MacEWEN SERVICE CENTRE 5546 ALBION ROAD OTTAWA, ONTARIO

TIA STRATEGY REPORT

March 20, 2023

MacEWEN SERVICE CENTRE 5546 ALBION ROAD OTTAWA, ONTARIO

TIA STRATEGY REPORT

March 20, 2023

Prepared for:

MacEwen Petroleum Inc. 18 Adelaide Street Maxville ON K0C 1T0

759 TIA Strategy.doc

D. J. Halpenny & Associates Ltd.

CONSULTING TRANSPORTATION ENGINEERS
P.O. Box 774, Manotick, ON K4M 1A7 - Tel (613) 692-8662 - David@DJHalpenny.com

TABLE OF CONTENTS

PAG	ìΕ
INTRODUCTION	. 1
STEP 1 - SCREENING	1
STEP 2 - SCOPING	3
MODULE 2.1 – Existing and Planned Conditions MODULE 2.2 – Study Area and Time Periods MODULE 2.3 – Exemptions Review	12
STEP 3 - FORECASTING	13
MODULE 3.1 – Development-generated Travel Demand MODULE 3.2 – Background Network Travel Demands MODULE 3.3 – Demand Rationalization	20
STEP 4 - ANALYSIS	24
MODULE 4.1 – Development Design MODULE 4.2 – Parking MODULE 4.3 – Boundary Street Design MODULE 4.4 – Access Intersection Design MODULE 4.5 – Transportation Demand Management MODULE 4.6 – Neighbourhood Traffic Management MODULE 4.7 – Transit MODULE 4.8 – Review of Network Concept MODULE 4.9 – Intersection Design	32 35 41 42 42
SUMMARY	43
APPENDIX	46

LIST OF FIGURES

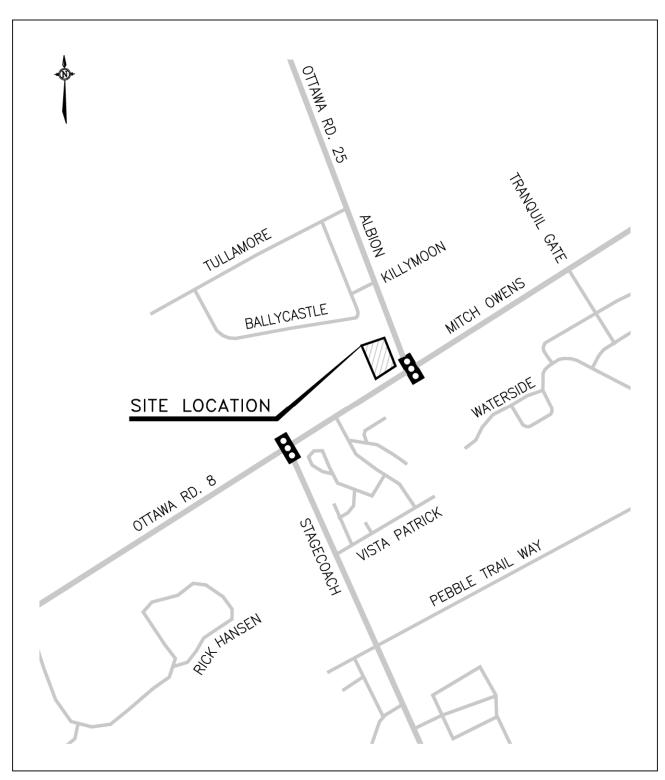
1.1 2.1 2.2 3.1 3.2 3.3 3.4 3.5 3.6	SITE LOCATION PLAN CONCEPTUAL SITE PLAN EXISTING PEAK AM AND PM HOUR TRAFFIC COUNTS PEAK AM AND PM HOUR SITE GENERATED PRIMARY TRIPS PEAK AM AND PM HOUR SITE GENERATED PASS-BY TRIPS 2024 PEAK AM AND PM HOUR BACKGROUND TRAFFIC 2029 PEAK AM AND PM HOUR BACKGROUND TRAFFIC 2024 PEAK AM AND PM HOUR TOTAL TRAFFIC 2029 PEAK AM AND PM HOUR TOTAL TRAFFIC	. 4 . 9 18 19 22 23 25
LIST	OF TABLES	
2.1	COLLISION SUMMARY	11
3.1	PEAK HOUR SITE GENERATED TRIPS	14
3.2	TOTAL PEAK HOUR SITE GENERATED PERSON-TRIPS	15
3.3	MODE SHARE SUMMARY (Peak Hour Person-Trips)	16
3.4	PEAK HOUR ASSIGNMENT OF VEHICLE-TRIPS	17
4.1	MULT-MODAL (MMLOS) SEGMENT SUMMARY TABLE	34
4.2	SITE ACCESS/ALBION INTERSECTION - LOS & v/c Ratio	37
4.3	SITE ACCESS/MITCH OWENS INTERSECTION - LOS & v/c Ratio	38
4.4	ALBION/MITCH OWENS INTERSECTION - LOS & v/c Ratio	39
4.5	STAGECOACH/MITCH OWENS INTERSECTION - LOS & v/c Ratio	
4.6	MULT-MODAL (MMLOS) INTERSECTION SUMMARY TABLE	
4.7	WEEKDAY PEAK AM AND PM HOUR INTERSECTION ANALYSIS - LOS	43

MacEWEN SERVICE CENTRE 5546 ALBION ROAD OTTAWA, ONTARIO

TIA STRATEGY REPORT

INTRODUCTION

The MacEwen gasoline service station is an existing service station located at the northwest corner of the intersection of Albion Road and Mitch Owens Road. The property has a net area of 10,843.7 m² and currently contains a fuelling station with 12 gasoline and 2 diesel fuelling positions, and a convenience store with a coffee shop. The service station counter and convenience store/coffee shop are contained in a single building with a gross floor area of 189 m². The site has two existing access points with one onto Mitch Owens Road located 75 m west of the Albion/Mitch Owens intersection, and a second access onto Albion Road located 90 m north of the intersection. The location of the MacEwen service station is provided in Figure 1.1.


A Site Plan has been prepared to modify the site by increasing the size of the convenience store from 189 m^2 to 400 m^2 . There will be no changes to the number of gasoline and diesel fuelling positions. The site will also provide 2 new electric vehicle quick charging stations. The modified site will retain the existing two accesses onto Albion Road and Mitch Owens Road. The site modifications are expected to be completed and the service station operational by the year 2024.

The firm of D. J. Halpenny & Associates Ltd. has been retained to prepare a Transportation Impact Assessment report in support of the Site Plan Application. The following documents the steps which conform to the City of Ottawa *Transportation Impact Assessment Guidelines (2017)*. Exhibit A.1 in the Appendix presents the consultant Certification Form.

STEP 1 - SCREENING

A Screening Form has been prepared for the project and is provided as Exhibit 1.1 in the Appendix. The Screening Form was submitted to the City of Ottawa which determined that the Trip Generation and Safety Triggers were met and a Transportation Impact Assessment (TIA) study must continue onto the next stage. The following will address the requirements of the Scoping Document.

FIGURE 1.1 SITE LOCATION PLAN

STEP 2 - SCOPING

MODULE 2.1 – Existing and Planned Conditions

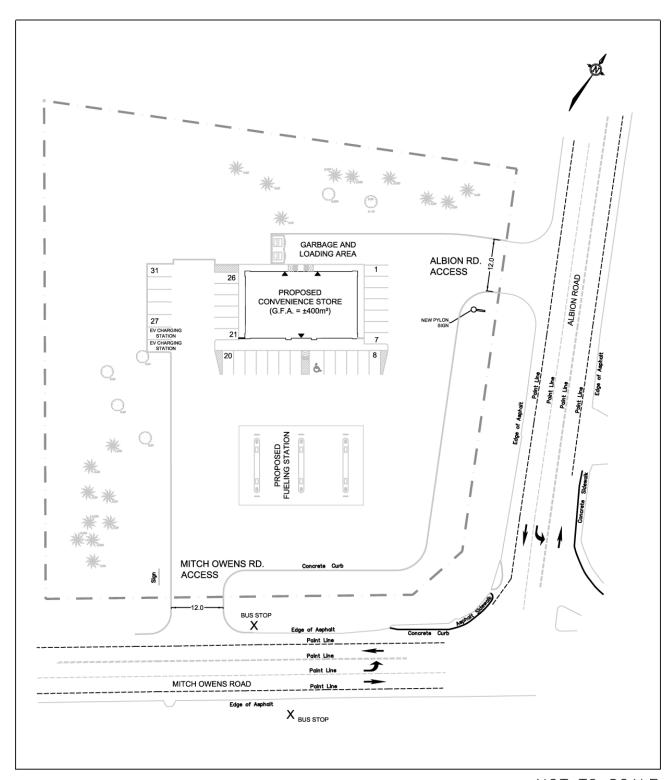
<u>Element 2.1.1 – Proposed Development</u>

The MacEwen service station at 5546 Albion Road is located at the northwest corner of the intersection of Albion Road and Mitch Owens Road. The existing station contains 12 regular fuelling positions and 2 diesel fuelling positions. There is a single free standing building on site with a gross floor area of 189 m² which contains the gas bar service counter, a C-Store (convenience store) and a Java Post coffee shop.

MacEwen Petroleum Inc. is proposing to redevelop the property to provide better amenities by replacing the existing building with a new 400 m² building which will contain the gas bar service counter and a convenience store (a building expansion of 211 m²). There will be no changes in the number of petroleum fuelling positions. The Site Plan does provide space for 2 new electric vehicle charging stations. The EV charging stations will be the quick charge Level 3 charging station. The site will provide 31 parking spaces including 1 barrier free space. Although the building and fuelling area will be redeveloped, the site will retain the existing two site access points onto Albion Road and Mitch Owens Road.

The service centre property has a net lot area of 10,844 m² fronting on both Albion Road and Mitch Owens Road. The land is zoned RC2 - Rural Commercial Zone which will support the proposed redevelopment. Lands surrounding the site comprise of residential properties north of the site, vacant land immediately south of Mitch Owens Road, some commercial and vacant lands to the east, and vacant lands to the west.

The gasoline service centre will be redeveloped in a single phase with completion expected by the year 2024. Figure 2.1 shows a conceptual site plan of the development.


Element 2.1.2 – Existing Conditions

ROADS

The MacEwen Service Centre is located on the west side of Albion Road. Albion Road is a two lane rural road which is designated in the *Ottawa 20/20 – Transportation Master Plan* (TMP) as an arterial road. There are no pedestrian sidewalks along either side of the road. There are paved shoulders along the road which is designated in the City of Ottawa TMP as a Spine Route in the Cycling Network - Primary Rural. The posted speed limit along the road in the vicinity of the site is 80 km./h.

Mitch Owens Road borders the south end of the site. The road has paved shoulders and is designated in the TMP as an arterial road and Spine Route. The road is a two lane rural road with no sidewalks or cycling facilities. The posted speed limit along the road in the vicinity of the site is 80 km./h.

FIGURE 2.1 CONCEPTUAL SITE PLAN

Stagecoach Road is located 600 m west of Albion Road. Stagecoach Road is a rural arterial road and Spine Route with paved shoulders and no sidewalks or cycling facilities. The posted speed limit in the vicinity of Mitch Owens Road is 70 km./h.

INTERSECTIONS

Site Access/Albion Intersection - The intersection is one of two accesses to the site. The Albion Road access is located approximately 90 m north of the Albion/Mitch Owens intersection (centreline to centreline). The intersection is a "T" intersection with Albion Road forming the northbound and southbound approaches, and the site access the eastbound approach. There are no pavement markings or stop sign at the eastbound site approach, but the 12 m width of the access provides sufficient space for a shared left/right turn lane with a flared approach providing storage for 1 left and right turning vehicle at the implied stop. Traffic in the southbound left turn lane to the Albion/Mitch Owens intersection does queue during peak hours which periodically extends north past the eastbound site access approach. Below is the existing lane configuration of the Site Access/Albion intersection with an aerial photograph of the intersection from geoOttawa:

Northbound Albion Rd. One shared left/through lane

Southbound Albion Rd. One through lane

One shared through/right lane

Eastbound Site Access One shared left/right turn lane (Implied Stop)

INTERSECTION OF SITE ACCESS/ALBION - Aerial

Site Access/Mitch Owens Intersection - The intersection is a two-way stop controlled "T" intersection with an implied stop at the southbound site access approach. intersection is located approximately 75 m west of the Albion/Mitch Owens intersection. Mitch Owens Road forms the eastbound and westbound approaches, and the site the 12 m wide southbound approach. There are no lane markings or stop sign at the southbound approach, but the 12 m width of the access provides sufficient space for a shared left/right turn lane with a flared approach providing storage for 2 left and right turning vehicles at the implied stop. Mitch Owens Road currently contains no auxiliary turn lanes into the site, however the queuing of the left turn lane at the eastbound approach to the Albion/Mitch Owens intersection does extend across the site access during peak periods. Below is the existing lane configuration of the Site Access/Mitch Owens intersection with an aerial photograph of the intersection from geoOttawa:

Eastbound Mitch Owens Rd. One left turn lane (Extending from Albion/Mitch Owens)

One through lane

Westbound Mitch Owens Rd. One shared through/right lane

Southbound Site Access One shared left/right turn lane (Implied Stop)

INTERSECTION OF SITE ACCESS/MITCH OWENS - Aerial

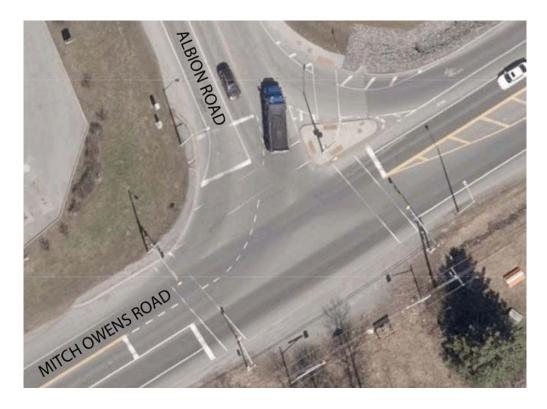
Albion/Mitch Owens Intersection - The Albion/Mitch Owens intersection is a "T" intersection controlled by traffic signals which contain a protected eastbound left turn phase. Mitch Owens Road forms the eastbound and westbound approaches and Albion Road the southbound approach. There is a short section of sidewalk at the northeast corner providing access to the island at the westbound channelized right turn lane. The

following is the lane configuration with an aerial photograph of the intersection from

following is the lane configuration with an aerial photograph of the intersection from geoOttawa:

Eastbound Mitch Owens Rd. One left turn lane (255 m storage/parallel)

One through lane


Westbound Mitch Owens Rd. One through lane

One channelized right turn lane (160 m storage)

Southbound Albion Rd. One left turn lane (140 m storage/parallel)

One right turn lane

INTERSECTION OF ALBION/MITCH OWENS - Aerial

<u>Stagecoach/Mitch Owens Intersection</u> - The intersection of Stagecoach Road and Mitch Owens Road is located 600 m west of the Albion/Mitch Owens intersection. The intersection is a "T" intersection with Mitch Owens Road forming the eastbound and westbound approaches, and Stagecoach Road the northbound approach. The intersection is controlled by traffic signals containing a protected westbound left turn phase. There are no sidewalks at any of the intersection approaches, with only a paved standing area at each cross walk approach. The following is the lane configuration with an aerial photograph of the intersection from geoOttawa:

Eastbound Mitch Owens Rd. One shared through/right lane

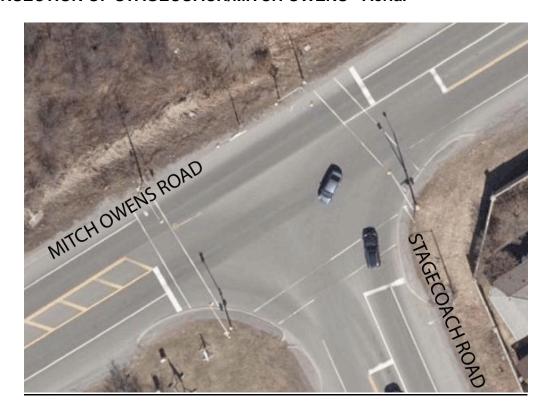
Westbound Mitch Owens Rd. One through lane

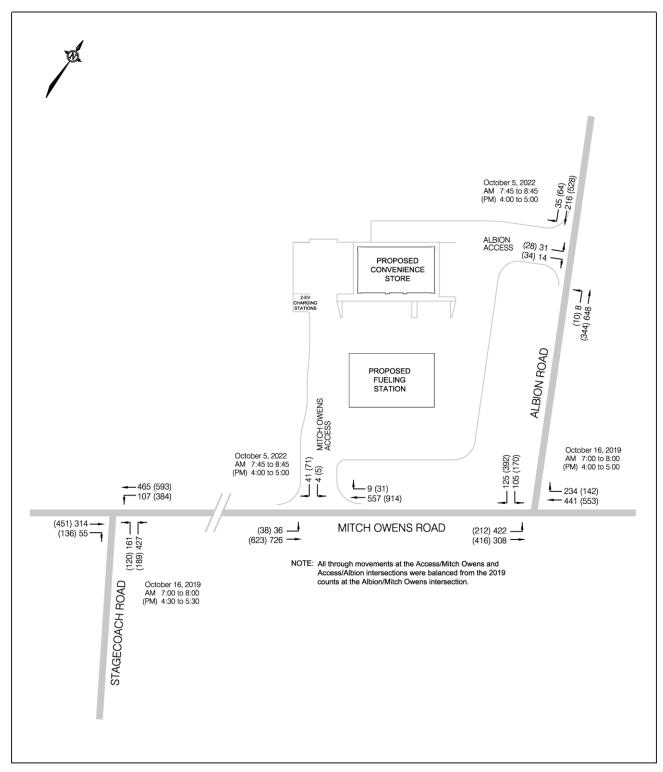
One left turn lane (220 m storage/parallel)

Northbound Stagecoach Rd. One left turn lane (150 m storage/parallel)

One right turn lane

INTERSECTION OF STAGECOACH/MITCH OWENS - Aerial




Figure 2.2 shows the weekday traffic counts at the Albion/Mitch Owens and Stagecoach/Mitch Owens intersections taken on October 16, 2019 by the City of Ottawa, and the traffic counts taken at the two MacEwen accesses on October 5, 2022 by the consultant. Exhibit 2.1, 2.2, 2.3 and 2.4 in the Appendix presents the traffic counts at the Albion/Mitch Owens and Stagecoach/Mitch Owens intersections and two site access points.

TRANSIT

The section of Albion Road and Mitch Owens Road in the vicinity of the site is currently not served by regular or peak hour OC Transpo routes. There is no transit service within a 4.5 km walk of the site. As developments in the area are completed and occupied, regular transit service and routes would be evaluated and determined.

