

# Geotechnical Investigation Proposed Addition and Civil Work Earl of March School. 4 The Parkway, Ottawa, ON OCDSB EXP SOA # 24-08n

#### Client:

Ottawa Carleton District School Board 1224 Stittsville Main Street. Stittsville, ON K2S 0E2

Type of Document: UPDATED FINAL REPORT

#### Project Number: OTT-23012778-B0

#### Prepared By: EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 Canada

Date Submitted: December 12, 2024

# **Table of Contents**

| Execut | tive Summary      |                                                                                | 1  |
|--------|-------------------|--------------------------------------------------------------------------------|----|
| 1.     | Introduction      |                                                                                | 3  |
| 2.     | Site Descriptio   | n                                                                              | 4  |
| 3.     | Background Int    | formation                                                                      | 5  |
|        | 3.1               | Asbuilt Drawings (1968)                                                        | 5  |
|        | 3.2               | Inspec-Sol Report (2014)                                                       | 5  |
|        | 3.3               | EXP Geotechnical Report (2018)                                                 | 5  |
| 4.     | Geology of the    | Site                                                                           | 6  |
|        | 4.1               | Surficial Geology Map                                                          | 6  |
|        | 4.2               | Bedrock Geology Map                                                            | 6  |
| 5.     | Procedure         |                                                                                | 7  |
|        | 5.1               | Test Hole Fieldwork                                                            | 7  |
|        | 5.2               | Laboratory Testing Program                                                     | 7  |
| 6.     | Subsurface Cor    | nditions and Groundwater Levels                                                | 9  |
|        | 6.1               | Topsoil                                                                        | 9  |
|        | 6.2               | Asphaltic Concrete and Granular Fill                                           | 9  |
|        | 6.3               | Fill                                                                           | 9  |
|        | 6.4               | Silty Clay                                                                     | 9  |
|        | 6.5               | Silty Sand Glacial Till                                                        | 10 |
|        | 6.6               | Auger Refusal and Bedrock                                                      | 10 |
|        | 6.7               | Groundwater Level Measurements                                                 | 12 |
| 7.     | Test Pit Investi  | gation of Existing Founding Conditions                                         | 13 |
| 8.     | Site Classificati | on for Seismic Site Response and Liquefaction Potential of Soils               | 14 |
|        | 8.1               | Site Classification for Seismic Site Response                                  | 14 |
|        | 8.2               | Liquefaction Potential of Soils                                                | 14 |
| 9.     | Grade Raise Re    | estrictions                                                                    | 15 |
| 10.    | Site Grading      |                                                                                | 16 |
| 11.    | Foundation Co     | nsiderations                                                                   | 17 |
|        | 11.1              | Footings – Borehole Nos. 23-7, 23-8, 23-12, 24-7 to 24-10 and Testpit No. 24-2 | 17 |
|        | 11.2              | Caissons- Borehole Nos. 23-6, 23-9, 18-3 and Testpit TP24-1                    | 18 |
|        | 11.3              | Control Modulus Columns                                                        | 18 |
|        | 11.4              | Micropiles                                                                     | 18 |
|        | 11.5              | General Comments                                                               | 19 |
| 12.    | Floor Slab and    | Drainage Requirements                                                          | 20 |
| 13.    | Excavation and    | I De-Watering Requirements                                                     | 21 |
|        | 13.1              | Excess Soil Management                                                         | 21 |

| estigation - Proposed Addition and Civil Work |
|-----------------------------------------------|
| of March Secondary School, Ottawa, Ontario    |
| Updated Final Report                          |
| ОТТ-23012778-ВО                               |
| December 12, 2024                             |
|                                               |

|     | 13.2                  | Excavations                                                         |    |
|-----|-----------------------|---------------------------------------------------------------------|----|
|     | 13.2.1                | Foundation Excavations                                              | 21 |
|     | 13.2.2                | Underground Services Excavation                                     | 21 |
|     | 13.2.3                | Overburden (Soil) Excavation                                        |    |
|     | 13.2.4                | Bedrock Excavations                                                 | 22 |
|     | 13.2.5                | Preconstruction Survey and Vibration Monitoring                     | 22 |
|     | 13.2.6                | Excavations - General                                               | 22 |
|     | 13.3                  | Dewatering                                                          | 22 |
| 14. | Backfilling Requ      | uirements and Suitability of On-Site Soils for Backfilling Purposes |    |
| 15. | Pipe Bedding R        | equirements                                                         | 25 |
| 16. | Access Roads a        | nd Parking Lots                                                     |    |
| 17. | <b>Corrosion Pote</b> | ntial                                                               |    |
| 18. | Tree Planting R       | estrictions                                                         | 29 |
| 19. | Additional Com        | iments                                                              | 30 |
| 20. | General Comm          | ents                                                                |    |

# **List of Tables**

| Table I: Summary of Laboratory Testing Program                                                          | 8    |
|---------------------------------------------------------------------------------------------------------|------|
| Table II: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination – Silty Clay    | . 10 |
| Table III: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination – Glacial Till | . 10 |
| Table IV: Summary of Auger and Soil Sampler Refusal and Bedrock Depths (Elevations) in Boreholes        | . 11 |
| Table V: Summary of Unconfined Compressive Strength Test Results – Bedrock Cores                        | . 12 |
| Table VI: Summary of Groundwater Level Measurements                                                     | . 12 |
| Table VII: Summary of Groundwater Level Measurements                                                    | . 17 |
| Table VIII: Recommended Pavement Structure Thicknesses                                                  | . 26 |
| Table IX: Corrosion Test Results on Soil Samples                                                        | . 28 |

# **List of Figures**

- Figure 1 Site Location Plan
- Figures 2 and 3 Testhole Location Plans
- Figures 4 and 5 Test Pit Logs
- Figures 6 to 27 Boreholes Logs
- Figures 28 to 33 Grain-size Distribution Curves

# **List of Appendices**

- Appendix A EXP 2018 Borehole Logs
- Appendix B Bedrock Core Photographs
- Appendix C MASW seismic survey
- Appendix D Laboratory Certificate of Analysis Report
- Legal Notification
- List of Distribution

## **Executive Summary**

EXP Services Inc. (EXP) is pleased to present the results of the geotechnical investigation completed for the proposed addition and civil works for the Earl of March Secondary School, located at 4 The Parkway, Ottawa, Ontario (Figure 1). The terms and conditions of this assignment were outlined in EXP Services Inc. (EXP) proposal number: OTT-23012778-A0 dated December 27, 2023, and authorized by the Ottawa-Carleton District School Board (OCDSB) by PO 333240053061 dated January 17, 2024, as well as a subsequent proposal, dated August 8, 2024, and authorized by the Ottawa-Carleton District School Board (OCDSB) by PO 333240053061 by PO 333240059155, dated August 15, 2024. This report supersedes the final geotechnical report submitted on July 22, 2024, and the updated draft geotechnical report submitted on September 17, 2024.

Drawing No. C04A, titled "Grading plan", dated July 19, 2024 (Issued for Construction), prepared by WSP, indicates that the proposed addition is to be a two-storey structure with an approximate area of 1,600 square metres (m<sup>2</sup>) and will be constructed to the north of the existing building with a proposed Finished Floor Elevation (FFE) of Elevation 94.11 m. It is understood from emails from the OCDSB that the building will not have a basement. Drawing No. C04A indicates that additional surface parking and laneways will also be constructed as part of the development. The design Underside of Footing (USF) elevation is not known at the time of this report.

It is understood that the proposed civil works will include the installation of a new watermain and new storm and sanitary sewers. The services are proposed for both the school property and on The Parkway. Drawing Nos. C05A and C05B, titled "Site servicing plans", dated July 19, 2024 (Issued for Construction), prepared by WSP, indicate that the new watermain will be a 150 mm diameter polyvinyl chloride (PVC) pipe. The new storm and sanitary services will also be PVC pipes with diameters ranging from 200 mm to 375 mm as well as a 450 mm diameter concrete storm sewer. The provided storm and sanitary pipe inverts range from Elevation 92.43 m to Elevation 89.97 m; approximately 1.3 m to 3.3 m below the existing grade. The inverts for the proposed watermain were not included and it has been assumed that the watermain pipe inverts will be up to 2.4 m below the existing grade.

Asbuilt Drawings original school building by Helmer and Tutton (H&T), 1968, were also provided to EXP and indicate that, at the location of the proposed addition, the existing foundations are footings founded on the sound bedrock surface. The design top of footing is indicated as Elevation 91.7 m. The Asbuilt drawings also note that at five footing locations, the founding conditions were changed bedrock during construction from footings to end bearing piling extending to sound bedrock. This change may have been due to bedrock being deeper than the anticipated in the design. The locations where the Asbuilt plans indicate that the footings were changed to end bearing piles are shown as red squares on Figure 3a.

The fieldwork for the geotechnical investigation was undertaken in two (2) stages. The first stage was undertaken between January 8 and 9, 2024 and consists of the drilling of twelve (12) boreholes (Borehole Nos. 23-1 to 23-12) to auger refusal and termination depths ranging from 2.3 m to 7.5 m below the existing grade. Due to the variability of the bedrock conditions as well as the proposed civil works, a second stage was undertaken between August 28 and September 2, 2024, and consists of the drilling of ten (10) boreholes (Borehole Nos. 24-1 to 24-10) to auger refusal and termination depths ranging from 2.1 m to 4.8 m below the existing grade. Two (2) test pits (Test Pit Nos. 1 and 2) were also excavated at the northern extent of the existing building to determine the existing founding conditions and founding types. The test pits were excavated to depths of 3.0 m and 3.5 m below the existing grade, in Test Pit Nos. 1 and 2, respectively.

The borehole information indicates the subsurface conditions consist of a surficial layer (topsoil, asphaltic concrete and fill) underlain by native silty clay which extends to 1.4 m to 5.8 m depths (Elevation 93.4 m to Elevation 88.1 m). The silty clay is underlain by glacial till. Refusal to augers was met in all the boreholes at 1.7 m to 7.5 m depths (Elevation 93.1 m to Elevation 86.4 m) below the existing grade. DCPT cone refusal was encountered at 6.5 m depth (Elevation 87.5 m). The type and presence of bedrock was confirmed in six of the boreholes by washboring and core drilling techniques which indicates that diorite bedrock underlies the site. The groundwater table at the site was established to range from 1.6 m to 3.2 m depths (Elevation 93.0 m to Elevation 90.1 m).

The results of the test pit investigation indicates that at Test Pit No. 1 (Figure No. 4) the foundation wall is sitting on a grade beam at 2.2 m depth (Elevation 91.8 m). Excavation at this testpit location was terminated at 3.0 m depth (Elevation 91.0 m) and the testpit was extended by use of a Dynamic Cone Penetration Test (DCPT) adjacent to the borehole to the depth of DCPT cone refusal, 6.5 m depth (Elevation 87.5 m), approximately 3.7 m below the underside of the grade beam. It is therefore likely that at this location, the building is supported by a deep foundation (i.e. piles). This location corresponds to where the H&T plans indicate that a footing was switched to an end bearing pile. At Test Pit No. 2, the existing building is supported by a footing founded bedrock at 3.5 m depth (Elevation 90.5 m).

The results of the seismic shear wave survey conducted at the site are provided in the report attached in Appendix C. The survey indicates a shear wave velocity of >1,500 m/s. For footings placed on sound bedrock and caissons or micropiles with **caps less than 3 m** from the sound bedrock surface, Table 4.1.8.4.A of the 2012 Ontario Building Code (as amended January 2022) indicates a site classification for seismic response of **Class A.** For caissons or micropiles with **caps more than 3 m** from the sound bedrock surface, Table 4.1.8.4.A of the 2012 Ontario Building Code (as amended January 2022) indicates a site classification for seismic response of **Class A.** For caissons or micropiles with **caps more than 3 m** from the sound bedrock surface, Table 4.1.8.4.A of the 2012 Ontario Building Code (as amended January 2022) indicates a site classification for seismic response of **Class C.** 

Based on proposed Finished Floor Elevation (FFE) of Elevation 94.11 m the proposed addition of, a minor grade raise will be required at the proposed addition location. For preliminary design purposes, a grade raise of up to 0.5 m is considered to be permissible from a geotechnical point of view.

Based on the subsurface condition, it is considered that a combination of shallow foundation (footings) and deep foundation (piles, caisson, micropiles) will be required in the area of the proposed addition. Controlled Modulus Column (CMC) are also considered feasible in the area of deep bedrock, however a specialized contractor should be contacted to investigate the feasibility of this option.

At the location of Borehole Nos. 23-7, 23-8, 23-12, 24-7 to 24-10 and Testpit No. 24-2, strip and spread footings founded on the sound diorite bedrock are considered feasible. Footings founded on sound, competent and free of soil filled seams, may be designed for a factored geotechnical resistance at Ultimate Limit State (ULS) of 1,500 kPa.

At the location of Borehole Nos. 23-6, 23-9, 18-3 and Testpit 24-1, caissons (drilled piers) are considered feasible. Caissons should be a minimum of 760 mm in diameter with a socketed length equal to one (1) to three (3) times the socket diameter into the competent, sound bedrock. For these conditions caissons may be designed to carry the load based on sidewall (shaft) resistance between the concrete and bedrock, neglecting end bearing capacity, for a factored sidewall resistance at ultimate limit state (ULS) of 1,000 kPa. The SLS bearing pressure of the bedrock, required to produce 25 mm settlement of the structure will be much larger than the recommended value for factored geotechnical resistance at ULS. Therefore, the factored geotechnical resistance at ULS will govern the design for footings founded on bedrock. Micro piles are also feasible and can be discussed further if selected by the structural engineer.

The floor slab for the proposed building may be designed and constructed as a slab-on-grade placed on a 200 mm thick 19 mm sized clear stone bed placed on a minimum 300 mm thick engineered fill pad set on the approved native subgrade constructed in accordance with Section 9 of this report. The clear stone would minimize the capillary rise of moisture from the sub-soil to the floor slab. Alternatively, the floor slab may be cast on a 200 mm thick bed of OPSS Granular A overlain by a vapour barrier. Adequate saw cuts should be provided in the floor slabs to control cracking. A perimeter drainage system should be provided around the proposed addition. An underfloor drainage system will not be required for the proposed school building.

Excavations for the proposed addition and proposed services in the overburden may be undertaken by conventional heavy mechanical equipment and should comply with the most recent Occupational Health and Safety Act (OHSA), Ontario Regulations 213/91 (August 1, 1991). Excavation of side slopes in the sound diorite bedrock may be undertaken with near vertical sides subject to examination by a geotechnical engineer. Small quantities of the diorite bedrock may be excavated using a hoe ram however, this process is expected to be very slow. Where more significant excavation is required into the Diorite bedrock, such as for the proposed sanitary service in the vicinity of Boreholes Nos. 24-4 and 24-5. excavation can be undertaken by line drilling and blasting methods.

It is anticipated that excavations will extend up to 1.3 m below the recorded groundwater level and seepage of the surface and subsurface water into the excavations is anticipated. However, it should be possible to remove any water entering the excavation by collecting water in the perimeter of the excavation or pumping from sumps. In areas of high infiltration or in areas where more permeable soil layers may exist, a higher seepage rate should be anticipated and will require high-capacity pumps to keep the excavation dry.

It is anticipated that the majority of the material required for backfilling purposes in the interior and exterior of the proposed building and for trench backfill would have to be imported and should preferably conform to Ontario Provincial Standard Specification (OPSS) 1010 Granular B Type II and OPSS 1010 Select Subgrade Material (SSM) specifications.

Pavement structure for light duty traffic areas (parking lots, access pathways) should consist of 65 mm thick asphaltic concrete, 150 mm thick OPSS Granular A base and 450 mm thick OPSS Granular B Type II subbase. Pavement structure for heavy duty traffic areas (trucks and emergency vehicles) should consist of 110 mm thick asphaltic concrete, 150 mm thick OPSS Granular A base and 600 mm thick OPSS Granular B Type II subbase. The reinstatement of the pavement structure for The Parkway should consist of 140 mm thick asphaltic concrete, 150 mm thick OPSS Granular A base and 600 mm thick aphaltic concrete, 150 mm thick OPSS Granular A base and 600 mm thick OPSS Granular B Type II subbase.

The above and other related considerations are discussed in greater detail in the main body of the attached geotechnical report.

🏶exp.

### 1. Introduction

EXP Services Inc. (EXP) is pleased to present the results of the geotechnical investigation completed for the proposed addition and civil works for the Earl of March Secondary School, located at 4 The Parkway, Ottawa, Ontario (Figure 1). The terms and conditions of this assignment were outlined in EXP Services Inc. (EXP) proposal number: OTT-23012778-A0 dated December 27, 2023, and authorized by the Ottawa-Carleton District School Board (OCDSB) by PO 333240053061 dated January 17, 2024, as well as a subsequent proposal, dated August 8, 2024, and authorized by the Ottawa-Carleton District School Board (OCDSB) by PO 333240053061 dated January 17, 2024, as well as a subsequent proposal, dated August 8, 2024, and authorized by the Ottawa-Carleton District School Board (OCDSB) by PO 333240059155, dated August 15, 2024. This report supersedes the final geotechnical report submitted on July 22, 2024, and the updated draft geotechnical report submitted on September 17, 2024.

Drawing No. C04A, titled "Grading plan", dated July 19, 2024 (Issued for Construction), prepared by WSP, indicates that the proposed addition is to be a two-storey structure with an approximate area of 1,600 square metres (m<sup>2</sup>) and will be constructed to the north of the existing building with a proposed Finished Floor Elevation (FFE) of Elevation 94.11 m. It is understood from emails from the OCDSB that the building will not have a basement. Drawing No. C04A indicates that additional surface parking and laneways will also be constructed as part of the development. The design Underside of Footing (USF) elevation is not known at the time of this report.

It is understood that the proposed civil works will include the installation of a new watermain and new storm and sanitary sewers. The services are proposed for both the school property and on The Parkway. Drawing Nos. C05A and C05B, titled "Site servicing plans", dated July 19, 2024 (Issued for Construction), prepared by WSP, indicate that the new watermain will be a 150 mm diameter polyvinyl chloride (PVC) pipe. The new storm and sanitary services will also be PVC pipes with diameters ranging from 200 mm to 375 mm as well as a 450 mm diameter concrete storm sewer. The provided storm and sanitary pipe inverts range from Elevation 92.43 m to Elevation 89.97 m; approximately 1.3 m to 3.3 m below the existing grade. The inverts for the proposed watermain were not included and it has been assumed that the watermain pipe inverts will be up to 2.4 m below the existing grade.

The geotechnical investigation was undertaken to:

- a) Establish the subsurface soil and groundwater conditions at (24) twelve boreholes and two (2) testpit locations,
- b) Classify the site for seismic site response in accordance with the requirements of the 2012 Ontario Building Code (as amended January 1,2022) and assess the potential for liquefaction of the subsurface soils during a seismic event,
- c) Comment on grade-raise restrictions and provide site grading requirements,
- d) Make recommendations regarding the most suitable type of foundations, founding depth and bearing pressure at serviceability limit state (SLS) and factored geotechnical resistance at ultimate limit state (ULS) of the founding strata and comment on the anticipated total and differential settlements of the recommended foundation type for the proposed building addition,
- e) Comment on excavation conditions and de-watering requirements during construction of the proposed addition and new services, (watermain, sanitary service and storm sewer),
- f) Provide pipe bedding requirements for the proposed new underground services;
- g) Discuss backfilling requirements and suitability of on-site soils for backfilling purposes,
- h) Recommend pavement structure thicknesses for access roads and parking lots and re-instatement of the roadway along the Parkway, and
- i) Comment on the corrosion potential of subsurface soils to buried concrete and metal structures/members;

The comments and recommendations given in this report are based on the assumption that the above-described design concepts will proceed into construction. If changes are made either in the design phase or during construction, this office must be retained to review these modifications. The result of this review may be a modification of our recommendations, or it may require additional field or laboratory work to check whether the changes are acceptable from a geotechnical viewpoint.

<sup>®</sup>exp.

## 2. Site Description

The Earl of March Secondary School is located in the area bounded by The Parkway to the North, Campeau Drive to the South and Teron Road to the east. Residences are present to the West of the school. The existing building consists of a two-storey structure with no basement, constructed in 1968 with an addition constructed to the south of the existing building in 2014. The Finished Floor Elevation (FFE) of the original structure has been indicated to be Elevation 94.09 m.

At the time of the January 2024 investigation the location of the proposed addition consisted of school portables situated on grass covered ground surrounded by asphaltic concrete walkways and fire access roads. At the time of the September 2024 investigation, the portables at the location of the proposed addition have been moved outside of the addition area.

The topography of the site slopes upwards to the west with borehole elevations ranging from Elevation 93.29 m to Elevation 94.80 m.



# 3. Background Information

#### 3.1 Asbuilt Drawings (1968)

An Asbuilt drawing set for the original school building construction, Drawings S-1 to S-21, prepared by Helmer and Tutton Architects, dated December 1968 (H&T, 1968) were provided as background material.

Drawing S-01, Key Plan and General Notes indicates the following:

- Bearing capacity on sound bedrock is 958 kPa (20 ksf);
- Bearing capacity on overburden is 287 kPa (6 ksf);
- Unless otherwise noted, all piles and footings are to be founded on sound bedrock; and
- All piles are to be Franki piles unless otherwise noted;

Drawing S-18, Foundation and Ground Floor Plan and Details, indicates the following details along the north exterior wall, where the proposed addition is to be located:

- Foundations along the north wall were planned as footings extending to the sound bedrock.;
- The design top of the footings was indicated at Elevation 91.74 m (301'-0"). The exception to this is the footing at the north corner of the building with a top of footing at Elevation 92.0 m (302'-0");
- Five of the footings were noted as being changed to end bearing piles, extending to bedrock, during construction (as indicated by red squares on Figure 3a).
- It was also noted that all piles were 560 mm (22") Franki expanded base piles with a minimum capacity of 980 kN (100 tons).

#### 3.2 Inspec-Sol Report (2014)

A geotechnical investigation was carried out by Inspec-Sol in 2014 for the building addition and additional parking areas to the south of the original school building. The results of the investigation were provided in the report titled, *Geotechnical Investigation Report, Earl of March Secondary School Proposed Addition, 4 The Parkway, Ottawa, Ontario, Project Number T021165-A1, dated November 25, 2013, revised March 20, 2014.* 

The following were the relevant results of the investigation:

- Test pits were carried along the southeast wall of the existing school building. It was confirmed that the southern portion of the building is supported on piles.
- The top of the existing pile cap ranged from 0.9 m to 1.1 m depth below the existing grade (Elevation 93.1 m to Elevation 87.5 m). The pile caps were typically 0.5 m to 0.9 m thick.
- The depth of auger refusal ranged from 0.5 m to 10.5 m depth (Elevation 93.6 m to Elevation 83.4 m)
- The presence of bedrock was confirmed by coring at 5.3 m to 14.0 m depths (Elevation 88.6 m to Elevation 79.9 m)

#### 3.3 EXP Geotechnical Report (2018)

EXP also completed a geotechnical investigation at the site in 2018 and the results of the geotechnical investigation are provided in the report titled, *Geotechnical Investigation - Proposed Hydrants, Earl of March Secondary School 4 The Parkway, Ottawa, Ontario,* dated May 30, 2018 (EXP Project No. OTT-00245378-C0). Borehole Nos. 18-2 and 18-3 from the 2018 geotechnical investigation are located within the bounds of the current investigation and their locations are shown on the Borehole Location Plans, Figures 2 and 3. The 2018 borehole logs are provided in Appendix A. Where referenced in this report, a prefix of 18- has been added to the borehole numbers from the EXP 2018 investigation.

🎘 exp.

## 4. Geology of the Site

#### 4.1 Surficial Geology Map

The surficial geology map (Map 1506A, Surficial Geology Ottawa, Geological Survey of Canada, 1981) indicates the site is underlain by Precambrian bedrock with a deposit of clay and silt underlying erosional terraces in the general area. The surficial deposits are shown in Image 1 below.



Clay and silt underlying erosional terraces; upper part of marine deposits removed to variable depth by fluvial erosion. Includes sands and pockets of nonmarine silts.

Precambrian Bedrock

Image 1 – Surficial Geology

#### 4.2 Bedrock Geology Map

The bedrock geology map (Map 1508A, Generalized Bedrock Geology, Ottawa-Hall, Geological Survey of Canada, 1985) indicates the site is underlain by various Precambrian bedrock types. The bedrock geology is shown in Image 2 below.



- Paragneiss, pelitic and psammopelitic schists and
  - Diorite, gabbro, anorthosite and metagabbro
- Quartzite, interlayered paragneiss; quartzose paragneiss

Image 2 – Bedrock Geology



## 5. Procedure

#### **5.1 Test Hole Fieldwork**

The fieldwork for the geotechnical investigation was undertaken in two (2) stages. The first stage was undertaken between January 8 and 9, 2024 and consists of the drilling of twelve (12) boreholes (Borehole Nos. 23-1 to 23-12) to auger refusal and termination depths ranging from 2.3 m to 7.5 m below the existing grade. Due to the variability of the bedrock conditions as well as the proposed civil works, a second stage was undertaken between August 28 and September 2, 2024, and consists of the drilling of ten (10) boreholes (Borehole Nos. 24-1 to 24-10) to auger refusal and termination depths ranging from 2.1 m to 4.8 m below the existing grade. Two (2) test pits (Test Pit Nos. 1 and 2) were also excavated at the northern extent of the existing building to determine the existing founding conditions and founding types. The test pits were excavated to depths of 3.0 m and 3.5 m below the existing grade, in Test Pit Nos. 1 and 2, respectively. A dynamic cone penetration test (DCPT) was conducted next to Test Pit Nos. 1 extending the test pit to the depth of DCPT cone refusal, 6.5 m below the existing grade. This DCPT was done in attempt to establish the depth of the bedrock at this location.

The borehole and test pit locations were cleared by a private utility locator retained by EXP. The fieldwork for all the phases were supervised on a full-time basis by a representative from EXP and the location and elevation of the test holes (Borehole and Test Pits) are shown on the testhole location plans, Figure 2, Figure 3a (Testhole Location Plan – Proposed Addition) and Figure 3b (Testhole Location Plan – Underground Services).

The boreholes were drilled using either a CME-55 or CME-75 truck-mounted drill rig equipped with continuous flight hollowstem auger equipment and rock coring capabilities, operated by a drilling contractor subcontracted to EXP. Standard penetration tests (SPTs) were performed in all the boreholes at 0.8 m depth intervals and the soil samples were retrieved by the split-spoon sampler. The undrained shear strength of the clayey cohesive soils were measured by conducting in-situ vane tests and selected samples were also tested with a penetrometer. Six (6) boreholes were advanced beyond the depth of refusal by conventional coring techniques using the N-size core barrel. A field record of wash water return, colour of wash water and any sudden drops of the drill rods were kept during rock coring operations. The subsurface soil conditions in each borehole were logged with each soil sample placed in labelled plastic bags. Similarly, the rock cores were visually examined, placed in core boxes, identified, and logged.

Nineteen (19) mm diameter piezometers were installed in selected boreholes for long-term monitoring of the groundwater table. The piezometers were installed in accordance with EXP standard practice, and the installation configuration is documented on the respective borehole log. The boreholes were backfilled upon completion of drilling.

The test pits were excavated using a rubber tire backhoe. Samples of the soils exposed in the test pits were collected at selected depth intervals. The test pits were backfilled upon completion of excavating operations and the backfill was nominally packed in place using the backhoe bucket. The test pit logs, including photographs, are included as Figures 4 and 5.

#### 5.2 Laboratory Testing Program

On completion of the borehole fieldwork, the soil and rock samples were transported to the EXP laboratory in Ottawa where they were examined by a geotechnical engineer and logs of boreholes prepared. All soil samples were classified in accordance with the Unified Soil Classification System (USCS) and the modified Burmister System (2006 Fourth Edition of the Canadian Foundation Engineering Manual (CFEM)).

The geotechnical engineer also assigned the laboratory testing program which is summarized in Table I.



| Table I: Summary of Laboratory Testing Program                |    |  |  |  |  |
|---------------------------------------------------------------|----|--|--|--|--|
| Type of Test Number of Tests Completed                        |    |  |  |  |  |
| Soil Samples                                                  |    |  |  |  |  |
| Moisture Content Determination                                | 58 |  |  |  |  |
| Unit Weight Determination                                     | 15 |  |  |  |  |
| Grain Size Analysis                                           | 4  |  |  |  |  |
| Atterberg Limit Determination                                 | 4  |  |  |  |  |
| Corrosion Analysis (pH, sulphate, chloride and resistivity)   | 4  |  |  |  |  |
| Rock Samples                                                  |    |  |  |  |  |
| Unconfined Compressive Strength and Unit Weight Determination | 5  |  |  |  |  |

# 6. Subsurface Conditions and Groundwater Levels

A detailed description of the subsurface conditions and groundwater levels from the boreholes are given on the attached Borehole Logs, Figure 6 to 27. The borehole logs and related information depict subsurface conditions only at the specific locations and at the times indicated. Subsurface conditions and water levels at other locations may differ from conditions at the locations where sampling was conducted. The passage of time also may result in changes in the conditions interpreted to exist at the locations where sampling was conducted.

Boreholes were drilled to provide representation of subsurface conditions as part of a geotechnical exploration program and are not intended to provide evidence of potential environmental conditions.

It should be noted that the soil boundaries indicated on the borehole logs are inferred observations during drilling operations. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Notes on Sample Descriptions" preceding the borehole logs form an integral part of this report and should be read in conjunction with this report.

A review of the borehole logs indicates the following subsurface conditions with depth and groundwater level measurements.

#### 61 Topsoil

A 75 mm to 450 mm thick surficial topsoil layer was encountered in all the boreholes expect Borehole Nos. 23-8, 24-4, 24-5 and 24-7 to 24-10.

#### **& Asphaltic Concrete**

A 60 mm to 140 mm thick asphaltic concrete layer was encountered in Borehole Nos. 23-8, 24-4, 24-5, 24-7 to 24-9.

#### මි.මී Fill

The surficial topsoil, asphaltic concrete or the surface are underlain by fill in all the boreholes, except Borehole Nos. 23-6 and 18-2, and extends to 0.5 m to 2.2 m depths (Elevation 93.9 m to Elevation 91.1 m). The fill ranges in consistency from silty clay to silty sand with gravel and organics. Possible debris, cobbles or boulders are inferred from auger grinding within the fill layer in Borehole No. 23-3. The fill in a loose to very dense state based on standard penetration tests (SPT) N-values ranging from 6 to 62. The moisture content ranged from 2 to 37 percent.

#### Silty Clay

A silty clay layer was contacted below the fill or the topsoil all the boreholes except in Borehole Nos. 23-1, 23-3 and 24-4. The silty clay extended to 1.4 m to 5.8 m depths (Elevation 93.4 m to Elevation 88.1 m). Borehole No. 18-3 terminated within this layer at 3.9 m depth (Elevation 90.0 m). The undrained shear strength of the silty clay ranges from 34 kPa to 210 kPa indicating a firm to hard consistency. The natural moisture content and unit weights ranges from 21 percent to 54 percent and 17.0 kN/m<sup>3</sup> to 20.1 kN/m<sup>3</sup>, respectively.

Results from grain-size analysis and Atterberg limit determination conducted on two (2) samples of the silty clay from the 2024 investigation and one (1) sample from the 2018 investigation are summarized in Table II. The grain-size distribution curves are shown in Figures 28 to 30.



| Table II: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination – Silty Clay |           |                                              |      |      |      |                 |                  |                     |                                                      |
|------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------|------|------|------|-----------------|------------------|---------------------|------------------------------------------------------|
| Borehole No.                                                                                         |           | Grain-Size Analysis (%) and Atterberg Limits |      |      |      |                 |                  |                     | erg Limits                                           |
| (BH) –<br>Sample No.<br>(SS)                                                                         | Depth (m) | Gravel                                       | Sand | Silt | Clay | Liquid<br>Limit | Plastic<br>Limit | Plasticity<br>Index | Soil Classification (USCS)                           |
| 23-5 -SS2                                                                                            | 0.8-1.4   | 0                                            | 9    | 44   | 47   | 49              | 21               | 28                  | Silty Clay of Medium Plasticity (CI) -<br>Trace Sand |
| 23-6 -SS4                                                                                            | 2.3-2.9   | 0                                            | 9    | 41   | 50   | 47              | 19               | 28                  | Silty Clay of Medium Plasticity (CI) -<br>Trace Sand |
| 18-3 -SS4                                                                                            | 2.3-2.9   | 0                                            | 4    | 42   | 54   | 49              | 23               | 26                  | Silty Clay of Medium Plasticity (CI) -<br>Trace Sand |

Based on a review of the results of the grain-size analysis and Atterberg limits, the soil may be classified as a silty clay of medium plasticity (CI) with trace sand, in accordance with the Unified Soil Classification System (USCS).

#### 6.5 Silty Sand Glacial Till

The fill or the silty clay are underlain by glacial till in all the boreholes except Borehole Nos. 23-2, 23-5, 24-8, 23-10 and 24-4 to 24-7. Borehole No. 18-3 terminated within the silty clay layer. The glacial till was encountered at 1.4 m to 5.8 m depths (Elevation 93.4 m to Elevation 88.1 m). The glacial till contain cobbles and boulders and is in a loose to very dense state as indicated by SPT "N" values of 4 to 69 blows. The natural moisture content and unit weight of the glacial till ranges from 6 percent to 42 percent and 18.3 kN/m<sup>3</sup> to 23.5 kN/m<sup>3</sup>, respectively.

The results from the grain-size analysis conducted on two (2) samples of the glacial till from the 2024 investigation as well as (1) sample from the 2018 drilling investigation are summarized in Table III. The grain-size distribution curves are shown in Figures Nos. 31 to 33.

| Table III: Summary of Results from Grain-Size Analysis and Atterberg Limit Determination – Glacial Till |           |                                              |      |      |      |                     |                                              |  |
|---------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------|------|------|------|---------------------|----------------------------------------------|--|
|                                                                                                         | Depth (m) | Grain-Size Analysis (%) and Atterberg Limits |      |      |      |                     | rg Limits                                    |  |
| Borehole No. (BH)<br>– Sample No. (SS)                                                                  |           | Gravel                                       | Sand | Silt | Clay | Plasticity<br>Index | Soil Classification (USCS)                   |  |
| 23-1 - SS4                                                                                              | 2.3-2.9   | 17                                           | 47   | 27   | 9    | Non-plastic         | Silty Sand (SM) –<br>Some Gravel, Trace Clay |  |
| 23-11 - SS7                                                                                             | 4.6-5.2   | 11                                           | 45   | 28   | 16   | Non-plastic         | Silty Sand (SM) –<br>Some Gravel, Some Clay  |  |
| 18-2 - SS2                                                                                              | 1.5-2.1   | 12                                           | 48   | 29   | 11   |                     | Silty Sand (SM) –<br>Some Gravel, Some Clay  |  |

Based on a review of the laboratory test results, the glacial till may be classified as a silty sand (SM) with some gravel and trace to some clay in accordance with the USCS.

