporation for the purposes of a due diligence assessment of the potential liabilities which may exist at the Phase Two Property. No other party is permitted to rely on the conclusions or findings of this report without the written consent of Lopers & Associates and Ottawa Community Housing Corporation

Changes to the physical setting of the Phase Two Property, Phase One Study Area and applicable regulations governing Phase One and Two Environmental Site Assessments have the potential to influence the validity of the conclusions and opinions presented in this Phase Two ESA.

9. References

Topographical Plan of Survey, Farley, Smith & Denis Surveying Ltd., on January 16, 2023.

City of Ottawa, geoOttawa mapping website, Visited March 2023 through December 2024. <u>http://maps.ottawa.ca/geoottawa/</u>

Google Earth, Visited March 2023 through December 2024.

"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", produced by the Ontario Ministry of the Environment, dated April 15, 2011.

"Phase One Environmental Site Assessment, Proposed Residential Re-Development, 214-224 Somerset Street East, Ottawa, Ontario", dated June 21, 2023, completed by Lopers & Associates for OCH. ("2023 Lopers Phase One Enivornmental Site Assessment")

"Limited Environmental Soil & Groundwater Assessment, Proposed Residential Re-Development, 214-224 Somerset Street East, Ottawa, ON", dated June 21, 2023, completed by Lopers & Associates for OCH. ("2023 Lopers Limited Environmental Soil & Groundwater Assessment")

"Geotechnical Investigation, Proposed Residential Development, 214 Somerset Street East, Ottawa, Ontario", dated May 2, 2023, completed by Paterson Group Inc. for OCH. ("2023 Paterson Geotechnical Investigation")

"Project Specific Designated Substance Report, 214-224 Somerset Street, Ottawa, ON", dated October 27, 2016, completed by CM3 Environmental Inc. for Read Jones Christofferson Ltd. ("2016 DSR Investigation")

```
"Designated Substance Survey, 214-224 Somerset Street East, Ottawa, ON", dated January 30, 2023, completed by Lopers & Associates for OCH ("2023 DSS Investigation")
Paracel Certificate of Analysis – Report # 2313385 – Soil Sample Submission March 30, 2023
BV Labs Certificate of Analysis – Report # R8394673 - Soil Sample Submission October 29, 2024
BV Labs Certificate of Analysis – # R8397239 – mSPLP Sample Submission October 29, 2024
Paracel Certificate of Analysis – # 2315005 - Groundwater Sample Submission April 6, 2024
BV Labs Certificate of Analysis – # R8412924 - Groundwater Sample Submission November 13, 2024
BV Labs Certificate of Analysis – # R8428514 - Groundwater Sample Submission November 24, 2024
```

10. Appendices

- Appendix A Sampling and Analysis Plan
- Appendix B Underground Utility Locates
- Appendix C Borehole Logs
- Appendix D Certificates of Equipment Calibration
- Appendix E Laboratory Certificates of Analysis
- Appendix F Qualifications of Assessors

Figures

Somerset St. E.

geoOttawa

Somerset St. E.

Source:

geoOttawa

Tables

Table 9: Soil Analytical Results

214-224 Somerset Street East, Ottawa, Ontario

				Sample Location:	PU1 22	DU/	1.24	BH2.24			BH3-24				BH4 34	
				Sample Location.	BHI - 25	DR.	1-24		ы	Duplicate of			DI	5-24	Duplicate of	DN4-24
				Sample Depth:	0.1 - 0.6 m BGS	0.0 - 0.6 m BGS	3.8 - 4.4 m BGS	0.0 - 0.6 m BGS	1.5 - 2.1 m BGS	BH2-24-SS3	5.3 - 5.9 m BGS	0.0 - 0.6 m BGS	1.5 - 2.1 m BGS	7.6 - 8.2 m BGS	BH3-24-SS11	0.0 - 0.6 m BGS
				Sample Date:	March 30, 2023	28-October-2024	28-October-2024	29-October-2024								
				Sample ID:	BH1-23-SS1	BH1-24-SS1	BH1-24-SS6	BH2-24-AU1	BH2-24-SS3	DUP2-10/29	BH2-24-SS8	BH3-24-AU1	BH3-24-SS3	BH3-24-SS11	DUP-10/29	BH4-24-GS1
				Laborartory Sample ID:	2313385-01	AHNZ53	AHNZ54	AHNZ55	AHNZ56	AHOA08	AHNZ57	AHNZ58	AHNZ59	AHNZ60	AHNZ62	AHNZ61
		Method	O.Reg. 153/04	O.Reg. 153/04												
		Detection	Table 1: Residential	Table 3: Residential												
		Limit	Property Use Standard	Property Use Standard												
Parameter	Units	(MDL)	Coarse Grain Soil	Coarse Grain Soil												
Petroluem Hydrocarbons (PHCs	5)					-	_	-	-	_	_	-		_	_	
F1 PHCs (C6-C10)	ug/g	5	25	55	<7	<10	-	<10	<10	<10	-	<10	<10	-	-	-
F2 PHCs (C10-C16)	ug/g	10	10	98	<40	<7.0	-	16	<7.0	<7.0	-	100	<7.0	-	-	-
F3 PHCs (C16-C34)	ug/g	50	240	300	236	96	-	590	<50	<50	-	310	<50	-	-	-
F4 PHCs (C34-C50)	ug/g	50	120	2800	397	<50	-	1100	<50	<50	-	330	<50	-	-	-
F4G PHCs (gravimetric)	ug/g	50	120	2800	350		-	3500			-	1300		-	-	-
Volatile Organic Compounds (V	OCs) inclue	ling Benzene,	Toluene, Ethylbenzene a	nd Xylenes (BTEXs)		i	i	1	.	•	-	1				-
Acetone	ug/g	0.49	0.5	16	-	-	<0.49	-	-	-	<0.49	-	-	<0.49	<0.49	-
Benzene	ug/g	0.006	0.02	0.21	<0.02	<0.02	<0.0060	<0.02	<0.02	<0.02	<0.0060	<0.02	<0.02	<0.0060	<0.0060	-
Bromodichloromethane	ug/g	0.04	0.05	13	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Bromoform	ug/g	0.04	0.05	0.27	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Bromomethane	ug/g	0.04	0.05	0.05	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Carbon Tetrachloride	ug/g	0.04	0.05	0.05	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Chlorobenzene	ug/g	0.04	0.05	2.4	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Chloroform	ug/g	0.04	0.05	0.05	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Dibromochloromethane	ug/g	0.04	0.05	9.4	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,2-Dichlorobenzene	ug/g	0.04	0.05	3.4	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,3-Dichlorobenzene	ug/g	0.04	0.05	4.8	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,4-Dichlorobenzene	ug/g	0.04	0.05	0.083	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,1-Dichloroethane	ug/g	0.04	0.05	3.5	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,2-Dichloroothylopo	ug/g	0.049	0.05	0.05	-	-	<0.049	-	-	-	<0.049	-	-	<0.049	<0.049	-
Cis-1 2-Dichloroethylene	ug/g	0.04	0.05	3.4			<0.040				<0.040		_	<0.040	<0.040	
Trans-1 2-Dichloroethylene	ug/g	0.04	0.05	0.084			<0.040				<0.040			<0.040	<0.040	
1 2-Dichloropropane	ug/g	0.04	0.05	0.05	_	_	<0.040	-	-	-	<0.040	_	_	<0.040	<0.040	-
Cis-1.3-Dichloropropylene	чв/в цв/я	0.03	NV	NV	-	_	<0.030	-	-	-	<0.030	_	-	<0.030	<0.030	-
Trans-1.3-Dichloropropylene	ug/g	0.04	NV	NV	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Ethylbenzene	ug/g	0.01	0.05	2	<0.050	<0.02	<0.010	<0.02	<0.02	<0.02	<0.010	<0.02	<0.02	<0.010	<0.010	-
Ethylene Dibromide	ug/g	0.04	0.05	0.05	-	_	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
, Methyl Ethyl Ketone	ug/g	0.4	0.5	16	-	-	<0.40	-	-	-	<0.40	-	-	<0.40	<0.40	-
Methylene Chloride	ug/g	0.049	0.05	0.1	-	-	<0.049	-	-	-	<0.049	-	-	<0.049	<0.049	-
Methyl Isobutyl Ketone	ug/g	0.4	0.5	1.7	-	-	<0.40	-	-	-	<0.40	-	-	<0.40	<0.40	-
Methyl-t-Butyl Ether	ug/g	0.04	0.05	0.75	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Styrene	ug/g	0.04	0.05	0.7	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,1,1,2-Tetrachloroethane	ug/g	0.04	0.05	0.058	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,1,2,2-Tetrachloroethane	ug/g	0.04	0.05	0.05	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Toluene	ug/g	0.02	0.2	2.3	<0.050	<0.02	<0.020	0.022	<0.02	<0.02	<0.020	0.024	<0.02	<0.020	<0.020	-
Tetrachloroethylene	ug/g	0.04	0.05	0.28	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,1,1-Trichloroethane	ug/g	0.04	0.05	0.38	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,1,2-Trichloroethane	ug/g	0.04	0.05	0.05	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Trichloroethylene	ug/g	0.01	0.05	0.061	-	-	<0.010	-	-	-	<0.010	-	-	<0.010	<0.010	-
Vinyl Chloride	ug/g	0.019	0.02	0.02	-	-	<0.019	-	-	-	<0.019	-	-	<0.019	<0.019	-
m-Xylene & p-Xylene	ug/g	0.02	NV	NV	<0.050	<0.040	<0.020	<0.040	<0.040	<0.040	<0.020	0.043	<0.040	<0.020	<0.020	-
o-Xylene	ug/g	0.02	NV	NV	<0.050	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.038	<0.020	<0.020	<0.020	-
Total Xylenes	ug/g	0.02	0.05	3.1	<0.050	<0.040	<0.020	<0.040	<0.040	<0.040	<0.020	0.081	<0.040	<0.020	<0.020	-
Dichlorodifluoromethane	ug/g	0.04	0.05	16	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Hexane(n)	ug/g	0.04	0.05	2.8	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
Trichlorofluoromethane	ug/g	0.04	0.05	4	-	-	<0.040	-	-	-	<0.040	-	-	<0.040	<0.040	-
1,3-Dichloropropene (cis + trans)	ug/g	0.05	0.05	0.05	-	-	<0.050	-	-	-	<0.050	-	-	<0.050	<0.050	-

NV - No value listed in MECP site condition standards

- - Not Analyzed

ND - Not detected above laboratory method detection limits

Exceeds MECP background standards

Exceeds MECP site condition standards

Table 9: Soil Analytical Results

214-224 Somerset Street East, Ottawa, Ontario

				Comple Location:	DU1 33	DU	1.24	BH2.24			BH3-24				BH4 24	
				Sample Location.	DH1 - 23	DI	1-24		рп	2-24 Duplicate of			БП	-24	Duplicate of	DI14-24
				Sample Depth:	0.1 - 0.6 m BGS	0.0 - 0.6 m BGS	3.8 - 4.4 m BGS	0.0 - 0.6 m BGS	1.5 - 2.1 m BGS	BH2-24-SS3	5.3 - 5.9 m BGS	0.0 - 0.6 m BGS	1.5 - 2.1 m BGS	7.6 - 8.2 m BGS	BH3-24-SS11	0.0 - 0.6 m BGS
				Sample Date:	March 30, 2023	28-October-2024	28-October-2024	29-October-2024	29-October-2024	29-October-2024	29-October-2024	29-October-2024	29-October-2024	29-October-2024	29-October-2024	29-October-2024
				Sample ID:	BH1-23-SS1	BH1-24-SS1	BH1-24-SS6	BH2-24-AU1	BH2-24-SS3	DUP2-10/29	BH2-24-SS8	BH3-24-AU1	BH3-24-553	BH3-24-SS11	DUP-10/29	BH4-24-GS1
				Laborartory Sample ID:	2313385-01	AHN753	AHN754	AHN755	AHN756		AHN757	AHN758	AHN759	AHN760	AHN762	AHN761
		Mathad	0 Dog 152/04		2313303 01	AIIII255	AINIZJA	AIIIV255	AIIII250	AnoAdd	AIIIIZ	AIII1230	AIIIV235	AIIIV200	ATTICOZ	AINZOI
		Detection	U.Reg. 153/04	U.Reg. 155/04												
		Detection	Table 1: Residential	Table 3: Residential												
De version et al.	11	Limit	Property Use Standard	Property Use Standard												
Parameter	Units	(IVIDL)	Coarse Grain Soli	Coarse Grain Soli		<u></u>										
Polycyclic Aromatic Hydrocarb	ons	0.005	0.072	7.0	0.05			0.40	-0.0050	10.0050	1	0.052	10.0050			1
Acenaphthelene	ug/g	0.005	0.072	7.9	0.03	0.11	-	0.48	<0.0050	<0.0050	-	0.052	<0.0050	-	-	-
Acenaphinylene	ug/g	0.005	0.093	0.15	0.03	0.051	-	0.18	< 0.0050	<0.0050	-	<0.050	< 0.0050	-	-	-
Anthracene Barra (a) anthra ann a	ug/g	0.005	0.16	0.67	0.16	0.26	-	1.3	< 0.0050	<0.0050	-	0.14	0.0089	-	-	-
Benzo(a)anthracene	ug/g	0.005	0.36	0.5	0.56	0.72	-	3.3	< 0.0050	<0.0050	-	0.3	0.042	-	-	-
Benzo(a)pyrene	ug/g	0.005	0.3	0.3	0.56	0.65	-	3.2	< 0.0050	<0.0050	-	0.29	0.044	-	-	-
Benzo(b/J)fluoranthene	ug/g	0.005	0.47	0.78	0.66	0.81	-	3.9	<0.0050	<0.0050	-	0.33	0.046	-	-	-
Benzo(ghi)perylene	ug/g	0.005	0.68	6.6	0.32	0.41	-	1.9	< 0.0050	<0.0050	-	0.17	0.024	-	-	-
Benzo(k)fluoranthene	ug/g	0.005	0.48	0.78	0.38	0.32	-	1.6	<0.0050	<0.0050	-	0.13	0.019	-	-	-
Chrysene	ug/g	0.005	2.8	7	0.51	0.56	-	2.7	<0.0050	<0.0050	-	0.24	0.033	-	-	-
Dibenzo(a,h)anthracene	ug/g	0.005	0.1	0.1	0.10	0.12	-	0.59	<0.0050	<0.0050	-	0.051	0.0069	-	-	-
Fluoranthene	ug/g	0.005	0.56	0.69	1.37	1.7	-	8.1	<0.0050	<0.0050	-	0.74	0.079	-	-	-
Fluorene	ug/g	0.005	0.12	62	0.05	0.14	-	0.64	<0.0050	<0.0050	-	0.053	<0.0050	-	-	-
Indeno(1,2,3-cd)pyrene	ug/g	0.005	0.23	0.38	0.33	0.48	-	2.2	<0.0050	<0.0050	-	0.19	0.027	-	-	-
1-Methylnaphthalene	ug/g	0.005	0.59	0.99	<0.02	0.016	-	0.16	<0.0050	<0.0050	-	<0.050	<0.0050	-	-	-
2-Methylnaphthalene	ug/g	0.005	0.59	0.99	<0.02	0.015	-	0.2	<0.0050	<0.0050	-	<0.050	<0.0050	-	-	-
Naphthalene	ug/g	0.005	0.09	0.6	<0.01	0.017	-	0.39	<0.0050	<0.0050	-	<0.050	<0.0050	-	-	-
Phenanthrene	ug/g	0.005	0.69	6.2	0.64	1.2	-	6	<0.0050	<0.0050	-	0.51	0.023	-	-	-
Pyrene	ug/g	0.005	1	78	1.12	1.3	-	6.4	<0.0050	<0.0050	-	0.63	0.078	-	-	-
Methylnaphthalene, 2-(1-)	ug/g	0.01	0.59	0.99	<0.04	0.032	-	0.36	<0.0071	<0.0071	-	<0.0071	<0.0071	-	-	-
Metals & Inorganics	-		-								-					-
Antimony	ug/g	0.10	1.3	7.5	<1.0	1.7	-	0.89	<0.20	<0.20	-	<0.20	<0.20	-	-	0.46
Arsenic	ug/g	0.10	18	18	3.3	3.6	-	3	1.4	1.4	-	3.1	<1.0	-	-	1.2
Barium	ug/g	0.50	220	390	156	280	-	140	200	210	-	120	150	-	-	180
Beryllium	ug/g	0.10	2.5	4	<0.5	0.6	-	0.28	0.62	0.69	-	0.29	0.42	-	-	0.34
Boron, Hot Water Soluable	ug/g	0.10	NV	1.5	1.22	0.42	-	0.61	0.12	0.13	-	0.34	0.34	-	-	0.81
Cadmium	ug/g	0.020	1.2	1.2	<0.5	0.4	-	0.44	<0.10	<0.10	-	0.11	<0.10	-	-	0.13
Chromium	ug/g	0.50	70	160	41.2	76	-	39	63	70	-	25	55	-	-	38
Chromium (VI)	ug/g	0.10	0.66	8	<0.10	0.34	-	0.36	0.28	0.47	-	<0.18	0.27	-	-	0.23
Cobalt	ug/g	0.10	21	22	9.6	16	-	6.9	16	15	-	7.8	12	-	-	8.7
Copper	ug/g	0.50	92	140	23.9	43	-	33	28	29	-	17	28	-	-	23
Lead	ug/g	0.50	120	120	36.6	220	-	200	5.5	5.1	-	35	12	-	-	100
Mercury	ug/g	0.0050	0.27	0.27	0.0457	0.074	-	0.25	<0.050	<0.050	-	<0.050	<0.050	-	-	0.22
Molybdenum	ug/g	0.10	2	6.9	1.3	0.6	-	3.4	<0.50	<0.50	-	1.2	<0.50	-	-	<0.50
Nickel	ug/g	0.50	82	100	25.8	46	-	20	37	39	-	18	31	-	-	22
Selenium	ug/g	0.20	1.5	2.4	<1.0	<0.50	-	<0.50	<0.50	<0.50	-	<0.50	<0.50	-	-	<0.50
Silver	ug/g	0.10	0.5	20	<0.3	<0.20	-	<0.20	<0.20	<0.20	-	<0.20	<0.20	-	-	<0.20
Thallium	ug/g	0.050	1	1	<1.0	0.31	-	0.15	0.3	0.28	-	0.18	0.2	-	-	0.17
Vanadium	ug/g	0.20	86	86	37.9	73	-	36	73	74	-	29	61	-	-	40
Zinc	ug/g	2.0	290	340	59.8	210	-	180	80	83	-	53	65	-	-	90
- Н	pH Units	0.1	NV	NV	<1.0	7,56	-	7.78	6.95	6,96	-	7,88	7,33	-	-	7,68
Conductivity	uS/cm	5	0.57	0.7	-	0.27	_	2.8	0.49	0.55	-	0.49	0.57	-	_	19
Sodium Adsorption Ratio (SAR)	N/A	0.1	2.4	5	-	0.2	-	15	5.4	5.6	-	3.9	6.1	-	-	43
Cvanide, free		0.05	0.051	0.051	-	<0.01	-	<0.01	<0.01	<0.01	-	<0.01	<0.01	-	_	0.02
Boron	∽6/6 ⊔σ/σ	5.05	36	120	63	<5.01	-	5 7	<5.01	<5.01	-	<5.0	<5.01	-	_	<5.0
Uranium	- 6/ 8 Up/p	0.050	2.5	23	-	0.65	-	0.48	0.75	0.72	-	0.59	0.68	-	-	0.46
· · · · · · · · · · · · · · · · · · ·	- 0/ 0			-												

NV - No value listed in MECP site condition standards

- Not Analyzed

ND - Not detected above laboratory method detection limits

Exceeds MECP background standards

Exceeds MECP site condition standards

Table 11: Groundwater Analytical Results 214-224 Somerset Street East, Ottawa, Ontario

			Sample Location:	BH1 - 23	BH1-23	BH1-24	BH2	-24	BH3d-24	TRIP BLANK	TRIP BLANK
				2 3 - 5 3 m BGS				Duplicate of			
			Well Screen Depth:	Antil 6, 2022	12 Nevember 2024	12 November 2024	12 Nevember 2024	BH2-24-GW1	Neuember 24, 2024	12 Nevember 2024	Nevember 24, 2024
			Sample ID:	BH1-23-GW1	BH1-23-GW2	BH1-24-GW1	BH2-24-GW1	DUP-11/13	BH3d-24-GW1	TRIP BLANK	TRIP BLANK
			Laborartory Sample ID:	2315005-01	AIUW64	AIUW65	AIUW66	AIUW67	AJXP76	AIUW68	AJXP77
			Table 3: Residential Property								
Deservation	11-14-	Method Detection Limit	Use Standard								
Parameter Petroluem Hydrocarbons (PHCs)	Units	(IVIDL)	Coarse Grain Soli								
F1 PHCs (C6-C10)	ug/L	25	750	ND	-	-	<25	<25	<25	-	-
F2 PHCs (C10-C16)	ug/L	100	150	ND	-	-	<90	<90	<90	-	-
F3 PHCs (C16-C34)	ug/L	100	500	ND	-	-	<200	<200	<200	-	-
Volatile Organic Compounds (VOCs)	ug/L	100	500	ND	-	-	1200	1200	4200	-	
Acetone	ug/L	5	130000	ND	ND	ND	ND	ND	ND	ND	ND
Benzene Brome disklare methode	ug/L	0.5	44	ND	ND	ND	ND	ND	ND	ND	ND
Bromotorm	ug/L	0.5	380	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ug/L	0.5	5.6	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ug/L	0.2	0.79	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene Chloroform	ug/L	0.5	630	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane	ug/L	0.5	82000	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ug/L	0.2	4600	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ug/L	0.5	9600	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ug/L	0.5	320	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ug/L	1	1.6	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ug/L	0.5	1.6	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,2-Dichloroethylene	ug/L ug/L	0.5	1.6	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ug/L	0.5	16	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,3-Dichloropropylene	ug/L	0.5	NV	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/L ug/L	0.5	2300	ND	ND	ND	ND	ND	ND	ND	ND
Ethylene Dibromide	ug/L	0.5	0.25	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Ethyl Ketone	ug/L	0.5	470000	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Isobutyl Ketone	ug/L ug/L	0.5	140000	ND	ND	ND	ND	ND	ND	ND	ND
Methyl-t-Butyl Ether	ug/L	1	190	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	ug/L	5	1300	ND	ND	ND	ND	ND	ND	ND	ND
1.1.2.2-Tetrachloroethane	ug/L ug/L	2	3.2	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	ug/L	0.5	18000	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	ug/L	0.5	1.6	0.8	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ug/L ug/L	0.5	4.7	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene	ug/L	0.5	1.6	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ug/L	0.5	0.5	ND	ND	ND	ND	ND	ND	ND	ND
n-xylene & p-xylene o-Xylene	ug/L ug/L	0.5	NV	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	ug/L	1	4200	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ug/L	0.5	4400	ND	ND	ND	ND	ND	ND	ND	ND
Hexane(n) Trichlorofluoromethane	ug/L ug/L	0.5	2500	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene (cis + trans)	ug/L	0.5	5.2	ND	ND	ND	ND	ND	ND	ND	ND
Polycyclic Aromatic Hydrocarbons		0.05	coo	ND		-0.050	-0.050	-0.050	-0.050		
Acenaphthylene	ug/L	0.05	1.8	ND	-	<0.050	<0.050	<0.050	<0.050	-	-
Anthracene	ug/L	0.05	2.4	ND	-	<0.050	<0.050	<0.050	<0.050	-	-
Benzo(a)anthracene	ug/L	0.05	4.7	ND	-	<0.050	<0.050	<0.050	<0.050	-	-
Benzo(b/j)fluoranthene	ug/L	0.05	0.81	ND		<0.050	<0.050	<0.050	<0.050		-
Benzo(ghi)perylene	ug/L	0.05	0.2	ND	-	<0.050	<0.050	<0.050	<0.050	-	-
Benzo(k)fluoranthene	ug/L	0.05	0.4	ND	-	<0.050	<0.050	<0.050	<0.050	-	-
Dibenzo(a,h)anthracene	ug/L ug/L	0.05	0.52	ND		<0.050	<0.050	<0.050	<0.050		-
Fluoranthene	ug/L	0.05	130	ND	-	<0.050	<0.050	<0.050	<0.050	-	-
Fluorene	ug/L	0.05	400	ND	-	<0.050	<0.050	<0.050	<0.050	-	-
1-Methylnaphthalene	ug/L	0.05	1800	ND	-	0.076	<0.050	<0.050	<0.050	-	-
2-Methylnaphthalene	ug/L	0.05	1800	ND		0.16	<0.050	<0.050	<0.050	-	-
Naphthalene Phenanthrene	ug/L	0.05	1400 580	ND ND	-	0.14	<0.050 <0.030	0.051	<0.050	-	-
Pyrene	ug/L	0.05	68	ND	-	<0.050	<0.050	<0.050	<0.050	-	-
Methylnaphthalene, 2-(1-)	ug/L	0.01	1800	ND	-	0.23	<0.071	<0.071	<0.071	-	-
Metals & Inorganics Antimony	ug/I	0.5	20000	ND	-	<0.50	<0.50	<0.50	-	-	-
Arsenic	ug/L	1	1900	ND	-	2.4	<1.0	<1.0	-	-	-
Barium	ug/L	1	29000	110	-	130	200	200	-	-	-
Beryllium Boron	ug/L	0.5	45000	ND 50	-	<0.40	<0.40	<0.40	-	-	-
Cadmium	ug/L	0.1	2.7	ND		<0.090	0.12	0.24	-		-
Chromium	ug/L	1	810	ND	-	<5.0	<5.0	<5.0	-	-	-
Chromium (VI) Cobalt	ug/L ug/I	10 0.5	140 66	ND ND	-	<0.50 <0.50	<1.0 0.75	<1.0 0.7	-	-	-
Copper	ug/L	0.5	87	2		<0.90	1.8	1.8	-	-	-
Lead	ug/L	0.1	25	ND	-	<0.50	<0.50	<0.50	-	-	-
Molybdenum	ug/L ug/L	0.5	9200	0.8		<0.10	<0.10 7.9	<0.10 7.9	-	-	-
Nickel	ug/L	1	490	3		<1.0	4	3.9	-	-	-
Selenium	ug/L	1	2300000	ND	-	29000	1400000	1400000	-	-	-
Thallium	ug/L ug/L	0.1	1.5	ND		<2.0 <0.090	<2.0 <0.090	<2.0 <0.090	-	-	-
Uranium	ug/L	0.1	510	1.4	-	<0.050	<0.050	<0.050	-	-	-
Vanadium Zinc	ug/L	0.5 E	250	2.5	-	0.77	1.4	1.7	-	-	-
Cyanide, free	ug/L ug/L	2	66	ND	-	<1	<1	<1	-	-	-
Chloride	mg/L	1,000	2,300	445	-	28	2,900	2,900	-	-	-
Uranium nH	ug/L	0	420	- 7 5		3	4	4	-	-	-
hu	pri Units	0.1	INV	7.5	-	-	-	-	-	-	-

NV - No value listed in MECP site condition standards - Not Analyzed ND - Not detected above laboratory method detection limits Exceeds MECP site condition standards

Table 10: Leachate Analytical Results

214-224 Somerset Street East, Ottawa, Ontario

			Sample Location:	BH2-24 & BH3-24					
	Sample Depth: 0.0 - 0								
			Sample Date:	October 29, 2024					
			Sample ID:	mSPLP					
			Laborartory Sample ID:	AHOA09					
			O.Reg. 406/19						
			Table 3.1: Leachate						
		Method Detection Limit	Residential Property Use						
Parameter	Units	(MDL)	Standard						
mSPLP Leachate VOCs		, ,							
Bis(2-chloroethyl)ether	ug/L	2	NV	<2.0					
Bis(2-chloroisopropyl)ether	ug/L	2	NV	<2.0					
Bromomethane	ug/L	0.4	0.5	<0.40					
Carbon Tetrachloride	ug/L	0.19	0.2	<0.19					
Chloroaniline p-	ug/L	5	NV	<5.0					
Chloroform	ug/L	0.9	NV	<0.90					
Dichlorobenzene. 1.2-	ug/L	0.4	NV	<0.40					
Dichlorobenzene. 1.4-	ug/L	0.4	NV	<0.40					
Dichlorobenzidine. 3.3'-	ug/L	0.4	NV	<0.40					
Dichloroethane, 1.1-	ug/L	0.4	NV	<0.40					
Dichloroethane, 1,2-	ug/L	0.4	NV	<0.40					
Dichloroethylene, 1.1-	ug/L	0.4	0.5	<0.40					
Dichloroethylene, 1.2-cis-	ug/L	0.4	NV	<0.40					
Dichloroethylene, 1.2-trans-		0.4	0.5	<0.40					
Dichloropropane, 1.2-		0.4	NV	<0.40					
Dichloropropene 1.3-	+8/= ug/l	0.42	NV	<0.42					
Diethyl Phthalate	us/I	1	2	<1.0					
Dimethylphthalate	us/I	1	2	<1.0					
Dinitrophenol. 2.4-	us/I	- 5	– NV	<5.0					
Dinitrotoluene, 2,4 & 2,6-	us/I	4.2	NV	<4.2					
Ethylene dibromide	+8/= ug/l	0.19	0.2	<0.19					
Tetrachloroethane, 1,1,1,2-	uø/I	0.4	NV	<0.40					
Tetrachloroethane, 1.1.2.2-	ug/L	0.4	NV	<0.40					
Tetrachloroethylene	ug/L	0.4	0.5	<0.40					
Trichloroethane. 1.1.2-		0.4	NV	<0.40					
Trichloroethylene		0.4	0.5	<0.40					
Trichlorophenol. 2.4.6-	ug/L	0.7	NV	<0.70					
mSPLP Leachate Metals	- 181								
Antimony	ug/L	0.5	NV	<0.5					
Arsenic	ug/L	1	NV	<1					
Barium	ug/L	5	4600	12					
Bervllium	ug/L	0.5	11	<0.5					
Boron (total)	ug/L	10	NV	24					
Cadmium	ug/L	0.1	NV	<0.1					
Chromium Total	ug/L	5	130	<5					
Cobalt		0.5	10	<0.5					
Copper	ug/L	1	14	2					
Lead	ug/L	0.5	NV	<0.5					
Molvbdenum	ug/L	1	NV	1					
Nickel	ug/L	1	78	<1					
Selenium	ug/l	2	10	<2					
Silver	ug/l	0.1	0.3	<0.1					
Thallium	ug/l	0.05	NV	<0.05					
Uranium	110/L	0.1	66	<0.1					
Vanadium	ug/L	1	NV	19					
Zinc	ug/l	5	180	<5					
	- 10 -			5					

NV - No value listed in MECP site condition standards

LOPERS & ASSOCIATES

Appendix A

Sampling and Analysis Plan

Sampling and Analysis Plan

214-224 Somerset Street East Ottawa, Ontario

Prepared for: Ottawa Community Housing Corporation

10/11/2024

Table of Contents

1.	Bac	kground	1
2.	Plar	nning Site Investigation - Specific Objectives	1
3.	Unc	lerground Utility Service Locates	2
4.	Plar	nning Site Investigation - Specific Requirements	2
	i.	Media for Investigation	3
	ii.	Locations and Depths for Sampling	3
	iii.	Parameters for Laboratory Analysis.	3
5.	Qua	lity Assurance and Quality Control	4
5	.1	Field Equipment Decontamination	4
5	.2	Trip Blanks	4
5	.3	Field Duplicates	4
5	.4	Equipment Calibration	5
5	.5	Data Quality Objectives	5
6.	Sta	ndard Operating Procedures	5
6	.1	Borehole Drilling	5
6	.2	Soil Sampling	6
6	.3	Field Soil Screening Measurements	6
6	.4	Monitoring Well Installation	6
6	.5	Elevation Survey	7
6	.6	Monitoring Well Development;	7
6	.7	Field Measurement of Water Quality Indicators	7
6	.8	Groundwater Sampling	7

1. Background

Lopers & Associates (Lopers) was retained by Ottawa Community Housing Corporation (OCH) to complete a Phase Two Environmental Site Assessment (Phase Two ESA) of the commercial property with Civic address No. 214-224 Somerset Street East, Ottawa, Ontario ("Phase Two Property", "Property" or "Site").

Lopers has previously completed a Phase One Environmental Site Assessment (Phase One ESA) (Reference No. LOP23-025B, dated June 21, 2023) for OCH at the Property. The Phase One ESA identified the presence of two potentially contaminating activities (PCAs) at the Property which were interpreted to represent areas of potential environmental concern (APECs). There was evidence of non-native fill material observed during the subsurface drilling and sampling, completed as part of the 2023 Limited Environmental Soil and Groundwater Assessment (LESGA) and geotechnical investigation. The presence of imported fill material is suspected at the Phase Two Property and is associated with O.Reg. 153/04 PCA: Importation of fill material of unknown quality, which represents PCA #1 and has been interpreted as APEC #1 for the Phase Two Property.

Based on the identification of APECs at the Phase One Property, it was recommended that a Phase Two Environmental Site Assessment Report be completed to provide documentation that the Property meets the soil and groundwater quality standards applicable to its future use.

The scope of work for the Phase Two ESA included drilling six boreholes at the Phase Two Property. Five of the boreholes were instrumented with groundwater monitoring wells with screens installed in the overburden. Additional excess soil characterization sampling and analysis was completed concurrently with this Phase Two ESA, for future planning purposes.

In the event that additional contaminants of APECs are identified during the drilling or sampling fieldwork, additional scope of work will be discussed with OCH to complete the Phase Two ESA.

Planning Site Investigation - Specific Objectives

The following are the specific objectives for planning a site investigation of the Phase Two Environmental Site Assessment, as defined in O.Reg. 153/04.

1. To plan an investigation that will achieve the general objectives of a Phase Two Environmental Site Assessment,

i. through the use of an appropriate and complete information base concerning the Phase Two Property, and

ii. through the conduct of an investigation based both on information obtained before the Phase Two Environmental Site Assessment begins and on the incorporation of information obtained during the Phase Two Environmental Site Assessment.

2. To develop a sampling and analysis plan that will adequately assess all areas of the Phase Two Property where contaminants may be present in land or water on, in or under the Property.

3. To develop a quality assurance program that is designed to effectively limit errors and bias in sampling and analysis through implementation of assessment and control measures that will ensure data are useful, appropriate and accurate in the determination of whether the Phase Two Property, or any record of site condition (RSC) property within it, meets applicable site condition standards and any standards specified in a risk assessment.

3. Underground Utility Service Locates

Prior to completing the Phase Two ESA field investigation activities, public underground locates will be coordinated through Ontario One Call. As it is understood that the Site is developed with a commercial place and that no privately owned underground services or infrastructure drawings are available, therefore private locates will also be completed in the proposed drilling locations.

The locations of the proposed boreholes will be reviewed in relation to the public underground locates and locations will be modified accordingly if conflicts exist between any location or if the location is in close proximity to an active underground service.

A copy of the public underground locates will be retained by Lopers' field personnel during all excavation components of the fieldwork.

Planning Site Investigation - Specific Requirements

The qualified person has ensured the following requirements were met in planning a site investigation. The Phase One conceptual site model for the Phase One Environmental Site Assessment report was used in conjunction with other information in determining:

i. Media for Investigation

Soil and groundwater sampling and analysis for the purpose of assessing environmental quality will be completed as part of the Phase Two ESA.

There are no surface water bodies at the Phase Two Property, as such, sediment and surface water quality sampling and analysis will not be completed as part of this Phase Two ESA.

ii. Locations and Depths for Sampling

A total of five borehole locations have been proposed to provide coverage of the APECs identified at the Phase Two Property. Three boreholes are proposed to be drilled in the north portion of the Phase Two Property, near the former natural gas connections to the buildings. These boreholes will be placed in locations to assess fill quality at the Site (APEC #1) and for geotechnical assessment purposes. This borehole locations would also be suitable for an assessment of historical heating oil storage/filling, assuming that the Site buildings were possibly historically heated using furnace oil. A distribution of 2 boreholes will be spread over the remaining areas of the Property, to assess future excess soil management requirements.

Sampling depths will include as a minimum, collection of samples in 0.6 m intervals from the ground surface to native soil conditions within the groundwater table. Borehole/monitoring wells depths are proposed to be drilled to approximately 5-6 m to intercept the groundwater table in APECs were groundwater quality assessment is required. Boreholes are proposed to be drilled to a depth of approximately 3 m where an assessment of the fill quality is required.

iii. Parameters for Laboratory Analysis.

The parameters for laboratory analysis will be selected based on the contaminants of potential concern for each APEC as well as the field screening observations.

The Contaminants of Potential Concern ("CPCs") associated with the historical fill materials are PHCs, BTEXs, polycyclic aromatic hydrocarbons (PAHs), metals & inorganics. Volatile Organic Compounds were included as a CPC for the 2024 sampling and analysis, following an initial groundwater detection of PCE in the groundwater sample from BH1-23 in April 2023.

Based on the date of original development of the Site buildings, it was suspected that historical heating oil storage tanks may have been present at the Phase Two Property, although their historic presence was never documented during the Phase One ESA. If historically present, the expected fill locations would have been in similar locations to the recently removed natural gas meters. The CPCs associated with fuel storage are PHCs and BTEXs, which had already been included for assessment for APEC #1.

The contaminants of concern for a particular sample will be based on the relative location and depth of the sample, visual and/or olfactory observations and combustible vapour screening concentrations.

Information obtained after the completion of the phase one environmental site assessment shall be used to modify the investigation, as appropriate.

5. Quality Assurance and Quality Control

The qualified person has ensured that there is a quality assurance and quality control program, data quality objectives, standard operating procedures and a description of any physical impediments that interfere with or limit the ability to conduct sampling and analysis.

The quality assurance and quality control program includes the following requirements:

5.1 Field Equipment Decontamination

All non-dedicated sampling and monitoring equipment must be cleaned following each use.

The split spoons, which are the only media to come into contact with the soil samples, will be washed using soap and water and a scrub brush between samples to minimize the potential for cross-contamination among samples. The field technician will use sterile nitrile gloves, which are to be changed prior to the handling of each soil sample to further reduce the potential of cross-contamination. The flights of the hollow stem augers are to be cleaned manually following each borehole.

Water level monitoring equipment, including water level meters and interface probes will be decontaminated with an environmentally safe cleaning solution and rinsed with deionized water between water level readings to prevent cross contamination.

The field technician will change dedicated sterile nitrile gloves prior to initiating work at each monitoring well and change gloves prior to sample collection to minimize the potential for cross-contamination.

5.2 Trip Blanks

Since groundwater samples are to be analyzed for volatile organic compounds (VOCs), one trip blank sample shall be submitted for laboratory analysis with each laboratory submission of groundwater samples.

5.3 Field Duplicates

Sufficient field duplicate samples shall be collected in each medium (soil and groundwater) being sampled, so that at least one field duplicate sample can be submitted for laboratory analysis for every ten samples submitted for laboratory analysis.

At least one field duplicate sample shall be submitted for laboratory analysis for every ten samples submitted for laboratory analysis.

One field duplicate will be submitted from each medium sampled for PHCs, VOCs, PAHs and metals & inorganics which are the parameter suites identified as a contaminants of concern in APECs #1 as part of the previously prepared Phase One ESA.

5.4 Equipment Calibration

Field screening of the soil samples will be completed using an RKI Instruments Model Eagle-2 combustible gas detector ("RKI Eagle"). The RKI Eagle used for soil sample screening as part of this Phase Two ESA will be obtained from Maxim Environmental and Safety Inc. and will be calibrated prior to use.

Measurements of the groundwater quality field parameters will be completed to determine stabilization of these parameters prior to sampling. These measurements will be completed using Horiba U-52 groundwater quality measurement device ("Horiba"). The Horiba used for groundwater quality parameter stabilization measurements as part of this Phase Two ESA will be obtained from Maxim Environmental and Safety Inc. and will be calibrated prior to use.

5.5 Data Quality Objectives

The data quality objectives for all types of field data collected during the Phase Two Environmental Site Assessment field investigation that set the level of uncertainty in environmental data shall be such that,

- (a) the decision-making is not affected; and
- (b) the overall objectives of the investigation are met.

6. Standard Operating Procedures

Standard operating procedures were developed for all of the following field investigation methods used in the field investigation.

6.1 Borehole Drilling

The drilling field program will be completed under full time supervision of Lopers & Associates personnel. The drilling subcontractor retained for the Phase Two ESA is George Downing Estate Drilling, located at 410 Principale Rue, Grenville-Sur-la-Rouge, Quebec, JOV 1B0. The drill rig used for the Phase Two ESA will be a track mounted CME drill, equipped with hollow stem augers and stainless steel split spoons. Operation of the drilling equipment is the responsibility of the drilling subcontractor, who is trained and competent in the operation of this equipment.

LOPERS & ASSOCIATES

The field technician logs the drilling and recovery of soil samples from each borehole, noting the soil type, physical and environmental characteristics at each borehole location on the field borehole logs.

6.2 Soil Sampling

Samples are to be collected from auger cuttings or split spoons at the ground surface for surficial samples (0-0.6 m below ground surface (m BGS)) and then using split spoons for subsequent samples. Split spoon samples are generally not collected from surficial depths, as poor recovery of loose packed fill material does not yield sufficient volume of samples required for field screening or laboratory analysis. Split spoon samples, collected in 0.6 m segments, are to be recovered at continuous 0.76 m intervals; the additional 0.16 m between split spoon samples will be over-drilled to provide undisturbed field measurement of geotechnical parameters (blow counts) and to prevent cave in materials from stratigraphic units above the intended sampling intervals from being collected at unrepresentative depths during sampling.

Soil samples are initially collected in Ziploc bags for initial screening as part of sample selection. Soil samples selected for laboratory analysis are collected in dedicated clear glass jars prepared and provided by the analytical laboratory. Soil samples collected for BTEXs/VOCs and the F1 range of PHCs analysis are collected using a dedicated graduated syringe provided by the laboratory and placed directly into a glass vial with methanol preservative. Analytes and associated preservatives are specified on each jar/vial by the laboratory. Each jar/vial sample set is provided with a unique sample identifier, project number and date of sampling in the field.

6.3 Field Soil Screening Measurements

Initial field screening of the soil samples will consist of visual and olfactory observations made at the time of sample collection during the drilling program.

Additional field screening of the soil samples will be completed using an RKI Instruments Model Eagle-2 combustible gas detector ("RKI Eagle"). The RKI Eagle is capable of measuring combustible vapours at concentrations ranging from 0 parts per million (PPM) to 50% of the lower explosive limit (LEL). The RKI Eagle is also capable of measuring VOC vapours at concentrations ranging from 0 ppm to 1000 ppm.

6.4 Monitoring Well Installation

Installation of monitoring wells in selected boreholes is to be completed by Downing, who is a licensed well driller in accordance with O.Reg. 903. The wells will be installed using slotted PVC No. 10 monitoring well screens, which are 51 mm in diameter; these screens are to be installed at the base of each of the aforementioned boreholes, directly above the bedrock surface. Well screens can range from 1.5 m to 4.5 m in length. The monitoring wells are extended to approximately 0.15 m below the surface grade with PVC riser, also 51 mm in diameter. A

threaded PVC end cap should be installed at the base of the screen to prevent sediment infiltration, while a J-Plug is installed at the top of the riser to present surface influence.

The annular space in each monitoring well is to be backfill with clean silica sand to approximately 0.3 m above the monitoring well screens. A layer of bentonite chips is then used to make a hydraulic seal above the sand pack to near the ground surface. The monitoring wells are to be completed with flushmount aluminum protective casings, which were backfilled with sand to provide drainage from the protective casing.

6.5 Elevation Survey

An elevation survey of all boreholes and monitoring wells will be conducted following the completion of the drilling program. A fixed temporary benchmark should be used as a reference elevation; the top of the spindle of a fire hydrant is preferred for this purpose as geodetic elevations can be obtained for these points. The reference benchmark should be assigned a field site datum of 100.00 m for the purposes of the elevation survey. The ground surface elevation of all boreholes should be surveyed. The top of piezometer of each monitoring well should also be surveyed; this allows for higher accuracy in the interpretation of groundwater elevations.

6.6 Monitoring Well Development;

Groundwater monitoring wells will be developed on the day of drilling using LDPE tubing and a footvalve. At least three and up to ten well volumes will be removed from the monitoring wells in order to remove as much sediment as possible from the wells. In cases where the monitoring well goes dry prior to purging three well volumes, the well should be purged dry a minimum of three times, waiting at least one hour between purging events. The LDPE tubing should be removed from the monitoring wells following well development.

6.7 Field Measurement of Water Quality Indicators

Field measurement of water quality parameters were collected at regular intervals (0 L, 0.5 well volumes, 1 well volume, 2 well volumes, etc.) during purging of the monitoring wells prior to sampling. The Horiba was placed in a flow-through cell and water quality parameters were measured until they were found to stabilize to within approximately 10% of the previous measurements prior to sample collection.

6.8 Groundwater Sampling

Follow a period of stabilization after drilling and monitoring well development (1 week recommended), static groundwater elevations are measured relative to the top of piezometer at each groundwater monitoring well on the day of sampling, prior to disturbance of the water column.

LOPERS & ASSOCIATES

Following static groundwater elevation measurements, 6 mm LDPE tubing is placed in each of the monitoring wells. The LDPE tubing is connected to silicon tubing, run through a peristaltic pump set to low flow (approximately 0.2-0.5 L/minute) during purging and sampling. The peristaltic pump is used to avoid mixture of sediment into the groundwater column and prevent volatilization during sample collection. The monitoring wells are purged on the day of sampling while water quality parameters were measured and stabilize as noted above.

Groundwater samples are collected in dedicated amber glass bottles and vials or plastic bottles prepared and provided by the analytical laboratory. Analytes and associated preservatives are specified on each bottle by the laboratory. Each bottle sample set will be provided with a unique sample identifier, project number and date of sampling in the field. Samples for PHCs, BTEXs, VOCs, PAHs and general chemistry are unfiltered, while metals samples are to be field filtered using a dedicated 0.45 µm filter for each sample.

LOPERS & ASSOCIATES

Appendix B

Underground Utility Locates

From: To: Subject: Date: solutions@on1call.com Luke Lopers Request 2023108349 March 10, 2023 2:05:55 AM

LOCATE REQUEST CONFIRMATION

REQUEST #: 2023108349

REQUEST PRIORITY: PROJECT WORK

REQUEST TYPE: REGULAR

WORK TO BEGIN DATE: 03/20/2023

Update of Request Project #:LOP23-025B # Call Date: 03/10/2023 02:05:06 AM

Transmit Date: 03/10/2023 02:05:06 AM

REQUESTOR'S CONTACT INFORMATION							
Contractor ID: 343253							
Contact Name: LUKE LOPERS	On-site Contact Name: LUKE LOPERS						
Company Name: LOPERS & ASSOCIATES	On-site Contact #: (613) 327-9073						
Address: 30 LANSFIELD WAY, OTTAWA, ON, K2G3V8							
Email: Luke@Lopers.ca							
Primary Phone #: (613) 327-9073							
Cell Phone #: (613) 327-9073							

DIG INFORMATION					
Region/County: OTTAWA	Work Done for: CITY OF OTTAWA	Pre-Marked: Area Not Pre-			
Community:	Reason for Work:	Marked			
	ENVIRONMENTAL	Property Type: Private			
City: OTTAWA	Dig Method: Machine Dig	Property			
Address: 214, SOMERSET ST E	Depth: More than 15 Feet	Site Meeting: No			
Intersecting Street 1: NELSON ST		Permit #: No			
		Work End Date: 04/20/2023			
Intersecting Street 2: HENDERSON AVE					

ADDITIONAL INFORMATION	QUALIFYING INFORMATION
SITE IS CURRENTLY HAS 3 VACANT ADJOINING	

TOWNHOUSE BUILDINGS PROPOSED TO BE DEMOLISHED. ENVIRONMENTAL BOREHOLES PROPOSED ON NORTH SIDE OF SITE (INSIDE CURRENT BUILDING FOOTPRINT. GEOTECHNICAL BOREHOLES PROPOSED FOR APPROXIMATE CORNERS AND CENTER OF EXISTING BUILDING FOOTPRINT. ENVIRONMENTAL DELINEATION MAY BE REQUIRED, PLEASE LOCATE ENTIRE PROPERTY.

MEMBERS NOTIFIED: The following owners of underground infrastructure in the area of your excavation site have been notified.

Member Name	Station Code	Initial Status		
HYDRO OTTAWA (HOT1)	HOT1	Notification sent		
PROMARK FOR ENBRIDGE GAS (ENOE01)	ENOE01	Notification sent		
CLI FOR ROGERS (ROGOTT01)	ROGOTT01	Notification sent		
CITY OF OTTAWA WATER/SEWER (OTWAWS01)	OTWAWS01	Notification sent		
PROMARK FOR BELL CANADA (BCOE01)	BCOE01	Notification sent		

MAP SELECTION: Map Selection provided by the excavator through Ontario One Call's map tool or through agent interpretation by phone

Name: 214-224 Somerset Start Date: 2023/03/20 Unit / Lot #: All Lots Area: 678.20sq. m

IMPORTANT INFORMATION: Please read.

Defining "NC" - Non-Compliant

- Non-compliant members have not met their obligations under section 5 of the Ontario Underground Infrastructure Notification Act. ON1Call has notified these members to ensure they are aware of your excavation. In this circumstance, should the member not respond, the excavator should contact the member directly to obtain their locates or request a status. ON1Call will not be provided with a locate status from the member regarding this request and therefore, cannot provide further information at this time. For locate status contact information please refer to our website.

You have a valid locate when...

- You have reviewed your locate request information for accuracy. UPDATE your request IMMEDIATELY if changes are needed and obtain a corrected locate request confirmation.

NOTE: Intersecting streets are often suggested by Ontario One Call's system, in some circumstances they may not reflect the closest intersecting streets to your excavation. You can change the intersecting streets before submitting the request by going through the "Review" page of your locate request, and editing any inaccurate information. Intersecting streets are for reference only, and unless you change the streets manually, you will not be asked to correct them if they are chosen by the system. If you don't agree with a street name, make sure to edit the request before you submit it, if you found a mistake after submitting the request, update your requests immediately on the web portal.

- You have obtained locates or clearances from all ON1Call members listed in this request before beginning your dig.

You've met your obligations when...

- You respect the marks and instructions provided by the locators and dig with care; the marks and locator instructions MUST MATCH. You must wait for responses from all members notified on your locate request before beginning to dig..

- You have obtained any necessary permits from the municipality in which you are digging.

- You have made Ontario One Call aware if you have come across any new or unlisted infrastructure in the public right of way AND stopped digging to prevent damages while we review.

- You have arranged for locates for your private lines on your private property - where applicable.

What does "Cleared" mean in the "Initial Status" section?

1. The information that you have provided about your dig will not affect that member's underground infrastructure and they have provided you with a

clearance, if anything about your excavation changes, please ensure that you update your request immediately.

What are the images under "Map Selection"?

1. A drawing created by an excavator directly within Ontario One Call's Web request tool, this is expected to be an accurate rendition of the dig site, and it is the excavator's responsibility to ensure the location matches the information they provide under the 'Dig Location'; section OR;

2. A drawing created by an Ontario One Call agent, this drawing is based on a verbal description by phone of the area by the excavator. Agents may create drawings that are larger than the proposed dig to minimize risk of interpretation. It is the excavator's responsibility to review these map selections for accuracy. Changes can be made by the excavator through the Web request tool, to learn how visit www.ontarioonecall.ca.