There is a transit route providing one bus past the site in the morning (9:30 AM) travelling to the Billings Bridge transit station, and one bus returning (3:00 PM). The route is Route 304 which provides no charge service with one bus travelling on Thursdays past the site outside the peak hour of traffic along the adjacent roads. The bus stops are located on the north and south sides of Mitch Owens Road at the site's Mitch Owens Access as shown in the conceptual site plan in Figure 2.1.

FIGURE 2.2 EXISTING PEAK AM AND PM HOUR TRAFFIC COUNTS

COLLISION HISTORY

Collision reports were obtained through Open Data Ottawa for the following intersections and road segments:

<u>Intersections</u> Albion Road and Mitch Owens Road

Stagecoach Road and Mitch Owens Road

MacEwen Access at Albion Road

MacEwen Access and Mitch Owens Road

Road Segments Albion Rd. between Mitch Owens Rd. and Killymoon Way

Mitch Owens Rd. between Albion Rd. and Stagecoach Rd. Mitch Owens Rd. between Albion Rd. and Tranquil Gate

The collision data was for the five year time period between January 1, 2016 and December 31, 2020. Over the five year period, 62 collisions were reported at the Albion/Mitch Owens intersection and 27 collisions at the Stagecoach/Mitch Owens intersection. The pattern of the majority of collisions was related to turning movements at the Albion/Mitch Owens intersection, and rear end collisions at the Stagecoach/Mitch Owens intersection. The site access points reported 5 collisions at the Site Access/Albion intersection, and 0 collisions at the Site Access/Mitch Owens intersection. Table 2.1 summarizes the collisions by year and type.

SURROUNDING AREA

The area surrounding the site is predominantly rural, with a residential subdivision north of the site (Zoned Rural Residential), vacant commercial land east of the site (Zoned Rural Heavy Industrial), vacant forested land west of the site (Zoned Rural Residential), and vacant land south of the site on the south side of Mitch Owens Road (Zoned Rural Commercial).

There is a driveway accessing the vacant commercial property on the east side of Albion Road located approximately 35 m south of MacEwen's Albion Road access. The closest municipal intersections are the Killymoon/Albion intersection located 250 m north of the site, the Stagecoach/Mitch Owens intersection located 600 m west, and the Tranquil Gate/Mitch Owens intersection located 860 m east of the site.

Traffic counts taken on October 16, 2019 at the Albion/Mitch Owens and Stagecoach/Mitch Owens intersections were obtained from the City of Ottawa. The traffic counts are provided as Figure 2.2 and Exhibit 2.1 and Exhibit 2.2. The Albion/Mitch Owens counts determined that there were 0 bike trips and 0 pedestrian trips during the peak AM hour, and 0 bike trips and 1 pedestrian trip (crossing Mitch Owens Road) during the peak PM hour. The counts at the Stagecoach/Mitch Owens intersection determined that 0 bike and 0 pedestrians crossed the intersection during the peak AM and PM hours. With no regular transit service provided in the vicinity of the site, there were no peak hour travel demands recorded in the area for modes other than vehicular travel.

TABLE 2.1 COLLISION SUMMARY

YEAR		TOTAL					
IEAK	REAR END	ANGULAR	TURNING	SIDESWIPE	OTHER	TOTAL	
INTERSECTION - Albion Road at Mitch Owens Road Intersection							
2016	2	0	4	0	2	8	
2017	8	0	10	1	1	20	
2018	4	4	6	1	0	15	
2019	2	0	9	1	0	12	
2020	0	1	5	1	0	7	
INTERSEC	TION - Stagec	oach Road at I	litch Owens R	oad Intersection	on		
2016	6	2	0	0	1	9	
2017	2	1	2	0	0	5	
2018	2	0	2	0	1	5	
2019	5	0	1	0	0	6	
2020	2	0	0	0	0	2	
INTERSEC	TION - MacEw	en Access at A	Albion Road Int	ersection			
2016	0	0	0	0	0	0	
2017	1	0	1	0	0	2	
2018	0	0	1	0	0	1	
2019	0	2	0	0	0	2	
2020	0	0	0	0	0	0	
INTERSEC	TION - MacEw	en Access at N	litch Owens R	oad Intersection	on		
2016	0	0	0	0	0	0	
2017	0	0	0	0	0	0	
2018	0	0	0	0	0	0	
2019	0	0	0	0	0	0	
2020	0	0	0	0	0	0	
SEGMENT	- Albion Road	Segment - Be	tween Mitch O	wens Road and	d Killymoon W	ay	
2016	0	0	0	0	1	1	
2017	0	0	0	0	0	0	
2018	0	0	0	0	1	1	
2019	1	0	0	0	0	1	
2020	0	0	0	0	0	0	
SEGMENT	- Mitch Owens	s Road Segme	nt - Between A	lbion Road and	d Stagecoach I	Road	
2016	1	0	0	0	0	1	
2017	0	0	0	0	0	0	
2018	1	0	1	0	0	2	
2019	0	0	0	0	0	0	
2020	0	0	0	0	0	0	
SEGMENT	- Mitch Owens	s Road Segme	nt - Between A	lbion Road and	d Tranquil Gate	•	
2016	1	0	0	0	0	1	
2017	0	0	0	0	0	0	
2018	0	0	0	0	1	1	
2019	1	0	0	0	0	1	
2020	0	0	0	0	0	0	

57 1

Element 2.1.3 – Planned Conditions

The *Transportation Master Plan 2013* (TMP) was examined to determine if there were any roadway or intersection modifications to the municipal road network. The TMP did not identify any roadway infrastructure projects in both the 2031 Network Concept list and Affordable Network list. City staff did identify some planned intersection modifications to protect the eastbound Mitch Owens Road left turn movement.

A development application search was conducted on the City of Ottawa website. There were no Site Plan Applications for development in the proximity of the site.

MODULE 2.2 – Study Area and Time Periods

Element 2.2.1 – Study Area

The study area for the MacEwen Service Centre will be confined to the site's two access points onto Albion Road and Mitch Owens Road, and the signalized intersections of Albion/Mitch Owens and Stagecoach/Mitch Owens. The road sections examined would be along Albion Road between Mitch Owens Road and Killymoon Way, along Mitch Owens Road between Albion Road and Stagecoach Road to the west, and along Mitch Owens Road between Albion Road and Tranquil Gate to the east. The study will examine the intersection geometry and roadway segments in accordance with the City of Ottawa *Transportation Impact Assessment Guidelines (2017)*.

Element 2.2.2 – Time Periods

The time period for the analysis would be the weekday peak AM and PM time period of the background roadway traffic. This would be the peak period of traffic along Albion Road and Mitch Owens Road as presented in existing traffic counts in Figure 2.2.

Element 2.2.3 – Horizon Years

The TIA will address the impact of the site generated trips from the proposed redevelopment of the MacEwen Service Centre. The horizon year of the study will be the completion of the proposed modifications at the year 2024. The analysis will further examine the impact at the year 2029 which represents five years beyond completion.

MODULE 2.3 – Exemptions Review

The exemptions which provide possible reductions to the scope of work of the TIA Study were examined using Table 4: Possible Exemptions which is provided in the City's *Transportation Impact Assessment Guidelines (2017)*. Utilizing the table, the following lists the possible exemptions proposed for the TIA Study report:

MODULE	ELEMENT	EXEMPTION CONSIDERATIONS				
Design Review Component						
4.1 Development Design	4.1.2 Circulation and Access	No – The circulation of vehicles throughout the site and queuing at the Albion Rd. and Mitch Owens Rd. accesses will be examined.				
	4.1.3 New Street Networks	Yes - Not Applicable. Only required for subdivisions.				
	4.2.1 Parking Supply	No – The parking supply will be compared to that required as determined from City By-laws.				
4.2 Parking	4.2.2 Spillover Parking	Yes - Parking will meet the City of Ottawa By-laws. The Site Plan will provide sufficient parking for the convenience store.				
Network Impact Compone	nt					
4.5 Transportation Demand Management	All Elements	Yes – The convenience store and gas bar would have few employees.				
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Yes – The site will have access only onto arterial roads.				
4.8 Network Concept		Yes - The site would not generate more than 200 person-trips per peak hour in excess of the volume permitted by established zoning.				

STEP 3 - FORECASTING

MODULE 3.1 - Development-generated Travel Demand

Element 3.1.1 – Trip Generation and Mode Shares

The additional site generated trips resulting from the redevelopment of the MacEwen Service Centre would comprise of trips from the expansion of the convenience store and the provision of 2 electric vehicle (EV) charging stations. There would be no additions to the petroleum fuelling stations.

The peak AM and PM hour trip generation rates for the convenience store were determined from transaction data obtained from MacEwen Petroleum Inc. The data showed the number of peak hour transactions at the convenience store which were not related to fuel transactions paid either outside or inside the building, or transactions relating to fuel and merchandise purchases. The data for peak hour inside merchandise transactions on October 5, 2022 for the 189 m² building was 0.233 trips/m² GFA during

the peak AM hour and 0.265 trips/m² during the peak PM hour. For the building addition of 211 m², the redevelopment would result in an additional 49 trips entering and 49 trips exiting totaling 98 trips during the peak AM hour, and 56 trips entering and 56 trips exiting totaling 112 trips during the peak PM hour.

The site redevelopment will also include the addition of 2 electric vehicle (EV) Level 3 charging stations. With no statistical trip data available for an EV charging station which is proposed at the west side of the proposed convenience store, the study has assumed that both EV Level 3 charging stations are in use. With a turnover of 30 minutes each, which is the approximate length of time it takes to charge a vehicle from 0 to 80%, the trips were calculated as shown below:

EV Trips Generated = [# Charging Stations / Length of Charge (Minutes)] x 2 (enter/exit)

 $= [2 / (30/60)] \times 2$

= 8 Trips or 4 Trips entering and 4 Trips exiting

The number of future person-trips was determined by the number of auto-trips calculated above, and multiplied by 1.28 (from the TIA Guidelines) to convert auto-trips to person-trips. Table 3.1 shows the future peak hour auto-trips and person-trips generated by the building addition and EV charging stations.

TABLE 3.1 PEAK HOUR SITE GENERATED TRIPS

TRIPS	Peak AM Hr. Auto-Trips	Peak PM Hr. Auto-Trips	Peak AM Hr. Person-Trips	Peak PM Hr. Person-Trips
Convenience Store	98 veh.	112 Veh.	125 Per.	143 Per.
EV Charging Sta.	<u>8 Veh.</u>	<u>8 Veh.</u>	<u> 10 Per.</u>	<u> 10 Per.</u>
Total Trips	106 veh.	120 veh.	135 Per.	153 Per.

The Trip Reduction Factors which were provided in the TIA Guidelines were applied to the land uses as discussed below:

- 1) Deduction of Existing Development Trips The site has an existing convenience store with 12 regular and 2 diesel fuelling positions. There would be no trip deduction applied for an existing on-site use since the study will be adding new trips to the existing land use.
- 2) Pass-by Vehicle Trips Pass-by trips are trips that are already on the road and are passing by the site on their way to their primary destination. They are not considered new trips generated by the site. The surveys provided in the ITE Trip Generation Handbook 3rd Edition for a Land Use Code 853 - Convenience Market with Gasoline Pumps, which has a convenience store as the primary use

and not the fuelling of vehicles. This land use would best represent the additional trips from the expanded convenience store which does not propose changes to the petroleum fuel stations. The ITE Handbook states the average peak AM hour pass-by trip percentage to be 63 percent, with 37 percent of the trips as primary trips. The pass-by trip percentage is considered reasonable due to the site location and high volume of commuter traffic travelling past the site and was applied to both the peak AM and PM hour trips.

3) Synergy or Internalization - The site will consist only of a gasoline service centre. There would be no trip reduction due to shared trips between multiple uses.

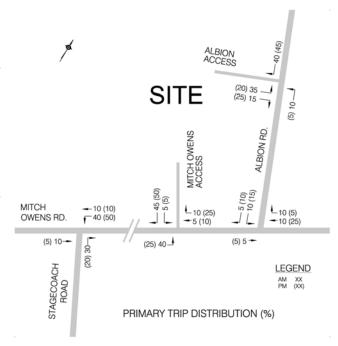
The expected number of primary and pass-by person-trips following the application of the three Trip Reduction Factors is shown in Table 3.2.

TABLE 3.2
TOTAL PEAK HOUR SITE GENERATED PERSON-TRIPS

TDIDE	FUTURE PERSON-TRIPS			
TRIPS	AM Peak Hr.	PM Peak Hr.		
Primary Trips	50 per.	57 per.		
Pass-by Trips (Reduction 63%)	<u>85 per.</u>	<u>96 per.</u>		
Total Person Trips	135 per.	153 per.		

The MacEwen Service Centre is located at the northwest corner of the intersection of Albion Road and Mitch Owens Road. The location of the centre is in a rural area with no regular transit service or sidewalks and little residential development in the Traffic counts taken by the City of Ottawa on October 16, 2019 immediate area. counted no bicycles and only one pedestrian crossing the intersection during both the peak AM and PM hours. With the land use of the service centre being a fuelling station for cars and trucks, the modal share would comprise mainly of auto driver and auto passenger trips. The mode share for peak AM and PM hour trips was determined for a Commercial Generator from Table 13 in the TRANS Trip Generation Manual - Summary Report 2020. The City of Ottawa designates the area to be "South Gloucester / Leitrim", with the mode share of all trips being a combination of Auto Driver and Auto Passenger trips. The analysis has proportioned the transit, cycling and walking mode shares from Table 13 of the TRANS document to only the auto driver and auto passenger shares. Table 3.3 presents the peak hour mode share, and the peak AM and PM hour primary and pass-by person-trips.

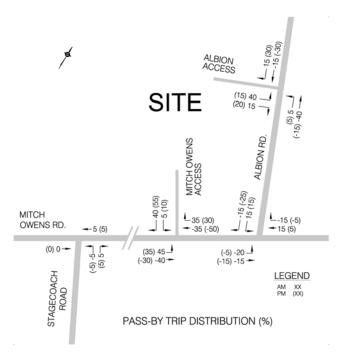
TABLE 3.3
MODE SHARE SUMMARY (Peak Hour Person-Trips)


FUTURE MODE SHARE TARGETS FOR THE MacEWEN SERVICE CENTRE						
Travel Mode	AM % Peak Hr.	Primary Trips	Pass-By Trips	PM % Peak Hr.	Primary Trips	Pass-By Trips
Auto Driver	85%	42	72	76%	44	82
Auto Passenger	15%	8	13	24%	13	14
Transit	0%	0	0	0%	0	0
Cycling	0%	0	0	0%	0	0
Walking	0%	0	0	0%	0	0
Total	100%	50 Trips	85 Trips	100%	57 Trips	96 Trips

Element 3.1.2 – Trip Distribution

<u>Primary Trips</u> - The distribution of site generated primary trips was determined from the examination of the background traffic pattern at the adjacent intersections along with the

size and location of the surrounding residential and employment areas which would represent the origin and destination of trips. The adjacent sketch shows the percentage distribution of primary trips to the site for the purposes of purchasing items at the convenience store or refuelling at the EV charging station.


The distribution primary trip determined assuming full development of the site in 2024, and represents only the site trips associated with the additional development site. to the The proportioning of trips was calculated for the weekday peak AM and PM hours. The trips would be for the auto driver travel mode presented in Table 3.3.

<u>Pass-By Trips</u> - The pass-by and diverted site generated trips are trips already on the road and passing by or in the vicinity of the site. The distribution of pass-by trips was

determined from the traffic counts of existing traffic at adjacent intersections to the site, and the convenience of routes entering and exiting the site from the mainstream traffic.

The percentage distribution of pass-by and diverted trips is shown on the adjacent sketch for the site access points and intersections within the study area. The pass-by trips shown in Table 3.3 under the auto driver travel mode were distributed onto the surrounding roads assuming the completion of the redevelopment in 2024. The trips were calculated for the weekday peak AM and PM hours.

Element 3.1.3 – Trip Assignment

The distribution of site generated primary and pass-by vehicle-trips entering and exiting was determined by applying the directional distribution shown in the ITE trip generation graphs for convenience stores with gasoline pumps. The ITE Land Use distributes the site trips to 50 percent entering and 50 percent exiting for both the primary and pass-by peak AM and PM hour trips. This distribution was substantiated by the October 5, 2022 traffic counts at the site's Albion Road and Mitch Owens Road accesses. The peak hour vehicle-trips (auto driver) are shown in Table 3.4, and were proportioned onto the surrounding roads at the primary and pass-by distribution. Figure 3.1 shows the peak AM and PM hour site generated primary vehicle-trips, and Figure 3.2 the peak hour site generated pass-by/diverted vehicle-trips.

TABLE 3.4
PEAK HOUR ASSIGNMENT OF VEHICLE-TRIPS

PEAK HOUR	WEEKDAY PEAK AM HR.			WEEKDAY PEAK PM HR.		
TRIPS TRIP TYPE	TOTAL	ENTER	EXIT	TOTAL	ENTER	EXIT
Primary Trips	42	21 (50%)	21 (50%)	44	22 (50%)	22 (50%)
Pass-by Trips	72	36 (50%)	36 (50%)	82	41 (50%)	41 (50%)
Total Vehicle-Trips	114	57	57	126	63	63

FIGURE 3.1
PEAK AM AND PM HOUR SITE GENERATED PRIMARY TRIPS

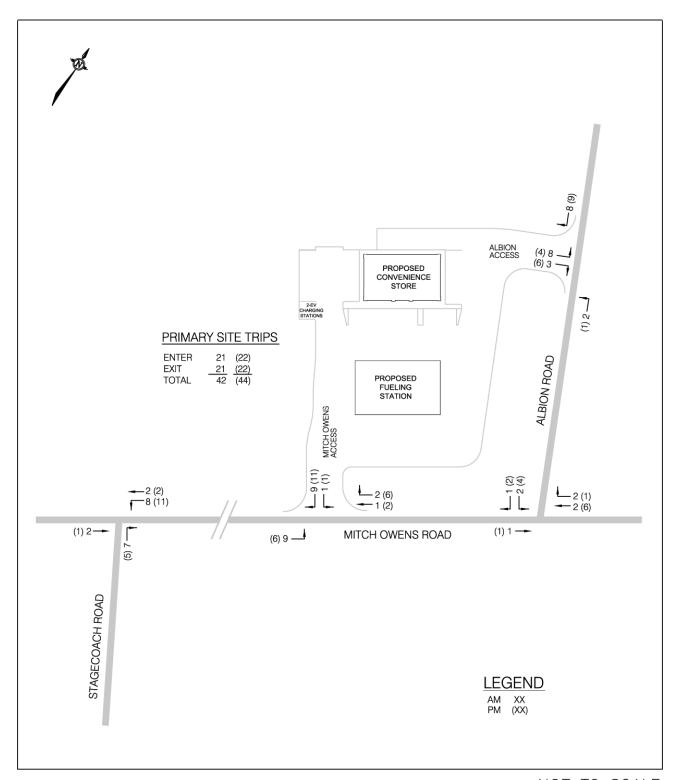
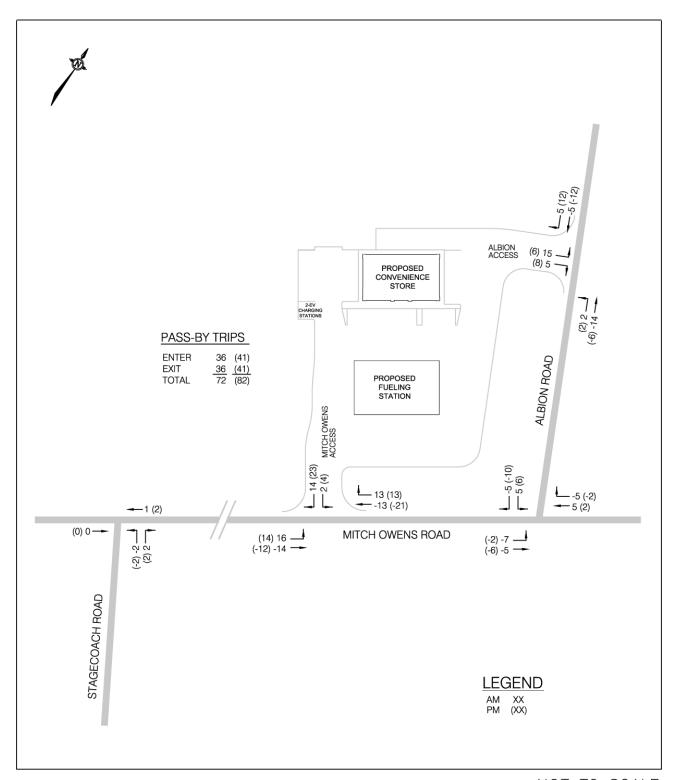



FIGURE 3.2
PEAK AM AND PM HOUR SITE GENERATED PASS-BY TRIPS

MODULE 3.2 - Background Network Travel Demands

<u>Element 3.2.1 – Transportation Network Plans</u>

The City of Ottawa *Transportation Master Plan (TMP) 2013* was reviewed to identify transit and roadway projects in the vicinity of the development along with other traffic studies. The TMP did not identify any new roadway or transit projects within the study area. Although there is no regular transit service in the area, future development outside the horizon year of the study may trigger the need for transit service along Albion Road and Mitch Owens Road.