#### 6.6 Auger Refusal and Bedrock

Auger refusal was met at 1.7 m to 7.5 m depths (Elevation 93.1 m to Elevation 86.4 m) in all the boreholes.

A summary of the auger refusal depths as well as the depth of bedrock confirmed by coring are shown in Table IV.

| Table IV: Summary of Auger and Soil Sampler Refusal and Bedrock Depths (Elevations) in Boreholes |                                    |                                     |                                                  |                                                        |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|--------------------------------------------------|--------------------------------------------------------|--|--|--|
| Borehole<br>/TestPit No.                                                                         | Ground<br>Surface<br>Elevation (m) | Refusal Depth (m)<br>(Elevation(m)) | Depth<br>(Elevation)<br>of Proven<br>Bedrock (m) | Comment wrt to Depth (Elevation)<br>of Bedrock Surface |  |  |  |
| BH23-1                                                                                           | 94.61                              | 3.3 (91.3)                          |                                                  | Auger refusal at 3.3 m                                 |  |  |  |
| BH23-2                                                                                           | 93.89                              | 1.8 (92.1)                          | 1.8 (92.1)                                       | 3.2 m length of bedrock cored below 1.8 m depth        |  |  |  |
| BH23-3                                                                                           | 94.06                              | 3.1 (91.0)                          |                                                  | Auger refusal at 3.1 m                                 |  |  |  |
| BH23-4                                                                                           | 93.98                              | 2.3 (91.7)                          |                                                  | Auger refusal at 2.3 m                                 |  |  |  |
| BH23-5                                                                                           | 93.77                              | 2.6 (91.2)                          |                                                  | Auger refusal at 2.6 m                                 |  |  |  |
| BH23-6                                                                                           | 93.90                              | 4.5 (89.4)                          |                                                  | Auger refusal at 4.5 m                                 |  |  |  |
| BH23-7                                                                                           | 94.12                              | 2.6 (91.5)                          | 2.6 (91.5)                                       | 1.5 m length of bedrock cored below 2.6 m depth        |  |  |  |
| BH23-8                                                                                           | 94.05                              | 2.9 (91.2)                          | 2.9 (91.2)                                       | 2.7 m length of bedrock cored below 2.9 m depth        |  |  |  |
| BH23-9                                                                                           | 93.95                              | 7.5 (86.5)                          |                                                  | Auger refusal at 7.5 m                                 |  |  |  |
| BH23-10                                                                                          | 94.18                              | 3.8 (90.4)                          |                                                  | Auger refusal at 3.8 m                                 |  |  |  |
| BH23-11                                                                                          | 94.19                              | 5.6 (88.6)                          |                                                  | Auger refusal at 5.6 m                                 |  |  |  |
| BH23-12                                                                                          | 94.07                              | 3.0 (91.1)                          |                                                  | Auger refusal at 3.0 m                                 |  |  |  |
| BH18-2                                                                                           | 93.98                              | 2.1 (91.9)                          |                                                  | Auger refusal at 2.1 m                                 |  |  |  |
| BH 18-3                                                                                          | 93.85                              | >3.0 (<90.0)                        |                                                  | Borehole terminated at 3.9 m depth (no refusal)        |  |  |  |
| BH24-1                                                                                           | 94.80                              | 1.7 (93.1)                          | 1.7 (93.1)                                       | 3.1 m length of bedrock cored below 1.7 m depth        |  |  |  |
| BH24-2                                                                                           | 93.82                              | 3.9 (89.9)                          |                                                  | Auger refusal at 3.9 m                                 |  |  |  |
| BH24-3                                                                                           | 93.77                              | 4.2 (89.6)                          |                                                  | Auger refusal at 4.2 m                                 |  |  |  |
| BH24-4                                                                                           | 93.52                              | 2.1 (91.4)                          | 2.1 (91.4)                                       | 2.7 m length of bedrock cored below 2.1 m depth        |  |  |  |
| BH24-5                                                                                           | 93.29                              | 3.0 (90.3)                          | 3.0 (90.3)                                       | 1.9 m length of bedrock cored below 3.0 m depth        |  |  |  |
| BH24-6                                                                                           | 93.82                              | 3.0 (90.8)                          |                                                  | Auger refusal at 3.0 m                                 |  |  |  |
| BH24-7                                                                                           | 94.02                              | 3.4 (90.6)                          |                                                  | Auger refusal at 3.4 m                                 |  |  |  |
| BH24-8                                                                                           | 93.99                              | 3.3 (90.7)                          |                                                  | Auger refusal at 3.3 m                                 |  |  |  |
| BH24-9                                                                                           | 93.99                              | 2.7 (91.3)                          |                                                  | Auger refusal at 2.7 m                                 |  |  |  |
| BH24-10                                                                                          | 94.07                              | 2.1 (92.0)                          |                                                  | Auger refusal at 2.1 m                                 |  |  |  |
| TP-1                                                                                             | 93.96                              | 6.5 (87.5)                          |                                                  | DCPT Refusal at 6.5 m                                  |  |  |  |
| TP-2                                                                                             | 93.96                              | 3.5 (90.5)                          | 3.5 (90.5)                                       | Observed bedrock at 3.5 m depth                        |  |  |  |

A review borehole logs Indicates that the total core recovery (TCR) ranges between 80 percent and 100 percent and the rock quality designation (RQD) ranges between 50 and 84 percent indicating a diorite bedrock of a fair to good quality. Photographs of the bedrock cores are included in Appendix B.

Unit weight determination and unconfined compressive strength tests were conducted on five (5) rock core samples. The test results are summarized in Table V.

\*ехр.

| Table V: Summary of Unconfined Compressive Strength Test Results – Bedrock Cores |           |                     |                                             |                                                    |  |  |  |
|----------------------------------------------------------------------------------|-----------|---------------------|---------------------------------------------|----------------------------------------------------|--|--|--|
| Borehole (BH) No. –<br>Run No.                                                   | Depth (m) | Unit Weight (kN/m³) | Unconfined<br>Compressive Strength<br>(MPa) | Classification of Rock<br>with respect to Strength |  |  |  |
| 23-2 Run1                                                                        | 2.6 - 2.7 | 28.6                | 154                                         | Very Strong R5                                     |  |  |  |
| 23-7 Run1                                                                        | 2.9 - 3.1 | 26.7                | 214                                         | Very Strong R5                                     |  |  |  |
| 24-1 Run 2                                                                       | 3.3 - 3.5 | 28.0                | 142                                         | Very Strong R5                                     |  |  |  |
| 24-4 Run 1                                                                       | 2.3 - 2.5 | 29.4                | 175                                         | Very Strong R5                                     |  |  |  |
| 24-5 Run 1                                                                       | 3.0 - 3.1 | 29.1                | 220                                         | Very Strong R5                                     |  |  |  |

A review of the test results in Table IV indicates the strength of the rock may be classified as very strong (R5) in accordance with the Canadian Foundation Engineering Manual (CFEM), Fifth Edition, 2023.

#### **6.7 Groundwater Level Measurements**

The groundwater level was measured in each borehole upon completion and ranges from 0.9 to 4.0 m depth (Elevation 92.6 m to 90.2 m).

A summary of the groundwater level measurements taken at time of completion and in the boreholes equipped with piezometers on February 15, 2024, and September 13, 2024, are shown in Table VI.

| Table VI: Summary of Groundwater Level Measurements |                                 |                                                   |                               |                                                   |                               |  |  |
|-----------------------------------------------------|---------------------------------|---------------------------------------------------|-------------------------------|---------------------------------------------------|-------------------------------|--|--|
| Borehole No.                                        | Ground Surface<br>Elevation (m) | February 15                                       | 5, 2024                       | September 13, 2024                                |                               |  |  |
| (BH)                                                |                                 | Elapsed Time in Days from<br>Date of Installation | Depth Below Ground<br>Surface | Elapsed Time in Days from Date<br>of Installation | Depth Below Ground<br>Surface |  |  |
| 23-1                                                | 94.61                           | 38 1.6 (93.0 m) Inaccessible                      |                               |                                                   | 2                             |  |  |
| 23-2                                                | 93.98                           | 38                                                | 2.2 (91.7 m) Inaccessible     |                                                   |                               |  |  |
| 23-8                                                | 94.12                           | Inaccess                                          | Inaccessible                  |                                                   | 2.8 (91.3 m)                  |  |  |
| 23-9                                                | 93.95                           | Inaccess                                          | ible                          | Well not four                                     | nd                            |  |  |
| 24-1                                                | 94.80                           |                                                   |                               | 11                                                | 3.1 (91.7 m)                  |  |  |
| 24-5                                                | 93.29                           |                                                   |                               | 11                                                | 3.2 (90.1 m)                  |  |  |
| 24-9                                                | 93.99                           |                                                   |                               | 14                                                | 2.7 (91.3 m)                  |  |  |

The groundwater level ranges from 1.6 m to 3.2 m depths (Elevation 93.0 m to Elevation 91.0 m). It should be noted that the portables at the school were moved subsequent to the initial geotechnical investigation in January 2024 and portables have been moved over top of the piezometers at Borehole Nos. 23-1 and 23-2 and therefore the piezometers could not be measured in September 2024. The piezometer at Borehole Nos. 23-8 and 23-9 were not accessible in February 2024 due to ice accumulation. The piezometer at Borehole No. 23-9 was not found in September 2024 and the flush mount may have been removed.

The groundwater levels were determined in the boreholes at the time and under the condition stated in this report. Note that fluctuations in the level of groundwater may occur due to a seasonal variation such as precipitation, snowmelt, rainfall activities, and other factors not evident at the time of measurement and therefore may be at a higher level during wet weather periods.

It is recommended that another set of groundwater readings be collected before issuance of the final report.

# 7. Test Pit Investigation of Existing Founding Conditions

Two (2) test pits (Test Pit Nos. 1 and 2) were excavated at the northern extent of the existing building for the purpose of exposing the existing foundations and assessing the founding type and founding conditions. The findings of the testpit investigation are presented in Figures 4 and 5. The following observations were made:

Test Pit No. 1.

- The foundation wall is a poured concrete wall with a width of approximately 0.4 m.
- The foundation wall is sitting on a concrete beam, approximately 0.5 m in thickness, at 2.2 m depth (Elevation 91.8 m)
- A void of approximately 75 mm was observed between the foundation wall and the concrete beam
- The concrete beam is underlain by granular fill.
- A Dynamic Cone Penetration Test was carried out adjacent to the test pit and extended to a refusal depth of 6.5 m below the existing grade (Elevation 87.5 m) approximately 3.7 m below the underside of the grade beam.
- Water was observed at 3.0 m depth (Elevation 91.0 m)
- No perimeter drainage was noted
- The existing foundation wall was noted as not having any damp proofing or drainage board.

Test Pit No. 2.

- The foundation wall is a poured concrete wall with a width of approximately 0.8 m.
- The foundation wall extended to a depth of 2.5 m below the existing grade (Elevation 91.5 m) where a concrete footing was observed.
- The concrete footing has a width of 1.1 m in and was 1.0 m thick, founded on the bedrock surface at a depth of 3.5 m below the existing grade (Elevation 90.5 m)
- The subsurface conditions consisted of fill extending to 1.2 m depth underlain by silty clay extending the depth of the excavation
- Granular fill was observed adjacent to the existing foundation wall
- No perimeter drainage was noted
- The existing foundation wall was noted as not having any damp proofing or drainage board.
- The test pit was dry upon completion of excavation



# 8. Site Classification for Seismic Site Response and Liquefaction Potential of Soils

#### 8.1 Site Classification for Seismic Site Response

The results of the seismic shear wave survey conducted at the site are provided in the report attached in Appendix C. The survey indicates a shear wave velocity of >1,500 m/s. For footings placed on sound bedrock and caissons or micropiles with **caps less than 3 m** from the sound bedrock surface, Table 4.1.8.4.A of the 2012 Ontario Building Code (as amended January 2022) indicates a site classification for seismic response of **Class A.** For caissons or micropiles with **caps more than 3 m** from the sound bedrock surface, Table 4.1.8.4.A of the 2012 Ontario Building Code (as amended January 2022) indicates a site classification for seismic response of **Class A.** For caissons or micropiles with **caps more than 3 m** from the sound bedrock surface, Table 4.1.8.4.A of the 2012 Ontario Building Code (as amended January 1, 2022) indicates a site classification for seismic response of **Class C.** 

#### 8.2 Liquefaction Potential of Soils

Based on a review of the borehole information, the subsurface soils are not considered to be susceptible to liquefaction during a seismic event.

# 9. Grade Raise Restrictions

It indicated in the provided drawings that the Finished Floor Elevation (FFE) of the addition will be Elevation 94.11 m. Based on the borehole elevations within the proposed building footprint, this will result in a minor regrading. For preliminary design purposes, a grade raise of up to 0.5 m is considered to be permissible from a geotechnical point of view.

## 10. Site Grading

Site grading within the **proposed building addition footprint** area should consist of the removal of all existing fill, surficial and buried topsoil (organic) layers and organic stained soils down to the undisturbed native silty clay or glacial till. The native subgrade should be examined and proofrolled if directed by a geotechnician. Any loose/soft areas identified during the subgrade examination should be excavated, removed and replaced with Ontario Provincial Standard Specification (OPSS) Granular B Type II material compacted to 98 percent standard Proctor maximum dry density (SPMDD). Once the subgrade has been approved, the grades may be raised to the design underside footing and floor slab elevation by the construction of an engineered fill pad constructed in accordance with Section 11.

Site grading within the footprint of the **parking area and laneways/access roads** should consist of the removal of the surficial topsoil layer and organic stained soils and the exposed soil proofrolled with a heavy vibratory roller the presence of a geotechnician. Any loose/soft areas identified during the proofrolling process should be excavated, removed and replaced with Ontario Provincial Standard Specification (OPSS) Granular B Type II or OPSS Select Subgrade Material (SSM) compacted to 95 percent standard Proctor maximum dry density (SPMDD).



# **11. Foundation Considerations**

The H&T, 1968 Asbuilt Drawings indicate that the top of the existing footings were constructed at Elevation 91.7 m and the footings extended to the bedrock surface. The results of the test pit investigation indicates that at Test Pit No. 1 (Figure No. 4) the foundation wall is sitting on a grade beam at 2.2 m depth (Elevation 91.8 m). Excavation at this testpit location was terminated at 3.0 m depth (Elevation 91.0 m) and the testpit was extended by use of a Dynamic Cone Penetration Test (DCPT) adjacent to the borehole to the depth of DCPT cone refusal, 6.5 m depth (Elevation 87.5 m), approximately 3.7 m below the underside of the grade beam. It is therefore likely that at this location, the building is supported by a deep foundation (i.e. piles). This location corresponds to where the H&T p ns indicate that a footing was switched to an end bearing pile. At Test Pit No. 2, the existing building is supported by a footing found bedrock at 3.5 m depth (Elevation 90.5 m). The proposed addition is to have an FFE of Elevation 94.11 m.

A rev of logs for the boreholes located within the proposed building addition footprint indicates that the depth of auger versus met at 2.1 m to 7.5 m depths (Elevation 92.0 m to Elevation 86.5 m) in all of the boreholes. The exception to this is e No. 18-3 which terminated within the silty clay layer at 3.9 m depth (Elevation 90.0 m). The presence of very strong edrock was confirmed in Borehole Nos. BH23-7 and BH23-8 at 2.6 m and 2.9 depths (Elevation 91.5 m and Elevation 91.2 m), respectively.

It has been assumed that where auger/DCPT cone refusal or bedrock was encountered at a depth of 3.5 m or higher, the building will be founded on footings. This depth corresponds to the where the existing footing was founded in Test Pit No. 1. Where auger/DCPT cone refusal or bedrock was encountered at a depth below 3.5 m, it has been assumed that the building will be founded on caissons.

| Table VII: Summary of Groundwater Level Measurements |                                 |                                                                              |                               |  |  |  |
|------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|-------------------------------|--|--|--|
| Borehole /Test Pit No.<br>(BH/TP)                    | Ground Surface<br>Elevation (m) | Auger Refusal or Confirmed<br>Bedrock Below Ground Surface<br>(Elevation), m | Expected Founding Condition   |  |  |  |
| BH23-6                                               | 93.90                           | 4.5 (89.4)                                                                   | Cassion Socketed in Bedrock   |  |  |  |
| BH 23-7                                              | 94.10                           | 2.6 (91.5)                                                                   | Footing Founded on Bedrock    |  |  |  |
| BH23-8                                               | 94.10                           | 2.9 (91.2)                                                                   | Footing Founded on Bedrock    |  |  |  |
| BH23-9                                               | 94.00                           | 7.5 (86.5)                                                                   | Caisson Socketed into Bedrock |  |  |  |
| BH23-12                                              | 94.10                           | 3.0 (91.1)                                                                   | Footing Founded on Bedrock    |  |  |  |
| BH18-3                                               | 94.10                           | >3.9 (<90.0)                                                                 | Caisson Socketed into Bedrock |  |  |  |
| BH24-7                                               | 94.02                           | 3.4 (90.6)                                                                   | Footing Founded on Bedrock    |  |  |  |
| BH24-8                                               | 93.99                           | 3.3 (90.7)                                                                   | Footing Founded on Bedrock    |  |  |  |
| BH24-9                                               | 93.99                           | 2.7 (91.3)                                                                   | Footing Founded on Bedrock    |  |  |  |
| BH24-10                                              | 94.07                           | 2.1 (92.0)                                                                   | Footing Founded on Bedrock    |  |  |  |
| TP24-1                                               | 93.96                           | 6.5 (87.5)                                                                   | Caisson Socketed into Bedrock |  |  |  |
| TP24-2                                               | 93.96                           | 3.5 (90.5)                                                                   | Footing Founded on Bedrock    |  |  |  |

Based on the auger refusal or confirmed bedrock depths, the expected footing conditions are presented in Table VII below.

Each foundation option is discussed in the following sections of this report.

#### 11.1 Footings – Borehole Nos. 23-7, 23-8, 23-12, 24-7 to 24-10 and Testpit No. 24-2

Strip and spread footings founded on the sound diorite bedrock, competent and free of soil filled seams, may be designed for a factored geotechnical resistance at Ultimate Limit State (ULS) of 1,500 kPa. The factored ULS values includes a resistance factor



of 0.5. The SLS bearing pressure of the bedrock, required to produce 25 mm settlement of the structure will be much larger than the recommended value for factored geotechnical resistance at ULS. Therefore, the factored geotechnical resistance at ULS will govern the design for footings founded on bedrock.

All footing beds should be examined by a geotechnical engineer/technician to ensure that the founding surfaces are capable of supporting the design bearing pressure at SLS and that the footing beds have been properly prepared.

#### 11.2 Caissons- Borehole Nos. 23-6, 23-9, 18-3 and Testpit 24-1

The proposed addition may be supported by caissons (drilled piers) socketed into the sound diorite bedrock and designed to carry the load based on sidewall (shaft) resistance between the concrete and bedrock, neglecting end bearing capacity. The caisson should be a minimum 760 mm in diameter and typically have a socketed length equal to one (1) to three (3) times the socket diameter into the competent, sound bedrock. The caissons should be spaced at three (3) caisson diameters. For a caisson constructed using concrete with a compressive strength of 35 MPa, the rock socketed caissons may be designed for a factored sidewall resistance at ultimate limit state (ULS) of 1,000 kPa. The factored ULS values includes a resistance factor of 0.4 in accordance with the 2006 Canadian Foundation Engineering Manual, Fourth Edition (CFEM). The Serviceability Limit State (SLS) bearing pressure of the bedrock, required to produce 25 mm settlement of the foundation will be much larger than the recommended value for factored geotechnical resistance at ULS. Therefore, the factored geotechnical resistance at ULS will govern the design.

Installation of the caisson will require the use of at least one liner to minimize soil loss. The liner should be driven to the diorite bedrock. It may be necessary to loosen the overburden material by augering through to the bedrock. The liner may then be advanced through the soil slurry to the bedrock. It is noted that the caissons will require dewatering operations since the groundwater level upon completion of the boreholes within the building footprint ranges from 2.4 to 3.4 m depth (Elevation 92.0 m to 90.6 m). The stabilized groundwater level in Borehole No. 24-9 was 2.7 m depths (Elevation 91.3 m). If the caissons cannot be dewatered, concrete may have to be placed by 'tremie' technique. This should be allowed for by the caisson installation contractor.

It is imperative that the sidewalls of the portion of the caisson socketed into the bedrock be cleaned of any soil smearing, to ensure the concrete is in contact with clean bedrock.

All caissons installation must be reviewed by a geotechnician working under the supervision of a geotechnical engineer to confirm the factored geotechnical resistance value at ULS of the founding rock and to ensure that the caissons have been prepared satisfactorily and properly cleaned.

The caisson caps for heated structures should be protected from frost action by providing the beams and caps with 1.5 m of earth cover. For non-heated structures, the pile caps and beams should be provided with 2.4 m of earth cover in areas where the snow will be removed and 2.1 m of cover in areas where the snow will not be removed. Alternatively, frost protection may be provided by rigid insulation or a combination of earth cover and rigid insulation.

Alternatively, the caissons can be replaced with either Control Modulus Columns (CMC's) or micropiles, as discussed below.

#### **11.3** Control Modulus Columns

Controlled Modulus Columns (CMCs) are concrete columns placed in a grid network that effectively spreads the applied high loads from the structure to the ground and the grid of CMCs. The installation process will result in stiffened soils capable of supporting shallow footings and slab-on-grade construction.

CMCs may be able to be used in place of caissons in areas of deep bedrock. A specialized contractor should be contacted to investigate the feasibility of this option.

#### **11.4** Micropiles

Micropiles are small diameter piles (typically 75 mm to 200 mm in diameter) drilled through overburden soils and socketed into the underlying sound bedrock. The loading on the micropiles is carried by the bond between the grout and the sound bedrock. The micropiles are connected to a micropile cap which can support conventional shallow foundations.



The installation of micropiles avoids large excavations to the bedrock surface and excavations below the groundwater level.

Micropiles may be able to be used in place of caissons in areas of deep bedrock. A specialized contractor should be contacted to investigate the feasibility of this option.

#### **11.5** General Comments

For footings of a heated structure where all the footings are founded on the sound bedrock, it is recommended the soil cover be 1.2 m to protect the footings from frost damage. For footings of an unheated structure founded on sound bedrock, the soil cover should be 1.5 m. Alternatively, frost protection may be provided by rigid insulation or by a combination of rigid insulation and earth cover.

The recommended factored geotechnical resistance at ULS and bearing pressure at SLS have been calculated by EXP from the borehole information for the design stage only. The investigation and comments are necessarily on-going as new information of underground conditions becomes available. For example, more specific information is available with respect to conditions between boreholes when foundation construction is underway. The interpretation between boreholes and the recommendations of this report must therefore be checked through field monitoring provided by an experienced geotechnical engineer to validate the information for use during the construction stage.

# 12. Floor Slab and Drainage Requirements

The floor slab for the proposed building may be designed and constructed as a slab-on-grade placed on a 200 mm thick 19 mm sized clear stone bed placed on a minimum 300 mm thick engineered fill pad set on the approved native subgrade constructed in accordance with Section 9 of this report. The clear stone would minimize the capillary rise of moisture from the sub-soil to the floor slab. Alternatively, the floor slab may be cast on a 200 mm thick bed of OPSS Granular A overlain by a vapour barrier. Adequate saw cuts should be provided in the floor slabs to control cracking.

It is recommended that a perimeter drainage system should be provided around the proposed addition. Based on the presumed finished floor elevation of Elevation 94.09 m, no basement, and the groundwater level at Elevation 93.0 m to Elevation 91.7 m, an underfloor drainage system will not be required for the proposed school building.

The floor slab should be set at a minimum of 150 mm higher than the surrounding final exterior grade.

The final exterior grade surrounding the proposed building should be sloped away from the proposed building to prevent ponding of surface water close to the exterior walls of the proposed building.



## 13. Excavation and De-Watering Requirements

#### 13.1 Excess Soil Management

Ontario Regulation 406/19 specifies protocols that are required for the management and disposal of excess soils. As set forth in the regulation, specific analytical testing protocols need to be implemented and followed based on the volume of soil to be managed and the requirements of the receiving site. The testing protocols are specific as to whether the soils are stockpiled or in situ. In either scenario, the testing protocols are far more onerous than have been historically carried out as part of standard industry practices. These decisions should be factored in and accounted for prior to the initiation of the project-defined scope of work. EXP would be pleased to assist with the implementation of a soil management and testing program that would satisfy the requirements of Ontario Regulation 406/19.

#### 13.2 Excavations

This section of the report discusses excavation requirements for the construction of the building addition and the construction of the underground services.

#### **13.2.1 Foundation Excavations**

It has been anticipated that depth of excavation for foundations will be approximately 3.5 m depth (Elevation 90.5 m) below the existing grade, extending through the surficial layers (asphaltic concrete, topsoil and fill), the silty clay, glacial till and weathered bedrock to the sound diorite bedrock.

It is anticipated that the excavation may be up to 1.0 m below the recorded groundwater level.

#### 13.2.2 Underground Services Excavation

It is understood that the proposed underground services will have pipe inverts ranging from Elevation 92.43 m to Elevation 89.97 m; approximately 1.3 m to 3.3 m below existing grade. A review of the nearest borehole log at each provided invert elevation indicates that generally it is expected that excavations will extend through the surficial layers (asphaltic concrete, topsoil and fill) to either the silty clay or glacial till. Near Borehole Nos.24-4 and 24-5 the proposed invert depths are below the bedrock depth, proven by coring, by up to 0.6 m and it is expected that excavations will extend into the diorite bedrock. It should noted that bedrock depths are variable and it should be expected that excavation into the bedrock surface will occur at various locations along the alignment of the proposed services.

It is anticipated that the excavation may be up to 1.3 m below the recorded groundwater levels.

#### 13.2.3 Overburden (Soil) Excavation

Excavations in overburden soil may be undertaken by conventional heavy mechanical equipment capable of removing cobbles and boulders within the glacial till.

The excavation within the subsurface soils should comply with the most recent Occupational Health and Safety Act (OHSA), Ontario Regulations 213/91 (August 1, 1991). Based on the definitions contained in OHSA, the subsurface soils above the water table at the site are classified as Type 3 soil and sidewalls of open cut excavations must be cut back at 1H:1V from the bottom of the excavation. Below the groundwater table, the excavation side slopes are expected to slough and will eventually stabilize at a slope of 2H:1V to 3H:1V. If the required side slopes for open cut excavations cannot be achieved due to space restrictions, dewatered excavations for the installation of underground services may be undertaken within the confines of a prefabricated support system (trench box) designed and installed in accordance with OHSA.

Many geologic materials deteriorate rapidly upon exposure to meteorological elements. Unless otherwise specifically indicated in this report, walls and floors of excavations must be protected from moisture, desiccation, and frost action throughout the course of construction.

<sup>‰</sup>ехр.

#### 13.2.4 Bedrock Excavations

It is anticipated that excavations will extend to the sound diorite bedrock for footings and into the sound diorite bedrock for underground services installation. The excavation of side slopes in the sound diorite bedrock may be undertaken with near vertical sides subject to examination by a geotechnical engineer. Weathered or highly fractured zones of the diorite bedrock should be cut back at near vertical slope.

Small quantities of the diorite bedrock may be excavated using a hoe ram however, this process is expected to be very slow. Where more significant excavation is required into the sound very strong diorite bedrock, excavation can be undertaken by line drilling and blasting methods. Should blasting not be permitted, the excavation of the diorite bedrock would have to be undertaken by line drilling and removal of rock pieces by heavy equipment. Specialized contractors bidding on this project should decide on their own the most preferred rock removal method, hoe ramming or line drilling and blasting.

#### 13.2.5 Preconstruction Survey and Vibration Monitoring

It is recommended that a pre-construction condition survey of the existing school and surrounding infrastructure located within the construction zone of influence be undertaken prior to any earth (soil) and rock excavation work as well as vibration monitoring during excavation, blasting and construction operations. A pre-blast survey and a blasting report indicating that there will be no impact to adjacent buildings, City owned infrastructure, or other infrastructure in accordance with City Standard F-1201 is required to be submitted to the City.

Prior to the commencement of blasting, a detailed blast methodology should be submitted by the Contractor. The vibration limits for blasting should be in accordance with City of Ottawa Special Provisions (SP No. 1201).

Vibration monitors should be installed in critical areas adjacent building and infrastructure located within the construction zone of influence to monitor the vibration levels and set up to provide automated "alert" and "stop work" notifications if the permissible vibration levels are exceeded.

#### 13.2.6 Excavations - General

Many geologic materials deteriorate rapidly upon exposure to meteorological elements. Unless otherwise specifically indicated in this report, walls and floors of excavations must be protected from moisture, desiccation, and frost action throughout the course of construction.

#### 13.3 Dewatering

It is anticipated that excavations will extend up to 1.3 m below the recorded groundwater level and seepage of the surface and subsurface water into the excavations is anticipated. However, it should be possible to remove any water entering the excavation by collecting water in the perimeter of the excavation or pumping from sumps. In areas of high infiltration or in areas where more permeable soil layers may exist, a higher seepage rate should be anticipated and will require high-capacity pumps to keep the excavation dry.

For construction dewatering, an Environmental Activity and Sector Registry (EASR) approval may be obtained for water takings greater than 50 m<sup>3</sup> and less than 400 m<sup>3</sup> per day. If more than 400 m<sup>3</sup> per day of groundwater are generated for dewatering purposes, then a Category 3 Permit to Take Water (PTTW) must be obtained from the Ministry of the Environment, Conservation and Parks (MECP). A Category 3 PTTW would require a complete hydrogeological assessment and would take at least 90 days for the MECP to process once the application is submitted.

Although this investigation has estimated the groundwater levels at the time of the fieldwork, and commented on dewatering and general construction problems, conditions may be present which are difficult to establish from standard boring and excavating techniques and which may affect the type and nature of dewatering procedures used by the contractor in practice. These conditions include local and seasonal fluctuations in the groundwater table, erratic changes in the soil profile, thin layers of soil with large or small permeabilities compared with the soil mass, etc. Only carefully controlled tests using pumped wells

and observation wells will yield the quantitative data on groundwater volumes and pressures that are necessary to adequately engineer construction dewatering systems.



# 14. Backfilling Requirements and Suitability of On-Site Soils for Backfilling Purposes

The on-site soils to be excavated are fill, silty clay and glacial till.

It is anticipated that the majority of the material required for backfilling purposes in the interior and exterior of the proposed building, trench backfill and parking lot subgrade would have to be imported and should preferably conform to the following specifications:

- Engineered fill under the floor slab of the proposed addition OPSS 1010 Granular B Type II placed in 300 mm thick lifts and each lift compacted to 98 percent SPMDD,
- Backfill material for footing trenches and against foundation walls located outside the proposed school building OPSS 1010 Granular B Type II placed in 300 mm thick lifts and each lift compacted to 95 percent SPMDD,
- Backfill in exterior services trenches (above the bedding and cover) where paved surfaces will be located– Existing onsite material (silty clay and glacial till) from above the water table, placed so that the trench backfill matches the existing material exposed along the trench walls, placed in 300 mm thick lifts compacted to 95 percent SPMDD. The suitability of the onsite material should be assessed early in the construction process.
- Trench backfill and subgrade fill for the parking lots/roadways should consist of OPSS 1010 Select Subgrade Material (SSM) for the parking lot placed in 300 mm thick lifts and each lift compacted to 95 percent SPMDD; and
- Fill for landscaped areas should be clean fill free of debris, topsoil (organic soil), cobbles and boulders placed in 300 mm thick lifts and each lift compacted to 92 percent SPMDD.

# 15. Pipe Bedding Requirements

It is anticipated that the subgrade for the proposed underground services will consist of native silty clay, glacial till or the diorite bedrock.

The pipe bedding including material specifications, thickness of cover material and compaction requirements should conform to City of Ottawa specifications, drawings and special provisions. The bedding and cover material should be compacted to a minimum of 95 percent standard Proctor maximum dry density (SPMDD).

The bedding thickness may be increased in areas where the subgrade is subject to disturbance. If this is the case, trench base stabilization techniques, such as the removal of loose material, placement of sub-bedding, consisting of OPSS Granular B Type II completely wrapped in a non-woven geotextile, may be used.

For paved surfaces that will be located over service trenches, it is recommended that the trench backfill material within the 1.8 m frost zone, should match the existing material exposed along the trench walls to minimize differential frost heaving of the subgrade. The trench backfill should be placed in 300 mm thick lifts and each lift should be compacted to 95 percent SPMDD. Alternatively, frost tapers may be used.

If the backfill for the service trenches will consist of granular fill, clay seals should be installed in the service trenches at select intervals (spacing) as per City of Ottawa Drawing No. S8. The seals should be 1 m wide, extend over the entire trench width and from the bottom of the trench to the underside of the pavement structure. The clay should be compacted to 95 percent SPMDD. The purpose of the clay seals is to prevent the permanent lowering of the groundwater level.

To minimize the potential for bending stresses within the pipe, a transition zone treatment should be provided in areas where the pipe subgrade changes from overburden to bedrock and vice versa. In areas where the surface of the bedrock slopes at a steeper gradient than 3H:1V, the bedrock should be excavated and additional bedding material placed to create a 3H:1V transition zone.

The underground services should be installed in short open trench sections that are excavated and backfilled the same day.



# **16.** Access Roads and Parking Lots

The subgrade for the pavement structures is anticipated to consist of the existing fill and native silty clay. Pavement structure thicknesses required for the access roads and parking lots and The Parkway reinstatement on the anticipated approved subgrade materials were computed and are shown in Table VIII. The pavement structures assume a functional design life of 15 to 20 years. The proposed functional design life represents the number of years to the first rehabilitation, assuming regular maintenance is carried out.

| Table VIII: Recommended Pavement Structure Thicknesses                           |                                 |                                          |                                                                                     |                                                                                     |  |  |
|----------------------------------------------------------------------------------|---------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
|                                                                                  |                                 | Computed Pavement Structures             |                                                                                     |                                                                                     |  |  |
| Pavement<br>Layer                                                                | Requirements                    | Light Duty Traffic<br>(Cars Only)        | Heavy Duty Traffic<br>(Fire Truck Access)                                           | Reinstatement<br>of The Parkway                                                     |  |  |
| Asphaltic<br>Concrete                                                            | 92 percent to 97<br>percent MRD | 65 mm HL3/SP12.5 mm<br>Cat. B (PG 58-34) | 50 mm HL3/SP12.5 mm<br>Cat. B (PG 58-34)<br>60 mm HL8/SP 19 mm<br>Cat. B (PG 58-34) | 60 mm HL3/SP12.5 mm<br>Cat. D (PG 64-34)<br>80 mm HL8/SP 19 mm<br>Cat. D (PG 64-34) |  |  |
| OPSS 1010<br>Granular A Base<br>(crushed diorite)                                | 100% percent<br>SPMDD           | 150 mm                                   | 150 mm                                                                              | 150 mm                                                                              |  |  |
| OPSS 1010<br>Granular B Type<br>II Sub-base                                      | 100% percent<br>SPMDD           | 450 mm                                   | 600 mm                                                                              | 600 mm                                                                              |  |  |
| Notes:<br>1 SPMDD denotes standard Proctor maximum dry density, ASTM, D-698-12e2 |                                 |                                          |                                                                                     |                                                                                     |  |  |

2. MRD denotes Maximum Relative Density, ASTM D2041.

3. The upper 300 mm of the subgrade fill must be compacted to 98% SPMDD.

The approved subgrade should be covered with a woven geotextile prior to placement of granular sub-base of the pavement structure.