3. All drawings dictate which members are notified.

										Page <u>1</u> of	
	+			Prima	ary Locate S	Sheet					
					Reques	t #2023108349					
Letecon Location of underground infras	structure	s Pl	none 613	-723-9	888 Toll Fi	ree: 1-800-3	371-8866		NO	RMAL	
Utilities Located: 🗆 Bell 🔲 Gas	🗌 Hyd	lro Ottawa	🗌 Elexi	con	Revised Exca	avation Date	Excavation	n Date 1 8:00:00	AM	Status <u>PROJECT WOR</u> K	
🗌 Hydro One 🔲 Roge	rs 🗌	360 []Videotroi	n	mm/dd/yyyy		mm/dd/yyyy			Homeowner	
Requested by: LUKE LOPERS		Company LOPERS &	: ASSOCIATI	ES	Phone: (613)-327-907	3 ext.	Fax/email LUKE@LOP	: ERS.CA		Contractor Project	
Appt Date:	Recei 2023-0	ved Date: 03-10 2:14:0	4 AM	Locat	e Address:	214, SOME	RSET ST E			1.10,000	
mmraaryyyy Tyne of work:	mmraar	9999			NELSON ST			City:	ROUNAVE		
ENVIRONMENTAL								0.1.7.	OTTAWA		
Caller's Remarks: MACH. DIG SITE IS CURRENTLY HAS 3 VA NORTH SIDE OF SITE (INSIDE C EXISTING BUILDING FOOTPRIN -75.678545, 45.422548, NB_SE WATER,ROGOTT01 CLI FOR, R	CANT AD URRENT T. ENVIR GMENTS OGOTTO)JOINING TO BUILDING F(DNMENTAL E 2:2, NO_PLA 1 CLI FOR R	WNHOUSE DOTPRINT. (DELINEATION NI:613 241 OGERS (RC	BUILDING GEOTECH N MAY B , BCOEO)GO,ENO	35 PROPOSED 1 HNICAL BOREH E REQUIRED, PL 1 PROMARK FO 1601 PROMARK	TO BE DEMOLI DLES PROPOS LEASE LOCATI R BELL CAN,O FO, ENOE01 P	SHED. ENVIR ED FOR APP E ENTIRE PR)TWAWS01)ROMARK F(RONMENT ROXIMAT OPERTY. CITY OF OR ENBRI	AL BOREHOLE E CORNERS A OT, OTWAWS(DGE,HOT1HYD	IS PROPOSED ON ND CENTER OF 01 CITY OF OTTAW IRO OTTAWA (H,	/A
Bell Gas Mark I Clear Mark I Cle	ar Mar	iroOttawa rk Clear	Street Lig Mark (ahting Clear	Elexicon Mark Clear	HydroOne Mark Cle	ar Mark	jers Clear	360 Mark Clea	Videotron ar Mark Clea	ar
LOCATED AREA: EXC	AVAT	DR SHALL	NOT WO	RK OU	TSIDE LOCA	TED AREA	WITHOUT	OBTA	NING ANOT	HER LOCATE.	
Records Reference: 🔲 GN	<i>l</i> obile	LAC Mu	ultiviewer] Third Party	Notification					
□FRA #		□ GO36	0								
Field Notes, As-Laids,											
Locator Remarks:											
						مما	. Sticker L	lara if 🗖	oquirod		
Excavator shall notify	& rece	ive a clea	arance fr	l rom ut	ility prior to	o excavatio	on for the	BAS	MATERIAL	TYPE: Steel	(ST)
following: Telecon		🗌 High Pr	iority Ca	ble	Cen	tral Office	Vicinity		Plastic (PE)	Copper (CP)
Method of Field Marking	g: []Paint	Stak	es	🗌 Flags	□Offset I	Flags	Oth	er		
Colour Indicator: T	elecon	n = Oranç	je Gas	s = Yel	low Traffi	c / Hydro =	RedS	ewer =	Green V	Vater = Blue	
Caution: Bell and 360 locates for 60 days. Rogers locates a are VOID after 30 days. For u	s are val are valid itility spe	lid for the lif for 90 days ecific detail:	fe of the ex unless an s, see attao	cavation extension ched doo	n, Hydro One – on approval is j :ument(s),	Hydro Ottaw provided by F	a - Enbridg Rogers, Unle	e Gas - ss other	Elexicon Ener wise indicated	gy locates are va , all other utility lo	lid ocates
Caution: Any changes to loc new locate. Privately owned s including remarks, contact On	ation or ervices Itario On	nature of w within the lo e Call at 1 -	ork will red ocated area -800-400-	quire a n a have n - 2255 c	ew locate. The ot been marked or online at ww	excavator m d - check with w.on1call.c	ust not worl h service / om	< outside property	e the located a owner. For all	rea without obtair l locate requests	ning a
Locator Name: BELAIR DAN	IICK		Start Tin	ne:		Mark	& Fax	🗌 Left	on Site	Emailed	
ID # : <u>EMP0019</u>	91		End Tin	ne :		Print:					
Date			Total Ho	ours:		Signatur	e:				
A copy of this Primary Locate Sheet and Auxiliary Locate Sheet(s) must be on site and in the hands of the machine operator during work operations. If sketch and markings do not coincide, the Excavator must obtain a new locate.											
										Page <u>1</u> of _	3_
--	---------------------------------	---	--	---------------------------------------	--	--	---	-----------------------	-----------------------------------	---	----------------
	-			Prima	ary Locate S	heet					
Promark									Request	t #2023108349	
telecon			OTTLoca	ateFol	lowup@Pron	nark-Telec	on.ca				
Location of underground infras	tructure	s Pi	hone 613-	-723-9	1888 Toll Fr	ee: 1-800-3	371-8866		NOR	MAL	
Utilities Located: 🗌 Bell 🕂 Gas	+ Hyd	iro Ottawa	Elexic	con	Revised Exca	vation Date	Excavatio 3/20/2023	n Date 3:00:00 AN	1	Status PROJECT WORK	
🗌 HydroOne 🔲 Roger	s 🗆	360 🗌]Videotron	1	mm/dd/uuyy		mm/dd/www			Homeowner	
Requested by: LUKE LOPERS		Company LOPERS &	ASSOCIATE	s	Phone: (613)-327-9073 (ext.	Fax/ema LUKE@LOF	İI: PERS.CA		Contractor	+
Appt Date:	Recei	ved Date:		Locat	te Address:	214, SOME	RSET ST E			Project	
mm/dd/uuu	3/10/20 mm/dd/	023 2:14:04 A	м		NELSON ST			HEND	ERSON AVE		
Type of work:		1100						City:			
ENVIRONMENTAL									OTTAWA		
Caller's Remarks: MACH, DIG											
SITE IS CURRENTLY HAS 3 VAC NORTH SIDE OF SITE (INSIDE C EXISTING BUILDING FOOTPRIN	ANT AD. URREN T. ENVIF	JOINING TOW T BUILDING F CONMENTAL	NNHOUSE B FOOTPRINT. DELINEATIO	UILDING GEOTE N MAY I	3S PROPOSED T CHNICAL BOREF BE REQUIRED, P	O BE DEMOLIS HOLES PROPO LEASE LOCAT	SHED. ENVI DSED FOR A	RONMEN PPROXIM	TAL BOREHOLE ATE CORNERS	S PROPOSED ON AND CENTER OF	
-75.678545, 45.422548, NB_SEGI WATER, ROGOTT01 CLI FOR, RC	JENTS:: GOTTO	2, NO_PLAN: 1 CLI FOR RC	::613 241, BC DGERS (ROC	OE01 P 30,ENO	ROMARK FOR BE	ELL CAN,OTW O, ENOE01 PF	AWS01 CIT ROMARK FO	OF OT, C	TWAWS01 CITY GE,HOT1HYDR	OF OTTAWA	
Bell Gas Mark IClear Mark IClea 1	r Mar	iroOttawa rk Clear 1	Street Lig Mark C	hting Jear	Elexicon Mark Clear	HydroOne Mark Cle	ar Mark	gers Clear	360 Mark Clea	Videotron r Mark Clea	ar
LOCATED AREA: EXC	AVATO	OR SHALL	NOT WO	<u>RK OU</u>	TSIDE LOCA	TED AREA	WITHOUT	OBTA	NING ANOT	HER LOCATE.	
Records Reference: GM	obile	🗙 LAC Mu	ultiviewer	D	X Third Party	Notification					
Field Notes, As-Laids, PTC Service Sketches:	CPU	2309	2-1								
Locator Remarks:	,						N/	A			
Executor shall notify (2 FOCE	ive a cle	arance fr		lity prior to	Apply Apply	/ Sticker I	Here if R	equired	TVDE- Steel	(ST)
following: Telecon	rece	High Pr	riority Cal	ble	Cen ⁴	tral Office	Vicinity	e luna I∏F	MALERIAL Plastic (PE)		(al) (CP)
Method of Field Marking	;	Paint	Stake	es	X Flags	Offset	Flags		er		
Colour Indicator: Te	Песоп	1 = Orang	je Gas	= Yel	llow Traffic	: / Hydro =	Red	Sewer =	Green W	/ater = Blue	17.4
for 60 days. Rogers locates are VOID after 30 days. For ut	are val e valid ility spo	id for the lif for 90 days acific detail	ie of the ex ; unless an / <u>s, see attac</u>	.cavatio extensi ihed dor	n. Hydro One - on approval is p cument(s).	Hydro Ottaw provided by F	a – Enbride Rogers, Unle	se Gas - ess other	Elexicon Energ wise indicated,	y locates are va all other utility k	ilid ocates
Caution: Any changes to loca new locate. Privately owned se including remarks, contact Ont	stion or rvices ario On	nature of w within the k e Call at 1 -	ork will req ocated area -800-400-	uire a n have n • 2255 (new locate. The lot been marked or online at ww	excavator m - check with w.on1call.c	ust not wor h service / om	k outside property	the located ar owner. For all	rea without obtai locate requests	ning a
Locator Name: BELAIR DANI	ск		Start Tirr	ne:_0	900	Mark	& Fax	🗌 Left	on Site	X Emailed	
ID #: EMP00199	и		End Tim	ne :0	915	Print:					-
Date MARC	CH 1	3 2023	Total Ho	urs:_1	5MINS	Signatur	e:				
A copy of this Primary I operator during work o	_ocate	e Sheeta ions Ifsl	and Auxil ketch and	iary L d mari	ocate Shee kings do not	t(s) must l t coincide	be on sit	e and i avator	n the hands must obtai	s of the mach n a new loca	nine te

This form revised January 2023

Sketches

Valve : 368030V003

Location

Address:	222	То		SOMERSET ST W	City:	00		
Qualifier:			XStreet1:	METCALFE ST	Dist:		Ward:	Ward 14
Unit:			XStreet2:	ELGIN ST	Block:		S Plan:	

Sketch Information

Looking:	south	North Degree:	180]] .
Facing:	front of	The:	building			
Start at the:	left corner	Move straight out:	18.5 m	10 5		
Then go:	right	For:	2.4 m	18.5 m	274,271	N
Other Structu	re:	ID:]	0	
Drawing Code	:					2.4 m

Attributes

Status	OPERATING	Ownership	PUBLIC	Install Date	
Warming	Ν	Function	SERVICE	Condition Rating	
Normally Open?	YES	Currently Open?	YES		

Valve Characteristics

Туре	G	Manufacturer		Model	
Size (mm)	152	Year	0	Max Torque (ft.lb)	25
Housing	VB	Turns to Close	19	Dir to Open	RIGHT
Op Nut Size (mm)	152	Op Nut Depth (m)	1.7	Bypass Size (mm)	0
Joint Type	MECH			Tapping Valve Sleeve (TVS) ?	NO

Water Service : S0340186001

Location

Address:	214	То		SOMERSET ST E	City:	00		
Qualifier:			XStreet1:	HENDERSON AVE	Dist:		Ward:	Ward 12
Unit:			XStreet2:	NELSON ST	Block:		S Plan:	

Sketch Information

Looking:	unknown	North Degree:]	
Facing:	front of	The:	building		
Start at the:	right corner	Move straight out:	1.5 m	1 5	
Then go:	left	For:	1.5 m	1.5 m	
Other Structur	re:	ID:]	0
Drawing Code	:				1.5 m

Attributes

Status	OPERATING	Ownership	PUBLIC	Install Date	1996-Oct-30
Billing Account		Frost Warning		Condition Rating	
Tracer?					

Service Characteristics

Located On:	Depth(m)	Diameter(mm)	Material		
Public(At Main)	8	20	CO		
Private(At Post)	0				
Insulation Type		Soil		Joint Type	
Bedding		Backfill		Surface	
Length	0			_	
		_			

Water Service : S0340186002

Location

Address:	216	То		SOMERSET ST E	City:	00		
Qualifier:			XStreet1:	HENDERSON AVE	Dist:		Ward:	Ward 12
Unit:			XStreet2:	NELSON ST	Block:		S Plan:	

Sketch Information

Looking:	unknown	North Degree:				
Facing:	front of	The:	building			
Start at the:	left corner	Move straight out:	1.2 m	1.2		
Then go:	right	For:	1.8 m	1.2 m		
Other Structu	re:	ID:			0	
Drawing Code	:					1.8 m

Attributes

Status	OPERATING	Ownership	PUBLIC	Install Date	1996-Oct-30
Billing Account		Frost Warning		Condition Rating	
Tracer?					

Service Characteristics

Located On:	Depth(m)	Diameter(mm)	Material	_	
Public(At Main)	8	20	CO		
Private(At Post)	0				
Insulation Type		Soil		Joint Type	
Bedding		Backfill		Surface	
Length	0				
		_			

Water Service : S0340188001

Location

Address:	218	То		SOMERSET ST E	City:	00		
Qualifier:			XStreet1:		Dist:		Ward:	Ward 12
Unit:			XStreet2:		Block:		S Plan:	

Sketch Information

Looking:	unknown	North Degree:			
Facing:	front of	The:	building		
Start at the:	right corner	Move straight out:	1.2 m	1.2	
Then go:	left	For:	2.7 m	1.2 m	
Other Structu	re:	ID:]	0
Drawing Code	:			-	2.7 m

Attributes

Status	OPERATING	Ownership	PUBLIC	Install Date	1996-Oct-30
Billing Account		Frost Warning		Condition Rating	
Tracer?					

Service Characteristics

Located On:	Depth(m)	Diameter(mm)	Material	_	
Public(At Main)	8	20	CO		
Private(At Post)	0				
	_			_	
Insulation Type		Soil		Joint Type	
Bedding		Backfill		Surface	
Length	0				

Water Service : S0340188002

Location

Address:	220	То		SOMERSET ST E	City:	00		
Qualifier:			XStreet1:		Dist:		Ward:	Ward 12
Unit:			XStreet2:		Block:		S Plan:	

Sketch Information

Looking:	unknown	North Degree:			
Facing:	front of	The:	other		
Start at the:	right corner	Move straight out:	1.2 m	1.2	
Then go:	left	For:	7.9 m	1.2 m	
Othor Structur				1	<u> </u>
Drawing Code	:				7.9 m

Attributes

Status	OPERATING	Ownership	PUBLIC	Install Date	1996-Oct-30
Billing Account		Frost Warning		Condition Rating	
Tracer?					

Service Characteristics

Located On:	Depth(m)	Diameter(mm)	Material	_	
Public(At Main)	8	20	CO		
Private(At Post)	0				
				_	
Insulation Type		Soil		Joint Type	
Bedding		Backfill		Surface	
Length	0			_	
		_			

Water Service : S0340188003

Location

Address:	222	То		SOMERSET ST E	City:	00		
Qualifier:			XStreet1:		Dist:		Ward:	Ward 14
Unit:			XStreet2:		Block:		S Plan:	

Sketch Information

Looking:	unknown	North Degree:				
Facing:	front of	The:	building			
Start at the:	left corner	Move straight out:	0.9 m	0.0 m		
Then go:	right	For:	8.5 m	0.9 m		
Other Structur	re:	ID:			0	
Drawing Code	:					8.5 m

Attributes

Status	OPERATING	Ownership	PUBLIC	Install Date	1996-Oct-30
Billing Account		Frost Warning		Condition Rating	
Tracer?					

Service Characteristics

Located On:	Depth(m)	Diameter(mm)	Material	_	
Public(At Main)	8	20	CO		
Private(At Post)	0				
				_	
Insulation Type		Soil		Joint Type	
Bedding		Backfill		Surface	
Length	0			_	
		_			

Water Service : S0340188004

Location

Address:	224	То		SOMERSET ST E	City:	00		
Qualifier:			XStreet1:	HENDERSON AVE	Dist:		Ward:	Ward 12
Unit:			XStreet2:	NELSON ST	Block:		S Plan:	

Sketch Information

Looking:	unknown	North Degree:				
Facing:	front of	The:	building			
Start at the:	left corner	Move straight out:	0.9 m	0.0		
Then go:	right	For:	2.4 m	0.9 m	2742.53	
Other Structu	re:	ID:]	0	
Drawing Code	:			-	2.	4 m

Attributes

Status	OPERATING	Ownership	PUBLIC	Install Date	1996-Oct-30
Billing Account		Frost Warning		Condition Rating	
Tracer?					

Service Characteristics

Located On:	Depth(m)	Diameter(mm)	Material	_	
Public(At Main)	8	20	CO		
Private(At Post)	0				
Insulation Type		Soil		Joint Type	
Bedding		Backfill		Surface	
Length	0				
		_			

Water Service : S0440050000

Location

Address:	222	То		SOMERSET ST W	City:	00		
Qualifier:			XStreet1:	METCALFE ST	Dist:		Ward:	Ward 14
Unit:			XStreet2:	ELGIN ST	Block:		S Plan:	

Sketch Information

Looking: Facing:	south front of	North Degree: The:	180 building			
Start at the:	left corner	Move straight out:	18.5 m	10 5		
Then go:	right	For:	2.4 m	18.5 m	-	Ň
Other Structur	re:	ID:]	0	
Drawing Code	: 368030V003					2.4 m

Attributes

Status	OPERATING	Ownership	PUBLIC	Install Date	
Billing Account		Frost Warning		Condition Rating	
Tracer?					

Service Characteristics

Located On:	Depth(m)	Diameter(mm)	Material	_	
Public(At Main)	0	51	CO		
Private(At Post)	0				
Insulation Type		Soil		Joint Type	
Bedding		Backfill		Surface	
Length	0				
		_			

💐 CANADIAN				ROGER	s			ON 1 Call Ticket # :
LOCATOR	S INC.		Pri	mary Locat	te She	eet		2023108349
Ph: (905)479-5	aty 5674 Email	: ontario	canadianlo	ocators.com				
Contractor / Excavate	or:				Conta	ct Name :		
Tel:	Alt. Phon	e:	Email :	F10 2592 - 04302	LUKE	LOPERS		
613-327-9073 Received Date :	613-32 Excavatio	7-9073 on Date :	luke@lop Revised Exc	ers.ca	Type o	f Work :		
Mar 10 2023	Mar 20	2023			ENVI	RONMENTAL		
214 SOMERSET S'	ΤE				OTTA	WA, ONTARIO		
Nearest Intersection NELSON ST & HEI	: NDERSON AVI	E						
Method of Field Mark	ing : 🗹 F	Paint 🗌 Stal	kes 🗌 Flags	10				
Caller's Remarks (Ad SITE IS CURREN' BOREHOLES PROPO PROPOSED FOR AI MAY BE REQUIREN VALUES: [Area No	ditional Info): TLY HAS 3 V OSED ON NOI PPROXIMATE D, PLEASE 1 Dt Pre-Mar	VACANT ADJ RTH SIDE O CORNERS A LOCATE ENT ked], PROP	DINING TOW F SITE (IN ND CENTER IRE PROPER ERTY TYPES	NHOUSE BUIL SIDE CURREN OF EXISTING TY. Area No :[Private P	DINGS T BUI BUII D Mar Proper	PROPOSED TO BE I LDING FOOTPRINT. DING FOOTPRINT. E ked, TOOLS USED: ty], SITE MEETING	GEMOLISH GEOTECH ENVIRONM [Machine G:No, PR	NED. ENVIRONMENTAL NNICAL BOREHOLES MENTAL DELINEATION Dig], PREMARKED NOJECT NUMBE
Utilities Marked :	2	w.szerace				Do	es this loca	ate have multiple work areas
Coaxial Plant	Fibre Optic	s Plant					TYes ⊦	low many?
Total Length :	Total Length :	-		-	-		INO	
m	4	m						
	Field : Th	sketch and his locate A	d Located is for RO pply sti	Area show GERS plan cker her	vn on ut/in ve	frastructure ON frastructure ON OROGE HIGH RISK FIBE IN WORK A GH RISK FIBER CABLE IS P WORK AREA. EXCAVATO ROGERS LOCATE DESK TO EXCAVATION. SEE ATT FIBER PROCESS DO	ERS ERCABL REA! PRESENT WI DR MUST NO 72 HOURS P ACHED HIG DOCUMENT.	S) E THIN THE ITIFY RIOR I RISK
CAUTION : Lo	cate is VOI	D after 90	days !					
CAUTION : Ha Auxiliary Loca area or nature For all cut cab	nd dig wit ate Sheet(s of work ro ble, please 1-800-	thin one (1 s) contain equires a call : -265-9501	I) meter o s all know new locat	r 3.28 feet o n ROGERS e.	of ma S infr	arkings. The Loc astructure. Any s Comments :	ated Ar	rea defined on the es to excavation
David Stoddard	Start Time	e:	End Time :					
Mar 15 2023 A copy of this operator of	8:30 Al s Primary Lo during work	M ocate Sheet operations.	and Auxilian Should ske	y Locate She tch and mark	et(s) r ings n	nust be on site and i ot coincide, a new lo	in the ha	nds of the machine IST be obtained.

From:	<u>Michelle Miville - EXT</u>
То:	Locate Screening; Graeme Juhasz
Cc:	Tabatha Waugh; Luke Lopers
Subject:	RE: HIGH RISK FIBRE WATCH: 214 Somerset St E, Ottawa - TICKET 2023108349 - COMPANY NAME:LOPERS & ASSOCIATES
Date:	March 16, 2023 7:47:26 AM
Attachments:	image001.png

Good Morning,

Please proceed with the civil worked based on Hydrovacing and Hand Digging within 1m of the Rogers Plant. If structure is required to be exposed notify Rogers immediately to have a Technician observe and inspect. If you have any concerns or questions email us and we will respond as soon as possible.

Thank you,

Michelle Miville Construction Coordinator

Network Construction & Commissioning - HFC Network Implementation 475 Richmond Road Ottawa, ON K2A 3Y8

michelle.miville@rci.rogers.com

OROGERS.

From: Locate Screening <LocateScreening@topshelfsolutions.ca>
Sent: March 15, 2023 5:13 PM
To: Graeme Juhasz <Graeme.Juhasz@rci.rogers.com>
Cc: Michelle Miville - EXT <Michelle.Miville@rci.rogers.com>; Tabatha Waugh
<Tabatha.Waugh@rci.rogers.com>; Locate Screening <LocateScreening@topshelfsolutions.ca>;
Luke@lopers.ca
Subject: HIGH RISK FIBRE WATCH: 214 Somerset St E, Ottawa - TICKET 2023108349 - COMPANY
NAME:LOPERS & ASSOCIATES
Importance: High

Good Afternoon,

Please see below for contractor information for high-risk fibre watch. Site map attached.

Ticket #: 2023108349 Site Address: 214 SOMERSET ST E Contractor Name: LOPERS & ASSOCIATES Work to begin date: March 30, 2023. Site Contact name & cell: Luke Lopers Cell: 613-327-9073 Type of Work: Environmental – Bore holes SITE IS CURRENTLY HAS 3 VACANT ADJOINING TOWNHOUSE BUILDINGS PROPOSED TO BE DEMOLISHED. ENVIRONMENTAL BOREHOLES PROPOSED ON NORTH SIDE OF SITE (INSIDE CURRENT BUILDING FOOTPRINT. GEOTECHNICAL BOREHOLES PROPOSED FOR APPROXIMATE CORNERS AND CENTER OF EXISTING BUILDING FOOTPRINT. ENVIRONMENTAL DELINEATION MAY BE REQUIRED, PLEASE LOCATE ENTIRE PROPERTY.

We will be drilling boreholes along the south portion of the Property (see attached sketch). This looks to be approximately 10 m south of the high risk fibre shown on the attached locates.

Thank you, Jenn Top Shelf Screening

This communication is confidential. We only send and receive email on the basis of the terms set out at <u>www.rogers.com/web/content/emailnotice</u>

Ce message est confidentiel. Notre transmission et réception de courriels se fait strictement suivant les modalités énoncées dans l'avis publié à <u>www.rogers.com/aviscourriel</u>

Bell Plant - OE01 CONDITIONAL CLEARANCE

CONDITIONAL CLEARANCE # 2023108349

ONE CALL TICKET #: 2023108349

Issued By: Bell Plant - OE01

For Station Code: BCOE01

Location: 214 SOMERSET ST E

Work Type: ENVIRONMENTAL

Date Issued: 03/10/2023 02:05:45 AM

Primary Contact: LUKE LOPERS

Email Address: Luke@Lopers.ca

Fax:

CONDITION(S)

ALL DIGGING ON PRIVATE PROPERTY ONLY (UP TO BUT NOT CROSSING THE ANY STREET SIDE OF PROPERTY LINE)

As there may be other buried utilities in your dig area, you are advised to contact all buried utility owners for your work area and obtain the necessary locates/clearances.

Please pay special attention to who/what this Clearance is for. Please review the document carefully and compare it to your locate request to ensure you understand what you are being cleared for. We are not responsible for any damages that result from misunderstanding what utility you are cleared for on this paperwork.

If you have any questions, concerns regarding your conditional clearance or to report a damage,

please call the Bell Screening Centre at 866-480-5901.

LOPERS & ASSOCIATES

Appendix C

Borehole Logs

ENVIRONMENTAL BH LOP24-025C - BOREHOLE LOG - BH1-23 & BH1-24 TO BH4-24 - 214-224 SOMERSET ST E, OTTAWA.GPJ GINT STD CANADA.GDT 24-12-1

BH1-23

BH3D-24

LOPERS & ASSOCI	ATES Lopers & Associa 30 Lansfield Way Ottawa, Ontario	ates / K2G3V8	BH4-24 PAGE 1 OF 1
CLIENT Ottawa Community Housing		PROJECT NAME Phase Two Environme	ental Site Assessment
PROJECT NUMBER LOP24-025C		_ PROJECT LOCATION _214-224 Somerse	et Street East, Ottawa, ON
DATE STARTED _24-10-29	COMPLETED 24-10-29	_ GROUND ELEVATION _65.21 m HC	DLE SIZE 5 cm
DRILLING CONTRACTOR George Do	wning Estate Drilling	_ GROUND WATER LEVELS:	
DRILLING METHOD Track Mounted C	CME 55	- AFTER DRILLING	
LOGGED BY L. Lopers	CHECKED BY D. Plenderleith	_	
NOTES			
DEPTH (m) SAMPLE TYPE NUMBER NUMBER BLOW COUNTS (N VALUE) (N VALUE) ENVIRONMENTAL DATA	GRAPHIC LOG	TERIAL DESCRIPTION	WELL DIAGRAM
GB 1 Vapor = 0	Silty Sand with some compact, moist.	e gravel, clay and organics. Brown,	
	B	ottom of hole at 0.60 m.	

Г

LOPERS & ASSOCIATES

Appendix D

Certificates of Equipment Calibration

The RKI Instrument listed below has been inspected and calibrated following the Manufacturer's specifications and methods.

Instrument Model:	RKI Eagle 2	<u>Serial Number:</u>	<u>E2F982</u>	Calibration Date:	March 27, 2023
<u>SENSOR</u>	<u>CALIBRATION</u> GAS STANDARD	<u>CALIBRATION GAS</u> <u>CONCENTRATION</u>	<u>READING PRIOR</u> TO ADJUSTMENT	<u>INSTRUMENT</u> SPAN SETTINGS	<u>ALARM LEVEL</u> SETTING
VOC	lsobutylene LOT# 302-402473275-56	100 PPM	100 PPM	100 PPM	400 & 1000 PPM
Combustible	Methane LOT# 1496966	50% LEL	<500 PPM	"ME" MODE	
Combustible	Hexane LOT# 302-402216613 A- 35	15% LEL	15% LEL	15% LEL	10 & 50% LEL
Combustible	Hexane LOT# 302-402216613A-35	15% LEL	15% LEL	15% LEL	10 & 50% LEL

The calibration gas standard used is considered to be a certified standard and is traceable to the National Institute of Standards and Technology (NIST). Certificate of Analysis is available upon request.

The instrument indicated above is now certified to be operating within the Manufacturer's specifications. This does not eliminate the requirement for regular maintenance and pre-use sensor response checks in order to ensure continued complete and accurate operating condition.

Certified By:

Jeff Loney

Maxim Environmental and Safety Inc.

sales@maximenvironmental.com www.maximenvironmental.com

Head Office: 9 - 170 Ambassador Dr., Mississauga, ON L5T 2H9 (905)670-1304 | Toll Free (888)285-2324

Ottawa Office: 9 - 148 Colonnade Rd., Ottawa, ON K2E 7R4 (613)224-4747 | Toll Free (888)285-2324

The RKI Instrument listed below has been inspected and calibrated following the Manufacturer's specifications and methods.

Instrument Model:	<u>RKI Eagle 2</u>	<u>Serial Number:</u>	<u>E2C465</u>	Calibration Date:	<u>October 24, 2024</u>
<u>SENSOR</u>	<u>CALIBRATION</u> GAS STANDARD	CALIBRATION GAS	<u>READING PRIOR</u> TO ADJUSTMENT	<u>INSTRUMENT</u> SPAN SETTINGS	<u>ALARM LEVEL</u> <u>SETTING</u>
VOC	lsobutylene LOT# 22-9430	100 PPM	99 PPM	100 PPM	400 & 1000 PPM
Combustible	Methane LOT# 23-9790	50% LEL	<500 PPM	"ME" MODE	
Combustible	Hexane LOT# 23-9463	1650 PPM	1450 PPM	15% LEL FULL GAS RESPONSE MODE	10 & 50% LEL
Combustible	Hexane LOT# 23-9463	15% LEL	15% LEL	15% LEL "METHANE ELIMINATION" MODE	10 & 50% LEL

The calibration gas standard used is considered to be a certified standard and is traceable to the National Institute of Standards and Technology (NIST). Certificate of Analysis is available upon request.

The instrument indicated above is now certified to be operating within the Manufacturer's specifications. This does not eliminate the requirement for regular maintenance and pre-use sensor response checks in order to ensure continued complete and accurate operating condition.

Certified By:

Jeff Loney

MAXIM Environmental and Safety Inc.

sales@maximenvironmental.com www.maximenvironmental.com

in

0

9 - 170 Ambassador Dr., Mississauga, ON L5T 2H9 (905)670-1304 | Toll Free (888)285-2324

9 - 148 Colonnade Rd., Ottawa, ON K2E 7R4 (613)224-4747 | Toll Free (888)285-2324

The HORIBA Instrument listed below has been inspected and calibrated following the Manufacturer's specifications and methods.

Instrument Model:	HORIBA U-52	<u>Serial Number:</u>	<u>KFS6BUM3</u>	Calibration Date:	April 4, 2023
<u>2-POINT pH</u>	<u>CONDUCTIVITY</u>	TURBIDITY	DISSOLVED OXYGEN	OXIDIZATION-REDUCTION POTENTIAL	TEMPERATURE
4.00 pH, 7.00 pH	4.49mS/cm ZERO CHECKED	0 & 100 NTU	9.09 mg/L @ 20 DegC SODIUM SULFITE ZERO	240mV	Fisher Scientific s/n 210412377
AutoCal 4.00 pH Solution LOT # 2GK364	AutoCal Solution LOT # 2GK364	AutoCal Solution LOT# 2GK364	Oakton Zero Solution LOT # 754262	Hanna ORP LOT # 5766	exp: May 18/2023
Expiry Date: November 1, 2023	Expiry Date: November 1, 2023	Expiry Date: November 1, 2023	Expiry Date: May 1, 2023	Expiry Date: October 1, 2025	
pH 7.00 LOT # 2GK014	@25 DegC LOT # 1GF256	Turb. 100 NTU LOT # A1196			
Expiry Date: November 1, 2024	Expiry Date: May 31, 2023	Expiry Date: February 28, 2024			

The calibration standard used is considered to be a certified standard and is traceable to the National Institute of Standards and Technology (NIST). Certificate of Analysis is available upon request.

The instrument indicated above is now certified to be operating within the Manufacturer's specifications. This does not eliminate the requirement for regular maintenance and pre-use sensor response checks in order to ensure continued complete and accurate operating condition.

Certified By: Jeff Loney

Maxim Environmental and Safety Inc.

sales@maximenvironmental.com www.maximenvironmental.com

Head Office: 9 - 170 Ambassador Dr., Mississauga, ON L5T 2H9 (905)670-1304 | Toll Free (888)285-2324

Ottawa Office: 9 - 148 Colonnade Rd., Ottawa, ON K2E 7R4 (613)224-4747 | Toll Free (888)285-2324

The HORIBA Instrument listed below has been inspected and calibrated following the Manufacturer's specifications and methods.

Instrument Model:	HORIBA U-52	<u>Serial Number:</u>	<u>RS2AMWKL</u>	Calibration Date:	<u>November 12, 2024</u>
<u>2-POINT pH</u>	<u>CONDUCTIVITY</u>	TURBIDITY	DISSOLVED OXYGEN	OXIDIZATION-REDUCTION POTENTIAL	TEMPERATURE
4.00 рН, 7.00 рН	4.49mS/cm ZERO CHECKED	0 & 100 NTU	8.86 mg/L @ 21.3 DegC SODIUM SULFITE ZERO	240mV	Fisher Scientific s/n 230606647
AutoCal 4.00 pH Solution LOT # 4GH0809	AutoCal Solution LOT # 4GH0809	AutoCal Solution LOT# 4GH0809	Oakton Zero Solution LOT# 803313	Hanna ORP LOT # 69	
Expiry Date: August 1, 2025	Expiry Date: August 1, 2025	Expiry Date: August 1, 2025	Expiry Date: May 1, 2025	Expiry Date: April 1, 2029	
pH 7.00 LOT # 4GF0046	@25 DegC LOT # 4GH0809	Turb. 100 NTU LOT # A4152			
Expiry Date: June 1, 2026		Expiry Date: June 1, 2026			

The calibration standard used is considered to be a certified standard and is traceable to the National Institute of Standards and Technology (NIST). Certificate of Analysis is available upon request.

The instrument indicated above is now certified to be operating within the Manufacturer's specifications. This does not eliminate the requirement for regular maintenance and pre-use sensor response checks in order to ensure continued complete and accurate operating condition.

Certified By:

Jason Ashe

MAXIM Environmental and Safety Inc.

sales@maximenvironmental.com www.maximenvironmental.com

9 - 170 Ambassador Dr., Mississauga, ON L5T 2H9 (905)670-1304 | Toll Free (888)285-2324

9 - 148 Colonnade Rd., Ottawa, ON K2E 7R4 (613)224-4747 | Toll Free (888)285-2324 LOPERS & ASSOCIATES

Appendix E

Laboratory Certificates of Analysis

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Lopers & Associates

30 Lansfield Way Ottawa, ON K2G 3V8 Attn: Luke Lopers

Client PO: Project: LOP23-025B Custody: 141120

Report Date: 11-Apr-2023 Order Date: 30-Mar-2023

Order #: 2313385

This Certificate of Analysis contains analytical data applicable to the following samples as submitted :

Paracel ID 2313385-01

Client ID BH1-23-SS1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Order	#:	231	3385
-------	----	-----	------

Report Date: 11-Apr-2023 Order Date: 30-Mar-2023

Project Description: LOP23-025B

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	10-Apr-23	10-Apr-23
PHC F1	CWS Tier 1 - P&T GC-FID	10-Apr-23	10-Apr-23
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	11-Apr-23	11-Apr-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	30-Mar-23	3-Apr-23
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	4-Apr-23	4-Apr-23
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	31-Mar-23	3-Apr-23
Solids, %	CWS Tier 1 - Gravimetric	30-Mar-23	31-Mar-23

Client PO:

Report Date: 11-Apr-2023

Order Date: 30-Mar-2023

Project Description: LOP23-025B

	Client ID:	BH1-23-SS1	-	-	-
	Sample Date:	30-Mar-23 09:00	-	-	-
	Sample ID:	2313385-01 Soil	-	-	-
Physical Characteristics	MDL/Units	301	ļ <u>-</u> ļ	-	-
% Solids	0.1 % by Wt.	91.4	_	-	-
Metals		01.1	ļļ		
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	3.3	-	-	-
Barium	1.0 ug/g dry	156	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	6.3	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	41.2	-	-	-
Cobalt	1.0 ug/g dry	9.6	-	-	-
Copper	5.0 ug/g dry	23.9	-	-	-
Lead	1.0 ug/g dry	36.6	-	-	-
Molybdenum	1.0 ug/g dry	1.3	-	-	-
Nickel	5.0 ug/g dry	25.8	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	37.9	-	-	-
Zinc	20.0 ug/g dry	59.8	-	-	-
Volatiles			· · · · ·		
Benzene	0.02 ug/g dry	<0.02	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
Toluene-d8	Surrogate	96.8%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<40 [1]	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	236	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	397 [2]	-	-	-
F4G PHCs (gravimetric)	50 ug/g dry	350	-	-	-
Semi-Volatiles					-

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Report Date: 11-Apr-2023

Order Date: 30-Mar-2023

Project Description: LOP23-025B

	F		1		
	Client ID:	BH1-23-SS1	-	-	-
	Sample Date:	30-Mar-23 09:00	-	-	-
	Sample ID:	2313385-01	-	-	-
	MDL/Units	Soil	-	-	-
Acenaphthene	0.02 ug/g dry	0.05	-	-	-
Acenaphthylene	0.02 ug/g dry	0.03	-	-	-
Anthracene	0.02 ug/g dry	0.16	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	0.56	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	0.56	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.66	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.32	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.38	-	-	-
Chrysene	0.02 ug/g dry	0.51	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.10	-	-	-
Fluoranthene	0.02 ug/g dry	1.37	-	-	-
Fluorene	0.02 ug/g dry	0.05	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.33	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	-
Naphthalene	0.01 ug/g dry	<0.01	-	-	-
Phenanthrene	0.02 ug/g dry	0.64	-	-	-
Pyrene	0.02 ug/g dry	1.12	-	-	-
2-Fluorobiphenyl	Surrogate	106%	-	-	-
Terphenyl-d14	Surrogate	115%	-	-	-

Order #: 2313385

Report Date: 11-Apr-2023

Order Date: 30-Mar-2023

Project Description: LOP23-025B

Method Quality Control: Blank

	Reporting		Source		%REC		RPD	RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	na/a						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
F4G PHCs (gravimetric)	ND	50	ug/g						
Metals	ND	00	49/9						
Antimony	ND	1.0	ua/a						
Anumony		1.0	ug/g						
Arsenic		1.0	ug/g						
Bandlium		1.0	ug/g						
Beryllum	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ua/a						
Benzo [g.h.i] pervlene	ND	0.02	ua/a						
Benzo [k] fluoranthene	ND	0.02	ua/a						
Chrysene	ND	0.02	ua/a						
Dibenzo [a h] anthracene	ND	0.02	na/a						
Fluoranthene	ND	0.02	na/a						
Fluorene	ND	0.02	na/a						
Indeno [1 2 3-cd] pyrene	ND	0.02	na/a						
1-Methylnanhthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)		0.02	ug/g						
Nanhthalene		0.04	ug/g						
Phenanthrene		0.07	ug/g						
Pyrene		0.02	ug/g						
Surrogate: 2 Elucrobinhenvl	1 11	0.02	ug/g		108	50 140			
	1.44		ug/g		100	50-140			
Surrogate: Terphenyi-d14	1.49		ug/g		112	50-140			
volatiles		0.05							
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ioluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	2.44		ug/g		76.3	50-140			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Method Quality Control: Duplicate

	Reporting		Source		%REC		RPD		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals									
Antimony	ND	1.0	ua/a	ND			NC	30	
Arsenic	44	1.0	na/a	44			0.4	30	
Barium	222	1.0	ua/a	200			10.4	30	
Beryllium	10	0.5	ug/g	1.0			3.8	30	
Boron	13.8	5.0	ug/g	14.6			5.0	30	
Cadmium		0.5	ug/g				NC	30	
Chromium	26.6	0.J	ug/g	26.7			0.2	30	
Cabalt	0.0	5.0	ug/g	30.7			0.3	30	
Copar	9.2	1.0	ug/g	9.5			2.9	30	
Copper	20.7	5.0	ug/g	21.3			3.3	30	
Lead	5.4	1.0	ug/g	5.7			4.6	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	23.9	5.0	ug/g	25.1			4.9	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	44.4	10.0	ug/g	44.9			1.2	30	
Zinc	41.8	20.0	ug/g	41.9			0.2	30	
Physical Characteristics									
% Solids	75.9	0.1	% by Wt.	76.6			0.9	25	
Semi-Volatiles									
Acenanhthene	0 072	0.02	ua/a	0.054			29.0	40	
Acenaphthylene	0.032	0.02	ug/g	0.032			0.5	40	
Anthracene	0.238	0.02	ug/g	0.002			38.3	40	
Renzo [2] anthracene	0.200	0.02	ug/g	0.557			10.2	40	
Benzo [a] antinacene Benzo [a] pyrene	0.675	0.02	ug/g	0.557			17.0	40	
Benzo [b] flueranthone	0.000	0.02	ug/g	0.007			21.2	40	
	0.022	0.02	ug/g	0.004			21.3	40	
Benzo [g,n,i] perviene	0.364	0.02	ug/g	0.325			10.7	40	
	0.462	0.02	ug/g	0.376			19.9	40	
Chrysene	0.644	0.02	ug/g	0.512			22.7	40	
Dibenzo [a,h] anthracene	0.121	0.02	ug/g	0.103			15.8	40	
Fluoranthene	1.67	0.02	ug/g	1.37			19.7	40	
Fluorene	0.066	0.02	ug/g	0.049			30.7	40	
Indeno [1,2,3-cd] pyrene	0.393	0.02	ug/g	0.326			18.6	40	
1-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
2-Methylnaphthalene	0.026	0.02	ug/g	ND			NC	40	
Naphthalene	0.034	0.01	ug/g	ND			NC	40	
Phenanthrene	0.895	0.02	ug/g	0.638			33.6	40	
Pyrene	1.34	0.02	ug/g	1.12			17.9	40	
Surrogate: 2-Fluorobiphenyl	1.45		ug/g		99.3	50-140			
Surrogate: Terphenyl-d14	1.64		ug/g		112	50-140			
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/q	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	2.68		ug/g		73.8	50-140			

Page 6 of 9

Order #: 2313385

Report Date: 11-Apr-2023

Order Date: 30-Mar-2023

Project Description: LOP23-025B

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	200	7	ug/g	ND	100	80-120			
F2 PHCs (C10-C16)	146	4	ug/g	ND	127	60-140			
F3 PHCs (C16-C34)	365	8	ug/g	ND	130	60-140			
F4 PHCs (C34-C50)	229	6	ug/g	ND	129	60-140			
F4G PHCs (gravimetric)	1020	50	ug/g	ND	102	80-120			
Metals			00						
Arsenic	51.3	1.0	ua/a	1.7	99.0	70-130			
Barium	136	1.0	ua/a	79.9	111	70-130			
Bervllium	47.8	0.5	ua/a	ND	94.7	70-130			
Boron	49.5	5.0	ua/a	5.8	87.4	70-130			
Cadmium	50.8	0.5	ua/a	ND	102	70-130			
Chromium	64.0	5.0	ua/a	14.7	98.6	70-130			
Cobalt	51.8	1.0	ua/a	3.8	95.9	70-130			
Copper	52.1	5.0	ua/a	8.5	87.1	70-130			
Lead	42.2	1.0	ua/a	2.3	79.9	70-130			
Molvbdenum	47.7	1.0	ua/a	ND	95.0	70-130			
Nickel	55.9	5.0	ua/a	10.0	91.8	70-130			
Selenium	46.1	1.0	ua/a	ND	91.6	70-130			
Silver	47.2	0.3	ua/a	ND	94.3	70-130			
Thallium	50.0	1.0	ua/a	ND	99.7	70-130			
Uranium	43.1	1.0	ug/g	ND	85.6	70-130			
Vanadium	67.5	10.0	ug/g	18.0	99.1	70-130			
Zinc	62.4	20.0	ug/g	ND	91.3	70-130			
Semi-Volatiles			00						
Acenaphthene	0.327	0.02	ua/a	0.054	150	50-140		C	M-4X
Acenaphthylene	0.228	0.02	ua/a	0.032	107	50-140			-
Anthracene	0.438	0.02	ua/a	0.162	151	50-140		C	M-4X
Benzo [a] anthracene	0.148	0.02	ug/g	ND	89.1	50-140			
Benzo [a] pyrene	0.163	0.02	ua/a	ND	97.5	50-140			
Benzo [b] fluoranthene	0.193	0.02	ug/g	ND	116	50-140			
Benzo [q,h,i] pervlene	0.170	0.02	ug/g	ND	102	50-140			
Benzo [k] fluoranthene	0.194	0.02	ug/g	ND	116	50-140			
Chrysene	0.162	0.02	ug/g	ND	97.2	50-140			
Dibenzo [a,h] anthracene	0.382	0.02	ug/g	0.103	153	50-140		C	QM-4X
Fluoranthene	0.166	0.02	ug/g	ND	99.3	50-140			
Fluorene	0.287	0.02	ug/g	0.049	131	50-140			
Indeno [1,2,3-cd] pyrene	0.723	0.02	ug/g	0.326	217	50-140		Ċ	QM-4X
1-Methylnaphthalene	0.196	0.02	ug/g	ND	107	50-140			
2-Methylnaphthalene	0.210	0.02	ug/g	ND	115	50-140			
Naphthalene	0.230	0.01	ug/g	ND	126	50-140			
Phenanthrene	0.148	0.02	ug/g	ND	88.7	50-140			
Pyrene	0.163	0.02	ug/g	ND	97.7	50-140			
Surrogate: 2-Fluorobiphenyl	1.60		ug/g		110	50-140			
Surrogate: Terphenyl-d14	1.69		ug/g		116	50-140			
Volatiles									
Benzene	3.26	0.02	ua/a	ND	81.5	60-130			
Ethylbenzene	3.95	0.05	ug/q	ND	98.7	60-130			
Toluene	4.28	0.05	ug/g	ND	107	60-130			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Order #: 2313385

Report Date: 11-Apr-2023

Order Date: 30-Mar-2023

Project Description: LOP23-025B

Certificate of Analysis Client: Lopers & Associates Client PO: Report Date: 11-Apr-2023 Order Date: 30-Mar-2023

Project Description: LOP23-025B

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
m,p-Xylenes	8.09	0.05	ug/g	ND	101	60-130			
o-Xylene	4.27	0.05	ug/g	ND	107	60-130			
Surrogate: Toluene-d8	2.99		ug/g		93.4	50-140			

Certificate of Analysis Client: Lopers & Associates Client PO:

Sample Qualifiers :

1: Elevated reporting limits due to the nature of the sample matrix.

2: GC-FID signal did not return to baseline by C50

QC Qualifiers :

QM-4X The spike recovery was outside of QC acceptance limits due to elevated analyte concentration.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Order #: 2313385

Report Date: 11-Apr-2023 Order Date: 30-Mar-2023 Project Description: LOP23-025B

Para PARACEL						icel ID: 2313385				Paracel Order Number (Lab Use Only)				Chain Of Custody (Lab Use Only) Nº 141120				
lient Name: LOPERS ASSOC	ATES	6		Projec	t Ref:	LOP23-0	25B		ļ	J.	A.			ľ	Pa	ge 🔟	of	
iontad Name: Lule Log	ers		1.50	Quote	#se a	all get	1.1.8	47		3	2		1	1	Turna	roun	d Time	e
iddress: 2.1 and fold	Jay of	ava, on)	PO #;		1.6.11	100		- t		- 0	2		1 day			(3 day
Telephone: 6/3 - 327 - 9073				- Lukee Lopers.ca						🗆 2 day 🛛 🗙 Date Required:			Regula					
REG 153/04 REG 406/19	Other	Regulation		Aatrix 1	vpe:	s (Soil/Sed.) GW (Gr	ound Water)					Po	aultor	Anal	huele			
🗆 Table 1 🛛 Res/Park 🛛 Med/Fir	ne 🗌 REG 558	PWQ0		SW (Su	rface \	Water) SS (Storm/Sa	nitary Sewer)	3.00	jih.			Ke	quirec	Anal	iysis			
□ Table 2 □ Ind/Comm 🕅 Coarse	CCME	🗆 MISA			P (F	'aint) A (Air) O (Oth	er)	Ě										
🗙 Table 3 🔲 Agri/Other	SU - Sani	SU - Storm			ners	228/2612 - 22 2		4+B			СЬ							
J Table	Mun:		1	lume	ontai	Sample	Taken	E.	~		s by	· .		VS)	01	9;**5	(2 - d)	
Sample ID/Locat	ion Name		Matriò	Vir Vo	t of C	Date	Time	HCs	/OCs	AHS	Metal	p	5	(HV		h.,		
1 341-23-551			S		2	March 3023		X		X	X							
2				1.78		Marin 4C.										1		Ĵ.
3				-	5		ala sera bara		der H	1.1.1	1		and a lot of a		and a second			
4						al -										10	hard	
S										1						<u> </u>		
6	na de any a dagara					1.11											95.00	
7						90 au - 14				1							dina.	
8																		
9					1.1	ur (DO			1						C ₁	(spi	hd a'	
10					,													
Comments:	l i San Arran	an share a			a e colesa	norsaltari in com		20			1	Metho	od of De		a	le	~	
telinquished By (Fign):		Received By D	river/()epot:). S michowski	Received at a	lof		0		Verifi	rd By:	R.	2	-7		- ati
and a providence of the provid	10.0.0	Temperature				00	Man	30/2-	3	3.5	Op	oute/	rified	1	10	()	Ofo	15/6
March 30,202	5/3:568M	reinperacore				·C	remperature:	9.7	.C			pH V	rined;	<u>ц</u>	Dy		N	K

Your Project #: LOP24-025C Your C.O.C. #: 1019688-01-01

Attention: Luke Lopers

Lopers & Associates 30 Lansfield Way Ottawa, ON CANADA K2G 3V8

> Report Date: 2024/11/07 Report #: R8394673 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Y3361 Received: 2024/10/30, 09:00

Sample Matrix: Soil # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	5	N/A	2024/11/06	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron (1)	6	2024/11/05	2024/11/06	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum (1)	4	N/A	2024/11/05		EPA 8260C m
Free (WAD) Cyanide (1)	6	2024/11/04	2024/11/05	CAM SOP-00457	OMOE E3015 m
Conductivity (1)	6	2024/11/05	2024/11/05	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1, 2)	6	2024/11/04	2024/11/04	CAM SOP-00436	EPA 3060A/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 3)	5	N/A	2024/11/04	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 4)	5	2024/11/03	2024/11/03	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	2	2024/11/05	2024/11/05	CAM SOP-00316	CCME PHC-CWS m
Acid Extractable Metals by ICPMS (1)	6	2024/11/04	2024/11/04	CAM SOP-00447	EPA 6020B m
Moisture (1)	10	N/A	2024/11/02	CAM SOP-00445	Carter 2nd ed 70.2 m
PAH Compounds in Soil by GC/MS (SIM) (1)	5	2024/11/04	2024/11/05	CAM SOP-00318	EPA 8270E
pH CaCl2 EXTRACT (1)	6	2024/11/04	2024/11/04	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR) (1)	6	N/A	2024/11/05	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds in Soil (1)	4	N/A	2024/11/04	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Your Project #: LOP24-025C Your C.O.C. #: 1019688-01-01

Attention: Luke Lopers

Lopers & Associates 30 Lansfield Way Ottawa, ON CANADA K2G 3V8

> Report Date: 2024/11/07 Report #: R8394673 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Y3361

Received: 2024/10/30, 09:00

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) Soils are reported on a dry weight basis unless otherwise specified.