A development application search was conducted on the City of Ottawa website. There were no Site Plan Applications for development in the proximity of the site and within the time frame of the TIA study.

Element 3.2.2 – Background Growth

The background traffic would consist of the expected future volume of traffic which would not include trips from the redevelopment of the site. The background traffic was determined for the year 2024 when the modifications to the MacEwen Service Centre are expected to be completed, and for the year 2029 which represents five years beyond completion.

The 2024 and 2029 background traffic was determined for the existing intersections of Albion/Mitch Owens, Stagecoach/Mitch Owens, Albion Site Access and Mitch Owens Site Access. The background traffic comprised of two adjustment factors. The first would be to adjust the traffic counts taken at the two site accesses on October 5, 2022 to the expected 2022 pre-COVID-19 traffic. The second factor would be to increase the pre-COVID-19 typical traffic to account for future development outside the immediate area. The following discusses in detail the two background traffic adjustment factors:

1) Typical Peak Hour Traffic (pre-COVID-19)

The traffic counts taken at the site accesses on October 5, 2022 would need to be increased to account for the decreased traffic due to the COVID-19 outbreak, which resulted from both the temporary job loss of some of the work force and allowing some workers to work remotely from home. To convert the 2022 counts to the expected pre-COVID-19 traffic volumes, a conversion factor was applied to the counts. Traffic counts were obtained from the City of Ottawa Open Data website for the Annual Average Daily Traffic (AADT) at the intersection of Bank Street and Mitch Owens Road. The counts are shown below:

Count Date	AADT
June 13, 2019	21,282
May 28, 2021	<u>18,200</u>

For the first factor, the October 5, 2022 counts (Figure 2.1) at the approaches entering and exiting the Albion Site Access and Mitch Owens Site Access were increased by 15.0 percent.

2) Future 2024 and 2029 Background Traffic From Outside the Immediate Area

The second factor represents the increase in traffic due to future development outside the study area. The growth in background traffic was determined by examining the growth in peak AM hour traffic along Albion Road, Mitch Owens Road and Stagecoach Road. The traffic volumes from the TRANS Regional Model were obtained from the City of Ottawa for the peak AM hour at the years 2011 and 2031. The model showed the average annual compounded increase in peak AM hour traffic to be:

	2011	2031	Annual Increase
Albion Rd.	643 NB	592 NB	-0.41%
	134 SB	179 SB	1.46%
Mitch Owens Rd.	867 EB	925 EB	0.32%
	246 WB	284 WB	0.72%
Stagecoach Rd.	1,006 NB	1,069 NB	0.30%
-	225 SB	308 SB	1.58%

The study has assumed a peak AM and PM hour annual compounded growth of 2.0 percent which was applied to all approaches following the COVID-19 adjustment. The growth rate translates to the following growth factors which represent the growth in traffic from outside the study area:

2.0% Annual Increase

$2019 \rightarrow 2024 1.104 \\ 2022 \rightarrow 2024 1.040$	Completion of the MacEwen modifications
2024 → 2029 1.104	5 years beyond completion

<u>Element 3.2.3 – Other Developments</u>

A Development Application search was conducted at the City of Ottawa Open Data website for the surrounding area. The examination determined that there was no new development in close proximity to the site. The Albion Woods - Phase 2 subdivision is proposed on lands on the south side of Mitch Owens Road, but it is not expected to be completed and occupied by the horizon year of the TIA study and was therefore not included in the study.

Figure 3.3 shows the expected 2024 peak AM and PM hour background traffic incorporating the two growth factors (excluding site generated trips) with no proposed new development in the area, and Figure 3.4 the 2029 peak hour background traffic.

FIGURE 3.3 2024 PEAK AM AND PM HOUR BACKGROUND TRAFFIC

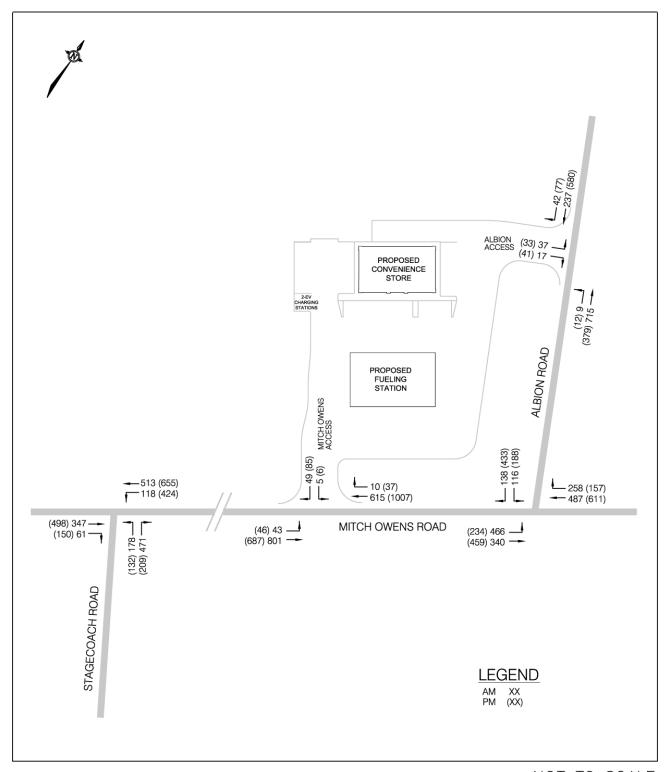
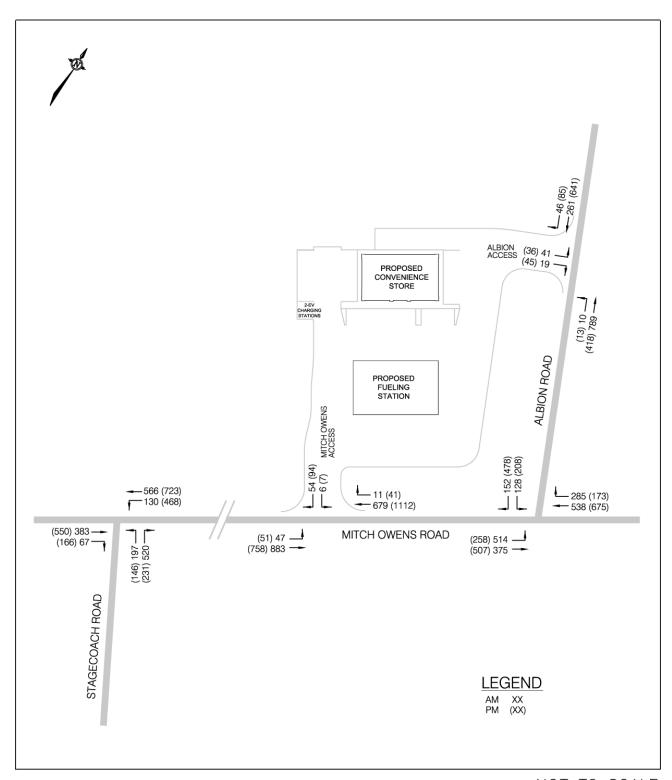



FIGURE 3.4 2029 PEAK AM AND PM HOUR BACKGROUND TRAFFIC

The total traffic volumes are the addition of the future background traffic and the expected site generated primary trips (Figure 3.1) and pass-by trips (Figure 3.2). The 2024 total volume of traffic is provided in Figure 3.5, and 2029 total traffic in Figure 3.6.

MODULE 3.3 - Demand Rationalization

The MacEwen Service Centre project will consist of the redevelopment of the site by providing a larger and more modern convenience store with two EV charging stations. There will be no additions to the number of petroleum fuelling stations. The additional development at the service centre will generate a relatively low volume of peak hour trips during the AM and PM period of the adjacent roads with a large proportion of the trips as by-pass trips generated from the traffic already travelling along the adjacent roads. The expected new trip demand would have a minor impact on the surrounding roadway network. The trip demand would not result in an issue with capacity of the intersections within the study area.

STEP 4 - ANALYSIS

MODULE 4.1 – Development Design

Element 4.1.1 - Design for Sustainable Modes

The centre provides fuel for both cars and trucks, and a convenience store with a coffee shop. Not including spaces used by vehicles for fuelling, the site will provide 31 vehicle parking spaces including 1 barrier free space. The City of Ottawa By-laws require 14 vehicle parking spaces with 1 barrier free space.

The site will provide a bicycle rack for 1 bicycle located at the side of the building in close proximity to the main door to the building. The city By-law requires 1 bike storage space per 500 m² of retail area which would require 1 space for the centre.

The service centre is located in a rural area with traffic counts recording only 1 pedestrian crossing the Albion/Mitch Owens intersection during both the peak AM and PM hours. Traffic counts taken at the site accesses recorded no pedestrian activity entering/exiting the site with no pedestrian sidewalks along adjacent roads.

There are currently no regular OC Transpo bus routes in the immediate area, but as the surrounding residential area is completed regular bus service will be reexamined.

The location of the site and land use would support few alternative modes of travel with the majority of trips made up of auto drivers and auto passengers.

The study has utilized the TDM - Supportive Development Design and Infrastructure Checklist for a Non-Residential Development which is provided below. The checklist examines the opportunity to implement facilities which are supportive of sustainable modes.

FIGURE 3.5 2024 PEAK AM AND PM HOUR TOTAL TRAFFIC

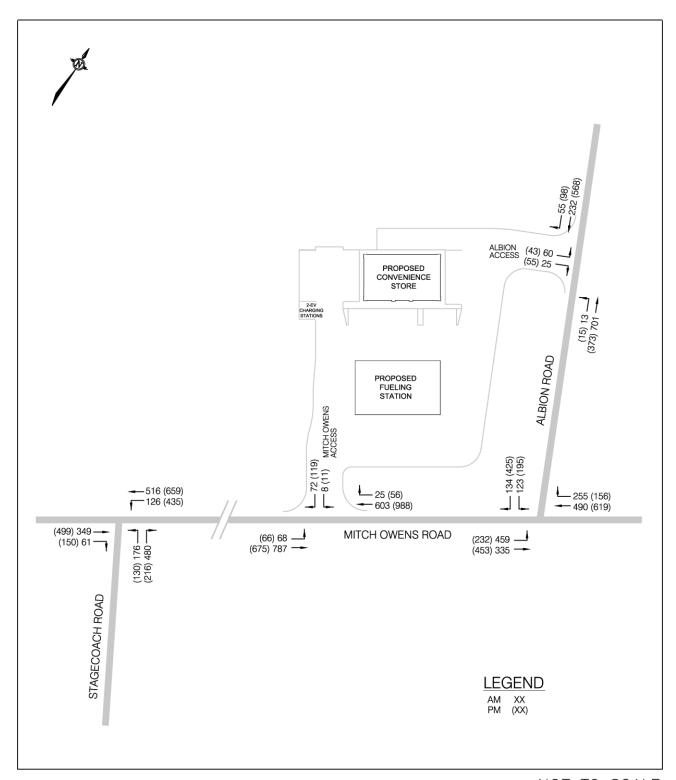
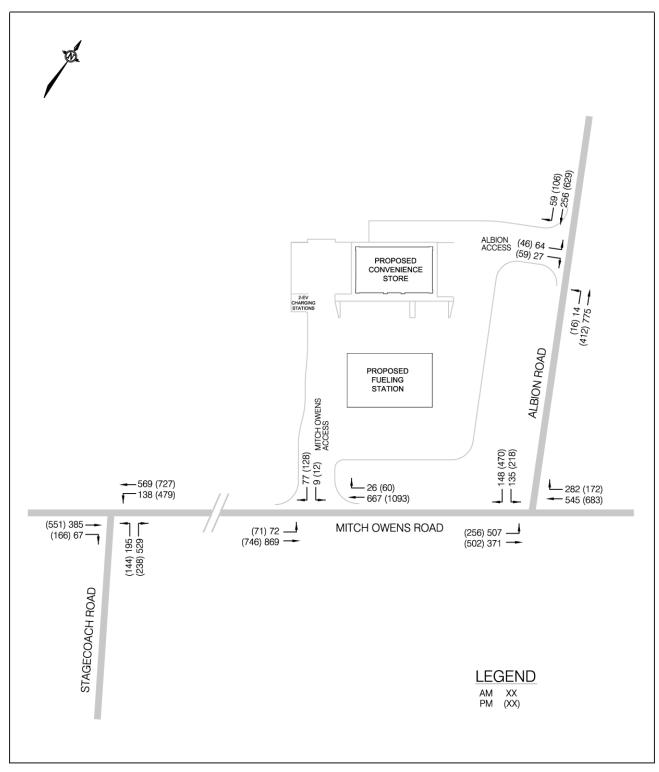



FIGURE 3.6 2029 PEAK AM AND PM HOUR TOTAL TRAFFIC

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend The Official Plan or Zoning By-law provides related guidance that must be followed The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	☐ The development will utilize the existing entrances
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	 Parking will be located next to the building with good visibility of pedestrian movements
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	☐ There is no regular transit provided in close proximity to the site. There is a route travelling along Albion Road and Mitch Owens Road provided one bus to Billings Bridge and one returning on Thursdays only
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	There are no municipal sidewalks along Albion Road and Mitch Owens Road in the vicinity of the site.

TDM-supportive design & infrastructure measures: Non-residential developments			Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	A sidewalk is provided adjacent to the building with depressed curbs to allow access from the fuelling area to the building
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	Sidewalks will be depressed at designated areas for access to barrier free parking spaces and to the parking lot and fuelling area
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	Albion Road, Mitch Owens Road and Stagecoach Road are all Spine Routes with no designated cycling facilities. The site would provide easy access to the municipal streets
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

TDM-supportive design & infrastructure measures: Non-residential developments			add descriptions, explanations or plan/drawing references		
	2. WALKING & CYCLING: END-OF-TRIP FACILITIES				
	2.1	Bicycle parking			
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	A bicycle rack is located close to the building entrance		
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	The number of bicycle parking spaces will meet the required spaces under the zoning by-laws		
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	The bike rack and bicycle storage spaces are horizontal		
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists			
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season			
	2.2	Secure bicycle parking			
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)			
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)			
	2.3	Shower & change facilities			
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters			
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters			
	2.4	Bicycle repair station			
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)			

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non-residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

TDM-supportive design & infrastructure measures: Non-residential developments			Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or	

Element 4.1.2 – Circulation and Access

The fuelling portion of the site has been designed to accommodate both cars and diesel fuelling of tractor-semitrailers. The site has also been designed to accommodate fuel trucks and the maneuvering throughout the site for the discharge of fuel into the holding tanks.

Both the existing Albion Road and Mitch Owens Road accesses are 12 m wide and have sufficient width to accommodate the turning movements of a tractor-semitrailer.

Element 4.1.3 – New Street Networks

Exempt as determined in the Scoping Document.

MODULE 4.2 – Parking

Element 4.2.1 – Parking Supply

The MacEwen Service Centre will provide 31 vehicle parking spaces including 1 barrier free space. The parking spaces would be located adjacent to the building with 5 spaces and 2 EV charging stations at the west side of the building.

The site meets City of Ottawa parking By-laws which require 14 parking spaces including 1 barrier free space.

The site will provide a storage rack for the storage of 1 bicycle close to the main entrance to the building. The Zoning By-law requires storage for a minimum of 1 bicycle determined as follows:

1 space / 500 m² of GFA = 476 m² = 1 TOTAL Required storage spaces

Element 4.2.2 – Spillover Parking

Exempt as determined in the Scoping Document.

MODULE 4.3 – Boundary Street Design

The City of Ottawa Complete Streets concept allows for the safe movement of everyone whether they choose to walk, bike, drive, or take public transit. The boundary roads to the MacEwen Service Centre are Albion Road adjacent to the east limit of the site, Mitch Owens Road adjacent to the south limit of the site, and Stagecoach Road located 600 m west of the site.

Collision reports over the 5 year period of January 1, 2016 to December 31, 2020 have determined that the Albion/Mitch Owens intersection experienced 34 turning movement collisions. City staff is currently planning modifications to the intersection which would protect the eastbound left turn movements and reduce turning movement conflicts.

The Stagecoach/Mitch Owens intersection has experienced 17 rear end collisions during the 5 year reporting period. There are no plans for intersection improvements to reduce the number of rear end collisions.

The multi-modal level of service for the Albion Road segment between Mitch Owens Road and Killymoon Way, Mitch Owens Road between Albion Road and Tranquil Gate to the east, and Mitch Owens Road between Albion Road and Stagecoach Road to the west Street, were determined utilizing the City of Ottawa publication, *Multi-Modal Level of Service (MMLOS) Guidelines*. The following examined the MMLOS for the various modes of travel along the street segments of Albion Road as shown in Exhibit 4.1 in the Appendix, and Mitch Owens Road in Exhibit 4.2.