The foregoing design assumes that construction is carried out during dry periods and that the subgrade is stable under the load of construction equipment. If construction is carried out during wet weather and, heaving or rolling of the subgrade is experienced, additional thickness of granular material may be required in addition to the woven geotextile indicated in Table VIII.

Additional comments on the construction of the parking lots and access roads are as follows:

- As part of the subgrade preparation, the areas of the proposed parking area and access roads should be stripped of all existing fill, surficial and buried topsoil (organic) layers and organic stained soils down to the subgrade level The subgrade should be properly shaped, crowned, then proofrolled in the full-time presence of a representative of this office. Any soft or spongy subgrade areas detected should be sub excavated and properly replaced with suitable approved backfill compacted to 95 percent SPMDD (ASTM D698-12e2).
- 2. The long-term performance of the pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density conditions are achieved. The need for adequate drainage cannot be over-emphasized. Subdrains should be installed on both sides of the access road(s). Subdrains must be installed in the proposed parking area at low points and should be continuous between catchbasins to intercept excess surface and subsurface moisture and to prevent subgrade softening. This will ensure no water collects in the granular course, which could result in pavement failure during the

exh.

spring thaw. The location and extent of subdrains required within the paved areas should be reviewed by this office in conjunction with the proposed site grading.

- 3. To minimize the problems of differential movement between the pavement and catchbasins/manhole due to frost action, the backfill around the structures should consist of free-draining granular preferably conforming to OPSS Granular B Type II material. Weep holes should be provided in the catchbasins/manholes to facilitate drainage of any water that may accumulate in the granular fill.
- 4. The most severe loading conditions on light-duty pavement areas and the subgrade may occur during construction. Consequently, special provisions such as restricted lanes, half-loads during paving, temporary construction roadways, etc., may be required, especially if construction is carried out during unfavorable weather.
- 4. The finished pavement surface should be free of depressions and should be sloped (preferably at a minimum cross fall of 2 percent) to provide effective surface drainage towards catch basins. Surface water should not be allowed to pond adjacent to the outside edges of paved areas.
- 5. Relatively weaker subgrade may develop over service trenches at subgrade level. These areas may require the use of thicker/coarser sub-base material and the use of a geotextile at the subgrade level. If this is the case, it is recommended that additional 150 mm thick granular sub-base, OPSS Granular B Type II, should be provided in these areas, in addition to the use of a geotextile at the subgrade level.
- 6. The granular materials used for pavement construction should conform to Ontario Provincial Standard Specifications (OPSS 1010) for Granular A and Granular B Type II and should be compacted to 100 percent of the SPMDD.

The asphaltic concrete used, and its placement should meet OPSS 1150 or 1151 requirements. It should be compacted from 92 percent to 97 percent of the MRD (ASTM D2041). Asphalt placement should be in accordance with OPSS 310 and OPSS 313.

It is recommended that EXP be retained to review the final pavement structure design and drainage plans prior to construction to ensure they are consistent with the recommendations of this report.



# **17.** Corrosion Potential

Chemical tests limited to pH, sulphate, chloride and resistivity were undertaken on four (4) soil samples. A summary of the results is shown in Table IX. The laboratory certificate of analysis is shown in Appendix D.

| Table IX: Corrosion Test Results on Soil Samples |           |              |      |              |              |                          |
|--------------------------------------------------|-----------|--------------|------|--------------|--------------|--------------------------|
| Borehole –<br>Sample No.                         | Depth (m) | Soil Type    | рН   | Sulphate (%) | Chloride (%) | Resistivity (ohm-<br>cm) |
| 23-6 SS4                                         | 2.3 – 2.9 | Silty Clay   | 7.94 | 0.020        | 0.0398       | 870                      |
| 23-11 SS4                                        | 2.3 – 2.9 | Silty Clay   | 7.90 | 0.007        | 0.0078       | 3,800                    |
| 24-2 SS4                                         | 2.3 – 2.9 | Silty Clay   | 8.67 | 0.003        | 0.0120       | 2,390                    |
| 24-3 SS5                                         | 3.0 - 3.6 | Glacial Till | 8.99 | 0.002        | 0.0009       | 3,970                    |

The results indicate the silty clay and the glacial till have a negligible sulphate attack on subsurface concrete. The concrete should be designed in accordance with CSA A.23.1-14.

The results of the resistivity tests indicate that tested soils are mildly corrosive to moderately corrosive to corrosive to bare steel as per the National Association of Corrosion Engineers (NACE). Appropriate measures should be taken to protect the buried bare steel from corrosion.



# 18. Tree Planting Restrictions

The guidelines indicate that for street trees in the road right-of-way, where sensitive marine clays have been identified, the trees are to have a setback equal to or greater than the full mature height of the tree. This setback can be reduced to 4.5 m for small (mature tree height up to 7.5m) and medium (mature tree height 7.5m to 14.0 m) sized trees if a total of six conditions are met. Two of the six requirements, listed below, require comment from a geotechnical perspective.

- The modified plasticity index of the soil between the underside of footing (USF) and a depth of 3.5m generally does not exceed 40%. This corresponds to soils with low/medium potential for soil volume change.
- The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall) to provide ductility as described in the Geotechnical Report

The silty clay is considered to have a medium potential for soil volume change based on the modified plasticity index values ranging from 24 percent to 26 percent. For foundations walls which are reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall), the geotechnical conditions for a reduced setback have been met.

It should be noted that the following conditions below must also be met in order for the reduced setback to apply:

- The USF is 2.1m or greater below the lowest finished grade. Note: this footing level must be satisfied for footings within 10m of the tree, as measured from the centre of the tree trunk, and verified by means of the Grading Plan as indicated in the Procedural Changes below.
- A small size tree must be provided with a minimum of 25m3 of available soil volume, as determined by a Landscape Architect. A medium size tree must be provided with a minimum of 30m3 of available soil volume, as determined by a Landscape Architect. The developer will ensure the soil is generally uncompacted when backfilling in street tree planting locations.
- The tree species must be small to medium size, as confirmed by a Landscape Architect in the Landscape Plan
- Grading surrounding the tree must promote draining to the tree root zone (in such a manner as not to be detrimental to the tree), as noted on the subdivision Grading Plan.

Therefore, a reduced setback is applicable at this site for small size tree with a minimum of 25  $m^3$  of available soil volume and medium size trees with a minimum of 30  $m^3$  of available soil volume, as determined by a Landscape Architect.



## **19.** Additional Comments

All earthwork activities from subgrade preparation to placement and compaction of engineered fill, fill in service trenches, placement and compaction of granular materials and asphaltic concrete, should be inspected by qualified geotechnicians to ensure that construction proceeds according to the project specifications.

All the footing beds should be examined by a geotechnical engineer to ensure that the founding surfaces are capable of supporting the design bearing pressure and that the footing beds have been properly prepared.

## 20. General Comments

The comments given in this report are intended only for the guidance of design engineers. The number of boreholes required to determine the localized underground conditions between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for the design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well as their own interpretations of the factual test hole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

The information contained in this report is not intended to reflect on environmental aspects of the soils. Should specific information be required, including for example, the presence of pollutants, contaminants or other hazards in the soil, additional testing may be required.

We trust that the information contained in this report will be satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Sincerely

Daniel Wall, M. Eng., P.Eng. Geotechnical Engineer Earth & Environment

FICEWARD ORAN SSIONAL ENGINEER Dec 12, D I: WALL 100159490 ROVINCE OF OT

adulul

Ismail Taki, M. Eng., P.Eng. Senior Manager, Eastern Region Earth & Environment



EXP Services Inc.

Project Name: Geotechnical Investigation - Proposed Addition and Civil Work Earl of March Secondary School, Ottawa, Ontario Updated Final Report OTT-23012778-B0 December 12, 2024

# **Figures**








8-B0\_Geo\_Sept-2024.dwg





## Notes On Sample Descriptions

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by exp Services Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

| AY. |      | SLT    | 316  | -     | SAN    | D.      | 100      | GRA   | YEL.     |      | COBBLES | BOULDERS |
|-----|------|--------|------|-------|--------|---------|----------|-------|----------|------|---------|----------|
|     | FINE | MEDIUM | COA  | 38E F | NE MEE | DOM COA | RSE FINE | e MED | 1.M .CO. | ARSE | 1 3     |          |
|     |      |        |      |       |        |         |          |       |          |      |         |          |
| 0   | 002  | 0,006  | 0.02 | 0.06  | 0.2    | 0.6     | 2,0      | 0.0   | 29       | .60  | -2      | 0        |

| ALT (NONPLASTIC)  |        |        |         |           |        |  |  |  |  |
|-------------------|--------|--------|---------|-----------|--------|--|--|--|--|
| SILT (NONPLASTIC) | 0.0005 | SAND   | Incol C | 10000 - S | GRAVEL |  |  |  |  |
| CLAY (PLASTIC) TO | FINE   | MEDIUM | CRS     | FINE      | COARSE |  |  |  |  |

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites, unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone, caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.



| Project No:                      | <u>OTT-23012778-B0</u>                                                                                                                                         | Bor                   | e           | hole <u></u>                                  | <u>3H23</u>               | -1        | <b>—</b>             |                                         | 6                               | •                      | Э                 | X                   |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|-----------------------------------------------|---------------------------|-----------|----------------------|-----------------------------------------|---------------------------------|------------------------|-------------------|---------------------|
| Project:                         | Geotchnical Investegation Earl of March                                                                                                                        | Secondar              | ۰y S        | School Addition                               |                           | _ 1       | Figure N             | 10                                      | 0                               | -                      |                   | I                   |
| ocation:                         | 4 The Parkway, Ottawa, Ontario                                                                                                                                 |                       |             |                                               |                           |           | Paę                  | je                                      |                                 | <u> </u>               |                   |                     |
| ate Drilled:                     | 'January 08, 2024                                                                                                                                              |                       | _           | Split Spoon Sample                            | $\boxtimes$               |           | Combus               | tible Vap                               | our Read                        | ding                   |                   |                     |
| orill Type:                      | CME-55 Truck-Mounted Drill Rig                                                                                                                                 |                       | _           | Auger Sample                                  |                           |           | Natural N            |                                         | Content                         | L                      |                   | X                   |
| )atum:                           | Geodetic Elevation                                                                                                                                             |                       | _           | Dynamic Cone Test                             |                           |           | Undraine             | ed Triaxia                              | l at                            | I                      |                   | ⊕                   |
| ogged by:                        | A.N Checked by: I.T                                                                                                                                            |                       |             | Shelby Tube<br>Shear Strength by<br>Vane Test | +<br>s                    |           | Shear St<br>Penetror | rength by<br>neter Tes                  | y<br>st                         |                        |                   | <b></b>             |
| S<br>Y<br>M<br>B                 | SOIL DESCRIPTION                                                                                                                                               | Geodetic<br>Elevation | D<br>e<br>p | Standard Penetra<br>20 40                     | ation Test N Valu<br>60 8 | 0         | Combus<br>25<br>Nati | tible Vapo<br>50 50<br>ural Moist       | our Readir<br>00 7<br>ure Conte | ng (ppm)<br>50<br>nt % | S<br>A<br>M<br>P- | Natural<br>Unit Wt. |
|                                  |                                                                                                                                                                | m<br>94.61            | h<br>b      | Shear Strength                                | 150 20                    | kPa<br>)0 | Atterb               | erg Limits                              | (% Dry W                        | /eight)                | L<br>E<br>S       | kN/m <sup>3</sup>   |
| FILL<br>Claye                    | <ul> <li><u>TOPSOIL</u> ~200 mm thick</li> <li><u>FILL</u></li> <li>Clayey silty sand with silty clay and topsoil inclusions, brown, moist, (loose)</li> </ul> |                       |             | ••••••••••••••••••••••••••••••••••••••        |                           |           |                      | ×                                       |                                 |                        | X                 | SS1                 |
| inclus                           | sions, brown, moist, (loose)                                                                                                                                   |                       |             |                                               |                           |           |                      | ••••••••••••••••••••••••••••••••••••••• |                                 |                        |                   |                     |
| -                                |                                                                                                                                                                |                       | 1           | -7-<br>-0-                                    |                           |           |                      | *                                       |                                 |                        | X                 | SS2                 |
| - <u>GLA(</u><br>Silty s<br>some | CIAL TILL<br>sand to sandy silt, some gravel, trace to<br>clay, possible cobbles and boulders,<br>a wet (losse to compact)                                     | 93.21                 |             | <b>4</b>                                      |                           |           |                      | )                                       | <                               |                        |                   | SS3                 |
|                                  | , wet, (loose to compact)                                                                                                                                      |                       | 2           |                                               |                           |           |                      |                                         |                                 |                        |                   |                     |
|                                  |                                                                                                                                                                |                       |             | 16<br>Ø                                       |                           |           | *                    |                                         |                                 |                        | X                 | SS4<br>22.6         |
| Wet t                            | below 3.0 m depth                                                                                                                                              | 91 31                 | 5,5         | 0/100mm                                       |                           |           | ×                    |                                         |                                 |                        | Χ                 | SS5                 |
|                                  | Auger Refusal at 3.3 m Depth                                                                                                                                   |                       |             |                                               |                           |           |                      |                                         |                                 |                        |                   |                     |

| HE PARKWA   | N |
|-------------|---|
| Y , KANATA, |   |
| OTTAWA.GPJ  |   |
| TROW OTTAW  |   |

| đ                                              |        |            |                    |                     |                      |              |        |       |  |  |  |  |  |
|------------------------------------------------|--------|------------|--------------------|---------------------|----------------------|--------------|--------|-------|--|--|--|--|--|
|                                                | hafana | WAT        | TER LEVEL RECOR    | RDS                 | CORE DRILLING RECORD |              |        |       |  |  |  |  |  |
| use by others                                  | before | Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No.           | Depth<br>(m) | % Rec. | RQD % |  |  |  |  |  |
| 2. A 19 mm diameter piezometer was installed,  | , as   | Completion | 3.0                | 3.3                 |                      |              |        |       |  |  |  |  |  |
|                                                |        | 02/15/2024 | 1.6                |                     |                      |              |        |       |  |  |  |  |  |
| 3. Field work supervised by an EXP representat | tive.  |            |                    |                     |                      |              |        |       |  |  |  |  |  |
| n<br>⊥ 4. See Notes on Sample Descriptions     |        |            |                    |                     |                      |              |        |       |  |  |  |  |  |
| 5. Log to be read with EXP Report OTT-230127   | 78-B0  |            |                    |                     |                      |              |        |       |  |  |  |  |  |

| roiect:                          | Geotchnical Investegation Farl of                                                                                                                    | of March S | econda         | γS          | School                     | Addi         | tion        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        | Figu | re N           | No                      | 7                        | -               |              |              |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-------------|----------------------------|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------|------------------------|------|----------------|-------------------------|--------------------------|-----------------|--------------|--------------|--|
| ocation:                         | 4 The Parkway Ottawa Ontario                                                                                                                         | )          |                | <u> </u>    |                            | laai         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                | _                      |      | Pa             | ge                      | 1_ of                    | 1               |              |              |  |
| ate Drilled <sup>.</sup>         | 'January 08, 2024                                                                                                                                    | -          |                |             | 0                          |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        | 0    |                | 41. I 1 /               |                          | d'              |              | _            |  |
| rill Type:                       | CME 55 Truck Mounted Drill Pic                                                                                                                       | a          |                | -           | Auger Sa                   | ample        | amp<br>e    | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                |                        | Nat  | nbus<br>ural I | Moisture                | Content                  | aing            |              | $\mathbf{x}$ |  |
| otum:                            |                                                                                                                                                      | <u>y</u>   |                | -           | SPT (N)<br>Dynamic         | Value<br>Con | e<br>e Te   | st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 0                              |                        | Atte | rberg          | g Limits<br>ed Triavi   | al at                    | ŀ               |              | -O           |  |
| alum.                            |                                                                                                                                                      |            |                | -           | Shelby T                   | Tube         | 0 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        | % S  | Strain         | at Failu                | re                       |                 |              | $\oplus$     |  |
| oggea by:                        | A.N Checked by:                                                                                                                                      | 1.1        | _              |             | Shear Si<br>Vane Te        | treng<br>st  | th by       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | +<br>s                         |                        | Pen  | etror          | meter Te                | est                      |                 |              |              |  |
| S<br>Y                           |                                                                                                                                                      |            | Geodetic       | D           | Sta                        | andaro       | d Per       | etration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test    | N Valu                         | ie                     | Co   | ombus          | stible Vap              | apour Reading (ppm)      |                 |              | Natura       |  |
| M<br>B<br>O                      | SOIL DESCRIPTION                                                                                                                                     |            | Elevation<br>m | e<br>p<br>t | 2<br>Shear S               | 20<br>Streng | 4<br>th     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60      | 8                              | 0<br>kPa               | -    | Nat            | ural Mois<br>perg Limit | ture Conte<br>s (% Dry V | nt %<br>Veight) |              | Unit W       |  |
|                                  | SOIL ~ 100 mm thick                                                                                                                                  |            | 93.89<br>93.79 | 0           | 5<br>• • • • •             | 50<br>       | 10          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150     | 20                             | )0<br> - : - : - : - : |      | 2              | 0                       | 40 (<br>                 | 30<br>••••••••• | <u>5</u>     |              |  |
|                                  | clay with rootlets and organics, br                                                                                                                  | rown       |                |             | ···· <b>13</b> ·<br>····O· |              | <pre></pre> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | · · · · · ·<br>· · · · · ·     |                        |      |                | ×                       |                          |                 | X            | SS1          |  |
| mois                             | t. (compact)                                                                                                                                         |            | ~ ~ ~          |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 | -//          |              |  |
| <u>SILT</u>                      | YCLAY                                                                                                                                                | 6          | 93.09          |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 402 6                          |                        |      |                |                         |                          |                 |              |              |  |
| Brow                             | n, moist, (very stiff)                                                                                                                               |            |                | 1           | 11                         |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                | Pa                     |      |                | *                       |                          |                 | =            | SS2          |  |
|                                  |                                                                                                                                                      |            |                |             | VE0                        |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 | :#           | 10.4         |  |
|                                  |                                                                                                                                                      | ę          | 92.09          | 3, 50       | Novmm<br>Q                 |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                | ×                       |                          |                 | : <u>I</u> X | SS3          |  |
| Fine                             | DIORITE BEDROCK<br>Fine to coarse grained, bluish grey with some<br>red minerals, with iron staining, good to fair<br>quality bedrock, (very strong) | h some     | 92.09<br>91.69 | 2           |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 | -            | 10.4         |  |
| red n                            |                                                                                                                                                      | o fair     |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 | · · ·        | RUN          |  |
|                                  |                                                                                                                                                      | 4          |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
| ×                                |                                                                                                                                                      |            | _              |             |                            |              |             | <ul> <li>4</li> <li>4</li></ul> |         |                                | · · · · · · ·          |      |                |                         |                          |                 |              | ÷            |  |
|                                  |                                                                                                                                                      | -          |                |             | 3                          |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              | -            |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              | <           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | · · · · · · ·<br>· · · · · · · |                        |      |                |                         |                          |                 | •••          |              |  |
|                                  |                                                                                                                                                      | -          | -              |             |                            |              | ÷ † ;       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | • • • • • •                    |                        |      |                |                         |                          |                 |              | RUN          |  |
|                                  |                                                                                                                                                      | _          |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | • • • • •                      |                        |      | ••••           |                         |                          |                 | •••          |              |  |
|                                  |                                                                                                                                                      |            |                | 1           |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 | •••          | RUN          |  |
|                                  | orehole Terminated at 5.0 m De                                                                                                                       | enth       | 88.89          | 5           |                            |              | <u></u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | · · · · · ·                    |                        |      |                |                         | +                        |                 |              |              |  |
|                                  | orenoie reminated at 5.0 m De                                                                                                                        | opui       |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      | ::             |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |
|                                  |                                                                                                                                                      |            |                |             |                            |              | ::          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | ::                             |                        |      | :::            |                         |                          |                 |              |              |  |
| TES:                             | requires interpretation by EVD bafara                                                                                                                |            | WATE           | RL          | EVEL RE                    | ECOF         | RDS         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | ] [                            |                        |      | СС             | RE DRI                  | LLING R                  | ECORD           |              |              |  |
| Dorenole data r<br>use by others | equires interpretation by EXP before                                                                                                                 | Date       |                | L           | Water<br>evel (m)          |              |             | Hole Op<br>To (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | en<br>) |                                | Run<br>No.             |      | Dept<br>(m)    | th                      | % Re                     | C.              | R            | QD %         |  |
| A 19 mm diam<br>shown.           | eter piezometer was installed, as                                                                                                                    | 02/15/20   | 024            |             | 2.2                        |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                | 1                      | 1    | .8 - 2         | 2.8                     | 80<br>07                 |                 |              | 68<br>84     |  |
| Field work supe                  | ervised by an EXP representative.                                                                                                                    |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                | 2<br>3                 |      |                | 5                       | 97<br>100                |                 |              | 50           |  |
|                                  | •                                                                                                                                                    |            |                |             |                            |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                |                        |      |                |                         |                          |                 |              |              |  |

| Project No:   | Log of                                                                                            | Bor                        | e                     | h        | 10                                     | le                    | • -               | B           | <u>8</u>  -                            | <u>12</u>    | 23          | -3             | <u> </u> | ı<br>guro          | No                                    |                                  | Q                                     |                           |                                        | e          | хр                                       |
|---------------|---------------------------------------------------------------------------------------------------|----------------------------|-----------------------|----------|----------------------------------------|-----------------------|-------------------|-------------|----------------------------------------|--------------|-------------|----------------|----------|--------------------|---------------------------------------|----------------------------------|---------------------------------------|---------------------------|----------------------------------------|------------|------------------------------------------|
| Project:      | Geotchnical Investegation Earl of March                                                           | Secondar                   | уS                    | Sch      | nool /                                 | Addi                  | tior              | 1           |                                        |              |             |                | FI       | gure<br>م          |                                       | ·                                | 0<br>1 of                             |                           | 1                                      |            | I                                        |
| Location:     | 4 The Parkway, Ottawa, Ontario                                                                    |                            |                       |          |                                        |                       |                   |             |                                        |              |             | _              |          | Γ¢                 | age                                   | ·                                | <u> </u>                              | -                         | <u> </u>                               |            |                                          |
| Date Drilled: | 'January 08, 2024                                                                                 |                            |                       | Sp       | lit Spo                                | oon S                 | Samp              | ple         |                                        |              | $\boxtimes$ |                | C        | Combu              | ıstib                                 | le Vap                           | our Re                                | adiı                      | ng                                     |            |                                          |
| Drill Type:   | CME-55 Truck-Mounted Drill Rig                                                                    |                            |                       | Au<br>SP | ger Sa<br>'T (N)                       | ampl<br>Valu          | e<br>e            |             |                                        |              |             |                | N<br>A   | latural            | IMo<br>erg L                          | isture<br>imits                  | Conter                                | ıt                        |                                        | ⊢          | ×<br>⊸                                   |
| Datum:        | Geodetic Elevation                                                                                |                            |                       | Dyi      | namic                                  | Cor                   | ie Te             | est         |                                        |              | _           |                | L<br>9   | Jndraiı<br>6 Strai | ned<br>in at                          | Triaxia<br>Failu                 | al at<br>re                           |                           |                                        |            | $\oplus$                                 |
| Logged by:    | A.N Checked by: I.T                                                                               |                            |                       | Sh<br>Va | ear St<br>ne Te                        | treng<br>st           | th by             | y           |                                        |              | +<br>s      |                | S        | Shear S<br>Penetro | Strei<br>ome                          | ngth b<br>ter Te                 | y<br>st                               |                           |                                        |            | <b></b>                                  |
| G M B C I     | SOIL DESCRIPTION                                                                                  | Geodetic<br>Elevation<br>m | D<br>e<br>p<br>t<br>h | s        | Sta<br>2<br>Shear S                    | andar<br>20<br>Streng | d Per<br>4<br>gth | netra<br>10 | tion T<br>6                            | Test N<br>60 | N Valu<br>8 | ie<br>i0<br>kP | a        | Comb<br>Na<br>Atte | ustib<br>250<br>atura<br>rberg        | le Vap<br>5<br>I Moist<br>Limits | our Rea<br>00<br>ture Con<br>s (% Dry | ding<br>750<br>tent<br>We | )<br>)<br>: %<br>eight)                | ) SA NP LE | Natural<br>Unit Wt.<br>kN/m <sup>3</sup> |
| FILL<br>Silty | SOIL ~ 150 mm thick                                                                               | 94.06<br>93.91             | 0                     |          | 5<br>                                  | 50<br>                | 10<br>            | 00          | 1:<br>                                 | 50           | 2           |                |          |                    | 20                                    | ×                                |                                       | 60                        |                                        |            | SS1                                      |
| and brow      | rootlets, possible debris or cobbles,<br>/n, moist, (compact)<br>ers grinding below 0.9 m m depth | _                          | 1                     |          | ······································ | - <b>25</b> -<br>O:   |                   |             | ······································ |              | ······      |                |          |                    | · · · · · · · · · · · · · · · · · · · | ×                                |                                       |                           | ······································ |            | SS2                                      |
| Bilty         | <b>CIAL TILL</b><br>sand with gravel, possible cobbles and<br>ders, brown, wet, (compact)         | 92.66                      | 2                     |          | -11                                    |                       |                   |             |                                        |              |             |                |          | ×                  |                                       |                                  |                                       |                           |                                        |            | SS3<br>23.5                              |
| <b>⊻</b>      |                                                                                                   | 91.36                      | 3                     |          | -10                                    |                       |                   |             |                                        |              |             |                |          | ×                  |                                       |                                  |                                       |                           |                                        |            | SS4                                      |
|               | Auger Refusal at 3.1 m Depth                                                                      |                            |                       |          |                                        |                       |                   |             |                                        |              |             |                |          |                    |                                       |                                  |                                       |                           |                                        |            |                                          |

| 9/17/           |  |
|-----------------|--|
| GDT             |  |
| DITAWA          |  |
| TROW C          |  |
| A.GPJ           |  |
| OTTAW           |  |
| , KANATA,       |  |
| RKWAY           |  |
| 4 THE PA        |  |
| <b>30REHOLE</b> |  |

| HE PA  | NOTES:                                                  | WA         | TER LEVEL RECOR    | RDS                 |            | CORE DF      | RILLING RECOR | D     |
|--------|---------------------------------------------------------|------------|--------------------|---------------------|------------|--------------|---------------|-------|
| 54 TF  | use by others                                           | Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
| OLE    | 2. Borehole was backfilled upon completion of drilling. | Completion | 2.7                | 3.1                 |            |              |               |       |
| REH    | 3. Field work supervised by an EXP representative.      |            |                    |                     |            |              |               |       |
| BOF    | 4. See Notes on Sample Descriptions                     |            |                    |                     |            |              |               |       |
| -OG OF | 5. Log to be read with EXP Report OTT-23012778-B0       |            |                    |                     |            |              |               |       |

|               | 011 20012110 20                                                            |                |             |                             |                 |            |           | I         | -igure l                               | No.                        | 9                        |                 |               |                |
|---------------|----------------------------------------------------------------------------|----------------|-------------|-----------------------------|-----------------|------------|-----------|-----------|----------------------------------------|----------------------------|--------------------------|-----------------|---------------|----------------|
| roject:       | Geotchnical Investegation Earl of                                          | March Seconda  | ry          | School /                    | Addition        |            |           |           | Pa                                     | ae.                        | 1 of                     | 1               |               |                |
| ocation:      | 4 The Parkway, Ottawa, Ontario                                             |                |             |                             |                 |            |           |           |                                        | 5 _                        |                          |                 |               |                |
| ate Drilled:  | 'January 08, 2024                                                          |                | _           | Split Spo                   | on Samp         | le         |           |           | Combu                                  | stible Vap                 | our Rea                  | ding            |               |                |
| rill Type:    | CME-55 Truck-Mounted Drill Rig                                             |                | _           | Auger Sa<br>SPT (N)         | ample<br>Value  |            | 0         |           | Natural<br>Atterbei                    | Moisture<br>g Limits       | Content                  |                 | ⊢             | ★<br>⊸         |
| atum:         | Geodetic Elevation                                                         |                | _           | Dynamic<br>Shelby T         | Cone Te<br>ube  | st         |           |           | Undrain<br>% Strair                    | ed Triaxia<br>n at Failu   | al at<br>re              |                 |               | $\oplus$       |
| ogged by:     | A.N Checked by: I.                                                         | T              |             | Shear St<br>Vane Te         | rength by<br>st |            | +<br>s    |           | Shear Strength by<br>Penetrometer Test |                            |                          |                 |               |                |
| S<br>Y        |                                                                            | Geodetic       | D           | Sta                         | indard Per      | etration T | est N Val | ue        | e Combustible Vap<br>250 5             |                            |                          | ng (ppm<br>50   | ) S<br>A<br>M | Natura         |
| M<br>B<br>O   | SOIL DESCRIPTION                                                           | Elevation<br>m | p<br>t<br>h | p 20 40<br>t Shear Strength |                 |            | 0 8       | 80<br>kPa | Na<br>Atter                            | tural Moist<br>berg Limits | ture Conte<br>s (% Dry V | nt %<br>Veight) | PLE           | Unit W<br>kN/m |
|               | <u>SOIL</u> ~ 450 mm thick                                                 | 93.95          | 0           |                             |                 |            |           |           |                                        |                            |                          |                 |               | SS1            |
| FILL          |                                                                            | 93.50          |             |                             |                 |            |           |           |                                        | ×                          |                          |                 | #/            |                |
| Silty<br>SILT | Sand with rootlets, dark brown, mo                                         |                |             |                             |                 |            |           |           |                                        |                            |                          |                 |               | /              |
| Brow          | /n, moist, (stiff)                                                         |                | 1           |                             |                 |            |           |           |                                        | ×                          |                          |                 | = X           | SS2            |
| GLA           | CIAL TILL                                                                  | 92.55          |             |                             |                 |            |           |           |                                        |                            |                          |                 | ::∦           | 10.3           |
| Silty<br>Cobb | sand with gravel and clay, possible<br>les and boulders, brown, wet, (loos | e)             |             | -5<br>©                     |                 |            |           |           |                                        | ×                          |                          |                 | ;;;[)         | SS3            |
|               |                                                                            | 91.8           | 5 2         |                             | 5               | ) for 75m  | m         |           |                                        |                            |                          |                 |               | <u> </u>       |
| 8/77/2        | Auger Refusal at 2.3 m Depth                                               | 91.65          | -           |                             |                 | 0          |           |           |                                        |                            |                          |                 |               | 1 SS4          |
|               |                                                                            |                |             |                             |                 |            |           |           |                                        |                            |                          |                 |               |                |
|               |                                                                            |                |             |                             |                 |            |           |           |                                        |                            |                          |                 | :             |                |

| 4       | use by others                                           | Date       | Level (m) | To (m) | No. |   |
|---------|---------------------------------------------------------|------------|-----------|--------|-----|---|
| ol<br>L | 2. Borehole was backfilled upon completion of drilling. | Completion | 2.1       | 2.3    |     | Ī |
| REH     | 3. Field work supervised by an EXP representative.      |            |           |        |     |   |
| BO      | 4. See Notes on Sample Descriptions                     |            |           |        |     |   |
| LOG OF  | 5. Log to be read with EXP Report OTT-23012778-B0       |            |           |        |     |   |

|     | 10(11) | 140. | (111) |  |
|-----|--------|------|-------|--|
| 2.1 | 2.3    |      |       |  |
|     |        |      |       |  |
|     |        |      |       |  |
|     |        |      |       |  |
|     |        |      |       |  |
|     |        |      |       |  |
|     | J      |      |       |  |

| P         B         Solu Description         Description         P         Description         Description <thdescrintion< th="">         Description         <thd< th=""><th>1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</th><th>S<br/>Y<br/>M</th><th></th><th>Geodetic</th><th>D<br/>e</th><th></th><th>Sta</th><th>andard Pe</th><th>netration</th><th>Test N Va</th><th></th><th>Com</th><th>nbusti<br/>250</th><th>ble Vapo</th><th>our Rea</th><th>ding (ppm)<br/>750</th><th>S<br/>A<br/>M</th><th>Natura</th></thd<></thdescrintion<> | 1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | S<br>Y<br>M  |                                                                                                 | Geodetic                | D<br>e      |              | Sta       | andard Pe              | netration | Test N Va |                  | Com | nbusti<br>250          | ble Vapo                              | our Rea                   | ding (ppm)<br>750      | S<br>A<br>M | Natura         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------|-------------------------|-------------|--------------|-----------|------------------------|-----------|-----------|------------------|-----|------------------------|---------------------------------------|---------------------------|------------------------|-------------|----------------|
| <b>Constraints of the second </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOPSOIL       ~100 mm thick       93.74         FILL       Siltry Clay       93.39         Siltry Clay       Low plasticity, trace sand, brown, moist, (very stiff)       93.39         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -<                                                                                                                                                                                        | B<br>O<br>L  | SOIL DESCRIPTION                                                                                | Elevation<br>m<br>93.84 | p<br>t<br>h | She          | ear S     | 20<br>Strength<br>50 1 | 40<br>00  | 60<br>150 | 80<br>kPa<br>200 | At  | Natura<br>terber<br>20 | al Moist<br>rg Limits<br>4            | ure Con<br>s (% Dry<br>l0 | ent %<br>Weight)<br>60 | PLES        | Unit W<br>kN/m |
| Silty Clay, Cark prown, moist, (compact)<br>Silty Clay<br>Low plasticity, trace sand, brown, moist,<br>(very stiff)<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Silty clay, cark brown, moist, (compact)<br>Silty Clay, trace sand, brown, moist,<br>(very stiff)<br>Auger Refusal at 2.6 m Depth<br>Auger Refusal at 2.6 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | <u>2SOIL</u> ~100 mm thick<br>└                                                                 | 93.74                   |             | •••••        |           |                        |           |           |                  |     | ×                      |                                       |                           |                        | Ì           | SS             |
| (very stiff)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>(very stiff)</td><td>Silty<br/>SIL</td><td>rciay, dark brown, moist, (compact)<br/><u>TY CLAY</u><br/>v plasticity, trace sand, brown, moist</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (very stiff)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Silty<br>SIL | rciay, dark brown, moist, (compact)<br><u>TY CLAY</u><br>v plasticity, trace sand, brown, moist |                         |             |              |           |                        |           |           |                  |     |                        | · · · · · · · · · · · · · · · · · · · |                           |                        |             |                |
| Image: second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auger Refusal at 2.6 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (ver         | y stiff)                                                                                        | _                       | 1           |              | · · · · · |                        |           |           |                  |     |                        |                                       |                           |                        | Ì           | 55             |
| Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Auger Refusal at 2.6 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                                                                 |                         |             |              |           |                        |           |           |                  |     |                        |                                       |                           |                        |             | 18.            |
| Image: starting of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Auger Refusal at 2.6 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                                                                 |                         |             | - <b>5</b> - |           |                        |           |           | 96               |     |                        |                                       | <b>K</b>                  |                        | Ì           | ss:            |
| -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93 then 50 for 75mm ::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                 | _                       | 2           |              |           |                        |           |           |                  |     |                        |                                       |                           |                        |             |                |
| Auger Refusal at 2.6 m Depth 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auger Refusal at 2.6 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                                                                 | 9 <b>3 th</b>           | en 50       | 0 for<br>0   | 75m       | ım                     |           |           |                  |     |                        | ×                                     |                           |                        | X           | SS             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                                                 |                         |             |              |           |                        |           |           |                  |     |                        |                                       |                           |                        |             |                |

| 51 | 2. Dorenole was backlined upon completion of drining. |
|----|-------------------------------------------------------|
| Ĕ  | 3 Field work supervised by an EXP representative      |
| ĤΙ | 5.1 leid work supervised by all LAP representative.   |