(3) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (4) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		AHNZ53			AHNZ54			AHNZ55		
Sampling Date		2024/10/28 11:20			2024/10/28 13:40			2024/10/29 08:30		
COC Number		1019688-01-01			1019688-01-01			1019688-01-01		
	UNITS	BH1-24-SS1	RDL	QC Batch	BH1-24-SS6	RDL	QC Batch	BH2-24-AU1	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	0.20 (1)		9740347				15		9740347
Inorganics										
Conductivity	mS/cm	0.27	0.002	9745355				2.8	0.002	9745355
Moisture	%	19	1.0	9741724	32	1.0	9741723	10	1.0	9741724
Available (CaCl2) pH	рН	7.56		9743740				7.78		9743740
WAD Cyanide (Free)	ug/g	ND	0.01	9742886				ND	0.01	9742886
DDI - Departable Detection	Lingit									

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Bureau Veritas ID		AHNZ56			AHNZ57			AHNZ58							
Compling Date		2024/10/29			2024/10/29			2024/10/29							
Sampling Date		08:55			09:40			11:15							
COC Number		1019688-01-01			1019688-01-01			1019688-01-01							
	UNITS	BH2-24-SS3	RDL	QC Batch	BH2-24-SS8	RDL	QC Batch	BH3-24-AU1	RDL	QC Batch					
Calculated Parameters															
Sodium Adsorption Ratio	N/A	5.4		9740347				3.9		9740347					
Inorganics															
Conductivity	mS/cm	0.49	0.002	9745355				0.49	0.002	9745355					
Moisture	%	21	1.0	9741724	28	1.0	9741723	11	1.0	9741724					
Available (CaCl2) pH	рН	6.95		9743740				7.88		9743740					
WAD Cyanide (Free)	ug/g	ND	0.01	9742886				ND	0.01	9742886					
RDL = Reportable Detection	Limit					RDL = Reportable Detection Limit									

QC Batch = Quality Control Batch

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		AHNZ59			AHNZ60			AHNZ61		
Sampling Date		2024/10/29 11:40			2024/10/29 13:35			2024/10/29 15:15		
COC Number		1019688-01-01			1019688-01-01			1019688-01-01		
	UNITS	BH3-24-SS3	RDL	QC Batch	BH3-24-SS11	RDL	QC Batch	BH4-24-GS1	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	6.1		9740347				43		9740347
Inorganics	<u> </u>									
Conductivity	mS/cm	0.57	0.002	9745355				19	0.002	9745355
Moisture	%	29	1.0	9741724	24	1.0	9741723	11	1.0	9742137
Available (CaCl2) pH	рН	7.33		9743740				7.68		9743740
WAD Cyanide (Free)	ug/g	ND	0.01	9742886				0.02	0.01	9742886
DDL - Departable Detection	Lingit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Bureau Veritas ID		AHNZ62							
Sampling Date		2024/10/29							
COC Number		1019688-01-01							
	UNITS	DUP-10/29	RDL	QC Batch					
Inorganics									
Moisture	%	24	1.0	9741723					
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Bureau Veritas ID		AHNZ53	AHNZ55	AHNZ56	AHNZ58	AHNZ59		
Sampling Date		2024/10/28	2024/10/29	2024/10/29	2024/10/29	2024/10/29		
		11:20	08:30	08:55	11:15	11:40		
COC Number		1019688-01-01	1019688-01-01	1019688-01-01	1019688-01-01	1019688-01-01		
	UNITS	BH1-24-SS1	BH2-24-AU1	BH2-24-SS3	BH3-24-AU1	BH3-24-SS3	RDL	QC Batch
Inorganics								
Chromium (VI)	ug/g	0.34	0.36	0.28	ND	0.27	0.18	9742849
Metals			•	•			•	
Hot Water Ext. Boron (B)	ug/g	0.42	0.61	0.12	0.34	0.34	0.050	9745367
Acid Extractable Antimony (Sb)	ug/g	1.7	0.89	ND	ND	ND	0.20	9743924
Acid Extractable Arsenic (As)	ug/g	3.6	3.0	1.4	3.1	ND	1.0	9743924
Acid Extractable Barium (Ba)	ug/g	280	140	200	120	150	0.50	9743924
Acid Extractable Beryllium (Be)	ug/g	0.60	0.28	0.62	0.29	0.42	0.20	9743924
Acid Extractable Boron (B)	ug/g	ND	5.7	ND	ND	ND	5.0	9743924
Acid Extractable Cadmium (Cd)	ug/g	0.40	0.44	ND	0.11	ND	0.10	9743924
Acid Extractable Chromium (Cr)	ug/g	76	39	63	25	55	1.0	9743924
Acid Extractable Cobalt (Co)	ug/g	16	6.9	16	7.8	12	0.10	9743924
Acid Extractable Copper (Cu)	ug/g	43	33	28	17	28	0.50	9743924
Acid Extractable Lead (Pb)	ug/g	220	200	5.5	35	12	1.0	9743924
Acid Extractable Molybdenum (Mo)	ug/g	0.60	3.4	ND	1.2	ND	0.50	9743924
Acid Extractable Nickel (Ni)	ug/g	46	20	37	18	31	0.50	9743924
Acid Extractable Selenium (Se)	ug/g	ND	ND	ND	ND	ND	0.50	9743924
Acid Extractable Silver (Ag)	ug/g	ND	ND	ND	ND	ND	0.20	9743924
Acid Extractable Thallium (Tl)	ug/g	0.31	0.15	0.30	0.18	0.20	0.050	9743924
Acid Extractable Uranium (U)	ug/g	0.65	0.48	0.75	0.59	0.68	0.050	9743924
Acid Extractable Vanadium (V)	ug/g	73	36	73	29	61	5.0	9743924
Acid Extractable Zinc (Zn)	ug/g	210	180	80	53	65	5.0	9743924
Acid Extractable Mercury (Hg)	ug/g	0.074	0.25	ND	ND	ND	0.050	9743924

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Bureau Veritas ID		AHNZ61		
Sampling Data		2024/10/29		
		15:15		
COC Number		1019688-01-01		
	UNITS	BH4-24-GS1	RDL	QC Batch
Inorganics				
Chromium (VI)	ug/g	0.23	0.18	9742849
Metals				
Hot Water Ext. Boron (B)	ug/g	0.81	0.050	9745367
Acid Extractable Antimony (Sb)	ug/g	0.46	0.20	9743924
Acid Extractable Arsenic (As)	ug/g	1.2	1.0	9743924
Acid Extractable Barium (Ba)	ug/g	180	0.50	9743924
Acid Extractable Beryllium (Be)	ug/g	0.34	0.20	9743924
Acid Extractable Boron (B)	ug/g	ND	5.0	9743924
Acid Extractable Cadmium (Cd)	ug/g	0.13	0.10	9743924
Acid Extractable Chromium (Cr)	ug/g	38	1.0	9743924
Acid Extractable Cobalt (Co)	ug/g	8.7	0.10	9743924
Acid Extractable Copper (Cu)	ug/g	23	0.50	9743924
Acid Extractable Lead (Pb)	ug/g	100	1.0	9743924
Acid Extractable Molybdenum (Mo)	ug/g	ND	0.50	9743924
Acid Extractable Nickel (Ni)	ug/g	22	0.50	9743924
Acid Extractable Selenium (Se)	ug/g	ND	0.50	9743924
Acid Extractable Silver (Ag)	ug/g	ND	0.20	9743924
Acid Extractable Thallium (Tl)	ug/g	0.17	0.050	9743924
Acid Extractable Uranium (U)	ug/g	0.46	0.050	9743924
Acid Extractable Vanadium (V)	ug/g	40	5.0	9743924
Acid Extractable Zinc (Zn)	ug/g	90	5.0	9743924
Acid Extractable Mercury (Hg)	ug/g	0.22	0.050	9743924
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
ND = Not Detected at a concentration	n equal o	or greater than th	e indica	ated
Detection Limit.				

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		AHNZ53		AHNZ55		AHNZ56		AHNZ58		
Sampling Date		2024/10/28		2024/10/29		2024/10/29		2024/10/29		
		11:20		08:30		08:55		11:15		
COC Number		1019688-01-01		1019688-01-01		1019688-01-01		1019688-01-01		
	UNITS	BH1-24-SS1	RDL	BH2-24-AU1	RDL	BH2-24-SS3	RDL	BH3-24-AU1	RDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/g	0.032	0.0071	0.36	0.071	ND	0.0071	ND	0.071	9740518
Polyaromatic Hydrocarbons										
Acenaphthene	ug/g	0.11	0.0050	0.48	0.050	ND	0.0050	0.052	0.050	9743962
Acenaphthylene	ug/g	0.051	0.0050	0.18	0.050	ND	0.0050	ND	0.050	9743962
Anthracene	ug/g	0.26	0.0050	1.3	0.050	ND	0.0050	0.14	0.050	9743962
Benzo(a)anthracene	ug/g	0.72	0.0050	3.3	0.050	ND	0.0050	0.30	0.050	9743962
Benzo(a)pyrene	ug/g	0.65	0.0050	3.2	0.050	ND	0.0050	0.29	0.050	9743962
Benzo(b/j)fluoranthene	ug/g	0.81	0.0050	3.9	0.050	ND	0.0050	0.33	0.050	9743962
Benzo(g,h,i)perylene	ug/g	0.41	0.0050	1.9	0.050	ND	0.0050	0.17	0.050	9743962
Benzo(k)fluoranthene	ug/g	0.32	0.0050	1.6	0.050	ND	0.0050	0.13	0.050	9743962
Chrysene	ug/g	0.56	0.0050	2.7	0.050	ND	0.0050	0.24	0.050	9743962
Dibenzo(a,h)anthracene	ug/g	0.12	0.0050	0.59	0.050	ND	0.0050	0.051	0.050	9743962
Fluoranthene	ug/g	1.7	0.0050	8.1	0.050	ND	0.0050	0.74	0.050	9743962
Fluorene	ug/g	0.14	0.0050	0.64	0.050	ND	0.0050	0.053	0.050	9743962
Indeno(1,2,3-cd)pyrene	ug/g	0.48	0.0050	2.2	0.050	ND	0.0050	0.19	0.050	9743962
1-Methylnaphthalene	ug/g	0.016	0.0050	0.16	0.050	ND	0.0050	ND	0.050	9743962
2-Methylnaphthalene	ug/g	0.015	0.0050	0.20	0.050	ND	0.0050	ND	0.050	9743962
Naphthalene	ug/g	0.017	0.0050	0.39	0.050	ND	0.0050	ND	0.050	9743962
Phenanthrene	ug/g	1.2	0.0050	6.0	0.050	ND	0.0050	0.51	0.050	9743962
Pyrene	ug/g	1.3	0.0050	6.4	0.050	ND	0.0050	0.63	0.050	9743962
Surrogate Recovery (%)										
D10-Anthracene	%	93		97		107		98		9743962
D14-Terphenyl (FS)	%	93		88		101		99		9743962
D8-Acenaphthylene	%	93		83		83		93		9743962
RDL = Reportable Detection L	imit									

QC Batch = Quality Control Batch

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		AHNZ59								
Sampling Date		2024/10/29								
		11:40								
COC Number		1019688-01-01								
	UNITS	BH3-24-SS3	RDL	QC Batch						
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/g	ND	0.0071	9740518						
Polyaromatic Hydrocarbons										
Acenaphthene	ug/g	ND	0.0050	9743962						
Acenaphthylene	ug/g	ND	0.0050	9743962						
Anthracene	ug/g	0.0089	0.0050	9743962						
Benzo(a)anthracene	ug/g	0.042	0.0050	9743962						
Benzo(a)pyrene	ug/g	0.044	0.0050	9743962						
Benzo(b/j)fluoranthene	ug/g	0.046	0.0050	9743962						
Benzo(g,h,i)perylene	ug/g	0.024	0.0050	9743962						
Benzo(k)fluoranthene	ug/g	0.019	0.0050	9743962						
Chrysene	ug/g	0.033	0.0050	9743962						
Dibenzo(a,h)anthracene	ug/g	0.0069	0.0050	9743962						
Fluoranthene	ug/g	0.079	0.0050	9743962						
Fluorene	ug/g	ND	0.0050	9743962						
Indeno(1,2,3-cd)pyrene	ug/g	0.027	0.0050	9743962						
1-Methylnaphthalene	ug/g	ND	0.0050	9743962						
2-Methylnaphthalene	ug/g	ND	0.0050	9743962						
Naphthalene	ug/g	ND	0.0050	9743962						
Phenanthrene	ug/g	0.023	0.0050	9743962						
Pyrene	ug/g	0.078	0.0050	9743962						
Surrogate Recovery (%)										
D10-Anthracene	%	102		9743962						
D14-Terphenyl (FS)	%	93		9743962						
D8-Acenaphthylene	%	83		9743962						
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	atch									
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.										

VOLATILE ORGANICS BY GC/MS (SOIL)

Bureau Veritas ID		AHNZ54	AHNZ57	AHNZ60	AHNZ62		
Sampling Date		2024/10/28 13:40	2024/10/29 09:40	2024/10/29 13:35	2024/10/29		
COC Number		1019688-01-01	1019688-01-01	1019688-01-01	1019688-01-01		
	UNITS	BH1-24-SS6	BH2-24-SS8	BH3-24-SS11	DUP-10/29	RDL	QC Batch
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/g	ND	ND	ND	ND	0.050	9740520
Volatile Organics							
Acetone (2-Propanone)	ug/g	ND	ND	ND	ND	0.49	9742419
Benzene	ug/g	ND	ND	ND	ND	0.0060	9742419
Bromodichloromethane	ug/g	ND	ND	ND	ND	0.040	9742419
Bromoform	ug/g	ND	ND	ND	ND	0.040	9742419
Bromomethane	ug/g	ND	ND	ND	ND	0.040	9742419
Carbon Tetrachloride	ug/g	ND	ND	ND	ND	0.040	9742419
Chlorobenzene	ug/g	ND	ND	ND	ND	0.040	9742419
Chloroform	ug/g	ND	ND	ND	ND	0.040	9742419
Dibromochloromethane	ug/g	ND	ND	ND	ND	0.040	9742419
1,2-Dichlorobenzene	ug/g	ND	ND	ND	ND	0.040	9742419
1,3-Dichlorobenzene	ug/g	ND	ND	ND	ND	0.040	9742419
1,4-Dichlorobenzene	ug/g	ND	ND	ND	ND	0.040	9742419
Dichlorodifluoromethane (FREON 12)	ug/g	ND	ND	ND	ND	0.040	9742419
1,1-Dichloroethane	ug/g	ND	ND	ND	ND	0.040	9742419
1,2-Dichloroethane	ug/g	ND	ND	ND	ND	0.049	9742419
1,1-Dichloroethylene	ug/g	ND	ND	ND	ND	0.040	9742419
cis-1,2-Dichloroethylene	ug/g	ND	ND	ND	ND	0.040	9742419
trans-1,2-Dichloroethylene	ug/g	ND	ND	ND	ND	0.040	9742419
1,2-Dichloropropane	ug/g	ND	ND	ND	ND	0.040	9742419
cis-1,3-Dichloropropene	ug/g	ND	ND	ND	ND	0.030	9742419
trans-1,3-Dichloropropene	ug/g	ND	ND	ND	ND	0.040	9742419
Ethylbenzene	ug/g	ND	ND	ND	ND	0.010	9742419
Ethylene Dibromide	ug/g	ND	ND	ND	ND	0.040	9742419
Hexane	ug/g	ND	ND	ND	ND	0.040	9742419
Methylene Chloride(Dichloromethane)	ug/g	ND	ND	ND	ND	0.049	9742419
Methyl Ethyl Ketone (2-Butanone)	ug/g	ND	ND	ND	ND	0.40	9742419
Methyl Isobutyl Ketone	ug/g	ND	ND	ND	ND	0.40	9742419
Methyl t-butyl ether (MTBE)	ug/g	ND	ND	ND	ND	0.040	9742419
Styrene	ug/g	ND	ND	ND	ND	0.040	9742419
RDL = Reportable Detection Limit							

QC Batch = Quality Control Batch

VOLATILE ORGANICS BY GC/MS (SOIL)

Bureau Veritas ID		AHNZ54	AHNZ57	AHNZ60	AHNZ62			
Sampling Date		2024/10/28 13:40	2024/10/29 09:40	2024/10/29 13:35	2024/10/29			
COC Number		1019688-01-01	1019688-01-01	1019688-01-01	1019688-01-01			
	UNITS	BH1-24-SS6	BH2-24-SS8	BH3-24-SS11	DUP-10/29	RDL	QC Batch	
1,1,1,2-Tetrachloroethane	ug/g	ND	ND	ND	ND	0.040	9742419	
1,1,2,2-Tetrachloroethane	ug/g	ND	ND	ND	ND	0.040	9742419	
Tetrachloroethylene	ug/g	ND	ND	ND	ND	0.040	9742419	
Toluene	ug/g	ND	ND	ND	ND	0.020	9742419	
1,1,1-Trichloroethane	ug/g	ND	ND	ND	ND	0.040	9742419	
1,1,2-Trichloroethane	ug/g	ND	ND	ND	ND	0.040	9742419	
Trichloroethylene	ug/g	ND	ND	ND	ND	0.010	9742419	
Trichlorofluoromethane (FREON 11)	ug/g	ND	ND	ND	ND	0.040	9742419	
Vinyl Chloride	ug/g	ND	ND	ND	ND	0.019	9742419	
p+m-Xylene	ug/g	ND	ND	ND	ND	0.020	9742419	
o-Xylene	ug/g	ND	ND	ND	ND	0.020	9742419	
Total Xylenes	ug/g	ND	ND	ND	ND	0.020	9742419	
Surrogate Recovery (%)			•	•	•		. <u> </u>	
4-Bromofluorobenzene	%	100	92	89	92		9742419	
D10-o-Xylene	%	110	105	113	93		9742419	
D4-1,2-Dichloroethane	%	79	88	92	83		9742419	
D8-Toluene	%	100	95	98	94		9742419	
RDL = Reportable Detection Limit	•							
QC Batch = Quality Control Batch								
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.								

PETROLEUM HYDROCARBONS (CCME)

Bureau Veritas ID		AHNZ53			AHNZ55			AHNZ56		
Sampling Date		2024/10/28			2024/10/29			2024/10/29		
	<u> </u>	11:20			08:30			08:55		
COC Number	<u> </u>	1019688-01-01			1019688-01-01			1019688-01-01		
	UNITS	BH1-24-SS1	RDL	QC Batch	BH2-24-AU1	RDL	QC Batch	BH2-24-SS3	RDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/g	ND	0.020	9741923	ND	0.020	9741923	ND	0.020	9741923
Toluene	ug/g	ND	0.020	9741923	0.022	0.020	9741923	ND	0.020	9741923
Ethylbenzene	ug/g	ND	0.020	9741923	ND	0.020	9741923	ND	0.020	9741923
o-Xylene	ug/g	ND	0.020	9741923	ND	0.020	9741923	ND	0.020	9741923
p+m-Xylene	ug/g	ND	0.040	9741923	ND	0.040	9741923	ND	0.040	9741923
Total Xylenes	ug/g	ND	0.040	9741923	ND	0.040	9741923	ND	0.040	9741923
F1 (C6-C10)	ug/g	ND	10	9741923	ND	10	9741923	ND	10	9741923
F1 (C6-C10) - BTEX	ug/g	ND	10	9741923	ND	10	9741923	ND	10	9741923
F2-F4 Hydrocarbons										
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g				3500	100	9745209			
F2 (C10-C16 Hydrocarbons)	ug/g	ND	7.0	9742324	16	7.0	9742324	ND	7.0	9742324
F3 (C16-C34 Hydrocarbons)	ug/g	96	50	9742324	590	50	9742324	ND	50	9742324
F4 (C34-C50 Hydrocarbons)	ug/g	ND	50	9742324	1100	50	9742324	ND	50	9742324
Reached Baseline at C50	ug/g	Yes		9742324	No		9742324	Yes		9742324
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	103		9741923	91		9741923	92		9741923
4-Bromofluorobenzene	%	89		9741923	93		9741923	87		9741923
D10-o-Xylene	%	112		9741923	118		9741923	107		9741923
D4-1,2-Dichloroethane	%	97		9741923	89		9741923	95		9741923
o-Terphenyl	%	89		9742324	91		9742324	96		9742324
RDL = Reportable Detection Limit	·		-						-	

QC Batch = Quality Control Batch

PETROLEUM HYDROCARBONS (CCME)

Bureau Veritas ID		AHNZ58			AHNZ59		
Sampling Date		2024/10/29			2024/10/29		
		11:15			11:40		
COC Number		1019688-01-01			1019688-01-01		
	UNITS	BH3-24-AU1	RDL	QC Batch	BH3-24-SS3	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/g	ND	0.020	9741923	ND	0.020	9741923
Toluene	ug/g	0.024	0.020	9741923	ND	0.020	9741923
Ethylbenzene	ug/g	ND	0.020	9741923	ND	0.020	9741923
o-Xylene	ug/g	0.038	0.020	9741923	ND	0.020	9741923
p+m-Xylene	ug/g	0.043	0.040	9741923	ND	0.040	9741923
Total Xylenes	ug/g	0.081	0.040	9741923	ND	0.040	9741923
F1 (C6-C10)	ug/g	ND	10	9741923	ND	10	9741923
F1 (C6-C10) - BTEX	ug/g	ND	10	9741923	ND	10	9741923
F2-F4 Hydrocarbons							
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	1300	100	9745209			
F2 (C10-C16 Hydrocarbons)	ug/g	100	7.0	9742324	ND	7.0	9742324
F3 (C16-C34 Hydrocarbons)	ug/g	310	50	9742324	ND	50	9742324
F4 (C34-C50 Hydrocarbons)	ug/g	330	50	9742324	ND	50	9742324
Reached Baseline at C50	ug/g	No		9742324	Yes		9742324
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	90		9741923	95		9741923
4-Bromofluorobenzene	%	99		9741923	95		9741923
D10-o-Xylene	%	113		9741923	121		9741923
D4-1,2-Dichloroethane	%	94		9741923	94		9741923
o-Terphenyl	%	95		9742324	87		9742324
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

GENERAL COMMENTS

Sample AHNZ55 [BH2-24-AU1] : PAH Analysis: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Sample AHNZ56 [BH2-24-SS3] : F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AHNZ58 [BH3-24-AU1] : F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

PAH ANALYSIS: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Sample AHNZ59 [BH3-24-SS3] : F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.

1

QUALITY ASSURANCE REPORT

QA/QC			_			_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9/41/23	JA8	RPD	Moisture	2024/11/02	0		%	20
9/41/24	JA8	RPD	Moisture	2024/11/02	0.52		%	20
9741923	LRA	Matrix Spike	1,4-Difluorobenzene	2024/11/04		99	%	60 - 140
			4-Bromofluorobenzene	2024/11/04		98	%	60 - 140
			D10-o-Xylene	2024/11/04		112	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/04		99	%	60 - 140
			Benzene	2024/11/04		101	%	50 - 140
			Toluene	2024/11/04		98	%	50 - 140
			Ethylbenzene	2024/11/04		111	%	50 - 140
			o-Xylene	2024/11/04		109	%	50 - 140
			p+m-Xylene	2024/11/04		105	%	50 - 140
			F1 (C6-C10)	2024/11/04		115	%	60 - 140
9741923	LRA	Spiked Blank	1,4-Difluorobenzene	2024/11/04		104	%	60 - 140
			4-Bromofluorobenzene	2024/11/04		97	%	60 - 140
			D10-o-Xylene	2024/11/04		102	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/04		103	%	60 - 140
			Benzene	2024/11/04		93	%	50 - 140
			Toluene	2024/11/04		90	%	50 - 140
			Ethylbenzene	2024/11/04		100	%	50 - 140
			o-Xylene	2024/11/04		97	%	50 - 140
			p+m-Xylene	2024/11/04		94	%	50 - 140
			F1 (C6-C10)	2024/11/04		101	%	80 - 120
9741923	LRA	Method Blank	1.4-Difluorobenzene	2024/11/04		116	%	60 - 140
			4-Bromofluorobenzene	2024/11/04		94	%	60 - 140
			D10-o-Xylene	2024/11/04		112	%	60 - 140
			D4-1 2-Dichloroethane	2024/11/04		117	%	60 - 140
		Benzene	2024/11/04	ND	11/	σ/σ	00 140	
			Denzene	202 1/ 11/ 01	RDL=0.020		46/ B	
			Toluene	2024/11/04	ND, BDI =0.020		ug/g	
			Ethylbenzene	2024/11/04	ND, BDI =0.020		ug/g	
			o-Xylene	2024/11/04	ND,		ug/g	
			p+m-Xylene	2024/11/04	ND,		ug/g	
			Total Xylenes	2024/11/04	RDL=0.040 ND,		ug/g	
					RDL=0.040			
			F1 (C6-C10)	2024/11/04	ND, RDL=10		ug/g	
			F1 (C6-C10) - BTEX	2024/11/04	ND, RDL=10		ug/g	
9741923	IRA	RPD	Benzene	2024/11/04	NC		%	50
57.1520	2.0.1		Toluene	2024/11/04	NC		%	50
			Ethylbenzene	2024/11/04	NC		%	50
			o-Xvlene	2024/11/04	NC		%	50
			n+m-Xylene	2024/11/04	NC		%	50
			Total Xylenes	2024/11/04	NC		70 0/	50
				2024/11/04			/0 0/	20
				2024/11/04			70 0/	30
07/0107	14.0	חמפ	FI (CO-CIO) - DIEA	2024/11/04			70 0/	20
9/4213/	JAS	RPU Matrix Calles	Moisture a Tarabaaul	2024/11/02	0.1	00	%	20
9742324	IVISZ	iviatrix Spike [AHNZ56-02]	o-i erpnenyi	2024/11/03		96	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/03		104	%	60 - 140

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			F3 (C16-C34 Hydrocarbons)	2024/11/03		105	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2024/11/03		105	%	60 - 140
9742324	MSZ	Spiked Blank	o-Terphenyl	2024/11/03		88	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/03		93	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2024/11/03		94	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2024/11/03		94	%	80 - 120
9742324	MSZ	Method Blank	o-Terphenyl	2024/11/03		97	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/03	ND, RDL=7.0		ug/g	
			F3 (C16-C34 Hydrocarbons)	2024/11/03	ND, RDL=50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2024/11/03	ND, RDI =50		ug/g	
9742324	MSZ	RPD [AHNZ56-02]	F2 (C10-C16 Hydrocarbons)	2024/11/03	NC		%	30
57 1252 1	IVISE		F3 (C16-C34 Hydrocarbons)	2024/11/03	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2024/11/03	NC		%	30
9742419	NGH	Matrix Snike	4-Bromofluorobenzene	2024/11/03	Ne	98	%	60 - 140
57 12 115	non	matrix opine	D10-o-Xvlene	2024/11/04		103	%	60 - 130
			D4-1 2-Dichloroethane	2024/11/04		87	%	60 - 140
			D8-Toluene	2024/11/04		102	%	60 - 140
			Acetone (2-Pronanone)	2024/11/04		102	%	60 - 140
			Benzene	2024/11/04		101	70 %	60 - 140
			Bromodichloromethane	2024/11/04		02	70 0/	60 - 140
			Bromotorm	2024/11/04		100	70 0/	60 - 140
			Bromomethane	2024/11/04		100	70 0/	60 - 140
			Carbon Totrachlorido	2024/11/04		109	70 0/	60 140
			Chlorobonzono	2024/11/04		108	70 0/	60 140
			Chloroform	2024/11/04		100	/0 0/	60 140
			Dibromochloromethane	2024/11/04		90 105	/0 0/_	60 - 140
				2024/11/04		105	/0 0/	60 140
			1,2-Dichlorobenzene	2024/11/04		110	/0 0/	60 140
			1,3-Dichlorobenzene	2024/11/04		115	/0 0/	60 140
			Dichland diffueremethana (EDEON 12)	2024/11/04		111	70	60 - 140
			1 1 Dichleresthans	2024/11/04		00 101	% 0/	60 - 140
			1,1-Dichloroethane	2024/11/04		101	% 0/	60 - 140
			1,2-Dichloroethane	2024/11/04		98	% 0/	60 - 140
			1,1-Dichloroethylene	2024/11/04		101	% 0/	60 - 140
			cis-1,2-Dichloroethylene	2024/11/04		108	%	60 - 140
			trans-1,2-Dichloroethylene	2024/11/04		114	%	60 - 140
			1,2-Dichloropropane	2024/11/04		101	%	60 - 140
			cis-1,3-Dichloropropene	2024/11/04		95	%	60 - 140
			trans-1,3-Dichloropropene	2024/11/04		97	%	60 - 140
			Ethylbenzene	2024/11/04		102	%	60 - 140
			Ethylene Dibromide	2024/11/04		100	%	60 - 140
			Hexane	2024/11/04		119	%	60 - 140
			Methylene Chloride(Dichloromethane)	2024/11/04		104	%	60 - 140
			Methyl Ethyl Ketone (2-Butanone)	2024/11/04		102	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/04		85	%	60 - 140
			Methyl t-butyl ether (MTBE)	2024/11/04		97	%	60 - 140
			Styrene	2024/11/04		108	%	60 - 140
			1,1,1,2-Tetrachloroethane	2024/11/04		113	%	60 - 140
			1,1,2,2-Tetrachloroethane	2024/11/04		93	%	60 - 140
			Tetrachloroethylene	2024/11/04		108	%	60 - 140
			Toluene	2024/11/04		105	%	60 - 140
			1,1,1-Trichloroethane	2024/11/04		97	%	60 - 140

QA/QC	1		Deveneter	Data Analyzad	Malua	Deeever		OC Lineite
Batch	Init	QC Type	Parameter	Date Analyzed	value	Recovery	UNITS	QC LIMITS
			1,1,2-111CHIOLOEthalle	2024/11/04		91 107	70 0/	60 - 140 60 - 140
			Trichlereflueremethane (FREON 11)	2024/11/04		107	70 0/	60 - 140
			Vinul Chlorido	2024/11/04		99 110	70 0/	60 - 140
				2024/11/04		102	70 0/	60 - 140
			p+III-Xylene	2024/11/04		103	70 0/	60 - 140
0742410	NCU		0-Xylene	2024/11/04		112	%	60 - 140
9742419	NGH	Spiked віалк	4-Bromonuorobenzene	2024/11/04		102	%	60 - 140
			D10-0-Xylene	2024/11/04		107	%	60 - 130
			D4-1,2-Dichloroethane	2024/11/04		85	%	60 - 140
			D8-Toluene	2024/11/04		101	%	60 - 140
			Acetone (2-Propanone)	2024/11/04		101	%	60 - 140
			Benzene	2024/11/04		106	%	60 - 130
			Bromodichloromethane	2024/11/04		97	%	60 - 130
			Bromotorm	2024/11/04		109	%	60 - 130
			Bromomethane	2024/11/04		96	%	60 - 140
			Carbon Tetrachloride	2024/11/04		105	%	60 - 130
			Chlorobenzene	2024/11/04		99	%	60 - 130
			Chloroform	2024/11/04		98	%	60 - 130
			Dibromochloromethane	2024/11/04		107	%	60 - 130
			1,2-Dichlorobenzene	2024/11/04		108	%	60 - 130
			1,3-Dichlorobenzene	2024/11/04		110	%	60 - 130
			1,4-Dichlorobenzene	2024/11/04		109	%	60 - 130
			Dichlorodifluoromethane (FREON 12)	2024/11/04		73	%	60 - 140
			1,1-Dichloroethane	2024/11/04		102	%	60 - 130
			1,2-Dichloroethane	2024/11/04		91	%	60 - 130
			1,1-Dichloroethylene	2024/11/04		100	%	60 - 130
			cis-1,2-Dichloroethylene	2024/11/04		107	%	60 - 130
			trans-1,2-Dichloroethylene	2024/11/04		114	%	60 - 130
			1,2-Dichloropropane	2024/11/04		104	%	60 - 130
			cis-1,3-Dichloropropene	2024/11/04		99	%	60 - 130
			trans-1,3-Dichloropropene	2024/11/04		95	%	60 - 130
			Ethylbenzene	2024/11/04		101	%	60 - 130
			Ethylene Dibromide	2024/11/04		102	%	60 - 130
			Hexane	2024/11/04		116	%	60 - 130
			Methylene Chloride(Dichloromethane)	2024/11/04		107	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/04		103	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/04		94	%	60 - 130
			Methyl t-butyl ether (MTBE)	2024/11/04		101	%	60 - 130
			Styrene	2024/11/04		108	%	60 - 130
			1,1,1,2-Tetrachloroethane	2024/11/04		112	%	60 - 130
			1.1.2.2-Tetrachloroethane	2024/11/04		100	%	60 - 130
			Tetrachloroethylene	2024/11/04		105	%	60 - 130
			Toluene	2024/11/04		103	%	60 - 130
			1.1.1-Trichloroethane	2024/11/04		94	%	60 - 130
			1 1 2-Trichloroethane	2024/11/04		90	%	60 - 130
			Trichloroethylene	2024/11/04		109	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2024/11/04		102	%	60 - 130
			Vinvl Chloride	2024/11/04		111	%	60 - 130
			n+m-Xvlene	2024/11/04		103	%	60 - 130
				2027/11/04		117	/0 0/	60 - 130
07/2/10	NCU	Mathod Plank	4. Bromofluorohonzono	2024/11/04		102	/0 0/	60 140
5742419	NOH	MELIOU BIANK		2024/11/04		102	70 0/	00 - 140 60 120
			D1-1 2-Dichlaraathana	2024/11/04		00 TO9	/0 0/	60 140
				2024/11/04		89	% 0/	60 - 140
			D8-Toluene	2024/11/04		96	%	bu - 140

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acetone (2-Propanone)	2024/11/04	ND, RDL=0.49		ug/g	
			Benzene	2024/11/04	ND, RDL=0.0060		ug/g	
			Bromodichloromethane	2024/11/04	ND, RDI =0.040		ug/g	
			Bromoform	2024/11/04	ND, RDL=0.040		ug/g	
			Bromomethane	2024/11/04	ND, RDL=0.040		ug/g	
			Carbon Tetrachloride	2024/11/04	ND, RDL=0.040		ug/g	
			Chlorobenzene	2024/11/04	ND, RDL=0.040		ug/g	
			Chloroform	2024/11/04	ND, RDL=0.040		ug/g	
			Dibromochloromethane	2024/11/04	ND, RDL=0.040		ug/g	
			1,2-Dichlorobenzene	2024/11/04	ND, RDL=0.040		ug/g	
			1,3-Dichlorobenzene	2024/11/04	ND, RDL=0.040		ug/g	
			1,4-Dichlorobenzene	2024/11/04	ND, RDL=0.040		ug/g	
			Dichlorodifluoromethane (FREON 12)	2024/11/04	ND, RDL=0.040		ug/g	
			1,1-Dichloroethane	2024/11/04	ND, RDL=0.040		ug/g	
			1,2-Dichloroethane	2024/11/04	ND, RDL=0.049		ug/g	
			1,1-Dichloroethylene	2024/11/04	ND, RDL=0.040		ug/g	
			cis-1,2-Dichloroethylene	2024/11/04	ND, RDL=0.040		ug/g	
			trans-1,2-Dichloroethylene	2024/11/04	ND, RDL=0.040		ug/g	
			1,2-Dichloropropane	2024/11/04	ND, RDL=0.040		ug/g	
			cis-1,3-Dichloropropene	2024/11/04	ND, RDL=0.030		ug/g	
			trans-1,3-Dichloropropene	2024/11/04	ND, RDL=0.040		ug/g	
			Ethylbenzene	2024/11/04	ND, RDL=0.010		ug/g	
			Ethylene Dibromide	2024/11/04	ND, RDL=0.040		ug/g	
			Hexane	2024/11/04	ND, RDL=0.040		ug/g	
			Methylene Chloride(Dichloromethane)	2024/11/04	ND, RDL=0.049		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2024/11/04	ND, RDL=0.40		ug/g	
			Methyl Isobutyl Ketone	2024/11/04	ND, RDL=0.40		ug/g	

QA/QC			- · ·			_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Methyl t-butyl ether (MTBE)	2024/11/04	ND, RDL=0.040		ug/g	
			Styrene	2024/11/04	ND, RDL=0.040		ug/g	
			1,1,1,2-Tetrachloroethane	2024/11/04	ND, RDI =0.040		ug/g	
			1,1,2,2-Tetrachloroethane	2024/11/04	ND,		ug/g	
			Tetrachloroethylene	2024/11/04	ND,		ug/g	
			Toluene	2024/11/04	ND,		ug/g	
			1,1,1-Trichloroethane	2024/11/04	ND,		ug/g	
			1,1,2-Trichloroethane	2024/11/04	ND,		ug/g	
			Trichloroethylene	2024/11/04	ND,		ug/g	
			Trichlorofluoromethane (FREON 11)	2024/11/04	ND,		ug/g	
			Vinyl Chloride	2024/11/04	ND, RDI -0.019		ug/g	
			p+m-Xylene	2024/11/04	ND, RDL=0.020		ug/g	
			o-Xylene	2024/11/04	ND, RDL=0.020		ug/g	
			Total Xylenes	2024/11/04	ND, RDL=0.020		ug/g	
9742419	NGH	RPD	Acetone (2-Propanone)	2024/11/04	NC		%	50
	-		Benzene	2024/11/04	NC		%	50
			Bromodichloromethane	2024/11/04	NC		%	50
			Bromoform	2024/11/04	NC		%	50
			Bromomethane	2024/11/04	NC		%	50
			Carbon Tetrachloride	2024/11/04	NC		%	50
			Chlorobenzene	2024/11/04	NC		%	50
			Chloroform	2024/11/04	NC		%	50
			Dibromochloromethane	2024/11/04	NC		%	50
			1,2-Dichlorobenzene	2024/11/04	NC		%	50
			1.3-Dichlorobenzene	2024/11/04	NC		%	50
			1.4-Dichlorobenzene	2024/11/04	NC		%	50
			Dichlorodifluoromethane (FREON 12)	2024/11/04	NC		%	50
			1.1-Dichloroethane	2024/11/04	NC		%	50
			1.2-Dichloroethane	2024/11/04	NC		%	50
			1.1-Dichloroethylene	2024/11/04	NC		%	50
			cis-1 2-Dichloroethylene	2024/11/04	NC		%	50
			trans-1 2-Dichloroethylene	2024/11/04	NC		%	50
			1 2-Dichloropropape	2024/11/04	NC		%	50
			cis-1 3-Dichloropropene	2024/11/04	NC		%	50
			trans-1 3-Dichloronronene	2024/11/04	NC		%	50
			Ethylhenzene	2024/11/04	75		%	50
			Ethylene Dibromide	2024/11/04	NC		%	50
			Hexane	2024/11/04	NC		%	50
			Methylene Chloride(Dichloromethane)	2024/11/04	NC		/0 %	50
			Methyl Ethyl Ketone (2-Butanona)	2024/11/04	NC		/0 0/	50
			Methyl Isobutyl Ketone	2024/11/04	NC		%	50
			meny boodry herone	2027/11/07			70	50

1

QA/QC	1	00.7	Demonster	Data Analyzad	Malva	Deserver		OC Lineite
Batch	Init	QC Type	Parameter	2024/11/04	value	Recovery	UNITS %	
			Styrene	2024/11/04	NC		70 %	50
			1 1 1 2-Tetrachloroethane	2024/11/04	NC		%	50
			1 1 2 2-Tetrachloroethane	2024/11/04	NC		%	50
			Tetrachloroethylene	2024/11/04	NC		%	50
			Toluene	2024/11/04	5.6		%	50
			1 1 1-Trichloroethane	2024/11/04	NC		%	50
			1 1 2-Trichloroethane	2024/11/04	NC		%	50
			Trichloroethylene	2024/11/04	NC		%	50
			Trichlorofluoromethane (FREON 11)	2024/11/04	NC		%	50
			Vinvl Chloride	2024/11/04	NC		%	50
			p+m-Xylene	2024/11/04	NC		%	50
			o-Xvlene	2024/11/04	NC		%	50
			Total Xylenes	2024/11/04	NC		%	50
9742849	SB5	Matrix Spike	Chromium (VI)	2024/11/04		81	%	70 - 130
57 12015	505	[AHNZ61-01]		202 1/ 11/ 0 1		01	70	,0 150
9742849	SB5	Spiked Blank	Chromium (VI)	2024/11/04		94	%	80 - 120
9742849	SB5	Method Blank	Chromium (VI)	2024/11/04	ND,		ug/g	
					RDL=0.18			
9742849	SB5	RPD [AHNZ61-01]	Chromium (VI)	2024/11/04	23		%	35
9742886	ΠH	Matrix Spike [AHNZ61-01]	WAD Cyanide (Free)	2024/11/05		94	%	75 - 125
9742886	ΠH	Spiked Blank	WAD Cyanide (Free)	2024/11/04		102	%	80 - 120
9742886	ΠH	Method Blank	WAD Cyanide (Free)	2024/11/04	ND,		ug/g	
					RDL=0.01		0.0	
9742886	ΠH	RPD [AHNZ61-01]	WAD Cyanide (Free)	2024/11/05	NC		%	35
9743740	SRT	Spiked Blank	Available (CaCl2) pH	2024/11/04		100	%	97 - 103
9743740	SRT	RPD [AHNZ61-01]	Available (CaCl2) pH	2024/11/04	0.31		%	N/A
9743924	DT1	Matrix Spike [AHNZ55-01]	Acid Extractable Antimony (Sb)	2024/11/04		93	%	75 - 125
			Acid Extractable Arsenic (As)	2024/11/04		91	%	75 - 125
			Acid Extractable Barium (Ba)	2024/11/04		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2024/11/04		91	%	75 - 125
			Acid Extractable Boron (B)	2024/11/04		82	%	75 - 125
			Acid Extractable Cadmium (Cd)	2024/11/04		92	%	75 - 125
			Acid Extractable Chromium (Cr)	2024/11/04		NC	%	75 - 125
			Acid Extractable Cobalt (Co)	2024/11/04		98	%	75 - 125
			Acid Extractable Copper (Cu)	2024/11/04		NC	%	75 - 125
			Acid Extractable Lead (Pb)	2024/11/04		NC	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2024/11/04		94	%	75 - 125
			Acid Extractable Nickel (Ni)	2024/11/04		99	%	75 - 125
			Acid Extractable Selenium (Se)	2024/11/04		91	%	75 - 125
			Acid Extractable Silver (Ag)	2024/11/04		92	%	75 - 125
			Acid Extractable Thallium (Tl)	2024/11/04		91	%	75 - 125
			Acid Extractable Uranium (U)	2024/11/04		98	%	75 - 125
			Acid Extractable Vanadium (V)	2024/11/04		NC	%	75 - 125
			Acid Extractable Zinc (Zn)	2024/11/04		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2024/11/04		92	%	75 - 125
9743924	DT1	Spiked Blank	Acid Extractable Antimony (Sb)	2024/11/04		110	%	80 - 120
			Acid Extractable Arsenic (As)	2024/11/04		97	%	80 - 120
			Acid Extractable Barium (Ba)	2024/11/04		95	%	80 - 120
			Acid Extractable Beryllium (Be)	2024/11/04		93	%	80 - 120
			Acid Extractable Boron (B)	2024/11/04		87	%	80 - 120
			Acid Extractable Cadmium (Cd)	2024/11/04		97	%	80 - 120

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Chromium (Cr)	2024/11/04		96	%	80 - 120
			Acid Extractable Cobalt (Co)	2024/11/04		103	%	80 - 120
			Acid Extractable Copper (Cu)	2024/11/04		95	%	80 - 120
			Acid Extractable Lead (Pb)	2024/11/04		98	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2024/11/04		95	%	80 - 120
			Acid Extractable Nickel (Ni)	2024/11/04		102	%	80 - 120
			Acid Extractable Selenium (Se)	2024/11/04		94	%	80 - 120
			Acid Extractable Silver (Ag)	2024/11/04		95	%	80 - 120
			Acid Extractable Thallium (Tl)	2024/11/04		100	%	80 - 120
			Acid Extractable Uranium (U)	2024/11/04		103	%	80 - 120
			Acid Extractable Vanadium (V)	2024/11/04		98	%	80 - 120
			Acid Extractable Zinc (Zn)	2024/11/04		100	%	80 - 120
			Acid Extractable Mercury (Hg)	2024/11/04		98	%	80 - 120
9743924	DT1	Method Blank	Acid Extractable Antimony (Sb)	2024/11/04	ND, RDL=0.20		ug/g	
			Acid Extractable Arsenic (As)	2024/11/04	ND, RDL=1.0		ug/g	
			Acid Extractable Barium (Ba)	2024/11/04	ND, RDI =0.50		ug/g	
			Acid Extractable Beryllium (Be)	2024/11/04	ND, RDL=0.20		ug/g	
			Acid Extractable Boron (B)	2024/11/04	ND, RDL=5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2024/11/04	ND, RDL=0.10		ug/g	
			Acid Extractable Chromium (Cr)	2024/11/04	ND, RDL=1.0		ug/g	
			Acid Extractable Cobalt (Co)	2024/11/04	ND, RDL=0.10		ug/g	
			Acid Extractable Copper (Cu)	2024/11/04	ND, RDL=0.50		ug/g	
			Acid Extractable Lead (Pb)	2024/11/04	ND, RDL=1.0		ug/g	
			Acid Extractable Molybdenum (Mo)	2024/11/04	ND, RDL=0.50		ug/g	
			Acid Extractable Nickel (Ni)	2024/11/04	ND, RDL=0.50		ug/g	
			Acid Extractable Selenium (Se)	2024/11/04	ND, RDL=0.50		ug/g	
			Acid Extractable Silver (Ag)	2024/11/04	ND, RDL=0.20		ug/g	
			Acid Extractable Thallium (Tl)	2024/11/04	ND, RDL=0.050		ug/g	
			Acid Extractable Uranium (U)	2024/11/04	ND, RDL=0.050		ug/g	
			Acid Extractable Vanadium (V)	2024/11/04	ND, RDL=5.0		ug/g	
			Acid Extractable Zinc (Zn)	2024/11/04	ND, RDL=5.0		ug/g	
			Acid Extractable Mercury (Hg)	2024/11/04	ND, RDL=0.050		ug/g	
9743924	DT1	RPD [AHNZ55-01]	Acid Extractable Antimony (Sb)	2024/11/04	NC		%	30
			Acid Extractable Arsenic (As)	2024/11/04	5.3		%	30
			Acid Extractable Barium (Ba)	2024/11/04	4.1		%	30
			Acid Extractable Beryllium (Be)	2024/11/04	6.7		%	30

1

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
	-		Acid Extractable Boron (B)	2024/11/04	13	/	%	30
			Acid Extractable Cadmium (Cd)	2024/11/04	1.1		%	30
			Acid Extractable Chromium (Cr)	2024/11/04	5.6		%	30
			Acid Extractable Cobalt (Co)	2024/11/04	2.1		%	30
			Acid Extractable Copper (Cu)	2024/11/04	4.6		%	30
			Acid Extractable Lead (Pb)	2024/11/04	1.1		%	30
			Acid Extractable Molvbdenum (Mo)	2024/11/04	8.8		%	30
			Acid Extractable Nickel (Ni)	2024/11/04	6.2		%	30
			Acid Extractable Selenium (Se)	2024/11/04	NC		%	30
			Acid Extractable Silver (Ag)	2024/11/04	NC		%	30
			Acid Extractable Thallium (TI)	2024/11/04	0.74		%	30
			Acid Extractable Uranium (U)	2024/11/04	5.0		%	30
			Acid Extractable Vanadium (V)	2024/11/04	3.2		%	30
			Acid Extractable Zinc (Zn)	2024/11/04	2.9		%	30
			Acid Extractable Mercury (Hg)	2024/11/04	2.3		%	30
9743962	RAJ	Matrix Spike	D10-Anthracene	2024/11/05		99	%	50 - 130
		[AHNZ56-02]						
			D14-Terphenyl (FS)	2024/11/05		98	%	50 - 130
			D8-Acenaphthylene	2024/11/05		91	%	50 - 130
			Acenaphthene	2024/11/05		96	%	50 - 130
			Acenaphthylene	2024/11/05		101	%	50 - 130
			Anthracene	2024/11/05		99	%	50 - 130
			Benzo(a)anthracene	2024/11/05		92	%	50 - 130
			Benzo(a)pyrene	2024/11/05		89	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/05		90	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/05		98	%	50 - 130
			Benzo(k)fluoranthene	2024/11/05		81	%	50 - 130
			Chrysene	2024/11/05		85	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/05		103	%	50 - 130
			Fluoranthene	2024/11/05		103	%	50 - 130
			Fluorene	2024/11/05		99	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/05		104	%	50 - 130
			1-Methylnaphthalene	2024/11/05		80	%	50 - 130
			2-Methylnaphthalene	2024/11/05		82	%	50 - 130
			Naphthalene	2024/11/05		77	%	50 - 130
			Phenanthrene	2024/11/05		93	%	50 - 130
			Pyrene	2024/11/05		105	%	50 - 130
9743962	RAJ	Spiked Blank	D10-Anthracene	2024/11/05		101	%	50 - 130
			D14-Terphenyl (FS)	2024/11/05		100	%	50 - 130
			D8-Acenaphthylene	2024/11/05		97	%	50 - 130
			Acenaphthene	2024/11/05		99	%	50 - 130
			Acenaphthylene	2024/11/05		106	%	50 - 130
			Anthracene	2024/11/05		102	%	50 - 130
			Benzo(a)anthracene	2024/11/05		95	%	50 - 130
			Benzo(a)pyrene	2024/11/05		92	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/05		95	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/05		103	%	50 - 130
			Benzo(k)fluoranthene	2024/11/05		85	%	50 - 130
			Chrysene	2024/11/05		89	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/05		105	%	50 - 130
			Fluoranthene	2024/11/05		107	%	50 - 130
			Fluorene	2024/11/05		103	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/05		107	%	50 - 130
			1-Methylnaphthalene	2024/11/05		87	%	50 - 130

QA/QC Batch	Init		Darameter	Data Analyzad	Value	Bacovony		OC Limite
Datti	IIIIt	QCType	2-Methylnanhthalene	2024/11/05	Value	89	%	50 - 130
			Nanhthalene	2024/11/05		89	70 %	50 - 130
			Phenanthrene	2024/11/05		97	%	50 - 130
			Pyrene	2024/11/05		107	%	50 - 130
9743962	RΔI	Method Blank	D10-Anthracene	2024/11/05		108	%	50 - 130
5745502	10-0	Method Blank	D14-Ternbenyl (ES)	2024/11/05		103	%	50 - 130
			D8-Acenanthhylene	2024/11/05		98	%	50 - 130
			Acenaphthene	2024/11/05	ND	50	σ/σ	50 150
			Acchipminene	2024/11/03	RDL=0.0050		ug/ g	
			Acenaphthylene	2024/11/05	ND, RDL=0.0050		ug/g	
			Anthracene	2024/11/05	ND, RDL=0.0050		ug/g	
			Benzo(a)anthracene	2024/11/05	ND, RDI =0.0050		ug/g	
			Benzo(a)pyrene	2024/11/05	ND,		ug/g	
			Benzo(b/j)fluoranthene	2024/11/05	ND,		ug/g	
			Benzo(g,h,i)perylene	2024/11/05	ND,		ug/g	
			Benzo(k)fluoranthene	2024/11/05	ND,		ug/g	
			Chrysene	2024/11/05	ND,		ug/g	
			Dibenzo(a,h)anthracene	2024/11/05	ND,		ug/g	
			Fluoranthene	2024/11/05	ND,		ug/g	
			Fluorene	2024/11/05	ND,		ug/g	
			Indeno(1,2,3-cd)pyrene	2024/11/05	ND, RDI =0.0050		ug/g	
			1-Methylnaphthalene	2024/11/05	ND, RDI =0.0050		ug/g	
			2-Methylnaphthalene	2024/11/05	ND, RDI =0.0050		ug/g	
			Naphthalene	2024/11/05	ND, RDL=0.0050		ug/g	
			Phenanthrene	2024/11/05	ND, RDL=0.0050		ug/g	
			Pyrene	2024/11/05	ND, RDL=0.0050		ug/g	
9743962	RAJ	RPD [AHNZ56-02]	Acenaphthene	2024/11/05	NC		%	40
		- [Acenaphthylene	2024/11/05	NC		%	40
			Anthracene	2024/11/05	NC		%	40
			Benzo(a)anthracene	2024/11/05	NC		%	40
			Benzo(a)pyrene	2024/11/05	NC		%	40
			Benzo(b/j)fluoranthene	2024/11/05	NC		%	40
			Benzo(g,h,i)perylene	2024/11/05	NC		%	40
			Benzo(k)fluoranthene	2024/11/05	NC		%	40
			Chrysene	2024/11/05	NC		%	40
			Dibenzo(a,h)anthracene	2024/11/05	NC		%	40
			Fluoranthene	2024/11/05	NC		%	40
			Fluorene	2024/11/05	NC		%	40