Albion Road - Mitch Owens Road to Killymoon Way

Pedestrian Level of Service (PLOS)

Albion Road has a rural roadway cross section which provides paved shoulders with no sidewalks. The posted speed limit is 80 km./h.

The pedestrian Level of Service (PLOS) for the Albion Road street segment as determined in the City of Ottawa Multi-Modal Level of Service (MMLOS) Worksheet was a PLOS "F" as shown in Exhibit 4.1 in the Appendix. The major factor in the lower level of service was the lack of a sidewalk and boulevard along Albion Road.

Bicycle Level of Service (BLOS)

Albion Road is a two lane arterial road with no designated cycling lanes. The road is designated as a Spine Route in the TMP. The bicycle level of service was determined as a BLOS "F" as shown in Exhibit 4.1 with the lack of cycling lanes as the major factor contributing to a low level of service.

Transit Level of Service (TLOS)

There currently is no regular transit service in the area. Service routes will be examined as residential development is completed in the area.

Truck Level of Service (TkLOS)

The truck level of service was determined to be a TkLOS "A" as shown in Exhibit 4.1.

Mitch Owens Road - Stagecoach Road to Tranquil Gate

Pedestrian Level of Service (PLOS)

Mitch Owens Road between Stagecoach Road and Tranguil Gate has a rural roadway cross section which provides paved shoulders with no sidewalks. The posted speed limit is 80 km./h.

The pedestrian Level of Service (PLOS) for the Mitch Owens Road street segment was a PLOS "F" as shown in Exhibit 4.2. The major factor in the lower level of service was the lack of a sidewalk and boulevard along Mitch Owens Road.

Bicycle Level of Service (BLOS)

Mitch Owens Road is a two lane collector road with no designated cycling lanes. The road is designated as a Spine Route in the TMP. The bicycle level of service was determined as a BLOS "F" as shown in Exhibit 4.2 with the lack of cycling lanes as the major factor contributing to a low level of service.

Transit Level of Service (TLOS)

There currently is no regular transit service along Mitch Owens Road. OC Transpo does provide on Thursdays only one bus traveling past the site at 9:30 AM to the Billings Bridge Transit Station, and one bus returning at 3:00 PM. With only two buses per week and service outside the peak hours of the adjacent roads, transit service was not examined in the MMLOS analysis. Service routes will be examined as residential development is completed in the area.

Truck Level of Service (TkLOS)

The truck level of service was determined to be a TkLOS "A".

Traffic collisions along the road segments are shown in Table 2.1 in Element 2.1.2. Over the five year period between January 1, 2016 and December 31, 2020, 3 collisions were recorded along the Albion Road segment between Mitch Owens Road and Killymoon Way, 3 collisions along Mitch Owens Road between Albion Road and Stagecoach Road and 3 collisions between Albion Road and Tranquil Gate. The pattern of collisions did not identify any measures which could be taken to reduce the number of collisions.

The calculated Level of Service (LOS) was determined using the Multi-Modal Level of Service Worksheet provided in the Appendix as Exhibits 4.1 for Albion Road and Exhibit 4.2 for Mitch Owens Road. The LOS targets were obtained from Exhibit 22 of the *Multi-Modal Level of Service (MMLOS) Guidelines* for a "General Rural Area" as designated in the 2021 Official Plan - Rural Transect as Rural Countryside. Table 4.1 summarizes the MMLOS results for the road segments and targets using the 2029 traffic and road configuration.

TABLE 4.1 MULTI-MODAL (MMLOS) SEGMENT SUMMARY TABLE

STREET SEGMENT	Level of Service (LOS) – 2029					
STREET SEGMENT	Pedestrian	Bicycle	Transit	Auto	Truck	
Albion Road Calculated Target	F No Target	F D	N/A N/A	N/A N/A	A C	
Mitch Owens Road Calculated Target	F No Target	F D	N/A N/A	N/A N/A	A C	

The pedestrian level of service (PLOS) was low on Albion Road and Mitch Owens Road due to the lack of pedestrian sidewalks and boulevards along the rural roads.

The bicycle level of service (BLOS) did not meet the target due to the lack of a cycling lane on Albion Road and Mitch Owens Road. Paved shoulders are provided along both roads.

The truck level of service (TkLOS) meets the target value.

MODULE 4.4 – Access Intersection Design

Element 4.4.1 – Location and Design of Access

The MacEwen Service Centre is located at the northwest corner of the intersection of Albion Road and Mitch Owens Road. The proposed Site Plan will utilize the existing two accesses with one onto Albion Road located 90 m north of Mitch Owens Road and one onto Mitch Owens Road located 75 m west of Albion Road. Both accesses are 12.0 m in width with one lane entering and one lane exiting as shown in Figure 2.1.

The Albion Road Access has a shared eastbound left/right turn movement exiting the site (flared approach). The clear throat distance is approximately 35 m. The Mitch Owens Access has a shared southbound left/right turn movement exiting the site (flared approach). The clear throat distance is approximately 30 m. The minimum clear throat length onto an arterial road as suggested in the *Geometric Design Guide for Canadian Roads* published by the Transportation Association of Canada (TAC) is 15 m for a light industrial land use. The site accesses provide a clear throat length which exceeds the TAC guidelines.

The geometry and width of the accesses will be sufficient to allow fuel delivery vehicles to enter and exit the site. The garbage containers and loading area are located at the rear of the proposed convenience store. The location is easily accessible for garbage and delivery trucks.

There is an existing entrance to a vacant commercial site on the east side of Albion Road approximately 35 m south of the Albion Access.

Element 4.4.2 – Intersection Control

The two existing site accesses onto Albion Road and Mitch Owens Road are two-way stop controlled intersections with a stop at the eastbound approach to Albion Road and a stop at the southbound approach to Mitch Owens Road. The volume of traffic entering and exiting the site along with the proximity of the accesses to the signalized intersection of Albion/Mitch Owens determined that the existing two-way stop controlled access intersections would remain as the best form of intersection control.

Element 4.4.3 – Intersection Design

The operational analyses of the two site accesses, Albion/Mitch Owens and Stagecoach/Mitch Owens intersections were completed for the number of peak AM and PM hour vehicle trips using the existing traffic counts and the expected 2024 and 2029 traffic. As documented in the *Multi-Modal Level of Service (MMLOS) Guidelines*, only signalized intersections are considered for the multi-modal intersection LOS measures. Vehicle LOS was determined utilizing the HCM guidelines and the HCS software.

VEHICLE LEVEL OF SERVICE (LOS) – Intersection Capacity Analysis

The analysis will utilize the *Highway Capacity Software (HCS), HCS2022 Version 2023,* which uses the capacity analysis procedure as documented in the *Highway Capacity Manual (HCM) 7th Edition.*

For a signalized intersection, the operation or level of service of an intersection is determined from the volume to capacity ratio (v/c) for each lane movement as documented by the City of Ottawa in the *Transportation Impact Assessment Guidelines* (2017). The following relates the level of service with the volume to capacity ratio at each lane movement.

LEVEL OF SERVICE	VOLUME TO CAPACITY RATIO
Level of Service A	0 to 0.60
Level of Service B	0.61 to 0.70
Level of Service C	0.71 to 0.80
Level of Service D	0.81 to 0.90
Level of Service E	0.91 to 1.00
Level of Service F	> 1.00

For unsignalized intersections, the level of service of each lane movement and approach is determined as a function of the average control delay of vehicles at the approach. The following relates the level of service of each lane movement with the expected control delay at the approach.

LEVEL OF SERVICE	AVERAGE CONTRO	DL DELAY
Level of Service A	0-10 sec./vehicle	Little or No Delay
Level of Service B	>10-15 sec./vehicle	Short Traffic Delays
Level of Service C	>15-25 sec./vehicle	Average Traffic Delays
Level of Service D	>25-35 sec./vehicle	Long Traffic Delays
Level of Service E	>35-50 sec./vehicle	Very Long Traffic Delays
Level of Service F	>50 sec./vehicle	Extreme Delays – Demand Exceeds Capacity

The expected length of queue at the critical lane movements for an unsignalized intersection was determined by the calculation of the 95th percentile queue at the lane approach as shown on the analysis work sheets provided in the Appendix. The 95th percentile queue length is the calculated 95th greatest queue length out of 100 occurrences at a movement during a 15-minute peak period. The 95th percentile queue length is a function of the capacity of a movement and the total expected traffic, with the

calculated value determining the magnitude of the queue by representing the queue length as fractions of vehicles.

The results of the analysis are discussed in detail in the following sections:

Site Access and Albion Road Intersection

The Site Access/Albion intersection is an existing "T" intersection with the Albion Access forming the eastbound approach and Albion Road the northbound and southbound approaches. The Site Access will be a 12.0 m wide private driveway controlled by an implied stop at the eastbound approach. The intersection will have the following lane configuration:

Northbound Albion Rd. One shared left/through lane

Southbound Albion Rd. One through lane

One shared through/right lane

One shared left/right turn lane (Implied Stop) Eastbound Site Access

The proposed redevelopment of the site would utilize the existing site accesses and intersection configuration. The operational analysis for the expected 2029 total traffic determined the northbound Albion Road approach would function at a Level of Service (LOS) "A" during the peak AM and PM hours, and the eastbound Site Access approach at a LOS "D" during the peak AM hour and LOS "C" during the peak PM hour. The 95th percentile queue was 2.0 vehicles at the eastbound access approach during the peak AM hour and 0.1 vehicles at the northbound Albion Road approach during the peak PM hour. The operation of the intersection is summarized in Table 4.2, with the existing traffic analysis, 2024 and 2029 analysis sheets provided in the Appendix as Exhibit 4.4 to Exhibit 4.13.

TABLE 4.2 SITE ACCESS/ALBION INTERSECTION – LOS & v/c Ratio

APPROACH	E Backg	AY PEAK AM HOUR xisting - 2022 round - 2024 2 <i>0</i> 29 al - 2024 (2029)	WEEKDAY PEAK PM HOUR Existing - 2022 Background - 2024 2029 Total - 2024 (2029)		
	LOS	v/c Ratio	LOS	v/c Ratio	
EB Left/Right	C C D C (D)	0.15 0.21 <i>0.27</i> <i>0.34</i> (0.43)	B C C C (C)	0.15 0.20 <i>0.26</i> 0.26 (0.33)	
NB Left/Through	A A A A (A)	0.01 0.01 <i>0.01</i> 0.01 (0.01)	A A A A (A)	0.01 0.02 <i>0.02</i> 0.02 (0.02)	

The Albion Access intersection would operate at an acceptable level of service following the completion of the redevelopment of the site. There would be no requirement for any additional intersection modifications to the access.

Site Access and Mitch Owens Road Intersection

The Mitch Owens Access intersection is located along the south limit of the site, 75 m west of the Albion/Mitch Owens intersection. The intersection is a "T" intersection with the site access forming the southbound approach. The access is 12 m wide and contains one lane entering and one lane exiting (flared approach). Below is the lane configuration of the Site Access/Mitch Owens intersection:

Eastbound Mitch Owens Rd. One left turn lane (Extending from Albion/Mitch Owens)

One through lane

Westbound Mitch Owens Rd. One shared through/right lane

Southbound Site Access One shared left/right turn lane (Implied Stop)

The operational analysis determined that the intersection functioned at an acceptable level of service. Due to the increasing volume of traffic along Mitch Owens Road, the southbound site access approach for the 2029 total peak PM hour traffic experienced delays (47.2 sec.) at the left turn movement onto Mitch Owens Road which resulted in a LOS "E" (v/c Ratio 0.66). The 2029 peak PM hour background traffic (without the expected redevelopment trips) would also experience a LOS "E" at the southbound approach. The 95th percentile queue for the total traffic during the peak PM hour was 4.1 vehicles at the southbound approach and 0.5 vehicles at the eastbound Mitch Owens Road left turn movement. The operation of the intersection is summarized in Table 4.3, with the existing traffic analysis, 2024 and 2029 analysis sheets provided in the Appendix as Exhibit 4.14 to Exhibit 4.23.

TABLE 4.3
SITE ACCESS/MITCH OWENS INTERSECTION – LOS & v/c Ratio

APPROACH	E Backg	AY PEAK AM HOUR xisting - 2022 round - 2024 2 <i>0</i> 29 al - 2024 (2029)	WEEKDAY PEAK PM HOUR Existing - 2022 Background - 2024 2029 Total - 2024 (2029)		
	LOS	v/c Ratio	LOS	v/c Ratio	
EB Left/Through	A A A A (A)	0.04 0.05 <i>0.06</i> 0.08 (0.09)	A A A A (A)	0.07 0.09 <i>0.11</i> 0.13 (0.15)	
SB Left/Right	B B B B (C)	0.10 0.12 <i>0.15</i> 0.18 (0.22)	C D <i>E</i> D (E)	0.27 0.38 <i>0.49</i> 0.52 (0.66)	

The Mitch Owens Access intersection would operate at an acceptable level of service following the completion of the redevelopment of the site. There would be no requirement for any additional intersection modifications to the access.

Albion Road and Mitch Owens Road Intersection

The Albion/Mitch Owens intersection is a signalized intersection at the southeast corner of the MacEwen Service Centre site. The intersection is a "T" intersection with Albion Road forming the southbound approach and Mitch Owens Road the eastbound and westbound approaches. The following is the lane configuration of the intersection:

Eastbound Mitch Owens Rd. One left turn lane (255 m storage/parallel)

One through lane

One through lane Westbound Mitch Owens Rd.

One channelized right turn lane (160 m storage)

Southbound Albion Rd. One left turn lane (140 m storage/parallel)

One right turn lane

The overall intersection level of service functions at an acceptable level to the year 2029. Due to the increasing traffic along Albion Road and Mitch Owens Road, the eastbound peak AM hour left turning movement, and peak PM hour westbound through and southbound right turn movements functioned at low levels of service which were determined during the 2024 and 2029 background traffic analysis. The level of service could be improved by the construction of additional turning lanes. The operation of the intersection is summarized in Table 4.4, with the existing traffic analysis, 2024 and 2029 analysis sheets provided in the Appendix as Exhibit 4.24 to Exhibit 4.33.

TABLE 4.4 ALBION/MITCH OWENS INTERSECTION – LOS & v/c Ratio

APPROACH	E Backg	AY PEAK AM HOUR xisting - 2019 round - 2024 <i>2029</i> al - 2024 (2029)	WEEKDAY PEAK PM HOUR Existing - 2019 Background - 2024 2029 Total - 2024 (2029)		
	LOS	v/c Ratio	LOS	v/c Ratio	
EB Left	B C <i>E</i> C (E)	0.671 0.790 <i>0.922</i> 0.780 (0.919)	B D D D (D)	0.630 0.859 <i>0.873</i> 0.857 (0.872)	
EB Through	A A A A (A)	0.230 0.257 <i>0.287</i> 0.253 (0.283)	A A A A (A)	0.394 0.453 <i>0.524</i> 0.444 (0.514)	
WB Through	A A C A (C)	0.489 0.570 <i>0.722</i> 0.567 (0.715)	C E F E (F)	0.759 0.938 <i>1.223</i> 0.931 (1.216)	
WB Right	A A A A (A)	0.219 0.254 <i>0.323</i> 0.249 (0.313)	A A A A (A)	0.166 0.204 <i>0.266</i> 0.195 (0.262)	
SB Left	B B B C (C)	0.671 0.681 <i>0.691</i> 0.735 (0.745)	A A A A (A)	0.438 0.441 <i>0.445</i> 0.465 (0.474)	
SB Right	C C C C (C) 0.718 0.742 0.763 0.730 (0.756)		D E E D (E)	0.900 0.910 <i>0.920</i> 0.908 (0.918)	
Total	A A A A (A)	0.389 0.444 <i>0.522</i> 0.440 (0.517)	A A B A (B)	0.509 0.592 <i>0.680</i> 0.588 (0.679)	

The Albion/Mitch Owens intersection would operate at an acceptable overall level of service following the completion of the redevelopment of the site. Several movements

functioned at a low level of service during peak hours due to the increasing volume of background traffic. City staff are currently examining the intersection for some planned modifications to protect the eastbound Mitch Owens Road left turn movement.

Stagecoach Road and Mitch Owens Road Intersection

The intersection of Stagecoach Road and Mitch Owens Road is a signalized intersection located 600 m west of the site. The intersection is a "T" intersection with Stagecoach Road forming the northbound approach and Mitch Owens Road the eastbound and westbound approaches. The intersection would have the following lane configuration.

Eastbound Mitch Owens Rd. One shared through/right lane

Westbound Mitch Owens Rd. One through lane

One left turn lane (220 m storage/parallel)

Northbound Stagecoach Rd. One left turn lane (150 m storage/parallel)

One right turn lane

The operational analysis has determined that the intersection would function at an overall acceptable level of service. With the increasing background traffic, the northbound right turn movement experienced a low level of service during the peak AM and PM hours along with the eastbound through/right and westbound left turn movements during the peak PM hour. The existing 2019 analysis utilized the traffic signal timing plan obtained from the City of Ottawa, with timing adjustment to the northbound movement for the 2024 and 2029 analysis years. The operation of the intersection is summarized in Table 4.5, with the existing traffic analysis, 2024 and 2029 analysis sheets provided in the Appendix as Exhibit 4.34 to Exhibit 4.43.

TABLE 4.5
STAGECOACH/MITCH OWENS INTERSECTION – LOS & v/c Ratio

APPROACH	E Backg	AY PEAK AM HOUR xisting - 2019 ground - 2024 2 <i>029</i> ral - 2024 (2029)	E Backg	AY PEAK PM HOUR xisting - 2019 ground - 2024 2 <i>029</i> cal - 2024 (2029)
	LOS	v/c Ratio	LOS	v/c Ratio
EB Through/Right	A A C A (C)	0.492 0.560 <i>0.759</i> 0.561 (0.786)	B D F E (F)	0.692 0.902 1.014 0.917 (1.018)
WB Left	A A A A (A)	0.276 0.348 <i>0.481</i> 0.372 (0.520)	D E F E (F)	0.813 0.933 <i>1.141</i> 0.953 (1.168)
WB Through	A A B A (B)	0.505 0.575 <i>0.692</i> 0.578 (0.704)	A A A A (A)	0.461 0.509 <i>0.562</i> 0.512 (0.565)
NB Left	A A A A (A)	0.328 0.342 <i>0.330</i> 0.338 (0.322)	A A B A (A)	0.505 0.557 <i>0.617</i> 0.549 (0.608)
NB Right	E E E E (E) 0.925 0.966 <i>0.934</i> 0.985 (0.937)		D E F E (F)	0.834 0.937 <i>1.048</i> 0.972 (1.083)
Total	A A B A (B)	0.504 0.566 <i>0.652</i> 0.572 (0.663)	A B C C (C)	0.607 0.705 <i>0.795</i> 0.714 (0.803)

The Stagecoach/Mitch Owens intersection would operate at an acceptable overall level of service following the completion of the redevelopment of the site. movements functioned at a low level of service during peak hours due to the increasing volume of background traffic.