LOG OF BOREH 4. See Notes on Sample Descriptions

| WA         | TER LEVEL RECOR    | RDS                 |            | CORE D       | RILLING RECOR | D     |
|------------|--------------------|---------------------|------------|--------------|---------------|-------|
| Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
| Completion | 2.4                | 2.6                 |            |              |               |       |

| Project No:  | OTT-23012778-B0                                |                       |             |                     | •                |             |            |           | Figure             | No                       | 11          | ``                    |                         |                    |
|--------------|------------------------------------------------|-----------------------|-------------|---------------------|------------------|-------------|------------|-----------|--------------------|--------------------------|-------------|-----------------------|-------------------------|--------------------|
| Project:     | Geotchnical Investegation Earl of March        | Secondar              | y S         | School A            | Additior         | 1           |            |           | Pigure             | NO                       | 1 of        | - 1                   |                         | 1                  |
| ocation:     | 4 The Parkway, Ottawa, Ontario                 |                       |             |                     |                  |             |            |           | Гd                 | ige                      |             | <u> </u>              |                         |                    |
| ate Drilled: | 'January 09, 2024                              |                       | -           | Split Spo           | on Sam           | ple         |            |           | Combu              | stible Vap               | oour Read   | ding                  |                         |                    |
| rill Type:   | CME-55 Truck-Mounted Drill Rig                 |                       | -           | Auger Sa<br>SPT (N) | ample<br>Value   |             |            |           | Natural<br>Atterbe | Moisture<br>ra Limits    | Content     | F                     |                         | ×<br>-€            |
| atum:        | Geodetic Elevation                             |                       | -           | Dynamic             | Cone Te          | est         |            |           | Undrain<br>% Strai | ed Triaxia<br>n at Failu | al at<br>re | -                     |                         | ⊕                  |
| ogged by:    | A.N Checked by: I.T                            |                       |             | Shear St            | ube<br>rength bi | у           | +          |           | Shear S<br>Penetro | Strength b<br>meter Te   | oy<br>est   |                       |                         |                    |
| s            |                                                |                       |             | Sta                 | ndard Pe         | netration - | Test N Val | ue        | Combu              | istible Vap              | our Readi   | ng (ppm)              | ş                       |                    |
| Y M<br>B     | SOIL DESCRIPTION                               | Geodetic<br>Elevation | e<br>p<br>t | 2<br>Shear S        | 0 4              | 40          | 60 8       | 30<br>kPa | Na                 | tural Moist              | ture Conte  | 50<br>nt %<br>/eight) | - M<br>P<br>L           | Natural<br>Unit W1 |
|              | SOIL ~150 mm thick                             | 94.05                 | ĥ<br>0      | 5                   | 0 1              | 00 1        | 50 2       | 00        |                    | 20 4                     | 40 6        | 50<br>1               | Ē                       | KN/m°              |
|              | Y CLAY                                         | _ 33.30               |             | ··· 12 ··<br>•••    |                  |             |            |           |                    | ×                        |             |                       | X                       | SS1                |
| LOW          | plasticity, prown, moist to wet, (very still)_ | -                     |             |                     | •••••            |             |            |           |                    |                          |             |                       | Д                       |                    |
|              |                                                |                       | 1           |                     | ••••             |             | 1921       | Pa        |                    |                          |             |                       | $\mathbb{N}$            |                    |
|              |                                                |                       | ľ           | Q                   | ••••             |             |            |           |                    | ×                        |             |                       | X                       | SS2<br>18 7        |
|              | -                                              | _                     |             |                     |                  |             |            |           |                    |                          |             |                       | Ӈ                       |                    |
|              |                                                |                       |             | - <b>8</b><br>      |                  |             |            | (Pa       |                    |                          | ×           |                       | X                       | SS3                |
|              | _                                              | -                     | 2           |                     |                  |             |            |           |                    |                          |             |                       | Д                       | 18.0               |
|              |                                                |                       |             | 2                   | ••••             |             | . 192      | Pa        |                    |                          |             |                       | $\mathbb{N}$            | 004                |
|              | _                                              |                       |             |                     |                  |             | 60 kPa     |           |                    |                          |             |                       | $\mathbb{A}$            | 554                |
|              | -                                              | 91.05                 | 3           |                     |                  |             | s=3        |           |                    |                          |             |                       | Ľ                       |                    |
| GLA          |                                                | 90.75                 |             | ·:7····             |                  |             |            |           |                    | ×                        |             |                       | X                       | SS5                |
| Silty        | sand with gravel and clay, possible –          | _                     |             |                     |                  |             |            |           |                    |                          |             |                       | Д                       |                    |
| (com         | pact)                                          |                       |             |                     |                  |             |            |           |                    |                          |             |                       | $\overline{\mathbf{h}}$ |                    |
|              | -                                              | ]                     | 4           | ····O:              |                  |             |            |           |                    |                          | <b>(</b>    |                       |                         | SS6                |
|              | Augor Pofusal at 4.5 m Donth                   | 89.55                 |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              | Auger Nerusai at 4.0 m Deptii                  |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |
|              |                                                |                       |             |                     |                  |             |            |           |                    |                          |             |                       |                         |                    |

| HE P/  | NOTES:                                                  | WA         | TER LEVEL RECO     | RDS                 |            | CORE DF      | RILLING RECOR | D     |
|--------|---------------------------------------------------------|------------|--------------------|---------------------|------------|--------------|---------------|-------|
| 4 TI   | use by others                                           | Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
| OLE    | 2. Borehole was backfilled upon completion of drilling. | Completion | 3.0                |                     |            |              |               |       |
| REH    | 3. Field work supervised by an EXP representative.      |            |                    |                     |            |              |               |       |
| BO     | 4. See Notes on Sample Descriptions                     |            |                    |                     |            |              |               |       |
| LOG OF | 5. Log to be read with EXP Report OTT-23012778-B0       |            |                    |                     |            |              |               |       |

| Page. 1 of 1     Constantial intresteduced Lair or Interfer Securitary Journal Potential     Page. 1 of 1     Page. 1 | _                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Date Drilled:       January 09, 2024       Spit Spon Sample       Combustile Vapour Reading         Drill Type:       CME-55 Truck-Mounted Drill Rig       Spit Spon Sample       Image: Spit Spit Spon Sample       Image: Spit Spit Spit Spit Spit Spit Spit Spit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>—</b>             |
| Ale United.     Jail Usp 20, 2024     Spill Spon Sample     Spill Spon Sample     Natural Molarize Content       Daturm:     Geodetic Elevation     Dynamic Core Test     Undrained Triatal at at       Joing W     A.N     Checked by: I.T     Shart Strangth by       Joing W     Soll DESCRIPTION     Geodetic Elevation     Shart Strangth by       Joing W     Soll DESCRIPTION     Geodetic Elevation     Shart Strangth by       Joing W     Soll DESCRIPTION     Geodetic Elevation     Shart Strangth by       Joing W     Soll DESCRIPTION     Geodetic Elevation     Shart Strangth by       Joing W     Soll DESCRIPTION     Geodetic Elevation     Shart Strangth by       Joing W     Soll DESCRIPTION     Geodetic Elevation     Shart Strangth by       Joing W     Soll DESCRIPTION     Geodetic Elevation     Shart Strangth by       Joing W     Soll DESCRIPTION     Geodetic Elevation     Shart Strangth by       Joing W     Soll Description     Geodetic Elevation     Shart Strangth by       Joing W     Soll Description     Geodetic Elevation     Shart Strangth by       Joing W     Soll Description     Geodetic Elevation     Geodetic Elevation       Joing W     Soll Description     Geodetic Elevation     Shart Strangth by       Joing W     Soll Description     Geodetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| Imit Pipe.       CME-S3 Track-Modified Drift egg       P3PT (N) Value       O       Atterbeng Links       I         ogged by:       A.N       Checked by: I.T       Dynamic Cone Test       Understand Thistig at 1<br>\$5 Shear Strength by       Shear Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                    |
| Bardin Elevation       Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н                    |
| Solid DESCRIPTION     Standard Peretation Test     Standard Peretation Test       Solid DESCRIPTION     Genetation       Solid DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\oplus$             |
| SOIL DESCRIPTION       Geodetic Description       Bandard Penetration Test N Value       Contractile Value       Contractile Value       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       20       40       80       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| Model         SOIL DESCRIPTION         Elevation         P         20         40         00         00         16/2         Matched Matched Contents for ywage           1         TOPSOIL         -300 mm thick         93.79         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) S<br>A Nat         |
| Image: series of the series                        |                      |
| FILL       93.79       93.79         Silty sand to silty clay, with gravel, grey to brown, moist, (compact)       92.69         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>             |
| Silty sand to silty clay, with gravel, grey to<br>brown, moist, (compact)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | š]∦ s                |
| Sill TY CLAY<br>Brown grey, moist       92.09       92.09       92.09       2         GLACIAL TILL<br>Silly sand with gravel and clay, possible<br>cobbles and boulders, grey, wet, (compact)       91.40       91.40       91.40         DIORITE BEDROCK<br>Fine to coarse grained, bluish grey with some<br>bedrock, (very strong)       91.49       2       2       2         Bowen boulders, grey, wet, and the source of the source                                                                                                                                                                                           |                      |
| Silt Y CLAY<br>Brown grey, moist       92.69         Silty sand with gravel and clay, possible<br>cobbles and boulders, grey, wet, (compact)       92.09         DiORITE BEDROCK<br>Fine to coarse grained, bluish grey with some<br>hedrock, (very strong)       91.40         Borehole Terminated at 4.1 m Depth       99.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| SillTY CLAY<br>Brown grey, moist       92.09       92.09       92.09       92.09       92.09       92.09       92.09       92.09       92.09       92.09       91.40       91.40       91.40       91.40       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49       91.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | St St                |
| Brown grey, model       92.09       2       3         GLACIAL TILL<br>Silty sand with gravel and clay, possible<br>cobbles and boulders, grey, wet, (compact)       91.49       91.49         DIORITE BEDROCK<br>Fine to coarse grained, bluish grey with some<br>red minerals, with iron staining, good quality<br>bedrock, (very strong)       93.99       4         Borehole Terminated at 4.1 m Depth       89.99       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
| GLACIAL TILL<br>Sitty sand with gravel and clay, possible<br>cobbles and boulders, grey, wet, (compact)       91,49         DIORITE BEDROCK<br>Fine to coarse grained, bluish grey with some<br>red minerals, with iron staining, good quality<br>bedrock, (very strong)       91,49         Borehole Terminated at 4.1 m Depth       89.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÷X s                 |
| Sitty sand with gravel and ciay, possible<br>cobbles and boulders, grey, wet, (compact)<br>DIORITE BEDROCK<br>Fine to coarse grained, bluish grey with some<br>red minerals, with iron staining, good quality<br>bedrock, (very strong)<br>Borehole Terminated at 4.1 m Depth<br>Borehole Terminated at 4.1 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18<br>               |
| DiORITE BEDROCK       91.49         Fine to coarse grained, bluish grey with some       3         red minerals, with iron staining, good quality       3         bedrock, (very strong)       3         -       -         Borehole Terminated at 4.1 m Depth       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k s                  |
| Fine to coarse grained, bluish grey with some<br>red minerals, with iron staining, good quality –<br>bedrock, (very strong)<br>Borehole Terminated at 4.1 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| bedrock, (very strong)<br>Borehole Terminated at 4.1 m Depth Borehole Terminated at 4.1 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| Borehole Terminated at 4.1 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>                 |
| Borehole Terminated at 4.1 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>∻<br>∵··         |
| Borehole Terminated at 4.1 m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49-1<br>14-1<br>14-1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ÷-                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :                    |

| NOTES:                                                  | WAT        | TER LEVEL RECO     | RDS                 |            | CORE DF      | RILLING RECOR | D     |
|---------------------------------------------------------|------------|--------------------|---------------------|------------|--------------|---------------|-------|
| use by others                                           | Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
| 2. Borehole was backfilled upon completion of drilling. | Completion | 2.4                | 2.6                 | 1          | 2.6 - 4.1    | 90            | 84    |
| 3. Field work supervised by an EXP representative.      |            |                    |                     |            |              |               |       |
| 4. See Notes on Sample Descriptions                     |            |                    |                     |            |              |               |       |
| 5. Log to be read with EXP Report OTT-23012778-B0       |            |                    |                     |            |              |               |       |

| Project:                         | Geotophical Investoration Earl of                                    | of March C | Secondo                    | n, c                  | Schoo            | በልሓ                    | dition               |                    |                |                  | F                                                         | igure              | No.                                      |                                 | 13                                      | _                                |                                           |                                       |
|----------------------------------|----------------------------------------------------------------------|------------|----------------------------|-----------------------|------------------|------------------------|----------------------|--------------------|----------------|------------------|-----------------------------------------------------------|--------------------|------------------------------------------|---------------------------------|-----------------------------------------|----------------------------------|-------------------------------------------|---------------------------------------|
| ocation.                         | 4 The Parkway Ottawa Ontario                                         |            | Jooonua                    | . y .                 | 201100           |                        |                      |                    |                |                  | _                                                         | Pa                 | age.                                     | 1                               | _ of                                    | 1                                |                                           |                                       |
| ate Drillod                      |                                                                      |            |                            |                       |                  |                        |                      |                    |                | _                |                                                           | -                  |                                          |                                 | _                                       |                                  |                                           | _                                     |
|                                  | CME 55 Truck Mounted Drill Dir                                       | •          |                            | -                     | Split S<br>Auger | poon<br>Samj           | Samp<br>ple          | le                 |                |                  |                                                           | Combu<br>Natural   | istible \<br>I Moisti                    | Vapo<br>ure C                   | our Read<br>Content                     | aing                             |                                           | $\mathbf{X}$                          |
| atum:                            | Condetic Elevation                                                   | <u> </u>   |                            | -                     | SPT (N<br>Dvnam  | I) Val                 | ue<br>one Te         | st                 |                | 0                |                                                           | Atterbe<br>Undraii | erg Lim<br>ned Tri                       | its<br>axial                    | at                                      |                                  | H                                         | -0                                    |
| atum.                            |                                                                      | . –        |                            | -                     | Shelby           | / Tube                 | Э                    |                    |                |                  |                                                           | % Strai            | in at Fa                                 | ailure<br>h by                  | e                                       |                                  |                                           | ⊕                                     |
| ogged by.                        | A.N Checked by. 1                                                    | 1.1        |                            |                       | Shear<br>Vane 1  | Stren<br>Fest          | igth by              | 1                  |                | +<br>s           |                                                           | Penetro            | ometer                                   | Tes                             | t                                       |                                  |                                           |                                       |
| S<br>Y<br>B<br>O                 | SOIL DESCRIPTION                                                     |            | Geodetic<br>Elevation<br>m | D<br>e<br>p<br>t<br>b | Shea             | Standa<br>20<br>r Stre | ard Per<br>4<br>ngth | netration 7<br>0 6 | Fest N V<br>60 | Valu<br>80       | e<br>)<br>kPa                                             | Comb<br>Na<br>Atte | ustible \<br>250<br>atural M<br>rberg Li | /apoi<br>50<br>loistu<br>mits ( | ur Readi<br>0 7<br>re Conte<br>(% Dry V | ng (ppn<br>50<br>nt %<br>Veight) | 1) SA<br>M<br>P<br>L                      | Natura<br>Unit W<br>kN/m <sup>3</sup> |
| L<br>XXX \ ASPI                  | HALT                                                                 |            | 94.07<br>93.97             | 0                     |                  | 50                     | 10                   | 00 <u>1</u>        | 50             | 20               | <u>0</u><br>• • • • • • • •                               |                    | 20                                       | 40                              |                                         | 30<br>  ·:· :·                   | s<br>                                     |                                       |
| FILL<br>Silty                    | sand, with gravel, grev, wet                                         |            |                            |                       |                  |                        |                      |                    |                | ••••             | • • • • • • • • •<br>• • • • • • • • •<br>• • • • • • • • | ×                  |                                          |                                 |                                         |                                  |                                           | AS1                                   |
| × í                              |                                                                      | _          | 93.27                      |                       |                  |                        |                      |                    |                |                  | •••••••                                                   |                    |                                          |                                 |                                         |                                  |                                           | 4                                     |
| SILT<br>with                     | YCLAY<br>silty sand seams brown moist (w                             | verv –     | 50.21                      | 1                     | 8                |                        |                      |                    | 19             | )2 ki            | Pa <del></del>                                            |                    |                                          |                                 |                                         |                                  |                                           | 1                                     |
| stiff t                          | o hard)                                                              | <u>,</u>   |                            |                       | ::©::            |                        |                      |                    |                |                  |                                                           |                    | <b>X</b>                                 |                                 |                                         |                                  |                                           | SS2                                   |
|                                  |                                                                      | _          |                            |                       |                  |                        |                      |                    |                | ···              |                                                           |                    |                                          |                                 |                                         |                                  |                                           | 7                                     |
|                                  |                                                                      |            |                            |                       |                  |                        |                      |                    | кга            |                  |                                                           |                    |                                          | X                               |                                         |                                  | ΞĮ)                                       | SS3                                   |
|                                  |                                                                      | _          |                            | 2                     |                  |                        |                      |                    |                | .21              | 0 kPa. : .<br>+                                           |                    |                                          |                                 |                                         |                                  |                                           | ]                                     |
|                                  |                                                                      | _          |                            |                       | -5               |                        |                      |                    | kPa            |                  | s=4                                                       |                    |                                          |                                 |                                         |                                  | Ĭ                                         | 1                                     |
|                                  |                                                                      |            | 91.17 <sup>91.27</sup>     | 7                     |                  |                        |                      |                    |                |                  | · · · · · · · · · · · · · · · · · · ·                     |                    | ×                                        |                                 |                                         |                                  |                                           | SS4                                   |
| Eine                             | RITE BEDROCK<br>to coarse grained. bluish arev with                  | n some     |                            | 3                     |                  |                        |                      |                    |                | ••••             | • • • • • • • • • •<br>• • • • • • • • • •                |                    |                                          |                                 | ·····                                   |                                  |                                           |                                       |
| red n                            | ninerals, with iron staining, fair to p<br>ty bedrock. (very strong) | poor       |                            |                       |                  |                        |                      |                    |                | •••              | · · · · · · · · · · · · · · · · · · ·                     |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  | ,, (,,                                                               | _          |                            |                       |                  |                        |                      |                    |                | ••••             | • <del>• • • • • • • • •</del><br>• • • • • • • • • • •   |                    |                                          |                                 |                                         |                                  |                                           | NUN                                   |
|                                  |                                                                      | _          |                            | 4                     |                  |                        |                      |                    |                |                  | • • • • • • • • • • • • • • • • • • • •                   |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      |            |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      | _          |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  | ····                                      |                                       |
|                                  |                                                                      |            |                            | _                     |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  | :::::<br>:::::::::::::::::::::::::::::::: | RUN                                   |
|                                  |                                                                      | _          |                            | 5                     |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      | _          | 88.47                      |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
| B                                | orehole Terminated at 5.6 m De                                       | epth       |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      |            |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      |            |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      |            |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      |            |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      |            |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      |            |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
|                                  |                                                                      |            |                            |                       |                  |                        |                      |                    |                | :                |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |
| DTES:                            |                                                                      |            | WATE                       | ERL                   | EVEL F           | RECO                   | ORDS                 |                    |                | ] [              |                                                           | C                  | ORE                                      | DRIL                            | LING R                                  | ECOR                             | D                                         |                                       |
| Borehole data r<br>use by others | requires interpretation by EXP before                                | Date       | e                          |                       | Water            | n)                     |                      | Hole Op            | en             | $\left  \right $ | Run<br>No                                                 | De<br>(n           | pth<br>n)                                |                                 | % Re                                    | C.                               | F                                         | RQD %                                 |
| A 19 mm diame<br>shown.          | eter piezometer was installed, as                                    | Comple     | etion                      | L                     | 2.4              | .,                     |                      | 10 (11)            | 1              | 1                | 1                                                         | 2.9 -              | ,<br>• 4.1<br>• 5.6                      | $\uparrow$                      | 87                                      |                                  |                                           | 56<br>50                              |
| . Field work supe                | ervised by an EXP representative.                                    | 9/13/20    |                            |                       | ∠.0              |                        |                      |                    |                |                  | ۷                                                         | 4.1-               | 0.0                                      |                                 | 90                                      |                                  |                                           | 50                                    |
| See Notes on S                   | Sample Descriptions                                                  |            |                            |                       |                  |                        |                      |                    |                |                  |                                                           |                    |                                          |                                 |                                         |                                  |                                           |                                       |

| 5 | 4. See Notes on Sample Descriptions |
|---|-------------------------------------|
| • |                                     |

| roject:               | Geotchnical Investegation Earl of               | of March Seconda           | iry S | School Add                               | ition                          |                                        | F<br>         | igure No.                                      | 14                                                                       |                               | I                |  |     |
|-----------------------|-------------------------------------------------|----------------------------|-------|------------------------------------------|--------------------------------|----------------------------------------|---------------|------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|------------------|--|-----|
| ocation:              | 4 The Parkway, Ottawa, Ontaric                  | )                          |       |                                          |                                |                                        |               | Page.                                          | _1_ of _1                                                                | _                             |                  |  |     |
| ate Drilled:          | January 08, 2024                                |                            |       | Split Spoon S                            | Sample                         |                                        |               | Combustible                                    | Vapour Reading                                                           |                               |                  |  |     |
| rill Type:            | CME-55 Truck-Mounted Drill Rig                  | q                          | _     | Auger Sampl                              | e                              |                                        |               | Natural Moist                                  | ure Content                                                              |                               | ×                |  |     |
| atum:                 | Geodetic Elevation                              |                            | -     | Dynamic Cor                              | e<br>ne Test                   |                                        |               | Undrained Tri                                  | iaxial at                                                                |                               | —О<br>Ф          |  |     |
| gged by:              | A.N Checked by:_                                | I.T                        | _     | Shelby Tube<br>Shear Streng<br>Vane Test | th by                          | +<br>s                                 |               | % Strain at Fa<br>Shear Streng<br>Penetrometer | allure<br>th by<br>r Test                                                |                               | <b>▲</b>         |  |     |
| S<br>Y<br>M<br>B<br>O | SOIL DESCRIPTION                                | Geodetic<br>Elevation<br>m | Depth | Standar<br>20<br>Shear Streng            | d Penetration T<br>40 6<br>gth | Fest N Valu                            | e<br>)<br>kPa | Combustible<br>250<br>Natural M<br>Atterberg L | Vapour Reading (p<br>500 750<br>loisture Content %<br>imits (% Dry Weigh | pm) S<br>A<br>M<br>P<br>nt) L | Natura<br>Unit W |  |     |
| L<br><u>X 1/2</u> TOP | SOIL ~250 mm thick                              | 93.89                      | 0     | 50                                       | 100 1<br>••••••                | 50 20                                  | 0             | 20<br>· · · · · · · · · · · · · · · ·          | 40 <u>60</u>                                                             | 5<br>· : · : · \              |                  |  |     |
| FILL                  | and gravel, brown, moist, (comp                 | 93.64<br>act) _            |       | ••••12•••••<br>•••••<br>•••••            |                                |                                        |               | ****                                           |                                                                          | X                             | SS1              |  |     |
| SILT<br>Brow          | YCLAY<br>/n, moist, (very stiff)                | 93.09                      | 1     | - <b>6</b>                               |                                |                                        |               | •                                              | <pre> {</pre>                                                            |                               | SS2              |  |     |
| _                     |                                                 | _                          |       | -7<br>-9                                 |                                |                                        |               |                                                | *                                                                        |                               | ssa              |  |     |
|                       |                                                 | -                          | 2     | 3                                        |                                |                                        |               |                                                |                                                                          |                               | 19.0             |  |     |
|                       |                                                 | 90.89                      | 3     |                                          | >120 kPa                       |                                        |               |                                                | *                                                                        | X                             | SS4              |  |     |
| <u>SILT</u><br>Grey   | r <mark>Y CLAY</mark><br>, wet, (firm to stiff) |                            |       | 2:                                       | 96 kPa                         |                                        |               |                                                | *                                                                        |                               | SS5<br>18.0      |  |     |
|                       |                                                 | -                          | 4     | 1                                        | *<br>s=6                       |                                        |               |                                                | <b>x</b>                                                                 |                               | SS6              |  |     |
|                       |                                                 | -                          |       |                                          |                                |                                        |               |                                                |                                                                          |                               | Ì                |  |     |
|                       |                                                 | — Ha                       | 5     | or Weight                                |                                |                                        |               |                                                | ×                                                                        | × X                           | SS7              |  |     |
|                       | GLACIAL TILL                                    | 88.09                      | 6     | s=7                                      |                                |                                        |               |                                                |                                                                          |                               | -                |  |     |
| cobb                  | les and boulders, grey, wet, (loose             | e —<br>2)<br>—             |       | e —<br>∋)                                |                                | •••••••••••••••••••••••••••••••••••••• |               |                                                |                                                                          | ***                           |                  |  | ssa |
|                       |                                                 | -                          | 7     |                                          |                                |                                        |               |                                                |                                                                          |                               |                  |  |     |
|                       | Auger Refusal at 7.5 m Depth                    | 86.39 <u>86.3</u><br>1     | 9     |                                          |                                |                                        |               |                                                |                                                                          |                               |                  |  |     |
|                       |                                                 |                            |       |                                          |                                |                                        | ::::          |                                                | <u></u>                                                                  |                               |                  |  |     |

| 회 | shown.                                             |
|---|----------------------------------------------------|
| 빙 | 3. Field work supervised by an EXP representative. |

LOG OF BOR 4. See Notes on Sample Descriptions

| VVA        | IER LEVEL RECO     | 303                 |            | CORE Dr      | ALLING RECOR |       |
|------------|--------------------|---------------------|------------|--------------|--------------|-------|
| Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.       | RQD % |
| Completion | 3.0                | 7.5                 |            |              |              |       |

| roject:      | Geotchnical Investegation Earl of Ma | rch Seconda           | ry S   | School A                           | dditio              | n                    |             |           | Pa                  | ine                                 | 1 of                              | - 1                    |             |                  |
|--------------|--------------------------------------|-----------------------|--------|------------------------------------|---------------------|----------------------|-------------|-----------|---------------------|-------------------------------------|-----------------------------------|------------------------|-------------|------------------|
| ocation:     | 4 The Parkway, Ottawa, Ontario       |                       |        |                                    |                     |                      |             | _         | , u                 | .go                                 |                                   | <u> </u>               |             |                  |
| ate Drilled: | 'January 08, 2024                    |                       | _      | Split Spoo                         | on Sam              | nple                 | $\boxtimes$ |           | Combus              | stible Vap                          | oour Read                         | ding                   |             |                  |
| rill Type:   | CME-55 Truck-Mounted Drill Rig       |                       | -      | Auger Sau<br>SPT (N) V             | mple<br>/alue       |                      |             |           | Natural<br>Atterber | Moisture<br>ra Limits               | Content                           | ŀ                      |             | ×<br>⊸⊖          |
| atum:        | Geodetic Elevation                   |                       | _      | Dynamic                            | Cone 1              | Test                 |             |           | Undrain<br>% Strain | ed Triaxia                          | al at                             | •                      |             | ⊕                |
| ogged by:    | A.N Checked by: I.T                  |                       |        | Shelby Tu<br>Shear Str<br>Vane Tes | ibe<br>ength l<br>t | ру                   | +<br>s      |           | Shear S<br>Penetro  | Strength b<br>meter Te              | ey<br>est                         |                        |             |                  |
| S<br>Y<br>M  | SOIL DESCRIPTION                     | Geodetic<br>Elevation | Dep    | Star<br>20                         | ndard Po            | enetration T<br>40 6 | est N Valu  | ие<br>0   | Combu<br>2<br>Nai   | istible Vap<br>250 5<br>tural Moist | our Readir<br>600 7<br>ture Conte | ng (ppm)<br>50<br>nt % | S<br>A<br>P | Natura<br>Unit W |
| Ö<br>L       |                                      | m<br>94.23            | h<br>h | Shear St<br>50                     | rength<br>)         | 100 1                | 50 20       | kPa<br>00 | Atteri              | berg Limits<br>20 4                 | s (% Dry W<br>40 6                | Veight)<br>50          | LES         | kN/m             |
|              | <u>SOIL</u> ~300 mm thick            | 93.93                 |        | ···7·<br>·····                     |                     |                      |             |           |                     | ×                                   |                                   |                        | X           | SS1              |
| Sance Sance  | and gravel, brown, moist, (loose)    |                       |        |                                    |                     |                      |             |           |                     |                                     |                                   |                        |             |                  |
| SILT<br>Brow | Y CLAY<br>/n, moist, (very stiff)    | 93.13                 | 1      | 9<br>•••••                         |                     |                      |             |           |                     | ×                                   |                                   |                        |             | SS2              |
|              |                                      |                       |        | 6<br>0                             |                     |                      | .192 k      | Pa.       |                     |                                     | <b>x</b>                          |                        |             | SS               |
|              |                                      | _                     | 2      |                                    |                     |                      |             |           |                     |                                     |                                   |                        |             |                  |
|              |                                      | _                     |        | - <b>6</b><br>-0                   |                     |                      |             |           |                     |                                     | ×                                 |                        |             | SS4              |
| Brow         | n grey below 3.0 m depth             | -                     | 3      | · · 8<br>· · O                     |                     |                      |             |           |                     |                                     | <b>*</b>                          |                        |             | SS               |
|              |                                      | - 00.42               |        |                                    |                     |                      |             |           |                     |                                     |                                   |                        | -//         |                  |
|              | Auger Reiusai at 3.6 m Depth         |                       |        |                                    |                     |                      |             |           |                     |                                     |                                   |                        |             |                  |
|              |                                      |                       |        |                                    |                     |                      |             |           |                     |                                     |                                   |                        |             |                  |

| TROW               |    |                 |                                                       |
|--------------------|----|-----------------|-------------------------------------------------------|
| KANATA, OTTAWA.GPJ |    |                 |                                                       |
| RWAY ,             |    |                 |                                                       |
| PAF                | NO | TES:            |                                                       |
| 4 THE              | 1. | Boreh<br>use by | ole data requires interpretation by EXP before others |
| JLE                | 2. | Boreh           | ole was backfilled upon completion of drilli          |
| REHC               | 3. | Field v         | work supervised by an EXP representative.             |
| BOF                | 4. | See N           | otes on Sample Descriptions                           |
| OG OF              | 5. | Log to          | be read with EXP Report OTT-23012778-E                |
|                    |    |                 |                                                       |