QUALITY ASSURANCE REPORT(CONT'D)

04/00								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Indeno(1,2,3-cd)pyrene	2024/11/05	NC		%	40
			1-Methylnaphthalene	2024/11/05	NC		%	40
			2-Methylnaphthalene	2024/11/05	NC		%	40
			Naphthalene	2024/11/05	NC		%	40
			Phenanthrene	2024/11/05	NC		%	40
			Pyrene	2024/11/05	NC		%	40
9745209	RDU	Matrix Spike	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/05		123	%	65 - 135
9745209	RDU	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/05		101	%	65 - 135
9745209	RDU	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/05	ND,		ug/g	
					RDL=100			
9745209	RDU	RPD	F4G-sg (Grav. Heavy Hydrocarbons)	2024/11/05	6.1		%	50
9745355	GTK	Spiked Blank	Conductivity	2024/11/05		106	%	90 - 110
9745355	GTK	Method Blank	Conductivity	2024/11/05	ND,		mS/cm	
					RDL=0.002			
9745355	GTK	RPD	Conductivity	2024/11/05	1.3		%	10
9745367	TLG	Matrix Spike	Hot Water Ext. Boron (B)	2024/11/06		100	%	75 - 125
9745367	TLG	Spiked Blank	Hot Water Ext. Boron (B)	2024/11/06		100	%	75 - 125
9745367	TLG	Method Blank	Hot Water Ext. Boron (B)	2024/11/06	ND,		ug/g	
					RDL=0.050			
9745367	TLG	RPD	Hot Water Ext. Boron (B)	2024/11/06	15		%	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Louis A Harding

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C4Y3361																								
2024/10/3	0 09:00																						Pag	ge of
		6	ureau Veritas 740 Campobe	llo Road, Mississauga,	Ontario Canad	da L5N 2L8 T	el:(905) 817-5	700 Toll-free:80	0-563-6266 Fax	(905) 817-	5777 www	v.bvna.com												
VERITAS		INIVO	ICE TO:						007 70				1		200.150]) (s.C	1			
0	#39509 1	opers &	Associates	5			REPORT TO:					PROJECT INFORMATION:					- ž	NONT 2024 10 7526				rdor #		
Company Name: Hostors Experse Associates Company Attention: Accounts Payable				Company Nar Attention:	Luke Lopers					Quotation #:														
Address: 30 Lansfield Way Address			Address:							Project: LOP2 Project Name:		LOP24-025C							10196	88				
Ottawa ON K2G 3V8																LUC #:			Project Ma	inager:				
Tel: Email:	Luke@Lop	pers.ca	Fa	ах:		Tel: Email:	Luke@	Lopers ca	Fax:				Site #:	0	4 1	2020	<						Katherine {	Szozda
MOE REC	GULATED DR	RINKING V	VATER OR	WATER INTENDE	D FOR HU	MAN CONS	SUMPTION	MUST BE		1		AN	IALYSIS RE	BY: EQUESTED	PLEASE	BE SPEC	IFIC)				Turnaround	Time (TAT) Re	quired:	
	SUBMITTED	D ON THE	BUREAU	VERITAS DRINKIN	G WATER (CHAIN OF	CUSTODY	a and the		Soil)			s	d	s	ŝ	1			Den la (O	Please provide adv	ance notice for	rush projects	S. Same
Regulati	ion 153 (2011)	_		Other Regulati	ons		Special In	structions	- circle	-F4 (S		CS Pkg	Meta	P Pre	VOC	ABN	5			(will be applied	tandard) TAT: d if Rush TAT is not spec	cified):		\checkmark
Table 1	Res/Park	Medium/Fi		E Sanitary Se	wer Bylaw				Cr V	8 F1		rgani	SPLP	mSPL	SPLP	SPLP	Z			Standard TAT	= 5-7 Working days for i	most tests		١Ą
Table 3	Agri/Other	For RSC		Municipality	i bylaw	_			l (ple Hg /	Dy HS	Soil)	& Ino	Soil	s Soil	Soil	Soil	MA			Please note: S days - contact	Standard TAT for certain your Project Manager fo	lests such as BC or details.	D and Dioxins/Fura	ans are > 5
Table			PWQ	10 Reg 406 Ta	able				ttered als /	E C	AHs	Aetals	xces	xces	xcess	xces	2			Job Specific	Rush TAT (if applies	to entire submi	ssion)	
	la stada	0.11.11	Other	r					Id Fil	153	153 P	153 N	406 E	406 E	406 E	406 E	Se			Date Required Rush Confirm	ation Number:	Time	Required:	$-\Box$
Sampl	e Barcode Label	el criteria or	Sample (Loo	cation) Identification	Date Sa	moled Ti	me Sampled	Matrix	- <u>i</u>	.Reg	.Reg	Soil)	.Reg	.Reg	Reg.	Reg.	à			# of Bottles		(ca Comme	I lab for #)	
					1	1 1	0	C			0	1	0		0	0				1				
		R	41-24	1-551	6c+28	8/24 11	\$20 AU	1 2		X	X	X												
2		T	111-20	1-556	mf28	chall:	YDPM	S									X							
		E	41-27	-320	Ling	729 1	10111	-		-	-	1					1.							
3		B	42-2	24-841	Bct2	9/24 8	: 30AM	S		×	×	X												
4		5	2112 2	11 552	2.120	2/200	CC AM	C		X	1	~												
			0#2-2	9-333	LETCI	1/24 0	1 22 1414	2	-	.X	~	~												
5		Ē	3H2-2	24 - 558	at29	7/24 9:	SYOAM	S									X							
6		D	112.21	V-AILI			I' IC AM	5			~	\sim					1							
		D	FIJ=4	7-AU1	Oct 2%	1/24 11	, ISAM)		X	~	~	-											
7		R	+13-2	Y-553	at?	9/20 11	: 40 AM	S		X	X	×												
8			117	711 00 11	Lic	1/27 11		6																
Ŭ		B	13-	29-5511	Octz	9/24 1:	35 PM	S																
9		12	HU	74-CCI	017	19/201 -	Zicpin	5				V												
		P		-1 651	YCT2	1/69 5	12111	0				~					1				Rec	eived i	n Ottav	NC
10		D	UP-	10/29	oct2	9/24 -		S									X							
* BELINQUISHED BY: (Signature/Print) Date: (YY/MM/DD) Time					Time		RECEIVED	ECEIVED BY: (Signature/Print) Date: (Y				MM/DD) Time		# jars used and not submitted			Laboratory Use Only							
Mu Ma 10/21						1200	to du	o da Silva / MAP 2024/			10241	0130 09:00			-	- Time Sen		ensitive	Temperatu	re (°C) on Recei	Present	Yes	No	
· UNLESS OTHER	WISE AGREED TO	TO IN WRITIN	S, WORK SUB	BMITTED ON THIS CHAIN	OF CUSTOD	Y IS SUBJEC	T TO BUREAU	VERITAS'S STAL	NDARD TERMS	ND CONDI	TIONS. SI	IGNING OF	THIS CHAIN	OF CUSTO	DDY DOCUN	MENT IS				12/6/	+ (Ice)	White: B	Jreau Veritas Y	ellow: Client
* IT IS THE RESPO	NI AND ACCEP	TANCE OF C	UR TERMS WI	HICH ARE AVAILABLE F	OR VIEWING A	AT WWW.BVN	A.COM/ENVIR	ONMENTAL-LAE	CHAIN OF CUST	SOURCES/		MS-AND-CO	AL TAT DE	LAYS 7	18/0	A	SAMPLE	S MUST BE	KEPT CO	DL (< 10° C) F	ROM TIME OF SAMPLI	ING		
** SAMPLE CONTA	INER, PRESERV	VATION, HOL	D TIME AND F	PACKAGE INFORMATIO	N CAN BE VIE	WED AT WW	W.BVNA.COM	ENVIRONMENTA	L-LABORATORI	ES/RESOU	RCES/CH	AIN-CUSTO	DY-FORMS	-COCS.				UNT	IL DELIVER	RY TO BUREAU	JVERITAS			
			** SAMPLE CONTAINER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCS.																					

Your Project #: LOP24-025C Your C.O.C. #: 1019688-02-01

Attention: Luke Lopers

Lopers & Associates 30 Lansfield Way Ottawa, ON CANADA K2G 3V8

> Report Date: 2024/11/08 Report #: R8397239 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Y3367 Received: 2024/10/30, 09:00

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	1	N/A	2024/11/04	CAM SOP-00301	EPA 8270D m
ABN Compounds in SPLP Leachates (1)	1	2024/11/07	2024/11/08	CAM SOP-00301	EPA 8270 m
Hot Water Extractable Boron (1)	1	2024/11/04	2024/11/04	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum (1)	1	N/A	2024/11/06		EPA 8260D m
Free (WAD) Cyanide (1)	1	2024/11/04	2024/11/05	CAM SOP-00457	OMOE E3015 m
Conductivity (1)	1	2024/11/05	2024/11/05	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1, 2)	1	2024/11/05	2024/11/05	CAM SOP-00436	EPA 3060A/7199 m
Dinitrotoluene Sum (1)	1	N/A	2024/11/08	CAM SOP - 00301	EPA 8270
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 3)	1	N/A	2024/11/03	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 4)	1	2024/11/04	2024/11/05	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS (1)	1	2024/11/04	2024/11/04	CAM SOP-00447	EPA 6020B m
Total Metals in SPLP Leachate by ICPMS (1)	1	2024/11/04	2024/11/04	CAM SOP-00447	EPA 6020B m
Moisture (1)	1	N/A	2024/11/01	CAM SOP-00445	Carter 2nd ed 70.2 m
Modified SPLP extraction - Weight (1)	1	N/A	2024/11/02	CAM SOP-00941	OMOECP LaSB E9003 R3
PAH Compounds in Soil by GC/MS (SIM) (1)	1	2024/11/02	2024/11/02	CAM SOP-00318	EPA 8270E
pH CaCl2 EXTRACT (1)	1	2024/11/05	2024/11/05	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR) (1)	1	N/A	2024/11/05	CAM SOP-00102	EPA 6010C
SPLP Zero Headspace Extraction (1)	1	2024/11/04	2024/11/05	CAM SOP-00430	EPA 1312 m
Volatile organics in SPLP leachates (1)	1	N/A	2024/11/06	CAM SOP-00228	EPA 8260D m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless

Your Project #: LOP24-025C Your C.O.C. #: 1019688-02-01

Attention: Luke Lopers

Lopers & Associates 30 Lansfield Way Ottawa, ON CANADA K2G 3V8

> Report Date: 2024/11/08 Report #: R8397239 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Y3367

Received: 2024/10/30, 09:00

otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) Soils are reported on a dry weight basis unless otherwise specified.

(3) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.

(4) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		AHOA08			AHOA09	
Sampling Date		2024/10/29			2024/10/29 15:30	
COC Number		1019688-02-01			1019688-02-01	
	UNITS	DUP2-10/29	RDL	QC Batch	MSLP	QC Batch
Calculated Parameters						
Sodium Adsorption Ratio	N/A	5.6		9739072		
Charge/Prep Analysis						•
Amount Extracted (Wet Weight) (g)	N/A				25	9743033
Inorganics						
Conductivity	mS/cm	0.55	0.002	9745355		
Dry Weight	g				100	9740146
Moisture	%	21	1.0	9741334		
Available (CaCl2) pH	рН	6.96		9745687		
WAD Cyanide (Free)	ug/g	ND	0.01	9743820		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch ND = Not Detected at a concentration	n equal o	r greater than th	e indica	ated Detect	ion Limit.	

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Bureau Veritas ID AHOA08			AHOA09				
Sampling Date		2024/10/29			2024/10/29 15:30		
COC Number		1019688-02-01			1019688-02-01		
	UNITS	DUP2-10/29	RDL	QC Batch	MSLP	RDL	QC Batch
Inorganics							
Chromium (VI)	ug/g	0.47	0.18	9745289			
Metals				•			
Leachable (SPLP) Antimony (Sb)	ug/L				ND	0.5	9742848
Leachable (SPLP) Arsenic (As)	ug/L				ND	1	9742848
Leachable (SPLP) Barium (Ba)	ug/L				12	5	9742848
Leachable (SPLP) Beryllium (Be)	ug/L				ND	0.5	9742848
Hot Water Ext. Boron (B)	ug/g	0.13	0.050	9743254			
Leachable (SPLP) Boron (B)	ug/L				24	10	9742848
Leachable (SPLP) Cadmium (Cd)	ug/L				ND	0.1	9742848
Leachable (SPLP) Chromium (Cr)	ug/L				ND	5	9742848
Leachable (SPLP) Cobalt (Co)	ug/L				ND	0.5	9742848
Leachable (SPLP) Copper (Cu)	ug/L				2	1	9742848
Leachable (SPLP) Lead (Pb)	ug/L				ND	0.5	9742848
Leachable (SPLP) Molybdenum (Mo)	ug/L				1	1	9742848
Leachable (SPLP) Nickel (Ni)	ug/L				ND	1	9742848
Leachable (SPLP) Selenium (Se)	ug/L				ND	2	9742848
Leachable (SPLP) Silver (Ag)	ug/L				ND	0.1	9742848
Leachable (SPLP) Thallium (Tl)	ug/L				ND	0.05	9742848
Leachable (SPLP) Uranium (U)	ug/L				ND	0.1	9742848
Leachable (SPLP) Vanadium (V)	ug/L				19	1	9742848
Leachable (SPLP) Zinc (Zn)	ug/L				ND	5	9742848
Acid Extractable Antimony (Sb)	ug/g	ND	0.20	9743552			
Acid Extractable Arsenic (As)	ug/g	1.4	1.0	9743552			
Acid Extractable Barium (Ba)	ug/g	210	0.50	9743552			
Acid Extractable Beryllium (Be)	ug/g	0.69	0.20	9743552			
Acid Extractable Boron (B)	ug/g	ND	5.0	9743552			
Acid Extractable Cadmium (Cd)	ug/g	ND	0.10	9743552			
Acid Extractable Chromium (Cr)	ug/g	70	1.0	9743552			
Acid Extractable Cobalt (Co)	ug/g	15	0.10	9743552			
Acid Extractable Copper (Cu)	ug/g	29	0.50	9743552			
Acid Extractable Lead (Pb)	ug/g	5.1	1.0	9743552			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Bureau Veritas ID		AHOA08			AHOA09		
Sampling Date		2024/10/29			2024/10/29 15:30		
COC Number		1019688-02-01			1019688-02-01		
	UNITS	DUP2-10/29	RDL	QC Batch	MSLP	RDL	QC Batch
Acid Extractable Molybdenum (Mo)	ug/g	ND	0.50	9743552			
Acid Extractable Nickel (Ni)	ug/g	39	0.50	9743552			
Acid Extractable Selenium (Se)	ug/g	ND	0.50	9743552			
Acid Extractable Silver (Ag)	ug/g	ND	0.20	9743552			
Acid Extractable Thallium (Tl)	ug/g	0.28	0.050	9743552			
Acid Extractable Uranium (U)	ug/g	0.72	0.050	9743552			
Acid Extractable Vanadium (V)	ug/g	74	5.0	9743552			
Acid Extractable Zinc (Zn)	ug/g	83	5.0	9743552			
Acid Extractable Mercury (Hg)	ug/g	ND	0.050	9743552			
DDI Dementable Detection Lincit							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		AHOA08			AHOA09		
Sampling Date		2024/10/29			2024/10/29 15:30		
COC Number		1019688-02-01			1019688-02-01		
	UNITS	DUP2-10/29	RDL	QC Batch	MSLP	RDL	QC Batch
Semivolatile Organics							
Leachable (SPLP) Bis(2-chloroethyl)ether	ug/L				ND	2.0	9752586
Leachable (SPLP) Bis(2-chloroisopropyl)ether	ug/L				ND	2.0	9752586
Leachable (SPLP) p-Chloroaniline	ug/L				ND	5.0	9752586
Leachable (SPLP) 3,3'-Dichlorobenzidine	ug/L				ND	0.40	9752586
Leachable (SPLP) Diethyl phthalate	ug/L				ND	1.0	9752586
Leachable (SPLP) Dimethyl phthalate	ug/L				ND	1.0	9752586
Leachable (SPLP) 2,4-Dinitrophenol	ug/L				ND	5.0	9752586
Leachable (SPLP) 2,4-Dinitrotoluene	ug/L				ND	3.0	9752586
Leachable (SPLP) 2,6-Dinitrotoluene	ug/L				ND	3.0	9752586
Leachable (SPLP) 2,4,6-Trichlorophenol	ug/L				ND	0.70	9752586
Calculated Parameters	•						,
Leachable 2,4- & 2,6-Dinitrotoluene	ug/L				ND	4.2	9739377
Methylnaphthalene, 2-(1-)	ug/g	ND	0.0071	9739074			
Polyaromatic Hydrocarbons							
Acenaphthene	ug/g	ND	0.0050	9741863			
Acenaphthylene	ug/g	ND	0.0050	9741863			
Anthracene	ug/g	ND	0.0050	9741863			
Benzo(a)anthracene	ug/g	ND	0.0050	9741863			
Benzo(a)pyrene	ug/g	ND	0.0050	9741863			
Benzo(b/j)fluoranthene	ug/g	ND	0.0050	9741863			
Benzo(g,h,i)perylene	ug/g	ND	0.0050	9741863			
Benzo(k)fluoranthene	ug/g	ND	0.0050	9741863			
Chrysene	ug/g	ND	0.0050	9741863			
Dibenzo(a,h)anthracene	ug/g	ND	0.0050	9741863			
Fluoranthene	ug/g	ND	0.0050	9741863			
Fluorene	ug/g	ND	0.0050	9741863			
Indeno(1,2,3-cd)pyrene	ug/g	ND	0.0050	9741863			
1-Methylnaphthalene	ug/g	ND	0.0050	9741863			
2-Methylnaphthalene	ug/g	ND	0.0050	9741863			
Naphthalene	ug/g	ND	0.0050	9741863			
Phenanthrene	ug/g	ND	0.0050	9741863			
RDL = Reportable Detection Limit							

QC Batch = Quality Control Batch

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		AHOA08			AHOA09	ĺ	
Sampling Date		2024/10/29			2024/10/29 15:30		
COC Number		1019688-02-01			1019688-02-01		
	UNITS	DUP2-10/29	RDL	QC Batch	MSLP	RDL	QC Batch
Pyrene	ug/g	ND	0.0050	9741863			
Surrogate Recovery (%)		-					
Leachable (SPLP) 2,4,6-Tribromophenol	%				78		9752586
Leachable (SPLP) 2-Fluorobiphenyl	%				76		9752586
Leachable (SPLP) D14-Terphenyl (FS)	%				81		9752586
Leachable (SPLP) D5-Nitrobenzene	%				78		9752586
D10-Anthracene	%	87		9741863			
D14-Terphenyl (FS)	%	89		9741863			
D8-Acenaphthylene	%	80		9741863			
RDL = Reportable Detection Limit	·			•			

QC Batch = Quality Control Batch

VOLATILE ORGANICS BY GC/MS (SOIL)

Bureau Veritas ID		AHOA09		
Sampling Date		2024/10/29 15:30		
COC Number		1019688-02-01		
	UNITS	MSLP	RDL	QC Batch
Calculated Parameters				
Leachable (ZHE) 1,3-Dichloropropene (cis+trans)	ug/L	ND	0.42	9739375
Volatile Organics				
Leachable (SPLP) Bromomethane	ug/L	ND	0.40	9746484
Leachable (SPLP) Carbon Tetrachloride	ug/L	ND	0.19	9746484
Leachable (SPLP) Chloroform	ug/L	ND	0.90	9746484
Leachable (SPLP) 1,2-Dichlorobenzene	ug/L	ND	0.40	9746484
Leachable (SPLP) 1,4-Dichlorobenzene	ug/L	ND	0.40	9746484
Leachable (SPLP) 1,1-Dichloroethane	ug/L	ND	0.40	9746484
Leachable (SPLP) 1,2-Dichloroethane	ug/L	ND	0.40	9746484
Leachable (SPLP) 1,1-Dichloroethylene	ug/L	ND	0.40	9746484
Leachable (SPLP) cis-1,2-Dichloroethylene	ug/L	ND	0.40	9746484
Leachable (SPLP) trans-1,2-Dichloroethylene	ug/L	ND	0.40	9746484
Leachable (SPLP) 1,2-Dichloropropane	ug/L	ND	0.40	9746484
Leachable (SPLP) cis-1,3-Dichloropropene	ug/L	ND	0.30	9746484
Leachable (SPLP) trans-1,3-Dichloropropene	ug/L	ND	0.30	9746484
Leachable (SPLP) Ethylene Dibromide	ug/L	ND	0.19	9746484
Leachable (SPLP) 1,1,1,2-Tetrachloroethane	ug/L	ND	0.40	9746484
Leachable (SPLP) 1,1,2,2-Tetrachloroethane	ug/L	ND	0.40	9746484
Leachable (SPLP) Tetrachloroethylene	ug/L	ND	0.40	9746484
Leachable (SPLP) 1,1,2-Trichloroethane	ug/L	ND	0.40	9746484
Leachable (SPLP) Trichloroethylene	ug/L	ND	0.40	9746484
Surrogate Recovery (%)				
Leachable (SPLP) 4-Bromofluorobenzene	%	104		9746484
Leachable (SPLP) D4-1,2-Dichloroethane	%	109		9746484
Leachable (SPLP) D8-Toluene	%	97		9746484
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
ND = Not Detected at a concentration equal or gre	ater tha	n the indicated D	Petecti	ion Limit.

PETROLEUM HYDROCARBONS (CCME)

Bureau Veritas ID		AHOA08		
Sampling Date		2024/10/29		
COC Number		1019688-02-01		
	UNITS	DUP2-10/29	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/g	ND	0.020	9742433
Toluene	ug/g	ND	0.020	9742433
Ethylbenzene	ug/g	ND	0.020	9742433
o-Xylene	ug/g	ND	0.020	9742433
p+m-Xylene	ug/g	ND	0.040	9742433
Total Xylenes	ug/g	ND	0.040	9742433
F1 (C6-C10)	ug/g	ND	10	9742433
F1 (C6-C10) - BTEX	ug/g	ND	10	9742433
F2-F4 Hydrocarbons		•		
F2 (C10-C16 Hydrocarbons)	ug/g	ND	7.0	9744048
F3 (C16-C34 Hydrocarbons)	ug/g	ND	50	9744048
F4 (C34-C50 Hydrocarbons)	ug/g	ND	50	9744048
Reached Baseline at C50	ug/g	Yes		9744048
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	98		9742433
4-Bromofluorobenzene	%	97		9742433
D10-o-Xylene	%	114		9742433
D4-1,2-Dichloroethane	%	99		9742433
o-Terphenyl	%	84		9744048
RDL = Reportable Detection L	.imit			
QC Batch = Quality Control Ba	atch			
ND = Not Detected at a conce	entratior	n equal or greater	r than t	he
indicated Detection Limit.				

GENERAL COMMENTS

Sample AHOA08 [DUP2-10/29] : F1/BTEX analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.

1

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recoverv	UNITS	QC Limits
9741334	JTS	RPD	Moisture	2024/11/01	0		%	20
9741863	JYO	Matrix Spike	D10-Anthracene	2024/11/02		86	%	50 - 130
		•	D14-Terphenyl (FS)	2024/11/02		81	%	50 - 130
			D8-Acenaphthylene	2024/11/02		80	%	50 - 130
			Acenaphthene	2024/11/02		91	%	50 - 130
			Acenaphthylene	2024/11/02		89	%	50 - 130
			Anthracene	2024/11/02		92	%	50 - 130
			Benzo(a)anthracene	2024/11/02		95	%	50 - 130
			Benzo(a)pyrene	2024/11/02		95	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/02		93	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/02		106	%	50 - 130
			Benzo(k)fluoranthene	2024/11/02		97	%	50 - 130
			Chrysene	2024/11/02		97	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/02		119	%	50 - 130
			Fluoranthene	2024/11/02		83	%	50 - 130
			Fluorene	2024/11/02		94	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/02		104	%	50 - 130
			1-Methylnaphthalene	2024/11/02		86	%	50 - 130
			2-Methylnaphthalene	2024/11/02		84	%	50 - 130
			Naphthalene	2024/11/02		80	%	50 - 130
			Phenanthrene	2024/11/02		94	%	50 - 130
			Pyrene	2024/11/02		83	%	50 - 130
9741863	JYO	Spiked Blank	D10-Anthracene	2024/11/02		89	%	50 - 130
			D14-Terphenyl (FS)	2024/11/02		86	%	50 - 130
			D8-Acenaphthylene	2024/11/02		85	%	50 - 130
			Acenaphthene	2024/11/02		92	%	50 - 130
			Acenaphthylene	2024/11/02		91	%	50 - 130
			Anthracene	2024/11/02		95	%	50 - 130
			Benzo(a)anthracene	2024/11/02		95	%	50 - 130
			Benzo(a)pyrene	2024/11/02		97	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/02		95	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/02		105	%	50 - 130
			Benzo(k)fluoranthene	2024/11/02		100	%	50 - 130
			Chrysene	2024/11/02		98	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/02		115	%	50 - 130
			Fluoranthene	2024/11/02		87	%	50 - 130
			Fluorene	2024/11/02		95	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/02		103	%	50 - 130
			1-Methylnaphthalene	2024/11/02		90	%	50 - 130
			2-Methylnaphthalene	2024/11/02		88	%	50 - 130
			Naphthalene	2024/11/02		89	%	50 - 130
			Phenanthrene	2024/11/02		95	%	50 - 130
			Pyrene	2024/11/02		87	%	50 - 130
9741863	JYO	Method Blank	D10-Anthracene	2024/11/02		86	%	50 - 130
			D14-Terphenyl (FS)	2024/11/02		82	%	50 - 130
			D8-Acenaphthylene	2024/11/02		80	%	50 - 130
			Acenaphthene	2024/11/02	ND, RDL=0.0050		ug/g	
			Acenaphthylene	2024/11/02	ND, RDL=0.0050		ug/g	
			Anthracene	2024/11/02	ND, RDL=0.0050		ug/g	
			Benzo(a)anthracene	2024/11/02	ND, RDL=0.0050		ug/g	

1

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	1		Deverseter	Data Analyzad	Malua	Deeever		OC Lineite
Batch	Init	QC Type	Parameter Benzo(a)pyrene	2024/11/02	value	Recovery		QC LIMITS
			Benzo(a)pyrene	2024/11/02	RDL=0.0050		ug/g	
			Benzo(b/j)fluoranthene	2024/11/02	ND, RDL=0.0050		ug/g	
			Benzo(g,h,i)perylene	2024/11/02	ND, RDL=0.0050		ug/g	
			Benzo(k)fluoranthene	2024/11/02	ND, RDL=0.0050		ug/g	
			Chrysene	2024/11/02	ND, RDL=0.0050		ug/g	
			Dibenzo(a,h)anthracene	2024/11/02	ND, RDL=0.0050		ug/g	
			Fluoranthene	2024/11/02	ND, RDL=0.0050		ug/g	
			Fluorene	2024/11/02	ND, RDL=0.0050		ug/g	
			Indeno(1,2,3-cd)pyrene	2024/11/02	ND, RDL=0.0050		ug/g	
			1-Methylnaphthalene	2024/11/02	ND, RDL=0.0050		ug/g	
			2-Methylnaphthalene	2024/11/02	ND, RDL=0.0050		ug/g	
			Naphthalene	2024/11/02	ND, RDL=0.0050		ug/g	
			Phenanthrene	2024/11/02	ND, RDL=0.0050		ug/g	
			Pyrene	2024/11/02	ND, RDL=0.0050		ug/g	
9741863	JYO	RPD	Acenaphthene	2024/11/02	NC		%	40
			Acenaphthylene	2024/11/02	NC		%	40
			Anthracene	2024/11/02	NC		%	40
			Benzo(a)anthracene	2024/11/02	NC		%	40
			Benzo(a)pyrene	2024/11/02	NC		%	40
			Benzo(b/j)fluoranthene	2024/11/02	NC		%	40
			Benzo(g,h,i)perylene	2024/11/02	NC		%	40
			Benzo(k)fluoranthene	2024/11/02	NC		%	40
			Chrysene	2024/11/02	NC		%	40
			Dibenzo(a,h)anthracene	2024/11/02	NC		%	40
			Fluoranthene	2024/11/02	NC		%	40
			Fluorene	2024/11/02	NC		%	40
			Indeno(1.2.3-cd)pyrene	2024/11/02	NC		%	40
			1-Methylnaphthalene	2024/11/02	NC		%	40
			2-Methylnaphthalene	2024/11/02	NC		%	40
			Naphthalene	2024/11/02	NC		%	40
			Phenanthrene	2024/11/02	NC		%	40
			Pvrene	2024/11/02	NC		%	40
9742433	LRA	Matrix Spike	1.4-Difluorobenzene	2024/11/03		96	%	60 - 140
			4-Bromofluorobenzene	2024/11/03		110	%	60 - 140
			D10-o-Xvlene	2024/11/03		108	%	60 - 140
			D4-1,2-Dichloroethane	2024/11/03		97	%	60 - 140
			Benzene	2024/11/03		NC	%	50 - 140
			Toluene	2024/11/03		76	%	50 - 140
			Ethylbenzene	2024/11/03		NC	%	50 - 140
			o-Xylene	2024/11/03		70	%	50 - 140
			p+m-Xylene	2024/11/03		NC	%	50 - 140

Bureau Veritas 100 – 36 Antares Dr. Nepean, ON, K2E 7W5 Phone: 613-274-0573 Website: www.bvna.com

QA/QC Batch	Init		Parameter	Date Analyzed	Value	Recovery		OC Limits
Datch	mit	QCType	F1 (C6-C10)	2024/11/03	value	NC	%	60 - 140
9742433	IRA	Sniked Blank	1 4-Difluorobenzene	2024/11/05		98	%	60 - 140
57 12 133	LIUT	opined blank	4-Bromofluorobenzene	2024/11/05		101	%	60 - 140
			D10-o-Xylene	2024/11/05		101	%	60 - 140
			D4-1 2-Dichloroethane	2024/11/05		97	%	60 - 140
			Benzene	2024/11/05		90	%	50 - 140
			Toluene	2024/11/05		91	%	50 - 140
			Fthylbenzene	2024/11/05		102	%	50 - 140
			o-Xvlene	2024/11/05		97	%	50 - 140
			n+m-Xvlene	2024/11/05		99	%	50 - 140
			F1 (C6-C10)	2024/11/05		105	%	80 - 120
9742433	IRA	Method Blank	1 4-Difluorobenzene	2024/11/03		96	%	60 - 140
57 12 133	LIUT	Method Blank	4-Bromofluorobenzene	2024/11/03		99	%	60 - 140
			D10-o-Xylene	2024/11/03		97	%	60 - 140
			D4-1 2-Dichloroethane	2024/11/03		101	%	60 - 140
			Benzene	2024/11/03	ND	101	11g/g	00 110
				202 1/ 22/ 00	RDL=0.020		~6/ 6	
			Toluene	2024/11/03	ND.		ug/g	
				,	RDL=0.020		- 6/ 8	
			Ethylbenzene	2024/11/03	ND,		ug/g	
					RDL=0.020		0.0	
			o-Xylene	2024/11/03	ND, RDL=0.020		ug/g	
			p+m-Xylene	2024/11/03	ND,		ug/g	
			Total Xylenes	2024/11/03	ND,		ug/g	
			F1 (C6-C10)	2024/11/03	ND,		ug/g	
			F1 (C6-C10) - BTEX	2024/11/03	ND,		ug/g	
					RDL=10			
9742433	LRA	RPD	Benzene	2024/11/03	0.79		%	50
			Toluene	2024/11/03	0.77		%	50
			Ethylbenzene	2024/11/03	1.2		%	50
			o-Xylene	2024/11/03	2.1		%	50
			p+m-Xylene	2024/11/03	1.8		%	50
			Total Xylenes	2024/11/03	1.8		%	50
			F1 (C6-C10)	2024/11/03	0.62		%	30
9742848	AFZ	Matrix Spike	F1 (C6-C10) - BTEX Leachable (SPLP) Antimony (Sb)	2024/11/03 2024/11/04	0.53	108	% %	30 80 - 120
		[AHUAU9-01]		2024/44/04		100	0/	00 400
			Leachable (SPLP) Arsenic (As)	2024/11/04		106	%	80 - 120
			Leachable (SPLP) Barium (Ba)	2024/11/04		100	%	80 - 120
			Leachable (SPLP) Beryllium (Be)	2024/11/04		102	%	80 - 120
			Leachable (SPLP) Boron (B)	2024/11/04		102	%	80 - 120
			Leachable (SPLP) Cadmium (Cd)	2024/11/04		100	%	80 - 120
				2024/11/04		102	%	80 - 120
				2024/11/04		99	% 0/	80 - 120
			Leachable (SPLP) Loop (CU)	2024/11/04		102	% 0/	80 - 120
			Leachable (SPLP) Lead (PD)	2024/11/04		98 100	% 0/	δU - 120
				2024/11/04		108	% 0/	80 - 120
			Leachable (SPLP) NICKEI (NI)	2024/11/04		99 10C	% ₀∕	ou - 120
			Leachable (SPLP) Selenium (Se)	2024/11/04		TOP	% 0/	80 - 120
			Leachable (SPLP) Silver (Ag)	2024/11/04		98	%	80 - 120

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		**	Leachable (SPLP) Thallium (Tl)	2024/11/04		101	%	80 - 120
			Leachable (SPLP) Uranium (U)	2024/11/04		102	%	80 - 120
			Leachable (SPLP) Vanadium (V)	2024/11/04		104	%	80 - 120
			Leachable (SPLP) Zinc (Zn)	2024/11/04		102	%	80 - 120
9742848	AFZ	Leachate Blank	Leachable (SPLP) Antimony (Sb)	2024/11/04	ND.		ug/L	
				- , ,-	RDL=0.5		· 0,	
			Leachable (SPLP) Arsenic (As)	2024/11/04	ND,RDL=1		ug/L	
			Leachable (SPLP) Barium (Ba)	2024/11/04	ND,RDL=5		ug/L	
			Leachable (SPLP) Bervllium (Be)	2024/11/04	ND.		ug/L	
				- , ,-	RDL=0.5		· 0,	
			Leachable (SPLP) Boron (B)	2024/11/04	ND, RDL=10		ug/L	
			Leachable (SPLP) Cadmium (Cd)	2024/11/04	ND.		ug/L	
				- , ,-	RDL=0.1		· 0,	
			Leachable (SPLP) Chromium (Cr)	2024/11/04	ND.RDL=5		ug/L	
			Leachable (SPLP) Cobalt (Co)	2024/11/04	ND.		ug/L	
			(==)		RDL=0.5		8/	
			Leachable (SPLP) Copper (Cu)	2024/11/04	ND,RDL=1		ug/L	
			Leachable (SPLP) Lead (Pb)	2024/11/04	ND,		ug/L	
					RDL=0.5			
			Leachable (SPLP) Molybdenum (Mo)	2024/11/04	ND,RDL=1		ug/L	
			Leachable (SPLP) Nickel (Ni)	2024/11/04	ND,RDL=1		ug/L	
			Leachable (SPLP) Selenium (Se)	2024/11/04	ND,RDL=2		ug/L	
			Leachable (SPLP) Silver (Ag)	2024/11/04	ND,		ug/L	
					RDL=0.1			
			Leachable (SPLP) Thallium (TI)	2024/11/04	ND, RDL=0.05		ug/L	
			Leachable (SPLP) Uranium (U)	2024/11/04	ND, RDL=0.1		ug/L	
			Leachable (SPLP) Vanadium (V)	2024/11/04	ND,RDL=1		ug/L	
			Leachable (SPLP) Zinc (Zn)	2024/11/04	ND,RDL=5		ug/L	
9742848	AFZ	RPD	Leachable (SPLP) Antimony (Sb)	2024/11/04	NC		%	35
			Leachable (SPLP) Arsenic (As)	2024/11/04	NC		%	35
			Leachable (SPLP) Barium (Ba)	2024/11/04	NC		%	35
			Leachable (SPLP) Beryllium (Be)	2024/11/04	NC		%	35
			Leachable (SPLP) Boron (B)	2024/11/04	NC		%	35
			Leachable (SPLP) Cadmium (Cd)	2024/11/04	NC		%	35
			Leachable (SPLP) Chromium (Cr)	2024/11/04	NC		%	35
			Leachable (SPLP) Cobalt (Co)	2024/11/04	NC		%	35
			Leachable (SPLP) Copper (Cu)	2024/11/04	NC		%	35
			Leachable (SPLP) Lead (Pb)	2024/11/04	NC		%	35
			Leachable (SPLP) Molybdenum (Mo)	2024/11/04	NC		%	35
			Leachable (SPLP) Nickel (Ni)	2024/11/04	NC		%	35
			Leachable (SPLP) Selenium (Se)	2024/11/04	NC		%	35
			Leachable (SPLP) Silver (Ag)	2024/11/04	NC		%	35
			Leachable (SPLP) Thallium (TI)	2024/11/04	NC		%	35
			Leachable (SPLP) Uranium (II)	2024/11/04	NC		%	35
			Leachable (SPLP) Vanadium (V)	2024/11/04	NC		%	35
			Leachable (SPLP) Zinc (Zn)	2024/11/04	NC		%	35
97/29/9	∆ E7	Sniked Blank	Leachable (SPLD) Antimony (Sh)	2024/11/04	INC.	102	70 0/	20 - 120
3/42040	ALT		Leachable (SFLF) Antimotry (SD)	2024/11/04		102	70 0/	80 - 120 80 - 120
			Leachable (SELD) Parium (Pa)	2024/11/04		102	70 0/	80 - 120
			Leachable (SFLF) Banulli (Bd)	2024/11/04		100	70 0/	80 - 120 80 - 120
			Leachable (SPLP) Deryillulli (DE)	2024/11/04		100	/0 0/	20 - 120 20 - 120
			Leachable (SFLF) DOIOII (D)	2024/11/04		90	70	00 - 120

QA/QC Batch	Init	OC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	OC Limits
Baten		de type	Leachable (SPLP) Cadmium (Cd)	2024/11/04	Value	99	%	80 - 120
			Leachable (SPLP) Chromium (Cr)	2024/11/04		97	%	80 - 120
			Leachable (SPLP) Cobalt (Co)	2024/11/04		95	%	80 - 120
			Leachable (SPLP) Copper (Cu)	2024/11/04		98	%	80 - 120
			Leachable (SPLP) Lead (Pb)	2024/11/04		99	%	80 - 120
			Leachable (SPLP) Molybdenum (Mo)	2024/11/04		98	%	80 - 120
			Leachable (SPLP) Nickel (Ni)	2024/11/04		96	%	80 - 120
			Leachable (SPLP) Selenium (Se)	2024/11/04		106	%	80 - 120
			Leachable (SPLP) Silver (Ag)	2024/11/04		97	%	80 - 120
			Leachable (SPLP) Thallium (TI)	2024/11/04		102	%	80 - 120
			Leachable (SPLP) Uranium (U)	2024/11/04		101	%	80 - 120
			Leachable (SPLP) Vanadium (V)	2024/11/04		96	%	80 - 120
			Leachable (SPLP) Zinc (Zn)	2024/11/04		103	%	80 - 120
9742848	AF7	Method Blank	Leachable (SPLP) Antimony (Sb)	2024/11/04	ND.	200	uø/I	00 120
57 12010					RDL=0.5		~8/ =	
			Leachable (SPLP) Arsenic (As)	2024/11/04	ND,RDL=1		ug/L	
			Leachable (SPLP) Barium (Ba)	2024/11/04	ND,RDL=5		ug/L	
			Leachable (SPLP) Beryllium (Be)	2024/11/04	ND, RDL=0.5		ug/L	
			Leachable (SPLP) Boron (B)	2024/11/04	ND, RDL=10		ug/L	
			Leachable (SPLP) Cadmium (Cd)	2024/11/04	ND, RDL=0.1		ug/L	
			Leachable (SPLP) Chromium (Cr)	2024/11/04	ND,RDL=5		ug/L	
			Leachable (SPLP) Cobalt (Co)	2024/11/04	ND, RDL=0.5		ug/L	
			Leachable (SPLP) Copper (Cu)	2024/11/04	ND.RDL=1		ug/L	
			Leachable (SPLP) Lead (Pb)	2024/11/04	ND,		ug/L	
			Leachable (SPLP) Molybdonum (Mo)	2024/11/04			ug/I	
			Leachable (SPLP) Nickel (Nii)	2024/11/04			ug/L	
			Leachable (SPLP) Selenium (Se)	2024/11/04	ND RDI =2		ug/L	
			Leachable (SPLP) Silver (Ag)	2024/11/04	ND		ug/L	
				2024/11/04	RDL=0.1		ug/ L	
			Leachable (SPLP) Thallium (Tl)	2024/11/04	ND, RDL=0.05		ug/L	
			Leachable (SPLP) Uranium (U)	2024/11/04	ND, RDL=0.1		ug/L	
			Leachable (SPLP) Vanadium (V)	2024/11/04	ND,RDL=1		ug/L	
			Leachable (SPLP) Zinc (Zn)	2024/11/04	ND,RDL=5		ug/L	
9742848	AFZ	RPD [AHOA09-01]	Leachable (SPLP) Antimony (Sb)	2024/11/04	NC		%	35
			Leachable (SPLP) Arsenic (As)	2024/11/04	NC		%	35
			Leachable (SPLP) Barium (Ba)	2024/11/04	0.42		%	35
			Leachable (SPLP) Beryllium (Be)	2024/11/04	NC		%	35
			Leachable (SPLP) Boron (B)	2024/11/04	1.2		%	35
			Leachable (SPLP) Cadmium (Cd)	2024/11/04	NC		%	35
			Leachable (SPLP) Chromium (Cr)	2024/11/04	NC		%	35
			Leachable (SPLP) Cobalt (Co)	2024/11/04	NC		%	35
			Leachable (SPLP) Copper (Cu)	2024/11/04	2.4		%	35
			Leachable (SPLP) Lead (Pb)	2024/11/04	NC		%	35
			Leachable (SPLP) Molybdenum (Mo)	2024/11/04	5.3		%	35
			Leachable (SPLP) Nickel (Ni)	2024/11/04	NC		%	35
			Leachable (SPLP) Selenium (Se)	2024/11/04	NC		%	35
			Leachable (SPLP) Silver (Ag)	2024/11/04	NC		%	35

1

QA/QC	1	067.00	Demonstern	Data Analyzard	Malua	Deserver		OC Limite
Batch	Init	QC Type	Parameter	2024/11/04	Value	Recovery	UNITS	
			Leachable (SPLP) Inalium (II)	2024/11/04	NC		/0 %	35
			Leachable (SPLP) Vanadium (V)	2024/11/04	3.6		70 %	35
			Leachable (SPLP) Zinc (Zn)	2024/11/04	S.C		70 %	35
97/325/	MEN	Matrix Snike	Hot Water Ext. Boron (B)	2024/11/04	Ne	90	70 %	75 - 125
9743254	MEN	Sniked Blank	Hot Water Ext. Boron (B)	2024/11/04		87	%	75 - 125
9743254	MEN	Method Blank	Hot Water Ext. Boron (B)	2024/11/04	ND	07	,	75-125
5745254	IVILIA	Wethou Blank		2024/11/04	RDL=0.050		ч <u>6</u> / б	
9743254	MEN	RPD	Hot Water Ext. Boron (B)	2024/11/04	4.1		%	40
9743552	JWK	Matrix Spike	Acid Extractable Antimony (Sb)	2024/11/04		107	%	75 - 125
			Acid Extractable Arsenic (As)	2024/11/04		106	%	75 - 125
			Acid Extractable Barium (Ba)	2024/11/04		100	%	75 - 125
			Acid Extractable Beryllium (Be)	2024/11/04		110	%	75 - 125
			Acid Extractable Boron (B)	2024/11/04		110	%	75 - 125
			Acid Extractable Cadmium (Cd)	2024/11/04		103	%	75 - 125
			Acid Extractable Chromium (Cr)	2024/11/04		94	%	75 - 125
			Acid Extractable Cobalt (Co)	2024/11/04		100	%	75 - 125
			Acid Extractable Copper (Cu)	2024/11/04		100	%	75 - 125
			Acid Extractable Lead (Pb)	2024/11/04		98	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2024/11/04		95	%	75 - 125
			Acid Extractable Nickel (Ni)	2024/11/04		102	%	75 - 125
			Acid Extractable Selenium (Se)	2024/11/04		107	%	75 - 125
			Acid Extractable Silver (Ag)	2024/11/04		99	%	75 - 125
			Acid Extractable Thallium (Tl)	2024/11/04		102	%	75 - 125
			Acid Extractable Uranium (U)	2024/11/04		102	%	75 - 125
			Acid Extractable Vanadium (V)	2024/11/04		101	%	75 - 125
			Acid Extractable Zinc (Zn)	2024/11/04		100	%	75 - 125
			Acid Extractable Mercury (Hg)	2024/11/04		99	%	75 - 125
9743552	JWK	Spiked Blank	Acid Extractable Antimony (Sb)	2024/11/04		105	%	80 - 120
			Acid Extractable Arsenic (As)	2024/11/04		103	%	80 - 120
			Acid Extractable Barium (Ba)	2024/11/04		99	%	80 - 120
			Acid Extractable Beryllium (Be)	2024/11/04		102	%	80 - 120
			Acid Extractable Boron (B)	2024/11/04		99	%	80 - 120
			Acid Extractable Cadmium (Cd)	2024/11/04		101	%	80 - 120
			Acid Extractable Chromium (Cr)	2024/11/04		99	%	80 - 120
			Acid Extractable Cobalt (Co)	2024/11/04		100	%	80 - 120
			Acid Extractable Copper (Cu)	2024/11/04		96	%	80 - 120
			Acid Extractable Lead (Pb)	2024/11/04		97	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2024/11/04		93	%	80 - 120
			Acid Extractable Nickel (Ni)	2024/11/04		101	%	80 - 120
			Acid Extractable Selenium (Se)	2024/11/04		103	%	80 - 120
			Acid Extractable Silver (Ag)	2024/11/04		97	%	80 - 120
			Acid Extractable Thallium (TI)	2024/11/04		99	%	80 - 120
			Acid Extractable Uranium (U)	2024/11/04		100	%	80 - 120
			Acid Extractable Vanadium (V)	2024/11/04		100	%	80 - 120
			Acid Extractable Zinc (Zn)	2024/11/04		101	%	80 - 120
			Acid Extractable Mercury (Hg)	2024/11/04		96	%	80 - 120
9743552	JWK	Method Blank	Acid Extractable Antimony (Sb)	2024/11/04	ND, RDL=0.20		ug/g	
			Acid Extractable Arsenic (As)	2024/11/04	ND, RDL=1.0		ug/g	
			Acid Extractable Barium (Ba)	2024/11/04	ND, RDL=0.50		ug/g	

QA/QC			_			_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Beryllium (Be)	2024/11/04	ND, RDL=0.20		ug/g	
			Acid Extractable Boron (B)	2024/11/04	ND, RDL=5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2024/11/04	ND, RDL=0.10		ug/g	
			Acid Extractable Chromium (Cr)	2024/11/04	ND, BDI =1.0		ug/g	
			Acid Extractable Cobalt (Co)	2024/11/04	ND, RDI =0.10		ug/g	
			Acid Extractable Copper (Cu)	2024/11/04	ND,		ug/g	
			Acid Extractable Lead (Pb)	2024/11/04	ND,		ug/g	
			Acid Extractable Molybdenum (Mo)	2024/11/04	ND,		ug/g	
			Acid Extractable Nickel (Ni)	2024/11/04	ND,		ug/g	
			Acid Extractable Selenium (Se)	2024/11/04	ND,		ug/g	
			Acid Extractable Silver (Ag)	2024/11/04	ND,		ug/g	
			Acid Extractable Thallium (TI)	2024/11/04	ND,		ug/g	
			Acid Extractable Uranium (U)	2024/11/04	ND,		ug/g	
			Acid Extractable Vanadium (V)	2024/11/04	ND,		ug/g	
			Acid Extractable Zinc (Zn)	2024/11/04	ND,		ug/g	
			Acid Extractable Mercury (Hg)	2024/11/04	ND, RDI =0.050		ug/g	
9743552	IWK	RPD	Acid Extractable Antimony (Sb)	2024/11/04	NC		%	30
5745552	50010		Acid Extractable Arsenic (As)	2024/11/04	NC		%	30
			Acid Extractable Parium (Pa)	2024/11/04	10		70 0/	30
			Acid Extractable Bandin (Ba)	2024/11/04	NC		70 0/	30
			Acid Extractable Boron (B)	2024/11/04	NC		70 0/	30
			Acid Extractable Codmium (Cd)	2024/11/04	NC		70 0/	30
			Acid Extractable Caumum (Cr)	2024/11/04	67		70 0/	20
			Acid Extractable Chiofilidiii (Cr)	2024/11/04	0.7		/0 0/	20
			Acid Extractable Coppor (Cu)	2024/11/04	15		/0 0/	20
			Acid Extractable Load (Ph)	2024/11/04	0.9		/0 0/	20
			Acid Extractable Malyhdanym (Ma)	2024/11/04	5.1		70 0/	30
			Acid Extractable Nickel (Ni)	2024/11/04	0.5		70 0/	20
			Acid Extractable Nicker (Ni)	2024/11/04	4.0 NC		/0 0/	20
			Acid Extractable Selenium (Se)	2024/11/04	NC		/0 0/	20
			Acid Extractable Silver (Ag)	2024/11/04	NC		/0 0/	20
			Acid Extractable Hranium (II)	2024/11/04	10		70 0/	20
			Acid Extractable Vanadium (V)	2024/11/04	10		70 0/	20
			Acid Extractable Zine (Zn)	2024/11/04	5.Z 11		70 0/	20
			Aciu Extractable Marsure (115)	2024/11/04	11 NC		% 0/	30
0742920	CVA	Matrix Saika	ACIU EXITACIADIE MERCURY (Hg)	2024/11/04	INC	00	% 0/	3U 7E 12F
574362U	GVA		WAD Cyalilue (Free)	2024/11/05		00	70 0/	75 - 125 80 130
9743820	GYA	Spikeu bidlik	WAD Cyanida (Free)	2024/11/05		90	% 11.2.1.2	ou - 120
9743820	GTA	Method Bialik	WAD Cyanide (Free)	2024/11/05	RDL=0.01		ug/g	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9743820	GYA	RPD	WAD Cyanide (Free)	2024/11/05	NC		%	35
9744048	MSZ	Matrix Spike	o-Terphenyl	2024/11/04		84	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/04		96	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2024/11/04		97	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2024/11/04		93	%	60 - 140
9744048	MSZ	Spiked Blank	o-Terphenyl	2024/11/04		77	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/04		86	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2024/11/04		87	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2024/11/04		83	%	80 - 120
9744048	MSZ	Method Blank	o-Terphenyl	2024/11/04		82	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/04	ND,		ug/g	
			F3 (C16-C34 Hydrocarbons)	2024/11/04	ND,		ug/g	
			F4 (C34-C50 Hydrocarbons)	2024/11/04	ND,		ug/g	
0744040				2024/44/05	RDL=50		0/	20
9744048	IVISZ	RPD	F2 (C10-C16 Hydrocarbons)	2024/11/05	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2024/11/05	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2024/11/05	NC		%	30
9745289	SB5	Matrix Spike	Chromium (VI)	2024/11/05		88	%	70 - 130
9745289	SB5	Spiked Blank	Chromium (VI)	2024/11/05		96	%	80 - 120
9745289	SB5	Method Blank	Chromium (VI)	2024/11/05	ND, RDL=0.18		ug/g	
9745289	SB5	RPD	Chromium (VI)	2024/11/05	9.1		%	35
9745355	GTK	Spiked Blank	Conductivity	2024/11/05		106	%	90 - 110
9745355	GTK	Method Blank	Conductivity	2024/11/05	ND, RDL=0.002		mS/cm	
9745355	GTK	RPD	Conductivity	2024/11/05	1.3		%	10
9745687	КІТ	Spiked Blank	Available (CaCl2) pH	2024/11/05		100	%	97 - 103
9745687	КІТ	RPD	Available (CaCl2) pH	2024/11/05	0.57		%	N/A
9746484	GMN	Matrix Spike	Leachable (SPLP) 4-Bromofluorobenzene	2024/11/06		101	%	70 - 130
			Leachable (SPLP) D4-1,2-Dichloroethane	2024/11/06		109	%	70 - 130
			Leachable (SPLP) D8-Toluene	2024/11/06		98	%	70 - 130
			Leachable (SPLP) Bromomethane	2024/11/06		78	%	60 - 140
			Leachable (SPLP) Carbon Tetrachloride	2024/11/06		106	%	70 - 130
			Leachable (SPLP) Chloroform	2024/11/06		101	%	70 - 130
			Leachable (SPLP) 1.2-Dichlorobenzene	2024/11/06		97	%	70 - 130
			Leachable (SPLP) 1.4-Dichlorobenzene	2024/11/06		103	%	70 - 130
			Leachable (SPLP) 1.1-Dichloroethane	2024/11/06		94	%	70 - 130
			Leachable (SPLP) 1.2-Dichloroethane	2024/11/06		113	%	70 - 130
			Leachable (SPLP) 1 1-Dichloroethylene	2024/11/06		93	%	70 - 130
			Leachable (SPLP) cis-1 2-Dichloroethylene	2024/11/06		104	%	70 - 130
			Leachable (SPLP) trans-1 2-Dichloroethylene	2024/11/06		90	%	70 - 130
			Leachable (SPLP) 1 2-Dichloropropage	2024/11/00		101	%	70 - 130
			Leachable (SPLR) cic_1 2-Dichloropropane	2024/11/00		96	70 0/	70 - 130
			Leachable (SPLP) trans 1.2 Dichloropropono	2024/11/00		109	20 0/	70 - 130
			Leachable (SPLP) trans-1,3-Diction oproperie	2024/11/00		103	20 0/	70 - 130
			Leachable (SPLF) EUTYTETTE DIDTOTTIGE	2024/11/00 2024/11/06		100	70 0/	70 - 130 70 - 130
			Leachable (SPLP) 1,1,2,2-1etrachioroethana	2024/11/00		105	/0 0/	70 - 130
			Leachable (SPLP) 1,1,2,2-1etrachioroethylene	2024/11/00		100	70 0/	70 - 130
			Leachable (SPLP) 1412 Trickle reathers	2024/11/00		91	% 0/	70 - 130
			Leachable (SPLP) 1,1,2-Trichloroethane	2024/11/06		105	%	70 - 130
0746404	CLAN		Leachable (SPLP) Trichloroethylene	2024/11/06		99	%	70 - 130
9746484	GIVIN	зрікеа віапк	Leachable (SPLP) 4-Bromofluorobenzene	2024/11/05		100	%	70 - 130
			Leachable (SPLP) D4-1,2-Dichloroethane	2024/11/05		107	%	/0 - 130