INTERSECTION MMLOS SUMMARY

The Albion/Mitch Owens and Stagecoach/Mitch Owens intersections were analyzed to determine the level of service which was compared to the MMLOS targets for pedestrians, bicycles, trucks, transit and autos. The calculated Level of Service (LOS) was determined using the Multi-Modal Level of Service Worksheet provided in the Appendix as Exhibit 4.3, and the *Highway Capacity Software*, HCS2022 Version 2023, for the vehicle LOS. The LOS targets were obtained from Exhibit 22 of the *Multi-Modal* Level of Service (MMLOS) Guidelines for a General Rural Area as designated in the Official Plan Schedule B9 - Rural Transect as Rural Countryside. summarizes the MMLOS results for the intersections and targets.

TABLE 4.6 MULTI-MODAL (MMLOS) INTERSECTION SUMMARY TABLE

INTERSECTION	Level of Service (LOS) – 2029					
INTERSECTION	Pedestrian	Bicycle	Transit	Truck	Auto	
Albion/Mitch Owens Calculated Target	C No Target	F D	-	C	A-B D	
Stagecoach/Mitch Owens Calculated Target	C No Target	F D	-	CC	B-C D	

The pedestrian level of service (PLOS) at the intersection was a LOS "C". Due to the rural nature of the location of the development there were no PLOS targets.

The lower bicycle level of service (BLOS) was due to the lack of cycling lanes and the number of lanes crossed in making a left turn movement at intersections.

The truck level of service (TkLOS) meets the target.

The vehicle level of service (LOS) exceeded the MMLOS target.

MODULE 4.5 – Transportation Demand Management

Element 4.5.1 – Context for TDM

Exempt as determined in the Scoping Document.

Element 4.5.2 – Need and Opportunity

Exempt as determined in the Scoping Document.

Element 4.5.3 – TDM Program

Exempt as determined in the Scoping Document.

MODULE 4.6 – Neighbourhood Traffic Management

<u>Element 4.6.1 – Adjacent Neighbourh</u>oods

Exempt as determined in the Scoping Document.

MODULE 4.7 - Transit

Element 4.7.1 – Route Capacity

There currently is no regular transit service in the area. There is Route 304 which is a transit route providing service only on Thursdays with one bus travelling past the site at 9:30 AM to Billings Bridge, and one bus returning at 3:30 PM. As development progresses in the area and transit demand increases, the level of transit service and routes will be determined to service the area. Site generated trips to/from the gasoline service centre is expected to have little if any transit share.

Element 4.7.2 – Transit Priority

The MacEwen Service Centre is located at the intersection of two arterial roads. The site proposes to utilize the existing site accesses with little if any transit demands generated by the site. When regular transit service is provided, the benefit of providing transit priority measures will be examined.

MODULE 4.8 – Review of Network Concept

Exempt as determined in the Scoping Document.

MODULE 4.9 – Intersection Design

Element 4.9.1 – Intersection Control

The intersections examined in the study were the Albion/Mitch Owens and the Stagecoach/Mitch Owens intersections. Both intersections are controlled by traffic signals with protected left turn phasing.

The existing two site accesses are controlled by implied two-way stops. The volume of traffic at the site approach and the proximity of the access intersection to the

Albion/Mitch Owens intersection would prohibit the installation of other traffic control measures than the existing two-way stop controls.

Element 4.9.2 – Intersection Design

The Site Access/Albion, Site Access/Mitch Owens, Albion/Mitch Owens and Stagecoach/Mitch Owens intersections were all examined utilizing the *Highway Capacity Software (HCS)*, *HCS2022 Version 2023*, which uses the capacity analysis procedure as documented in the *Highway Capacity Manual (HCM) 7th Edition*. With the *Multi-Modal Level of Service (MMLOS) Guidelines* stating that only signalized intersections are considered for the multi-modal analysis, only the signalized intersections of Albion/Mitch Owens and Stagecoach/Mitch Owens were examined for the MMLOS.

The intersections were analyzed in Element 4.4.3 - Intersection Design to determine the level of service at all four intersections. The calculated level of service was compared to the level of service targets listed in Exhibit 22 of the *Multi-Modal Level of Service* (MMLOS) Guidelines. The results are provided in Table 4.6.

The MMLOS for each intersection determined the vehicle target for arterial roads in a General Rural Area to be a LOS "D". The operational analysis was completed for the existing, 2024 & 2029 background and 2024 & 2029 total traffic for the existing Albion/Mitch Owens and Stagecoach/Mitch Owens intersections. The level of service analysis is based on the total v/c Ratio of the intersection. The level of service of the intersection and LOS targets are shown in Table 4.7.

TABLE 4.7
WEEKDAY PEAK AM AND PM HOUR INTERSECTION ANALYSIS – LOS

INTERSECTION	Existing - 2019 Background - 2024 2 <i>0</i> 29 Total - 2<i>0</i>24 (2029)					
INTERSECTION	LOS A	nalysis	LOS Target			
	AM	PM	AM	PM		
Albion/Mitch Owens	A A A A (A)	A A B A (B)	D D D D (D)	D D D D (D)		
Stagecoach/Mitch Owens	A A B A (B) A B C C (C) D D D D (D) D D D					

SUMMARY

MacEwen Petroleum Inc. has prepared a Site Plan for the redevelopment of their gasoline service centre at 5546 Albion Road. The service centre site has a net area of 10,843.7 m² and is located at the northwest corner of the intersection of Albion Road and Mitch Owens Road. The existing site contains a fuelling station with 12 gasoline

The state of the s

and 2 diesel fuelling positions. The site has one free standing building which contains a convenience store with a coffee shop. The site has two existing access points with one onto Mitch Owens Road located 75 m west of the Albion/Mitch Owens intersection, and a second access onto Albion Road located 90 m north of the intersection.

The Site Plan proposes the replacement of the existing building with a new larger building which will contain a convenience store. The new facility will have a building with gross floor area of 400 m², an increase of 211 m² over the existing building. The number of petroleum fuelling positions will remain the same as existing, with the addition of 2 new Level 3 electric vehicle (EV) charging stations. The site will provide 31 parking spaces including 1 barrier free space for patrons, and will retain the existing two site access points onto Albion Road and Mitch Owens Road.

The Transportation Impact Assessment report has established a study area which would include the Albion Access, Mitch Owens Access, Albion/Mitch Owens intersection, and Stagecoach/Mitch Owens intersection. The operational analysis will be conducted for the weekday peak AM and PM hours for the existing traffic counts, at the completion of the Service Centre in 2024, and at five years beyond completion at the year 2029. The TIA analysis has examined all modes of transportation along the road segments and the intersections within the study area. The transportation analysis has determined the following:

- 1. The existing MacEwen Service Centre at 5546 Albion Road is open weekdays from 5:30 AM to 12:00 AM, Saturday from 5:30 AM to 11:00 PM, and Sunday from 7:00 AM to 10:00 PM.
- 2. The Site Plan proposes to expand the gross floor area of the existing building and retain the same number of petroleum fuelling positions and site access points. Two new EV charging stations will be added. Both the Albion Access and Mitch Owens Access have a 12 m width.
- 3. The 2022 traffic counts at the site accesses determined the MacEwen Service Centre to generate 178 vehicle trips entering and exiting during the peak AM hour and 281 vehicle trips during the peak PM hour.
- 4. Following the completion of the site redevelopment and an adjustment of the traffic to reflect lower trips due to COVID-19 (15% increase), the expected 2024 site generated trips would be 326 vehicle trips entering and exiting during the peak AM hour and 463 vehicle trips during the peak PM hour. During the year 2029, the expected site generated trips would be 348 vehicle trips entering and exiting during the peak AM hour and 498 vehicle trips during the peak PM hour.
- 5. The MMLOS analysis of the street segment determined that for the Albion Road segment between Mitch Owens Road and Killymoon Way, and the Mitch Owens Road segment between Stagecoach Road and Tranquil Gate, the pedestrian level of service (PLOS) was low with no MMLOS targets due to the rural location and cross section of the road and lack of sidewalks. The cycling level of service

45

(BLOS) was low and did not meet the target along both road segments due to the lack of cycling facilities. The truck level of service (TkLOS) exceeded the MMLOS target along both roads.

- 6. The MMLOS analysis for the Albion/Mitch Owens and Stagecoach/Mitch Owens intersections determined that both intersections functioned well when compared to the MMLOS targets. The 2029 analysis of the Albion/Mitch Owens intersection determined the intersection to function at a LOS "A-B" with the target of LOS "A", and the Stagecoach/Mitch Owens intersection at a "B-C" with the target of "C".
- 7. The intersection analysis using the level of service calculated from the HCS and HCM determined that the overall Albion/Mitch Owens intersection level of service was acceptable during the peak AM and PM hour for the existing, 2024 and 2029 traffic. The 2029 background and total AM traffic analysis determined the eastbound Mitch Owens Road left turn movement to function at a LOS "E". During the peak PM hour the 2024 and 2029 background and total traffic scenarios determined the southbound Albion Road right turn movement and westbound Mitch Owens Road through movement to function at a LOS "E" and LOS "F". The lower level of service was due to the high volume of background traffic at the lane movements. The level of service could be increased by the addition of dual turn lanes and an adjustment to the signal timing. The redevelopment of the MacEwen site would have a minor impact of the operation of the Albion/Mitch Owens and Stagecoach/Mitch Owens intersections.
- 8. The existing Site Access/Albion intersection would operate at an acceptable level of service during the existing, 2024 and 2029 peak hours. The Site Access/Mitch Owens intersection operated at an acceptable level of service during the peak AM hour, but during the 2029 peak PM hour the background and total scenarios at the southbound site access approach would function at a LOS "E" due to the high volume of westbound Mitch Owens Road through movement traffic past the access.
- The redevelopment of the MacEwen Service Centre would result in a minor impact on the adjacent roads but would not be triggering roadway improvements. Additions to the site would consist of a larger convenience store building and 2 EV charging stations.

Prepared by:

David J. Halpenny, M. Eng., P. Eng.

David & Walsung

APPENDIX

CERTIFICATION FORM SCREENING FORM

TRAFFIC COUNTS

EXHIBIT A.1 CERTIFICATION FORM

Transportation Impact Assessment Guidelines

Certification Form for TIA Study PM

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

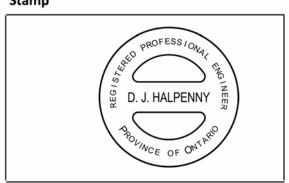
CERTIFICATION

X	I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;					
X	I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;					
X	I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and					
X	I am either a licensed¹ or registered² professional in good standing, whose field of expertise is either transportation engineering or transportation planning.					

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1

Tel.: 613-580-2424 Fax: 613-560-6006

License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.


Transportation Impact Assessment Guidelines

Dated at	Ottaw	/a	this	2nd	day of	Septemb	er	, ₂₀ 21
		(City)						
Name :	David	J. Halpenny						
Professio	nal title:	President	D. J.	Halpe	nny & As	ssociates Ltd.		

Signature of individual certifier that s/he meets the above criteria

Office Contact	Information (Please Print)			
Address: P.O. Box 774				
City / Postal Code	e: Manotick ON K4M 1A7			
Telephone / Exte	nsion: 613-692-8662			
E-Mail Address:	David@DJHalpenny.com			

Stamp

EXHIBIT 1.1 SCREENING FORM

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

Municipal Address	5546 Albion Road, Ottawa
Description of Location	Northwest corner of Albion Rd. and Mitch Owens Rd.
Land Use Classification	"RC2" - Rural Commercial Zone
Development Size (units)	Gasoline Service Centre - ±400 m² GFA
Development Size (m ²)	10,843.7 m ² Lot Area
Number of Accesses and Locations	One access onto Albion Rd., 90 m north of Mitch Owens Rd.
	One access onto Mitch Owens Rd., 75 m west of Albion Rd.
Phase of Development	Single Phase of development
Buildout Year	2024

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Gasoline station or convenience market	75 m ²

	Yes	No
400 m ² Gasoline Station > 75 m ² Minimum Development Size	Х	

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, the Trip Generation Trigger is satisfied.

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?		X
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone? *		X

^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	Χ	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		X
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	X	
Is the proposed driveway within auxiliary lanes of an intersection?	Χ	
Does the proposed driveway make use of an existing median break that serves an existing site?		X
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		X
Does the development include a drive-thru facility?		X

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

5. Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?	х	
Does the development satisfy the Location Trigger?		X
Does the development satisfy the Safety Trigger?	X	

If none of the triggers are satisfied, the TIA Study is complete. If one or more of the triggers is satisfied, the TIA Study must continue into the next stage (Screening and Scoping).

EXHIBIT 2.1 2019 TRAFFIC COUNT SUMMARY - Albion/Mitch Owens

Transportation Services - Traffic Services

Turning Movement Count - Study Results

ALBION RD @ MITCH OWENS RD

Survey Date:Wednesday, October 16, 2019WO No:38921Start Time:07:00Device:Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, October 16, 2019 Total Observed U-Turns AADT Factor

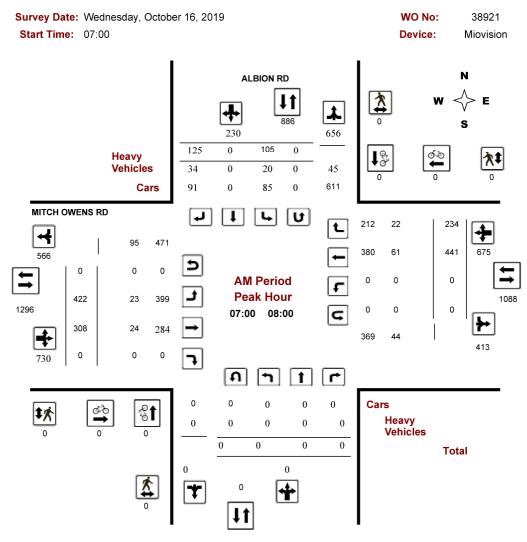
Northbound: 0 Southbound: 0 .90

Eastbound: 1 Westbound: 0

									1				U						
			AL	BION	RD							MITCI	H OWI	ENS R	D				
	Nor	thbou	nd		Sou	uthbou	und			Е	Eastbou	ınd		٧	V estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	0	0	0	0	105	0	125	230	230	422	308	0	730	0	441	234	675	1405	1635
08:00 09:00	0	0	0	0	85	0	105	190	190	348	355	0	703	0	338	186	524	1227	1417
09:00 10:00	0	0	0	0	84	0	117	201	201	255	232	0	487	0	282	158	440	927	1128
11:30 12:30	0	0	0	0	91	0	153	244	244	157	234	0	391	0	239	100	339	730	974
12:30 13:30	0	0	0	0	122	0	159	281	281	152	233	0	385	0	246	105	351	736	1017
15:00 16:00	0	0	0	0	214	0	373	587	587	169	375	0	544	0	356	121	477	1021	1608
16:00 17:00	0	0	0	0	170	0	392	562	562	211	416	0	627	0	553	142	695	1322	1884
17:00 18:00	0	0	0	0	162	0	392	554	554	209	353	0	562	0	538	117	655	1217	1771
Sub Total	0	0	0	0	1033	0	1816	2849	2849	1923	2506	0	4429	0	2993	1163	4156	8585	11434
U Turns				0				0	0				1				0	1	1
Total	0	0	0	0	1033	0	1816	2849	2849	1923	2506	0	4430	0	2993	1163	4156	8586	11435
EQ 12Hr	0	0	0	0	1436	0	2524	3960	3960	2673	3483	0	6158	0	4160	1617	5777	11935	15895
Note: These v	alues ar	e calcul	ated by	y multipl	ying the	totals b	y the a	ppropriat	e expans	sion fac	tor.			1.39					
AVG 12Hr	0	0	0	0	1292	0	2976	3564	3564	2406	3135	0	5542	0	3744	1455	5199	10742	14306
Note: These v	olumes	are calc	ulated	by multi	plying th	e Equiv	/alent 1	2 hr. tota	Is by the	AADT	factor.			.90					
AVG 24Hr	0	0	0	0	1693	0	3899	4669	4669	3152	4107	0	7260	0	4905	1906	6811	14072	18741
Note: These v	olumes	are calc	ulated	by multi	plying th	e Aver	age Dai	ly 12 hr. 1	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					
						_													

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

January 5, 2023 Page 3 of 8


2019 PEAK AM HOUR TRAFFIC COUNTS - Albion/Mitch Owens

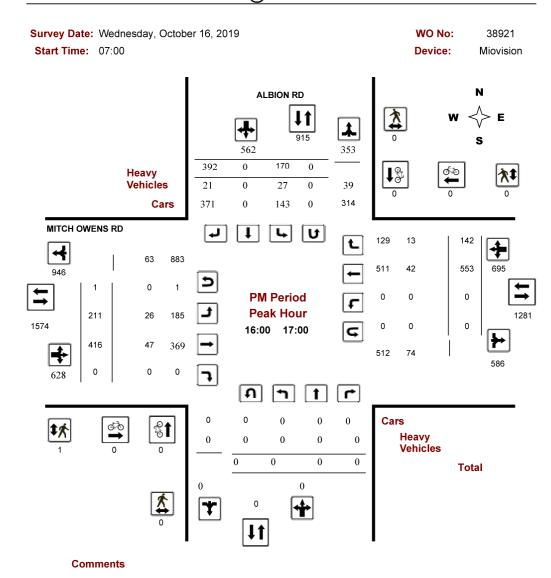
Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

ALBION RD @ MITCH OWENS RD

Comments

2023-Jan-05 Page 1 of 9


2019 PEAK PM HOUR TRAFFIC COUNTS - Albion/Mitch Owens

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

ALBION RD @ MITCH OWENS RD

2023-Jan-05 Page 2 of 9

.90

EXHIBIT 2.2 2019 TRAFFIC COUNT SUMMARY - Stagecoach/Mitch Owens

Transportation Services - Traffic Services

Turning Movement Count - Study Results

MITCH OWENS RD @ STAGECOACH RD

Survey Date:Wednesday, October 16, 2019WO No:38920Start Time:07:00Device:Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, October 16, 2019 Total Observed U-Turns AADT Factor