|                                 |                                               |             |                            | ~     |                                           |                                       | e.                 |                                                                              |                |                                           | F                                         | igure              | No.                                         | 1                                             | 6                                         |                  |                          |
|---------------------------------|-----------------------------------------------|-------------|----------------------------|-------|-------------------------------------------|---------------------------------------|--------------------|------------------------------------------------------------------------------|----------------|-------------------------------------------|-------------------------------------------|--------------------|---------------------------------------------|-----------------------------------------------|-------------------------------------------|------------------|--------------------------|
| roject:                         | Geotchnical Investegation Earl                | of March Se | condar                     | y S   | chool                                     | Addi                                  | tion               |                                                                              |                |                                           | -                                         | Pa                 | age.                                        | 1_ of                                         | 1                                         | _                |                          |
| ocation:                        | 4 The Parkway, Ottawa, Ontario                | 0           |                            |       |                                           |                                       |                    |                                                                              |                |                                           | _                                         |                    | -                                           |                                               |                                           | -                |                          |
| ate Drilled:                    | 'January 09, 2024                             |             |                            | . :   | Split Sp                                  | oon S                                 | ample              | e                                                                            |                |                                           |                                           | Combu              | istible V                                   | apour Re                                      | ading                                     |                  |                          |
| rill Type:                      | CME-55 Truck-Mounted Drill Right              | g           |                            |       | Auger S<br>SPT (N)                        | ample<br>Value                        | e                  |                                                                              |                |                                           |                                           | Natura<br>Atterbe  | l Moistu<br>era Limit                       | re Contei<br>s                                | nt                                        | ⊢                | ×<br>⊸⊖                  |
| atum:                           | Geodetic Elevation                            |             |                            | l     | Dynamio                                   | c Con                                 | e Tes              | t                                                                            |                | _                                         |                                           | Undrai             | ned Tria                                    | xial at                                       |                                           |                  | $\oplus$                 |
| ogged by:                       | A.N Checked by:                               | I.T         |                            | :     | Shelby<br>Shear S                         | tube<br>treng                         | h by               |                                                                              |                | +                                         |                                           | Shear              | Strength                                    | by                                            |                                           |                  |                          |
|                                 |                                               |             | -                          | `     | Vane Te                                   | est                                   |                    |                                                                              |                | S                                         |                                           | Penetr             | ometer                                      | lest                                          |                                           |                  |                          |
| S<br>Y<br>M<br>B<br>O           | SOIL DESCRIPTION                              | C<br>E      | Geodetic<br>Elevation<br>m | Depth | Sta<br>2<br>Shear \$                      | andaro<br>20<br>Streng                | d Pene<br>40<br>th | tration                                                                      | Test N '<br>60 | Value<br>80                               | e<br>kPa                                  | Comb<br>Na<br>Atte | ustible Va<br>250<br>atural Mo<br>rberg Lin | apour Rea<br>500<br>isture Con<br>hits (% Dry | iding (ppr<br>750<br>ntent %<br>/ Weight) | n) SA⊻PLE        | Natura<br>Unit W<br>kN/m |
|                                 | SOIL ~150 mm thick                            | 94<br>94    | 4.16<br>4.01               | 0     |                                           | 50<br>                                | 100                | ) <u> </u>                                                                   | 50             | 200                                       | 0<br>                                     |                    | 20                                          | 40                                            | 60                                        | 5<br>            | /                        |
| Sand                            | and gravel, brown, moist, (comp               | pact)       |                            |       | ····11··<br>······                        | + + + + + + + + + + + + + + + + + + + | <pre></pre>        | (* 1 • 2 * *<br>(* 1 • 2 * * |                | · 2 4<br>· 2 4<br>· 2 4<br>· 2 4<br>· 2 4 |                                           |                    | ×                                           |                                               |                                           |                  | SS1                      |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  | /                        |
|                                 | Y CLAY                                        | 93          | 3.06                       | 1     | 9<br>•••••••••••••••••••••••••••••••••••• |                                       |                    |                                                                              |                |                                           |                                           |                    | ×                                           |                                               |                                           |                  | SS2                      |
| Brow                            | vn, moist, (very stiff)                       |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  | 19.0                     |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           | $\mathbb{R}^{1}$ |                          |
|                                 |                                               | _           |                            | 2     |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           | /                | 553                      |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 |                                               | _           |                            |       | 9<br>0                                    |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             | ×                                             |                                           |                  | ss/                      |
|                                 |                                               |             |                            |       | -0-0-1-0<br>-0-0-1-0<br>-0-0-1-0          |                                       |                    |                                                                              | .180           | kPa.                                      |                                           |                    |                                             |                                               |                                           | /<br>/           | 17.9                     |
|                                 |                                               | _           |                            | 3     |                                           |                                       |                    |                                                                              | s=             | 5                                         |                                           |                    |                                             |                                               |                                           |                  | /                        |
|                                 |                                               |             |                            |       | 0                                         |                                       |                    |                                                                              |                |                                           |                                           | · ··· · · · · ·    |                                             | ×                                             |                                           | :: )             | SS5                      |
| SILT                            | Y CLAY                                        | 90          | ).56                       |       | *****<br>*****<br>*****                   | . 72 k                                | Pa                 | <del></del><br>                                                              |                |                                           | +++++++<br>++++++++++++++++++++++++++++++ |                    |                                             |                                               |                                           | 1                | 1                        |
| Grey                            | v, wet, (stiff)                               |             |                            | 4     | 4                                         | s=                                    | 6                  |                                                                              |                |                                           | ··· ·· ··                                 |                    |                                             |                                               |                                           |                  | 7                        |
|                                 |                                               | 89          | 9.86                       |       | <b>Ö</b>                                  |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             | *                                             |                                           | X                | SS6                      |
| GLA<br>Silty                    | CIAL TILL<br>sand, some clay, some gravel, po | ossible –   |                            |       | ****                                      |                                       |                    |                                                                              |                |                                           | <u></u>                                   |                    |                                             |                                               |                                           |                  | 1                        |
| cobb                            | les and boulders, dark grey, wet,             |             |                            |       | - 10                                      |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           | $\mathbb{N}$     | 7                        |
|                                 |                                               | _           |                            | 5     | ·: •:•:                                   |                                       |                    |                                                                              |                |                                           | ··· · · · · · · · · · · · · · · · · ·     |                    |                                             | ***                                           |                                           | Ľ.               |                          |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  | 1                        |
|                                 | Augor Polysal at 5.6 m Dont                   |             | 3.5 <b>6</b> 88.56         |       |                                           |                                       |                    |                                                                              |                | +                                         |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 | Auger Nerusai at 3.0 m Depti                  |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                | :                                         |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 |                                               |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |
|                                 | ]                                             | I           |                            | .     | ::::                                      | 1::                                   | ::1                | : : : :                                                                      | 1:::           | :上<br>1 「                                 | ::::                                      |                    | 1:::                                        | :1:::                                         | : ! : : :                                 |                  |                          |
| Borehole data                   | requires interpretation by EXP before         |             | WATER                      | RLE   | EVEL RE                                   | ECOF                                  | RDS                | ole On                                                                       | en             |                                           | Run                                       | C                  | ORE D                                       | RILLING                                       | RECOR                                     | D                |                          |
| use by others<br>Borehole was l | backfilled upon completion of drilling.       | Completic   | on                         | Le    | evel (m)<br>4,0                           | )                                     |                    | <u>To (m</u><br>5.6                                                          | )              | ┥┝                                        | No.                                       | (r                 | n)                                          |                                               |                                           | -'               |                          |
| . Field work sup                | ervised by an EXP representative.             |             |                            |       |                                           |                                       |                    | 5.0                                                                          |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |
| .See Notes on S                 | Sample Descriptions                           |             |                            |       |                                           |                                       |                    |                                                                              |                |                                           |                                           |                    |                                             |                                               |                                           |                  |                          |

| cation:                 | 4 The Parkway, Ottawa, Ontario           |                |               |                                       |                      |                       |                 |       | Pa                  | ge                       | 1_ of                      | _1               |               |                |
|-------------------------|------------------------------------------|----------------|---------------|---------------------------------------|----------------------|-----------------------|-----------------|-------|---------------------|--------------------------|----------------------------|------------------|---------------|----------------|
| te Drilled <sup>.</sup> | January 08, 2024                         |                |               | Ou lit Ou                             |                      |                       |                 |       | 0 - m h - m         | - +: h- 1 ) / -          |                            |                  |               |                |
| II Type:                | CME-55 Truck-Mounted Drill Rig           |                |               | Auger Sa                              | oon Sar<br>ample     | npie                  |                 |       | Natural             | Moisture                 | e Conten                   | ading<br>t       |               | $\mathbf{X}$   |
| tum:                    | Geodetic Elevation                       |                | _             | SPT (N)<br>Dynamic                    | Value<br>Cone        | Test                  | 0               |       | Atterber<br>Undrain | g Limits<br>ed Triaxi    | al at                      |                  | <b>⊢</b>      |                |
| aaed by:                | A N Checked by: LT                       |                |               | Shelby T                              | Fube<br>trongth      | by                    |                 |       | % Strair<br>Shear S | n at Failu<br>strength I | ire<br>by                  |                  |               | •              |
| ggod by:                |                                          |                |               | Vane Te                               | st                   | by                    | S               |       | Penetro             | meter Te                 | est                        |                  |               | •              |
| S<br>Y                  |                                          | Geodetic       |               | Sta                                   | andard F             | enetration            | Test N Val      | Je    | Combu<br>2          | stible Vap<br>50 5       | oour Read<br>500           | ding (ppm<br>750 | ) S<br>A<br>M | Natura         |
| B<br>O<br>L             | SOIL DESCRIPTION                         | Elevation<br>m | י p<br>t<br>h | Shear S                               | 20<br>Strength<br>50 | 40                    | 150 2           | kPa   | Na<br>Atteri        | tural Mois<br>perg Limit | sture Cont<br>s (% Dry     | ent %<br>Weight) | PLE           | Unit W<br>kN/m |
|                         | SOIL ~100 mm thick                       | 93.97          | 0             | · · · · · · · · · · · · · · · · · · · |                      |                       |                 |       |                     |                          |                            |                  |               | !              |
|                         | to silty clay, with gravel, brown, moist | <u>,</u>       |               |                                       |                      | -                     |                 |       |                     | ×                        | + + - + - +<br>+ + - + - + |                  | <u>i</u> ľ    | SS1            |
|                         | Pact)<br>Y CLAY                          | 93.27          |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               | 1              |
| _Grey                   | brown, moist, (firm)                     | -              | 1             | 7<br>O                                |                      |                       |                 |       |                     | ×                        |                            |                  | <u>:</u>  /   | ssz            |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          | -              |               | 7                                     |                      |                       |                 |       |                     |                          |                            |                  |               | 1              |
|                         |                                          | _              | 2             |                                       |                      |                       |                 |       |                     |                          | *                          |                  | <u> </u>      | SS3            |
| GLA                     | CIAL TILL                                | 91.77          |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
| Silty                   | sand, some gravel, possible cobbles a    | nd             |               |                                       |                      |                       | <b>69</b>       |       | ·····               |                          |                            |                  | <u>:</u>  /   | 99             |
|                         |                                          | 00.07          |               |                                       |                      | · · · · · · · · · · · |                 |       |                     |                          |                            |                  | <u> </u>      | 004            |
| ****                    | Auger Refusal at 3 m Depth               | 90.97          | - 3           |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       |                      |                       |                 |       |                     |                          |                            |                  |               |                |
|                         |                                          |                |               |                                       | 1:::                 |                       | : I : : : :<br> | L:::: |                     | 1::::                    | 1:::                       | 1:::             | <u>:</u>      |                |
| . LO.                   |                                          | WAT            | ER I          | LEVEL RE                              | ECORE                | S                     |                 |       | CC                  | ORE DR                   | ILLING F                   | RECORI           | С             |                |
|                         |                                          | VVAI           |               |                                       |                      | 0                     |                 |       |                     | JNE DN                   | ILLING P                   |                  | 2             |                |

| 51 | 2. Borenole was backniled upon completion of unlining |
|----|-------------------------------------------------------|
| É  | 3 Field work supervised by an FXP representative      |
| 51 | of the work supervised by an Ext representative.      |

LOG OF BOREH 4. See Notes on Sample Descriptions

| Project.                     | Geotophical Investoration Earl of March                                           | Secondar              | ۰, c        | School                 | ۸.           | dition                   |           |          |               | F                                     | igure                                 | No.                        | 18                   | _                          |                       |                     |
|------------------------------|-----------------------------------------------------------------------------------|-----------------------|-------------|------------------------|--------------|--------------------------|-----------|----------|---------------|---------------------------------------|---------------------------------------|----------------------------|----------------------|----------------------------|-----------------------|---------------------|
| ocation:                     | 4 The Derlaway Ottown Ottown                                                      | Secondal              | y :         |                        | AU           | ulion                    | 1         |          |               |                                       | Ρ                                     | age                        | 1_ of                | _1_                        |                       |                     |
| location:                    | 4 The Parkway, Ottawa, Ontario                                                    |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
| ate Drilled:                 | 'September 04, 2024                                                               |                       | -           | Split Sp               | poor         | n Samp                   | ole       | D        | ⊠             |                                       | Comb                                  | ustible Va                 | apour Rea            | ding                       |                       |                     |
| Drill Type:                  | CME-75 Truck-Mounted Drill Rig                                                    |                       | -           | SPT (N                 | Sam<br>I) Va | lue                      |           | L<br>C   | <b>U</b><br>C |                                       | Atterb                                | erg Limits                 | Content              | ł                          |                       | $\hat{\rightarrow}$ |
| )atum:                       | Geodetic Elevation                                                                |                       | -           | Dynam<br>Shelby        | ic C         | one Te<br>e              | st        |          | -             |                                       | Undrai<br>% Stra                      | ined Triax<br>ain at Failu | ial at<br>ure        |                            |                       | $\oplus$            |
| ogged by:                    | A.N Checked by: D.W.                                                              |                       |             | Shear S                | Stre         | ngth by                  | /         | -        | ÷             |                                       | Shear<br>Peneti                       | Strength                   | by<br>est            |                            |                       |                     |
|                              |                                                                                   |                       | -           | vane i                 | est          |                          | - 4 - 4 7 | C+ NI \/ | 5             |                                       | Quert                                 |                            |                      |                            |                       |                     |
| S<br>Y<br>M                  | SOIL DESCRIPTION                                                                  | Geodetic<br>Elevation | D<br>e<br>p |                        | 20           | aru Per<br>4             | 0 6       | 60       | 80            |                                       | N                                     | 250<br>atural Moi          | 500 7<br>sture Conte | 19 (pprii)<br>750<br>ant % | M<br>P                | Natura<br>Unit W    |
|                              |                                                                                   | m<br>94.8             | h           | Shear                  | r Stre<br>50 | ength                    | 00 1      | 50       | 200           | kPa                                   | Atte                                  | erberg Limi<br>20          | ts (% Dry V<br>40    | Veight)<br>60              | L<br>E<br>S           | kN/m <sup>3</sup>   |
|                              | SOIL ~100 mm thick                                                                | 94.70                 |             | ·· 10                  |              |                          |           |          |               |                                       |                                       |                            |                      |                            | $\mathbb{N}$          |                     |
| Sand                         | with silt and gravel, brown, moist,                                               |                       |             |                        |              | ·· · · · ·<br>·· · · · · |           |          |               | · · · · · · · · · · · · · · · · · · · |                                       | ×.                         |                      |                            | ΞŅ                    | SS1                 |
|                              | pact)                                                                             | 02.00                 |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       | 1                   |
| - <u>SILT</u>                | Y CLAY                                                                            | 93.90                 | 1           | 1                      | 6            |                          |           | >19      | 2 kPa         |                                       |                                       |                            |                      |                            | ÷V                    | 0.000               |
| Brow                         | n, moist, (very stiff)                                                            | 93,40                 |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            | $\left \right\rangle$ | 552                 |
| -GLA<br>Silty                | CIAL TILL -                                                                       | 03.10                 |             |                        |              | —14, t                   | hen 50/7  | 5 mm     |               |                                       |                                       |                            |                      |                            |                       | 1 553               |
|                              | les and boulders, brown, moist /                                                  | 35.10                 |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              | <u>- RITE BEDROCK</u>                                                             | -                     | 2           |                        |              | ÷ ÷ ÷ ·                  |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
| Fine<br>red n                | to coarse grained, bluish grey with some<br>ninerals, fair quality bedrock, (very |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
| stron                        | g)                                                                                |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       | RUN                 |
|                              | _                                                                                 |                       | 3           |                        |              |                          |           |          |               |                                       | · · · · · · · · · · · · · · · · · · · |                            |                      |                            |                       |                     |
|                              |                                                                                   | 91.7                  |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              | -                                                                                 | _                     |             |                        |              | ······<br>······         |           |          |               | · · · · · · · · · · · · · · · · · · · |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               | · · · · · · · · · · · · · · · · · · · |                                       |                            |                      |                            |                       |                     |
|                              | -                                                                                 | -                     | 4           |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       | RUN                 |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              | -                                                                                 | -                     |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
| B                            | orehole Terminated at 4.8 m Depth                                                 | 90.00                 |             |                        |              | ****                     |           |          |               | · · · · ·                             |                                       |                            |                      |                            |                       |                     |
|                              | ·                                                                                 |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
|                              |                                                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
| OTES:                        |                                                                                   |                       |             |                        |              |                          |           |          | <br>[         |                                       |                                       |                            |                      |                            | -                     | 1                   |
| 1. Borehole data r           | requires interpretation by EXP before                                             | WATE                  | КL          | .EVEL R<br>Water       | KEC          | URDS                     | Hole Op   | en       | F             | Run                                   | C<br>De                               | pth                        | ILLING R<br>% Re     | ECORD                      | R                     | RQD %               |
| 2.A 19 mm diam               | eter piezometer was installed, as                                                 | letion                | L           | <u>_evel (m</u><br>2.7 | (ו           | _                        | To (m)    | )        | 1             | <u>No.</u>                            | (i<br>1.7                             | m)<br>- 3.3                | 100                  | ,                          |                       | 62                  |
| shown.<br>3. Field work supe | ervised by an EXP representative                                                  | 2024                  |             | 3.1                    |              |                          |           |          |               | 2                                     | 3.3                                   | - 4.8                      | 100                  |                            |                       | 76                  |
| 4. See Notes on S            | Sample Descriptions                                                               |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |
| 5. Log to be read            | with EXP Report OTT-23012778-B0                                                   |                       |             |                        |              |                          |           |          |               |                                       |                                       |                            |                      |                            |                       |                     |

| ) |              |        |            |          |
|---|--------------|--------|------------|----------|
|   | 4. See Notes | on Sam | iple Desci | riptions |

|                                  | ОП-23012778-ВО                                                      |                | <b>•</b> •     |             |                       |              |                                       |           |                     |        |                                       |         | F   | igur        | e N             | o                                       | 1                  | 9           |                 |              |                |
|----------------------------------|---------------------------------------------------------------------|----------------|----------------|-------------|-----------------------|--------------|---------------------------------------|-----------|---------------------|--------|---------------------------------------|---------|-----|-------------|-----------------|-----------------------------------------|--------------------|-------------|-----------------|--------------|----------------|
| roject:                          | Geotchnical Investegation Earl                                      | of March       | Secondar       | yε          | Schoo                 | Ad           | ditio                                 | n         |                     |        |                                       |         |     |             | Pag             | e                                       | <u>1</u> o         | f_          | 1               |              |                |
| ocation:                         | 4 The Parkway, Ottawa, Ontario                                      | 0              |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
| ate Drilled:                     | 'August 30, 2024                                                    |                |                | -           | Split S<br>Auaer      | poor<br>Sam  | n San<br>ple                          | nple      |                     |        | ⊠                                     |         |     | Com<br>Natu | bust<br>ral N   | ible Va<br>loisture                     | pour Re<br>Conte   | ead<br>nt   | ing             |              | □<br>×         |
| rill Type:                       | CME-55 Truck-Mounted Drill Ri                                       | g              |                | -           | SPT (N                | I) Va        | lue                                   | F 4       |                     |        | 0                                     |         |     | Atter       | berg            | Limits                                  |                    |             | F               |              | -O             |
| atum:                            | Geodetic Elevation                                                  |                |                | -           | Shelby                | Tub          | e<br>e                                | est       |                     |        |                                       |         |     | % St        | raine           | at Failu                                | al at<br>re        |             |                 |              | $\oplus$       |
| ogged by:                        | <u>A.N</u> Checked by:_                                             | D.W.           |                |             | Shear<br>Vane 1       | Strer<br>est | ngth I                                | ру        |                     |        | +<br>s                                |         |     | Shea        | ar Sti<br>etron | ength to<br>teter Te                    | oy<br>est          |             |                 |              |                |
| S<br>Y                           |                                                                     |                | Geodetic       | D           | 5                     | Stand        | ard P                                 | enetra    | ation 1             | Fest N | Valu                                  | Je      |     | Cor         | nbus<br>25      | tible Vap<br>0 5                        | our Rea            | adin<br>75  | ig (ppm)<br>50  | S<br>A<br>M  | Natura         |
| B<br>O<br>L                      | SOIL DESCRIPTION                                                    |                | Elevation<br>m | p<br>t<br>h | Shea                  | 20<br>Stre   | ength                                 | 40        | 6                   | 50     | 8                                     | 30<br>I | kPa | A           | Natu<br>tterbe  | ral Mois<br>erg Limit                   | ture Co<br>s (% Dr | nter<br>y W | nt %<br>'eight) | PLE          | Unit W<br>kN/m |
|                                  | SOIL ~100 mm thick                                                  |                | 93.82<br>93.72 | 0           | ··· 8· i ·            | 50           | ··· ··                                |           |                     |        | <u>-</u>                              |         |     |             |                 | //<br>-> -> -> -><br>-> -> ->           |                    |             |                 | $\mathbb{N}$ |                |
| Silty:                           | sand with gravel, brown, moist, (I                                  | oose) _        | 93 22          |             | ••© ••                |              | · · · · · · · · · · · · · · · · · · · |           |                     |        | · · · · · ·<br>· · · · · ·            |         |     |             |                 |                                         |                    | · · · ·     |                 | X            | SS1            |
| SILT<br>Brow                     | Y CLAY<br>m. moist. (stiff to very stiff)                           |                | 1              |             |                       |              |                                       |           |                     |        | · · · · · · · · · · · · · · · · · · · |         |     |             |                 | ••••••••••••••••••••••••••••••••••••••• |                    |             |                 |              |                |
|                                  |                                                                     | -              | -              | 1           | 14<br>C               | <b>,</b>     | ****                                  |           |                     | 168 k  | (Pa                                   |         |     |             |                 | ×                                       |                    |             |                 | łV           | SS2            |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 | $\square$    | 18.9           |
|                                  |                                                                     | _              | 1              |             |                       |              |                                       | . 1       | 32 kP               | a      |                                       |         |     |             |                 |                                         |                    |             |                 | $\mathbb{N}$ |                |
|                                  |                                                                     | _              | -              | 2           |                       |              | ·                                     |           |                     |        | · · · · · · ·                         |         |     |             |                 | · · · · · ·                             |                    |             |                 | $\mathbb{N}$ | 553            |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     | -              | -              |             | 7<br>                 |              |                                       | kPa_<br>∰ |                     |        |                                       |         |     |             |                 |                                         | <                  |             |                 | X            | SS4            |
|                                  |                                                                     |                |                | 2           |                       |              |                                       |           |                     |        | • • • • • •                           |         |     |             |                 |                                         |                    |             |                 |              |                |
| GI A                             |                                                                     |                | 90.62          | 3           |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    | • • • •     |                 | $\mathbb{N}$ | 995            |
| Silty                            | sand with clay and gravel, possibles and boulders, brown, moist, (I | le _<br>loose) | 90.42          |             |                       |              |                                       |           |                     |        | · ; . ; .<br>- ; . ; .                |         |     |             |                 | ·····                                   |                    | · · · ·     |                 | $\mathbb{A}$ | 000            |
|                                  | ,,,,                                                                |                | 89.92          |             |                       |              |                                       |           |                     |        | • • • • •                             |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  | Auger Refusal at 3.9 m Depth                                        | h              |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    | :           |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
|                                  |                                                                     |                |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 |                                         |                    |             |                 |              |                |
| I DTES:                          |                                                                     |                | 1              |             |                       |              |                                       |           | :::                 | 1::    | <br>                                  |         | ::  |             | ::1             |                                         | 1:::               | : 1         |                 |              |                |
| Borehole data r<br>use by others | requires interpretation by EXP before                               | Dat            | WATE           | КL          | EVEL F<br>Water       | KEC(         |                                       | S<br>Hole | e Op                | en     | -                                     | Ru      | un  | [           | CO<br>Deptl     | רו DRI<br>רו ו                          | ILLING             | Rec         | CORD            | R            | QD %           |
| Borehole was b                   | packfilled upon completion of drilling.                             | Compl          | etion          | L           | <u>evel (n</u><br>3.4 | ו)           | +                                     | <u> </u>  | <u>o (m)</u><br>3.9 | )      |                                       | N       | o.  |             | (m)             | -+                                      |                    |             | +               |              |                |
|                                  | anvised by an EVB representative                                    | 1              |                |             |                       |              |                                       |           |                     |        |                                       |         |     |             |                 | 1                                       |                    |             |                 |              |                |

| IOTEO.                                                                                                                                                                                           | WA <sup>-</sup>    | TER I EVEL RECO           | RDS                        |            | CORF DF      | RILLING RECOR | D     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|----------------------------|------------|--------------|---------------|-------|-----|
| 1. Borehole data requires interpretation by EXP before use by others                                                                                                                             | Date               | Water<br>Level (m)        | Hole Open<br>To (m)        | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % | -   |
| 2. Borehole was backfilled upon completion of drilling.                                                                                                                                          | Completion         | 3.4                       | 3.9                        |            | . ,          |               |       |     |
| 3. Field work supervised by an EXP representative.                                                                                                                                               |                    |                           |                            |            |              |               |       |     |
| 4. See Notes on Sample Descriptions                                                                                                                                                              |                    |                           |                            |            |              |               |       |     |
| 5.Log to be read with EXP Report OTT-23012778-B0                                                                                                                                                 |                    |                           |                            |            |              |               |       |     |
| 2. Borehole was backfilled upon completion of drilling. 3. Field work supervised by an EXP representative. 4. See Notes on Sample Descriptions 5. Log to be read with EXP Report OTT-23012778-B0 | Date<br>Completion | Water<br>Level (m)<br>3.4 | Hole Open<br>To (m)<br>3.9 | Run<br>No. | Depth<br>(m) | % Rec.        | RQD   | ) % |

| roject No:             | OTT-23012778-B0<br>Geotomical Investegation Farl of Marc | h Seconda      | rv S        | School A                                | Addition                              | n           |                    | F                       | -igure l            | No                                               | 20                       | -                |              |                |
|------------------------|----------------------------------------------------------|----------------|-------------|-----------------------------------------|---------------------------------------|-------------|--------------------|-------------------------|---------------------|--------------------------------------------------|--------------------------|------------------|--------------|----------------|
| ocation:               | 4 The Parkway, Ottawa, Ontario                           |                | y c         |                                         | lucition                              | <u> </u>    |                    |                         | Pa                  | ge                                               | 1_ of                    | _1_              |              |                |
| ate Drilled:           | Δugust 30, 2024                                          |                |             | 0.111.0                                 |                                       |             | 5                  |                         | <b>.</b> .          |                                                  | -                        |                  |              | _              |
| rill Type <sup>.</sup> | CME-55 Truck-Mounted Drill Rig                           |                | -           | Auger Sa                                | on Sam<br>Imple                       | pie         |                    |                         | Natural             | Moisture                                         | Content                  | aing             |              | ×              |
| atum:                  | Geodetic Elevation                                       |                | -           | SPT (N)<br>Dynamic                      | Value<br>Cone Te                      | est         | 0                  |                         | Atterber<br>Undrain | g Limits<br>ed Triaxi                            | al at                    | F                |              | -O             |
| arand by:              |                                                          |                | -           | Shelby T                                | ube                                   |             |                    |                         | % Strair<br>Shear S | n at Failu<br>trength b                          | re                       |                  |              | ⊕              |
| ogged by:              |                                                          |                |             | Vane Te                                 | st                                    | y           | s                  |                         | Penetro             | meter Te                                         | st                       |                  |              |                |
| S<br>Y                 |                                                          | Geodetic       | De          | Sta                                     | ndard Pe                              | netration 1 | Fest N Valu        | ie<br>-                 | Combu<br>2          | stible Vap<br>50 5                               | our Readi                | ng (ppm)<br>'50  | S<br>A<br>M  | Natura         |
| B<br>O<br>L            | SOIL DESCRIPTION                                         | Elevation<br>m | p<br>t<br>h | 2<br>Shear S                            | trength                               | 10 (        | 50 8               | 0<br>kPa                | Nat<br>Attert       | tural Mois<br>berg Limit                         | ture Conte<br>s (% Dry V | ent %<br>Veight) | PLE          | Unit W<br>kN/m |
|                        | SOIL ~100 mm thick                                       | 93.67          | 0           | ··· ·····                               |                                       |             |                    |                         |                     |                                                  |                          |                  | Ň            |                |
| Silty s                | sand with gravel, brown, moist,                          |                |             |                                         | • • • • • • • •                       |             |                    | · · · · · · · · · · · · | ×                   |                                                  |                          |                  | Ŵ            | SS1            |
|                        | pact                                                     | 02.07          | ,           |                                         | • • • • • • • •                       |             |                    |                         |                     |                                                  |                          |                  | Ē            |                |
|                        |                                                          | 92.87          | 1           |                                         |                                       |             |                    | Pa.                     |                     |                                                  |                          |                  | Ŋ            | 552            |
| Brow                   | <u>Y CLAY</u><br>n, moist, (very stiff)                  |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  | $\mathbb{N}$ | 17.7           |
|                        |                                                          |                |             | - 10                                    |                                       |             | 168 kPa            |                         |                     |                                                  |                          |                  | $\mathbb{N}$ |                |
|                        |                                                          | _              | 2           | 0                                       |                                       |             |                    |                         |                     | X                                                |                          |                  | Ŵ            | SS3            |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  | Ē            | ]              |
| -                      |                                                          | -              |             | 8                                       |                                       |             |                    |                         |                     |                                                  | ×                        |                  | łV           | SS4            |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  | $\mathbb{N}$ |                |
|                        |                                                          | 90.57          | 3           | ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· |                                       |             |                    |                         |                     |                                                  |                          |                  | $\mathbb{N}$ |                |
| GLAU<br>Silty s        | CIAL TILL<br>sand with clay and gravel, possible         | _              |             |                                         | · · · · · · · · · · · · · · · · · · · |             |                    |                         |                     | (-> -> -><br>(-> -> -><br>(-> -> -><br>(-> -> -> |                          |                  | Ŵ            | SS5            |
| CODDI                  | es and douiders, drown, moist                            |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              | ]              |
|                        |                                                          |                | 4           |                                         | • : • • 4, t                          | hen 50/75   | 5 mm · : · · · · · | • • • • • • • • •       | ×                   |                                                  |                          |                  | X            | SS6            |
|                        | Auger Refusal at 3.9 m Depth                             | 00.01          |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  | ľ            | Y              |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |
|                        |                                                          |                |             |                                         |                                       |             |                    |                         |                     |                                                  |                          |                  |              |                |

| NOTES:                                                  | WA         | TER LEVEL RECO     | RDS                 |            | CORE DF      | RILLING RECOR | D     |
|---------------------------------------------------------|------------|--------------------|---------------------|------------|--------------|---------------|-------|
| use by others                                           | Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
| 2. Borehole was backfilled upon completion of drilling. | Completion | 0.9                | 4.2                 |            |              |               |       |
| 3. Field work supervised by an EXP representative.      |            |                    |                     |            |              |               |       |
| 4. See Notes on Sample Descriptions                     |            |                    |                     |            |              |               |       |
| 5. Log to be read with EXP Report OTT-23012778-B0       |            |                    |                     |            |              |               |       |

| roject:                    | Geotchnical Investegation Earl o                                                   | of March S      | econdai        | ry ٤   | Schoo            | l Ad           | ditio          | n        |                               |        |                                       |                                       | Figur           | e N             | 0                       | 21                       | _                   |              |                             |
|----------------------------|------------------------------------------------------------------------------------|-----------------|----------------|--------|------------------|----------------|----------------|----------|-------------------------------|--------|---------------------------------------|---------------------------------------|-----------------|-----------------|-------------------------|--------------------------|---------------------|--------------|-----------------------------|
| ,<br>ocation:              | 4 The Parkway, Ottawa, Ontario                                                     |                 |                |        |                  |                |                |          |                               |        |                                       | _                                     | F               | Pag             | e                       | 1_ of                    | _1_                 |              |                             |
| ate Drille                 | ed: 'September 02 2024                                                             |                 |                |        | Split S          | 'noor          | Som            |          |                               |        |                                       | _                                     | Com             | huoti           |                         |                          | dina                |              |                             |
| rill Type                  | CME-75 Truck-Mounted Drill Ric                                                     | r               |                | -      | Auger            | Sam            | ple            | ipie     |                               |        |                                       |                                       | Natur           | al M            | loisture                | Content                  | ung                 |              | $\mathbf{X}$                |
| atum.                      | Geodetic Elevation                                                                 | 1               |                | -      | SPT (ľ<br>Dynan  | N) Va<br>nic C | lue<br>one T   | est      |                               |        | 0                                     |                                       | Atteri<br>Undra | oerg<br>aineo   | Limits<br>d Triaxia     | al at                    | F                   |              |                             |
| atum.                      | Checked by I                                                                       |                 |                | -      | Shelby           | / Tub          | e              |          |                               |        |                                       |                                       | % Str           | ain a<br>r Str  | at Failu<br>renoth h    | re                       |                     |              | ⊕                           |
| Jyyeu b                    |                                                                                    | D.VV.           | _              |        | Shear<br>Vane    | Strei<br>Test  | ngth t         | ру       |                               |        | +<br>s                                |                                       | Pene            | trom            | ieter Te                | st                       |                     |              |                             |
| S<br>Y                     |                                                                                    |                 | Geodetic       | D      |                  | Stand          | ard Pe         | enetra   | ation 1                       | Fest N | Value                                 | Э                                     | Con             | nbust<br>250    | ible Vap                | our Read                 | ng (ppm)<br>750     | SA           | Natura                      |
| M<br>B<br>O                | SOIL DESCRIPTION                                                                   |                 | Elevation<br>m | p<br>t | Shea             | 20<br>Ir Stre  | ngth           | 40       | 6                             | 60     | 80                                    | )<br>kPa                              | At              | Natu            | ral Moist<br>erg Limite | ture Conte<br>s (% Dry V | ent %<br>Veight)    | PL           | Unit W<br>kN/m <sup>3</sup> |
|                            | ASPHALTIC CONCRETE~140 mm thi                                                      | ick _ g         | 93.52<br>93.38 | 0      |                  | 50             |                | 100      | 1<br>                         | 50     | 20                                    | 0                                     |                 | 20              |                         | 40<br>                   | 60<br>• • • • • • • | Š            |                             |
|                            | GRANULAR FILL<br>Sand and gravel with silt brown moist                             | (verv           |                |        |                  |                |                |          | : -> -><br>: -> -><br>: -> -> | 62 ÷   |                                       |                                       |                 |                 |                         | +                        |                     | $\mathbf{N}$ |                             |
|                            | lense)                                                                             | ., (10.)        |                |        |                  |                |                |          |                               |        | ;                                     |                                       | ×               |                 |                         |                          |                     | ľŇ           | SS1                         |
| ₩-                         |                                                                                    |                 | 92.62          | 1      |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     | $\models$    |                             |
|                            | Sand and gravel with silt and concrete                                             | donso)          |                | '      |                  | <b>20</b><br>⊕ |                |          |                               |        |                                       |                                       | ×               |                 |                         |                          |                     | X            | SS2                         |
| <b>     </b>               | ragments, brown, moist, (compact to t                                              | uerise)<br>—    |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          | 18                            |        |                                       |                                       |                 |                 |                         |                          |                     | $\mathbb{N}$ |                             |
| × -                        |                                                                                    |                 | 91.42          | 2      |                  |                | <u> </u>       |          | 9:::<br>                      |        |                                       |                                       |                 | ×               |                         |                          |                     |              | 553                         |
|                            | DIORITE BEDROCK                                                                    |                 | 91.12          | 2      |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
| F r                        | fine to coarse grained, bluish grey with<br>ed minerals, good quality bedrock, (ve | h some –<br>ery |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
| S S                        | strong)                                                                            |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              | RUN                         |
|                            |                                                                                    |                 |                | 3      |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    | _               |                |        |                  |                | ·····<br>····· |          | ···· ··<br>···· ··            |        |                                       |                                       |                 |                 |                         |                          |                     | -            |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          | (> -><br>(> -><br>(> ->       |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    | -               |                | 4      |                  |                | ***            |          | ··· ··<br>                    |        | ··· · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                 |                 | *****                   |                          |                     |              | RUN                         |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    | -               |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
| ¥//4                       | Borehole Terminated at 4.8 m De                                                    | epth            | 38.72          |        |                  |                |                |          |                               |        |                                       |                                       |                 | :               |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 |                         |                          |                     |              |                             |
|                            |                                                                                    |                 |                |        |                  |                |                |          |                               |        |                                       |                                       |                 |                 | <u></u>                 |                          |                     |              |                             |
| DTES:                      |                                                                                    |                 | WATE           | RL     | EVEL             | REC            | ORD            | s        |                               |        | ] [                                   |                                       |                 | COF             | RE DRI                  | LLING R                  | ECORD               |              |                             |
| . Borehole (<br>use by oth | data requires interpretation by EXP before ners                                    | Date            |                | L      | Water<br>evel (r | n)             |                | Hol<br>T | e Op<br>o (m)                 | en     |                                       | Run<br>No.                            | D               | epth<br>(m)     | ו                       | % Re                     | C.                  | R            | QD %                        |
| Borehole                   | was backfilled upon completion of drilling.                                        | Complet         | tion           |        | 2.4              |                |                |          | 4.8                           |        | 1                                     | 1                                     | 2.1             | 1 - 3.<br>3 - 4 | .3                      | 100<br>97                |                     |              | 81<br>72                    |
|                            | Couporvisou by an LAF representative.                                              |                 |                |        |                  |                | 1              |          |                               |        |                                       | -                                     | 0.0             |                 | -                       | 01                       |                     |              |                             |