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Leachable (SPLP) D8-Toluene	2024/11/05		99	%	70 - 130
			Leachable (SPLP) Bromomethane	2024/11/05		74	%	60 - 140
			Leachable (SPLP) Carbon Tetrachloride	2024/11/05		104	%	70 - 130
			Leachable (SPLP) Chloroform	2024/11/05		100	%	70 - 130
			Leachable (SPLP) 1,2-Dichlorobenzene	2024/11/05		100	%	70 - 130
			Leachable (SPLP) 1,4-Dichlorobenzene	2024/11/05		109	%	70 - 130
			Leachable (SPLP) 1,1-Dichloroethane	2024/11/05		92	%	70 - 130
			Leachable (SPLP) 1,2-Dichloroethane	2024/11/05		110	%	70 - 130
			Leachable (SPLP) 1,1-Dichloroethylene	2024/11/05		92	%	70 - 130
			Leachable (SPLP) cis-1,2-Dichloroethylene	2024/11/05		102	%	70 - 130
			Leachable (SPLP) trans-1,2-Dichloroethylene	2024/11/05		99	%	70 - 130
			Leachable (SPLP) 1,2-Dichloropropane	2024/11/05		100	%	70 - 130
			Leachable (SPLP) cis-1,3-Dichloropropene	2024/11/05		93	%	70 - 130
			Leachable (SPLP) trans-1,3-Dichloropropene	2024/11/05		104	%	70 - 130
			Leachable (SPLP) Ethylene Dibromide	2024/11/05		105	%	70 - 130
			Leachable (SPLP) 1,1,1,2-Tetrachloroethane	2024/11/05		109	%	70 - 130
			Leachable (SPLP) 1.1.2.2-Tetrachloroethane	2024/11/05		98	%	70 - 130
			Leachable (SPLP) Tetrachloroethylene	2024/11/05		93	%	70 - 130
			Leachable (SPLP) 1.1.2-Trichloroethane	2024/11/05		104	%	70 - 130
			Leachable (SPLP) Trichloroethylene	2024/11/05		99	%	70 - 130
9746484	GMN	Method Blank	Leachable (SPLP) 4-Bromofluorobenzene	2024/11/06		104	%	70 - 130
57 -0-0-	Giviny	Wiethou Blank	Leachable (SPLP) D4-1 2-Dichloroethane	2024/11/06		107	%	70 - 130
			Leachable (SPLP) D8-Toluene	2024/11/00		98	%	70 - 130
			Leachable (SPLP) Bromomethane	2024/11/00	ND	50	νσ/I	70 - 150
			Leachable (SFLF) biomomethalle	2024/11/00	RDI =0.40		ug/L	
			Leachable (SPLP) Carbon Tetrachloride	2024/11/06			uσ/I	
				2024/11/00	RDI =0.19		ug/ L	
			Leachable (SPLP) Chloroform	2024/11/06	ND, RDI =0.90		ug/L	
			Leachable (SPLP) 1,2-Dichlorobenzene	2024/11/06	ND, RDI =0.40		ug/L	
			Leachable (SPLP) 1,4-Dichlorobenzene	2024/11/06	ND, RDL=0.40		ug/L	
			Leachable (SPLP) 1,1-Dichloroethane	2024/11/06	ND, RDL=0.40		ug/L	
			Leachable (SPLP) 1,2-Dichloroethane	2024/11/06	ND, RDL=0.40		ug/L	
			Leachable (SPLP) 1,1-Dichloroethylene	2024/11/06	ND, RDL=0.40		ug/L	
			Leachable (SPLP) cis-1,2-Dichloroethylene	2024/11/06	ND, RDL=0.40		ug/L	
			Leachable (SPLP) trans-1,2-Dichloroethylene	2024/11/06	ND, RDL=0.40		ug/L	
			Leachable (SPLP) 1,2-Dichloropropane	2024/11/06	ND, RDL=0.40		ug/L	
			Leachable (SPLP) cis-1,3-Dichloropropene	2024/11/06	ND, RDL=0.30		ug/L	
			Leachable (SPLP) trans-1,3-Dichloropropene	2024/11/06	ND, RDL=0.30		ug/L	
			Leachable (SPLP) Ethylene Dibromide	2024/11/06	ND, RDL=0.19		ug/L	
			Leachable (SPLP) 1,1,1,2-Tetrachloroethane	2024/11/06	ND, RDL=0.40		ug/L	
			Leachable (SPLP) 1,1,2,2-Tetrachloroethane	2024/11/06	ND, RDL=0.40		ug/L	

1

Process Lachable (SPLP) Tetrachlorosethylene 2024/11/06 ND, RDIE-0.40 ug/L 9746884 GMN RPD Leachable (SPLP) 1.1.2-Trichlorosethane 2024/11/06 ND, RDIE-0.40 WIL 9746884 GMN RPD Leachable (SPLP) Trichlorosethylene 2024/11/06 NC % 30 Leachable (SPLP) Tetrachlorosethylene 2024/11/06 NC % <th>Batch</th> <th>Init</th> <th>QC Type</th> <th>Parameter</th> <th>Date Analyzed</th> <th>Value</th> <th>Recovery</th> <th>UNITS</th> <th>QC Limits</th>	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
974648 GMN RPD Lochable (SPLP) 1.1.2 Trichioroethane 2024/11/06 ND, RDI-0.0 ug/L 9746484 GMN RPD Lochable (SPLP) frichioroethylene 2024/11/06 NC % 30 1000000000000000000000000000000000000				Leachable (SPLP) Tetrachloroethylene	2024/11/06	ND,	-	ug/L	
9746484 GMN ND, Buich AD ND, Buich AD ND, Buich AD 9746484 GMN RPD Loschable (SPLP) frichloroethylene 2024/11/06 ND, Buich AD ND, Buich A						RDL=0.40			
P374688 GMN RPD Leachable (SPIP) Trichloreethylene 2024/11/06 NC % 30 9746884 GMN RPD Leachable (SPIP) Garbon Tetrachioride 2024/11/06 NC % 30 Leachable (SPIP) Garbon Tetrachioride 2024/11/06 NC % 30 Leachable (SPIP) 1.1-Dichlorobenzene 2024/11/06 NC % 30 Leachable (SPIP) 1.1-Dichlorobenzene 2024/11/06 NC % 30 Leachable (SPIP) 1.1-Dichlorobenzene 2024/11/06 NC % 30 Leachable (SPIP) 1.1-Dichloropethylene 2024/11/06 NC % 30 Leachable (SPIP) 1.1.2-Eitrachloroethylene 2024/11/06 NC % 30 Leachable (SPIP) 1.1.1/2-Eitrachloroethylene 2024/11/06 NC % <td></td> <td></td> <td></td> <td>Leachable (SPLP) 1,1,2-Trichloroethane</td> <td>2024/11/06</td> <td>ND,</td> <td></td> <td>ug/L</td> <td></td>				Leachable (SPLP) 1,1,2-Trichloroethane	2024/11/06	ND,		ug/L	
Bit Carchaile (SPIP) Trichloroethylene 2024/11/06 NC % 30 9746484 GMN RPD Leachable (SPIP) Choroform 2024/11/06 NC % 30 Leachable (SPIP) Choroform 2024/11/06 NC % 30 Leachable (SPIP) 1.2-010/noroethrane 2024/11/06 NC % 30 Leachable (SPIP) 1.2-010/noroethrane 2024/11/06 NC % 30 Leachable (SPIP) 1.2-010/noroethylene 2024/11/06 NC % 30 Leachable (SPIP) 1.2-12-010/noroethylene 2024/11/06 NC % 30 Leachable (SPIP) 1.1.2-17etachioroethane 2024/11/06 NC % 30 Leachable (SPIP) 1.1.2-17etachioroethane 2024/11/06 NC % 30 Leachable (SPIP) 1.1.2-17etachioroetha						RDL=0.40			
974648 GMN RPD Leachable (SPLP) Bromomethane 2024/11/06 NC % 30 9746484 GMN RPD Leachable (SPLP) Carbon Tetrachioride 2024/11/06 NC % 30 Leachable (SPLP) Laciohordemane 2024/11/06 NC % 30 Leachable (SPLP) 1,20 ichlorobenzne 2024/11/06 NC % 30 Leachable (SPLP) 1,30 ichloropenzne 2024/11/06 NC % 30 Leachable (SPLP) 1,31 ichloropenzne 2024/11/06 NC % 30 Leachable (SPLP) 1,1,27 ictrachloroethane 2024/11/06 NC % 30 Leachable (SPLP) 1,1,1,27 ictrachloroethane 2024/11/06 NC % 30 Leachable (SPLP) 1,1,1,27 ictrachloroethane 2024/11/06 NC % 30				Leachable (SPLP) Trichloroethylene	2024/11/06	ND,		ug/L	
9/46484 GMM MPU Leachable (SPP) 2/1000 NC % 30 Leachable (SPP) Choroform 2024/11/06 NC % 30 Leachable (SPP) 1.4-Dichlorobenzene 2024/11/06 NC % 30 Leachable (SPP) 1.1-Dichlorobentwe 2024/11/06 NC % 30 Leachable (SPP) 1.1-Dichlorobentwe 2024/11/06 NC % 30 Leachable (SPP) 1.1-2-Dichlorobentyme 2024/11/06 NC % 30 Leachable (SPP) 1.1-2-Dichlorobentyme 2024/11/06 NC % 30 Leachable (SPP) 1.1.2-Tetrachlorobentyme 2024/11/06 NC % 30 Leachable (SPP) 1.1.2-Tetrachlorobentyme 2024/11/06 NC % 30 Leachable (SPP) 1.1.2-Tetrachlorobentyme 2024/11/06 N	0746404	~ ~ ~	222		2024/44/06	RDL=0.40		<u>.</u>	20
9752386 MYI Natrix Spike 30 9752386 MYI Spiked Blank 5891 3.20 9752386 MYI Matrix Spike Leachable (SPIP) 3.20 126 Spiked Blank 5891 3.20 3.20 126 Spiked Blank 5801 3.20 3.20 128 4 3.20 3.20 3.20 3.20 128 4 3.20 3.20 3.2	9746484	GIVIN	RPD	Leachable (SPLP) Bromomethane	2024/11/06	NC		%	30
9752586 MYI Matrix Spike Leachable (SPP) 12-Dichloroethylene 2024/11/06 NC % 30 1284/11/06 NC % 30 128				Leachable (SPLP) Carbon Tetrachionde	2024/11/06	NC		%	30
9752586 MYI Spiked Blank Spiked Spikely 1,2,2 Dichlorobenzine 2024/11/06 NC % 30 1 Leachable (SPLP) 1,1,2 Dichloroethane 2024/11/06 NC % 30 1 Leachable (SPLP) 1,1,2 Dichloroethane 2024/11/06 NC % 30 1 Leachable (SPLP) 1,1,2 Dichloroethylene 2024/11/06 NC % 30 1 Leachable (SPLP) 1,2 Dichloroethylene 2024/11/06 NC % 30 1 Leachable (SPLP) 1,2 Dichloroptopene 2024/11/06 NC % 30 1 Leachable (SPLP) 1/2,2 Pictrahloroethane 2024/11/06 NC % 30 1 Leachable (SPLP) 1/2,2 Pictrahloroethane 2024/11/06 NC % 30 1 Leachable (SPLP) 1/2,1 Pictrahloroethane 2024/11/06 NC % 30 1 Leachable (SPLP) 1/2,1 Pictrohoroethane 2024/11/06 NC % 30 1 Leachable (SPLP) 2,1 Pictrohoroethylene 2024/11/08 RT % 30				Leachable (SPLP) Chloroloffi	2024/11/06	NC		70	30
9752586 MI Matrix Spike Leachabie (SPLP) 2.1-Dichloroethylene 2024/11/06 NC % 30 19752586 MI Spiked Bank 30 30 19752586 MI Matrix Spike Leachabie SPLP 17.1.2-Trictalhoroethane 2024/11/06 NC % 30 19752586 MI Matrix Spike Leachabie SPLP 17.1.2-Trictalhoroethylene 2024/11/06 NC % 30 19752586 MI Matrix Spike Leachabie SPLP 17.1.2-Trictalhoroethylene 2024/11/06 NC % 30 19752586 MI Matrix Spike Leachabie SPLP 17.1.2-Trictalhoroethylene 2024/11/06 NC % 30 19752586 MI Matrix Sp				Leachable (SPLP) 1,2-Dichlorobenzene	2024/11/06	NC		%	30
9752386 MYI Matrix Spike Leachabic (SPIP) 2.1. Dichioroethylene 2024/11/06 NC % 30 9752386 MYI Matrix Spike Leachabic (SPIP) 0.1. Dichioroethylene 2024/11/06 NC % 30 9752386 MYI Matrix Spike Leachabic (SPIP) 0.1. Dichioroethylene 2024/11/06 NC % 30 9752386 MYI Matrix Spike Leachabic (SPIP) 0.1. 2.7 Encholoroethylene 2024/11/06 NC % 30 9752386 MYI Matrix Spike Leachabic (SPIP) 1.1.2.7 Encholoroethane 2024/11/06 NC % 30 12647bbic (SPIP) 1.1.2.7 Encholoroethane 2024/11/06 NC % 30 12647bbic (SPIP) 1.1.2.7 Encholoroethane 2024/11/06 NC % 30 12647bbic (SPIP) 1.1.2.7 Encholoroethylene 2024/11/06 NC % 30 12647bbic (SPIP) 2.4.6 Tritoromophenol 2024/11/06 NC % 30 12647bbic (SPIP) 2.5 Tritorobiphenyl 2024/11/06 NC % 30 12647bbic				Leachable (SPLP) 1,4-Dichlorobenzene	2024/11/06	NC		%	30
9752586 MYI Matrix Spike Leachable (SPLP) 1.2-Dichloroethylene 2024/11/06 NC % 30 1 Leachable (SPLP) 0:5-1,2-Dichloroethylene 2024/11/06 NC % 30 1 Leachable (SPLP) 1.2-Dichloroethylene 2024/11/06 NC % 30 1 Leachable (SPLP) 1.2-Dichloropthylene 2024/11/06 NC % 30 1 Leachable (SPLP) 1.2-Dichloropthylene 2024/11/06 NC % 30 1 Leachable (SPLP) 1.1.2-Tetrachloropthane 2024/11/06 NC % 30 1 Leachable (SPLP) 2.4-G-Tribromothylene 2024/11/06 NC % 30 130 1 Leachable (SPLP) 2.4-G-Tribromothylene 2024/11/08 NF 30 13				Leachable (SPLP) 1,1-Dichloroethane	2024/11/06	NC		%	30
9752586 MYI Matrix Spike Lacahabie (SPLP) 1,2-Dichloropropene 2024/11/06 NC % 30 9752586 MYI Matrix Spike Lacahabie (SPLP) 12-Dichloropropene 2024/11/06 NC % 30 9752586 MYI Matrix Spike Lacahabie (SPLP) 12-Dichloropropene 2024/11/06 NC % 30 9752586 MYI Matrix Spike Lacahabie (SPLP) 11,1,2-Tetrachloroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Lacahabie (SPLP) 11,1,2-Tetrachloroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Lacahabie (SPLP) 11,2-Tricholoroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Lacahabie (SPLP) 11,2-Tricholoroethane 2024/11/08 NC % 30 9752586 MYI Matrix Spike Lacahabie (SPLP) 14-Terphenyl (FS) 2024/11/08 NC % 30 120 Lacahabie (SPLP) 14-Terphenyl (FS) 2024/11/08 S7 % 30 130 120 Lacahabie (SPLP) 14-Terphenyl (FS)				Leachable (SPLP) 1,2-Dichloroethale	2024/11/06	NC		%	30
9752556 M1 Spiked Bank Leachable (SPLP) 1.3-2.Dichloropenylene 2024/11/06 NC % 30 9752556 M1 Matrix Spike Leachable (SPLP) 1.2.Dichloropenylene 2024/11/06 NC % 30 9752556 M1 Matrix Spike Leachable (SPLP) I.1.2.7-tertachloroethane 2024/11/06 NC % 30 9752556 M1 Matrix Spike Leachable (SPLP) 1.1.2.7-tertachloroethane 2024/11/06 NC % 30 9752556 M1 Matrix Spike Leachable (SPLP) 2.4.6-frithoromethane 2024/11/06 NC % 30 124chable (SPLP) 2.4.6-frithoromethane 2024/11/06 NC % 30 124chable (SPLP) 2.4.6-frithoromethane 2024/11/08 NC % 30 124chable (SPLP) 2.4.6-frithoromethylene 2024/11/08 NC % 30 124chable (SPLP) 10.4.7-crithorospropylether 2024/11/08 NC % 30 124chable (SPLP) 10.4.7-crithorospropylether 2024/11/08 NC % 30 124chab				Leachable (SPLP) 1,1-Dichloroethylene	2024/11/06	NC		%	30
9752586 MYI Matrix Spike Leachable (SPLP) 12-2-Dichloropropane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachable (SPLP) 11,12,2-Tetrachioroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachable (SPLP) 11,12,2-Tetrachioroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachable (SPLP) 71/2-10/2-10/2010/06 NC % 30 Leachable (SPLP) 71/2-2-Tetrachioroethane 2024/11/06 NC % 30 Leachable (SPLP) 71/2-12-2-Tetrachioroethane 2024/11/06 NC % 30 Leachable (SPLP) 71/2-12-2-Tetrachioroethylene 2024/11/06 NC % 30 Leachable (SPLP) 71/2-2-Ferioromophenol 2024/11/08 NC % 30 Leachable (SPLP) 2-Fluorobiphenyl 2024/11/08 67 % 30-130 Leachable (SPLP) 2-Fluorobiphenyl 2024/11/08 67 % 30-130 Leachable (SPLP) 2-Fluorobiphenyl 2024/11/08 67 % 30-130 Leachable (S				Leachable (SPLP) cis-1,2-Dichloroethylene	2024/11/06	NC		%	30
9752586 MYI Spiked Blank Leachable (SPLP) 1,2-Dichorophopen 2024/11/06 NC % 30 9752586 MYI Spiked Blank (SPLP) 1,1,2-Tetrachloroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachable (SPLP) 1,1,2-Tetrachloroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachable (SPLP) 1,1,2-Tetrachloroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachable (SPLP) 1,1,2-Tetrachloroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachable (SPLP) 1,1,2-Tetrachloroethane 2024/11/08 R7 % 30 130 Leachable (SPLP) Dichtrophenyl 2024/11/08 R7 % 30 130 130 130				Leachable (SPLP) trans-1,2-Dichloroethylene	2024/11/06	NC		%	30
9752586 MY Main Spike 2024/11/06 NC % 30 9752586 MY Matrix Spike Leachabie (SPLP) Enst-13-Dichloropthone 2024/11/06 NC % 30 9752586 MY Matrix Spike Leachabie (SPLP) 1.1.2.2-Tetrachloroethane 2024/11/06 NC % 30 9752586 MY Matrix Spike Leachabie (SPLP) 1.2.7-Tichtoroethane 2024/11/06 NC % 30 102 Leachabie (SPLP) 1.2.7-Tichtoroethane 2024/11/08 NC % 30 9752586 MY Matrix Spike Leachabie (SPLP) 2.4-firibromophenol 2024/11/08 R7 % 30-130 Leachabie (SPLP) 2.4-firibromophenol 2024/11/08 R7 % 30-130 Leachabie (SPLP) D14-Terphenyl(FS) 2024/11/08 R7 % 30-130 Leachabie (SPLP) D14-Terphenyl(FS) 2024/11/08 R6 % 30-130 Leachabie (SPLP) D14-Terphenyl(FS) 2024/11/08 R6 % 30-130 Leachabie (SPLP) D14-Terphenyl(FS) 2024/1				Leachable (SPLP) 1,2-Dichloropropane	2024/11/06	NC		%	30
9752586 MYI Matrix Spike Leachabie (SPLP) 2thylene Diloromide 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachabie (SPLP) 11,1,2,2-Tetrachloroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachabie (SPLP) 12,2-Tetrachloroethylene 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachabie (SPLP) 2,4-Trichloroethylene 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachabie (SPLP) 2,4-Grithoroethylene 2024/11/06 NC % 30 130 Leachabie (SPLP) 2,4-Grithoroethylene 2024/11/08 67 % 30 130 Leachabie (SPLP) 2,4-Filtorobiphenyl 2024/11/08 87 % 30 130 Leachabie (SPLP) Bis/C-thiorosiopropylylether 2024/11/08 67 % 30 130 Leachabie (SPLP) Bis/C-thiorosiopropylylether 2024/11/08 88 % 30 130 Leachabie (SPLP) Bis/C-thiorosiopropylether 202				Leachable (SPLP) cis-1,3-Dichloropropene	2024/11/06	NC		%	30
9752586 MYI Spiked Blank <				Leachable (SPLP) trans-1,3-Dichloropropene	2024/11/06	NC		%	30
9752586 MYI Matrix Spike Leachable (SPLP) 1,1,2-1 retrachloroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachable (SPLP) 1,1,2-1 retrachloroethane 2024/11/06 NC % 30 9752586 MYI Matrix Spike Leachable (SPLP) 1,1,2-1 retrachloroethane 2024/11/08 NC % 30-130 Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 67 % 30-130 Leachable (SPLP) 1,2-Fluorobiphenyl 2024/11/08 67 % 30-130 Leachable (SPLP) D-S-Nitroberzene 2024/11/08 67 % 30-130 Leachable (SPLP) DS-Nitroberzene 2024/11/08 67 % 30-130 Leachable (SPLP) DS-Nitroberzene 2024/11/08 66 % 30-130 Leachable (SPLP) Dist/2-chlorosiopropylether 2024/11/08 61 % 30-130 Leachable (SPLP) Dist/2-chlorosiopropylether 2024/11/08 61 % 30-130 Leachable (SPLP) A,3-Dichlorobenzidine 2024/11/08 61 % 30-130				Leachable (SPLP) Ethylene Dibromide	2024/11/06	NC		%	30
9752586 MYI Markin Spike Leachable (SPLP) 1,1,2-Trichloroethylene 2024/11/06 NC % 30 9752586 MYI Matrix Spike [AHOA09-01] Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 NC % 30 1 Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 NC % 30 9752586 MYI Matrix Spike [AHOA09-01] Leachable (SPLP) 2,4-Environophenol 2024/11/08 87 % 30 130 Leachable (SPLP) 14-Terphenyl (FS) 2024/11/08 87 % 30 130 Leachable (SPLP) 14-Terphenyl (FS) 2024/11/08 87 % 30 130 Leachable (SPLP) 14-Terphenyl (FS) 2024/11/08 88 % 30 130 Leachable (SPLP) 14-Terphenyl (FS) 2024/11/08 88 % 30 130 Leachable (SPLP) 14-Terphenyl (FS) 2024/11/08 88 % 30 130 Leachable (SPLP) 14-Terphenyl (FS) 2024/11/08 88 % 30 130 Leachable (SPLP) 2,4,6-Tricho				Leachable (SPLP) 1,1,1,2-Tetrachloroethane	2024/11/06	NC		%	30
P752586 MYI Matrix Spike [AHOA09-01] Leachable (SPLP) 1,2,7-inchioroethnylene 2024/11/06 NC % 30 9752586 MYI Matrix Spike [AHOA09-01] Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 NC % 30 122 % 30 - 130 Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 67 % 30 - 130 128 Leachable (SPLP) 2-Fluorobiphenyl 2024/11/08 67 % 30 - 130 128 Leachable (SPLP) D-Fluorobiphenyl 2024/11/08 67 % 30 - 130 128 Leachable (SPLP) D-Fluorobiphenyl 2024/11/08 67 % 30 - 130 128 Leachable (SPLP) D-Fluorobiphenyl 2024/11/08 66 % 30 - 130 128 Leachable (SPLP) Bisi(2-chloroaniline 2024/11/08 88 % 30 - 130 128 Leachable (SPLP) 2,4-Dinitroblemen 2024/11/08 88 % 30 - 130 128 Leachable (SPLP) 2,4-Dinitroblemen 2024/11/08 88 % 30 - 130				Leachable (SPLP) 1,1,2,2-Tetrachloroethane	2024/11/06	NC		%	30
Production Control % 30 9752586 MYI Matrix Spike [AHOA09-01] Leachable (SPLP) 71,chloroethylene 2024/11/08 NC % 30 9752586 MYI Matrix Spike [AHOA09-01] Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 67 % 30 -130 Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 67 % 30 -130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 67 % 30 -130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 68 % 30 -130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 61 % 30 -130 Leachable (SPLP) D5-Chloroetnylletter 2024/11/08 61 % 30 -130 Leachable (SPLP) D5-Chloroetnylletter 2024/11/08 88 % -130 Leachable (SPLP) 2,4-Dinitrobluene 2024/11/08 88 % -130 Leachable (SPLP) 2,4-Dinitrobluene 2024/11/08 88 % -130 Leachable (S				Leachable (SPLP) Tetrachloroethylene	2024/11/06	NC		%	30
P352586 MYI Matrix Spike (AHOA09-01) Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 NC % 30 - 130 9752586 MYI Matrix Spike (AHOA09-01) Leachable (SPLP) 2.Fluorobiphenyl 2024/11/08 67 % 30 - 130 Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 67 % 30 - 130 Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 66 % 30 - 130 Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 66 % 30 - 130 Leachable (SPLP) Bis(2-chloroschyl)lether 2024/11/08 68 % 30 - 130 Leachable (SPLP) Bis(2-chloroschyl)lether 2024/11/08 88 % 30 - 130 Leachable (SPLP) J11/08 2024/11/08 88 % 30 - 130 Leachable (SPLP) 3.3'-Dichlorobenzidine 2024/11/08 88 % 30 - 130 Leachable (SPLP) 2.4-Dinitrobluene 2024/11/08 88 % 30 - 130 Leachable (SPLP) 2.4-Grinitrobluene 2024/11/08 84 % 10.130 Leachable (SPLP) 2.4-Grinitrobo				Leachable (SPLP) 1,1,2-Trichloroethane	2024/11/06	NC		%	30
9752586 MYI Matrix Spike [AHOA09-01] Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 67 % 30 - 130 Leachable (SPLP) 014-Terphenyl (FS) 2024/11/08 87 % 30 - 130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 87 % 30 - 130 Leachable (SPLP) Bis(2-chlorostiv)lether 2024/11/08 66 % 30 - 130 Leachable (SPLP) Bis(2-chlorostiv)lether 2024/11/08 58 % 30 - 130 Leachable (SPLP) Bis(2-chlorostiv)lether 2024/11/08 58 % 30 - 130 Leachable (SPLP) p-Chlorosingoropyl)ether 2024/11/08 58 % 30 - 130 Leachable (SPLP) 2,4-Dinitrotonen 2024/11/08 88 % 30 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 90 % 10 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 86 % 30 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 84 % 10 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 86 %				Leachable (SPLP) Trichloroethylene	2024/11/06	NC		%	30
9752586 MY Spiked Blank Leachable (SPLP) 24-Fluorobiphenyl 2024/11/08 67 % 30 - 130 9752586 MY Spiked Blank 1 2024/11/08 87 % 30 - 130 9752586 MY Spiked Blank 1 2024/11/08 66 % 30 - 130 9752586 MY Spiked Blank 1 2024/11/08 66 % 30 - 130 9752586 MY Spiked Blank 1 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) Diethyl phthalate 2024/11/08 86 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitroblene 2024/11/08 90 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitroblene 2024/11/08 86 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitroblene 2024/11/08 86 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitroblene 2024/11/08 86 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitrobl	9752586	MYI	Matrix Spike [AHOA09-01]	Leachable (SPLP) 2,4,6-Tribromophenol	2024/11/08		102	%	30 - 130
P752586 MYI Spiked Blank Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 87 % 30 - 130 1 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 66 % 30 - 130 1 Leachable (SPLP) Bis(2-chlorostopropyl)ether 2024/11/08 58 % 30 - 130 1 Leachable (SPLP) Bis(2-chlorostopropyl)ether 2024/11/08 61 % 30 - 130 1 Leachable (SPLP) J3,3'-Dichlorobenzidine 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) Dimethyl phthalate 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) 2,4-G-Tinibromophenol 2024/11/08 86 % 30 - 130 1 Leachable (SPLP) 2,4-G-Trinbromophenol 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) 2,4-G-Trinbromophenol 2024/11/08 <				Leachable (SPLP) 2-Fluorobiphenyl	2024/11/08		67	%	30 - 130
9752586 MYI Spiked Blank Leachable (SPLP) D5-Nitrobenzene 2024/11/08 67 % 30 - 130 1 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 58 % 30 - 130 1 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 58 % 30 - 130 1 Leachable (SPLP) D-Chloroaniline 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) Diethyl phthalate 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) 2.4-Dinitrophenol 2024/11/08 90 % 10 - 130 1 Leachable (SPLP) 2.4-Dinitrotoluene 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) 2.4-Dinitrotoluene 2024/11/08 86 % 30 - 130 1 Leachable (SPLP) 2.4-G-Trichlorophenol 2024/11/08 84 % 30 - 130 1 Leachable (SPLP) 2.4-G-Trichlorophenol 2024/11/08 76 % 30 - 130 1 Leachable (SPLP) 2.4-G-Trichlorophenol 2024/11/08 76				Leachable (SPLP) D14-Terphenyl (FS)	2024/11/08		87	%	30 - 130
Provide Leachable (SPLP) Bis(2-chlorosiopropy)lether 2024/11/08 66 % 30 - 130 Leachable (SPLP) Bis(2-chlorosiopropy)lether 2024/11/08 58 % 30 - 130 Leachable (SPLP) 3.3'-Dichlorobenzidine 2024/11/08 68 % 30 - 130 Leachable (SPLP) 3.3'-Dichlorobenzidine 2024/11/08 88 % 30 - 130 Leachable (SPLP) 2.4-Dinitrophenol 2024/11/08 95 % 30 - 130 Leachable (SPLP) 2.4-Dinitrophenol 2024/11/08 90 % 10 - 130 Leachable (SPLP) 2.4-Dinitrotoluene 2024/11/08 84 % 30 - 130 Leachable (SPLP) 2.4-G-Trichlorophenol 2024/11/08 84 % 30 - 130 Leachable (SPLP) 2.4-G-Trichlorophenol 2024/11/08 84 % 30 - 130 Leachable (SPLP) 2.4-G-Trichlorophenol 2024/11/08 84 % 30 - 130 Leachable (SPLP) 2.4-G-Trichlorophenol 2024/11/08 76 % 30 - 130 Leachable (SPLP) 2.4-G-Trichlorophenol 2024/11/08 76 % 30 - 130				Leachable (SPLP) D5-Nitrobenzene	2024/11/08		67	%	30 - 130
P752586 MYI Spiked Blank Leachable (SPLP) Bis(2-chloroaniline 2024/11/08 61 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) Othoroaniline 2024/11/08 88 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 90 % 10 - 130 1 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 90 % 10 - 130 1 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 88 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 84 % 101 - 310 1 Leachable (SPLP) 2,4-G-Tribrorophenol 2024/11/08 84 % 10 - 130 1 Leachable (SPLP) 2,4-G-Tribrorophenol 2024/11/08 104 % 30 - 130 1 Leachable (SPLP) D-S-Nitrobenzene 2024/11/08 104 % 30 - 130 1				Leachable (SPLP) Bis(2-chloroethyl)ether	2024/11/08		66	%	30 - 130
P752586 MYI Spiked Blank Leachable (SPLP) p-Chlorobaniline 2024/11/08 61 % 30 - 130 9752586 MYI Spiked Blank (SPLP) Diethyl phthalate 2024/11/08 88 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4-Dinitrobluene 2024/11/08 88 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4-Dinitrobluene 2024/11/08 86 % 30 - 130 1 Leachable (SPLP) 2,4-Dinitrobluene 2024/11/08 86 % 30 - 130 1 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 86 % 30 - 130 1 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 84 % 30 - 130 1 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 104 % 30 - 130 1 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 77 % 30 - 130 1 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 77 %				Leachable (SPLP) Bis(2-chloroisopropyl)ether	2024/11/08		58	%	30 - 130
Problem Leachable (SPLP) 3,3'-Dichlorobenzidine 2024/11/08 88 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 92 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 90 % 10 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 88 % 30 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 86 % 30 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 84 % 101 - 130 Problem 2024/11/08 84 % 103 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 84 % 101 - 130 Problem 2024/11/08 84 % 103 - 130 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 84 % 30 - 130 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 76 % 30 - 130 Leachable (SPLP) Dis-Fluorobiphenyl 2024/11/08 77 % 30 - 130 Leachable (SPLP) Dis-Fluorobiphenyl 2024/11/0				Leachable (SPLP) p-Chloroaniline	2024/11/08		61	%	30 - 130
Problem Leachable (SPLP) Diethyl phthalate 2024/11/08 95 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 90 % 10 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 88 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 88 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 84 % 10 - 130 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 84 % 10 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 84 % 30 - 130 104 -30 - 130 Leachable (SPLP) D2-Fluorobiphenyl 2024/11/08 76 % 30 - 130 104 Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 77 % 30 - 130 104 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 77 % 30 - 130 105 Leachable (SPLP) Dis(2-chloroailine 2024/11/08 79 % 30 - 130 <t< td=""><td></td><td></td><td></td><td>Leachable (SPLP) 3,3'-Dichlorobenzidine</td><td>2024/11/08</td><td></td><td>88</td><td>%</td><td>30 - 130</td></t<>				Leachable (SPLP) 3,3'-Dichlorobenzidine	2024/11/08		88	%	30 - 130
P352586 MYI Spiked Blank Leachable (SPLP) Dimethyl phthalate 2024/11/08 90 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 86 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Trithronophenol 2024/11/08 84 % 10 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Trithronophenol 2024/11/08 84 % 30 - 130 104 % 30 - 130 Leachable (SPLP) 2,4,6-Trithronophenol 2024/11/08 83 % 30 - 130 104 Leachable (SPLP) 2,4,6-Trithronophenol 2024/11/08 83 % 30 - 130 104 Leachable (SPLP) 2,4,6-Trithronophenol 2024/11/08 83 % 30 - 130 105 Leachable (SPLP) 2,4,6-Trithronophenol 2024/11/08 77 % 30 - 130 106 SPLP) Di-14-Terphenyl (FS) 2024/11/08 77 % 30 - 130 106 SPLP) Di-Nitrobenzene 2024/11/08				Leachable (SPLP) Diethyl phthalate	2024/11/08		95	%	30 - 130
90 % 10 - 130 Leachable (SPLP) 2,4-Dinitrobluene 2024/11/08 88 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 86 % 30 - 130 P9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 84 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 76 % 30 - 130 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 76 % 30 - 130 Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 76 % 30 - 130 Leachable (SPLP) 2,4,6-Trichlorophenyl 2024/11/08 76 % 30 - 130 Leachable (SPLP) D1-Terphenyl (FS) 2024/11/08 77 % 30 - 130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chlorosiopropyl)ether 2024/11/08 79 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 103 % <td< td=""><td></td><td></td><td></td><td>Leachable (SPLP) Dimethyl phthalate</td><td>2024/11/08</td><td></td><td>92</td><td>%</td><td>30 - 130</td></td<>				Leachable (SPLP) Dimethyl phthalate	2024/11/08		92	%	30 - 130
9752586 MYI Spiked Blank Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 88 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 84 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 84 % 30 - 130 Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 76 % 30 - 130 Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 83 % 30 - 130 Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 76 % 30 - 130 Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 77 % 30 - 130 Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 77 % 30 - 130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 77 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) 2,3'-Dichlorobenzidine 2024/11/08 103 % 30 - 130				Leachable (SPLP) 2,4-Dinitrophenol	2024/11/08		90	%	10 - 130
9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 84 % 10 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 104 % 30 - 130 Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 76 % 30 - 130 Leachable (SPLP) 2-Fluorobiphenyl 2024/11/08 76 % 30 - 130 Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 77 % 30 - 130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chlorosiporpoyl)ether 2024/11/08 79 % 30 - 130 Leachable (SPLP) p-Chloroniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) p-Chloroniline 2024/11/08 105 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol				Leachable (SPLP) 2,4-Dinitrotoluene	2024/11/08		88	%	30 - 130
9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 104 % 30 - 130 9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 104 % 30 - 130 Leachable (SPLP) 2,Fluorobiphenyl 2024/11/08 76 % 30 - 130 Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 83 % 30 - 130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 77 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) j.3,3'-Dichlorobenzidine 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol <t< td=""><td></td><td></td><td></td><td>Leachable (SPLP) 2,6-Dinitrotoluene</td><td>2024/11/08</td><td></td><td>86</td><td>%</td><td>30 - 130</td></t<>				Leachable (SPLP) 2,6-Dinitrotoluene	2024/11/08		86	%	30 - 130
9752586 MYI Spiked Blank Leachable (SPLP) 2,4,6-Tribromophenol 2024/11/08 104 % 30 - 130 Leachable (SPLP) 2-Fluorobiphenyl 2024/11/08 76 % 30 - 130 Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 83 % 30 - 130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 77 % 30 - 130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 77 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) 3,3'-Dichlorobenzidine 2024/11/08 79 % 30 - 130 Leachable (SPLP) 3,3'-Dichlorobenzidine 2024/11/08 105 % 30 - 130 Leachable (SPLP) 0,3'-Dichlorobenzidine 2024/11/08 103 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 101 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 <				Leachable (SPLP) 2,4,6-Trichlorophenol	2024/11/08		84	%	10 - 130
Leachable (SPLP) 2-Fluorobiphenyl 2024/11/08 76 % 30 - 130 Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 83 % 30 - 130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 79 % 30 - 130 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 68 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) p-Chlorobenzidine 2024/11/08 105 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 101 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 97 % 101 - 130	9752586	MYI	Spiked Blank	Leachable (SPLP) 2,4,6-Tribromophenol	2024/11/08		104	%	30 - 130
Leachable (SPLP) D14-Terphenyl (FS) 2024/11/08 83 % 30 - 130 Leachable (SPLP) D5-Nitrobenzene 2024/11/08 79 % 30 - 130 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chloroisopropyl)ether 2024/11/08 68 % 30 - 130 Leachable (SPLP) Bis(2-chloroisopropyl)ether 2024/11/08 68 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) J, 3,3'-Dichlorobenzidine 2024/11/08 105 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 100 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 100 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) 2-Fluorobiphenyl	2024/11/08		76	%	30 - 130
Leachable (SPLP) D5-Nitrobenzee 2024/11/08 79 % 30 - 130 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 68 % 30 - 130 Leachable (SPLP) Bis(2-chloroisopropyl)ether 2024/11/08 68 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) 3,3'-Dichlorobenzidine 2024/11/08 105 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) Z,4-Dinitrophenol 2024/11/08 97 % 10 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 97 % 30 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 97 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) D14-Terphenyl (FS)	2024/11/08		83	%	30 - 130
Leachable (SPLP) Bis(2-chloroethyl)ether 2024/11/08 77 % 30 - 130 Leachable (SPLP) Bis(2-chloroisopropyl)ether 2024/11/08 68 % 30 - 130 Leachable (SPLP) Bis(2-chloroisopropyl)ether 2024/11/08 79 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) 3,3'-Dichlorobenzidine 2024/11/08 105 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) Z,4-Dinitrophenol 2024/11/08 97 % 10 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 97 % 10 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 100 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) D5-Nitrobenzene	2024/11/08		79	%	30 - 130
Leachable (SPLP) Bis(2-chloroisopropyl)ether 2024/11/08 68 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) 3,3'-Dichlorobenzidine 2024/11/08 105 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 100 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 100 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 97 % 100 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) Bis(2-chloroethyl)ether	2024/11/08		77	%	30 - 130
Leachable (SPLP) p-Chloroaniline 2024/11/08 79 % 30 - 130 Leachable (SPLP) 3,3'-Dichlorobenzidine 2024/11/08 105 % 30 - 130 Leachable (SPLP) J,3'-Dichlorobenzidine 2024/11/08 103 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 10 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 97 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 97 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) Bis(2-chloroisopropyl)ether	2024/11/08		68	%	30 - 130
Leachable (SPLP) 3,3'-Dichlorobenzidine 2024/11/08 105 % 30 - 130 Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 10 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 100 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) p-Chloroaniline	2024/11/08		79	%	30 - 130
Leachable (SPLP) Diethyl phthalate 2024/11/08 103 % 30 - 130 Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 10 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 10 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 100 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) 3.3'-Dichlorobenzidine	2024/11/08		105	%	30 - 130
Leachable (SPLP) Dimethyl phthalate 2024/11/08 99 % 30 - 130 Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 10 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 100 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) Diethvl ohthalate	2024/11/08		103	%	30 - 130
Leachable (SPLP) 2,4-Dinitrophenol 2024/11/08 97 % 10 - 130 Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 100 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) Dimethyl phthalate	2024/11/08		99	%	30 - 130
Leachable (SPLP) 2,4-Dinitrotoluene 2024/11/08 100 % 30 - 130 Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) 2.4-Dinitrophenol	2024/11/08		97	%	10 - 130
Leachable (SPLP) 2,6-Dinitrotoluene 2024/11/08 95 % 30 - 130				Leachable (SPLP) 2.4-Dinitrotoluene	2024/11/08		100	%	30 - 130
				Leachable (SPLP) 2.6-Dinitrotoluene	2024/11/08		95	%	30 - 130
Leachable (SPLP) 2,4,6-Trichlorophenol 2024/11/08 87 % 10 - 130				Leachable (SPLP) 2,4,6-Trichlorophenol	2024/11/08		87	%	10 - 130

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9752586	MYI	Method Blank	Leachable (SPLP) 2,4,6-Tribromophenol	2024/11/08		61	%	30 - 130
			Leachable (SPLP) 2-Fluorobiphenyl	2024/11/08		62	%	30 - 130
			Leachable (SPLP) D14-Terphenyl (FS)	2024/11/08		78	%	30 - 130
			Leachable (SPLP) D5-Nitrobenzene	2024/11/08		67	%	30 - 130
			Leachable (SPLP) Bis(2-chloroethyl)ether	2024/11/08	ND, RDL=2.0		ug/L	
			Leachable (SPLP) Bis(2-chloroisopropyl)ether	2024/11/08	ND, RDL=2.0		ug/L	
			Leachable (SPLP) p-Chloroaniline	2024/11/08	ND, RDL=5.0		ug/L	
			Leachable (SPLP) 3,3'-Dichlorobenzidine	2024/11/08	ND, RDL=0.40		ug/L	
			Leachable (SPLP) Diethyl phthalate	2024/11/08	ND, RDL=1.0		ug/L	
			Leachable (SPLP) Dimethyl phthalate	2024/11/08	ND, RDL=1.0		ug/L	
			Leachable (SPLP) 2,4-Dinitrophenol	2024/11/08	ND, RDL=5.0		ug/L	
			Leachable (SPLP) 2,4-Dinitrotoluene	2024/11/08	ND, RDL=3.0		ug/L	
			Leachable (SPLP) 2,6-Dinitrotoluene	2024/11/08	ND, RDL=3.0		ug/L	
			Leachable (SPLP) 2,4,6-Trichlorophenol	2024/11/08	ND, RDL=0.70		ug/L	
9752586	MYI	RPD [AHOA09-01]	Leachable (SPLP) Bis(2-chloroethyl)ether	2024/11/08	NC		%	40
			Leachable (SPLP) Bis(2-chloroisopropyl)ether	2024/11/08	NC		%	40
			Leachable (SPLP) p-Chloroaniline	2024/11/08	NC		%	40
			Leachable (SPLP) 3,3'-Dichlorobenzidine	2024/11/08	NC		%	40
			Leachable (SPLP) Diethyl phthalate	2024/11/08	NC		%	40
			Leachable (SPLP) Dimethyl phthalate	2024/11/08	NC		%	40
			Leachable (SPLP) 2,4-Dinitrophenol	2024/11/08	NC		%	40
			Leachable (SPLP) 2,4-Dinitrotoluene	2024/11/08	NC		%	40
			Leachable (SPLP) 2,6-Dinitrotoluene	2024/11/08	NC		%	40
			Leachable (SPLP) 2,4,6-Trichlorophenol	2024/11/08	NC		%	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Louis A Harding

Louise Harding, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C4Y3367																					
2024/10/3	0 09:00																				Page of
		1	Bureau Veritas 5740 Campobello F	Road, Mississauga, C	ntario Canada	L5N 2L8 Te	el:(905) 817-57	00 Toll-free:800	-563-6266 Fax:	(905) 817-	5777 www.	bvna.com								1	
BUREAU VERITAS																		5	125		
		INVO	DICE TO:					REPO	ORT TO:						PROJE	CT INFORMATION:				NONT-2024-10-7	527 :
Company Name:	#39509 I	Lopers &	Associates		Co	mpany Nam	ne:						Quotation	#:	C433	362			2011	đ	Bottle Order #:
Attention:	Accounts	Payable			At	tention:	Luke Lo	opers					P.O. #:		100	04.0050				-	
Address:	Ottawa O	N K2G 3	/8		Ad	idress:	-						Project:		LOP	24-0250				COC #:	1019688 Project Manager:
Tel:	(613) 327	-9073	Fax		Te	d:			Fax				Project Na	ame:					0.010010		i roject manager.
Email:	Luke@Lo	pers.ca			En	nail:	Luke@	Lopers.ca					Sampled	By:	L.L	URM				C#1019688-02-01	Katherine Szozda
MOE REC	GULATED DI	RINKING	WATER OR WA	ATER INTENDED	FOR HUM	AN CONS	UMPTION	MUST BE			1	AN	ALYSIS RE	QUESTED	(PLEASE	BE SPECIFIC)	1			Tumaround Time (TA	T) Required:
	SUBMITTE	D ON THE	E BUREAU VER	RITAS DRINKING	WATER CI		CUSTODY		e):	(Soil)		5	als	eb	s	\$		2	Regular (S	Please provide advance noti tandard) TAT:	ce for rush projects
Regulati	ion 153 (2011)			Other Regulatio	ons		Special In	structions	/ circl	*		ics Pi	Met	LP Pr	000	ABN			(will be applied	d if Rush TAT is not specified):	
Table 1	Res/Park	Coarse		Sanitary Sew	er Bylaw				cr \	۵ð		rgan	SPLF	mSPI	SPLF	SPLF			Standard TAT	= 5-7 Working days for most tests.	
Table 3	Agri/Other	For RSC	MISA	Municipality _		_			l (ple	DA H	(Soil)	& Inc	s Soil	s Soil	Soil	s Soil			Please note: S days - contact	standard TAT for certain tests such your Project Manager for details.	as BOD and Dioxins/Furans are > 5
Table			PWQO	Reg 406 Ta	ble 2.1 Rd	S.			terec	E	AHs (letals	xcess	xcess	xcess	xces			Job Specific	Rush TAT (if applies to entire s	ubmission)
			Other _						d Fill Meta	53 4	53 P.	53 M	100 E	100 E	106 E	90		1.5	Date Required	d:	_ Time Required:
	Include	e Criteria o	n Certificate of	Analysis (Y/N)?	1				Fiel	Reg	Reg 1	Reg 1	Reg 4	Reg 4	Reg 4	Reg 4		1.4	# of Bottles		(call lab for #)
Sampi	le Barcode Labe	ei	Sample (Locatio	on) Identification	Date Sam	pled I in	ne Sampled	Matrix		Ö	Ö	0.0	Ö	Ö	Ö	O					mments
1		1	Dupz-	-10/29	oct29	124	-	S		X	×	×									
2		V	SPIF	>	m+29	124 3	30 PM	S					×	×	×	×					
3					perce y	-1 0	10.														
4																			_		
5																					
6			52																		*****
																				X	5 E 1.
7																					
8																					
9																				Received	in Ottawa
10																				176001	
	RELINQUISHE	D BY: (Signa	ature/Print)	Date: (YY	/MM/DD)	Time		RECEIVED I	BY: (Signature/	Print)	L	Date: (YY/M	/M/DD)	ті	me	# jars used and	1		Laborat	tory Use Only	
hh 4	ha	-		24/10	129		Redr	o da Si	tra 166	0	2	004110	130	09:	00	not submitted	Time Se	ensitive	Temperatu	ure (°C) on Recei	ly Seal Yes No
Chel	lox,	0		111			-	7	Tre	70	L	024/10	2/31	08=	30				51617	(ice) Inte	act V
· UNLESS OTHER	WISE AGREED	TO IN WRITH	NG, WORK SUBMIT	TED ON THIS CHAIN	OF CUSTODY OR VIEWING AT	IS SUBJECT	T TO BUREAU A.COM/ENVIR	VERITAS'S STAN	ORATORIES/RE	ND CONDI	TIONS. SI	GNING OF T	HIS CHAIN	OF CUSTO	DY DOCU	MENT IS			In Alleria	Whi	te: Bureau Veritas Yellow: Client
• IT IS THE RESPO	ONSIBILITY OF T	THE RELINQ	UISHER TO ENSUR	E THE ACCURACY O	F THE CHAIN	OF CUSTOD	Y RECORD. A		CHAIN OF CUST	ODY MAY	RESULT IN	ANALYTIC	AL TAT DE	AYS.	18/0	SAMPLE	ES MUST BE	KEPT CO	DL (< 10° C) F	ROM TIME OF SAMPLING J VERITAS	
** SAMPLE CONTA	AINER, PRESER	RVATION, HO	LD TIME AND PAC	KAGE INFORMATION	CAN BE VIEW	ED AT WW	W.BVNA.COM/	ENVIRONMENTA	L-LABORATORI	ES/RESOU	RCES/CHA	AIN-CUSTOD	Y-FORMS	cocs.							