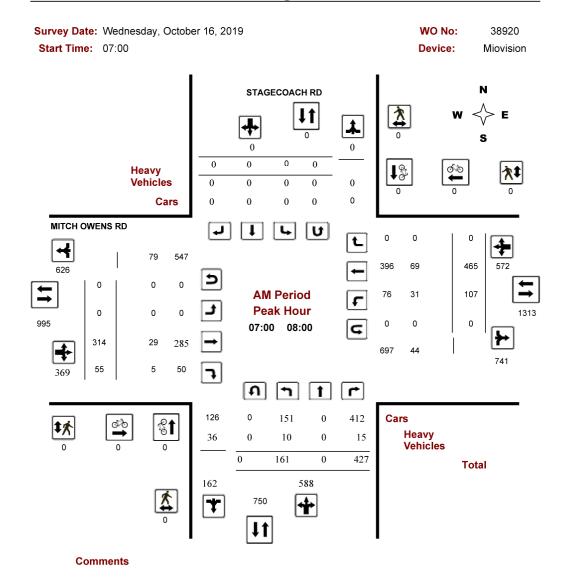
Northbound: 0 Southbound: 0

Eastbound: 0 Westbound: 0

		9	STAG	ECOAC	H RD							MITCI	H OW	ENS R	D				
	Nor	thbou	ınd		Sou	ıthbou	nd	_		Е	astbo	und		V	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	161	0	427	588	0	0	0	0	588	0	314	55	369	107	465	0	572	941	1529
08:00 09:00	102	0	325	427	0	0	0	0	427	0	419	44	463	94	376	0	470	933	1360
09:00 10:00	103	0	227	330	0	0	0	0	330	0	272	64	336	107	309	0	416	752	1082
11:30 12:30	72	0	131	203	0	0	0	0	203	0	285	55	340	133	284	0	417	757	960
12:30 13:30	72	0	144	216	0	0	0	0	216	0	287	63	350	146	277	0	423	773	989
15:00 16:00	57	0	149	206	0	0	0	0	206	0	428	116	544	356	416	0	772	1316	1522
16:00 17:00	86	0	158	244	0	0	0	0	244	0	490	127	617	386	606	0	992	1609	1853
17:00 18:00	109	0	191	300	0	0	0	0	300	0	416	108	524	408	564	0	972	1496	1796
Sub Total	762	0	1752	2514	0	0	0	0	2514	0	2911	632	3543	1737	3297	0	5034	8577	11091
U Turns				0				0	0				0				0	0	0
Total	762	0	1752	2514	0	0	0	0	2514	0	2911	632	3543	1737	3297	0	5034	8577	11091
EQ 12Hr	1059	0	2435	3494	0	0	0	0	3494	0	4046	878	4925	2414	4583	0	6997	11922	15416
Note: These	values ar	e calcu	ılated b	y multiply	ing the	totals by	y the ap	propriate	e expans	ion fact	tor.			1.39					
AVG 12Hr	953	0	2192	3145	0	0	0	0	3145	0	3641	790	4432	2173	4125	0	6297	10730	13874
Note: These	volumes	are cal	culated	by multip	lying th	e Equiv	alent 12	2 hr. tota	Is by the	AADT	factor.			.90					
AVG 24Hr	1248	0	2872	4120	0	0	0	0	4120	0	4770	1035	5806	2847	5404	0	8249	14056	18175
Note: These	volumes	are cal	culated	by multip	lying th	e Avera	ige Dail	y 12 hr. t	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

January 25, 2023 Page 3 of 8

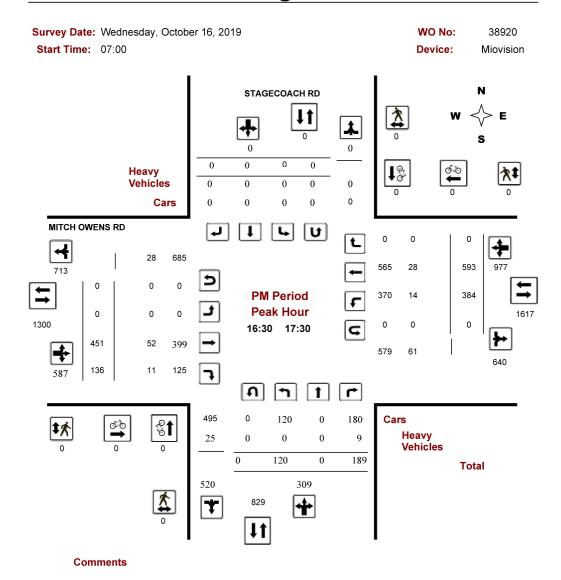

2019 PEAK AM HOUR TRAFFIC COUNTS - Stagecoach/Mitch Owens

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

MITCH OWENS RD @ STAGECOACH RD

2023-Jan-25 Page 1 of 9


2019 PEAK PM HOUR TRAFFIC COUNTS - Stagecoach/Mitch Owens

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

MITCH OWENS RD @ STAGECOACH RD

2023-Jan-25 Page 3 of 9

EXHIBIT 2.3 2022 AM AND PM HOUR TRAFFIC COUNTS - Site Access/Albion

All Vehicles

Time Period	No	rthbou	nd	So	uthbou	ınd	E	astbou	nd	W	estbou	nd	
AM	LT	ST	RT	LT	ST	RT	LT	ST	RT	LT	ST	RT	Total
07:00 - 07:15	1	-	-	-	-	6	6	-	3	-	-	-	16
07:15 - 07:30	0	-	-	-	-	12	9	-	4	-	-	-	25
07:30 - 07:45	0	-	-	-	1	12	9	-	4	-	-	-	25
07:45 - 08:00	1	-	-	-	-	10	7	-	2	-	-	-	20
08:00 - 08:15	3	-	-	-	-	5	7	-	2	-	-	-	17
08:15 - 08:30	2	-	-	-	-	11	6	-	7	-	-	-	26
08:30 - 08:45	2	-	-	-	-	9	11	-	3	-	-	-	25
08:45 - 09:00	0	-	-	-	-	7	5	-	2	-	-	-	14
PM													
04:00 - 04:15	2	-	-	-	-	17	7	-	11	-	-	-	37
04:15 - 04:30	3	-	-	-	-	13	4	-	7	-	-	-	27
04:30 - 04:45	2	-	-	-	-	15	10	-	9	-	-	-	36
04:45 - 05:00	3	-	-	-	-	19	7	-	7	-	-	-	36
05:00 - 05:15	2	-	-	-	-	21	9	-	10	-	-	-	42
05:15 - 05:30	3	-	-	-	-	12	3	-	8	-	-	-	26
05:30 - 05:45	4	-	-	-	-	17	6	-	9	-	-	-	36
05:45 - 06:00	2	-	-	-	-	15	7	-	5	-	-	-	29

Truck & Bus Traffic

Time Period	No	rthbou	nd	So	uthbou	ınd	E	astboui	nd	W	estbou	nd	
AM	LT	ST	RT	LT	ST	RT	LT	ST	RT	LT	ST	RT	Total
07:00 - 07:15	0	-	-	-	-	0	1	-	0	-	-	-	1
07:15 - 07:30	0	-	-	-	-	3	2	-	0	-	-	-	5
07:30 - 07:45	0	-	-	-	-	1	2	-	0	-	-	-	3
07:45 - 08:00	0	-	-	-	-	2	0	-	0	-	-	-	2
08:00 - 08:15	0	-	-	-	-	0	0	-	0	-	-	-	0
08:15 - 08:30	0	-	-	-	-	2	1	-	1	-	-	-	4
08:30 - 08:45	0	-	-	-	-	1	3	-	0	-	-	-	4
08:45 - 09:00	0	-	-	-	-	1	1	-	0	-	-	-	2
PM													
04:00 - 04:15	0	-	-	-	-	0	0	-	1	-	-	-	1
04:15 - 04:30	0	-	-	-	-	0	0	-	1	-	-	-	1
04:30 - 04:45	0	-	-	-	-	0	0	-	0	-	-	-	0
04:45 - 05:00	1	-	-	-	-	0	1	-	1	-	-	-	3
05:00 - 05:15	0	-	-	-	-	0	1	-	1	-	-	-	2
05:15 - 05:30	1	-	-	-	-	0	0	-	0	-	-	-	1
05:30 - 05:45	0	-	-	-	-	1	0	-	1	-	-	-	2
05:45 - 06:00	0	-	-	-	-	1	0	-	0	-	-	-	1

EXHIBIT 2.4 2022 AM AND PM HOUR TRAFFIC COUNTS - Site Access/Mitch Owens

All Vehicles

Time Period	No	rthbou	nd	So	uthbou	ınd	E	astbou	nd	W			
AM	LT	ST	RT	LT	ST	RT	LT	ST	RT	LT	ST	RT	Total
07:00 - 07:15	ı	-	-	1	0	9	16	0	0	0	0	4	30
07:15 - 07:30	-	-	-	1	0	8	5	0	0	0	0	5	19
07:30 - 07:45	ı	-	-	1	0	9	10	0	0	0	0	1	21
07:45 - 08:00	-	-	-	1	0	11	7	0	0	0	0	1	20
08:00 - 08:15	1	-	-	1	0	6	7	0	0	0	0	3	17
08:15 - 08:30	1	-	-	0	0	13	11	0	0	0	0	3	27
08:30 - 08:45	-	-	-	2	0	11	11	0	0	0	0	2	26
08:45 - 09:00	-	-	-	2	0	7	7	0	0	0	0	4	20
PM								0	0	0	0		
04:00 - 04:15	-	-	-	2	0	25	14	0	0	0	0	9	50
04:15 - 04:30	1	-	-	1	0	14	6	0	0	0	0	7	28
04:30 - 04:45	-	-	-	0	0	13	10	0	0	0	0	9	32
04:45 - 05:00	-	-	-	2	0	19	8	0	0	0	0	6	35
05:00 - 05:15	ı	-	-	2	0	20	7	0	0	0	0	8	37
05:15 - 05:30	-	-	-	2	0	18	9	0	0	0	0	7	36
05:30 - 05:45	-	-	-	2	0	14	4	0	0	0	0	3	23
05:45 - 06:00	-	-	-	0	0	18	8	0	0	0	0	6	32

Truck & Bus Traffic

Time Period	No	rthbou	nd	So	uthbou	nd	Ea	astboui	nd	W	estbou	nd	
AM	LT	ST	RT	LT	ST	RT	LT	ST	RT	LT	ST	RT	Total
07:00 - 07:15	-	-	-	0	-	0	1	-	-	-	-	0	1
07:15 - 07:30	-	-	-	0	-	1	0	-	-	-	-	2	3
07:30 - 07:45	-	-	-	0	-	2	2	-	-	-	-	0	4
07:45 - 08:00	-	-	-	0	-	1	0	-	-	-	-	0	1
08:00 - 08:15	-	-	-	1	-	1	0	-	-	-	-	0	2
08:15 - 08:30	-	-	-	0	-	1	2	-	-	-	-	0	3
08:30 - 08:45	-	-	-	0	-	1	0	-	-	-	-	0	1
08:45 - 09:00	-	-	-	1	-	1	1	-	-	-	-	1	4
PM													
04:00 - 04:15	-	-	-	0	-	0	3	-	-	-	-	0	3
04:15 - 04:30	1	-	-	0	1	0	0	-	-	1	-	0	0
04:30 - 04:45	-	-	-	0	-	0	2	-	-	-		0	2
04:45 - 05:00	1	-	-	0	1	0	0		-	1	-	0	0
05:00 - 05:15	-	-	-	0	1	1	0	-	-	-	-	0	1
05:15 - 05:30	-	-	-	0	-	1	0	-	-	-	-	0	1
05:30 - 05:45	-	-	-	1	1	1	1	-	-	-	-	0	3
05:45 - 06:00	-	-	-	0	-	2	0	-	-	-	-	0	2

EXHIBIT 4.1 2029 MMLOS ROAD SEGMENT - Albion Road

Multi-Modal Level of Service - Segments Form

Consultant		Project	MacEwen
Scenario	Total 2029 Traffic	Date	Feb-23
Comments	Albion Rd.		
	Mitch Owens Rd. to Killymoon Way		

SEGMENTS		Albion	Killymoon Way		
SEGMENTS		Albioli	Mitch Owens		
	Sidewalk Width Boulevard Width		no sidewalk n/a		
	Avg Daily Curb Lane Traffic Volume		> 3000		
⊊	Operating Speed		> 60 km/h		
Pedestrian	On-Street Parking		no		
est	Exposure to Traffic PLoS	F	F	-	-
Ď	Effective Sidewalk Width		1.2 m		
مّ	Pedestrian Volume		250 ped/hr		
	Crowding PLoS		В	-	-
	Level of Service		F	-	-
	Type of Cycling Facility		Mixed Traffic		
	Number of Travel Lanes		2-3 lanes total		
	Operating Speed		≥ 60 km/h		
	# of Lanes & Operating Speed LoS		F	-	-
Bicycle	Bike Lane (+ Parking Lane) Width		≥ 1.8 m		
l š	Bike Lane Width LoS	F	A	-	-
l 👸	Bike Lane Blockages		Rare		
	Blockage LoS		A	-	-
	Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge		
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes		
	Sidestreet Operating Speed		>50 to 60 km/h		
	Unsignalized Crossing - Lowest LoS		C	-	•
	Level of Service		F	-	-
#	Facility Type				
suı	Friction or Ratio Transit:Posted Speed	_			
Transit	Level of Service		-	-	-
J	Truck Lane Width		> 3.7 m		
<u> </u>	Travel Lanes per Direction	Α	> 1		
Truck	Level of Service	A	Α	-	-

EXHIBIT 4.2 2029 MMLOS ROAD SEGMENT - Mitch Owens Road

Multi-Modal Level of Service - Segments Form

Consultant		Project	MacEwen
Scenario	Total 2029 Traffic	Date	Feb-23
Comments	Mitch Owens Rd.		
	Stagecoach Rd. to Tranquil Gate		

	- tange of the contract of the		1		
SEGMENTS		Mitch Owens	Stagecoach	Albion	
GEGINIENTS		Willell Owells	Albion	Tranquil Gate	
	Sidewalk Width		no sidewalk	no sidewalk	
	Boulevard Width		n/a	n/a	
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	
⊑	Operating Speed		> 60 km/h	> 60 km/h	
<u>:</u>	On-Street Parking		no	no	
Pedestrian	Exposure to Traffic PLoS	F	F	F	
g	Effective Sidewalk Width		1.2 m	1.2 m	
Ö	Pedestrian Volume		250 ped/hr	250 ped/hr	
_	Crowding PLoS		В	В	
	Stottaining 1 200				
	Level of Service		F	F	-
	Type of Cycling Facility		Mixed Traffic	Mixed Traffic	
	Number of Travel Lanes		2-3 lanes total	2-3 lanes total	
	Operating Speed		≥ 60 km/h	≥ 60 km/h	
	# of Lanes & Operating Speed LoS		F	F	-
Bicycle	Bike Lane (+ Parking Lane) Width		≥ 1.8 m	≥ 1.8 m	
Š	Bike Lane Width LoS	F	A	A	-
l ∺	Bike Lane Blockages	·	Rare	Rare	
	Blockage LoS		A	A	-
	Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge	< 1.8 m refuge	
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes	≤ 3 lanes	
	Sidestreet Operating Speed		>50 to 60 km/h	>50 to 60 km/h	
	Unsignalized Crossing - Lowest LoS		С	С	
	Level of Service		F	F	-
	Facility Type				
# #	Facility Type				
in Si	Friction or Ratio Transit:Posted Speed	_			
Transit	Level of Service				
	Level of Service		•		
	Truck Lane Width		> 3.7 m	> 3.7 m	
<u>3</u>	Travel Lanes per Direction	Δ.	> 1	> 1	
阜	Level of Service	A	Α	Α	-
Truck	Level of Service	Α	Α	Α	

Scenario

Total 2029 Traffic

EXHIBIT 4.3 2029 MMLOS INTERSECTIONS - Albion/Mitch Owens and Stagecoach/Mitch Owens

Multi-Modal Level of Service - Intersections Form Consultant | Project | MacEwen |

Date

Mitch Owens Intersections Comments INTERSECTIONS Albion Road and Mitch Owens Road Stagecoach Road and Mitch Owens Road Lanes No Median - 2.4 m Protected/ Permissive Conflicting Left Turns No left turn / Prohib No left turn / Prohib Permissive or yield Permissive or yield control Permissive or yield control Conflicting Right Turns No right turn No right turn RTOR allowed RTOR allowed RTOR allowed RTOR allowed RTOR allowed RTOR allowed Right Turns on Red (RToR) ? Conv'tl without Receiving Lane Conv'tl without Receiving Lane Conv'tl without Receiving Lane Right Turn Channel No Channel No Channel No Channel Corner Radius 15-25m 15-25m 15-25m 15-25m 15-25m 15-25m Std transverse markings Std transverse Std transverse Std transverse Std transverse Std transverse markings crosswalk Type markings PETSI Score 72 72 Ped. Exposure to Traffic LoS cycle Length 75 75 75 75 75 fective Walk Time 10 10 10 10 10 10 Average Pedestrian Delay 28 28 28 28 Pedestrian Delay LoS C C C C C C Level of Service C C Approach From EAST EAST Sicycle Lane Arrangement on Approach Mixed Traffic Mixed Traffic Mixed Traffic Mixed Traffic Mixed Traffic Mixed Traffic > 50 m > 50 m ≤ 50 m > 50 m ≤ 50 m ≤ 50 m ight Turn Lane Configuration >25 km/h >25 km/h >25 km/f >25 km/h Bicycle Separated or Mixed Traffic Mixed Traffic **Mixed Traff Mixed Traffic** One lane crossed One lane crossed ≥ 60 km/h ≥ 60 km/h ≥ 60 km/h **Left Turning Cyclist** E Level of Service F F Average Signal Delay Level of Service Effective Corner Radius > 15 m Number of Receiving Lanes on Departure rom Intersection Truck C C C C C C Level of Service C C Volume to Capacity Ratio 0.0 - 0.60 0.71 - 0.80 Level of Service A C

EXHIBIT 4.4 2022 EXISTING PEAK AM HOUR ANALYSIS - Site Access/Albion

		ŀ	ICS <u>T</u>	_wo-	Way	Stop	o-Cor	ntrol	Repo	ort									
General Information	_	-	-	-		_			natio		-	-	-	-	-				
Analyst	$\overline{}$						Inters	ection			Site A	Access/A	lbion						
Agency/Co.							-	diction				of Ottawa							
Date Performed	2/16/	2023					-	West Str	eet		-	Albion Access							
Analysis Year	2022						-	n/South			Albion Road								
Time Analyzed	_	AM Hou	ır				-	Hour Fa			0.92		ad						
Intersection Orientation	-	n-South	··				_			(hrs)									
Project Description			vice Cen	tre - Exis	sting AM		Analysis Time Period (hrs) 0.25												
Lanes	- IVIGEZ			tre Exit	,g ,														
Vehicle Volumes and Ad	justme		pound	コムやゴーマー	คา	시 ↓ 기 하 Y Street No	The Court	- A ← A ← A ← A ← A ← A ← A ← A ← A ← A		North	bound			South	ıbound				
• • • • • • • • • • • • • • • • • • • •						_	_							1					
Movement	U	10	11	R 12	U	L 7	T	R 9	10	L 1	T	R	U 4U	L 4	T	R 6			
Priority Number of Lanes	+	0	1	0		0	8	0	0	0	2	3	0	0	5	0			
Configuration	+	"	LR	0		0	"	0	"	LT	1	0	0	"	T	TR			
Volume (veh/h)	+	31	LIN	14						8	648				216	35			
Percent Heavy Vehicles (%)	+	13		7						0	040				210	33			
Proportion Time Blocked	+	13								-						\vdash			
·	+		0																
Percent Grade (%) Right Turn Channelized	+		<u> </u>																
Median Type Storage	+			l las ali	vided														
				Ondi	vided														
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)		7.5		6.9						4.1									
Critical Headway (sec)		7.06		7.04						4.10									
Base Follow-Up Headway (sec)		3.5		3.3						2.2						$oxed{oxed}$			
Follow-Up Headway (sec)		3.63		3.37						2.20									
Delay, Queue Length, an	d Leve	l of S	ervice	!															
Flow Rate, v (veh/h)			49							9									
Capacity, c (veh/h)			328							1302									
v/c Ratio			0.15							0.01									
95% Queue Length, Q ₉₅ (veh)			0.5							0.0									
Control Delay (s/veh)			17.9							7.8	0.1								
Level of Service (LOS)			С							А	А								
Approach Delay (s/veh)		1	7.9							0).2								
Approach LOS	_		С								A								