| 1 Borehole data requires interpretation by EXP before   |            |                    |                     |            |              |        |     |
|---------------------------------------------------------|------------|--------------------|---------------------|------------|--------------|--------|-----|
| use by others                                           | Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec. | RQD |
| 2. Borehole was backfilled upon completion of drilling. | Completion | 2.4                | 4.8                 | 1          | 2.1 - 3.3    | 100    | 81  |
| 3. Field work supervised by an EXP representative.      |            |                    |                     | 2          | 3.3 - 4.8    | 97     | 72  |
| 4. See Notes on Sample Descriptions                     |            |                    |                     |            |              |        |     |
| 5. Log to be read with EXP Report OTT-23012778-B0       |            |                    |                     |            |              |        |     |
|                                                         |            |                    |                     |            |              |        |     |

| Project <sup>.</sup>    | Geotomical Investeration Farl o                    | f March Second   | arv      | School Add                   | ition                                 |                      | l         | Figure N            | No                        | 22                       | _                |                         |                |
|-------------------------|----------------------------------------------------|------------------|----------|------------------------------|---------------------------------------|----------------------|-----------|---------------------|---------------------------|--------------------------|------------------|-------------------------|----------------|
| ocation.                | 4 The Parkway, Ottawa, Ontario                     |                  | ary .    |                              |                                       |                      |           | Pa                  | ge                        | 1_ of                    | _1_              |                         |                |
| ate Drilled.            | Sentember 02 2024                                  |                  |          |                              |                                       |                      |           |                     |                           | _                        |                  |                         |                |
| rill Type:              | CME 75 Truck Mounted Drill Die                     |                  | _        | Split Spoon S<br>Auger Sampl | Sample<br>e                           |                      | 3<br>D    | Combus<br>Natural I | itible Vap<br>Moisture    | pour Read<br>Content     | ding             |                         | ×              |
| nii Type.               | CiviE-75 Truck-information                         |                  |          | SPT (N) Valu<br>Dynamic Cor  | e<br>ne Test                          |                      | )<br>-    | Atterberg           | g Limits<br>ed Triaxia    | al at                    | F                |                         | -O             |
|                         |                                                    |                  | _        | Shelby Tube                  |                                       |                      |           | % Strain            | at Failu                  | re                       |                  |                         | $\oplus$       |
| byged by.               | A.N Checked by.                                    | J.vv             |          | Shear Streng<br>Vane Test    | th by                                 | +<br>s               | 5         | Penetro             | meter Te                  | est                      |                  |                         |                |
| S<br>Y                  |                                                    | Geodeti          |          | Standar                      | d Penetration                         | Test N Va            | alue      | Combu:              | stible Vap<br>50 5        | our Readi                | ng (ppm)<br>'50  | S<br>A<br>M             | Natura         |
|                         | SOIL DESCRIPTION                                   | Elevation<br>m   | n p<br>t | 20<br>Shear Streng           | 40<br>gth                             | 60                   | 80<br>kPa | Nat<br>Atterb       | ural Moist<br>berg Limits | ture Conte<br>s (% Dry V | ent %<br>Veight) | PLE                     | Unit W<br>kN/m |
|                         | HALTIC CONCRETE~100 mm th                          | 93.29<br>ck93.19 | 0        | 50                           | 100                                   | 150<br>· · · · · · · | 200       | 2                   |                           |                          |                  | s                       |                |
| Sand                    | NULAR FILL<br>d and gravel with silt, brown, moist | ,                |          |                              |                                       |                      |           | <b>X</b>            |                           |                          |                  |                         | C 61           |
|                         | se)<br>                                            | 92.59            |          |                              |                                       | • • • • • •          |           |                     |                           |                          |                  |                         | 631            |
|                         | d with gravel and shale fragments,                 | _                | 1        |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         | se)                                                | ,                |          | Ō                            |                                       |                      |           | X                   |                           |                          |                  | X                       | SS2            |
|                         |                                                    | _                |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          | .0<br>                       |                                       |                      |           | ×                   |                           |                          |                  | X                       | SS3            |
|                         |                                                    | 91.09            | 2        |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
| Brow                    | vn, moist, (very stiff)                            | _                |          | -6                           |                                       |                      |           |                     |                           |                          |                  | $\overline{\mathbf{N}}$ |                |
|                         |                                                    |                  |          | 0                            |                                       |                      |           |                     | ×                         |                          |                  | ľ                       | SS4            |
|                         | RITE BEDROCK                                       | 90.29            | 3        |                              | <pre></pre>                           |                      |           |                     |                           |                          |                  |                         |                |
| Fine                    | to coarse grained. bluish grev with                | n some           | 19       |                              |                                       |                      |           |                     |                           |                          |                  | •                       |                |
| red r                   | ninerals, fair to good quality bedro<br>/ strong)  | ck, —            |          |                              |                                       |                      |           |                     |                           |                          |                  |                         | RUN            |
|                         |                                                    | _                | 4        |                              | · · · · · · · · · · · · · · · · · · · | • • • • • •          |           |                     |                           |                          |                  | •                       |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  | -                       |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  | -                       | RUN            |
| В                       | orehole Terminated at 4.7 m De                     | pth              |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
|                         |                                                    |                  |          |                              |                                       |                      |           |                     |                           |                          |                  |                         |                |
| JIES:<br>.Borehole data | requires interpretation by EXP before              | WAT              | ERI      | EVEL RECO                    | RDS                                   |                      |           | CC                  |                           |                          | ECORD            |                         |                |
| use by others           | eter piezometer was installed as                   | Date             |          | _evel (m)                    | Hole Op<br>To (m                      | )                    | No.       |                     | u1<br>)                   | % Ke                     | ю.               | R                       | يں %<br>70     |
| shown.                  |                                                    | 9/13/2024        |          | 32                           | 4./                                   |                      | 2         | 12                  | 47                        | 901                      |                  |                         | 202            |

|   | 2. A 19 mm diameter piezometer was installed, as |  |
|---|--------------------------------------------------|--|
| 위 | shown.                                           |  |

LOG OF BOREH 3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

|            | <u>SOIL</u> ~75 mm thick<br>L<br>(clay, trace sand, brown, moist | 9 | 3.75 |   |              |     |           |         |           |     |       | *    | • • • • • •                  |                                       |       | X | SS1 |
|------------|------------------------------------------------------------------|---|------|---|--------------|-----|-----------|---------|-----------|-----|-------|------|------------------------------|---------------------------------------|-------|---|-----|
|            | ⊑<br>v clay, trace sand, brown, moist                            |   | 3 12 |   |              |     |           |         | ••••••••• |     |       | *    | · · · · · · ·<br>· · · · · · | · · · · · · · · · · · · · · · · · · · |       | ľ | SS1 |
| SIL<br>Bro | TY CLAY<br>wn, moist, (very stiff)                               |   | 0.12 | 1 |              |     | · · · · · | 144 k   | Pa        |     |       |      | · · · · · · · ·              | · · · · · · · · · · · ·               |       |   |     |
|            |                                                                  |   |      |   | O:           |     |           |         |           |     |       | ×    |                              |                                       |       | ľ | SS2 |
|            |                                                                  |   |      |   | <b>7</b><br> |     |           |         | . 192 k   | Pa. |       |      |                              | <b>(</b>                              |       | Ń | SS  |
|            |                                                                  | - |      | 2 |              |     |           |         |           |     |       |      |                              |                                       |       |   | 18. |
|            |                                                                  | _ |      |   | 5<br>0       |     |           |         |           |     |       |      | ×                            |                                       |       |   | SS4 |
|            |                                                                  | 9 | 0.82 | 3 |              |     |           | 120 kPa |           |     |       | <br> |                              |                                       |       |   |     |
|            | Auger Refusal at 3.0 m Depth                                     |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              | 1:: | : :       |         |           |     | 1:::: |      | 1111                         |                                       | 1:::: | : |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |
|            |                                                                  |   |      |   |              |     |           |         |           |     |       |      |                              |                                       |       |   |     |

| NOTES:                                                  | WA         | TER LEVEL RECO     | RDS                 |   |
|---------------------------------------------------------|------------|--------------------|---------------------|---|
| use by others                                           | Date       | Water<br>Level (m) | Hole Open<br>To (m) | R |
| 2. Borehole was backfilled upon completion of drilling. | Completion |                    | 3.0                 |   |
| 3. Field work supervised by an EXP representative.      |            |                    |                     |   |
| 4. See Notes on Sample Descriptions                     |            |                    |                     |   |
| 5. Log to be read with EXP Report OTT-23012778-B0       |            |                    |                     |   |
|                                                         |            |                    |                     |   |

|                 |            | CORE DF      | RILLING RECOR | D     |
|-----------------|------------|--------------|---------------|-------|
| e Open<br>o (m) | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
| 3.0             |            |              |               |       |
|                 |            |              |               |       |
|                 |            |              |               |       |

| roject No:   | OTT-23012778-B0                           |                       |             |                      |                |              |              |                                  |            | Ei                            | auro I                                    |                      |                         | 24                                            |                          |             |                   |
|--------------|-------------------------------------------|-----------------------|-------------|----------------------|----------------|--------------|--------------|----------------------------------|------------|-------------------------------|-------------------------------------------|----------------------|-------------------------|-----------------------------------------------|--------------------------|-------------|-------------------|
| roject:      | Geotchnical Investegation Earl of Marc    | ch Secondai           | ry S        | School A             | Additic        | on           |              |                                  |            | Γı                            | yure i<br>Do                              | NU                   | 1                       | <u></u>                                       | - 1                      |             |                   |
| ocation:     | 4 The Parkway, Ottawa, Ontario            |                       |             |                      |                |              |              |                                  |            |                               | Ра                                        | ge.                  | -                       | - 01                                          | <u> </u>                 |             |                   |
| ate Drilled: | 'August 30, 2024                          |                       | _           | Split Spo            | oon Sar        | nple         |              | $\boxtimes$                      |            | c                             | Combus                                    | stible V             | 'apou                   | ır Rea                                        | ding                     |             |                   |
| ill Type:    | CME-55 Truck-Mounted Drill Rig            |                       | _           | Auger Sa             | ample<br>Value |              |              |                                  |            | N<br>A                        | Natural                                   | Moistu<br>ra Limit   | re Co                   | ontent                                        | 1                        | I           | <b>X</b>          |
| atum:        | Geodetic Elevation                        |                       | _           | Dynamic              | Cone           | Test         |              |                                  |            | L<br>0                        | Jndrain<br>6 Strain                       | ed Tria              | ixial a                 | ıt                                            |                          |             | ⊕                 |
| ogged by:    | A.N Checked by: D.W.                      |                       |             | Shelby I<br>Shear St | ube<br>rength  | by           |              | +                                |            | S                             | Shear S                                   | trength              | n by<br>Test            |                                               |                          |             |                   |
|              |                                           |                       |             | Vane Tes             | st             |              |              | s                                |            |                               |                                           |                      | Test                    |                                               |                          |             |                   |
| S<br>Y<br>M  | SOIL DESCRIPTION                          | Geodetic<br>Elevation | D<br>e<br>p | 2                    | indard P<br>10 | enetra<br>40 | ation I<br>6 | estiniva<br>0                    | ue<br>30   | -                             | Combu<br>2<br>Nai                         | 50<br>50<br>tural Mo | apour<br>500<br>bisture | Readi<br>7<br>Conte                           | ng (ppm)<br>750<br>ent % | M<br>M      | Natura<br>Unit W  |
| Ö<br>L       |                                           | m<br>94.02            | h<br>h      | Shear S              | Strength       | 100          |              | 50 2                             | kPa<br>200 | a<br>                         | Atteri                                    | berg Lin             | nits (%                 | 6 Dry V                                       | Veight)<br>60            | L<br>E<br>S | kN/m <sup>3</sup> |
|              | HALTIC CONCRETE~60 mm thick<br>NULAR FILL | _/ 93.96              |             |                      |                |              |              | *****                            |            |                               | ×                                         |                      |                         | - 1 - 2 - 2 - 4<br>- 1 - 2 - 4<br>- 1 - 2 - 4 |                          |             | AS1               |
| Sanc         | and gravel with silt, brown, moist        | _                     |             |                      |                |              |              | *****                            |            |                               |                                           |                      |                         |                                               |                          |             |                   |
| SILT         | YCLAY                                     | 93.22                 |             |                      |                |              |              | ••••••                           |            |                               |                                           |                      |                         |                                               |                          |             |                   |
| Brow         | n, moist, (stiff to very stiff)           | _                     | 1           | 9<br>•••• ••••       |                |              | 144 k        | Pa                               |            |                               |                                           |                      | ×                       |                                               |                          | X           | SS2               |
|              |                                           | _                     |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             | 9<br>                |                | 120          | Кра          |                                  |            |                               |                                           |                      |                         | (*                                            |                          | ł           | 553               |
|              |                                           | _                     | 2           |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             | 26                   | 0 kPa:         |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             | ,                 |
|              |                                           | _                     |             | 0                    | <b>▲</b><br>91 | kPa          |              |                                  |            |                               |                                           |                      |                         | <b>X</b>                                      |                          | X           | SS4               |
|              |                                           |                       | 3           |                      | s              | +- <br>=7    |              | ·····                            |            | ; .   .<br>; .   .<br>; .   . | · · · · · · ·<br>· · · · · · ·            |                      | · ;                     | · ; ;<br>· ; ;                                |                          |             |                   |
| With         | sand below 3.0 m depth                    | 00.63                 |             | • <b>5</b> ••••      |                |              |              | ·> ·> ·><br>·> ·> ·><br>·> ·> ·> |            |                               | 0 6 - 5 - 0<br>0 6 - 5 - 0<br>0 6 - 5 - 0 |                      | ×                       |                                               |                          | X           | SS5               |
|              | Auger Refusal at 3.4 m Depth              | 90.62                 | +           |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            |                               |                                           |                      |                         |                                               |                          |             |                   |
|              |                                           |                       |             |                      |                |              |              |                                  |            | :                             | ••••                                      | :::                  | :   :                   | :::                                           |                          |             |                   |

| TROW OTTAWA.GDT                |  |
|--------------------------------|--|
| , KANATA, OTTAWA.GPJ           |  |
| LOG OF BOREHOLE 4 THE PARKWAY, |  |

| NOTES:                                                  | WA <sup>.</sup> | TER LEVEL RECOR    | RDS                 |            | CORE DF      | RILLING RECOR | D     |
|---------------------------------------------------------|-----------------|--------------------|---------------------|------------|--------------|---------------|-------|
| use by others                                           | Date            | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
| 2. Borehole was backfilled upon completion of drilling. | Completion      | 3.3                | 3.4                 |            |              |               |       |
| 3. Field work supervised by an EXP representative.      |                 |                    |                     |            |              |               |       |
| 4. See Notes on Sample Descriptions                     |                 |                    |                     |            |              |               |       |
| 5.Log to be read with EXP Report OTT-23012778-B0        |                 |                    |                     |            |              |               |       |

| Projoc      | st No:             | Log of                                                                            | Bor                        | e                     | h             | C                                     | le <sub>.</sub>                       | B                | H:            | <u>24</u>       | -8            | -          |                                       |                                                   |                                               | **(                               | Э        | хр                                       |
|-------------|--------------------|-----------------------------------------------------------------------------------|----------------------------|-----------------------|---------------|---------------------------------------|---------------------------------------|------------------|---------------|-----------------|---------------|------------|---------------------------------------|---------------------------------------------------|-----------------------------------------------|-----------------------------------|----------|------------------------------------------|
| Projec      | 51 NO.             | <u>OTT-23012776-DU</u>                                                            | Sacanda                    | n / 6                 | Sahar         | ~ /                                   | \dditio                               | •                |               |                 | F             | igu        | re N                                  | lo                                                | 25                                            | _                                 |          |                                          |
| Loooti      | d.                 | Geotermical investegation Earlor March                                            | Seconda                    | ry a                  | SCHOO         |                                       | -40011101                             | 1                |               |                 | -             |            | Pag                                   | ge                                                | 1_ of                                         | 1                                 |          |                                          |
| Locali      | UII.               |                                                                                   |                            |                       |               |                                       |                                       |                  |               |                 | -             |            |                                       |                                                   |                                               |                                   |          |                                          |
| Date L      | Drillea:           | August 30, 2024                                                                   |                            | -                     | Split S       | Spo<br>r Sa                           | on Sam<br>ample                       | ple              |               |                 |               | Con<br>Nat | nbus<br>ural N                        | tible Va<br>Moisture                              | oour Read                                     | ding                              |          | □<br>×                                   |
| Drill Ty    | /pe:               | CME-55 Truck-Mounted Drill Rig                                                    |                            | -                     | SPT (         | N) '                                  | Value                                 |                  |               | 0               |               | Atte       | rberg                                 | g Limits                                          | -1 -4                                         | F                                 |          | Ð                                        |
| Datum       | 1:                 | Geodetic Elevation                                                                |                            | -                     | Shelb         | mic<br>y Ti                           | ube                                   | est              |               |                 |               | % S        | traine<br>train                       | at Failu                                          | al at<br>re                                   |                                   |          | $\oplus$                                 |
| Logge       | d by:              | A.N Checked by: D.W.                                                              |                            |                       | Shear<br>Vane | r Sti<br>Tes                          | rength b<br>st                        | У                |               | +<br>s          |               | She<br>Pen | ear St<br>ietror                      | rength t<br>neter Te                              | est                                           |                                   |          | <b></b>                                  |
| G S M B O L |                    | SOIL DESCRIPTION                                                                  | Geodetic<br>Elevation<br>m | D<br>e<br>p<br>t<br>h | She           | Sta<br>2<br>ar S                      | indard Pe                             | enetration<br>40 | on Test<br>60 | t N Value<br>80 | e<br>)<br>kPa | Co<br>/    | ombus<br>25<br>Natu<br>Atterb         | stible Vap<br>50 5<br>ural Mois<br>erg Limit<br>0 | our Readi<br>00 7<br>ture Conte<br>s (% Dry V | ng (ppm)<br>50<br>nt %<br>/eight) | SAZP-LE0 | Natural<br>Unit Wt.<br>kN/m <sup>3</sup> |
|             | ASP<br>GRA<br>Sand | HALTIC CONCRETE~75 mm thick<br>NULAR FILL<br>I and gravel with silt, brown, moist | 93.99                      | 0                     |               | · · · · · · · · · · · · · · · · · · · |                                       |                  | 150           | 20              |               | ×          |                                       | U<br>                                             |                                               |                                   |          | GS1                                      |
|             | SILT<br>Brow       | Y CLAY<br>n, moist, (stiff to very stiff)                                         | 93.19                      | 1                     | 11            | $\overline{}$                         |                                       |                  |               | ····            |               |            | · · · · · · · · · · · · · · · · · · · |                                                   |                                               |                                   |          | 552                                      |
|             | _                  | -                                                                                 | -                          |                       | .6.           |                                       |                                       |                  | 168           | kPa             |               |            |                                       |                                                   |                                               |                                   |          | 332                                      |
|             | _                  | -                                                                                 | -                          | 2                     | D<br>         |                                       | 91 k                                  | Pa               |               |                 |               |            |                                       | X                                                 |                                               |                                   | X        | SS3                                      |
|             | _Wet               | and firm below 2.3 m depth                                                        | _                          |                       | 3<br>0<br>4   | 3 kl                                  | s=<br>Pa                              | 8                |               |                 |               |            |                                       |                                                   | ×                                             |                                   |          | SS4                                      |
|             |                    | -                                                                                 | 90.89                      | 3                     |               | ÷÷:                                   | · · · · · · · · · · · · · · · · · · · | hen 5            | 0/75 mi       |                 |               |            |                                       |                                                   |                                               |                                   | IJ       |                                          |
|             | GLA<br>Silty       | CIAL TILL<br>sand with clay and gravel possible                                   | 90.69                      |                       |               | :::                                   |                                       | а                |               | · · · · · ·     |               |            | X                                     | •••••••                                           |                                               |                                   | Щ        | SS5                                      |
|             | cobb               | les and boulders, grey, moist                                                     |                            |                       |               |                                       |                                       |                  |               |                 |               |            |                                       |                                                   |                                               |                                   |          |                                          |
|             |                    | Auger Refusal at 3.3 m Depth                                                      |                            |                       |               |                                       |                                       |                  |               |                 |               |            |                                       |                                                   |                                               |                                   |          |                                          |

OREHOLE 4 THE PARKWAY , KANATA, OTTAWA.GPJ TROW OTTAWA.GDT 9/17/24

| <      |                                                         |            |                    |                     | -          |              |               |       |
|--------|---------------------------------------------------------|------------|--------------------|---------------------|------------|--------------|---------------|-------|
| ЧЩ     | NOTES:                                                  | WA         | TER LEVEL RECOR    | RDS                 |            | CORE DF      | RILLING RECOR | D     |
| 4<br>1 | use by others                                           | Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
| СШ     | 2. Borehole was backfilled upon completion of drilling. | Completion |                    | 3.4                 |            |              |               |       |
| A E H  | 3. Field work supervised by an EXP representative.      |            |                    |                     |            |              |               |       |
| BO     | 4. See Notes on Sample Descriptions                     |            |                    |                     |            |              |               |       |
| P OF   | 5. Log to be read with EXP Report OTT-23012778-B0       |            |                    |                     |            |              |               |       |
| ö      |                                                         |            |                    |                     |            |              |               |       |

| ,                     | 011-23012778-В0                                                                 |                    |                                      |                               |          |             |                                        | Figure N                 | No                                  | 26                              |                        |                      |
|-----------------------|---------------------------------------------------------------------------------|--------------------|--------------------------------------|-------------------------------|----------|-------------|----------------------------------------|--------------------------|-------------------------------------|---------------------------------|------------------------|----------------------|
| roject:               | Geotchnical Investegation Earl of Marc                                          | h Seconda          | ary (                                | School Addition               | n        |             | _                                      | Pa                       | ne .                                | <br>1                           | 1                      | ,                    |
| ocation:              | 4 The Parkway, Ottawa, Ontario                                                  |                    |                                      |                               |          |             |                                        | ιa                       | ge                                  |                                 |                        |                      |
| ate Drilled:          | 'August 30, 2024                                                                |                    | _                                    | Split Spoon Sam               | ple      | $\boxtimes$ |                                        | Combustible Vapour Readi |                                     |                                 | ling                   |                      |
| rill Type:            | CME-55 Truck-Mounted Drill Rig                                                  |                    | _                                    | Auger Sample<br>SPT (N) Value |          |             |                                        | Natural<br>Atterber      | atural Moisture Content             |                                 |                        | ×<br>—⊖              |
| atum:                 | Geodetic Elevation                                                              |                    | _                                    | Dynamic Cone T                | est      |             |                                        | Undrain<br>% Strain      | ed Triaxia                          | al at                           | I                      | Ð                    |
| ogged by:             | A.N Checked by: D.W.                                                            |                    |                                      | Shear Strength b              | y        | +           |                                        | Shear S                  | trength by                          | y<br>et                         |                        |                      |
| 1                     |                                                                                 |                    | Standard Departmention Test N1//slup |                               |          |             |                                        | Combu                    |                                     | su Deedi                        |                        | 0                    |
| S<br>Y<br>M           | SOIL DESCRIPTION                                                                | Geodetic           | Dep                                  | 20                            | 40 6     | estini vai  | ue<br>30                               | 2<br>Nat                 | stible Vapo<br>50 50<br>ural Moisti | our Readir<br>00 7<br>ure Conte | ng (ppm)<br>50<br>nt % | A<br>M<br>Natura     |
| D<br>L                |                                                                                 | m<br>93.99         | h                                    | Shear Strength<br>50          | 100 1    | 50 2        | kPa<br>00                              | Atterb                   | erg Limits                          | 6 (% Dry W                      | /eight)<br>60          | L kN/m               |
| ASPI<br>GRA<br>Sand   | HALTIC CONCRETE~75 mm thick<br>NULAR FILL<br>and gravel with silt, brown, moist | 93.92              |                                      |                               |          |             |                                        | ×                        |                                     |                                 |                        | AS1                  |
|                       |                                                                                 | 93.19              |                                      |                               |          | ••••••      |                                        |                          |                                     |                                 |                        |                      |
| . <u>SILT</u><br>Brow | <u>Y CLAY</u><br>n to grey, moist, (very stiff)                                 | _                  | 1                                    | 7                             | 144      | Pa          |                                        |                          |                                     |                                 |                        | $\bigvee$            |
|                       |                                                                                 |                    |                                      | , y                           |          |             |                                        |                          |                                     |                                 |                        | $\Lambda$            |
|                       |                                                                                 | -                  |                                      |                               | .120 kPa |             |                                        |                          |                                     |                                 |                        | $\overline{\Lambda}$ |
|                       |                                                                                 |                    |                                      | Ð                             |          |             |                                        |                          |                                     | <b>K</b>                        |                        | X ssa                |
|                       |                                                                                 |                    | 2                                    |                               |          | .180 kP     | a. : . : . : . : .<br> - : - : - : - : |                          |                                     |                                 |                        |                      |
| <u> </u>              | CIAL TILL                                                                       | <sup>91.59</sup> 7 | , and                                | 1 50 for 75mm                 |          | s=9         |                                        |                          | <b>K</b>                            |                                 |                        | ∏ ss₄                |
| Silty                 | sand with clay and gravel, possible<br>les and boulders, grey, moist            | 91.2991.2          | 9                                    |                               |          |             |                                        |                          |                                     |                                 |                        | /\                   |
|                       | Auger Refusal at 2.7 m Depth                                                    |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      |                               |          |             |                                        |                          |                                     |                                 |                        |                      |
|                       |                                                                                 |                    |                                      | 1                             | 1        |             | 1                                      | 1                        | 1                                   | 1                               | 1                      |                      |

| ΣI     |                                                                 |                 |                    |                     |                      |              |        |       |  |  |  |
|--------|-----------------------------------------------------------------|-----------------|--------------------|---------------------|----------------------|--------------|--------|-------|--|--|--|
| ÅR.    | NOTEO                                                           | r               |                    |                     |                      |              |        |       |  |  |  |
| 삪      | NUTES:<br>1 Borehole data requires interpretation by EXP before | WA <sup>-</sup> | TER LEVEL RECOR    | RDS                 | CORE DRILLING RECORD |              |        |       |  |  |  |
| 4      | use by others                                                   | Date            | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No.           | Depth<br>(m) | % Rec. | RQD % |  |  |  |
| HOLE   | 2.A 50 mm diameter monitoring well was installed, as shown.     | 9/13/2024       | 2.7                |                     |                      |              |        |       |  |  |  |
| Щ<br>Ш | 3. Field work supervised by an EXP representative.              |                 |                    |                     |                      |              |        |       |  |  |  |
| 빙      | 4. See Notes on Sample Descriptions                             |                 |                    |                     |                      |              |        |       |  |  |  |
| g      | 5. Log to be read with EXP Report OTT-23012778-B0               |                 |                    |                     |                      |              |        |       |  |  |  |

| ate Drillec      | : <u>'August 30, 2024</u>                               |                       | Split Spoon Sample |          |              |             |                    |               |            |                  | Combustible Vapour Reading<br>Natural Moisture Content |                         |                           |                           | □<br>X       |                             |  |
|------------------|---------------------------------------------------------|-----------------------|--------------------|----------|--------------|-------------|--------------------|---------------|------------|------------------|--------------------------------------------------------|-------------------------|---------------------------|---------------------------|--------------|-----------------------------|--|
| rill Type:       | CME-55 Truck-Mounted Drill Rig                          | g                     | _                  | SPT (N)  | Val          | ue<br>ne Te | st                 | 0             |            | Atterberg Limits |                                                        |                         |                           | F                         |              | - <del>-</del> <del>-</del> |  |
| ogged by:        | A N Checked by:                                         | DW                    |                    | Shelby T | Fube<br>tren | ath h       |                    | -             |            | % Str            | ain a<br>r Stre                                        | t Failu<br>ength I      | ire<br>by                 |                           |              | ⊕                           |  |
|                  |                                                         |                       |                    | Vane Te  | st           | guibj       |                    | S             |            | Penet            | trome                                                  | eter Te                 | est                       |                           |              |                             |  |
| S<br>Y<br>M<br>B | SOIL DESCRIPTION                                        | Geodetic<br>Elevation | Ē                  | Sta      | anda<br>20   | rd Pei      | netration 7<br>0 é | Fest N Val    | ue<br>30   | Com              | bustil<br>250<br>Vatura                                | ble Var<br>t<br>al Mois | our Read                  | ing (ppm)<br>750<br>ent % | SA<br>P-     | Natura<br>Unit W            |  |
|                  | 1                                                       | 94.07                 | t<br>F<br>C        | Shear (  | Strei        | ngth<br>10  | 00 1               | 50 2          | kPa<br>100 | Att              | erber<br>20                                            | g Limit                 | s (% Dry \<br>40<br>1:::: | Veight)<br>60<br>1:::::   | L<br>E<br>S  | kN/m                        |  |
|                  | u clay, dark brown, moist, (compact                     | t)                    |                    | ····15   |              |             |                    |               |            |                  | ×                                                      |                         |                           |                           | X            | SS                          |  |
|                  |                                                         | 93.27                 |                    |          |              |             |                    |               | •••••      |                  | ·····                                                  |                         | +                         |                           | 1/           |                             |  |
| SIL<br>Bro       | TY CLAY<br>wn grey, moist, (very stiff)                 |                       | 1                  | 13       |              |             |                    |               |            |                  |                                                        |                         |                           |                           | $\mathbb{N}$ | 550                         |  |
|                  |                                                         |                       |                    |          |              |             | 132 kP             | a:::::        |            |                  |                                                        |                         |                           |                           | $\mathbb{A}$ |                             |  |
|                  |                                                         |                       |                    | 11       |              |             |                    |               |            |                  |                                                        |                         |                           |                           | $\mathbb{N}$ | 00                          |  |
| GL               | ACIAL TILL                                              | 92.07                 | 7 2                |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           | $\mathbb{A}$ | 000                         |  |
| Silt             | y sand with clay and gravel, possibl<br>bles, grey, wet | e                     |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  | Auger Refusal at 2.1 m Depth                            | ו                     |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
|                  |                                                         |                       |                    |          |              |             |                    |               |            |                  |                                                        |                         |                           |                           |              |                             |  |
| TES:             |                                                         | 14/4-77               |                    |          |              | )BUc        |                    | · : : : :<br> | 1::::<br>[ | 1:::             |                                                        |                         |                           |                           |              | 1                           |  |
| DTES:            | Borehole data requires interpretation by EXP before     | by EXP before         |                    |          | - 1 T        | 11 IS       |                    |               | i i        |                  |                                                        | - UR                    |                           |                           |              |                             |  |

| I NOTES:   | ale data requires interpretation by EVD before           | WA         | TER LEVEL RECO     | RDS                 |            | CORE D       | RILLING RECOR | D     |
|------------|----------------------------------------------------------|------------|--------------------|---------------------|------------|--------------|---------------|-------|
| use by     | ore data requires interpretation by EAP before<br>others | Date       | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.        | RQD % |
| 2.Boreh    | ole was backfilled upon completion of drilling.          | Completion |                    | 2.1                 |            |              |               |       |
| 3. Field v | work supervised by an EXP representative.                |            |                    |                     |            |              |               |       |
| 4. See N   | otes on Sample Descriptions                              |            |                    |                     |            |              |               |       |
| 5. Log to  | be read with EXP Report OTT-23012778-B0                  |            |                    |                     |            |              |               |       |
| 21         |                                                          |            |                    |                     | 1          |              |               |       |



**Unified Soil Classification System** SAND GRAVEL CLAY AND SILT Fine Medium Coarse Coarse Fine GRAIN SIZE IN MICROMETERS SIEVE DESIGNATION (Imperial) 3 5 10 1 30 50 75 3/8" 1/2" 3/4" 1" 3" #200 #100 #50 #16 #4 100.0 95.0 90.0 85.0 80.0 75.0 70.0 65.0 60.0 55.0 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 0.001 0.01 0.1 1 10 100

Grain Size (mm)

| EXP Project No.:                                                     | OTT-23012778-B0 | Project Name :   |                                     | Proposed Addit | ion - Ear   | hool     |          |    |             |         |
|----------------------------------------------------------------------|-----------------|------------------|-------------------------------------|----------------|-------------|----------|----------|----|-------------|---------|
| Client :                                                             | OCDSB           | Project Location | Project Location : 4 The Parkway, C |                |             |          |          |    |             |         |
| Date Sampled :                                                       | January 8, 2024 | Borehole No:     |                                     | BH23-5         | Sample No.: |          | SS2      |    | Depth (m) : | 0.8-1.4 |
| Sample Description :                                                 |                 | % Silt and Clay  | 91                                  | % Sand         | 9           | % Gravel |          | 0  | Figure      | 20      |
| Sample Description : Sily Clay of Medium Plasticity (CL), trace sand |                 |                  |                                     |                |             |          | Figure : | 20 |             |         |



**Unified Soil Classification System** SAND GRAVEL CLAY AND SILT Fine Medium Coarse Coarse Fine GRAIN SIZE IN MICROMETERS SIEVE DESIGNATION (Imperial) 3 5 10 1 30 50 75 3/8" 1/2" 3/4" 1" 3" #200 #100 #50 #16 #4 100.0 95.0 90.0 85.0 80.0 75.0 70.0 65.0 60.0 55.0 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 0.001 0.01 0.1 1 10 100 Grain Size (mm)

| EXP Project No.:     | OTT-23012778-B0 | Project Name :                                  |                                   | Proposed Addit | ion - Ea | hool        |  |    |             |         |
|----------------------|-----------------|-------------------------------------------------|-----------------------------------|----------------|----------|-------------|--|----|-------------|---------|
| Client :             | OCDSB           | Project Location                                | Project Location : 4 The Parkway, |                |          |             |  |    |             |         |
| Date Sampled :       | January 9, 2024 | Borehole No:                                    | orehole No: BH23-6                |                |          | Sample No.: |  | S4 | Depth (m) : | 2.3-2.9 |
| Sample Description : |                 | % Silt and Clay                                 | 91                                | % Sand         | 9        | % Gravel    |  | 0  | Figure      | 20      |
| Sample Description : |                 | Sily Clay of Medium Plasticity (CL), trace sand |                                   |                |          |             |  |    | rigure :    | 29      |





| EXP Project No.:                                                      | OTT-23012778-B0 | 23012778-B0 Project Name : |                     |                |         | Proposed Addition - Earl of March Secondary School |          |             |         |  |  |  |  |
|-----------------------------------------------------------------------|-----------------|----------------------------|---------------------|----------------|---------|----------------------------------------------------|----------|-------------|---------|--|--|--|--|
| Client :                                                              | OCDSB           | Project Location           | n:                  | 4 The Parkway, | Ottawa, | ON                                                 |          |             |         |  |  |  |  |
| Date Sampled :                                                        | April 20, 2018  | Borehole No:               | Borehole No: BH18-3 |                |         |                                                    | SS4      | Depth (m) : | 2.3-2.9 |  |  |  |  |
| Sample Description :                                                  |                 | % Silt and Clay            | 96                  | % Sand         | 4       | % Gravel                                           | 0        | Figure :    | 20      |  |  |  |  |
| Sample Description : Silty Clay of Medium Plasticity (CI), trace sand |                 |                            |                     |                |         |                                                    | rigule . | 30          |         |  |  |  |  |





| EXP Project No.:     | OTT-23012778-B0                                                             |  | Project Name :   |    | nool               |         |          |   |    |             |         |
|----------------------|-----------------------------------------------------------------------------|--|------------------|----|--------------------|---------|----------|---|----|-------------|---------|
| Client :             | OCDSB                                                                       |  | Project Location | :  | 4 The Parkway,     | Kanata, |          |   |    |             |         |
| Date Sampled :       | January 8, 2024                                                             |  | Borehole No:     |    | BH23-1 Sample No.: |         |          | S | 64 | Depth (m) : | 2.3-2.9 |
| Sample Description : |                                                                             |  | % Silt and Clay  | 36 | % Sand             | 47      | % Gravel |   | 17 | Figuro :    | 21      |
| Sample Description : | ample Description : Glacial Till: Silty Sand (SM) - Some Gravel, Trace Clay |  |                  |    |                    |         |          |   |    |             | 31      |





| EXP Project No.:     | OTT-23012778-B0                                                          |  | Project Name :   |    | hool           |         |           |   |             |             |         |
|----------------------|--------------------------------------------------------------------------|--|------------------|----|----------------|---------|-----------|---|-------------|-------------|---------|
| Client :             | OCDSB                                                                    |  | Project Location | :  | 4 The Parkway, | Kanata, | Ontario   |   |             |             |         |
| Date Sampled :       | January 9, 2024                                                          |  | Borehole No:     |    | BH23-11        | San     | nple No.: | S | <b>\$</b> 7 | Depth (m) : | 4.6-5.2 |
| Sample Description : |                                                                          |  | % Silt and Clay  | 44 | % Sand         | 45      | % Gravel  |   | 11          | Figure :    | 22      |
| Sample Description : | ple Description : Glacial Till: Silty Sand (SM) - Some Gravel, Some Clay |  |                  |    |                |         |           |   |             |             | 52      |





| EXP Project No.:     | OTT-23012778-B0 | Project Name :              |       | chool             |               |          |     |             |         |
|----------------------|-----------------|-----------------------------|-------|-------------------|---------------|----------|-----|-------------|---------|
| Client :             | OCDSB           | Project Location            | :     | 4 The Parkway,    | Ottawa        | , ON     |     |             |         |
| Date Sampled :       | April 20, 2018  | Borehole No:                |       | BH18-2            | -2 Sample No. |          | SS3 | Depth (m) : | 1.5-2.1 |
| Sample Description : |                 | % Silt and Clay             | 40    | % Sand            | 48            | % Gravel | 12  | Figuro :    | 22      |
| Sample Description : | Gla             | acial Till: Silty Sand (SM) | - Som | e Gravel, Trace C | lay           | rigure . | 55  |             |         |

EXP Services Inc.