Bureau Veritas Canada (2019) Inc.

Lopers & Associates Client Project #: LOP24-025C Client ID: DUP2-10/29

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Lopers & Associates

30 Lansfield Way Ottawa, ON K2G 3V8 Attn: Luke Lopers

Client PO: Project: LOP23-025B Custody: 139954

Report Date: 19-Apr-2023 Order Date: 6-Apr-2023

Order #: 2315005

This Certificate of Analysis contains analytical data applicable to the following samples as submitted :

Paracel ID 2315005-01

Client ID BH1-23-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 19-Apr-2023 Order Date: 6-Apr-2023

Project	Description:	LOP23-025B
iiojeet	Description.	201 20-0200

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC	10-Apr-23	11-Apr-23
Chromium, hexavalent - water	MOE E3056 - colourimetric	10-Apr-23	11-Apr-23
Cyanide, free	MOE E3015 - Auto Colour	12-Apr-23	12-Apr-23
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	10-Apr-23	10-Apr-23
Metals, ICP-MS	EPA 200.8 - ICP-MS	10-Apr-23	10-Apr-23
рН	EPA 150.1 - pH probe @25 °C	13-Apr-23	13-Apr-23
PHC F1	CWS Tier 1 - P&T GC-FID	11-Apr-23	11-Apr-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	17-Apr-23	18-Apr-23
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	18-Apr-23	19-Apr-23
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	11-Apr-23	11-Apr-23

Client PO:

Report Date: 19-Apr-2023

Order Date: 6-Apr-2023

Project Description: LOP23-025B

	Client ID:	BH1-23-GW1	-	-	-
	Sample Date:	06-Apr-23 16:30	-	-	-
	Sample ID:	2315005-01	-	-	-
Concreting	MDL/Units	Ground Water	-	-	-
	2 µg/l				
Cyanide, iree		<2	-	-	-
рн	0.1 pH Offits	7.5	-	-	-
	1 mg/l				
	T Hig/L	445	-	-	-
	0.1.ug/l	-0.4			
Automatic	0.F ug/L	<0.1	-	-	-
Antimony	0.5 ug/L	<0.5	-	-	-
Arsenic	1 ug/L	<1	-	-	-
Barium	1 ug/L	110	-	-	-
Beryllium	0.5 ug/L	<0.5	-	-	-
Boron	10 ug/L	50	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-
Chromium	1 ug/L	<1	-	-	-
Chromium (VI)	10 ug/L	<10	-	-	-
Cobalt	0.5 ug/L	<0.5	-	-	-
Copper	0.5 ug/L	2.0	-	-	-
Lead	0.1 ug/L	<0.1	-	-	-
Molybdenum	0.5 ug/L	0.8	-	-	-
Nickel	1 ug/L	3	-	-	-
Selenium	1 ug/L	<1	-	-	-
Silver	0.1 ug/L	<0.1	-	-	-
Sodium	200 ug/L	151000	-	-	-
Thallium	0.1 ug/L	<0.1	-	-	-
Uranium	0.1 ug/L	1.4	-	-	-
Vanadium	0.5 ug/L	2.5	-	-	-
Zinc	5 ug/L	<5	-	-	-
Volatiles					
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Report Date: 19-Apr-2023

Order Date: 6-Apr-2023

Project Description: LOP23-025B

	Client ID:	BH1-23-GW1	-	-	-
	Sample Date:	06-Apr-23 16:30	-	-	-
	Sample ID: MDI /I Inits	Ground Water	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	_	-	_
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	_
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	_
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	0.8	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	105%	-	-	-
Dibromofluoromethane	Surrogate	91.5%	-	-	-

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Report Date: 19-Apr-2023

Order Date: 6-Apr-2023

Project Description: LOP23-025B

	г		1	1	
	Client ID:	BH1-23-GW1	-	-	-
	Sample Date:	06-Apr-23 16:30	-	-	-
	Sample ID:	2315005-01 Cround Water	-	-	-
Toluopo d8	MDL/Units		-	-	-
	Sunogate	11070	-	-	-
Hydrocarbons	05 11		1	i	i
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-
Semi-Volatiles			-	-	-
Acenaphthene	0.05 ug/L	<0.05	-	-	-
Acenaphthylene	0.05 ug/L	<0.05	-	-	-
Anthracene	0.01 ug/L	<0.01	-	-	-
Benzo [a] anthracene	0.01 ug/L	<0.01	-	-	_
Benzo [a] pyrene	0.01 ug/L	<0.01	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	-	-	-
Chrysene	0.05 ug/L	<0.05	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-
Fluoranthene	0.01 ug/L	<0.01	-	-	-
Fluorene	0.05 ug/L	<0.05	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-
1-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-
2-Methylnaphthalene	0.05 ug/L	<0.05	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	-	-	_
Naphthalene	0.05 ug/L	<0.05	-	-	-
Phenanthrene	0.05 ug/L	<0.05	-	-	_
Pyrene	0.01 ug/L	<0.01	-	-	-
2-Fluorobiphenyl	Surrogate	109%	-	-	-
Terphenyl-d14	Surrogate	116%	-	-	-

Order #: 2315005

Report Date: 19-Apr-2023

Order Date: 6-Apr-2023

Project Description: LOP23-025B

Method Quality Control: Blank

Analyte Result Limit Units Result %REC Limit RPD	Limit	Notes
Anions		
Chloride ND 1 mg/L		
General Inorganics		
Hydrocarbons		
F1 PHCs (C6-C10) ND 25 ug/L		
F2 PHCs (C10-C16) ND 100 ug/L		
F3 PHCs (C16-C34) ND 100 ug/L		
P4 PHCS (C34-C50) ND 100 Ug/L		
Metais		
Mercury ND 0.1 ug/L		
Antimony ND 0.5 ug/L		
Arsenic ND 1 ug/L		
Barrum ND 1 ug/L		
Berginum ND 0.5 Ug/L		
Cadmium ND 0 ug/L		
Chromium (/I) ND 10 ug/L		
Chromium ND 1 ug/		
Cobalt ND 0.5 ug/		
Copper ND 0.5 ug/L		
Lead ND 0.1 ug/L		
Molybdenum ND 0.5 ug/L		
Nickel ND 1 ug/L		
Selenium ND 1 ug/L		
Silver ND 0.1 ug/L		
Sodium ND 200 ug/L		
Thallium ND 0.1 ug/L		
Uranium ND 0.1 ug/L		
Vanadium ND 0.5 ug/L		
Semi-volatiles		
Acenaphthene ND 0.05 ug/L		
Acenaphthylene ND 0.05 ug/L		
Anthracene ND 0.01 ug/L		
Benzo jaj antiracene ND 0.01 ug/L		
Benzo jaj pyrene ND 0.01 ug/L		
Benzo (g) nuoranitriene ND 0.05 ug/L		
Benzo (g,h.,) peryene ND 0.05 ug/		
Chrysene ND 0.05 ug/L		
Dibenzo [a,h] anthracene ND 0.05 ug/L		
Fluoranthene ND 0.01 ug/L		
Fluorene ND 0.05 ug/L		
Indeno [1,2,3-cd] pyrene ND 0.05 ug/L		
1-Methylnaphthalene ND 0.05 ug/L		
2-Methylnaphthalene ND 0.05 ug/L		
Methylnaphthalene (1&2) ND 0.10 ug/L		
Naphthalene ND 0.05 ug/L		
Phenanthrene ND 0.05 ug/L		
Pyrene ND U.U'I Ug/L Surrogate: 2 Elugrobiobenyl 22.7 ug/l 114 50.140		
Surrogate: Z=r luoroupphenyi 22.7 Ug/L 114 50-140		
Sunoyate. Terpinenyi-u 14 22.7 Uy/L 114 50-140		
volatiles		
Acetone ND 5.0 ug/L		
Benzene ND 0.5 ug/L		
Bromodichloromethane ND 0.5 ug/L		
Bromotorm ND 0.5 Ug/L		

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Order #: 2315005

Report Date: 19-Apr-2023

Order Date: 6-Apr-2023

Project Description: LOP23-025B

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromomethane	ND	0.5	ua/l						
Carbon Tetrachloride	ND	0.0	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1 2-Dichlorobenzene	ND	0.5	ug/L						
1.3-Dichlorobenzene	ND	0.5	ug/L						
1 4-Dichlorobenzene	ND	0.5	ug/L						
1 1-Dichloroethane	ND	0.5	ug/L						
1.2-Dichloroethane	ND	0.5	ug/L						
1 1-Dichloroethylene	ND	0.5	ug/L						
cis-1 2-Dichloroethylene	ND	0.5	ug/L						
trans-1 2-Dichloroethylene	ND	0.5	ug/L						
1 2-Dichloropropane	ND	0.5	ug/L						
cis-1 3-Dichloropropylene	ND	0.5	ug/L						
trans-1 3-Dichloropropylene	ND	0.5	ug/L						
1.3-Dichloropropene total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1.2.	ND	0.0	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1 1 1 2-Tetrachloroethane	ND	0.5	ug/L						
1 1 2 2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1 1 1-Trichloroethane	ND	0.5	ug/L						
1 1 2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m n-Xvlenes	ND	0.5	ug/L						
o-Xvlene	ND	0.5	ug/L						
Xylenes total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	83.4	0.0	ug/L		104	50-140			
Surrogate: Dibromofluoromethane	73.5		ug/L		91.8	50-140			
Surrogate: Toluene-d8	04.0		ug/L		118	50-140			
Surroyale. Toluene-ao	94.0		ug/L		110	50-140			

Method Quality Control: Duplicate

Project Description: LOP23-025B
Order Date: 6-Apr-2023
Report Date: 19-Apr-2023

Order #: 2315005

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	210	1	ma/L	206			1.7	20	
General Inorganics			5						
Cyanida fras		2	ug/l	ND			NC	20	
nH	7.8	2 0 1	ug/∟ nH Units	7.8			0.5	20	
Hydrocarbons	1.0	0.1	prionita	7.0			0.0	0.0	
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals									
Mercury	ND	0.1	ug/L	ND			NC	20	
Antimony	0.72	0.5	ug/L	0.75			3.2	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	20.2	1	ug/L	20.7			2.6	20	
Beryllium	ND	0.5	ug/L	ND 10			NC	20	
Boron		10	ug/L				3.8 NC	20	
		0.1	ug/L				NC	20	
Chromium		10	ug/L				NC	20	
Cobalt	ND	0.5	ug/L	ND			NC	20	
Copper	0.98	0.5	ug/L	1.03			5.5	20	
Lead	ND	0.1	ug/L	ND			NC	20	
Molybdenum	0.70	0.5	ug/L	0.67			3.8	20	
Nickel	ND	1	ug/L	ND			NC	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	13900	200	ug/L	16700			18.7	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Uranium	ND	0.1	ug/L	ND			NC	20	
Vanadium	ND	0.5	ug/L	ND			NC	20	
Zinc	11	5	ug/L	11			3.1	20	
Volatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromotorm	ND	0.5	ug/L	ND			NC	30	
Bromometnane Carbon Tatrachlarida		0.5	ug/L				NC	30	
		0.2	ug/L				NC	30	
Chloroform	2 19	0.5	ug/L	2 10			4.2	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
i, 2-Dichloropropane		0.5	ug/L					30	
trans_1.3-Dichloropropylene		0.5	ug/L				NC	30	
Ethylbenzene		0.5	ug/L				NC	30	
Ethylene dibromide (dibromoethane 1.2	ND	0.2	ua/l	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Order #: 2315005

Report Date: 19-Apr-2023 Order Date: 6-Apr-2023

Project Description: LOP23-025B

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	84.1		ug/L		105	50-140			
Surrogate: Dibromofluoromethane	74.8		ug/L		93.5	50-140			
Surrogate: Toluene-d8	95.8		ug/L		120	50-140			

Method Quality Control: Spike

Report Date: 19-Apr-2023 Order Date: 6-Apr-2023

Project Description: LOP23-025B

	Desult	Reporting	l luite	Source		%REC		RPD	Natas
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	217	1	mg/L	206	106	70-124			
General Inorganics			Ū						
Cvanide free	45.3	2	ua/l	ND	90.6	61-139			
	10.0	L	ug/L		00.0	01 100			
	1090	25			00.1	60 117			
F1 PHCs (C6-C10)	1980	25	ug/L		99.1	60 140			
F_2 PHCs (C10-C10) F_3 PHCs (C16 C34)	3030	100	ug/L		97.3	60 140			
F_{4} PHCs (C34 C50)	2510	100	ug/L		100	60 140			
Matala	2010	100	ug/L	ND	101	00-140			
	0.07				<u> </u>	70.400			
Mercury	2.97	0.1	ug/L	ND	99.1	70-130			
Arsenic	52.2	1	ug/L	ND	104	80-120			
Banum	40.7	1	ug/L	20.7	00.5 00.5	00-120			
Bergillum	49.7	0.5	ug/L	ND 16	99.5 95.4	00-120 00-120			
Codmium	09 46 1	10	ug/L		03.4	00-120 00-120			
	206	10	ug/L		92.2	70 120			
Chromium	50.4	10	ug/L	ND	103	80-120			
Cobalt	47 8	0.5	ug/L	ND	95.5	80-120			
Copper	46.1	0.5	ug/L	1.03	90.0	80-120			
Lead	39.7	0.0	ug/L	ND	79.4	80-120			OM-07
Molybdenum	43.9	0.5	ug/L	0.67	86.4	80-120			
Nickel	47.3	1	ug/L	ND	93.6	80-120			
Selenium	47.6	1	ua/L	ND	95.1	80-120			
Silver	44.7	0.1	ua/L	ND	89.4	80-120			
Sodium	8980	200	ug/L	ND	89.8	80-120			
Thallium	45.2	0.1	ug/L	ND	90.5	80-120			
Uranium	44.0	0.1	ug/L	ND	88.0	80-120			
Vanadium	48.9	0.5	ug/L	ND	97.6	80-120			
Zinc	55	5	ug/L	11	89.2	80-120			
Semi-Volatiles									
Acenaphthene	4.08	0.05	ug/L	ND	81.7	50-140			
Acenaphthylene	3.62	0.05	ug/L	ND	72.4	50-140			
Anthracene	3.88	0.01	ug/L	ND	77.6	50-140			
Benzo [a] anthracene	4.39	0.01	ug/L	ND	87.9	50-140			
Benzo [a] pyrene	4.89	0.01	ug/L	ND	97.7	50-140			
Benzo [b] fluoranthene	4.72	0.05	ug/L	ND	94.4	50-140			
Benzo [g,h,i] perylene	3.41	0.05	ug/L	ND	68.2	50-140			
Benzo [k] fluoranthene	5.20	0.05	ug/L	ND	104	50-140			
Chrysene	5.22	0.05	ug/L	ND	104	50-140			
Dibenzo [a,h] anthracene	3.63	0.05	ug/L	ND	72.7	50-140			
Fluoranthene	3.76	0.01	ug/L	ND	75.2	50-140			
Fluorene	4.10	0.05	ug/L	ND	82.0	50-140			
Indeno [1,2,3-cd] pyrene	3.55	0.05	ug/L	ND	71.0	50-140			
1-Methylnaphthalene	5.39	0.05	ug/L	ND	108	50-140			
2-Methylnaphthalene	5.57	0.05	ug/L	ND	111	50-140			
Naphthalene	4.68	0.05	ug/L	ND	93.5	50-140			
Phenanthrene	3.95	0.05	ug/L	ND	79.1	50-140			

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

o-Xylene

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Pyrene	3.87	0.01	ug/L	ND	77.5	50-140			
Surrogate: 2-Fluorobiphenyl	21.0		ug/L		105	50-140			
Surrogate: Terphenyl-d14	22.3		ug/L		111	50-140			
Volatiles									
Acetone	65.0	5.0	ug/L	ND	65.0	50-140			
Benzene	43.8	0.5	ug/L	ND	110	60-130			
Bromodichloromethane	33.1	0.5	ug/L	ND	82.8	60-130			
Bromoform	40.2	0.5	ug/L	ND	101	60-130			
Bromomethane	30.1	0.5	ug/L	ND	75.3	50-140			
Carbon Tetrachloride	33.6	0.2	ug/L	ND	84.0	60-130			
Chlorobenzene	41.2	0.5	ug/L	ND	103	60-130			
Chloroform	33.4	0.5	ug/L	ND	83.4	60-130			
Dibromochloromethane	38.0	0.5	ug/L	ND	95.1	60-130			
Dichlorodifluoromethane	30.6	1.0	ug/L	ND	76.5	50-140			
1,2-Dichlorobenzene	41.4	0.5	ug/L	ND	104	60-130			
1,3-Dichlorobenzene	37.1	0.5	ug/L	ND	92.8	60-130			
1,4-Dichlorobenzene	36.7	0.5	ug/L	ND	91.7	60-130			
1,1-Dichloroethane	41.7	0.5	ug/L	ND	104	60-130			
1,2-Dichloroethane	33.0	0.5	ug/L	ND	82.5	60-130			
1,1-Dichloroethylene	44.6	0.5	ug/L	ND	111	60-130			
cis-1,2-Dichloroethylene	43.4	0.5	ug/L	ND	109	60-130			
trans-1,2-Dichloroethylene	42.1	0.5	ug/L	ND	105	60-130			
1,2-Dichloropropane	46.6	0.5	ug/L	ND	116	60-130			
cis-1,3-Dichloropropylene	37.6	0.5	ug/L	ND	94.0	60-130			
trans-1,3-Dichloropropylene	36.3	0.5	ug/L	ND	90.8	60-130			
Ethylbenzene	39.0	0.5	ug/L	ND	97.4	60-130			
Ethylene dibromide (dibromoethane, 1,2-	43.1	0.2	ug/L	ND	108	60-130			
Hexane	45.0	1.0	ug/L	ND	113	60-130			
Methyl Ethyl Ketone (2-Butanone)	119	5.0	ug/L	ND	119	50-140			
Methyl Isobutyl Ketone	103	5.0	ug/L	ND	103	50-140			
Methyl tert-butyl ether	96.1	2.0	ug/L	ND	96.1	50-140			
Methylene Chloride	42.4	5.0	ug/L	ND	106	60-130			
Styrene	39.4	0.5	ug/L	ND	98.4	60-130			
1,1,1,2-Tetrachloroethane	33.6	0.5	ug/L	ND	83.9	60-130			
1,1,2,2-Tetrachloroethane	35.6	0.5	ug/L	ND	89.0	60-130			
Tetrachloroethylene	40.5	0.5	ug/L	ND	101	60-130			
Toluene	43.4	0.5	ug/L	ND	109	60-130			
1,1,1-Trichloroethane	36.2	0.5	ug/L	ND	90.5	60-130			
1,1,2-Trichloroethane	44.3	0.5	ug/L	ND	111	60-130			
Trichloroethylene	38.4	0.5	ug/L	ND	96.0	60-130			
Trichlorofluoromethane	39.3	1.0	ug/L	ND	98.3	60-130			
Vinyl chloride	32.0	0.5	ug/L	ND	80.0	50-140			
m,p-Xylenes	77.0	0.5	ug/L	ND	96.3	60-130			

Report Date: 19-Apr-2023

Order Date: 6-Apr-2023

Project Description: LOP23-025B

ug/L

ug/L

ug/L

ug/L

ND

90.1

96.8

88.8

102

36.0

77.4

71.1

81.4

0.5

60-130

50-140

50-140

50-140

QC Qualifiers :

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Report Date: 19-Apr-2023 Order Date: 6-Apr-2023 Project Description: LOP23-025B

C PARACEL LABORATORIES LTD		Para	icel	ID:	2315005		P 23	aracel (Lat 3/5	Order Use (Numb Dnly))er		C	Chair (La Nº	Of Contract of Con	ustody Dnly) 9954
Contact Name:			Proje	ect Ref	LoP23-02	SB								P	age	of /
Address: 20 () () () ()			Quot PO #	te #:										Turn	around	Time
30 Canstrela Uny, 000 Telephone: 615-327-9073	awa, 00		E-ma	il: L	ike@Loj	ers.a						Date	l 1 da l 2 da e Requ	iy y uired:		D 3 day
Table 1 Res/Park Mod/Elec D pro pro	Regulation	-	Matrix	Type:	S (Soil/Sed.) GW (Ground Water)					P	anuiro	d Ana	huele		
Table 2 Ind/Comm Coarse Come	D PWQO		SW (Si	urface P (Water) SS (Storm/S Paint) A (Air) O (O	anitary Sewer) ther)	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1			-quire		nysis		
Table 3 Agri/Other SU-Sani	SU-Storm	,ix	olume	Containers	Sampl	e Taken	s F1-F4+BTEX			s by ICP			/S)	SZINA		
Sample ID/Location Name		Mati	Air V	# of	Date	Time	- Å	NO O	PAHs	Metal	p	5	S (HW	10		
2 BHI-23-GWI		GW		9	April 6/23	4:301M	X	X	Х	Х	X	X		X		
3 4																
5																
6																
0											-					
9																
10																
omments:											Method	of Deli	very:			
linguine by Sign):	Received By Dri	ver/De	pot:			Received at Lab;	I	t			Verified	lalk By:	(-)	In	~	
te/Time: A Life Copers	Date/Time:	in tant. Tinang	y ny sy siy si na ana si si si			Date/Time:	202	3	5:50	PM	Date/Ti	me:	An	a s cil	10	9 ST
hain of Custody (Env) xlsx	Temperature:				°C .	Temperature: 10.	4	°C	e film, g		pH Veri	fied: 7	ſŸ	BYS	Codu	0,51

Your Project #: LOP24-025C Site#: PHASE 2 ESA Site Location: 214 SOMERSET Your C.O.C. #: C#1022820-01-01

Attention: Luke Lopers

Lopers & Associates 30 Lansfield Way Ottawa, ON CANADA K2G 3V8

> Report Date: 2024/11/20 Report #: R8412924 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Z8508

Received: 2024/11/13, 16:27

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	2	N/A	2024/11/19	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum (1)	1	N/A	2024/11/20	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	3	N/A	2024/11/19		EPA 8260C m
1,3-Dichloropropene Sum (1)	2	N/A	2024/11/20		EPA 8260C m
Chloride by Automated Colourimetry (1)	3	N/A	2024/11/19	CAM SOP-00463	SM 24 4500-Cl E m
Chromium (VI) in Water (1)	3	N/A	2024/11/18	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide (1)	3	N/A	2024/11/16	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	2	2024/11/18	2024/11/19	CAM SOP-00316	CCME PHC-CWS m
Mercury (1)	3	2024/11/18	2024/11/19	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS (1)	3	N/A	2024/11/18	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM) (1)	2	2024/11/18	2024/11/18	CAM SOP-00318	EPA 8270E
PAH Compounds in Water by GC/MS (SIM) (1)	1	2024/11/19	2024/11/20	CAM SOP-00318	EPA 8270E
Volatile Organic Compounds and F1 PHCs (1)	2	N/A	2024/11/20	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water (1)	3	N/A	2024/11/18	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Your Project #: LOP24-025C Site#: PHASE 2 ESA Site Location: 214 SOMERSET Your C.O.C. #: C#1022820-01-01

Attention: Luke Lopers

Lopers & Associates 30 Lansfield Way Ottawa, ON CANADA K2G 3V8

> Report Date: 2024/11/20 Report #: R8412924 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4Z8508 Received: 2024/11/13. 16:27

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		AIUW65		AIUW66	AIUW67					
Sampling Date		2024/11/13 12:10		2024/11/13 14:45	2024/11/13					
COC Number		C#1022820-01-01		C#1022820-01-01	C#1022820-01-01					
UNITS BH1-24-GW1 RDL BH2-24-GW1 DUP-11/13 RDL QC B										
Inorganics										
WAD Cyanide (Free)	ug/L	ND	1	ND	ND	1	9768861			
Dissolved Chloride (Cl-)	mg/L	28	1.0	2900	2900	20	9770979			
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
ND = Not Detected at a conce	ntratior	ι equal or greater th	nan th	e indicated Detection	on Limit.					

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		AIUW65		AIUW66	AIUW67		
Sampling Date		2024/11/13 12:10		2024/11/13 14:45	2024/11/13		
COC Number		C#1022820-01-01		C#1022820-01-01	C#1022820-01-01		
	UNITS	BH1-24-GW1	RDL	BH2-24-GW1	DUP-11/13	RDL	QC Batch
Metals							
Chromium (VI)	ug/L	ND	0.50	ND (1)	ND (1)	1.0	9772464
Mercury (Hg)	ug/L	ND	0.10	ND	ND	0.10	9772401
Dissolved Antimony (Sb)	ug/L	ND	0.50	ND	ND	0.50	9771756
Dissolved Arsenic (As)	ug/L	2.4	1.0	ND	ND	1.0	9771756
Dissolved Barium (Ba)	ug/L	130	2.0	200	200	2.0	9771756
Dissolved Beryllium (Be)	ug/L	ND	0.40	ND	ND	0.40	9771756
Dissolved Boron (B)	ug/L	60	10	29	29	10	9771756
Dissolved Cadmium (Cd)	ug/L	ND	0.090	0.12	0.24	0.090	9771756
Dissolved Chromium (Cr)	ug/L	ND	5.0	ND	ND	5.0	9771756
Dissolved Cobalt (Co)	ug/L	ND	0.50	0.75	0.70	0.50	9771756
Dissolved Copper (Cu)	ug/L	ND	0.90	1.8	1.8	0.90	9771756
Dissolved Lead (Pb)	ug/L	ND	0.50	ND	ND	0.50	9771756
Dissolved Molybdenum (Mo)	ug/L	13	0.50	7.9	7.9	0.50	9771756
Dissolved Nickel (Ni)	ug/L	ND	1.0	4.0	3.9	1.0	9771756
Dissolved Selenium (Se)	ug/L	ND	2.0	ND	ND	2.0	9771756
Dissolved Silver (Ag)	ug/L	ND	0.090	ND	ND	0.090	9771756
Dissolved Sodium (Na)	ug/L	29000	100	1400000	1400000	500	9771756
Dissolved Thallium (TI)	ug/L	ND	0.050	ND	ND	0.050	9771756
Dissolved Uranium (U)	ug/L	2.6	0.10	3.9	3.9	0.10	9771756
Dissolved Vanadium (V)	ug/L	0.77	0.50	1.4	1.7	0.50	9771756
Dissolved Zinc (Zn)	ug/L	ND	5.0	ND	ND	5.0	9771756

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

(1) Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		AIUW65		AIUW66	AIUW67		
Sampling Date		2024/11/13 12:10		2024/11/13 14:45	2024/11/13		
COC Number		C#1022820-01-01		C#1022820-01-01	C#1022820-01-01		
	UNITS	BH1-24-GW1	QC Batch	BH2-24-GW1	DUP-11/13	RDL	QC Batch
Calculated Parameters							
Methylnaphthalene, 2-(1-)	ug/L	0.23	9768381	ND	ND	0.071	9768381
Polyaromatic Hydrocarbons							
Acenaphthene	ug/L	ND	9774687	ND	ND	0.050	9772139
Acenaphthylene	ug/L	ND	9774687	ND	ND	0.050	9772139
Anthracene	ug/L	ND	9774687	ND	ND	0.050	9772139
Benzo(a)anthracene	ug/L	ND	9774687	ND	ND	0.050	9772139
Benzo(a)pyrene	ug/L	ND	9774687	ND	ND	0.0090	9772139
Benzo(b/j)fluoranthene	ug/L	ND	9774687	ND	ND	0.050	9772139
Benzo(g,h,i)perylene	ug/L	ND	9774687	ND	ND	0.050	9772139
Benzo(k)fluoranthene	ug/L	ND	9774687	ND	ND	0.050	9772139
Chrysene	ug/L	ND	9774687	ND	ND	0.050	9772139
Dibenzo(a,h)anthracene	ug/L	ND	9774687	ND	ND	0.050	9772139
Fluoranthene	ug/L	ND	9774687	ND	ND	0.050	9772139
Fluorene	ug/L	ND	9774687	ND	ND	0.050	9772139
Indeno(1,2,3-cd)pyrene	ug/L	ND	9774687	ND	ND	0.050	9772139
1-Methylnaphthalene	ug/L	0.076	9774687	ND	ND	0.050	9772139
2-Methylnaphthalene	ug/L	0.16	9774687	ND	ND	0.050	9772139
Naphthalene	ug/L	0.14	9774687	ND	0.051	0.050	9772139
Phenanthrene	ug/L	ND	9774687	ND	ND	0.030	9772139
Pyrene	ug/L	ND	9774687	ND	ND	0.050	9772139
Surrogate Recovery (%)							
D10-Anthracene	%	96	9774687	121	124		9772139
D14-Terphenyl (FS)	%	92	9774687	101	104		9772139
D8-Acenaphthylene	%	89	9774687	97	100		9772139
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Ba	atch						
ND = Not Detected at a conce	entratior	n equal or greater th	nan the ind	icated Detection Lin	nit.		

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID		AIUW64	AIUW65			AIUW66		
Sampling Date		2024/11/13	2024/11/13			2024/11/13		
		11:05	12:10			14:45		
COC Number		C#1022820-01-01	C#1022820-01-01			C#1022820-01-01		
	UNITS	BH1-23-GW2	BH1-24-GW1	RDL	QC Batch	BH2-24-GW1	RDL	QC Batch
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/L	ND	ND	0.50	9768180	ND	0.50	9768180
Volatile Organics								
Acetone (2-Propanone)	ug/L	ND	ND	10	9770542	ND	10	9771763
Benzene	ug/L	ND	ND	0.20	9770542	ND	0.17	9771763
Bromodichloromethane	ug/L	ND	ND	0.50	9770542	ND	0.50	9771763
Bromoform	ug/L	ND	ND	1.0	9770542	ND	1.0	9771763
Bromomethane	ug/L	ND	ND	0.50	9770542	ND	0.50	9771763
Carbon Tetrachloride	ug/L	ND	ND	0.19	9770542	ND	0.20	9771763
Chlorobenzene	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
Chloroform	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
Dibromochloromethane	ug/L	ND	ND	0.50	9770542	ND	0.50	9771763
1,2-Dichlorobenzene	ug/L	ND	ND	0.40	9770542	ND	0.50	9771763
1,3-Dichlorobenzene	ug/L	ND	ND	0.40	9770542	ND	0.50	9771763
1,4-Dichlorobenzene	ug/L	ND	ND	0.40	9770542	ND	0.50	9771763
Dichlorodifluoromethane (FREON 12)	ug/L	ND	ND	1.0	9770542	ND	1.0	9771763
1,1-Dichloroethane	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
1,2-Dichloroethane	ug/L	ND	ND	0.49	9770542	ND	0.50	9771763
1,1-Dichloroethylene	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
cis-1,2-Dichloroethylene	ug/L	ND	ND	0.50	9770542	ND	0.50	9771763
trans-1,2-Dichloroethylene	ug/L	ND	ND	0.50	9770542	ND	0.50	9771763
1,2-Dichloropropane	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
cis-1,3-Dichloropropene	ug/L	ND	ND	0.30	9770542	ND	0.30	9771763
trans-1,3-Dichloropropene	ug/L	ND	ND	0.40	9770542	ND	0.40	9771763
Ethylbenzene	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
Ethylene Dibromide	ug/L	ND	ND	0.19	9770542	ND	0.20	9771763
Hexane	ug/L	ND	ND	1.0	9770542	ND	1.0	9771763
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	2.0	9770542	ND	2.0	9771763
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	10	9770542	ND	10	9771763
Methyl Isobutyl Ketone	ug/L	ND	ND	5.0	9770542	ND	5.0	9771763
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	0.50	9770542	ND	0.50	9771763

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID		AIUW64	AIUW65			AIUW66		
Sampling Data		2024/11/13	2024/11/13			2024/11/13		
		11:05	12:10			14:45		
COC Number		C#1022820-01-01	C#1022820-01-01			C#1022820-01-01		
	UNITS	BH1-23-GW2	BH1-24-GW1	RDL	QC Batch	BH2-24-GW1	RDL	QC Batch
Styrene	ug/L	ND	ND	0.40	9770542	ND	0.50	9771763
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	0.50	9770542	ND	0.50	9771763
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	0.40	9770542	ND	0.50	9771763
Tetrachloroethylene	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
Toluene	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
1,1,1-Trichloroethane	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
1,1,2-Trichloroethane	ug/L	ND	ND	0.40	9770542	ND	0.50	9771763
Trichloroethylene	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
Trichlorofluoromethane (FREON 11)	ug/L	ND	ND	0.50	9770542	ND	0.50	9771763
Vinyl Chloride	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
p+m-Xylene	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
o-Xylene	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
Total Xylenes	ug/L	ND	ND	0.20	9770542	ND	0.20	9771763
F1 (C6-C10)	ug/L					ND	25	9771763
F1 (C6-C10) - BTEX	ug/L					ND	25	9771763
Surrogate Recovery (%)								
4-Bromofluorobenzene	%					96		9771763
D4-1,2-Dichloroethane	%					115		9771763
D8-Toluene	%					92		9771763
4-Bromofluorobenzene	%	101	103		9770542			
D4-1,2-Dichloroethane	%	106	108		9770542			
D8-Toluene	%	91	91		9770542			
RDL = Reportable Detection Limit								

QC Batch = Quality Control Batch

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID		AIUW67			AIUW68		
Sampling Date		2024/11/13			2024/11/13		
COC Number		C#1022820-01-01			C#1022820-01-01		
	UNITS	DUP-11/13	RDL	QC Batch	TRIP BLANK	RDL	QC Batch
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/L	ND	0.50	9768180	ND	0.50	9768180
Volatile Organics							
Acetone (2-Propanone)	ug/L	ND	10	9771763	ND	10	9770542
Benzene	ug/L	ND	0.17	9771763	ND	0.20	9770542
Bromodichloromethane	ug/L	ND	0.50	9771763	ND	0.50	9770542
Bromoform	ug/L	ND	1.0	9771763	ND	1.0	9770542
Bromomethane	ug/L	ND	0.50	9771763	ND	0.50	9770542
Carbon Tetrachloride	ug/L	ND	0.20	9771763	ND	0.19	9770542
Chlorobenzene	ug/L	ND	0.20	9771763	ND	0.20	9770542
Chloroform	ug/L	ND	0.20	9771763	ND	0.20	9770542
Dibromochloromethane	ug/L	ND	0.50	9771763	ND	0.50	9770542
1,2-Dichlorobenzene	ug/L	ND	0.50	9771763	ND	0.40	9770542
1,3-Dichlorobenzene	ug/L	ND	0.50	9771763	ND	0.40	9770542
1,4-Dichlorobenzene	ug/L	ND	0.50	9771763	ND	0.40	9770542
Dichlorodifluoromethane (FREON 12)	ug/L	ND	1.0	9771763	ND	1.0	9770542
1,1-Dichloroethane	ug/L	ND	0.20	9771763	ND	0.20	9770542
1,2-Dichloroethane	ug/L	ND	0.50	9771763	ND	0.49	9770542
1,1-Dichloroethylene	ug/L	ND	0.20	9771763	ND	0.20	9770542
cis-1,2-Dichloroethylene	ug/L	ND	0.50	9771763	ND	0.50	9770542
trans-1,2-Dichloroethylene	ug/L	ND	0.50	9771763	ND	0.50	9770542
1,2-Dichloropropane	ug/L	ND	0.20	9771763	ND	0.20	9770542
cis-1,3-Dichloropropene	ug/L	ND	0.30	9771763	ND	0.30	9770542
trans-1,3-Dichloropropene	ug/L	ND	0.40	9771763	ND	0.40	9770542
Ethylbenzene	ug/L	ND	0.20	9771763	ND	0.20	9770542
Ethylene Dibromide	ug/L	ND	0.20	9771763	ND	0.19	9770542
Hexane	ug/L	ND	1.0	9771763	ND	1.0	9770542
Methylene Chloride(Dichloromethane)	ug/L	ND	2.0	9771763	ND	2.0	9770542
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	10	9771763	ND	10	9770542
Methyl Isobutyl Ketone	ug/L	ND	5.0	9771763	ND	5.0	9770542
Methyl t-butyl ether (MTBE)	ug/L	ND	0.50	9771763	ND	0.50	9770542

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID		AIUW67			AIUW68		
Sampling Date		2024/11/13			2024/11/13		
COC Number		C#1022820-01-01			C#1022820-01-01		
	UNITS	DUP-11/13	RDL	QC Batch	TRIP BLANK	RDL	QC Batch
Styrene	ug/L	ND	0.50	9771763	ND	0.40	9770542
1,1,1,2-Tetrachloroethane	ug/L	ND	0.50	9771763	ND	0.50	9770542
1,1,2,2-Tetrachloroethane	ug/L	ND	0.50	9771763	ND	0.40	9770542
Tetrachloroethylene	ug/L	ND	0.20	9771763	ND	0.20	9770542
Toluene	ug/L	ND	0.20	9771763	ND	0.20	9770542
1,1,1-Trichloroethane	ug/L	ND	0.20	9771763	ND	0.20	9770542
1,1,2-Trichloroethane	ug/L	ND	0.50	9771763	ND	0.40	9770542
Trichloroethylene	ug/L	ND	0.20	9771763	ND	0.20	9770542
Trichlorofluoromethane (FREON 11)	ug/L	ND	0.50	9771763	ND	0.50	9770542
Vinyl Chloride	ug/L	ND	0.20	9771763	ND	0.20	9770542
p+m-Xylene	ug/L	ND	0.20	9771763	ND	0.20	9770542
o-Xylene	ug/L	ND	0.20	9771763	ND	0.20	9770542
Total Xylenes	ug/L	ND	0.20	9771763	ND	0.20	9770542
F1 (C6-C10)	ug/L	ND	25	9771763			
F1 (C6-C10) - BTEX	ug/L	ND	25	9771763			
Surrogate Recovery (%)							
4-Bromofluorobenzene	%	94		9771763			
D4-1,2-Dichloroethane	%	116		9771763			
D8-Toluene	%	92		9771763			
4-Bromofluorobenzene	%				98		9770542
D4-1,2-Dichloroethane	%				108		9770542
D8-Toluene	%				91		9770542
RDL = Reportable Detection Limit	•	•			•		

QC Batch = Quality Control Batch

PETROLEUM HYDROCARBONS (CCME)

Bureau Veritas ID		AIUW66	AIUW67							
Sampling Date		2024/11/13 14:45	2024/11/13							
COC Number		C#1022820-01-01	C#1022820-01-01							
	UNITS	BH2-24-GW1	DUP-11/13	RDL	QC Batch					
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	ND	ND	90	9772141					
F3 (C16-C34 Hydrocarbons)	ug/L	ND	ND	200	9772141					
F4 (C34-C50 Hydrocarbons)	ug/L	ND	ND	200	9772141					
Reached Baseline at C50	ug/L	Yes	Yes		9772141					
Surrogate Recovery (%)										
o-Terphenyl	%	101	103		9772141					
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.										

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9768861	ΠH	Matrix Spike	WAD Cyanide (Free)	2024/11/16		106	%	80 - 120
9768861	ΠH	Spiked Blank	WAD Cyanide (Free)	2024/11/16		106	%	80 - 120
9768861	ΠH	Method Blank	WAD Cyanide (Free)	2024/11/16	ND,RDL=1		ug/L	
9768861	ΠH	RPD	WAD Cyanide (Free)	2024/11/16	NC		%	20
9770542	MS4	Matrix Spike	4-Bromofluorobenzene	2024/11/18		96	%	70 - 130
			D4-1,2-Dichloroethane	2024/11/18		101	%	70 - 130
			D8-Toluene	2024/11/18		101	%	70 - 130
			Acetone (2-Propanone)	2024/11/18		98	%	60 - 140
			Benzene	2024/11/18		102	%	70 - 130
			Bromodichloromethane	2024/11/18		98	%	70 - 130
			Bromoform	2024/11/18		96	%	70 - 130
			Bromomethane	2024/11/18		86	%	60 - 140
			Carbon Tetrachloride	2024/11/18		104	%	70 - 130
			Chlorobenzene	2024/11/18		93	%	70 - 130
			Chloroform	2024/11/18		99	%	70 - 130
			Dibromochloromethane	2024/11/18		105	%	70 - 130
			1,2-Dichlorobenzene	2024/11/18		103	%	70 - 130
			1,3-Dichlorobenzene	2024/11/18		106	%	70 - 130
			1,4-Dichlorobenzene	2024/11/18		99	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2024/11/18		85	%	60 - 140
			1,1-Dichloroethane	2024/11/18		96	%	70 - 130
			1,2-Dichloroethane	2024/11/18		104	%	70 - 130
			1,1-Dichloroethylene	2024/11/18		102	%	70 - 130
			cis-1.2-Dichloroethylene	2024/11/18		106	%	70 - 130
			trans-1,2-Dichloroethylene	2024/11/18		107	%	70 - 130
			1.2-Dichloropropane	2024/11/18		101	%	70 - 130
			cis-1.3-Dichloropropene	2024/11/18		101	%	70 - 130
			trans-1.3-Dichloropropene	2024/11/18		113	%	70 - 130
			Ethylbenzene	2024/11/18		100	%	70 - 130
			Ethylene Dibromide	2024/11/18		101	%	70 - 130
			Hexane	2024/11/18		116	%	70 - 130
			Methylene Chloride(Dichloromethane)	2024/11/18		99	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/18		108	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/18		109	%	70 - 130
			Methyl t-butyl ether (MTBF)	2024/11/18		99	%	70 - 130
			Styrene	2024/11/18		106	%	70 - 130
			1 1 1 2-Tetrachloroethane	2024/11/18		106	%	70 - 130
			1 1 2 2-Tetrachloroethane	2024/11/18		90	%	70 - 130
			Tetrachloroethylene	2024/11/18		100	%	70 - 130
			Toluene	2024/11/18		101	%	70 - 130
			1 1 1-Trichloroethane	2024/11/18		97	%	70 - 130
			1 1 2-Trichloroethane	2024/11/18		107	%	70 - 130
			Trichloroethylene	2024/11/18		107	%	70 - 130
			Trichlorofluoromethane (EREON 11)	2024/11/18		96	70 0/	70 - 130
			Vinyl Chloride	2024/11/18		90	70 0/	70 - 130
			n+m-Xvlene	2024/11/10		54 101	/0 %	70 - 130
			o-Xvlene	2024/11/10		107	/0 0/_	70 - 130
9770540	MC1	Sniked Blank	4-Rromofluorobenzene	2024/11/10		101	70 0/	70 - 130
5770542	17134	Shiven pique	DA-1 2-Dichlorocthana	2024/11/10		101	/0 0/	70 - 130
				2024/11/10 2021/11/10		101	70 0/	70 - 130
			Acatona (2-Pronanana)	2024/11/10		101	/0 0/	60 140
			Acetone (2-Propanone)	2024/11/18		9/ 104	70 0/	70 120
			Denzenie Dremo diekterens attanta	2024/11/18		104	% 0/	70 - 130
1			Bromodichloromethane	2024/11/18		99	%	70 - 130

Page 12 of 26

QA/QC Batch	Init	OC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	0C imits
Daten	iiiit	de type	Bromoform	2024/11/18	Value	102	%	70 - 130
			Bromomethane	2024/11/18		84	%	60 - 140
			Carbon Tetrachloride	2024/11/18		107	%	70 - 130
			Chlorobenzene	2024/11/18		94	%	70 - 130
			Chloroform	2024/11/18		101	%	70 - 130
			Dibromochloromethane	2024/11/18		100	%	70 - 130
			1.2-Dichlorobenzene	2024/11/18		103	%	70 - 130
			1.3-Dichlorobenzene	2024/11/18		105	%	70 - 130
			1,4-Dichlorobenzene	2024/11/18		100	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2024/11/18		87	%	60 - 140
			1,1-Dichloroethane	2024/11/18		98	%	70 - 130
			1,2-Dichloroethane	2024/11/18		104	%	70 - 130
			1,1-Dichloroethylene	2024/11/18		105	%	70 - 130
			cis-1,2-Dichloroethylene	2024/11/18		108	%	70 - 130
			trans-1,2-Dichloroethylene	2024/11/18		110	%	70 - 130
			1,2-Dichloropropane	2024/11/18		102	%	70 - 130
			cis-1,3-Dichloropropene	2024/11/18		98	%	70 - 130
			trans-1,3-Dichloropropene	2024/11/18		105	%	70 - 130
			Ethylbenzene	2024/11/18		101	%	70 - 130
			Ethylene Dibromide	2024/11/18		96	%	70 - 130
			Hexane	2024/11/18		119	%	70 - 130
			Methylene Chloride(Dichloromethane)	2024/11/18		101	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/18		107	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/18		110	%	70 - 130
			Methyl t-butyl ether (MTBE)	2024/11/18		104	%	70 - 130
			Styrene	2024/11/18		107	%	70 - 130
			1,1,1,2-Tetrachloroethane	2024/11/18		107	%	70 - 130
			1,1,2,2-Tetrachloroethane	2024/11/18		90	%	70 - 130
			Tetrachloroethylene	2024/11/18		98	%	70 - 130
			Toluene	2024/11/18		102	%	70 - 130
			1,1,1-Trichloroethane	2024/11/18		100	%	70 - 130
			1,1,2-Trichloroethane	2024/11/18		106	%	70 - 130
			Trichloroethylene	2024/11/18		105	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2024/11/18		99	%	70 - 130
			Vinyl Chloride	2024/11/18		96	%	70 - 130
			p+m-Xylene	2024/11/18		103	%	70 - 130
			o-Xylene	2024/11/18		111	%	70 - 130
9770542	MS4	Method Blank	4-Bromofluorobenzene	2024/11/18		103	%	70 - 130
			D4-1,2-Dichloroethane	2024/11/18		104	%	70 - 130
			D8-Toluene	2024/11/18		95	%	70 - 130
			Acetone (2-Propanone)	2024/11/18	ND, RDL=10		ug/L	
			Benzene	2024/11/18	ND, RDL=0.20		ug/L	
			Bromodichloromethane	2024/11/18	ND, RDL=0.50		ug/L	
			Bromoform	2024/11/18	ND, RDL=1.0		ug/L	
			Bromomethane	2024/11/18	ND, RDL=0.50		ug/L	
			Carbon Tetrachloride	2024/11/18	ND, RDL=0.19		ug/L	

QA/QC						_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Chlorobenzene	2024/11/18	ND, RDL=0.20		ug/L	
			Chloroform	2024/11/18	ND, RDL=0.20		ug/L	
			Dibromochloromethane	2024/11/18	ND, RDL=0.50		ug/L	
			1,2-Dichlorobenzene	2024/11/18	ND, RDL=0.40		ug/L	
			1,3-Dichlorobenzene	2024/11/18	ND, RDI =0.40		ug/L	
			1,4-Dichlorobenzene	2024/11/18	ND, RDI =0.40		ug/L	
			Dichlorodifluoromethane (FREON 12)	2024/11/18	ND, RDI =1.0		ug/L	
			1,1-Dichloroethane	2024/11/18	ND, RDI =0.20		ug/L	
			1,2-Dichloroethane	2024/11/18	ND, RDI =0.49		ug/L	
			1,1-Dichloroethylene	2024/11/18	ND, RDL=0.20		ug/L	
			cis-1,2-Dichloroethylene	2024/11/18	ND, RDL=0.50		ug/L	
			trans-1,2-Dichloroethylene	2024/11/18	ND, RDL=0.50		ug/L	
			1,2-Dichloropropane	2024/11/18	ND, RDL=0.20		ug/L	
			cis-1,3-Dichloropropene	2024/11/18	ND, RDL=0.30		ug/L	
			trans-1,3-Dichloropropene	2024/11/18	ND, RDL=0.40		ug/L	
			Ethylbenzene	2024/11/18	ND, RDL=0.20		ug/L	
			Ethylene Dibromide	2024/11/18	ND, RDL=0.19		ug/L	
			Hexane	2024/11/18	ND, RDL=1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2024/11/18	ND, RDL=2.0		ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2024/11/18	ND, RDL=10		ug/L	
			Methyl Isobutyl Ketone	2024/11/18	ND, RDL=5.0		ug/L	
			Methyl t-butyl ether (MTBE)	2024/11/18	ND, RDL=0.50		ug/L	
			Styrene	2024/11/18	ND, RDL=0.40		ug/L	
			1,1,1,2-Tetrachloroethane	2024/11/18	ND, RDL=0.50		ug/L	
			1,1,2,2-Tetrachloroethane	2024/11/18	ND, RDL=0.40		ug/L	
			Tetrachloroethylene	2024/11/18	ND, RDL=0.20		ug/L	
			Toluene	2024/11/18	ND, RDL=0.20		ug/L	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,1,1-Trichloroethane	2024/11/18	ND, RDL=0.20		ug/L	
			1,1,2-Trichloroethane	2024/11/18	ND, RDL=0.40		ug/L	
			Trichloroethylene	2024/11/18	ND, RDL=0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2024/11/18	ND, RDL=0.50		ug/L	
			Vinyl Chloride	2024/11/18	ND, RDL=0.20		ug/L	
			p+m-Xylene	2024/11/18	ND, RDL=0.20		ug/L	
			o-Xylene	2024/11/18	ND, RDL=0.20		ug/L	
			Total Xylenes	2024/11/18	ND, RDL=0.20		ug/L	
9770542	MS4	RPD	Chloroform	2024/11/18	3.0		%	30
			Toluene	2024/11/18	NC		%	30
9770979	ADB	Matrix Spike	Dissolved Chloride (Cl-)	2024/11/19		NC	%	80 - 120
9770979	ADB	Spiked Blank	Dissolved Chloride (Cl-)	2024/11/19		100	%	80 - 120
9770979	ADB	Method Blank	Dissolved Chloride (Cl-)	2024/11/19	ND,		mg/L	
					RDL=1.0			
9770979	ADB	RPD	Dissolved Chloride (Cl-)	2024/11/19	0.57		%	20
9771756	GR1	Matrix Spike	Dissolved Antimony (Sb)	2024/11/18		101	%	80 - 120
			Dissolved Arsenic (As)	2024/11/18		98	%	80 - 120
			Dissolved Barium (Ba)	2024/11/18		97	%	80 - 120
			Dissolved Beryllium (Be)	2024/11/18		98	%	80 - 120
			Dissolved Boron (B)	2024/11/18		95	%	80 - 120
			Dissolved Cadmium (Cd)	2024/11/18		97	%	80 - 120
			Dissolved Chromium (Cr)	2024/11/18		97	%	80 - 120
			Dissolved Cobalt (Co)	2024/11/18		95	%	80 - 120
			Dissolved Copper (Cu)	2024/11/18		95	%	80 - 120
			Dissolved Lead (Pb)	2024/11/18		98	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/11/18		98	%	80 - 120
			Dissolved Nickel (Ni)	2024/11/18		95	%	80 - 120
			Dissolved Selenium (Se)	2024/11/18		98	%	80 - 120
			Dissolved Silver (Ag)	2024/11/18		96	%	80 - 120
			Dissolved Sodium (Na)	2024/11/18		96	%	80 - 120
			Dissolved Thallium (TI)	2024/11/18		103	%	80 - 120
			Dissolved Uranium (U)	2024/11/18		103	%	80 - 120
			Dissolved Vanadium (V)	2024/11/18		97	%	80 - 120
			Dissolved Zinc (Zn)	2024/11/18		98	%	80 - 120
9771756	GR1	Spiked Blank	Dissolved Antimony (Sb)	2024/11/18		99	%	80 - 120
			Dissolved Arsenic (As)	2024/11/18		98	%	80 - 120
			Dissolved Barium (Ba)	2024/11/18		97	%	80 - 120
			Dissolved Beryllium (Be)	2024/11/18		97	%	80 - 120
			Dissolved Boron (B)	2024/11/18		94	%	80 - 120
			Dissolved Cadmium (Cd)	2024/11/18		95	%	80 - 120
			Dissolved Chromium (Cr)	2024/11/18		96	%	80 - 120
			Dissolved Cobalt (Co)	2024/11/18		94	%	80 - 120
			Dissolved Copper (Cu)	2024/11/18		93	%	80 - 120
			Dissolved Lead (Pb)	2024/11/18		96	%	80 - 120
			Dissolved Molybdenum (Mo)	2024/11/18		96	%	80 - 120