EXHIBIT 4.5 2022 EXISTING PEAK PM HOUR ANALYSIS - Site Access/Albion

		ŀ	HCS T	-wo-	Way	Stop	-Cor	ntrol	Repo	ort								
General Information	_	_	_	_					natio		_	_	_	_	_	_		
Analyst	Т							ection			Site A	Access/A	lhion					
Agency/Co.								diction			City of Ottawa							
Date Performed	2/16/	2023						West Str	eet		<u> </u>							
Analysis Year	2022	2023					_	n/South			Albion Access Albion Road							
Time Analyzed	_	PM Hou	r				_	Hour Fa			0.92	II Roud						
Intersection Orientation	+	n-South	'				_		Period ((hre)	0.25							
Project Description	-		vice Cen	tro - Evis	ting DM		Allaly	313 111116	renou	(1113)	0.23							
Lanes	IVIGE	wen sei	vice ceri	tie Exis	sting i ivi													
Vehicle Volumes and Ad Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked	justme		T 11 1 LR	R 12 0	រាក	시 ↓ 국 하 Y Street Noi		R 9 0	U 1U 0	North	bound T 2 1	R 3 0	U 4U 0	South L 4 0	1500 und T 5 2 T 528	R 6 0 TR 64		
Percent Grade (%)	+		0															
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)	T	7.5		6.9						4.1								
Critical Headway (sec)		6.94		7.06						4.30								
Base Follow-Up Headway (sec)		3.5		3.3						2.2								
Follow-Up Headway (sec)		3.57		3.38						2.30								
. , ,	d Leve		ervice															
Delay, Queue Length, an					T					11				T				
Delay, Queue Length, an	T		67		1									ı		l		
			67 462							885								
Flow Rate, v (veh/h)										885 0.01								
Flow Rate, v (veh/h) Capacity, c (veh/h)			462							-								
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio			462 0.15							0.01	0.1							
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)			462 0.15 0.5							0.01	0.1 A							
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		1	462 0.15 0.5 14.1							0.01 0.0 9.1 A								

EXHIBIT 4.6 2024 BACKGROUND PEAK AM HOUR ANALYSIS - Site Access/Albion

		ı	ICS T	_wo-	Way	Stop	-Cor	ntrol	Repo	ort										
General Information		_	_	_					natio		_	_	_	_	_					
Analyst								ection			Site A	ccess/A	lbion							
Agency/Co.								diction				City of Ottawa								
Date Performed	2/16/	2023						West Str	eet		Albion Access									
Analysis Year	2024						_	n/South				n Road								
Time Analyzed	-	AM Hou	r					Hour Fa			0.92		toad							
Intersection Orientation	_	n-South					_			(hrs)										
Project Description	MacE	wen Ser	vice Cen	tre - Bac	kground	I AM	Analysis Time Period (hrs) 0.25													
Lanes																				
				14 + A + b c		기 기 수 Y Street No	ተ ት ፖ th-South	744446												
Vehicle Volumes and Adj	ustme	nts																		
Approach		Eastb	ound			West	bound			North	bound			South	bound					
Movement	U	L	Т	R	U	L	Т	R	U	L	T R		U	L	Т	R				
Priority	_	10	11	12		7	8	9	10	1	2	3	4U	4	5	6				
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	2	0				
Configuration	_		LR							LT					Т	TR				
Volume (veh/h)		37		17						9	715				237	42				
Percent Heavy Vehicles (%)		13		7						0										
Proportion Time Blocked	-																			
Percent Grade (%)		-	0																	
Right Turn Channelized																				
Median Type Storage				Undi	vided															
Critical and Follow-up He	adwa	ys																		
Base Critical Headway (sec)		7.5		6.9						4.1										
Critical Headway (sec)		7.06		7.04						4.10										
Base Follow-Up Headway (sec)		3.5		3.3						2.2						$oxed{oxed}$				
Follow-Up Headway (sec)		3.63		3.37						2.20										
Delay, Queue Length, and	d Leve	l of S	ervice																	
Flow Rate, v (veh/h)			59							10										
Capacity, c (veh/h)			282							1269										
v/c Ratio			0.21							0.01										
95% Queue Length, Q ₉₅ (veh)			0.8							0.0										
Control Delay (s/veh)			21.1							7.9	0.1									
Level of Service (LOS)			С							А	А									
Approach Delay (s/veh)		2:	l.1							0	.2									
Approach LOS		(С				A													

EXHIBIT 4.7 2024 BACKGROUND PEAK PM HOUR ANALYSIS - Site Access/Albion

		ŀ	ICS <u>T</u>	_ 	Way	Stop	o-Cor	ntrol	Repo	ort _								
General Information		-	-	-		_			natio		-	-	-	-	-	-		
Analyst								ection			Site A	Access/A	lhion					
Agency/Co.							_	diction			Site Access/Albion City of Ottawa							
Date Performed	2/16/	2023					_	West Str	eet		-	n Access						
Analysis Year	2024	2023					-	n/South			-		•					
Time Analyzed	_	PM Hou	-				-	Hour Fa			Albion Road 0.92							
Intersection Orientation	+	n-South	'				_		Period ((bre)								
Project Description			vice Cen	tro Pos	karouna	I DM	Allaly	isis Tillie	renou	(1113)	0.25							
	IVIACE	well sei	vice ceri	пе - вас	kground	I PIVI												
Lanes																		
				14 47 4 FC		ጎ ተ ተ Street No		4 + 4 4 4 5										
Vehicle Volumes and Ad	justme	nts																
Approach		Eastk	ound			West	bound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	2	0		
Configuration			LR							LT					Т	TR		
Volume (veh/h)		33		41						12	379				580	77		
Percent Heavy Vehicles (%)		7		8						10								
Proportion Time Blocked																		
Percent Grade (%)			0															
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)	\top	7.5		6.9						4.1								
Critical Headway (sec)		6.94		7.06						4.30								
Base Follow-Up Headway (sec)		3.5		3.3						2.2								
Follow-Up Headway (sec)		3.57		3.38						2.30								
Delay, Queue Length, an	d Leve	l of S	ervice															
Flow Rate, v (veh/h)			80							13								
Capacity, c (veh/h)			401							831								
v/c Ratio			0.20							0.02								
95% Queue Length, Q ₉₅ (veh)			0.7							0.0								
Control Delay (s/veh)			16.2							9.4	0.2							
Level of Service (LOS)			С							А	А							
Approach Delay (s/veh)			5.2							C).5							
Approach LOS			С								A							

EXHIBIT 4.8
2029 BACKGROUND PEAK AM HOUR ANALYSIS - Site Access/Albion

HCS Two-Way Stop-Control Report **General Information Site Information** Analyst Site Access/Albion Intersection City of Ottawa Agency/Co. Jurisdiction Date Performed 2/16/2023 East/West Street Albion Access Analysis Year 2029 North/South Street Albion Road Peak Hour Factor Time Analyzed Peak AM Hour Intersection Orientation North-South Analysis Time Period (hrs) 0.25 Project Description MacEwen Service Centre - Background AM Lanes <u>ገኝ ተ</u>ΥΨ ዮ ፫ ቡ 1 4 4 Y 1 7 C **Vehicle Volumes and Adjustments** Approach Eastbound Northbound Southbound Movement U L R U L Т R U L R U L R Priority 10 11 12 7 8 9 1U 1 2 3 4U 4 6 Number of Lanes 0 0 2 0 1 0 0 0 0 1 0 0 0 0 Configuration LR LT Т TR Volume (veh/h) 41 19 10 789 46 13 7 Percent Heavy Vehicles (%) 0 Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type | Storage Undivided Critical and Follow-up Headways 6.9 Base Critical Headway (sec) 7.5 4.1 Critical Headway (sec) 7.06 7.04 4.10 Base Follow-Up Headway (sec) 3.5 3.3 22 3.63 3.37 2.20 Follow-Up Headway (sec) Delay, Queue Length, and Level of Service Flow Rate, v (veh/h) 11 237 Capacity, c (veh/h) 1237 v/c Ratio 0.27 0.01 95% Queue Length, Q95 (veh) 1.1 0.0 25.8 Control Delay (s/veh) 7.9 0.1 Level of Service (LOS) D Α Α Approach Delay (s/veh) 25.8 0.2 Approach LOS Α

EXHIBIT 4.9 2029 BACKGROUND PEAK PM HOUR ANALYSIS - Site Access/Albion

		ŀ	ICS I		Wav	Stor	-Car	ntrol	Repo	ort_									
General Information	-			•••	vvay				matio		-	-	-	-	-	-			
Analyst	_							ection			Site A	rcess/A	lhion						
Agency/Co.							-	diction			Site Access/Albion City of Ottawa								
Date Performed	2/16/	2023						West Str	eet		<u> </u>								
Analysis Year	2029	2023						n/South			Albion Access Albion Road								
Time Analyzed	_	PM Hou	r				_	Hour Fa			0.92								
Intersection Orientation	_	n-South	'				_			(hrs)									
Project Description			vice Cen	tre - Bac	kground	I DM	Analysis Time Period (hrs) 0.25												
Lanes	IVIACE	wen ser	vice ceri	tre bac	kground	1 1 101													
Vehicle Volumes and Ad	justme	ents		14 4 4 4 C	ลา	1 PY	ት ቤ ሆ	2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4											
Approach	Т	Eastb	ound			West	bound			North	bound	bound							
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6			
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	2	0			
Configuration			LR							LT					Т	TR			
Volume (veh/h)		36		45						13	418				641	85			
Percent Heavy Vehicles (%)		7		8						10									
Proportion Time Blocked																			
Percent Grade (%)			0																
Right Turn Channelized																			
Median Type Storage	1			Undi	ivided														
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)	\top	7.5		6.9						4.1									
Critical Headway (sec)		6.94		7.06						4.30									
Base Follow-Up Headway (sec)		3.5		3.3						2.2									
Follow-Up Headway (sec)		3.57		3.38						2.30									
Delay, Queue Length, an	d Leve	l of S	ervice																
Flow Rate, v (veh/h)	T		88		Π					14						Π			
Capacity, c (veh/h)			341							776									
v/c Ratio			0.26							0.02									
95% Queue Length, Q ₉₅ (veh)			1.0							0.1									
Control Delay (s/veh)			19.2							9.7	0.2								
	-				_			_	_	_	_								
Level of Service (LOS)			C							A	A								
Level of Service (LOS) Approach Delay (s/veh)		19	9.2).5								

EXHIBIT 4.10 2024 TOTAL PEAK AM HOUR ANALYSIS - Site Access/Albion

		ŀ	ICS T	_wo-	Way	Stop	o-C <u>o</u> r	ntrol	Repo	ort								
General Information	_	-	-	-		_			natio		-	-	-	-	-			
Analyst	Т							ection			Site A	Access/A	lbion					
Agency/Co.	+						_	diction			City of Ottawa							
Date Performed	2/16/	2023					_	West Str	eet		· ·							
Analysis Year	2024	2023					-	n/South			Albion Access							
Time Analyzed	+	AM Hou	ır				-	Hour Fa			Albion Road 0.92							
Intersection Orientation	+	n-South	"				_			(hre)								
Project Description	_		vice Cen	tre - Tot	AAA le		Analysis Time Period (hrs) 0.25											
Lanes	IVIGEE	wen sei	vice ceri	tie Tot	ai Aivi													
Vehicle Volumes and Ad Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked	justme		oound T 11 1 LR	R 12 0 25 7	ากา	시 ↓ 키 하 Y Street No		R 9 0	U 1U 0	North	bound	R 3 0	U 4U 0	South L 4	bound T 5 2 T 232	R 6 0 TR 55		
Percent Grade (%)	+		0															
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	vs		ondi	racu													
Base Critical Headway (sec)	T	7.5		6.9						4.1								
Critical Headway (sec)		7.06		7.04						4.10								
Base Follow-Up Headway (sec)		3.5		3.3						2.2								
Follow-Up Headway (sec)		3.63		3.37						2.20								
Delay, Queue Length, an	d Love		orvice							2.20								
	Leve	1 01 3	_				I		I	1.4	1				I			
Flow Rate, v (veh/h)	+		92							14								
Capacity, c (veh/h)			274							1260								
v/c Ratio			0.34							0.01								
95% Queue Length, Q ₉₅ (veh)			1.4							0.0								
Control Delay (s/veh)	-		24.7							7.9	0.2							
Level of Service (LOS)			С							A	A							
Approach Delay (s/veh)			4.7								.3							
Approach LOS			С								A							

EXHIBIT 4.11 2024 TOTAL PEAK PM HOUR ANALYSIS - Site Access/Albion

			1C3 I	WO-	vvay	Stop	-Cor	ntrol	кер	ort _						
General Information							Site	Inforr	natio	n						
Analyst	Т						Inters	ection			Site A	Access/A	lbion			
Agency/Co.							Jurisc	liction			City c	of Ottawa	а			
Date Performed	2/16/	2023					East/	West Str	eet		Albio	n Access	;			
Analysis Year	2024						North	/South	Street		Albio	n Road				
Time Analyzed	Peak I	PM Hou	r				Peak	Hour Fa	ctor		0.92					
Intersection Orientation	North	-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	MacE	wen Sen	vice Cen	tre - Tota	al PM											
Lanes																
Walt II. Walt				14 + 14 + 1		기 기 수 Y r Street: Nor		7 + 4 4 7								
Vehicle Volumes and Adj	justme															
Approach			ound				bound			_	bound				bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	2	0
Configuration			LR							LT					Т	TR
Volume (veh/h)		43		55						15	373				568	98
Percent Heavy Vehicles (%)		7		8						10						
Proportion Time Blocked	-															
Percent Grade (%)	-)													
Right Turn Channelized	-															
Median Type Storage				Undi	vided				<u> </u>							
Critical and Follow-up Ho	eadway	/S														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.94		7.06						4.30						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.57		3.38						2.30						
Delay, Queue Length, an	d Leve	of S	ervice													
Flow Rate, v (veh/h)			107							16						
Capacity, c (veh/h)			405							823						
v/c Ratio			0.26							0.02						
95% Queue Length, Q ₉₅ (veh)			1.0							0.1						
Control Delay (s/veh)			17.0							9.5	0.2					
Level of Service (LOS)			С							А	А					
Approach Delay (s/veh)		17	7.0							0	.6					

EXHIBIT 4.12 2029 TOTAL PEAK AM HOUR ANALYSIS - Site Access/Albion

		ŀ	ICS <u>T</u>	_wo-	Way	Stop	o-Cor	ntrol	Repo	ort						
General Information	_	_	_	_		_			natio		_	_	_	_	_	_
Analyst	Т							ection			Site A	ccess/A	lhion			
Agency/Co.								diction				of Ottawa				
Date Performed	2/16/	2023						West Str	eet			n Access				
Analysis Year	2029						_	n/South			_	n Road				
Time Analyzed	+	AM Hou	r				-	Hour Fa			0.92					
Intersection Orientation	_	n-South	-						Period	(hrs)	0.25					
Project Description	MacE	wen Ser	vice Cen	tre - Tot	al AM					,						
Lanes																
				14474		1 1 4 Y Street No		744747								
Vehicle Volumes and Adj	ustme	ents														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes	_	0	1	0		0	0	0	0	0	1	0	0	0	2	0
Configuration			LR							LT					Т	TR
Volume (veh/h)		64		27						14	775				256	59
Percent Heavy Vehicles (%)	_	13		7						0						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized	-															
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		7.06		7.04						4.10						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.63		3.37						2.20						
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)			99							15						
Capacity, c (veh/h)			231							1228						
v/c Ratio			0.43							0.01						
95% Queue Length, Q ₉₅ (veh)			2.0							0.0						
Control Delay (s/veh)			31.8							8.0	0.2					
Level of Service (LOS)			D							А	А					
Approach Delay (s/veh)		3:	L.8							0	0.3					
Approach LOS		I)								A					

EXHIBIT 4.13 2029 TOTAL PEAK PM HOUR ANALYSIS - Site Access/Albion

		ŀ	ICS T	-wo-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Infor	natio	n						
Analyst	Т						Inters	ection			Site A	Access/A	lbion			
Agency/Co.							Jurisc	diction			City o	of Ottaw	a			
Date Performed	2/16/	2023					East/	West Str	eet		Albio	n Access	5			
Analysis Year	2029						North	n/South	Street		Albio	n Road				
Time Analyzed	Peak	PM Hou	r				Peak	Hour Fa	ctor		0.92					
Intersection Orientation	North	n-South					Analy	sis Time	Period	(hrs)	0.25					
Project Description	MacE	wen Ser	vice Cent	tre - Tot	al PM					` '						
Lanes																
				74 * Y + C		시 ↓ 작 약 Y Street No		7 4 4 4 4 C								
Vehicle Volumes and Adj	justme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	2	0
Configuration			LR							LT					Т	TR
Volume (veh/h)		46		59						16	412				629	106
Percent Heavy Vehicles (%)		7		8						10						
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.94		7.06						4.30						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.57		3.38						2.30						
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)			114							17						
Capacity, c (veh/h)			344							770						
v/c Ratio			0.33							0.02						
95% Queue Length, Q ₉₅ (veh)			1.4							0.1						
Control Delay (s/veh)			20.6							9.8	0.3					
Level of Service (LOS)			С							A	A					
Approach Delay (s/veh)		20	0.6								0.6					
Approach LOS			C								A					
Approach LOS Copyright © 2023 University of Florida	All Dist				LIC	CT1 T1 1/C	C Version	2022			A			1.000	/2023 2:0	