Project Name: Geotechnical Investigation - Proposed Addition and Civil Work Earl of March Secondary School, Ottawa, Ontario Updated Final Report OTT-23012778-B0 December 12, 2024

# Appendix A – EXP 2018 Borehole Logs

\*ехр.
|               | Log of Bo                                        | orehole <u>BH2</u>                 |                                                                  | exp      |
|---------------|--------------------------------------------------|------------------------------------|------------------------------------------------------------------|----------|
| Project No:   | OTT-00245378-C0                                  |                                    |                                                                  | CAP.     |
| Project:      | Geotechnical Investigation - Proposed Hydrants - | Earl of March Secondary School     | Page 1 of 1                                                      | I        |
| Location:     | 4 The Parkway, City of Ottawa, Ontario           |                                    |                                                                  | _        |
| Date Drilled: | 'April 19, 2018                                  | Split Spoon Sample                 | Combustible Vapour Reading                                       |          |
| Drill Type:   | CME-55 Truckmount                                | Auger Sample                       | Natural Moisture Content                                         | ×        |
| Datum:        | Geodetic                                         | Dynamic Cone Test                  | Atterberg Limits<br>Undrained Triaxial at<br>% Strain at Failure | ₽<br>₽   |
| Logged by:    | M.L. Checked by: I.T.                            | Shear Strength by +<br>Vane Test S | Shear Strength by<br>Penetrometer Test                           | <b>A</b> |

|        | S     |                                            |          | D |            | Star | ndard     | l Per    | netra | tion T   | est l | Valu  | le      |           | Combu     | ustib<br>250 | le Va |          | r Re       | adin  | g (pp  | m)    | S<br>A | Natural  |
|--------|-------|--------------------------------------------|----------|---|------------|------|-----------|----------|-------|----------|-------|-------|---------|-----------|-----------|--------------|-------|----------|------------|-------|--------|-------|--------|----------|
| N G    | , M   | SOIL DESCRIPTION                           | Geodetic | p |            | 20   | 0         | 4        | 10    | 6        | 0     | 8     | 0       |           | Na        | atura        | al Mo | istur    | ,<br>e Co  | nter  | nt %   |       | P      | Unit Wt. |
| 1      | Ō     |                                            | m        | h | She        | ar S | treng     | ith 1    | ~~    |          |       | ~     | k       | Ра        | Atter     | rben         | g Lin | nts (    | % Di       | ry VV | eight) |       | Ĕ      | kN/m³    |
|        | 11/2  | TOPSOIL ~150 mm                            | 93.98    | 0 |            | 50   | 0<br>:::  | 1        | 00    | 1        | 50    | 20    | 00      | ::        |           | 20           | ::    | 40       | : : :      | 60    | :::    |       | S      |          |
|        |       |                                            | 93.8     |   | -2-3-3     | ÷    |           | ÷÷       | 193   | 승규       | 23    | 111   | - [ - ] | ÷ ; ·     |           | 43           | ÷÷    |          | ::::       |       | -2-1-2 | : : · | 1      |          |
|        |       | SILTY CLAY (CL)                            |          |   | 9          | ÷    | 12        | ÷÷       | 193   | 99       | 23    |       |         |           |           | 42           |       |          |            |       |        |       | VI     |          |
|        |       | Brown, moist, (very stiff)                 |          |   | 0          |      | •••••     | ÷ : :    | 1     |          | 1.2.5 | ÷÷÷   | • • • • | ÷÷        |           | ∼ ≯          | <     | $\vdots$ |            |       |        |       | XI     | 20.1     |
|        | V///  |                                            |          |   |            |      |           | ÷÷       |       |          |       |       |         | ÷÷        |           |              |       |          |            |       |        |       | Μ      |          |
|        |       | <u></u>                                    | _        |   |            |      |           |          |       |          |       |       |         | <u></u>   |           |              |       |          |            |       |        |       |        |          |
|        | V///  |                                            |          |   | 223        | ÷:   | · : : :   | ÷÷       | 123   | 순순       | 1213  |       | · {· }  | ÷÷        | - e e e e | 43           |       |          | : : :<br>: |       | 222    | :: f  | -      |          |
|        |       |                                            |          |   | 223        | ÷    | · : : : : | ÷÷       | 133   | 순순       | 1915  |       | · {·}   | ÷÷        | 1999 Q    | 13           | ÷÷    |          | (+ ) (     |       | 201    |       |        |          |
|        | V///  |                                            |          |   | 1999       | ÷    | 12        | ÷÷       | 193   | 1919     | 23    | 111   | 11      | ÷÷.       |           | 43           | ÷÷    |          | 999        |       | 223    |       |        |          |
|        |       |                                            |          |   |            |      |           | ÷÷       | 193   | 400      | 193   | ÷÷:   | - 12    | ÷÷        |           | 42           | ÷÷    |          | <u>.</u>   |       |        |       | VI     |          |
|        | V///  |                                            |          | 1 | - <b>8</b> |      |           | : :      |       | 132_     |       | :::   |         |           | : : : :   |              |       | ×        | : : :      |       | :::    |       | ΥI     | 18.2     |
|        |       |                                            |          |   |            | 1    | 12        | 11       | 123   | <b>.</b> |       | :::   | • • • • | 22        |           | 13           | 11    | 1        |            |       |        |       | ΛI     | 10.2     |
|        | V///  |                                            |          |   | 1111       | 1    |           | 22       | 111   | 11       | 111   | 111   |         | 1         |           | 13           | 11    |          | 111        |       | 222    |       | / \    |          |
|        | V///  |                                            |          |   | 12.21      | 1    | 112       | 9 P      | 193   | 12.2     | 111   | 111   | 111     | <u>99</u> | 12533     | 13           |       |          | 999        |       | 223    |       |        |          |
|        | V///  |                                            | 92.5     |   | 12.51      | 1    | 111       | ÷÷       | 193   | 22       | 23    | 11    | · (•)   | ÷÷        | 12.512.5  | 12           | ÷÷    |          | 999        |       | 201    |       |        |          |
|        | ×     | SILTY SAND TILL (SM)                       |          |   |            |      |           | <u>.</u> |       |          |       |       |         |           |           | +            |       |          |            |       |        |       |        |          |
|        | KØ.   | With clay and gravel, brown, moist to wet. |          |   |            |      |           |          |       |          |       |       |         |           |           |              |       |          |            |       |        | 1     | N.     |          |
|        |       | (compact)                                  |          |   | 11         | 1    |           | : :      |       |          |       | 111   |         |           |           | 13           |       |          |            |       |        |       | VI     |          |
|        |       |                                            |          |   | ::::O      | 2    | 111       | 11       | 123   | 11       | 131   | 111   | 111     | 22        | 12121     | 13           | 11    | ×        | 111        |       | 111    |       | λI     |          |
|        | W/X   |                                            |          |   | 1111       | 11   |           | 22       | 199   | 11       | 131   | 111   | 111     | 22        | 11111     | 13           | 11    |          | 111        |       | 223    |       | M      |          |
|        |       |                                            | 91.9     | 2 |            |      |           |          |       |          |       |       |         |           |           |              |       |          |            |       |        |       |        |          |
|        |       | Auger Refusal at 2.1 m Depth               |          |   |            |      |           | : :      |       |          |       | :::   |         | : :       |           |              |       |          |            |       |        |       |        |          |
|        |       |                                            |          |   |            |      | :::       | 11       | 1::   | 11       |       | :::   |         | : :       |           |              | 11    | 1        | : : :      | 1     |        |       |        |          |
|        |       |                                            |          |   |            |      |           |          |       |          |       |       |         |           |           |              |       |          |            |       |        |       |        |          |
|        |       |                                            |          |   |            |      |           |          |       |          |       |       |         |           |           |              |       |          |            |       |        |       |        |          |
|        |       |                                            |          |   |            |      |           | 11       |       | ::       | ::    | 11    | :::     | :::       |           |              |       |          | :::        |       |        |       |        |          |
|        |       |                                            |          |   | :::        |      | :::       | 11       |       |          |       | 11    |         |           |           |              |       | 1        | : : :      |       |        |       |        |          |
|        |       |                                            |          |   |            |      | ::        | 2.2      | 1::   | : :      |       | :::   |         | :::       |           |              | ::    | 1        |            |       |        |       |        |          |
|        |       |                                            |          |   |            |      |           | 11       |       |          |       |       |         |           |           |              |       |          |            |       |        |       |        |          |
|        |       |                                            |          |   |            |      |           | 11       |       |          |       |       |         |           |           |              |       |          |            |       |        |       |        |          |
| 18     |       |                                            |          |   |            | :    | : :       | ::       |       | ::       | ::    | ::    | ::      | : :       |           |              | ::    | :        | : : :      | : :   |        |       |        |          |
| /30    |       |                                            |          |   | :::        | :    | :::       | : :      |       | :::      | ::    | :::   |         | : :       |           |              | ::    | 1        | :::        |       |        |       |        |          |
| 4      |       |                                            |          |   |            |      | ::        | 11       | 1::   | :::      |       |       |         | :::       |           |              |       | 1        | :::        |       |        |       |        |          |
| 8      |       |                                            |          |   |            |      | : :       | : :      |       | : :      |       | :::   | ::      | :::       |           |              | ::    | 1        | : : :      |       |        |       |        |          |
| Ă      |       |                                            |          |   |            |      |           |          |       |          |       |       |         |           |           |              |       |          |            |       |        |       |        |          |
| ₹      |       |                                            |          |   |            |      |           |          |       |          |       |       |         |           |           |              |       |          |            |       |        |       |        |          |
| Ы      |       |                                            |          |   |            | -    | 11        | 11       |       | ::       | ::    | :::   | ::      | :::       |           |              |       | :        | : : :      |       |        |       |        |          |
| Š      |       |                                            |          |   |            |      | 11        | 11       |       | 1        | ::    | :::   |         | :::       |           |              |       | 1        | : : :      |       |        |       |        |          |
| Ĕ      |       |                                            |          |   |            |      | ::        | : :      | 1::   | :::      |       | :::   |         | : :       |           |              | ::    | 1        | : : :      |       |        |       |        |          |
| 2      |       |                                            |          |   |            |      | : :       | : :      | 1::   |          |       |       |         | : :       |           |              |       |          | : : :      |       |        |       |        |          |
| ٥.     |       |                                            |          |   |            |      |           | 11       |       |          |       |       |         |           |           |              |       |          |            |       |        |       |        |          |
| 5<br>U |       |                                            |          |   |            |      | ::        | : :      |       | ::       | ::    | :::   | :::     |           |           |              | ::    | :        | : : :      |       |        |       |        |          |
| AAF    |       |                                            |          |   | : : :      |      | ::        | : :      | 1::   | ::       | ::    | :::   | ::      | :::       | ::::      |              | ::    | :        | : : :      |       |        | ::    |        |          |
| 4      |       |                                            |          |   |            |      | : :       | 11       | 1::   | :::      |       | 11    |         | :::       |           | 13           | ::    |          | :::        |       |        |       |        |          |
|        |       |                                            |          |   |            |      |           |          |       |          |       |       | ::      |           |           |              |       |          |            |       |        |       |        |          |
| RAR    |       |                                            |          |   |            |      |           |          |       |          |       |       |         |           |           |              |       |          |            |       |        |       |        |          |
| 3      |       |                                            |          |   |            |      |           |          |       |          |       | :::   |         |           |           |              |       | :        |            |       |        |       |        |          |
| ŏ      |       |                                            |          |   |            |      | ÷ :       | : :      |       | ::       |       | :::   |         |           |           |              | ::    | :        |            | 1     |        |       |        |          |
| 3378   |       |                                            |          |   | : : :      | ÷    | 11        | : :      | 1::   | ::       | ::    | :::   | 1       | ::        |           |              | ::    | :        | :::        | ::    | :::    |       |        |          |
| ₹∟     |       |                                            |          |   |            |      | ::        | : :      |       | ::       |       | : : : |         | ::        |           |              | : :   | :        |            |       |        |       |        |          |
| Ω      | OTES: |                                            | 14/A TE  |   |            |      |           |          |       |          |       | ר ר   |         |           |           |              |       |          |            |       |        |       |        |          |

| OGS    | NOTES:                                               | WAT             | ER LEVEL RECO      | RDS                 |            | CORE DR      | ILLING RECOF | RD    |
|--------|------------------------------------------------------|-----------------|--------------------|---------------------|------------|--------------|--------------|-------|
| BHL    | use by others                                        | Elapsed<br>Time | Water<br>Level (m) | Hole Open<br>To (m) | Run<br>No. | Depth<br>(m) | % Rec.       | RQD % |
| OLE    | 2. Borehole backfilled with cuttings upon completion | Completion      | dry                | 1.5                 |            |              |              |       |
| Ë      | 3. Field work supervised by an EXP representative.   |                 |                    |                     |            |              |              |       |
| BQ     | 4. See Notes on Sample Descriptions                  |                 |                    |                     |            |              |              |       |
| LOG OF | 5.Log to be read with EXP Report OTT-00245378-C0     |                 |                    |                     |            |              |              |       |

|               | Log of Bo                                        | orehole BH3                        | 9                                            | eyn      |
|---------------|--------------------------------------------------|------------------------------------|----------------------------------------------|----------|
| Project No:   | OTT-00245378-C0                                  |                                    |                                              | CAP.     |
| Project:      | Geotechnical Investigation - Proposed Hydrants - | - Earl of March Secondary School   | Figure No. <u>5</u>                          | I        |
| Location:     | 4 The Parkway, City of Ottawa, Ontario           |                                    |                                              | _        |
| Date Drilled: | 'April 19, 2018                                  | Split Spoon Sample                 | Combustible Vapour Reading                   |          |
| Drill Type:   | CME-55 Truckmount                                | Auger Sample II<br>SPT (N) Value O | Natural Moisture Content<br>Atterberg Limits | ×<br>⊢⊸⊖ |
| Datum:        | Geodetic                                         | Dynamic Cone Test<br>Shelby Tube   | Undrained Triaxial at % Strain at Failure    | $\oplus$ |
| Logged by:    | M.L. Checked by: I.T.                            | Shear Strength by +<br>Vane Test S | Shear Strength by<br>Penetrometer Test       | <b>A</b> |

| l<br>N    | G<br>N<br>L | SY MBO                                   | SOIL DESCRIPTION                                                                              | Geodetic<br>m | D<br>e<br>p<br>t | Sh              | Sta<br>2<br>lear S | indaro<br>20<br>Streno | d Per<br>4                            | 0 6      | est N<br>0 | Value<br>80 | e<br>kPa | 250 500 750<br>Natural Moisture Content %<br>Atterberg Limits (% Dry Weight) |   |    |       | A<br>M<br>P<br>L | Natural<br>Unit Wt. |         |
|-----------|-------------|------------------------------------------|-----------------------------------------------------------------------------------------------|---------------|------------------|-----------------|--------------------|------------------------|---------------------------------------|----------|------------|-------------|----------|------------------------------------------------------------------------------|---|----|-------|------------------|---------------------|---------|
|           |             | Ľ<br><u>x<sup>1</sup> /<sub>z</sub>:</u> | TOPSOIL ~150 mm                                                                               | 93.85         | h<br>O           |                 | 5                  | 50                     | <u>1(</u>                             | 00 15    | 50         | 200         | )        | <br>2                                                                        | 0 | 40 | e     | i0               | E<br>S              | KIN/III |
|           |             |                                          | FILL<br>Sand with gravel, scattered aluminum<br>debris, brown, moist, (compact)               | 93.7          |                  |                 | 16<br>O            |                        |                                       |          |            |             |          | ×                                                                            |   |    |       |                  |                     |         |
| N N N     |             | $\bigotimes$                             |                                                                                               | 93.2          |                  |                 |                    |                        |                                       |          |            |             |          |                                                                              |   |    |       |                  |                     |         |
|           |             |                                          | SILTY CLAY (CL)<br>Medium plasticity, sensitive, grey, moist to<br>wet, (very stiff to stiff) |               | 1                | -6              |                    |                        |                                       | 120      |            |             |          |                                                                              |   |    |       |                  | $\mathbb{V}$        |         |
|           |             |                                          |                                                                                               |               |                  | Ō               |                    |                        |                                       |          |            |             |          |                                                                              |   | >  | <     |                  | Ŵ                   | 17.9    |
| -         |             |                                          |                                                                                               | 92.45         |                  |                 |                    |                        |                                       |          |            |             |          |                                                                              |   |    | ••••• |                  |                     |         |
|           |             |                                          |                                                                                               |               |                  |                 |                    |                        |                                       |          |            |             |          |                                                                              |   |    |       |                  | $\mathbb{N}$        |         |
|           |             |                                          | _                                                                                             |               | 2                | 5<br>0          |                    |                        |                                       | 132<br>▲ |            |             |          | • • • • •                                                                    |   |    | ×     |                  | Ň                   |         |
|           |             |                                          |                                                                                               |               |                  |                 |                    |                        |                                       | 115<br>+ |            |             |          |                                                                              |   |    |       |                  | $\square$           |         |
|           |             |                                          |                                                                                               |               |                  |                 |                    |                        |                                       |          |            |             |          |                                                                              |   |    |       |                  | $\mathbb{N}$        |         |
|           |             |                                          |                                                                                               |               |                  | 1               |                    |                        |                                       |          |            |             |          |                                                                              | 1 |    | €     |                  | Ň                   | 17.0    |
|           |             |                                          |                                                                                               |               | 2                |                 |                    |                        | 96<br>+                               | <b>3</b> |            |             |          |                                                                              |   |    |       |                  | /\<br>m             |         |
| 130/18    |             |                                          |                                                                                               |               | 3                |                 |                    |                        | S =                                   | 8.0      |            |             |          |                                                                              |   |    |       |                  |                     |         |
| VA.GUI 4  |             |                                          |                                                                                               | Ham           | me               | ∣<br>r Wei<br>₽ | ight               |                        |                                       |          |            |             |          | • • • • •                                                                    |   |    | ×     |                  | X                   |         |
|           |             |                                          |                                                                                               |               |                  |                 |                    | 72                     | 2                                     |          |            |             |          |                                                                              |   |    |       |                  | /\<br>m             |         |
|           |             |                                          | Borehole Terminated at 3.9 m Depth                                                            | 90.0          |                  |                 | · · · · · ·        | S =                    | 6.7                                   |          |            |             |          |                                                                              |   |    |       |                  | Ш                   |         |
| IARCH.GFJ |             |                                          |                                                                                               |               |                  |                 |                    |                        | · · · · · · · · · · · · · · · · · · · |          |            |             |          |                                                                              |   |    |       |                  |                     |         |
|           |             |                                          |                                                                                               |               |                  |                 |                    |                        |                                       |          |            |             |          | · · · · · · · · · · · · · · · · · · ·                                        |   |    |       |                  |                     |         |
| 18-CU - E |             |                                          |                                                                                               |               |                  |                 |                    |                        |                                       |          |            |             |          | · · · · · · · · · · · · · · · · · · ·                                        |   |    |       |                  |                     |         |
| 2403      |             |                                          |                                                                                               |               |                  |                 |                    |                        |                                       |          |            |             |          |                                                                              |   |    |       |                  |                     |         |

| 000   | NOTES:                                                               | WAT        | ER LEVEL RECO           | RDS                  |     | CORE DF    | RILLING RECOF | RD    |
|-------|----------------------------------------------------------------------|------------|-------------------------|----------------------|-----|------------|---------------|-------|
| BHL   | 1. Borehole data requires interpretation by EXP before use by others | Elapsed    | Water                   | Hole Open            | Run | Depth      | % Rec.        | RQD % |
| Щ     | 2.19 mm piezometer installed upon completion                         | Completion | <u>Lever (m)</u><br>1.7 | <u>10 (m)</u><br>3.0 | NO. | <u>(m)</u> |               |       |
| ШH    | 3. Field work supervised by an EXP representative.                   | 8 days     | 1.4                     |                      |     |            |               |       |
| BOR   | 4. See Notes on Sample Descriptions                                  |            |                         |                      |     |            |               |       |
| OG OF | 5. Log to be read with EXP Report OTT-00245378-C0                    |            |                         |                      |     |            |               |       |

EXP Services Inc.

Project Name: Geotechnical Investigation - Proposed Addition and Civil Work Earl of March Secondary School, Ottawa, Ontario Updated Final Report OTT-23012778-B0 December 12, 2024

# **Appendix B – Bedrock Core Photographs**

\*ехр.

|                               |                                                           | DRY BEDROCK CORES                                                                                                                         |                                |
|-------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                               | 1.8 m                                                     | 2.6 m                                                                                                                                     | 2.8 m                          |
|                               |                                                           | WET BEDROCK CORES                                                                                                                         |                                |
|                               | 1.8 m                                                     | 26 m                                                                                                                                      | 2.8 m                          |
|                               | Build a Stat                                              |                                                                                                                                           | 2.0 m                          |
|                               |                                                           |                                                                                                                                           |                                |
|                               | *e                                                        | EXP Services Inc. www.exp.com<br>t +1.613.688.1899   f: +1.613.225.7337<br>2650 Queensview Drive, Suite 100<br>Ottawa, ON K2B 8H6, Canada |                                |
| Borehole No:<br>BH23-2        | Core Runs<br>Run 1: 1.8 m - 2.8 m<br>Run 2: 2.8 m - 4.3 m | Geotechnical Investigation<br>Earl of March Secondary School Addition                                                                     | Project N0:<br>OTT-23012778-B0 |
| Date Cored<br>January 8, 2024 |                                                           | Rock Core Photographs                                                                                                                     | B-1                            |

|                        |                                                                      | DRY BEDROCK CORES                                                                                                                         |                                |
|------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                        |                                                                      |                                                                                                                                           | 4.3 m<br>5.0 m                 |
|                        |                                                                      |                                                                                                                                           | 4.3 m<br>5.0 m                 |
|                        | *e                                                                   | EXP Services Inc. www.exp.com<br>t +1.613.688.1899   f: +1.613.225.7337<br>2650 Queensview Drive, Suite 100<br>Ottawa, ON K2B 8H6, Canada |                                |
| Borehole No:<br>BH23-2 | <sup>Core Runs</sup><br>Run 2: 2.8 m - 4.3 m<br>Run 3: 4.3 m - 5.0 m | Geotechnical Investigation<br>Earl of March Secondary School Addition                                                                     | Project N0:<br>OTT-23012778-B0 |
| January 8, 2024        |                                                                      | Rock Core Photographs                                                                                                                     | B-2                            |

|                                |                                   | DRY BEDROCK CORES                                                                                                                         |                 |
|--------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                | 2.6 m                             | N 1, 194125 - M.<br>HI B 5 - 18 M.<br>HI DONIZA- BON OF PWECK                                                                             | S.              |
|                                | No.                               | - + /                                                                                                                                     | X               |
|                                |                                   | - +                                                                                                                                       | 4.1 m           |
|                                |                                   | WET BEDROCK CORES                                                                                                                         |                 |
|                                | 2.6 m                             | W & BOTO TA                                                                                                                               |                 |
|                                | A set                             |                                                                                                                                           |                 |
|                                | 6                                 | t d d                                                                                                                                     | 4.1 m           |
|                                | Televen                           |                                                                                                                                           |                 |
|                                | *e                                | EXP Services Inc. www.exp.com<br>t +1.613.688.1899   f: +1.613.225.7337<br>2650 Queensview Drive, Suite 100<br>Ottawa, ON K2B 8H6, Canada |                 |
| Borehole No:<br>BH23-7         | Core Runs<br>Run 1: 2.6 m - 4.1 m | Geotechnical Investigation<br>Earl of March Secondary School Addition                                                                     | OTT-23012778-B0 |
| Date Cored<br>January 09, 2024 |                                   | Rock Core Photographs                                                                                                                     | B-3             |

### DRY BEDROCK CORES



|                               |                                   | DRY BEDR                                                             | OCK CORES                                                                             |        |                 |
|-------------------------------|-----------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------|-----------------|
|                               | 4.1 m                             | Print Contraction                                                    |                                                                                       |        |                 |
|                               |                                   | X                                                                    |                                                                                       | )      |                 |
|                               | To the                            | Star (                                                               | 5.6 m                                                                                 |        |                 |
|                               | P CLICKER                         | WET BEDRO                                                            | OCK CORES                                                                             |        |                 |
|                               | 4.1 m                             |                                                                      |                                                                                       |        |                 |
|                               |                                   |                                                                      |                                                                                       | T      |                 |
|                               |                                   |                                                                      | 5.6 m                                                                                 |        |                 |
|                               |                                   |                                                                      |                                                                                       |        |                 |
|                               | *e                                | EXP Service<br>t +1.613.688.189<br>2650 Queensvier<br>Ottawa, ON K2E | es Inc. www.exp.com<br>99   f: +1.613.225.7337<br>w Drive, Suite 100<br>3 8H6, Canada | 1      |                 |
| Borehole No:<br>BH23-8        | Core Runs<br>Run 2: 4.1 m - 5.6 m | Geot<br>Earl of Marc                                                 | echnical Investigation<br>h Secondary School Ad                                       | dition | OTT-23012778-B0 |
| Date Cored<br>January 8, 2024 |                                   | Roc                                                                  | k Core Photographs                                                                    |        | B-5             |

|                                 |                                   | DRY BEDROCK CORES                                                                                                                              |                                |
|---------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                 | 1.7 m                             |                                                                                                                                                |                                |
|                                 | ALL COLOR                         |                                                                                                                                                |                                |
|                                 |                                   | 3.3 m<br>WET BEDROCK CORES                                                                                                                     |                                |
| 1                               | I.7 m                             |                                                                                                                                                | NUL INC                        |
|                                 |                                   |                                                                                                                                                |                                |
|                                 | ALLE                              |                                                                                                                                                |                                |
|                                 | 1                                 | 3.3 m                                                                                                                                          |                                |
|                                 | *e                                | EXP. EXP Services Inc. www.exp.com<br>t +1.613.688.1899   f: +1.613.225.7337<br>2650 Queensview Drive, Suite 100<br>Ottawa, ON K2B 8H6, Canada |                                |
| Borehole No:<br>BH24-1          | Core Runs<br>Run 1: 1.7 m - 3.3 m | Geotechnical Investigation<br>Earl of March Secondary School Addition                                                                          | Project N0:<br>OTT-23012778-B0 |
| Date Cored<br>September 2, 2024 |                                   | Rock Core Photographs                                                                                                                          | B-6                            |
|                                 |                                   |                                                                                                                                                |                                |

|                      |                                              | DRY BEDROCK CORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
|----------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                      | 3.3 m                                        | Marine Marine Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z               |
|                      | C. C. C. C. C. C.                            | Carlos and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T               |
|                      |                                              | 4.8 m<br>WET BEDROCK CORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
|                      | 3.3 m                                        | Y THE TAX THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
|                      |                                              | ALL THE REAL PROPERTY OF THE R |                 |
|                      | Cellin                                       | STRUCTURE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5               |
|                      | George States                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T               |
|                      | -                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                      | A CONTRACTOR                                 | 4.8 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                      | *e                                           | EXP Services Inc. www.exp.com<br>t +1.613.688.1899   f: +1.613.225.7337<br>2650 Queensview Drive, Suite 100<br>Ottawa, ON K2B 8H6, Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
|                      | <sup>Core Runs</sup><br>Run 2: 3.3 m - 4.8 m | Geotechnical Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| Dn24-1<br>Date Cored | -                                            | Earl of March Secondary School Addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UTT-23012/78-B0 |
| September 2, 2024    |                                              | Rock Core Photographs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B-7             |
|                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |

|                                 |                                              | DRY BEDROCK CORES                                                                                                                         |                                |
|---------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 2                               | 2.1 m                                        |                                                                                                                                           | <b>63</b>                      |
|                                 | -                                            | 3.3 m                                                                                                                                     |                                |
|                                 | 2000                                         | WET BEDROCK CORES                                                                                                                         |                                |
| 2.                              | .1 m                                         |                                                                                                                                           | 23                             |
|                                 | C                                            |                                                                                                                                           |                                |
|                                 | Contraction                                  | 3.3 m                                                                                                                                     |                                |
|                                 | 5-7                                          |                                                                                                                                           | $\leq$                         |
|                                 | *e                                           | EXP Services Inc. www.exp.com<br>t +1.613.688.1899   f: +1.613.225.7337<br>2650 Queensview Drive, Suite 100<br>Ottawa, ON K2B 8H6, Canada |                                |
| Borehole No:<br>BH24-4          | <sup>Core Runs</sup><br>Run 1: 2.1 m - 3.3 m | Geotechnical Investigation<br>Earl of March Secondary School Addition                                                                     | Project N0:<br>OTT-23012778-B0 |
| Date Cored<br>September 2, 2024 |                                              | Rock Core Photographs                                                                                                                     | B-8                            |

|                                                     | 1                            | DRY BEDROCK CORES                                                                         |                       |                 |
|-----------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------|-----------------------|-----------------|
| 3.3 m                                               |                              |                                                                                           | 4.8 m                 |                 |
|                                                     | VV                           |                                                                                           |                       |                 |
| 3.3m                                                |                              |                                                                                           | 4.8 m                 |                 |
|                                                     | et EX                        | P Services Inc. www.ex                                                                    | (p.com                |                 |
|                                                     | ** exp. t +1<br>2650<br>Otta | .613.688.1899   f: +1.613.225.<br>O Queensview Drive, Suite 100<br>wa, ON K2B 8H6, Canada | 7337                  |                 |
| Borehole No:<br>BH24-4<br>Core Runs<br>Run 2: 3.3 n | n - 4.8 m                    | Geotechnical Investiga<br>Earl of March Secondary Sch                                     | ation<br>ool Addition | OTT-23012778-B0 |
| Date Cored<br>September 2, 2024                     |                              | Rock Core Photogra                                                                        | ohs                   | B-9             |

|                                 |                                                                      | DRY BEDROCK CORES                                                                                                                                 |                                |
|---------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                 | 3.0 m<br>4.2 m                                                       | A.7 m                                                                                                                                             |                                |
| 2                               | 0.m                                                                  | WET BEDROCK COKES                                                                                                                                 |                                |
| 3                               |                                                                      |                                                                                                                                                   |                                |
|                                 | 4.2 m                                                                | 4.7 m                                                                                                                                             |                                |
|                                 | *e                                                                   | XP.<br>EXP Services Inc. www.exp.com<br>t: +1.613.688.1899   f: +1.613.225.7337<br>2650 Queensview Drive, Suite 100<br>Ottawa, ON K2B 8H6, Canada |                                |
| Borehole No:<br>BH24-5          | <sup>Core Runs</sup><br>Run 1: 3.0 m - 4.2 m<br>Run 2: 4.2 m - 4.7 m | Geotechnical Investigation<br>Earl of March Secondary School Addition                                                                             | Project N0:<br>OTT-23012778-B0 |
| Date Cored<br>September 2, 2024 |                                                                      | Rock Core Photographs                                                                                                                             | B-10                           |

EXP Services Inc.