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Nickel (Ni)	2024/11/18		95	%	80 - 120
			Dissolved Selenium (Se)	2024/11/18		97	%	80 - 120
			Dissolved Silver (Ag)	2024/11/18		94	%	80 - 120
			Dissolved Sodium (Na)	2024/11/18		94	%	80 - 120
			Dissolved Thallium (TI)	2024/11/18		100	%	80 - 120
			Dissolved Uranium (U)	2024/11/18		100	%	80 - 120
			Dissolved Vanadium (V)	2024/11/18		96	%	80 - 120
			Dissolved Zinc (Zn)	2024/11/18		98	%	80 - 120
9771756	GR1	Method Blank	Dissolved Antimony (Sb)	2024/11/18	ND, RDL=0.50		ug/L	
			Dissolved Arsenic (As)	2024/11/18	ND, RDL=1.0		ug/L	
			Dissolved Barium (Ba)	2024/11/18	ND, RDL=2.0		ug/L	
			Dissolved Beryllium (Be)	2024/11/18	ND, RDL=0.40		ug/L	
			Dissolved Boron (B)	2024/11/18	ND, RDL=10		ug/L	
			Dissolved Cadmium (Cd)	2024/11/18	ND, RDL=0.090		ug/L	
			Dissolved Chromium (Cr)	2024/11/18	ND, RDL=5.0		ug/L	
			Dissolved Cobalt (Co)	2024/11/18	ND, RDL=0.50		ug/L	
			Dissolved Copper (Cu)	2024/11/18	ND, RDL=0.90		ug/L	
			Dissolved Lead (Pb)	2024/11/18	ND, RDL=0.50		ug/L	
			Dissolved Molybdenum (Mo)	2024/11/18	ND, RDL=0.50		ug/L	
			Dissolved Nickel (Ni)	2024/11/18	ND, RDL=1.0		ug/L	
			Dissolved Selenium (Se)	2024/11/18	ND, RDL=2.0		ug/L	
			Dissolved Silver (Ag)	2024/11/18	ND, RDL=0.090		ug/L	
			Dissolved Sodium (Na)	2024/11/18	ND, RDL=100		ug/L	
			Dissolved Thallium (TI)	2024/11/18	ND, RDL=0.050		ug/L	
			Dissolved Uranium (U)	2024/11/18	ND, RDL=0.10		ug/L	
			Dissolved Vanadium (V)	2024/11/18	ND, RDL=0.50		ug/L	
			Dissolved Zinc (Zn)	2024/11/18	ND, RDL=5.0		ug/L	
9771756	GR1	RPD	Dissolved Antimony (Sb)	2024/11/19	NC		%	20
			Dissolved Arsenic (As)	2024/11/19	NC		%	20
			Dissolved Barium (Ba)	2024/11/19	NC		%	20
			Dissolved Beryllium (Be)	2024/11/19	NC		%	20
			Dissolved Boron (B)	2024/11/19	NC		%	20
			Dissolved Cadmium (Cd)	2024/11/19	NC		%	20
			Dissolved Chromium (Cr)	2024/11/19	NC		%	20
			Dissolved Cobalt (Co)	2024/11/19	NC		%	20

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	lni+		Parameter	Date Analyzed	\/alue	Recovery	ΙΙΝΙΤΟ	OC Limite
Datti	niit	QC TYPE	Dissolved Conner (Cu)	2024/11/10	NC	Necovery	%	20
			Dissolved Lead (Ph)	2027/11/10	NC		20 0/	20
			Dissolved Molybdenum (Mo)	2024/11/19	NC		%	20
			Dissolved Nickel (Ni)	2024/11/19	NC		%	20
			Dissolved Selenium (Se)	2024/11/19	NC		%	20
			Dissolved Silver (Ag)	2024/11/19	NC		%	20
			Dissolved Sodium (Na)	2024/11/19	NC		%	20
			Dissolved Vanadium (V)	2024/11/19	NC		%	20
			Dissolved Vanadidin (V)	2027/11/19	NC		%	20
9771763	DW5	Matrix Snike	4-Bromofluorobenzene	2024/11/19	inc.	102	%	20 70 - 130
5,,1,05	5445	opike	D4-1.2-Dichloroethane	2024/11/19		107	%	70 - 130
			D8-Toluene	2024/11/19		104	%	70 - 130
			Acetone (2-Propanone)	2024/11/19		103	%	60 - 140
			Benzene	2024/11/19		98	%	70 - 130
			Bromodichloromethane	2024/11/19		100	%	70 - 130
			Bromoform	2024/11/19		101	%	70 - 130
			Bromomethane	2024/11/19		82	%	60 - 140
			Carbon Tetrachloride	2024/11/19		104	%	70 - 130
			Chlorobenzene	2024/11/19		91	%	70 - 130
			Chloroform	2024/11/19		101	%	70 - 130
			Dibromochloromethane	2024/11/19		105	%	70 - 130
			1,2-Dichlorobenzene	2024/11/19		98	%	70 - 130
			1,3-Dichlorobenzene	2024/11/19		96	%	70 - 130
			1,4-Dichlorobenzene	2024/11/19		97	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2024/11/19		79	%	60 - 140
			1,1-Dichloroethane	2024/11/19		97	%	70 - 130
			1,2-Dichloroethane	2024/11/19		108	%	70 - 130
			1,1-Dichloroethylene	2024/11/19		101	%	70 - 130
			cis-1,2-Dichloroethylene	2024/11/19		106	%	70 - 130
			trans-1,2-Dichloroethylene	2024/11/19		103	%	70 - 130
			1,2-Dichloropropane	2024/11/19		101	%	70 - 130
			cis-1,3-Dichloropropene	2024/11/19		88	%	70 - 130
			trans-1,3-Dichloropropene	2024/11/19		99	%	70 - 130
			Ethylbenzene	2024/11/19		93	%	70 - 130
			Ethylene Dibromide	2024/11/19		100	%	70 - 130
			Hexane	2024/11/19		115	%	70 - 130
			Methylene Chloride(Dichloromethane)	2024/11/19		100	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/19		102	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/19		103	%	70 - 130
			Methyl t-butyl ether (MTBE)	2024/11/19		98	%	70 - 130
			Styrene	2024/11/19		99	%	70 - 130
			1,1,1,2-letrachloroethane	2024/11/19		107	%	/0 - 130
			1,1,2,2-i etrachloroethane	2024/11/19		95	%	/0 - 130
			i etrachioroethylene	2024/11/19		94	%	70 - 130
			I oluene	2024/11/19		97	% 0/	70 - 130
				2024/11/19		98 104	% 0/	70 - 130
				2024/11/19		104 00	70 0/	70 - 130 70 - 130
			Trichlorofluoromethane (EREON 11)	2024/11/19		99	70 0/	70 - 130 70 - 120
			Vinvl Chloride	2024/11/19		90 97	/0 %	70 - 130
			n+m-Xvlene	2027/11/19		92	/0 %	70 - 130
			o-Xvlene	2024/11/19		104	%	70 - 130
			F1 (C6-C10)	2024/11/19		03 704	%	60 - 140
				2027/11/13		33	70	00-140

Page 17 of 26

QA/QC Batch	Init		Parameter	Date Analyzed	Value	Recovery		OC Limits
9771763	DW/5	Sniked Blank	4-Bromofluorobenzene	2024/11/19	Value	101	%	70 - 130
5771705	5115	opined blank	D4-1 2-Dichloroethane	2021/11/19		101	%	70 - 130
			D8-Toluene	2024/11/19		110	%	70 - 130
			Acetone (2-Pronanone)	2024/11/19		96	%	60 - 140
			Benzene	2024/11/19		98	%	70 - 130
			Bromodichloromethane	2024/11/19		98	%	70 - 130
			Bromoform	2024/11/19		102	70 0/	70 - 130
			Bromomethane	2024/11/19		105	/0	70 - 130 60 - 140
			Bromoniethane Carbon Tetrachlorido	2024/11/19		01 105	70 0/	00 - 140 70 120
			Chlorohonzono	2024/11/19		105	/0	70 - 130
			Chloroform	2024/11/19		91	70	70 - 130
			Chloroform	2024/11/19		99	%	70 - 130
			Dibromocniorometnane	2024/11/19		104	%	70 - 130
			1,2-Dichlorobenzene	2024/11/19		99	%	70 - 130
			1,3-Dichlorobenzene	2024/11/19		97	%	70 - 130
			1,4-Dichlorobenzene	2024/11/19		99	%	/0 - 130
			Dichlorodifluoromethane (FREON 12)	2024/11/19		80	%	60 - 140
			1,1-Dichloroethane	2024/11/19		96	%	/0 - 130
			1,2-Dichloroethane	2024/11/19		104	%	70 - 130
			1,1-Dichloroethylene	2024/11/19		101	%	70 - 130
			cis-1,2-Dichloroethylene	2024/11/19		104	%	70 - 130
			trans-1,2-Dichloroethylene	2024/11/19		103	%	70 - 130
			1,2-Dichloropropane	2024/11/19		99	%	70 - 130
			cis-1,3-Dichloropropene	2024/11/19		89	%	70 - 130
			trans-1,3-Dichloropropene	2024/11/19		104	%	70 - 130
			Ethylbenzene	2024/11/19		96	%	70 - 130
			Ethylene Dibromide	2024/11/19		99	%	70 - 130
			Hexane	2024/11/19		115	%	70 - 130
			Methylene Chloride(Dichloromethane)	2024/11/19		97	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/19		96	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/19		99	%	70 - 130
			Methyl t-butyl ether (MTBE)	2024/11/19		96	%	70 - 130
			Styrene	2024/11/19		100	%	70 - 130
			1,1,1,2-Tetrachloroethane	2024/11/19		107	%	70 - 130
			1,1,2,2-Tetrachloroethane	2024/11/19		91	%	70 - 130
			Tetrachloroethylene	2024/11/19		99	%	70 - 130
			Toluene	2024/11/19		100	%	70 - 130
			1,1,1-Trichloroethane	2024/11/19		99	%	70 - 130
			1,1,2-Trichloroethane	2024/11/19		105	%	70 - 130
			Trichloroethylene	2024/11/19		99	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2024/11/19		98	%	70 - 130
			Vinyl Chloride	2024/11/19		91	%	70 - 130
			p+m-Xylene	2024/11/19		96	%	70 - 130
			o-Xylene	2024/11/19		108	%	70 - 130
			F1 (C6-C10)	2024/11/19		94	%	60 - 140
9771763	DW5	Method Blank	4-Bromofluorobenzene	2024/11/19		96	%	70 - 130
			D4-1,2-Dichloroethane	2024/11/19		112	%	70 - 130
			D8-Toluene	2024/11/19		92	%	70 - 130
			Acetone (2-Propanone)	2024/11/19	ND,		ug/L	
					RDL=10		., ,	
			Benzene	2024/11/19	ND, RDL=0.17		ug/L	
			Bromodichloromethane	2024/11/19	ND, RDL=0.50		ug/L	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Bromoform	2024/11/19	ND, RDL=1.0		ug/L	
			Bromomethane	2024/11/19	ND, RDL=0.50		ug/L	
			Carbon Tetrachloride	2024/11/19	ND, RDL=0.20		ug/L	
			Chlorobenzene	2024/11/19	ND, RDL=0.20		ug/L	
			Chloroform	2024/11/19	ND, RDL=0.20		ug/L	
			Dibromochloromethane	2024/11/19	ND, BDI =0.50		ug/L	
			1,2-Dichlorobenzene	2024/11/19	ND, RDI =0.50		ug/L	
			1,3-Dichlorobenzene	2024/11/19	ND, RDL=0.50		ug/L	
			1,4-Dichlorobenzene	2024/11/19	ND, RDL=0.50		ug/L	
			Dichlorodifluoromethane (FREON 12)	2024/11/19	ND, RDL=1.0		ug/L	
			1,1-Dichloroethane	2024/11/19	ND, RDL=0.20		ug/L	
			1,2-Dichloroethane	2024/11/19	ND, RDL=0.50		ug/L	
			1,1-Dichloroethylene	2024/11/19	ND, RDL=0.20		ug/L	
			cis-1,2-Dichloroethylene	2024/11/19	ND, RDL=0.50		ug/L	
			trans-1,2-Dichloroethylene	2024/11/19	ND, RDL=0.50		ug/L	
			1,2-Dichloropropane	2024/11/19	ND, RDL=0.20		ug/L	
			cis-1,3-Dichloropropene	2024/11/19	ND, RDL=0.30		ug/L	
			trans-1,3-Dichloropropene	2024/11/19	ND, RDL=0.40		ug/L	
			Ethylbenzene	2024/11/19	ND, RDL=0.20		ug/L	
			Ethylene Dibromide	2024/11/19	ND, RDL=0.20		ug/L	
			Hexane	2024/11/19	ND, RDL=1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2024/11/19	ND, RDL=2.0		ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2024/11/19	ND, RDL=10		ug/L	
			Methyl Isobutyl Ketone	2024/11/19	ND, RDL=5.0		ug/L	
			Methyl t-butyl ether (MTBE)	2024/11/19	ND, RDL=0.50		ug/L	
			Styrene	2024/11/19	ND, RDL=0.50		ug/L	
			1,1,1,2-Tetrachloroethane	2024/11/19	ND, RDL=0.50		ug/L	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,1,2,2-Tetrachloroethane	2024/11/19	ND, RDL=0.50		ug/L	
			Tetrachloroethylene	2024/11/19	ND, RDL=0.20		ug/L	
			Toluene	2024/11/19	ND, RDL=0.20		ug/L	
			1,1,1-Trichloroethane	2024/11/19	ND, RDI =0.20		ug/L	
			1,1,2-Trichloroethane	2024/11/19	ND, RDL=0.50		ug/L	
			Trichloroethylene	2024/11/19	ND, RDI =0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2024/11/19	ND, RDI =0.50		ug/L	
			Vinyl Chloride	2024/11/19	ND, RDL=0.20		ug/L	
			p+m-Xylene	2024/11/19	ND, RDL=0.20		ug/L	
			o-Xylene	2024/11/19	ND, RDL=0.20		ug/L	
			Total Xylenes	2024/11/19	ND, RDL=0.20		ug/L	
			F1 (C6-C10)	2024/11/19	ND, RDL=25		ug/L	
			F1 (C6-C10) - BTEX	2024/11/19	ND, RDL=25		ug/L	
9771763	DW5	RPD	Acetone (2-Propanone)	2024/11/19	NC		%	30
			Benzene	2024/11/19	NC		%	30
			Bromodichloromethane	2024/11/19	NC		%	30
			Bromoform	2024/11/19	NC		%	30
			Bromomethane	2024/11/19	NC		%	30
			Carbon Tetrachloride	2024/11/19	NC		%	30
			Chlorobenzene	2024/11/19	NC		%	30
			Chloroform	2024/11/19	NC		%	30
			Dibromochloromethane	2024/11/19	NC		%	30
			1,2-Dichlorobenzene	2024/11/19	NC		%	30
			1,3-Dichlorobenzene	2024/11/19	NC		%	30
			1,4-Dichlorobenzene	2024/11/19	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2024/11/19	NC		%	30
			1,1-Dichloroethane	2024/11/19	NC		%	30
			1,2-Dichloroethane	2024/11/19	NC		%	30
			1,1-Dichloroethylene	2024/11/19	NC		%	30
			cis-1,2-Dichloroethylene	2024/11/19	NC		%	30
			trans-1,2-Dichloroethylene	2024/11/19	NC		%	30
			1,2-Dichloropropane	2024/11/19	NC		%	30
			cis-1,3-Dichloropropene	2024/11/19	NC		%	30
			trans-1,3-Dichloropropene	2024/11/19	NC		%	30
			Ethylbenzene	2024/11/19	NC		%	30
			Ethylene Dibromide	2024/11/19	NC		%	30
			Hexane	2024/11/19	NC		%	30
			Methylene Chloride(Dichloromethane)	2024/11/19	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2024/11/19	NC		%	30
			Methyl Isobutyl Ketone	2024/11/19	NC		%	30

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Methyl t-butyl ether (MTBE)	2024/11/19	NC	<i>,</i>	%	30
			Styrene	2024/11/19	NC		%	30
			1.1.1.2-Tetrachloroethane	2024/11/19	NC		%	30
			1,1,2,2-Tetrachloroethane	2024/11/19	NC		%	30
			Tetrachloroethylene	2024/11/19	NC		%	30
			Toluene	2024/11/19	NC		%	30
			1,1,1-Trichloroethane	2024/11/19	NC		%	30
			1,1,2-Trichloroethane	2024/11/19	NC		%	30
			Trichloroethylene	2024/11/19	NC		%	30
			Trichlorofluoromethane (FREON 11)	2024/11/19	NC		%	30
			Vinyl Chloride	2024/11/19	NC		%	30
			p+m-Xylene	2024/11/19	NC		%	30
			o-Xylene	2024/11/19	NC		%	30
			Total Xylenes	2024/11/19	NC		%	30
			F1 (C6-C10)	2024/11/19	NC		%	30
			F1 (C6-C10) - BTEX	2024/11/19	NC		%	30
9772139	RAJ	Matrix Spike [AIUW66-06]	D10-Anthracene	2024/11/18		124	%	50 - 130
			D14-Terphenyl (FS)	2024/11/18		108	%	50 - 130
			D8-Acenaphthylene	2024/11/18		104	%	50 - 130
			Acenaphthene	2024/11/18		114	%	50 - 130
			Acenaphthylene	2024/11/18		114	%	50 - 130
			Anthracene	2024/11/18		115	%	50 - 130
			Benzo(a)anthracene	2024/11/18		106	%	50 - 130
			Benzo(a)pyrene	2024/11/18		103	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/18		105	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/18		84	%	50 - 130
			Benzo(k)fluoranthene	2024/11/18		104	%	50 - 130
			Chrysene	2024/11/18		108	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/18		81	%	50 - 130
			Fluoranthene	2024/11/18		113	%	50 - 130
			Fluorene	2024/11/18		109	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/18		84	%	50 - 130
			1-Methylnaphthalene	2024/11/18		105	%	50 - 130
			2-Methylnaphthalene	2024/11/18		103	%	50 - 130
			Naphthalene	2024/11/18		111	%	50 - 130
			Phenanthrene	2024/11/18		120	%	50 - 130
0772120	DAI		Pyrene D10 Anthropped	2024/11/18		115	%	50 - 130
9772139	RAJ	Spiked Віалк	D10-Anthracene	2024/11/18		124	%	50 - 130
			D14-Terphenyi (FS)	2024/11/18		108	%	50 - 130
			D8-Acenaphthylene	2024/11/18		102	%	50 - 130
			Acenaphthene	2024/11/18		107	70 0/	50 - 130 50 - 130
			Anthracene	2024/11/18		110	70 %	50 - 130
			Benzo(a)anthracene	2024/11/18		103	%	50 - 130
			Benzo(a)pyrene	2024/11/18		101	%	50 - 130
			Benzo(b/i)fluoranthene	2024/11/18		103	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/18		86	%	50 - 130
			Benzo(k)fluoranthene	2024/11/18		103	%	50 - 130
			Chrysene	2024/11/18		108	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/18		80	%	50 - 130
			Fluoranthene	2024/11/18		107	%	50 - 130
			Fluorene	2024/11/18		103	%	50 - 130

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recoverv	UNITS	QC Limits
Baton		40 . Jpc	Indeno(1.2.3-cd)pyrene	2024/11/18	10100	85	%	50 - 130
			1-Methylnaphthalene	2024/11/18		99	%	50 - 130
			2-Methylnaphthalene	2024/11/18		98	%	50 - 130
			Naphthalene	2024/11/18		106	%	50 - 130
			Phenanthrene	2024/11/18		115	%	50 - 130
			Pyrene	2024/11/18		109	%	50 - 130
9772139	RAJ	Method Blank	D10-Anthracene	2024/11/18		128	%	50 - 130
			D14-Terphenyl (FS)	2024/11/18		110	%	50 - 130
			D8-Acenaphthylene	2024/11/18		103	%	50 - 130
			Acenaphthene	2024/11/18	ND, RDL=0.050		ug/L	
			Acenaphthylene	2024/11/18	ND, RDL=0.050		ug/L	
			Anthracene	2024/11/18	ND, RDL=0.050		ug/L	
			Benzo(a)anthracene	2024/11/18	ND, RDL=0.050		ug/L	
			Benzo(a)pyrene	2024/11/18	ND, RDL=0.0090		ug/L	
			Benzo(b/j)fluoranthene	2024/11/18	ND, RDL=0.050		ug/L	
			Benzo(g,h,i)perylene	2024/11/18	ND, RDL=0.050		ug/L	
			Benzo(k)fluoranthene	2024/11/18	ND, RDL=0.050		ug/L	
			Chrysene	2024/11/18	ND, RDL=0.050		ug/L	
			Dibenzo(a,h)anthracene	2024/11/18	ND, RDL=0.050		ug/L	
			Fluoranthene	2024/11/18	ND, RDL=0.050		ug/L	
			Fluorene	2024/11/18	ND, RDL=0.050		ug/L	
			Indeno(1,2,3-cd)pyrene	2024/11/18	ND, RDL=0.050		ug/L	
			1-Methylnaphthalene	2024/11/18	ND, RDL=0.050		ug/L	
			2-Methylnaphthalene	2024/11/18	ND, RDL=0.050		ug/L	
			Naphthalene	2024/11/18	ND, RDL=0.050		ug/L	
			Phenanthrene	2024/11/18	ND, RDL=0.030		ug/L	
			Pyrene	2024/11/18	ND, RDL=0.050		ug/L	
9772139	RAJ	RPD [AIUW67-06]	Acenaphthene	2024/11/18	NC		%	30
			Acenaphthylene	2024/11/18	NC		%	30
			Anthracene	2024/11/18	NC		%	30
			Benzo(a)anthracene	2024/11/18	NC		%	30
			Benzo(a)pyrene	2024/11/18	NC		%	30
			Benzo(b/j)fluoranthene	2024/11/18	NC		%	30
			Benzo(g,n,i)perylene	2024/11/18	NC		%	30
			Benzo(K)Tiuoranthene	2024/11/18	NC NC		%	30
1			Chrysene	2024/11/18	NC		%	30

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		**	Dibenzo(a,h)anthracene	2024/11/18	NC	•	%	30
			Fluoranthene	2024/11/18	NC		%	30
			Fluorene	2024/11/18	NC		%	30
			Indeno(1,2,3-cd)pyrene	2024/11/18	NC		%	30
			1-Methylnaphthalene	2024/11/18	NC		%	30
			2-Methylnaphthalene	2024/11/18	11		%	30
			Naphthalene	2024/11/18	24		%	30
			Phenanthrene	2024/11/18	NC		%	30
			Pyrene	2024/11/18	NC		%	30
9772141	MSZ	Matrix Spike	o-Terphenyl	2024/11/19		102	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/19		88	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2024/11/19		94	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2024/11/19		93	%	60 - 140
9772141	MSZ	Spiked Blank	o-Terphenyl	2024/11/19		99	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/19		88	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2024/11/19		95	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2024/11/19		95	%	60 - 140
9772141	MSZ	Method Blank	o-Terphenyl	2024/11/19		100	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2024/11/19	ND, RDL=90		ug/L	
			F3 (C16-C34 Hydrocarbons)	2024/11/19	ND, RDL=200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2024/11/19	ND, RDL=200		ug/L	
9772141	MSZ	RPD [AIUW67-06]	F2 (C10-C16 Hydrocarbons)	2024/11/19	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2024/11/19	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2024/11/19	NC		%	30
9772401	MPJ	Matrix Spike	Mercury (Hg)	2024/11/19		96	%	75 - 125
9772401	MPJ	Spiked Blank	Mercury (Hg)	2024/11/19		99	%	80 - 120
9772401	MPJ	Method Blank	Mercury (Hg)	2024/11/19	ND, RDL=0.10		ug/L	
9772401	MPJ	RPD	Mercury (Hg)	2024/11/19	NC		%	20
9772464	RSU	Matrix Spike	Chromium (VI)	2024/11/18		104	%	80 - 120
9772464	RSU	Spiked Blank	Chromium (VI)	2024/11/18		103	%	80 - 120
9772464	RSU	Method Blank	Chromium (VI)	2024/11/18	ND,		ug/L	
					RDL=0.50			
9772464	RSU	RPD	Chromium (VI)	2024/11/18	NC		%	20
9774687	RAJ	Matrix Spike	D10-Anthracene	2024/11/20		98	%	50 - 130
			D14-Terphenyl (FS)	2024/11/20		101	%	50 - 130
			D8-Acenaphthylene	2024/11/20		85	%	50 - 130
			Acenaphthene	2024/11/20		91	%	50 - 130
			Acenaphthylene	2024/11/20		88	%	50 - 130
			Anthracene	2024/11/20		94	%	50 - 130
			Benzo(a)anthracene	2024/11/20		90	%	50 - 130
			Benzo(a)pyrene	2024/11/20		95	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/20		92	%	50 - 130
			Benzo(g,n,i)perylene	2024/11/20		92	%	50 - 130
			Benzo(K)fluoranthene	2024/11/20		95	%	50 - 130
			Chrysene	2024/11/20		93	%	50 - 130
			Eluoranthono	2024/11/20		8U	% 0/	50 - 130
			Fluoranciene	2024/11/20		207	% 0/	50 - 130
			Indeno(1.2.3-cd)nyrene	2024/11/20		62	/0 0/_	50 - 150 50 <u>-</u> 120
1			indeno(1,2,3-cd)pyrene	2024/11/20		33	/0	- T20

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1-Methylnaphthalene	2024/11/20		96	%	50 - 130
			2-Methylnaphthalene	2024/11/20		94	%	50 - 130
			Naphthalene	2024/11/20		93	%	50 - 130
			Phenanthrene	2024/11/20		94	%	50 - 130
			Pyrene	2024/11/20		103	%	50 - 130
9774687	RAJ	Spiked Blank	D10-Anthracene	2024/11/20		110	%	50 - 130
			D14-Terphenyl (FS)	2024/11/20		118	%	50 - 130
			D8-Acenaphthylene	2024/11/20		91	%	50 - 130
			Acenaphthene	2024/11/20		103	%	50 - 130
			Acenaphthylene	2024/11/20		99	%	50 - 130
			Anthracene	2024/11/20		106	%	50 - 130
			Benzo(a)anthracene	2024/11/20		100	%	50 - 130
			Benzo(a)pyrene	2024/11/20		105	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/20		104	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/20		101	%	50 - 130
			Benzo(k)fluoranthene	2024/11/20		109	%	50 - 130
			Chrysene	2024/11/20		106	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/20		90	%	50 - 130
			Fluoranthene	2024/11/20		119	%	50 - 130
			Fluorene	2024/11/20		100	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/20		101	%	50 - 130
			1-Methylnaphthalene	2024/11/20		108	%	50 - 130
			2-Methylnaphthalene	2024/11/20		106	%	50 - 130
			Naphthalene	2024/11/20		104	%	50 - 130
			Phenanthrene	2024/11/20		106	%	50 - 130
			Pyrene	2024/11/20		117	%	50 - 130
9774687	RAJ	Method Blank	D10-Anthracene	2024/11/20		110	%	50 - 130
			D14-Terphenyl (FS)	2024/11/20		121	%	50 - 130
			D8-Acenaphthylene	2024/11/20		93	%	50 - 130
			Acenaphthene	2024/11/20	ND,		ug/L	
					RDL=0.050		-	
			Acenaphthylene	2024/11/20	ND, RDI =0.050		ug/L	
			Anthracene	2024/11/20	ND		ug/I	
			, men deene	202 1/ 11/ 20	RDL=0.050		06/ L	
			Benzo(a)anthracene	2024/11/20	ND, RDL=0.050		ug/L	
			Benzo(a)pyrene	2024/11/20	ND, RDL=0.0090		ug/L	
			Benzo(b/j)fluoranthene	2024/11/20	ND,		ug/L	
			Benzo(g,h,i)perylene	2024/11/20	ND, RDI =0.050		ug/L	
			Benzo(k)fluoranthene	2024/11/20	ND, RDI =0.050		ug/L	
			Chrysene	2024/11/20	ND, RDI =0.050		ug/L	
			Dibenzo(a,h)anthracene	2024/11/20	ND, RDI =0.050		ug/L	
			Fluoranthene	2024/11/20	ND, RDI =0.050		ug/L	
			Fluorene	2024/11/20	ND, RDL=0.050		ug/L	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Indeno(1,2,3-cd)pyrene	2024/11/20	ND,		ug/L	
					RDL=0.050			
			1-Methylnaphthalene	2024/11/20	ND,		ug/L	
					RDL=0.050			
			2-Methylnaphthalene	2024/11/20	ND,		ug/L	
					RDL=0.050			
			Naphthalene	2024/11/20	ND,		ug/L	
					RDL=0.050			
			Phenanthrene	2024/11/20	ND,		ug/L	
					RDL=0.030			
			Pyrene	2024/11/20	ND,		ug/L	
					RDL=0.050			
9774687	RAJ	RPD	Acenaphthene	2024/11/20	NC		%	30
			Acenaphthylene	2024/11/20	NC		%	30
			Anthracene	2024/11/20	NC		%	30
			Benzo(a)anthracene	2024/11/20	NC		%	30
			Benzo(a)pyrene	2024/11/20	NC		%	30
			Benzo(b/j)fluoranthene	2024/11/20	NC		%	30
			Benzo(g,h,i)perylene	2024/11/20	NC		%	30
			Benzo(k)fluoranthene	2024/11/20	NC		%	30
			Chrysene	2024/11/20	NC		%	30
			Dibenzo(a,h)anthracene	2024/11/20	NC		%	30
			Fluoranthene	2024/11/20	NC		%	30
			Fluorene	2024/11/20	NC		%	30
			Indeno(1,2,3-cd)pyrene	2024/11/20	NC		%	30
			1-Methylnaphthalene	2024/11/20	NC		%	30
			2-Methylnaphthalene	2024/11/20	NC		%	30
			Naphthalene	2024/11/20	NC		%	30
			Phenanthrene	2024/11/20	NC		%	30
			Pyrene	2024/11/20	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C4Z8508]														
2024/11/	13 16:27	Bureau Veritas												:		Page of
BUREAL VERITA	U S	6740 Campobello Road, Mississauga, Ontario (Canada L5N 2L8 Tel:(905) 81	7-5700 Toll-free:800	-563-6266 Fax:(905) 817-5	777 www.t	bvna.com						5 []	学 回	
MACHINER.		INVOICE TO:		REPC	ORT TO:						PROJECT I	NFORMATION:			NONT 2024 44	
Company Nam	ne: #39509 L	opers & Associates	Company Name:						Quotation	#: ·	C43362				NON1-2024-11-2	3ottle Order #:
Attention:	Luke Lope	ers Id Way	Attention: Luke	Lopers					P.O. #:		10024	0250			200	
Address:	Ottawa ON	N K2G 3V8	Address:						Project:		Phone C	7 18	5		COC #:	1022820 Project Manager:
Tel:	(613) 327-	9073Fax:	Tel:		Fax:				Site #:	ine.	214	Sancisci +	-	1		Katharina Casada
Email:	Luke@lope	ers.ca	Email:Luke	@lopers.ca					Sampled E	ly:	Lileg	7553	and the second		C#1022820-01-01	Katherine Szozda
MOE RE	EGULATED DR SUBMITTED	RINKING WATER OR WATER INTENDED FOR D ON THE BUREAU VERITAS DRINKING WAT	HUMAN CONSUMPTIC ER CHAIN OF CUSTOR	N MUST BE				AN	ALYSIS RE	QUESTED (F	PLEASE BE	SPECIFIC)	T	2	Turnaround Time (TAT) F Please provide advance notice for	(equired: or rush projects
Regula	lation 153 (2011)	Other Regulations	Specia	I Instructions	cle):		Pkg	4						Regula	ar (Standard) TAT:	
Table 1	Res/Park	Medium/Fine CCME Sanitary Sewer Byla	w		, ≧ gi		anics	1-1-1						(will be a Standar	applied if Rush TAT is not specified): d TAT = 5-7 Working days for most tests	\mathbf{X}
Table 2	Ind/Comm	Coarse Reg 558. Storm Sewer Bylaw			(plea Ig / C		Inorg	/ HS &	SH					Please r	note: Standard TAT for certain tests such as E	30D and Dioxins/Furans are > 5
Table					sred (Rs	itals &	Cs b)	ICs by					Job Sp	ecific Rush TAT (if applies to entire subr	nission)
		Other			l Filte Metal	53 PA	53 Me	53 VO	53 VO					Date Re	quired:Tir	ne Required:
	include	Criteria on Certificate of Analysis (Y/N)?			Field	Reg 1	Reg 15	Reg 1	Reg 15					Rush Co	ontimation Number:(o	all lab for #)
Sam	nple Barcode Label	I Sample (Location) Identification Da	te Sampled Time Sample	d Matrix		0.1	-O	0.1	0.6					# 01 B00	Comm	ents
1		BH1-23-GW2 No	13/24 11:05AM	1000					×							
2	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	BH1-24-6W1	121 10 PM	GW		×	X		×							
3		BH2-24-6601	2:45PN	I GW		×	×	×	×							
4		DUP-11/13		c-w		×	x	×	×							
5		Trip Blank	\checkmark						×							
6						-										
7																
8																
9															*	
																in Attanta
10	11/	7													Received	I III OFFICIA
1	RELINQUISHED	BY: (Signature/Print) Date: (YY/MM/DI) Time	RECEIVED	BY: (Signature/P	Print)		Date: (YY/	MM/DD)	Tim	e	# jars used and not submitted	T	La	boratory Use Only	
	1	120 120-5	4.2CTM (20	dro da 5	alla 114	20	0 2	02414	1113	16:	27		Time Ser	Temp	Present	3ai Yes No
· UNLESS OTHE	RWISE AGREED TO	O IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CU	STODY IS SUBJECT TO BURE	AU VERITAS'S STAN	DARD TERMS A	ND CONDI	TIONS. SIC	GNING OF	THIS CHAIN	OF CUSTOD	7 DOCUMEN	TIS		-4	Vhite: I	Bureau Veritas Yellow: Client
* IT IS THE RESP	MENT AND ACCEP	TANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEV HE RELINQUISHER TO ENSURE THE ACCURACY OF THE	ING AT WWW.BVNA.COM/EN	VIRONMENTAL-LAB	DRATORIES/RES	OURCES/O	COC-TERM	IS-AND-CO ANALYTIC	NDITIONS.	ays. 2	13/2	SAMPLES	MUST BE K UNTIL	EPT COOL (< 10° DELIVERY TO BU	C) FROM TIME OF SAMPLING IREAU VERITAS	eal Present Intact
** SAMPLE CON	ITAINER, PRESERV	ATION, HOLD TIME AND PACKAGE INFORMATION CAN E	E VIEWED AT WWW.BVNA.CO	M/ENVIRONMENTA	L-LABORATORIE	S/RESOU	RCES/CHA	IN-CUSTO	DY-FORMS-	cocs.			ALL STREET		Copling M	edia Yes No

Bureau Veritas Canada (2019) Inc.

Lopers & Associates Client Project #: LOP24-025C Project name: 214 SOMERSET Client ID: BH2-24-GW1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Lopers & Associates Client Project #: LOP24-025C Project name: 214 SOMERSET Client ID: DUP-11/13

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Lopers & Associates Client Project #: LOP24-025C Project name: 214 SOMERSET Client ID: DUP-11/13

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: LOP24-025C Your C.O.C. #: C#1024572-01-01

Attention: Luke Lopers

Lopers & Associates 30 Lansfield Way Ottawa, ON CANADA K2G 3V8

> Report Date: 2024/12/02 Report #: R8428514 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4AL295 Received: 2024/11/25, 10:30

neccivca. 2024/11/23, 10.

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	1	N/A	2024/11/29	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	1	N/A	2024/11/29		EPA 8260C m
1,3-Dichloropropene Sum (1)	1	N/A	2024/12/02		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	1	2024/11/28	2024/11/29	CAM SOP-00316	CCME PHC-CWS m
PAH Compounds in Water by GC/MS (SIM) (1)	1	2024/11/28	2024/11/29	CAM SOP-00318	EPA 8270E
Volatile Organic Compounds and F1 PHCs (1)	1	N/A	2024/11/29	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water (1)	1	N/A	2024/11/28	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: LOP24-025C Your C.O.C. #: C#1024572-01-01

Attention: Luke Lopers

Lopers & Associates 30 Lansfield Way Ottawa, ON CANADA K2G 3V8

> Report Date: 2024/12/02 Report #: R8428514 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C4AL295 Received: 2024/11/25, 10:30

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Bureau Veritas ID		AJXP76						
Sampling Date		2024/11/24						
oumphing bute		14:50						
COC Number		C#1024572-01-01						
	UNITS	BH3D-24-GW1	RDL	QC Batch				
Calculated Parameters								
Methylnaphthalene, 2-(1-)	ug/L	ND	0.071	9790612				
Polyaromatic Hydrocarbons								
Acenaphthene	ug/L	ND	0.050	9794511				
Acenaphthylene	ug/L	ND	0.050	9794511				
Anthracene	ug/L	ND	0.050	9794511				
Benzo(a)anthracene	ug/L	ND	0.050	9794511				
Benzo(a)pyrene	ug/L	ND	0.0090	9794511				
Benzo(b/j)fluoranthene	ug/L	ND	0.050	9794511				
Benzo(g,h,i)perylene	ug/L	ND	0.050	9794511				
Benzo(k)fluoranthene	ug/L	ND	0.050	9794511				
Chrysene	ug/L	ND	0.050	9794511				
Dibenzo(a,h)anthracene	ug/L	ND	0.050	9794511				
Fluoranthene	ug/L	ND	0.050	9794511				
Fluorene	ug/L	ND	0.050	9794511				
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.050	9794511				
1-Methylnaphthalene	ug/L	ND	0.050	9794511				
2-Methylnaphthalene	ug/L	ND	0.050	9794511				
Naphthalene	ug/L	ND	0.050	9794511				
Phenanthrene	ug/L	ND	0.030	9794511				
Pyrene	ug/L	ND	0.050	9794511				
Surrogate Recovery (%)	Surrogate Recovery (%)							
D10-Anthracene	%	110		9794511				
D14-Terphenyl (FS)	%	99		9794511				
D8-Acenaphthylene	%	98		9794511				
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
ND = Not Detected at a concentration equal or greater than the indicated								
Detection Limit.								

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID		AJXP76			AJXP77		
Sampling Date		2024/11/24 14:50			2024/11/24		
COC Number		C#1024572-01-01			C#1024572-01-01		
	UNITS	BH3D-24-GW1	RDL	QC Batch	TRIP BLANK	RDL	QC Batch
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/L	ND	0.50	9790613	ND	0.50	9790613
Volatile Organics							
Acetone (2-Propanone)	ug/L	ND	10	9793766	ND	10	9793787
Benzene	ug/L	ND	0.17	9793766	ND	0.20	9793787
Bromodichloromethane	ug/L	ND	0.50	9793766	ND	0.50	9793787
Bromoform	ug/L	ND	1.0	9793766	ND	1.0	9793787
Bromomethane	ug/L	ND	0.50	9793766	ND	0.50	9793787
Carbon Tetrachloride	ug/L	ND	0.20	9793766	ND	0.19	9793787
Chlorobenzene	ug/L	ND	0.20	9793766	ND	0.20	9793787
Chloroform	ug/L	ND	0.20	9793766	ND	0.20	9793787
Dibromochloromethane	ug/L	ND	0.50	9793766	ND	0.50	9793787
1,2-Dichlorobenzene	ug/L	ND	0.50	9793766	ND	0.40	9793787
1,3-Dichlorobenzene	ug/L	ND	0.50	9793766	ND	0.40	9793787
1,4-Dichlorobenzene	ug/L	ND	0.50	9793766	ND	0.40	9793787
Dichlorodifluoromethane (FREON 12)	ug/L	ND	1.0	9793766	ND	1.0	9793787
1,1-Dichloroethane	ug/L	ND	0.20	9793766	ND	0.20	9793787
1,2-Dichloroethane	ug/L	ND	0.50	9793766	ND	0.49	9793787
1,1-Dichloroethylene	ug/L	ND	0.20	9793766	ND	0.20	9793787
cis-1,2-Dichloroethylene	ug/L	ND	0.50	9793766	ND	0.50	9793787
trans-1,2-Dichloroethylene	ug/L	ND	0.50	9793766	ND	0.50	9793787
1,2-Dichloropropane	ug/L	ND	0.20	9793766	ND	0.20	9793787
cis-1,3-Dichloropropene	ug/L	ND	0.30	9793766	ND	0.30	9793787
trans-1,3-Dichloropropene	ug/L	ND	0.40	9793766	ND	0.40	9793787
Ethylbenzene	ug/L	ND	0.20	9793766	ND	0.20	9793787
Ethylene Dibromide	ug/L	ND	0.20	9793766	ND	0.19	9793787
Hexane	ug/L	ND	1.0	9793766	ND	1.0	9793787
Methylene Chloride(Dichloromethane)	ug/L	ND	2.0	9793766	ND	2.0	9793787
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	10	9793766	ND	10	9793787
Methyl Isobutyl Ketone	ug/L	ND	5.0	9793766	ND	5.0	9793787
Methyl t-butyl ether (MTBE)	ug/L	ND	0.50	9793766	ND	0.50	9793787
Styrene	ug/L	ND	0.50	9793766	ND	0.40	9793787

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID		AJXP76			AJXP77		
Sampling Date		2024/11/24			2024/11/24		
		14:50			- / /		
COC Number		C#1024572-01-01			C#1024572-01-01		
	UNITS	BH3D-24-GW1	RDL	QC Batch	TRIP BLANK	RDL	QC Batch
1,1,1,2-Tetrachloroethane	ug/L	ND	0.50	9793766	ND	0.50	9793787
1,1,2,2-Tetrachloroethane	ug/L	ND	0.50	9793766	ND	0.40	9793787
Tetrachloroethylene	ug/L	ND	0.20	9793766	ND	0.20	9793787
Toluene	ug/L	ND	0.20	9793766	ND	0.20	9793787
1,1,1-Trichloroethane	ug/L	ND	0.20	9793766	ND	0.20	9793787
1,1,2-Trichloroethane	ug/L	ND	0.50	9793766	ND	0.40	9793787
Trichloroethylene	ug/L	ND	0.20	9793766	ND	0.20	9793787
Trichlorofluoromethane (FREON 11)	ug/L	ND	0.50	9793766	ND	0.50	9793787
Vinyl Chloride	ug/L	ND	0.20	9793766	ND	0.20	9793787
p+m-Xylene	ug/L	ND	0.20	9793766	ND	0.20	9793787
o-Xylene	ug/L	ND	0.20	9793766	ND	0.20	9793787
Total Xylenes	ug/L	ND	0.20	9793766	ND	0.20	9793787
F1 (C6-C10)	ug/L	ND	25	9793766			
F1 (C6-C10) - BTEX	ug/L	ND	25	9793766			
Surrogate Recovery (%)							
4-Bromofluorobenzene	%	100		9793766			
D4-1,2-Dichloroethane	%	106		9793766			
D8-Toluene	%	91		9793766			
4-Bromofluorobenzene	%				102		9793787
D4-1,2-Dichloroethane	%				108		9793787
D8-Toluene	%				94		9793787
RDL = Reportable Detection Limit							

QC Batch = Quality Control Batch

PETROLEUM HYDROCARBONS (CCME)

Bureau Veritas ID		AJXP76					
Sampling Date		2024/11/24					
		14:50					
COC Number		C#1024572-01-01					
	UNITS	BH3D-24-GW1	RDL	QC Batch			
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/L	ND	90	9794514			
F3 (C16-C34 Hydrocarbons)	ug/L	ND	200	9794514			
F4 (C34-C50 Hydrocarbons)	ug/L	ND	200	9794514			
Reached Baseline at C50	ug/L	Yes		9794514			
Surrogate Recovery (%)							
o-Terphenyl	%	98		9794514			
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
ND = Not Detected at a concentration equal or greater than the							

indicated Detection Limit.

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9793766	DW5	Matrix Spike	4-Bromofluorobenzene	2024/11/29		105	%	70 - 130
			D4-1,2-Dichloroethane	2024/11/29		104	%	70 - 130
			D8-Toluene	2024/11/29		101	%	70 - 130
			Acetone (2-Propanone)	2024/11/29		96	%	60 - 140
			Benzene	2024/11/29		97	%	70 - 130
			Bromodichloromethane	2024/11/29		99	%	70 - 130
			Bromoform	2024/11/29		104	%	70 - 130
			Bromomethane	2024/11/29		86	%	60 - 140
			Carbon Tetrachloride	2024/11/29		108	%	70 - 130
			Chlorobenzene	2024/11/29		93	%	70 - 130
			Chloroform	2024/11/29		100	%	70 - 130
			Dibromochloromethane	2024/11/29		103	%	70 - 130
			1 2-Dichlorobenzene	2024/11/29		99	%	70 - 130
			1 3-Dichlorobenzene	2024/11/29		92	%	70 - 130
			1 4-Dichlorobenzene	2024/11/29		93	%	70 - 130
			Dichlorodifluoromethane (EREON 12)	2024/11/29		78	%	60 - 140
			1.1 Dichloroothana	2024/11/20		78	70 0/	70 120
			1,2 Dichloroothano	2024/11/29		104	70 0/	70 - 130
			1,2-Dichloroethyland	2024/11/29		104	70 0/	70 - 130
			ria 1.2 Diablementhulana	2024/11/29		102	70 0/	70 - 130
			cis-1,2-Dichloroethylene	2024/11/29		107	%	70 - 130
			trans-1,2-Dichloroethylene	2024/11/29		107	%	70 - 130
			1,2-Dichloropropane	2024/11/29		98	%	/0 - 130
			cis-1,3-Dichloropropene	2024/11/29		94	%	/0 - 130
			trans-1,3-Dichloropropene	2024/11/29		104	%	70 - 130
			Ethylbenzene	2024/11/29		96	%	70 - 130
			Ethylene Dibromide	2024/11/29		99	%	70 - 130
			Hexane	2024/11/29		116	%	70 - 130
			Methylene Chloride(Dichloromethane)	2024/11/29		94	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/29		96	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/29		97	%	70 - 130
			Methyl t-butyl ether (MTBE)	2024/11/29		99	%	70 - 130
			Styrene	2024/11/29		101	%	70 - 130
			1,1,1,2-Tetrachloroethane	2024/11/29		107	%	70 - 130
			1,1,2,2-Tetrachloroethane	2024/11/29		91	%	70 - 130
			Tetrachloroethylene	2024/11/29		99	%	70 - 130
			Toluene	2024/11/29		95	%	70 - 130
			1,1,1-Trichloroethane	2024/11/29		98	%	70 - 130
			1,1,2-Trichloroethane	2024/11/29		95	%	70 - 130
			Trichloroethylene	2024/11/29		102	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2024/11/29		100	%	70 - 130
			Vinyl Chloride	2024/11/29		93	%	70 - 130
			p+m-Xylene	2024/11/29		95	%	70 - 130
			o-Xylene	2024/11/29		103	%	70 - 130
			F1 (C6-C10)	2024/11/29		94	%	60 - 140
9793766	DW5	Spiked Blank	4-Bromofluorobenzene	2024/11/29		104	%	70 - 130
			D4-1.2-Dichloroethane	2024/11/29		101	%	70 - 130
			D8-Toluene	2024/11/29		103	%	70 - 130
			Acetone (2-Propanone)	2024/11/29		98	%	60 - 140
			Benzene	2024/11/29		99	%	70 - 130
			Bromodichloromethane	2024/11/29		99	%	70 - 130
			Bromoform	202 1, 11, 20		101	%	70 - 120
			Bromomethane	2027/11/20		۵ <u>۵</u>	%	60 - 1/0
			Carbon Tetrachloride	2027/11/20		111	%	70 - 120
			Chlorobenzeno	2024/11/23		05	/0 0/	70 - 130
			CHIOLODEHZEHE	2024/11/29		90	70	10-120

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Chloroform	2024/11/29		101	%	70 - 130
			Dibromochloromethane	2024/11/29		103	%	70 - 130
			1,2-Dichlorobenzene	2024/11/29		101	%	/0 - 130
			1,3-Dichlorobenzene	2024/11/29		102	%	70 - 130
			1,4-Dichlorobenzene	2024/11/29		102	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2024/11/29		84	%	60 - 140
			1,1-Dichloroethane	2024/11/29		97	%	70 - 130
			1,2-Dichloroethane	2024/11/29		104	%	70 - 130
			1,1-Dichloroethylene	2024/11/29		107	%	70 - 130
			cis-1,2-Dichloroethylene	2024/11/29		108	%	70 - 130
			trans-1,2-Dichloroethylene	2024/11/29		110	%	70 - 130
			1,2-Dichloropropane	2024/11/29		100	%	70 - 130
			cis-1,3-Dichloropropene	2024/11/29		96	%	70 - 130
			trans-1,3-Dichloropropene	2024/11/29		108	%	70 - 130
			Ethylbenzene	2024/11/29		100	%	70 - 130
			Ethylene Dibromide	2024/11/29		97	%	70 - 130
			Hexane	2024/11/29		120	%	70 - 130
			Methylene Chloride(Dichloromethane)	2024/11/29		97	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/29		96	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/29		96	%	70 - 130
			Methyl t-butyl ether (MTBE)	2024/11/29		101	%	70 - 130
			Styrene	2024/11/29		104	%	70 - 130
			1,1,1,2-Tetrachloroethane	2024/11/29		107	%	70 - 130
			1,1,2,2-Tetrachloroethane	2024/11/29		90	%	70 - 130
			Tetrachloroethylene	2024/11/29		101	%	70 - 130
			Toluene	2024/11/29		99	%	70 - 130
			1,1,1-Trichloroethane	2024/11/29		101	%	70 - 130
			1,1,2-Trichloroethane	2024/11/29		95	%	70 - 130
			Trichloroethylene	2024/11/29		104	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2024/11/29		105	%	70 - 130
			Vinyl Chloride	2024/11/29		99	%	70 - 130
			p+m-Xylene	2024/11/29		99	%	70 - 130
			o-Xylene	2024/11/29		108	%	70 - 130
			F1 (C6-C10)	2024/11/29		96	%	60 - 140
9793766	DW5	Method Blank	4-Bromofluorobenzene	2024/11/29		100	%	70 - 130
			D4-1,2-Dichloroethane	2024/11/29		105	%	70 - 130
			D8-Toluene	2024/11/29		91	%	70 - 130
			Acetone (2-Propanone)	2024/11/29	ND, RDL=10		ug/L	
			Benzene	2024/11/29	ND, RDL=0.17		ug/L	
			Bromodichloromethane	2024/11/29	ND, RDL=0.50		ug/L	
			Bromoform	2024/11/29	ND, RDI=1.0		ug/L	
			Bromomethane	2024/11/29	ND, RDL=0.50		ug/L	
			Carbon Tetrachloride	2024/11/29	ND, RDI =0.20		ug/L	
			Chlorobenzene	2024/11/29	ND, RDL=0.20		ug/L	
			Chloroform	2024/11/29	ND, RDL=0.20		ug/L	

QA/QC								_		
Batch	Init	QC Type	Parame	ter	Date A	Analyzed	Value	Recovery	UNITS	QC Limits
			Dibrom	ocnioromethane	2024	/11/29	ND, RDL=0.50		ug/L	
			1,2-Dich	nlorobenzene	2024	/11/29	ND, RDL=0.50		ug/L	
			1,3-Dich	nlorobenzene	2024	/11/29	ND, RDL=0.50		ug/L	
			1,4-Dich	nlorobenzene	2024	/11/29	ND, RDL=0.50		ug/L	
			Dichloro	odifluoromethane (FREON 12	2) 2024	/11/29	ND, RDL=1.0		ug/L	
			1,1-Dich	hloroethane	2024	/11/29	ND, RDL=0.20		ug/L	
			1,2-Dich	nloroethane	2024	/11/29	ND, RDL=0.50		ug/L	
			1,1-Dich	hloroethylene	2024	/11/29	ND, RDL=0.20		ug/L	
			cis-1,2-[Dichloroethylene	2024	/11/29	ND, RDL=0.50		ug/L	
			trans-1,	2-Dichloroethylene	2024	/11/29	ND, RDL=0.50		ug/L	
			1,2-Dich	nloropropane	2024	/11/29	ND, RDL=0.20		ug/L	
			cis-1,3-[Dichloropropene	2024	/11/29	ND, RDL=0.30		ug/L	
			trans-1,	3-Dichloropropene	2024	/11/29	ND, RDL=0.40		ug/L	
			Ethylbe	nzene	2024	/11/29	ND, RDL=0.20		ug/L	
			Ethylen	e Dibromide	2024	/11/29	ND, RDL=0.20		ug/L	
			Hexane		2024	/11/29	ND, RDL=1.0		ug/L	
			Methyle	ene Chloride(Dichloromethar	ne) 2024	/11/29	ND, RDL=2.0		ug/L	
			Methyl	Ethyl Ketone (2-Butanone)	2024	/11/29	ND, RDL=10		ug/L	
			Methyl	Isobutyl Ketone	2024	/11/29	ND, RDL=5.0		ug/L	
			Methyl	t-butyl ether (MTBE)	2024	/11/29	ND, RDL=0.50		ug/L	
			Styrene		2024	/11/29	ND, RDL=0.50		ug/L	
			1,1,1,2-	Tetrachloroethane	2024	/11/29	ND, RDL=0.50		ug/L	
			1,1,2,2-	Tetrachloroethane	2024	/11/29	ND, RDL=0.50		ug/L	
			Tetrach	loroethylene	2024	/11/29	ND, RDL=0.20		ug/L	
			Toluene	2	2024	/11/29	ND, RDL=0.20		ug/L	
			1,1,1-Tr	ichloroethane	2024	/11/29	ND, RDL=0.20		ug/L	
			1,1,2-Tr	ichloroethane	2024	/11/29	ND, RDL=0.50		ug/L	

1

QA/QC		0.07	. .					001
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			irichioroethylene	2024/11/29	ND, RDL=0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2024/11/29	ND, RDL=0.50		ug/L	
			Vinyl Chloride	2024/11/29	ND, RDL=0.20		ug/L	
			p+m-Xylene	2024/11/29	ND, RDI =0.20		ug/L	
			o-Xylene	2024/11/29	ND, BDI =0.20		ug/L	
			Total Xylenes	2024/11/29	ND, BDI =0.20		ug/L	
			F1 (C6-C10)	2024/11/29	ND, RDI =25		ug/L	
			F1 (C6-C10) - BTEX	2024/11/29	ND, RDL=25		ug/L	
9793766	DW5	RPD	Acetone (2-Propanone)	2024/11/29	NC		%	30
			Benzene	2024/11/29	NC		%	30
			Bromodichloromethane	2024/11/29	NC		%	30
			Bromoform	2024/11/29	NC		%	30
			Bromomethane	2024/11/29	NC		%	30
			Carbon Tetrachloride	2024/11/29	NC		%	30
			Chlorobenzene	2024/11/29	NC		%	30
			Chloroform	2024/11/29	NC		%	30
			Dibromochloromethane	2024/11/29	NC		%	30
			1,2-Dichlorobenzene	2024/11/29	NC		%	30
			1,3-Dichlorobenzene	2024/11/29	NC		%	30
			1,4-Dichlorobenzene	2024/11/29	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2024/11/29	NC		%	30
			1,1-Dichloroethane	2024/11/29	NC		%	30
			1,2-Dichloroethane	2024/11/29	NC		%	30
			1,1-Dichloroethylene	2024/11/29	NC		%	30
			cis-1,2-Dichloroethylene	2024/11/29	NC		%	30
			trans-1,2-Dichloroethylene	2024/11/29	NC		%	30
			1,2-Dichloropropane	2024/11/29	NC		%	30
			cis-1,3-Dichloropropene	2024/11/29	NC		%	30
			trans-1,3-Dichloropropene	2024/11/29	NC		%	30
			Ethylbenzene	2024/11/29	NC		%	30
			Ethylene Dibromide	2024/11/29	NC		%	30
			Hexane	2024/11/29	NC		%	30
			Methylene Chloride(Dichloromethane)	2024/11/29	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2024/11/29	NC		%	30
			Methyl Isobutyl Ketone	2024/11/29	NC		%	30
			Methyl t-butyl ether (MTBE)	2024/11/29	NC		%	30
			Styrene	2024/11/29	NC		%	30
			1,1,1,2-Tetrachloroethane	2024/11/29	NC		%	30
			1,1,2,2-Tetrachloroethane	2024/11/29	NC		%	30
			Tetrachloroethylene	2024/11/29	NC		%	30
			Toluene	2024/11/29	NC		%	30
			1,1,1-Trichloroethane	2024/11/29	NC		%	30
			1,1,2-Trichloroethane	2024/11/29	NC		%	30
			Trichloroethylene	2024/11/29	NC		%	30
			Trichlorofluoromethane (FREON 11)	2024/11/29	NC		%	30
			Vinyl Chloride	2024/11/29	NC		%	30

1

QA/QC Batch	Init	OC Type	Parameter	Date Analyzed	Value	Recovery		OC Limits
Daten	mit	QC Type	n+m-Xylene	2024/11/29	NC	Recovery	%	30
			o-Xvlene	2024/11/29	NC		%	30
			Total Xylenes	2024/11/29	NC		%	30
			F1 (C6-C10)	2024/11/29	NC		%	30
			F1 (C6-C10) - BTEX	2024/11/29	NC		%	30
9793787	HST	Matrix Spike	4-Bromofluorobenzene	2024/11/28		102	%	70 - 130
5755767	1101	Matrix Spile	D4-1 2-Dichloroethane	2024/11/28		102	%	70 - 130
			D8-Toluene	2024/11/28		106	%	70 - 130
			Acetone (2-Propanone)	2024/11/28		116	%	60 - 140
			Benzene	2024/11/28		104	%	70 - 130
			Bromodichloromethane	2024/11/28		106	%	70 - 130
			Bromoform	2024/11/28		107	%	70 - 130
			Bromomethane	2024/11/28		87	%	60 - 140
			Carbon Tetrachloride	2024/11/28		111	%	70 - 130
			Chlorobenzene	2024/11/28		101	%	70 - 130
			Chloroform	2024/11/28		107	%	70 - 130
			Dibromochloromethane	2024/11/28		113	%	70 - 130
			1 2-Dichlorobenzene	2024/11/28		108	%	70 - 130
			1 3-Dichlorobenzene	2024/11/28		108	%	70 - 130
			1 4-Dichlorobenzene	2024/11/28		110	%	70 - 130
			Dichlorodifluoromethane (EREON 12)	2024/11/28		80	%	60 - 140
			1 1-Dichloroethane	2024/11/28		101	%	70 - 130
			1.2-Dichloroethane	2024/11/28		101	%	70 - 130
			1 1-Dichloroethylene	2024/11/28		104	%	70 - 130
			cis-1 2-Dichloroethylene	2024/11/28		113	%	70 - 130
			trans-1 2-Dichloroethylene	2024/11/28		113	%	70 - 130
			1 2-Dichloropropane	2024/11/28		105	%	70 - 130
			cis-1 3-Dichloropropene	2024/11/28		101	%	70 - 130
			trans-1 3-Dichloropropene	2024/11/28		116	%	70 - 130
			Fthylbenzene	2024/11/28		102	%	70 - 130
			Ethylene Dibromide	2024/11/28		111	%	70 - 130
			Hexane	2024/11/28		121	%	70 - 130
			Methylene Chloride(Dichloromethane)	2024/11/28		106	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/28		107	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/28		111	%	70 - 130
			Methyl t-butyl ether (MTBF)	2024/11/28		104	%	70 - 130
			Styrene	2024/11/28		107	%	70 - 130
			1 1 1 2-Tetrachloroethane	2024/11/28		116	%	70 - 130
			1 1 2 2-Tetrachloroethane	2024/11/28		103	%	70 - 130
			Tetrachloroethylene	2024/11/28		104	%	70 - 130
			Toluene	2024/11/28		108	%	70 - 130
			1.1.1-Trichloroethane	2024/11/28		103	%	70 - 130
			1 1 2-Trichloroethane	2024/11/28		112	%	70 - 130
			Trichloroethylene	2024/11/28		105	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2024/11/28		102	%	70 - 130
			Vinyl Chloride	2024/11/28		96	%	70 - 130
			p+m-Xylene	2024/11/28		105	%	70 - 130
			o-Xvlene	2024/11/28		104	%	70 - 130
9793787	нот	Spiked Blank	4-Bromofluorobenzene	2024/11/28		104	%	70 - 130
5.55707		Spined Blain	D4-1.2-Dichloroethane	2024/11/28		107	%	70 - 130
			D8-Toluene	2024/11/28		106	%	70 - 130
			Acetone (2-Pronanone)	2024/11/28		111	%	60 - 140
			Benzene	2024/11/28		104	%	70 - 130
			Bromodichloromethane	2024/11/20		105	%	70 - 130
1			Di oniourentei onicentune	202 1/ 11/ 20		105	/0	,0 100

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Bromotorm	2024/11/28		101	%	/0 - 130
			Bromomethane	2024/11/28		89	%	60 - 140
			Carbon Tetrachloride	2024/11/28		114	%	/0 - 130
			Chlorobenzene	2024/11/28		98	%	70 - 130
			Chloroform	2024/11/28		107	%	70 - 130
			Dibromochloromethane	2024/11/28		107	%	70 - 130
			1,2-Dichlorobenzene	2024/11/28		104	%	70 - 130
			1,3-Dichlorobenzene	2024/11/28		104	%	70 - 130
			1,4-Dichlorobenzene	2024/11/28		106	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2024/11/28		86	%	60 - 140
			1,1-Dichloroethane	2024/11/28		102	%	70 - 130
			1,2-Dichloroethane	2024/11/28		110	%	70 - 130
			1,1-Dichloroethylene	2024/11/28		107	%	70 - 130
			cis-1,2-Dichloroethylene	2024/11/28		112	%	70 - 130
			trans-1,2-Dichloroethylene	2024/11/28		116	%	70 - 130
			1,2-Dichloropropane	2024/11/28		105	%	70 - 130
			cis-1,3-Dichloropropene	2024/11/28		100	%	70 - 130
			trans-1,3-Dichloropropene	2024/11/28		108	%	70 - 130
			Ethylbenzene	2024/11/28		102	%	70 - 130
			Ethylene Dibromide	2024/11/28		104	%	70 - 130
			Hexane	2024/11/28		124	%	70 - 130
			Methylene Chloride(Dichloromethane)	2024/11/28		104	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2024/11/28		102	%	60 - 140
			Methyl Isobutyl Ketone	2024/11/28		108	%	70 - 130
			Methyl t-butyl ether (MTBE)	2024/11/28		105	%	70 - 130
			Styrene	2024/11/28		107	%	70 - 130
			1.1.1.2-Tetrachloroethane	2024/11/28		112	%	70 - 130
			1,1,2,2-Tetrachloroethane	2024/11/28		96	%	70 - 130
			Tetrachloroethylene	2024/11/28		103	%	70 - 130
			Toluene	2024/11/28		106	%	70 - 130
			1 1 1-Trichloroethane	2024/11/28		106	%	70 - 130
			1 1 2-Trichloroethane	2024/11/28		105	%	70 - 130
			Trichloroethylene	2024/11/20		105	70 0/	70 - 130
			Trichlorofluoromothano (EREON 11)	2024/11/28		107	70 0/	70 - 130
			Vinul Chlorido	2024/11/28		105	70 0/	70 - 130
				2024/11/28		99	70	70 - 130
			p+m-xylene	2024/11/28		105	%	70 - 130
0702707	нст	Matha d Diaula	0-Xylene	2024/11/28		108	%	70 - 130
9/93/8/	HSI	Method Blank	4-Bromofluorobenzene	2024/11/28		107	%	70 - 130
			D4-1,2-Dichloroethane	2024/11/28		108	%	70 - 130
			D8-Toluene	2024/11/28		92	%	70 - 130
			Acetone (2-Propanone)	2024/11/28	ND, RDL=10		ug/L	
			Benzene	2024/11/28	ND, RDL=0.20		ug/L	
			Bromodichloromethane	2024/11/28	ND, RDL=0.50		ug/L	
			Bromoform	2024/11/28	ND,		ug/L	
			Bromomethane	2024/11/28	ND,		ug/L	
			Carbon Tetrachloride	2024/11/28	KUL=0.50 ND, RDI -0.19		ug/L	
			Chlorobenzene	2024/11/28	ND 201–013		ug/I	
			Chlorobenzene	2024/11/20	RDL=0.20		ug/L	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Chloroform	2024/11/28	RDL=0.20		ug/L	
			Dibromochloromethane	2024/11/28	ND,		ug/L	
					RDL=0.50			
			1,2-Dichlorobenzene	2024/11/28	ND,		ug/L	
				2024/44/20	RDL=0.40			
			1,3-Dichlorobenzene	2024/11/28	ND, RDI =0.40		ug/L	
			1,4-Dichlorobenzene	2024/11/28	ND,		ug/L	
					RDL=0.40			
			Dichlorodifluoromethane (FREON 12)	2024/11/28	ND,		ug/L	
			1 1-Dichloroethane	2024/11/28	RDL=1.0		ug/I	
			1,1-Dichloroethane	2024/11/28	RDL=0.20		ug/L	
			1,2-Dichloroethane	2024/11/28	ND,		ug/L	
					RDL=0.49			
			1,1-Dichloroethylene	2024/11/28	ND, PDI -0.20		ug/L	
			cis-1.2-Dichloroethylene	2024/11/28	ND.		ug/l	
					RDL=0.50			
			trans-1,2-Dichloroethylene	2024/11/28	ND,		ug/L	
				2024/44/22	RDL=0.50			
			1,2-Dichloropropane	2024/11/28	ND, RDL=0.20		ug/L	
			cis-1,3-Dichloropropene	2024/11/28	ND,		ug/L	
					RDL=0.30		-	
			trans-1,3-Dichloropropene	2024/11/28	ND,		ug/L	
			Ethylhonzono	2024/11/28	RDL=0.40		ug/I	
			Luiyibenzene	2024/11/28	RDL=0.20		ug/L	
			Ethylene Dibromide	2024/11/28	ND,		ug/L	
					RDL=0.19			
			Hexane	2024/11/28	ND, PDI-1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2024/11/28	NDL=1.0		ug/L	
					RDL=2.0			
			Methyl Ethyl Ketone (2-Butanone)	2024/11/28	ND,		ug/L	
				2024/44/20	RDL=10			
			Metnyi isobutyi ketone	2024/11/28	ND, RDL=5.0		ug/L	
			Methyl t-butyl ether (MTBE)	2024/11/28	ND,		ug/L	
					RDL=0.50			
			Styrene	2024/11/28	ND,		ug/L	
			1 1 1 2-Tetrachloroethane	2024/11/28	RDL=0.40		ug/I	
			1,1,1,2-10110100011010	2024/11/20	RDL=0.50		ug/L	
			1,1,2,2-Tetrachloroethane	2024/11/28	ND,		ug/L	
					RDL=0.40			
			Tetrachloroethylene	2024/11/28	ND, RDI - 0.20		ug/L	
			Toluene	2024/11/28	ND,		ug/L	
					RDL=0.20		0,	
			1,1,1-Trichloroethane	2024/11/28	ND,		ug/L	
					RDL=0.20			

1

QA/QC	Init		Darameter	Data Analyzad	Value	Pocovoru		OC Limite
Datch	IIIIL	QCType	1 1 2-Trichloroethane	2024/11/28	ND	Recovery		QC LIIIIIS
			1,1,2-11010000011010	2024/11/28	RDL=0.40		ug/L	
			Trichloroethylene	2024/11/28	ND, RDL=0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2024/11/28	ND, RDL=0.50		ug/L	
			Vinyl Chloride	2024/11/28	ND, BDI =0.20		ug/L	
			p+m-Xylene	2024/11/28	ND, RDI =0.20		ug/L	
			o-Xylene	2024/11/28	ND, BDI =0.20		ug/L	
			Total Xylenes	2024/11/28	ND, RDL=0.20		ug/L	
9793787	HST	RPD	Acetone (2-Propanone)	2024/11/28	NC		%	30
			Benzene	2024/11/28	NC		%	30
			Bromodichloromethane	2024/11/28	NC		%	30
			Bromoform	2024/11/28	NC		%	30
			Bromomethane	2024/11/28	NC		%	30
			Carbon Tetrachloride	2024/11/28	NC		%	30
			Chlorobenzene	2024/11/28	NC		%	30
			Chloroform	2024/11/28	NC		%	30
			Dibromochloromethane	2024/11/20	NC		%	30
			1 2-Dichlorobenzene	2024/11/28	NC		%	30
			1.3-Dichlorobenzene	2024/11/20	NC		%	30
			1,3-Dichlorobenzene	2024/11/20	NC		70 0/	30
			Dichlorodifluoromothano (EREON 12)	2024/11/28	NC		70 0/	20
			1 1 Dichloroothana	2024/11/28	NC		/0 0/	20
			1,1-Dichloroethane	2024/11/28	NC		70 0/	20
			1,2-Dichloroethale	2024/11/28	NC 4.2		70	30
			1,1-Dicitior de l'hyterie	2024/11/28	4.2		70	30
			cis-1,2-Dichloroethylene	2024/11/28	NC		% 0/	30
			trans-1,2-Dichloroethylene	2024/11/28	NC		%	30
			1,2-Dichloropropane	2024/11/28	NC		%	30
			cis-1,3-Dichloropropene	2024/11/28	NC		%	30
			trans-1,3-Dichloropropene	2024/11/28	NC		%	30
			Ethylbenzene	2024/11/28	NC		%	30
			Ethylene Dibromide	2024/11/28	NC		%	30
			Hexane	2024/11/28	NC		%	30
			Methylene Chloride(Dichloromethane)	2024/11/28	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2024/11/28	NC		%	30
			Methyl Isobutyl Ketone	2024/11/28	NC		%	30
			Methyl t-butyl ether (MTBE)	2024/11/28	NC		%	30
			Styrene	2024/11/28	NC		%	30
			1,1,1,2-Tetrachloroethane	2024/11/28	NC		%	30
			1,1,2,2-Tetrachloroethane	2024/11/28	NC		%	30
			Tetrachloroethylene	2024/11/28	NC		%	30
			Toluene	2024/11/28	NC		%	30
			1,1,1-Trichloroethane	2024/11/28	NC		%	30
			1,1,2-Trichloroethane	2024/11/28	NC		%	30
			Trichloroethylene	2024/11/28	NC		%	30
			Trichlorofluoromethane (FREON 11)	2024/11/28	NC		%	30
			Vinyl Chloride	2024/11/28	NC		%	30
			p+m-Xylene	2024/11/28	NC		%	30
			o-Xylene	2024/11/28	NC		%	30

1

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Xylenes	2024/11/28	NC		%	30
9794511	RAJ	Matrix Spike	D10-Anthracene	2024/11/29		99	%	50 - 130
			D14-Terphenyl (FS)	2024/11/29		92	%	50 - 130
			D8-Acenaphthylene	2024/11/29		89	%	50 - 130
			Acenaphthene	2024/11/29		100	%	50 - 130
			Acenaphthylene	2024/11/29		98	%	50 - 130
			Anthracene	2024/11/29		101	%	50 - 130
			Benzo(a)anthracene	2024/11/29		97	%	50 - 130
			Benzo(a)pyrene	2024/11/29		96	%	50 - 130
			Benzo(b/j)fluoranthene	2024/11/29		97	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/29		90	%	50 - 130
			Benzo(k)fluoranthene	2024/11/29		98	%	50 - 130
			Chrysene	2024/11/29		96	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/29		89	%	50 - 130
			Fluoranthene	2024/11/29		101	%	50 - 130
			Fluorene	2024/11/29		98	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/29		93	%	50 - 130
			1-Methylnaphthalene	2024/11/29		99	%	50 - 130
			2-Methylnaphthalene	2024/11/29		98	%	50 - 130
			Naphthalene	2024/11/29		96	%	50 - 130
			Phenanthrene	2024/11/29		99	%	50 - 130
			Pyrene	2024/11/29		103	%	50 - 130
9794511	RAJ	Spiked Blank	D10-Anthracene	2024/11/29		112	%	50 - 130
			D14-Terphenyl (FS)	2024/11/29		107	%	50 - 130
			D8-Acenaphthylene	2024/11/29		100	%	50 - 130
			Acenaphthene	2024/11/29		103	%	50 - 130
			Acenaphthylene	2024/11/29		101	%	50 - 130
			Anthracene	2024/11/29		107	%	50 - 130
			Benzo(a)anthracene	2024/11/29		97	%	50 - 130
			Benzo(a)pyrene	2024/11/29		100	%	50 - 130
			Benzo(b/J)fluoranthene	2024/11/29		103	%	50 - 130
			Benzo(g,h,i)perylene	2024/11/29		94	%	50 - 130
			Benzo(k)fluoranthene	2024/11/29		102	%	50 - 130
			Chrysene	2024/11/29		100	%	50 - 130
			Dibenzo(a,h)anthracene	2024/11/29		91	%	50 - 130
			Fluoranthene	2024/11/29		105	%	50 - 130
			Fluorene	2024/11/29		100	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2024/11/29		98	%	50 - 130
			1-Methylnaphthalene	2024/11/29		100	%	50 - 130
			2-Methylnaphthalene	2024/11/29		99	%	50 - 130
			Naphthalene	2024/11/29		102	%	50 - 130
			Phenanthrene	2024/11/29		103	%	50 - 130
0704544			Pyrene	2024/11/29		108	%	50 - 130
9794511	RAJ	Nethod Blank	D10-Anthracene	2024/11/29		113	%	50 - 130
			D14-Terphenyl (FS)	2024/11/29		109	%	50 - 130
			D8-Acenaphthylene	2024/11/29		100	%	50 - 130
			Acenaphthene	2024/11/29	ND, RDL=0.050		ug/L	
			Acenaphthylene	2024/11/29	ND, RDL=0.050		ug/L	
			Anthracene	2024/11/29	ND, RDL=0.050		ug/L	
			Benzo(a)anthracene	2024/11/29	ND, RDL=0.050		ug/L	

1

QA/QC Batch	Init		Parameter	Date Analyzed	Value	Recovery		OC Limits
Daten	mit	QC Type	Benzo(a)nyrene	2024/11/29	ND	Recovery		QC LIIIIII3
			Dento(d)pyrene	202 1/ 11/ 25	RDL=0.0090		46/ L	
			Benzo(b/j)fluoranthene	2024/11/29	ND,		ug/L	
					RDL=0.050			
			Benzo(g,h,i)perylene	2024/11/29	ND,		ug/L	
					RDL=0.050			
			Benzo(k)fluoranthene	2024/11/29	ND,		ug/L	
					RDL=0.050			
			Chrysene	2024/11/29	ND,		ug/L	
			Dihanza(a h)anthracana	2024/11/20			ug/I	
			Dibenzo(a,njantinacene	2024/11/29	RDI =0.050		ug/L	
			Fluoranthene	2024/11/29	ND.		ug/I	
			Habrandhene	202 1/ 11/ 25	RDL=0.050		46/ L	
			Fluorene	2024/11/29	ND,		ug/L	
					RDL=0.050		0.	
			Indeno(1,2,3-cd)pyrene	2024/11/29	ND,		ug/L	
					RDL=0.050			
			1-Methylnaphthalene	2024/11/29	ND,		ug/L	
					RDL=0.050			
			2-Methylnaphthalene	2024/11/29	ND,		ug/L	
					RDL=0.050			
			Naphthalene	2024/11/29			ug/L	
			Phononthrono	2024/11/20			ug/I	
			Filenantinene	2024/11/29	RDI =0.030		ug/L	
			Pyrene	2024/11/29	ND.		ug/I	
			i yrene	202 1/ 11/ 25	RDL=0.050		46/ L	
9794511	RAJ	RPD	Acenaphthene	2024/11/29	NC		%	30
			Acenaphthylene	2024/11/29	NC		%	30
			Anthracene	2024/11/29	NC		%	30
			Benzo(a)anthracene	2024/11/29	NC		%	30
			Benzo(a)pyrene	2024/11/29	NC		%	30
			Benzo(b/j)fluoranthene	2024/11/29	NC		%	30
			Benzo(g,h,i)perylene	2024/11/29	NC		%	30
			Benzo(k)fluoranthene	2024/11/29	NC		%	30
			Chrysene	2024/11/29	NC		%	30
			Dibenzo(a,h)anthracene	2024/11/29	NC		%	30
			Fluoranthene	2024/11/29	NC		%	30
			Fluorene	2024/11/29	NC		%	30
			Indeno(1,2,3-cd)pyrene	2024/11/29	NC		%	30
			1-Methylnaphthalene	2024/11/29	NC		%	30
			2-Methylnaphthalene	2024/11/29	NC		%	30
			Naphthalene	2024/11/29	NC		%	30
			Phenanthrene	2024/11/29	NC		%	30
979/151/	M\$7	Matrix Snike	o-Ternhenyl	2024/11/29 2027/11/20	INC	103	70 0/2	30 60 - 1 <i>1</i> 0
5, 54514	IVIJE	Matin Spike	F2 (C10-C16 Hydrocarbons)	202 4 /11/29 2024/11/29		96	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	202-7,11,25		99	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2024/11/29		93	%	60 - 140
9794514	MSZ	Spiked Blank	o-Terphenyl	2024/11/29		105	%	60 - 140
-		•	F2 (C10-C16 Hydrocarbons)	2024/11/29		97	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2024/11/29		102	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2024/11/29		94	%	60 - 140
9794514	MSZ	Method Blank	o-Terphenyl	2024/11/29		99	%	60 - 140

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			F2 (C10-C16 Hydrocarbons)	2024/11/29	ND, RDL=90		ug/L	
			F3 (C16-C34 Hydrocarbons)	2024/11/29	ND, RDL=200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2024/11/29	ND, RDL=200		ug/L	
9794514	MSZ	RPD	F2 (C10-C16 Hydrocarbons)	2024/11/29	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2024/11/29	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2024/11/29	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

austin Camere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C4AL295															*			
2024/11/25 10:	30	Bureau Veritas 6740 Campobello R	oad, Mississauga, Ontari	o Canada L5N 2L8	Tel:(905) 817-5	700 Toll-free:800-	563-6266 Fax:((905) 817-5	777 www.t	bvna.com							1	Page of
VERITAS															2		NONT-2024-11-5268	
	IN\	OICE TO:				REPO	RT TO:						PROJECT	T INFORMATION:	Ĭ	1.0	<u> </u>	:
Company Name: #395	09 Lopers 8	Associates		Company M	Name:						Quotation	#:	C4336	52		1999N.S	٤	Bottle Order #:
Attention: Luke	ansfield Way			Attention:	Luke L	opers					P.O. #:		LOP2	1 0250		-		
Address: Ottav	wa ON K2G 3	V8		Address:							Project:		LOFZ	+-0250			COC #:	1024572 Project Manager:
Tel: (613)) 327-9073	Fax:		Tel:			Fax:				Site #	me:						· · · · · · · · · · · · · · · · · · ·
Email: Luke	@lopers.ca			Email:	Luke@	lopers.ca					Sampled B	By:					C#1024572-01-01	Katherine Szozda
MOE REGULATE	ED DRINKING	WATER OR WA	TER INTENDED FO	R HUMAN CO ATER CHAIN C	NSUMPTION F CUSTODY	MUST BE 🍃			1	ANA	LYSIS REC	QUESTED	(PLEASE B	E SPECIFIC)		š - 2	Turnaround Time (TAT) Re Please provide advance notice for	equired: rush projects
Regulation 153 (2011)		Other Regulations	AND STRACT CONSIDER THE	Special In	structions	cle):	4	1							Regular (S	Standard) TAT:	
Table 1 Res/Pa	ark Medium/	Fine CCME	Sanitary Sewer B	ylaw				F1-F								(will be applie Standard TA	ed if Rush TAT is not specified): T = 5-7 Working days for most tests	$\boldsymbol{\times}$
Table 2 Ind/Con Table 3 Agri/Oth	mm Coarse	Reg 558.	Storm Sewer Byla	w			(pleas Hg / Ci	y HS &								Please note: daysontac	Standard TAT for certain tests such as BC tyour Project Manager for details.	DD and Dioxins/Furans are > 5
Table		PWQ0	Reg 406 Table				ered Is / H	DCs b	Hs	in					· · ·	Job Specifi	c Rush TAT (if applies to entire subm	ission)
		Other					d Filte	53 VC	53 PA	00						Date Require	d: Tim	e Required:
In	clude Criteria	on Certificate of	Analysis (Y/N)?				Field	Reg 1	Reg 1	2						Rush Comm	(ca	II lab for #)
Sample Barcod	le Label	Sample (Locatio	n) Identification	Date Sampled	Time Sampled	Matrix		0. 1	0.4							# of Bottles	Comme	nts
1		BH3D-	24-GWI 1	Lizybu	2150 PM	GW		X	X								High Silt conter	Fnoted in
		Unior .		0121/21	6.001.4					1							Cranilwiefer ist	rile sompting
2		Trip Bki	.h N	121/24						X								
3													8			1	- 1. Are	
4																	·	
5	+															-		·
						·											· · · · · · · · · · · · · · · · · · ·	
6																	· · · ·	
7																		•
9																		
Э																		21212
10																	Receive	d in Ottawa
RELINQU	JISHED BY: (Sig	nature/Print)	Date: (YY/MM/	DD) Time		RECEIVED B	I Y: (Signature/F	Print)		Date: (YY/N	IM/DD)	Ti	me	# jars used an	· · · · · · · · · · · · · · · · · · ·	Labora	Itory Use Only	
Cal 1	and _		24/11/	24 3:20	IM Re	dro da	Silve	1 llog) 26	0241	1125	10:	30	not submitted	Time Sensitive	Temperat	ure (°C) on Recei Custody Sea	al Yes No
	Lulee L	lopend	11		VI	JUSHTH	Alle	VIY	2	024/1	1126	OF	558			4/11	1 (icepack) Intact	- V
ACKNOWLEDGMENT AND	REED TO IN WRIT ACCEPTANCE OF	OUR TERMS WHICH	TED ON THIS CHAIN OF O	EWING AT WWW.E	ECT TO BUREAU	VERITAS'S STAN	DARD TERMS A	ND CONDI	COC-TERM	SNING OF T	HIS CHAIN (OF CUSTO	DY DOCUM	ENT IS			White: B	ureau Veritas Yellow: Client
IT IS THE RESPONSIBILIT	Y OF THE RELIN	QUISHER TO ENSUR	E THE ACCURACY OF TH	E CHAIN OF CUST	ODY RECORD. A	N INCOMPLETE C	HAIN OF CUSTO	DDY MAY R	ESULT IN	ANALYTICA	L TAT DEL	AYS.		SAMPL	S MUST BE KEPT CO UNTIL DELIVE	OOL (< 10° C) RY TO BUREA	FROM TIME OF SAMPLING	01-12-
** SAMPLE CONTAINER, PR	RESERVATION, H	OLD TIME AND PACE	AGE INFORMATION CAN	N BE VIEWED AT V	WW.BVNA.COM	ENVIRONMENTAL	-LABORATORI	ES/RESOUR	RCES/CHA	IN-CUSTOD	Y-FORMS-C	COCS.			志法法法			

Bureau Veritas Canada (2019) Inc.

Lopers & Associates Client Project #: LOP24-025C Client ID: BH3D-24-GW1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

LOPERS & ASSOCIATES

Appendix F

Qualifications of Assessors

PROFILE

Mr. Lopers is an environmental engineer with over 17 years of experience in environmental consulting, specializing in due diligence investigations. Mr. Lopers has extensive experience in Phase I and II Environmental Site Assessments; environmental remediation direction and supervision: record of site condition submissions: asset inventory; designated substance surveys and abatement projects; environmental expertise on legal issues; and coordination of various monitoring programs (groundwater, surface water, air).

Mr. Lopers has a strong commitment to health and safety, having experience leading a regional health and safety committee as a certified employee representative and Ottawa office safety captain. Mr. Lopers has extensive training including OSHA 40hour HAZWOPER, ASP Health and Safety on Construction Sites in Quebec, Ontario Working at Heights, Emergency First Aid/CPR and WHMIS.

CONTACT

EMAIL: Luke@Lopers.ca

LUKE LOPERS

LOPERS & ASSOCIATES

EDUCATION

University of Waterloo, B.A.Sc., Honours Environmental Engineering Management Science Option Designation - 2002 - 2008

PROFESSIONAL EXPERIENCE

Lopers & Associates, Principal, Project Manager, Senior Environmental Engineer

Ottawa, Ontario - 2020–Present

Responsible for the management, coordination, supervision, completion and delivery of Phase I/1 and II/2 Environmental Site Assessments, Environmental Remediation Programs, Environmental litigation support, Designated Substance Surveys, scope of work development, cost estimates and proposals

GHD Limited, Project Manager, Senior Environmental Engineer Ottawa, Ontario - 2013–2020

Responsible for the management, senior technical review, coordination, supervision, completion and delivery of Phase I/1 and II/2 Environmental Site Assessments, Environmental Remediation Programs, Environmental litigation support, Designated Substance Surveys, scope of work development, cost estimates and proposals Office Safety Captain and Joint Health and Safety Committee team leader

Paterson Group Inc., Project Manager, Environmental Engineer Ottawa, Ontario - 2009–2013

Responsible for supervision, completion and review for Phase I/1 and II/2 Environmental Site Assessments, Environmental Remediation Programs, Designated Substance Surveys

NEXT Environmental Inc., Site Investigation Staff

Burnaby, British Columbia - 2008–2009 Responsible for fieldwork and reporting for Stage/Phase I and II Environmental Site Assessments, Environmental Remediation Programs

PROFESSIONAL DESIGNATIONS

Licensed Professional Engineer (P.Eng.) with Professional Engineers Ontario (PEO) since 2012

Qualified Person (QP), Environmental Site Assessments with Ontario Ministry of the Environment, Conservation and Parks

SELECT LIST OF CLIENTS

Ottawa Community Housing Corporation Brigil Construction Willms & Shier Environmental Lawyers LLP

RECENT & RELEVANT PROJECT EXPERIENCE

Phase One Environmental Site Assessments

Project Engineer/ Project Manager & Site Assessor | Various Clients | Ottawa, Ontario | 2020-2024

Mr. Lopers has completed 18 Phase One Environmental Site Assessments since starting Lopers & Associates 2020. Several of these Phase One ESA Sites progressed to subsequent stages of investigation and remediation, which is discussed in further detail in the sections below.

Project Engineer / Manager & Site Assessor | Various Clients | Ottawa & GTA, ON, Vancouver, BC | 2006-2020

Prior to starting Lopers & Associates in 2020, Mr. Lopers completed over 250 Phase One/I Environmental Site Assessments in 3 large urban centers in Canada including Ottawa, Toronto and Vancouver. Mr. Lopers developed Phase One Environmental Site Assessment Report templates for 3 unaffiliated Engineering companies.

Phase Two Environmental Site Assessments

Project Engineer/ Environmental Project Manager & Site Supervisor | Various Clients | Ottawa, Ontario | 2020-2024

Coordination & Field Supervision consisting of meeting with underground service locators, determining investigation locations, supervising and directing drilling subcontractors, logging soil profiles for borehole logs, daily field notes and subcontractor timesheets. Also completed independent field elevation surveys and groundwater sampling in active pedestrian traffic areas.

Project Engineer/Manager for the following Phase Two ESA field investigation and/or environmental delineation and environmental remediation programs and other Site Investigations:

- Former Canex Fuel Outlet and Residential Lands, Former CFB Rockliffe, Ottawa Community Housing Corporation.
- Former Petro Canada Retail Fuel Outlet, Automotive Service Garage and Commercial Lands, Ridgewood Avenue, Brigil Construction.
- Former Urban Waste Disposal Site and Operational Commercial Lands, DuMaurier Avenue, Brigil Construction.
- Residential Properties (regional dNAPL groundwater concerns), Parkdale Avenue, Homestead Developments Corporation.
- Former Private Fuel Outlet and Construction & Equipment Rental Yard and Service Garage, 2940 Baseline Road, Brigil Construction.
- Former historic lumberyard, Central Bus Terminal and Fuel Outlet, 265 Catherine Street, Brigil Construction.
- Residential Property (adjacent up-gradient dry-cleaner APEC), Penfield Avenue, Ottawa Community Housing Corporation.
- Former Private Fuel Outlet and Contractor's Yard, Ogilvie & Cummings Avenue, Lux Place LP.
- Former Residential Developments with historic USTs, poor environmental quality fill materials and/or in vicinity to off-Site VOC groundwater plume, Gladstone Avenue & Rochester Street, Ottawa Community Housing Corporation.

Environmental Remediation Programs (Lopers & Associates)

Project Engineer/ Environmental Project Manager & Site Supervisor / Client/Owner Advisor | Various Clients | Ottawa, Ontario | 2021-2024

Coordination & Field Supervision consisting of supervising and directing excavation/remediation subcontractors, logging trucking information for off-Site disposal, daily field notes and subcontractor invoice review and approval. Independent determination of remediation extents based on field soil and groundwater sampling in active remediation/excavation under timeline constricted conditions. Filing of Record of Site Conditions with Ontario Ministry of Environment, Conservation and Parks.

- Former Private Fuel Outlet and Construction & Equipment Rental Yard and Service Garage, Baseline Road, Brigil Construction.
 - Site Environmental Project Experience dating back to 2009, with 2 unaffiliated property owners and Mr. Lopers practicing Professional Engineering for 3 unaffiliated Engineering companies.
- Former Private Fuel Outlet and Contractor's Yard, Ogilvie & Cummings Avenue, Lux Place LP.
 - Project Experience dating back to 2011, with several changes in ownership structure and with Mr. Lopers practicing Professional Engineering for 3 unaffiliated Engineering companies.
 - Site Remediation Complete, RSC #: B-403-1823439436

- Lopers assisted the Client with regulatory approvals and in obtaining municipal brownfields redevelopment grant funding as part of Site remediation/redevelopment.
- Former lumberyard, Central Bus Terminal and Fuel Outlet, Catherine Street, Brigil Construction.
 - Project Experience dating back to 2010, with 2 unaffiliated property owners and with Mr. Lopers practicing Professional Engineering for 2 unaffiliated Engineering companies.
 - Environmental Remediation Plan prepared by Mr. Lopers Fuel terminal remediation February-April 2024. UST removal, bulk soil excavation, groundwater pump & treat & discharge to municipal storm sewer under SSA. Post-remediation groundwater monitoring in progress to support RSC application (2025)
 - Lopers is also assisting the Client with regulatory approvals and in obtaining municipal brownfields redevelopment grant funding as part of Site remediation/redevelopment.
- Former Retail Fuel Outlet and Automotive Service Garage, Ridgewood, Brigil Construction.
 - Environmental Remediation Plan prepared by Mr. Lopers Fuel remediation June-October 2024. Bulk soil excavation and off-Site disposal. Post-remediation groundwater monitoring in progress to support RSC application (2025)
 - Lopers is also assisting the Client with obtaining municipal brownfields redevelopment grant funding as part of Site remediation/redevelopment.
- Former Residential Developments with historic USTs, poor environmental quality fill materials and/or in vicinity to off-Site VOC groundwater plume, Gladstone Avenue & Rochester Street, Ottawa Community Housing Corporation.
 - Environmental Remediation Plan prepared by Mr. Lopers poor environmental quality fill remediation September-October 2024 (periodically on-goint). Bulk soil excavation and off-Site disposal.
 - Lopers is also assisting the Client with verification of contractor quantities and rates for disposal of contaminated soil.

Designated Substance Surveys

Project Manager for portfolio Designated Substance Surveys and Hazardous Building Materials Assessment | Ottawa, Pembroke, Southeastern Ontario | 2010- 2024

- DSSs at various municipal facilities for the City of Pembroke, Pembroke, Ontario. Preparation of Asbestos Management Plan. Supervised 3 staff (remotely from Ottawa) completing DSS on 10 municipal facilities.
- HBMAs at various institutional buildings for the Catholic District School Board of Eastern Ontario, Southeastern Ontario. Supervised 2-3 staff (remotely from Ottawa) complete 10-20 DSS on schools and maintenance buildings, generally after hours or on weekends.

Project Manager for asbestos containing material (ACM) surveys, designated substance surveys (DSSs), Hazardous Building Materials Assessments (HBMAs) or mould assessments at the following sites:

- DSSs and ACM surveys at various residential, buildings (dwellings and apartment buildings) for private residential clients, Ottawa, Ontario.
- DSS and abatement oversight and contractor approvals during demolition, residential buildings (townhouses) for Ottawa Community Housing Corporation, 818 Gladstone Avenue, Ottawa, Ontario.
 - Completed contractor compliance oversight and daily field inspection reports. Provided additional recommendations when warranted.
- DSS for residential buildings (townhouses) for Ottawa Community Housing Corporation, 66-82 Finch Private, Ottawa, Ontario.
- DSS for residential buildings (adjoining rooming houses) for Ottawa Community Housing Corporation, 214-224 Somerset Street East, Ottawa, Ontario.
- DSS commercial building (Central Bus Terminal) for Brigil Construction, 265 Catherine Street, Ottawa, Ontario.
- DSS commercial buildings (2 Commercial Plaza buildings) for Brigil Construction, 729 Ridgewood Avenue, Ottawa, Ontario.

Environmental Litigation Support

Project Manager, Field Engineer, Expert Witness | Ottawa, Ontario | 2014-2020

Project Manager, Field Engineer and Expert Witness for a fuel spill, remediation program, groundwater monitoring program and litigation review for redevelopment of a residential property adjacent to a central heating plant at an institutional facility.

• Coordination & Field Supervision consisting of meeting with underground service locators, determining investigation locations, supervising and directing drilling and remediation subcontractors, logging soil profiles for borehole logs, daily field notes and subcontractor timesheets. Also completed independent field elevation surveys and groundwater sampling.

Project Manager, Field Engineer, Expert Witness | Gladstone Avenue, Ottawa, Ontario | 2021-2023

Project Manager, Field Engineer and Expert Witness for assessment of damages resulting from temporary expropriation of residential lands for industrial use (Bridge Construction).

• Coordination & Field Supervision consisting of determining investigation locations, supervising and directing drilling subcontractors, logging soil profiles for borehole logs. Also completed independent field elevation surveys and groundwater sampling. Completed environmental investigation, remediation and management cost estimates for different scenarios to determine incremental costs resulting from Site occupancy.

Select Federal and Provincial Experience

- Field Engineer, PWGSC representative for monitoring access road reconstruction, asset inventory, camp drainage assessment, reservoir construction progress monitoring I Outcome Consultants (PWGSC) I Governmental Facilities, Eureka, Nunavut I June 2022
- Environmental Project Manager, Field Assessor for UST removal, DSS, Abatement Review & Compliance Monitoring | BGIS (PWGSC) | CRA Taxation & Data Centre, 875 Heron Road, Ottawa, Ontario | 2017-2019
- Environmental Project Manager, Field Assessor for Project Specific DSSs | BGIS (PWGSC) | 20 to 30 buildings in Ottawa & Gatineau | 2016-2019
- Environmental Project Manager, Field Assessor for Environmental Compliance Audit | BGIS (PWGSC) | Tunney's Pasture (select facilities), Ottawa, Ontario | 2016
- Planning Coop Student for Executive Assistant to Director of Ministry of Transportation I St. Catharines, Ontario I 2003

Education

BEng Geological Engineering, École Polytechnique de Montreal, Montreal, Quebec, 1990

MSc Geophysics, University of British Columbia, Vancouver, British Columbia, 1983

BSc Geophysics, Honours, University of British Columbia, Vancouver, British Columbia, 1980

Certifications

Registered as PMP with Project Management Institute since 2012, requalified in 2018

Qualified Person (QP) for Environmental Site Assessments with Ontario Ministry of Environment and Conservation and Parks

Professional Affiliations

Licensed as P.Eng. with the Professional Engineers of Ontario (PEO) since 1994

Licensed as Ing. with l'Ordre des ingénieurs du Québec (OIQ), 1992

Licensed as P.Eng. with NAPEG (NWT and Nunavut), since 2009.

Licensed as P.Eng with Engineers Yukon since 2018

Federal Clearance Level

Secret ID # 95251065

DON PLENDERLEITH

Senior Environmental Engineer and Project Manager

PROFESSIONAL SUMMARY

Mr. Plenderleith has been an environmental engineer for 30 years. From 1990 to 2000 he worked at specialty firms in Montreal and Ottawa where he gained field and reporting experience in site assessment and remediation of retail fuel outlets and railway yards. In 1991 and 1992 he worked on a CIDA sponsored project to assess additional water resource potential in two provinces in Indonesia. He worked for Golder for 19 years on projects in Ottawa, the North and overseas.

His expertise covers all steps in contaminated site management: Phase I, II and III environmental site assessments (ESAs), risk assessments, remedial options evaluations, remedial action plans, tender plans and specifications, remediation project oversight, long-term monitoring and project closure. He has largely concentrated on federal sites since 2002 and was Golder's initial point of contact on the Environmental Standing Offer Agreement with PSPC in the National Capital over that time.

Don led Golder's national client service team for Federal government and was responsible to Golder's management for maintaining strong relations with the federal government. Locally, he provided project management and technical direction of a variety of environmental projects from the Ottawa office. Don mentored several junior professionals. His site portfolio included: military bases, Northern sites, navigational sites, correctional facilities, research labs, commercial buildings and Canadian embassies abroad. On several multi-year projects (Kingston Penitentiary and Connaught Ranges landfill) he directed all steps of site management from initial investigations, through to site closure.

Don is equally experienced at providing strategic and portfolio-level assistance to clients as well as site-specific level work. He has written contaminated sites management plans for several federal Departments. He helped to develop components of the FCSAP project manager's tool kit and has trained federal project managers in its use. He has provided program-level assistance to the FCSAP Secretariat for funding demand forecasting and long-term strategy and risk management. For nine years he led a multi-disciplinary team that performed contaminated site liability peer reviews for the Office of the Auditor General of Canada.

Don completed his engineering degree in French and is licensed to practice in Quebec. He frequently coordinates the French language component at bilingual meetings and workshops.

PROJECT EXPERIENCE – STANDING OFFER MANAGER

Public Services and Procurement Canada, National Capital Region, Environmental Engineering Standing Offer (2002-2019). Don managed Golder's Environmental Standing Offer Agreement (SOA) with PSPC in the National Capital Region from 2002 to 2019. He was the first point of contact with PSPC for new call-ups. He formed project teams from the approved resources and reviewed the work plans under each call-up. He was responsible and accountable for Golder's overall project performance to PSPC.

PROJECT EXPERIENCE – SENIOR PROJECT MANAGER

Environmental Site Assessment, Remediation Planning and Implementation for the Pittsburgh Institution and Kingston Penitentiary, Kingston, Ontario from 2007 Phase I, II, and III and to 2015 - Don was the Senior Project Manager and project reviewer for the **Remediation at Pittsburgh** Phase I, II and III of contaminated sites on two similar projects at these federal Institution and Kingston penitentiaries. Don performed project management and provided technical Penitentiary for PSPC/CSC direction during the full suite of services from site assessment through to near Kingston, Ontario remediation. Federal project management tools, and FCSAP technical tools (GOST) were used to assist with procedural compliance. Don assisted PSPC with the tender specification for both remediation projects and performed on-site supervision during the fast-track remediation work at Pittsburgh. Don also performed senior review of the draft and final reports.

Peer Review and Liability Review of US Steel Site in Hamilton Harbour for PSPC and Transport Canada (July-August 2016)

Contaminated Site Don h Reporting and Review for relate Department of National EcoN Defence Ottawa, Ontario, which

Canada

Don was the Senior Project Manager for a Peer Review of reports pertaining to the US Steel site on Hamilton Harbour that the Hamilton Port Authority (HPA) was considering purchasing. TC requested the peer review and liability review in its oversight role over the HPA. Don brought a senior expert in at steel industry at Golder onto the project team. With his input some important gaps in the previous site assessments, management plans and liability estimates were identified to TC.

Don has managed several projects for DND's Director General Environment, related to the financial reporting of DND's contaminated sites. He managed the EcoNet validation project in 2006, in which the systems and procedures by which site cost and liability information are input to DND's Contaminated Site database, Econet. Several of DND's major projects being run out of headquarters were reviewed in that exercise. In 2008 he assisted DND by producing the 2008 update of their Contaminated Sites Management Plan (CSMP) for Treasury Board submission. Nine divisional CSMPs were reviewed, summarized and incorporated into the departmental CSMP.

PROGRAM LEVEL WORK – FEDERAL CONTAMINATED SITES

Project Management Tools for Contaminated Sites, Ottawa, Ontario, Canada Mr. Plenderleith developed two of the FCSAP Project Management Tools: Status Reporting and Project Risk Management. He has provided training in the tools to federal project managers country-wide. He has delivered training sessions at RPIC National Contaminated Sites workshops on several occasions on the PM Tools, the Sustainable Development Tool (SDAT), and Guidance Tool for Selection of Technologies Tools (GOST).

Assistance to FCSAP for program-level Risk Management, PWGSC/ECCC Ottawa, Ontario Don has led a team at Golder that provided assistance to the FCSAP Secretariat from 2013 to 2019 in the areas of cost projections for funding demand estimates. He devised a method of projecting the costs of unassessed sites based on closure costs of similar sites. This tool was used to estimate the funding demand for FCSAP Phase III and past Phase III. Don assisted the Secretariat with Long-Term Strategic planning for FSCAP post 2020 when the 15-year program is due to sunset.

Secondments to Federal Departments Mr. Plenderleith has been seconded from Golder to the Department of Foreign Affairs and International Trade (now Global Affairs Canada "GAC") on three occasions to develop their Contaminated Sites Management Plans and to fill in while GAC was staffing their full-time environmental engineer position. Through these secondments he has developed a greater understanding of the role of federal custodians in managing their programs.

PROJECT EXPERIENCE – NORTHERN SITES

Mr. Plenderleith was the project director of Golder's DEW Line Monitoring **DEW Line Site Monitoring,** contract with DND from four years 2015 to 2019. He was responsible for overall **Baffin Region, DND** program quality and liaison with the client and management of Inuit (2015-19)subcontractors. The project was multi-disciplinary, involving geotechnical and environmental components. Mr. Plenderleith has developed a very positive working relationship with the hamlet of Qikiqtarjuag and the Inuit staff from that community, many of whom have returned to work with Golder every year. All Inuit Participation Targets were exceeded. **Tundra Mine Remediation** Don was the Senior project director for Golder's Remediation Monitoring of Monitoring PSPC/INAC Tundra Mine (NWT) for PSPC and INAC. This project is multi-disciplinary (2016 - 2018)

Tundra Mine (NWT) for PSPC and INAC. This project is multi-disciplinary involving surface water and groundwater environmental monitoring and aquatic monitoring for the final stages of the remediation of Tundra Mine. Don has reviewed the monthly and annual monitoring reports produced for the Water Licence. His earlier experience with the RAP for Tundra has been valuable on this project.

Remedial Options Review and Remedial Action Planning Former Water Tanker Base, Inuvik Airport, NWT 2010-12 From 2010 to 2012, Mr. Plenderleith was the technical director for the Phase III ESA detailed site assessment and remediation planning of the former Water Tanker Base at the Inuvik Airport in NWT. The work included determining the contaminants of concern, delineation of contaminated soil and seasonal groundwater areas, and assessing remedial options. The remedial action plan reviewed chemical oxidation and removal & disposal options within the constraints of northern work season, and the distance to a disposal facility. Descriptions, costs, advantages and limitations were provided for several options. GNWT performed the remediation with own forces.