Project Name: Geotechnical Investigation - Proposed Addition and Civil Work Earl of March Secondary School, Ottawa, Ontario Updated Final Report OTT-23012778-B0 December 12, 2024

# Appendix C – MASW Seismic Survey

\*ехр.



February 15<sup>th</sup>, 2024

Transmitted by email : <u>Ismail.Taki@exp.com</u> c.c. : <u>Daniel.Wall@exp.com</u>

Our ref : GPR24-05206-b

Mr. Ismail Taki, M.Eng., P.Eng. Senior Manager, Earth & Environment, Eastern Region **exp** Services inc. 100 - 2650 Queensview Drive Ottawa ON K2B 8H6

Subject: Shear Wave Velocity Sounding for the Site Class Determination 4 The Parkway, Kanata, Ottawa (ON)

[Project: OTT-23012778-B0]

Dear Mr. Taki,

Geophysics GPR International inc. has been mandated by **exp** Services inc. to carry out seismic surveys at the Earl of March Secondary School, located at 4 The Parkway, Kanata, in Ottawa (ON). The geophysical investigation used the Multi-channel Analysis of Surface Waves (MASW), the Spatial AutoCorrelation (SPAC), and the seismic refraction method. From the subsequent results, the seismic shear wave velocity values were calculated for the soils, to determine the Site Class.

The surveys were conducted on January 1<sup>st</sup>, 2023, by Mrs. Karyne Faguy, B.Sc. geophysics and Mr. Timothy Ward, tech. Figure 1 shows the regional location of the site and Figure 2 illustrates the location of the seismic spreads. Both figures are presented in the Appendix.

The following paragraphs briefly describe the survey design, the principles of the testing methods, and the results presented in table and graph.

Mr. Ismail Taki, M.Eng., P.Eng. February 15<sup>th</sup>, 2024

### **MASW Principle**

The *Multi-channel Analysis of Surface Waves* (MASW) and the *SPatial AutoCorrelation* (SPAC or MAM for *Microtremors Array Method*) are seismic methods used to evaluate the shear wave velocities of subsurface materials through the analysis of the dispersion properties of the Rayleigh surface wave. The MASW is considered an "active" method, as the seismic signal is induced at known location and time in the geophones' spread axis. Conversely, the SPAC is considered a "passive" method, using the low frequency "signals" produced far away. The method can also be used with "active" seismic source records. The SPAC method generally allows deeper Vs soundings. Its dispersion curve can then be merged with the one of higher frequency from the MASW to calculate a more complete inversion. The dispersion properties are expressed as a change of velocities with respect to frequencies. Surface wave energy will decay exponentially with depth. Lower frequency surface waves will travel deeper and thus be more influenced by deeper velocity layering than the shallow higher frequency waves. The inversion of the Rayleigh wave dispersion curve yields a shear wave (Vs) velocity depth profile (sounding).

Figure 3 schematically outlines the basic operating procedure for the MASW method. Figure 4 illustrates an example of one of the MASW/SPAC records, the corresponding spectrogram analysis and resulting 1D  $V_s$  model.

#### **INTERPRETATION**

The main processing sequence involved data inspection and edition when required; spectral analysis (from MASW and SPAC); picking the fundamental mode; and 1D inversion of the MASW and SPAC shot records using the SeisImagerSW<sup>™</sup> software. The data inversions used a nonlinear least squares algorithm.

In theory, all the shot records for a given seismic spread should produce a similar shear-wave velocity profile. In practice, however, differences can arise due to energy dissipation, local surface seismic velocities variations, and/or dipping of overburden layers or rock. In general, the precision of the calculated seismic shear wave velocities (V<sub>s</sub>) is around 15% or better.

More detailed descriptions of these methods are presented in *Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock*, Hunter, J.A., Crow, H.L., et al., Geological Surveys of Canada, General Information Product 110, 2015.



### SURVEY DESIGN

The seismic spreads were laid out north-west of the actual building (Figure 2). The geophone spacing was 3.0 metres for the main spread, using 24 geophones. Two shorter seismic spreads, with geophone spacing of 0.5 and 1.0 metre, were dedicated to the near surface materials. The seismic records were produced with a seismograph Terraloc Pro2 (from ABEM Instrument), and the geophones were 4.5 Hz.

The seismic records counted 4096 data, sampled at 1000  $\mu$ s for the MASW surveys, and at 40  $\mu$ s for the seismic refraction. The records included a pre-trigged portion of 10 ms. An 8 kg sledgehammer was used as the energy source, with impacts being recorded off both ends of the seismic spreads. A stacking procedure was also used to improve the Signal / Noise ratio for the seismic records.

The shear wave depth sounding can be considered as the average of the bulk area within the geophone spread, especially for its central half-length.

### RESULTS

From seismic refraction, the rock depth was calculated at 4.5 metres ( $\pm$  1 metre), and its seismic velocity was calculated at 1910 m/s for the surface portion. The MASW calculated V<sub>s</sub> results are illustrated at Figure 5.

The  $\overline{V}_{S30}$  value results from the harmonic mean of the shear wave velocities, from the surface to 30 metres deep. It is calculated by dividing the total depth of interest (30 metres) by the sum of the time spent in each velocity layer from the surface down to 30 metres, as:

$$\bar{V}_{S30} = \frac{\sum_{i=1}^{N} H_i}{\sum_{i=1}^{N} H_i / V_i} | \sum_{i=1}^{N} H_i = 30 \text{ m}$$

(N: number of layers; H<sub>i</sub>: thickness of layer "i"; V<sub>i</sub>: V<sub>S</sub> of layer "i")

Thus, the  $\overline{V}_{S30}$  value represents the seismic shear wave velocity of an equivalent homogeneous single layer response, between the surface and 30 metres deep.

The calculated  $\overline{V}_{S30}$  value of the actual site is 1138.1 m/s (Table 1), corresponding to the Site Class "B". However, the Site Classes A and B are not to be used if there is 3 metres or more between the rock surface and the bottom of the foundation. In the case there would be 2.7 metres or less of soils, the  $\overline{V}_{S30}$  \* value would be greater than 1500 m/s, corresponding to the Site Class A (Table 2).



Mr. Ismail Taki, M.Eng., P.Eng. February 15<sup>th</sup>, 2024

### CONCLUSION

Geophysical surveys were carried out to identify the Site Class at the Earl of March Secondary School, Kanata, in Ottawa (ON). The seismic surveys used the MASW and the SPAC analysis, and the seismic refraction to calculate the  $\overline{V}_{S30}$  value. Its calculation is presented at Table 1.

The  $\overline{V}_{S30}$  value of the actual site is 1138 m/s, corresponding to the Site Class "B" (760 <  $\overline{V}_{S30} \leq$  1500 m/s), as determined through the MASW and SPAC results, Table 4.1.8.4.-A of the NBC (2015), and the Building Code, O. Reg. 332/12. It must be noted that the Site Classes A and B are not to be used if there is 3 metres or more of unconsolidated materials between the rock surface and the bottom of the spread footing or the mat foundation.

In the case there would be 2.7 metres or less of unconsolidated materials, the  $\overline{V}_{S30}$  \* value would be greater than 1500 m/s, corresponding to the Site Class A.

It must also be noted that other geotechnical information gleaned on site; including the presence of liquefiable soils, very soft clays, high moisture content etc. (cf. Table 4.1.8.4.-A of the NBC 2015) can supersede the Site classification provided in this report based on the  $\overline{V}_{S30}$  value.

The V<sub>s</sub> values calculated are representative of the in situ materials and are not corrected for the total and effective stresses.

Hoping the whole to your satisfaction, we remain yours truly,

hft for P. Cug.

Jean-Luc Arsenault, M.A.Sc., P.Eng. Senior Project Manager







Figure 1: Regional location of the Site (Source : OpenStreetMap©)



Figure 2: Location of the seismic spreads (source: Google Earth™)





Figure 3: MASW Operating Principle



Figure 4: Example of a MASW/SPAC record, Phase Velocity - Frequency curve of the Rayleigh wave and resulting 1D Shear Wave Velocity Model





Figure 5: MASW Shear-Wave Velocity Sounding



| Donth |        | Vs     |        | Thickness | Cumulative | Delay for      | Cumulative                | Vs at given      |
|-------|--------|--------|--------|-----------|------------|----------------|---------------------------|------------------|
| Depth | Min.   | Median | Max.   | THICKNESS | Thickness  | med. Vs        | Delay                     | Depth            |
| (m)   | (m/s)  | (m/s)  | (m/s)  | (m)       | (m)        | (s)            | (s)                       | (m/s)            |
| 0     | 255.4  | 267.2  | 298.7  |           | Grade Le   | evel (February | / 1 <sup>st</sup> , 2024) |                  |
| 0.5   | 226.1  | 235.5  | 278.6  | 0.50      | 0.50       | 0.001871       | 0.001871                  | 267.2            |
| 1.0   | 224.5  | 229.2  | 251.0  | 0.50      | 1.00       | 0.002123       | 0.003994                  | 250.4            |
| 1.5   | 243.3  | 253.5  | 270.2  | 0.50      | 1.50       | 0.002182       | 0.006176                  | 242.9            |
| 2.5   | 293.7  | 320.7  | 357.0  | 1.00      | 2.50       | 0.003945       | 0.010121                  | 247.0            |
| 3.5   | 406.3  | 442.3  | 527.2  | 1.00      | 3.50       | 0.003118       | 0.013239                  | 264.4            |
| 4.5   | 1876.3 | 1919.3 | 1971.7 | 1.00      | 4.50       | 0.002261       | 0.015499                  | 290.3            |
| 6.5   | 1998.6 | 2074.5 | 2158.0 | 2.00      | 6.50       | 0.001042       | 0.016541                  | 393.0            |
| 9.5   | 2216.5 | 2260.1 | 2347.2 | 3.00      | 9.50       | 0.001446       | 0.017988                  | 528.1            |
| 14.5  | 2416.0 | 2473.4 | 2513.2 | 5.00      | 14.50      | 0.002212       | 0.020200                  | 717.8            |
| 21.5  | 2525.9 | 2552.1 | 2657.4 | 7.00      | 21.50      | 0.002830       | 0.023030                  | 933.6            |
| 30    |        |        |        | 8.50      | 30.00      | 0.003331       | 0.026361                  | 1138.1           |
|       |        |        |        |           |            |                | Vs30 (m/s)                | 1138.1           |
|       |        |        |        |           |            |                | Class                     | B <sup>(1)</sup> |

### <u>TABLE 1</u> V<sub>s30</sub> Calculation for the Site Class (actual site)

(1) The Site Classes A and B are not to be used if there is 3 metres or more of unconsolidated materials between the rock surface and the bottom of the spread footing or the mat foundation.

# TABLE 2Vs30 \* Calculation for the Site Class A

| Douth |        | Vs     |        | Thiskness | Cumulative        | Delay for      | Cumulative       | Vs at given |
|-------|--------|--------|--------|-----------|-------------------|----------------|------------------|-------------|
| Depth | Min.   | Median | Max.   | Inickness | Thickness         | med. Vs        | Delay            | Depth       |
| (m)   | (m/s)  | (m/s)  | (m/s)  | (m)       | (m)               | (s)            | (s)              | (m/s)       |
| 0     | 255.4  | 267.2  | 298.7  |           |                   |                |                  |             |
| 0.5   | 226.1  | 235.5  | 278.6  |           |                   |                |                  |             |
| 1.0   | 224.5  | 229.2  | 251.0  |           | Limit for the Sit | te Class A (2. | 7 metres of soil | s)          |
| 1.5   | 243.3  | 253.5  | 270.2  |           |                   |                |                  |             |
| 1.8   | 243.3  | 253.5  | 270.2  |           |                   |                |                  |             |
| 2.5   | 293.7  | 320.7  | 357.0  | 0.70      | 0.70              | 0.002761       | 0.002761         | 253.5       |
| 3.5   | 406.3  | 442.3  | 527.2  | 1.00      | 1.70              | 0.003118       | 0.005879         | 289.1       |
| 4.5   | 1876.3 | 1919.3 | 1971.7 | 1.00      | 2.70              | 0.002261       | 0.008140         | 331.7       |
| 6.5   | 1998.6 | 2074.5 | 2158.0 | 2.00      | 4.70              | 0.001042       | 0.009182         | 511.9       |
| 9.5   | 2216.5 | 2260.1 | 2347.2 | 3.00      | 7.70              | 0.001446       | 0.010628         | 724.5       |
| 14.5  | 2416.0 | 2473.4 | 2513.2 | 5.00      | 12.70             | 0.002212       | 0.012841         | 989.0       |
| 21.5  | 2525.9 | 2552.1 | 2657.4 | 7.00      | 19.70             | 0.002830       | 0.015671         | 1257.1      |
| 31.8  |        |        |        | 10.30     | 30.00             | 0.004036       | 0.019707         | 1522.3      |
|       |        |        |        |           |                   |                | Vs30 *           | 1522.3      |



Α

Class

EXP Services Inc.

Project Name: Geotechnical Investigation - Proposed Addition and Civil Work Earl of March Secondary School, Ottawa, Ontario Updated Final Report OTT-23012778-B0 December 12, 2024

**Appendix D – Laboratory Certificate of Analysis Report** 

<sup>«</sup>ехр.



### CLIENT NAME: EXP SERVICES INC 2650 QUEENSVIEW DRIVE, UNIT 100 OTTAWA, ON K2B8H6 (613) 688-1899 ATTENTION TO: Ismail M. Taki PROJECT: OTT-23012778-B0 AGAT WORK ORDER: 24Z113379 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead DATE REPORTED: Jan 26, 2024 PAGES (INCLUDING COVER): 5 VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| otes |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
  incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
  merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
  contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

### **AGAT** Laboratories (V1)

ľ

| Member of: Association of Professional Engineers and Geoscientists of Alberta |  |
|-------------------------------------------------------------------------------|--|
| (APEGA)                                                                       |  |
| Western Envire Agricultural Laboratory Association (WEALA)                    |  |

(APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 5



# **Certificate of Analysis**

AGAT WORK ORDER: 24Z113379 PROJECT: OTT-23012778-B0

CLIENT NAME: EXP SERVICES INC

#### SAMPLING SITE: Earl of March Secondary School, Kanata

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### ATTENTION TO: Ismail M. Taki

SAMPLED BY:EXP

|                                |          |          |           |             | game chem    |                           |
|--------------------------------|----------|----------|-----------|-------------|--------------|---------------------------|
| DATE RECEIVED: 2024-01-19      |          |          |           |             |              | DATE REPORTED: 2024-01-26 |
|                                |          |          |           | BH 6 SS4 7. | BH 11 SS4 7. |                           |
|                                | SA       | MPLE DES | CRIPTION: | 5'-9.5'     | 5'-9.5'      |                           |
|                                |          | SAM      | PLE TYPE: | Soil        | Soil         |                           |
|                                |          | DATE     | SAMPLED:  | 2024-01-09  | 2024-01-09   |                           |
| Parameter                      | Unit     | G/S      | RDL       | 5596376     | 5596377      |                           |
| Chloride (2:1)                 | µg/g     |          | 2         | 398         | 78           |                           |
| Sulphate (2:1)                 | µg/g     |          | 2         | 200         | 72           |                           |
| pH (2:1)                       | pH Units |          | NA        | 7.94        | 7.90         |                           |
| Resistivity (2:1) (Calculated) | ohm.cm   |          | 1         | 870         | 3800         |                           |

Inorganic Chemistry (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

5596376-5596377 pH, Chloride, Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter. Analysis performed at AGAT Toronto (unless marked by \*)





# **Quality Assurance**

#### CLIENT NAME: EXP SERVICES INC

#### PROJECT: OTT-23012778-B0

SAMPLING SITE: Earl of March Secondary School, Kanata

AGAT WORK ORDER: 24Z113379

ATTENTION TO: Ismail M. Taki

#### SAMPLED BY:EXP

| Soli Analysis              |         |        |        |           |      |                 |                    |                 |                    |          |                               |              |          |             |                |          |             |                |
|----------------------------|---------|--------|--------|-----------|------|-----------------|--------------------|-----------------|--------------------|----------|-------------------------------|--------------|----------|-------------|----------------|----------|-------------|----------------|
| RPT Date: Jan 26, 2024     |         |        |        | DUPLICATE |      |                 | REFERENCE MATERIAL |                 | METHOD BLANK SPIKE |          |                               | MATRIX SPIKE |          |             |                |          |             |                |
| PARAMETER                  | Batch   | Sample | Dup #1 | Dup #2    | RPD  | Method<br>Blank | Method<br>Blank    | Method<br>Blank | Method<br>Blank    | Measured | Acceptable<br>Measured Limits |              | Recovery | Acce<br>Lir | ptable<br>nits | Recovery | Acce<br>Lir | ptable<br>nits |
|                            |         | Id     |        |           |      |                 | value              | Lower           | Upper              |          | Lower                         | Upper        | -        | Lower       | Upper          |          |             |                |
| Inorganic Chemistry (Soil) |         |        |        |           |      |                 |                    |                 |                    |          |                               |              |          |             |                |          |             |                |
| Chloride (2:1)             | 5598651 |        | 70     | 71        | 1.4% | < 2             | 93%                | 70%             | 130%               | 99%      | 80%                           | 120%         | 99%      | 70%         | 130%           |          |             |                |
| Sulphate (2:1)             | 5598651 |        | 119    | 119       | 0.0% | < 2             | 108%               | 70%             | 130%               | 101%     | 80%                           | 120%         | 97%      | 70%         | 130%           |          |             |                |
| pH (2:1)                   | 5597793 |        | 8.04   | 8.02      | 0.2% | NA              | 93%                | 80%             | 120%               |          |                               |              |          |             |                |          |             |                |

.

.

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.





**AGAT** QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



# **Method Summary**

#### AGAT WORK ORDER: 24Z113379

**ATTENTION TO: Ismail M. Taki** 

| SAMPLING | SITE:Earl of | March | Secondary  | School. | Kanata |
|----------|--------------|-------|------------|---------|--------|
|          | OTTELEATT OT | 11101 | ococinaary |         | runaua |

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-23012778-B0

### SAMPLED BY:EXP

| CAM ENTO ONE.EUT OF Maron Occoonda | y concol, ranata |                                              | •                    |
|------------------------------------|------------------|----------------------------------------------|----------------------|
| PARAMETER                          | AGAT S.O.P       | LITERATURE REFERENCE                         | ANALYTICAL TECHNIQUE |
| Soil Analysis                      |                  |                                              |                      |
| Chloride (2:1)                     | INOR-93-6004     | modified from SM 4110 B                      | ION CHROMATOGRAPH    |
| Sulphate (2:1)                     | INOR-93-6004     | modified from SM 4110 B                      | ION CHROMATOGRAPH    |
| рН (2:1)                           | INOR 93-6031     | modified from EPA 9045D and<br>MCKEAGUE 3.11 | PH METER             |
| Resistivity (2:1) (Calculated)     | INOR-93-6036     | McKeague 4.12, SM 2510 B,SSA #5<br>Part 3    | CALCULATION          |



### CLIENT NAME: EXP SERVICES INC 2650 QUEENSVIEW DRIVE, UNIT 100 OTTAWA, ON K2B8H6 (613) 688-1899 ATTENTION TO: Daniel Wall PROJECT: Earl or March SS AGAT WORK ORDER: 24Z194528 SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead DATE REPORTED: Sep 16, 2024 PAGES (INCLUDING COVER): 5 VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| otes |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
  incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
  merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
  contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

**AGAT** Laboratories (V1)

| Member of: Association of Professional Engineers and Geoscientists of Alberta |
|-------------------------------------------------------------------------------|
| (APEGA)                                                                       |
| Western Enviro-Agricultural Laboratory Association (WEALA)                    |
| Environmental Services Association of Alberta (ESAA)                          |

Page 1 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.



# **Certificate of Analysis**

AGAT WORK ORDER: 24Z194528 **PROJECT: Earl or March SS** 

### CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

http://www.agatlabs.com

**DATE REPORTED: 2024-09-16** 

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

**ATTENTION TO: Daniel Wall** 

SAMPLED BY:

## (Soil) Inorganic Chemistry

DATE RECEIVED: 2024-09-09

|                                | SA       | AMPLE DES | CRIPTION: I | BH2 SS4 7.5-9.5 | ' BH3 SS5 10-12' |
|--------------------------------|----------|-----------|-------------|-----------------|------------------|
|                                |          | SAM       | PLE TYPE:   | Soil            | Soil             |
|                                |          | DATE      | SAMPLED:    | 2024-08-30      | 2024-08-30       |
| Parameter                      | Unit     | G/S       | RDL         | 6129317         | 6129324          |
| Chloride (2:1)                 | hð\ð     |           | 2           | 120             | 109              |
| Sulphate (2:1)                 | µg/g     |           | 2           | 33              | 20               |
| pH (2:1)                       | pH Units |           | NA          | 8.67            | 8.99             |
| Resistivity (2:1) (Calculated) | ohm.cm   |           | 1           | 2390            | 3970             |
|                                |          |           |             |                 |                  |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6129317-6129324 pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter. Analysis performed at AGAT Toronto (unless marked by \*)





# **Quality Assurance**

#### CLIENT NAME: EXP SERVICES INC

#### PROJECT: Earl or March SS

SAMPLING SITE:

AGAT WORK ORDER: 24Z194528

ATTENTION TO: Daniel Wall

SAMPLED BY:

| RPT Date: Sep 16, 2024 DUPLICA |         |        |        |        | E    |                 | REFEREN  | NCE MA               | TERIAL | METHOD   | BLANK              | SPIKE | МАТ      | RIX SPI | KE             |
|--------------------------------|---------|--------|--------|--------|------|-----------------|----------|----------------------|--------|----------|--------------------|-------|----------|---------|----------------|
| PARAMETER                      | Batch   | Sample | Dup #1 | Dup #2 | RPD  | Method<br>Blank | Measured | Acceptable<br>Limits |        | Recovery | Acceptab<br>Limits |       | Recovery | Acce    | ptable<br>nits |
|                                |         | Id     |        |        |      |                 | value    | Lower Upper          |        |          | Lower Upper        |       |          | Lower   | Upper          |
| (Soil) Inorganic Chemistry     |         |        |        |        |      |                 |          |                      |        |          |                    |       |          |         |                |
| Chloride (2:1)                 | 6127766 |        | 220    | 220    | 0.2% | < 2             | 95%      | 70%                  | 130%   | 99%      | 80%                | 120%  | 90%      | 70%     | 130%           |
| Sulphate (2:1)                 | 6127766 |        | 51     | 51     | 0.4% | < 2             | 101%     | 70%                  | 130%   | 101%     | 80%                | 120%  | 102%     | 70%     | 130%           |
| pH (2:1)                       | 6131363 |        | 10.4   | 10.1   | 2.6% | NA              | 97%      | 80%                  | 120%   |          |                    |       |          |         |                |

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.





#### **AGAT** QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



CLIENT NAME: EXP SERVICES INC

**PROJECT: Earl or March SS** 

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

# **Method Summary**

### AGAT WORK ORDER: 24Z194528

ATTENTION TO: Daniel Wall

| SAMPLING SITE:                 |              | SAMPLED BY:                                  |                   |  |  |  |  |  |  |  |
|--------------------------------|--------------|----------------------------------------------|-------------------|--|--|--|--|--|--|--|
| PARAMETER                      | AGAT S.O.P   | AGAT S.O.P LITERATURE REFERENCE              |                   |  |  |  |  |  |  |  |
| Soil Analysis                  |              |                                              |                   |  |  |  |  |  |  |  |
| Chloride (2:1)                 | INOR-93-6004 | modified from SM 4110 B                      | ION CHROMATOGRAPH |  |  |  |  |  |  |  |
| Sulphate (2:1)                 | INOR-93-6004 | modified from SM 4110 B                      | ION CHROMATOGRAPH |  |  |  |  |  |  |  |
| рН (2:1)                       | INOR 93-6031 | modified from EPA 9045D and<br>MCKEAGUE 3.11 | PH METER          |  |  |  |  |  |  |  |
| Resistivity (2:1) (Calculated) | INOR-93-6036 | McKeague 4.12, SM 2510 B,SSA #5<br>Part 3    | CALCULATION       |  |  |  |  |  |  |  |

AGAT METHOD SUMMARY (V1)





| Chain of Custody Reco                                                                                                                                                                                                                                                                                                                                            | aborate         | Ha<br>Ories S<br>rinking Water sample, pleas | ave feedb<br>can here t<br>quick surv<br>se use Drint                      | ack?<br>for a<br>ey!                                                                                                                                   | Ph:                                                                          | M<br>905,71                                     | ississa<br>2.510<br>w                                                                      | 5835<br>auga, C<br>O Fax<br>vebear | Coope<br>Intaric<br>: 905<br>th aga | rs Avenu<br>L4Z 1\<br>712,512<br>tlabs co | ue<br>72<br>22<br>m                                                                                                                                             | La<br>Wo<br>Co<br>Arr                                                                                                                                                                                                                                                                                                                                                                    | ork Orde                                                         | er #:<br>antity<br>mpera | / Use<br>24<br>/: 02                                            |                              | nly<br>210 |        | 15         | 24       | pal<br>14. | Ŧ                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------|------------------------------|------------|--------|------------|----------|------------|------------------------------------|
| Report Information:                                                                                                                                                                                                                                                                                                                                              | Reg             | Regulatory Requirements:                     |                                                                            |                                                                                                                                                        |                                                                              |                                                 |                                                                                            |                                    |                                     | Custody Seal Intact:                      |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                          |                                                                 |                              |            |        |            |          |            |                                    |
| Company:       Exp         Contact:       DANIL NAL         Address:       DANIL NAL         Phone:       Fax:         Reports to be sent to:       DANIL . WALS LXP. Company         1. Email:       DANIL . WALS LXP. Company         2. Email:       Project Information:         Project:       LORL OF MORCH SS         Site Location:       4 THE PARKANAN |                 |                                              | (Please<br>Ta                                                              | check all applicable boxe<br>agulation 153/04<br>ble <u>Indicate One</u><br>Ind/Com<br>Res/Park<br>Agriculture<br>exture (Check One)<br>Coarse<br>Fine | Regulation 406<br>Table Ind/Com<br>Res/Park<br>Agriculture<br>Regulation 558 |                                                 | Sewer Use<br>Sanitary Storm<br>Region<br>Prov. Water Quality<br>Objectives (PWQO)<br>Other |                                    |                                     |                                           |                                                                                                                                                                 | Custody Seal Intact:       Yes       No       MV/A         Notes:       3 / J       A       A         Turnaround Time (TAT) Required:       Regular TAT       5 to 7 Business Days         Rush TAT (Rush Surcharges Apply)       3 Business       2 Business       Days         B J J       Days       Days       Days       Days         OR Date Required (Rush Surcharges May Apply): |                                                                  |                          |                                                                 |                              |            |        |            |          | siness     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                  |                 |                                              | Is this submission for a <b>Record</b><br>of <b>Site Condition (RSC)</b> ? |                                                                                                                                                        |                                                                              | Report Guideline onCertificate of AnaiysisYesNo |                                                                                            |                                    |                                     |                                           | Please provide prior notification for rush TAT<br>*TAT is exclusive of weekends and statutory holidays<br>For 'Same Day' analysis, please contact your AGAT CSR |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                          |                                                                 |                              |            |        |            |          |            |                                    |
| Sampleo ву:<br>AGAT Quote #: РО:                                                                                                                                                                                                                                                                                                                                 |                 |                                              | Leg                                                                        | Legal Sample 🔲                                                                                                                                         |                                                                              |                                                 | 0.F                                                                                        |                                    |                                     | 0. Reg 153                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          | O. Reg 406         O. Reg 558           30         20         20 |                          |                                                                 |                              |            |        |            |          |            | (N/A)                              |
| Invoice Information:<br>Company:<br>Contact:<br>Address:<br>Email:                                                                                                                                                                                                                                                                                               | Bil             | To Same: Yes 🔽 No 🗆                          | San<br>GW<br>O<br>P<br>S                                                   | Apple Matrix L       Ground Water     S       Oil     S       Paint     F       Soil     S                                                             | egend<br>D Sediment<br>W Surface Water<br>R Rock/Shale                       | Field Filtered - Metals, Hg, Cr'                | s & Inorganics                                                                             | s - 🗆 CrVI, 🗆 Hg, 🗆 HWSB           | F1-F4 PHCs                          |                                           | Aroclors                                                                                                                                                        | Ition 406 Characterization Pacletals, BTEX, F1-F4                                                                                                                                                                                                                                                                                                                                        | R<br>And SDID Primmator Losof                                    |                          | Disposal Characterization TCLF<br>□ M&I □ VOCs □ ABNs □ B(a)P □ | ivity: 🗆 Moisture 🗆 Sulphide | -          | LOHATE | 25-71 w 79 | newerger |            | ally Hazardous or High Concentrati |
| Sample Identification                                                                                                                                                                                                                                                                                                                                            | Date<br>Sampled | Time # of<br>Sampled Containers              | Sample<br>Matrix                                                           | Con<br>Special                                                                                                                                         | nments/<br>Instructions                                                      | Y/N                                             | Metal                                                                                      | Metal                              | BTEX,                               | VOC<br>PAHs                               | PCBs:                                                                                                                                                           | Regula<br>pH, Me                                                                                                                                                                                                                                                                                                                                                                         | EC, SA                                                           | mSPLF                    | Landfil<br>TCLP: [                                              | Corros                       | E.         | Sc     | 8          | 0        |            | Potenti                            |
| 1. BHZ 554 75-95                                                                                                                                                                                                                                                                                                                                                 | AUCSOPU         | AM<br>PM                                     | SOIL                                                                       |                                                                                                                                                        | = A 11                                                                       |                                                 |                                                                                            |                                    |                                     |                                           |                                                                                                                                                                 | e.                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  | 12                       |                                                                 |                              | J          | 1      | J          | V,       |            |                                    |
| 2. 643 535 10'-12                                                                                                                                                                                                                                                                                                                                                | AUCSO/24        | AM<br>PM (                                   | sol                                                                        |                                                                                                                                                        |                                                                              |                                                 |                                                                                            |                                    |                                     |                                           | -                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                          | -                                                               | _                            | V          | V      | V          | -        |            |                                    |
| 3.<br>4                                                                                                                                                                                                                                                                                                                                                          |                 | PM<br>AM                                     |                                                                            |                                                                                                                                                        |                                                                              |                                                 | 5.0                                                                                        | -                                  |                                     | -                                         | -                                                                                                                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |                          | -                                                               |                              |            |        | -          |          | -          |                                    |
| 5.                                                                                                                                                                                                                                                                                                                                                               |                 | AM                                           | -                                                                          |                                                                                                                                                        |                                                                              |                                                 |                                                                                            | -                                  |                                     | -                                         | -                                                                                                                                                               | - 111                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  | 0                        | _                                                               |                              |            |        |            |          |            |                                    |
| 6.                                                                                                                                                                                                                                                                                                                                                               |                 | AM<br>PM                                     |                                                                            |                                                                                                                                                        |                                                                              |                                                 |                                                                                            |                                    |                                     | -                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                          |                                                                 |                              |            |        |            |          |            |                                    |
| 7.                                                                                                                                                                                                                                                                                                                                                               |                 | AM<br>PM                                     |                                                                            |                                                                                                                                                        |                                                                              |                                                 |                                                                                            | -                                  |                                     | 100                                       |                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                          |                                                                 |                              |            |        |            |          |            |                                    |
| 8.                                                                                                                                                                                                                                                                                                                                                               |                 | AM<br>PM                                     |                                                                            | 11. A                                                                                                                                                  |                                                                              |                                                 |                                                                                            | -                                  |                                     |                                           |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                          | [                                                               | -                            |            |        |            |          |            |                                    |
| 9.                                                                                                                                                                                                                                                                                                                                                               |                 | AM<br>PM                                     |                                                                            |                                                                                                                                                        |                                                                              |                                                 |                                                                                            |                                    |                                     | 1.000                                     |                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                          |                                                                 |                              |            |        |            |          |            |                                    |
| 10.                                                                                                                                                                                                                                                                                                                                                              |                 | AM<br>PM                                     |                                                                            |                                                                                                                                                        |                                                                              | -                                               | -                                                                                          |                                    |                                     |                                           |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | -                        | _                                                               |                              |            | =      |            |          |            |                                    |
| 11.                                                                                                                                                                                                                                                                                                                                                              |                 | AM<br>PM                                     | 1. 1997 - 1 A                                                              |                                                                                                                                                        |                                                                              |                                                 |                                                                                            |                                    |                                     |                                           |                                                                                                                                                                 | 115                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | -                        |                                                                 |                              |            |        |            |          |            | -                                  |
| Samples Relinquished By (Print Name and Sign):                                                                                                                                                                                                                                                                                                                   |                 | Date Time                                    | -Bu                                                                        | Samples Received By (                                                                                                                                  | Print Name and Sign):                                                        |                                                 |                                                                                            |                                    |                                     | Da                                        |                                                                                                                                                                 | 2/20                                                                                                                                                                                                                                                                                                                                                                                     | Time                                                             | Jh                       | 10                                                              |                              |            |        |            |          | _          |                                    |
| Bampeles Relinguished By (Print Name and Sign):                                                                                                                                                                                                                                                                                                                  |                 | Date 09 20 Time                              | 00                                                                         | Samples Rittanger By                                                                                                                                   | Plint Name and Sign):<br>Print Name and Sign):                               |                                                 |                                                                                            |                                    |                                     | Se                                        | ate<br>Ac                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                       | Time                                                             | 7 : (                    | 0                                                               | N                            | . I        | Page   | 15         | _of_     | 249        |                                    |

Client I Yellow Copy - AGAT I White Copy- AGAT

\*ехр.

# **Legal Notification**

This report was prepared by EXP Services for the account of Ottawa Carleton District School Board.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

EXP Services Inc.

Project Name: Geotechnical Investigation - Proposed Addition and Civil Work Earl of March Secondary School, Ottawa, Ontario Updated Final Report OTT-23012778-B0 December 12, 2024

# **List of Distribution**

**Report Distributed To:** 

| Xu Feng          | <u>xuf@cuhaci.com</u> |
|------------------|-----------------------|
| Barry Boyd       | barry.boyd@ocdsb.ca   |
| Richard Cunliffe | rcunliffe@cunliffe.ca |

<sup>%</sup>ехр.