EXHIBIT 4.14 2022 EXISTING PEAK AM HOUR ANALYSIS - Site Access/Mitch Owens

HCS Two-Way Stop-Control Report **General Information Site Information** Analyst Site Access/Mitch Owens Intersection Agency/Co. Jurisdiction City of Ottawa Date Performed 2/16/2023 East/West Street Mitch Owens Road Analysis Year 2022 North/South Street Mitch Owens Access Peak Hour Factor Time Analyzed Peak AM Hour Intersection Orientation East-West Analysis Time Period (hrs) 0.25 Project Description MacEwen Service Centre - Existing AM Lanes ገኝተዅዅነየ ጎ ቁ ተ የ ተ ሶ ሶ **Vehicle Volumes and Adjustments** Southbound Approach Eastbound Westbound Northbound Movement U L R U L Т R U L R U L R Priority 1U 1 2 3 4U 4 5 6 7 8 9 10 11 12 Number of Lanes 0 2 0 0 1 0 0 0 0 1 0 0 0 0 Configuration ΙT TR LR Т Volume (veh/h) 36 726 557 9 4 41 15 Percent Heavy Vehicles (%) 10 Proportion Time Blocked Percent Grade (%) 0 Right Turn Channelized Median Type | Storage Undivided Critical and Follow-up Headways 6.2 Base Critical Headway (sec) 4.1 7.5 4.20 Critical Headway (sec) 7.10 6.40 Base Follow-Up Headway (sec) 2.2 3.5 3.3 2.25 3.65 3.40 Follow-Up Headway (sec) Delay, Queue Length, and Level of Service Flow Rate, v (veh/h) 940 514 Capacity, c (veh/h) v/c Ratio 0.04 0.10 95% Queue Length, Q95 (veh) 0.1 0.3 12.7 Control Delay (s/veh) 9.0 0.4 Level of Service (LOS) Α В Α Approach Delay (s/veh) 0.8 12.7 Approach LOS Α В

EXHIBIT 4.15 2022 EXISTING PEAK PM HOUR ANALYSIS - Site Access/Mitch Owens

			ICS I	_wo-	Wav	Stor	-Cor	ntrol	Repo	ort						
General Information	-					7,00		Inforr			-	-	-	-	-	-
Analyst	_							ection			Site 4	Access/N	1itch Ow	ens		
Agency/Co.								liction			-	of Ottawa		CIIS		
Date Performed	2/16/	2023						West Str	eet		<u> </u>	Owens				
Analysis Year	2022						_	/South !			-	Owens				
Time Analyzed	_	PM Hou					_	Hour Fac			0.92		7100033			
Intersection Orientation	East-		·					sis Time		(hrs)	0.25					
Project Description	_	wen Sen	vice Cen	tre - Exis	tina PM		7	0.0		()	0.20					
Lanes	1															
				U → + X → + C	ै। Majo	サ ゲ Or Street: Ea	F F	4 + 4 4 4 4 4								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	1	0		0	0	0		0	1	0
Configuration	-	LT	T					TR						_	LR	
Volume (veh/h)	+	38	623				914	31						5		71
Percent Heavy Vehicles (%)	+	10												5		5
Proportion Time Blocked Percent Grade (%)	+														0	
(-,															U	
Right Turn Channelized Median Type Storage	+			l locali	vided											
7				Ondi	vided											
Critical and Follow-up H	eadwa	1														
Base Critical Headway (sec)	+	4.1									-			7.5		6.2
Critical Headway (sec)	+	4.30									-			6.90		6.30
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.30												3.55		3.35
Delay, Queue Length, an	d Leve	of S	ervice													
Flow Rate, v (veh/h)	1	41													83	
Capacity, c (veh/h)		626													302	
v/c Ratio		0.07													0.27	
95% Queue Length, Q ₉₅ (veh)		0.2													1.1	
Control Delay (s/veh)		11.2	0.8												21.3	
Level of Service (LOS)		В	. A												С	
Approach Delay (s/veh)			.4												1.3	
Approach LOS		,	4												С	

EXHIBIT 4.16 2024 BACKGROUND PEAK AM HOUR ANALYSIS - Site Access/Mitch Owens

			ICS I		Wav	Stor	-Cor	ntrol	Repo	ort_						
General Information	-					7,00		Inforr			-	-	-	-	-	
Analyst	_							ection			Site 4	Access/N	1itch Ow	ens		
Agency/Co.								liction			-	of Ottawa		CIIS		
Date Performed	2/16/	2023						West Str	eet		<u> </u>	Owens				
Analysis Year	2024						_	/South !			-	Owens				
Time Analyzed	_	AM Hou	r					Hour Fac			0.92		7100033			
Intersection Orientation	East-						_	sis Time		hrs)	0.25					
Project Description	_	wen Sen	vice Cen	tre - Bac	karounc	I AM	7	0.0		,	0.20					
Lanes	1				<u></u>											
					ት ዛ Maj	中	† † Č ist-West	4 1 4 4 4 7 1								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	1	0		0	0	0		0	1	0
Configuration	-	LT	Т					TR						_	LR	
Volume (veh/h)	-	43	801				615	10						5		49
Percent Heavy Vehicles (%)	-	5												15		10
Proportion Time Blocked	+															
Percent Grade (%)	-														0	
Right Turn Channelized	+			U lan all'	vided											
Median Type Storage	<u> </u>			Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	_	4.1									_			7.5		6.2
Critical Headway (sec)	+	4.20									-			7.10		6.40
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.25												3.65		3.40
Delay, Queue Length, an	d Leve	_	ervice													
Flow Rate, v (veh/h)		47									_				59	
Capacity, c (veh/h)		889													472	
v/c Ratio		0.05													0.12	
95% Queue Length, Q ₉₅ (veh)		0.2													0.4	
Control Delay (s/veh)	1	9.3	0.6												13.7	
Level of Service (LOS)		A	A												В	
Approach Delay (s/veh)	_		.0												3.7	
Approach LOS		,	4												В	

EXHIBIT 4.17 2024 BACKGROUND PEAK PM HOUR ANALYSIS - Site Access/Mitch Owens

			1CS 1	WO-	Way	Stop)-Cor	ntrol	Керс	ort						
General Information							Site	Inforr	natio	n						
Analyst	Т						Inters	ection			Site A	ccess/M	itch Ow	ens		
Agency/Co.							Jurisd	iction			City c	of Ottawa	a			
Date Performed	2/16/	2023					East/\	West Str	eet		Mitch	Owens	Road			
Analysis Year	2024						North	/South :	Street		Mitch	Owens	Access			
Time Analyzed	Peak	PM Hou	r				Peak	Hour Fac	ctor		0.92					
Intersection Orientation	East-\	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	MacE	wen Ser	vice Cen	tre - Bac	kground	I PM										
Lanes																
Vakiala Vakuussa sus Ja V				A	↑ ↑ Majo	수 Y :	ተ ት ፫ ist-West	4 +								
Vehicle Volumes and Adj	ustme															
Approach		_	ound	_		_	bound	_		_	bound	_			bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT	T				1007	TR						-	LR	0.5
Volume (veh/h)	-	46	687				1007	37						6		85
Percent Heavy Vehicles (%)	-	10												5		5
Proportion Time Blocked	-															
Percent Grade (%)															0	
Right Turn Channelized	-															
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.2
Critical Headway (sec)		4.30												6.90		6.30
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.30												3.55		3.35
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т	50													99	
Capacity, c (veh/h)		567													262	
v/c Ratio		0.09													0.38	
95% Queue Length, Q ₉₅ (veh)		0.3													1.7	
Control Delay (s/veh)		12.0	1.2												26.8	
Level of Service (LOS)		В	А												D	
Approach Delay (s/veh)		1	.8											26	5.8	
Approach Belay (5) veri																

EXHIBIT 4.18 2029 BACKGROUND PEAK AM HOUR ANALYSIS - Site Access/Mitch Owens

			1C2 I	WO-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforn	natio	n						
Analyst	Т						Inters	ection			Site A	Access/M	litch Ow	ens		
Agency/Co.							Jurisd	liction			City o	of Ottawa	3			
Date Performed	2/16/	2023					East/\	Nest Str	eet		Mitch	Owens	Road			
Analysis Year	2029						North	/South S	Street		Mitch	Owens	Access			
Time Analyzed	Peak	AM Hou	r				Peak	Hour Fac	ctor		0.92					
Intersection Orientation	East-\	West					Analy	sis Time	Period (hrs)	0.25					
Project Description	MacE	wen Sen	vice Cen	tre - Bac	kground	I AM										
Lanes																
Vohislo Volumes and 4.4		unte.		0) 4 + Y → Y ∩	了 寸 Majo	후 Y or Street: Ea	トレイ ist-West	4 + 4 + C 0								
Vehicle Volumes and Adj	ustme															
Approach			ound	_		_	bound	_		_	bound	l -			bound	_
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT 47	T				670	TR						-	LR	- 54
Volume (veh/h)	-	47	883				679	11						6		54
Percent Heavy Vehicles (%)	-	5												15		10
Proportion Time Blocked	-															
Percent Grade (%)															0	
Right Turn Channelized	-															
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.2
Critical Headway (sec)		4.20												7.10		6.40
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.25												3.65		3.40
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		51													65	
Capacity, c (veh/h)		835													430	
v/c Ratio		0.06													0.15	
95% Queue Length, Q ₉₅ (veh)		0.2													0.5	
Control Delay (s/veh)		9.6	0.7												14.9	
Level of Service (LOS)		А	А												В	
		1	.2											1.	1.9	
Approach Delay (s/veh)	1								l					T.	+.9	

EXHIBIT 4.19 2029 BACKGROUND PEAK PM HOUR ANALYSIS - Site Access/Mitch Owens

		H	ICS T	آwo-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Infor	matio	n						
Analyst	$\overline{}$						Inters	ection			Site A	Access/N	litch Ow	ens		
Agency/Co.							Juriso	liction			City	of Ottaw	a			
Date Performed	2/16/	2023					East/\	West Str	eet		<u> </u>	Owens				
Analysis Year	2029						North	/South	Street		Mitch	Owens	Access			
Time Analyzed	Peak	PM Hou	r				Peak	Hour Fa	ctor		0.92					
Intersection Orientation	East-	West					Analy	sis Time	Period	(hrs)	0.25					
Project Description	MacE	wen Ser	vice Cen	tre - Bac	kground	ł PM										
Lanes																
				0 1 4 4 Y 1 7 C		하 약 or Street: Ea		↑ ↑ ↑ ↑ U								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT	Т					TR							LR	
Volume (veh/h)		51	758				1112	41						7		94
Percent Heavy Vehicles (%)	\perp	10												5		5
Proportion Time Blocked																
Percent Grade (%)	\perp														0	
Right Turn Channelized																
Median Type Storage				Undi	ivided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.2
Critical Headway (sec)		4.30												6.90		6.30
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.30												3.55		3.35
	d Leve	l of S	ervice	•												
Delay, Queue Length, an	$\overline{}$	55			Π	Π	Π		Π	Π	Т	Π	Π	Π	110	
Flow Rate, v (veh/h)				_											224	
		509														
Flow Rate, v (veh/h)		509 0.11													0.49	
Flow Rate, v (veh/h) Capacity, c (veh/h)		-													0.49 2.5	
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		0.11	1.6													
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)		0.11	1.6 A												2.5	
Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh) Control Delay (s/veh)		0.11 0.4 12.9 B	_											3:	2.5 35.6	

EXHIBIT 4.20 2024 TOTAL PEAK AM HOUR ANALYSIS - Site Access/Mitch Owens

		ŀ	ICS T	wo-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Inforr	natio	n						
Analyst	Т						Inters	ection			Site A	ccess/M	litch Ow	ens		
Agency/Co.							Jurisc	diction			City o	of Ottawa	3			
Date Performed	2/16/	2023					East/\	West Str	eet		Mitch	Owens	Road			
Analysis Year	2024						North	n/South :	Street		Mitch	Owens	Access			
Time Analyzed	Peak	AM Hou	r				Peak	Hour Fa	ctor		0.92					
Intersection Orientation	East-	West					Analy	sis Time	Period	hrs)	0.25					
Project Description	MacE	wen Sen	vice Cen	tre - Tot	al AM											
Lanes																
Vehicle Volumes and Ad	iustme	ents		1) 4 4 Y 1 P C		한 각 or Street: Ea		7 * * * T 0								
			ound			\A/+	bound			NI	bound			C4b	bound	
Approach Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9	-	10	11	12
Number of Lanes	0	0	2	0	0	0	1	0		0	0	0		0	1	0
Configuration	+ -	LT	T	0	-		_	TR		-					LR	-
Volume (veh/h)		68	787				603	25						8	LIX	72
Percent Heavy Vehicles (%)	+	5	707				003	23						15		10
Proportion Time Blocked		,												13		10
Percent Grade (%)	+														0	
Right Turn Channelized	+															
Median Type Storage	+			Undi	vided											
Critical and Follow-up H	eadwa	vs		Ondi	vided											
Base Critical Headway (sec)	T	4.1												7.5	П	6.2
Critical Headway (sec)	+	4.20												7.10		6.40
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.25												3.65		3.40
	d Lave		ow.i.e.											3.03		3.40
Delay, Queue Length, an	u Leve	_	ervice													
Flow Rate, v (veh/h)		74													87	
Capacity, c (veh/h)		886													476	
v/c Ratio	-	0.08													0.18	
95% Queue Length, Q ₉₅ (veh)		0.3	2.5												0.7	
Control Delay (s/veh)		9.4	0.9												14.3	
Level of Service (LOS)		A	A												В	
Approach Delay (s/veh)			.6												4.3	
Approach LOS	a All Bigh		4				CVarrio								/2022 2:E	

EXHIBIT 4.21 2024 TOTAL PEAK PM HOUR ANALYSIS - Site Access/Mitch Owens

		H	ICS T	wo-	Way	Stop	-Cor	ntrol	Repo	ort						
General Information							Site	Infor	natio	n						
Analyst	Т						Inters	ection			Site A	Access/N	1itch Ow	ens		
Agency/Co.							Juriso	diction			City	of Ottaw	a			
Date Performed	2/16/	2023					East/	West Str	eet		Mitch	n Owens	Road			
Analysis Year	2024						North	n/South	Street		Mitch	n Owens	Access			
Time Analyzed	Peak	PM Hou	r				Peak	Hour Fa	ctor		0.92					
Intersection Orientation	East-	West					Analy	sis Time	Period ((hrs)	0.25					
Project Description	MacE	wen Ser	vice Cen	tre - Tot	al PM											
Lanes																
				9 7 4 4 7 1 7 C		화 약 or Street: Ea	ተ ኮ ፫ ast-West	7 4 4 4 4 4								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	1	0		0	0	0		0	1	0
Configuration	-	LT	T					TR							LR	
Volume (veh/h)	+	66	675				988	56			-			11		119
Percent Heavy Vehicles (%)	+	10												5		5
Proportion Time Blocked	+															
Percent Grade (%)	+														0	
Right Turn Channelized	+															
Median Type Storage				Unai	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.2
Critical Headway (sec)		4.30												6.90		6.30
Base Follow-Up Headway (sec)	_	2.2												3.5		3.3
Follow-Up Headway (sec)		2.30												3.55		3.35
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		72													141	
Capacity, c (veh/h)		567													270	
v/c Ratio		0.13													0.52	
95% Queue Length, Q ₉₅ (veh)		0.4													2.8	
Control Delay (s/veh)		12.3	1.6												32.2	
Level of Service (LOS)		В	А												D	
Approach Delay (s/veh)			.6												2.2	
Approach LOS			A												D	

EXHIBIT 4.22 2029 TOTAL PEAK AM HOUR ANALYSIS - Site Access/Mitch Owens

			ICS I	_wo-	Wav	Stor	-Cor	ntrol	Repo	ort_						
General Information	-					7,00		Inforr			-	-	-	-	-	
Analyst	_							ection			Site 4	Access/N	1itch Ow	ens		
Agency/Co.								liction				of Ottawa		CIIS		
Date Performed	2/16/	2023						West Str	eet		<u> </u>	Owens				
Analysis Year	2029						_	/South !			-	Owens				
Time Analyzed	_	AM Hou	r				_	Hour Fac			0.92		7100033			
Intersection Orientation	East-		·					sis Time		(hrs)	0.25					
Project Description	+	wen Sen	vice Cen	tre - Tot	al AM		7	0.0		()	0.20					
Lanes	1															
				0 1 4 4 X 4 L C	기 박 Maje	サ ず or Street: Ea	1 F	4 + A 4 + C 0								
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	1	0		0	0	0		0	1	0
Configuration	-	LT	T					TR							LR	
Volume (veh/h)	-	72	869				667	26			-			9		77
Percent Heavy Vehicles (%)	-	5												15		10
Proportion Time Blocked	+															
Percent Grade (%)	-														0	
Right Turn Channelized	+			L Inc. all	vided											
Median Type Storage	<u> </u>			Unai	viaea											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	_	4.1									_			7.5		6.2
Critical Headway (sec)	+	4.20									-			7.10		6.40
Base Follow-Up Headway (sec)	_	2.2									_			3.5		3.3
Follow-Up Headway (sec)		2.25												3.65		3.40
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		78													93	
Capacity, c (veh/h)		833													430	
v/c Ratio		0.09													0.22	
95% Queue Length, Q ₉₅ (veh)		0.3													0.8	
Control Delay (s/veh)	1	9.8	1.1												15.7	
Level of Service (LOS)		A	A												С	
Approach Delay (s/veh)	_		.7												5.7	
Approach LOS		,	4												С	

EXHIBIT 4.23
2029 TOTAL PEAK PM HOUR ANALYSIS - Site Access/Mitch Owens

HCS Two-Way Stop-Control Report **General Information Site Information** Analyst Site Access/Mitch Owens Intersection Agency/Co. Jurisdiction City of Ottawa Date Performed 2/16/2023 East/West Street Mitch Owens Road Analysis Year 2029 North/South Street Mitch Owens Access Peak Hour Factor Time Analyzed Peak PM Hour Intersection Orientation Analysis Time Period (hrs) East-West 0.25 Project Description MacEwen Service Centre - Total PM Lanes ገኝተዅዅነየ ጎ ቁ ተ የ ተ ሶ ሶ **Vehicle Volumes and Adjustments** Southbound Approach Eastbound Westbound Northbound Movement U L R U L Т R U L R U L R Priority 1U 1 2 3 4U 4 5 6 7 8 9 10 11 12 Number of Lanes 0 2 0 0 1 0 0 0 0 1 0 0 0 0 Configuration ΙT TR LR Т Volume (veh/h) 71 746 1093 12 128 5 Percent Heavy Vehicles (%) 10 5 Proportion Time Blocked Percent Grade (%) 0 Right Turn Channelized Median Type | Storage Undivided Critical and Follow-up Headways 6.2 Base Critical Headway (sec) 4.1 7.5 4.30 Critical Headway (sec) 6.90 6.30 Base Follow-Up Headway (sec) 2.2 3.5 3.3 2.30 3.55 3.35 Follow-Up Headway (sec) Delay, Queue Length, and Level of Service Flow Rate, v (veh/h) 152 509 229 Capacity, c (veh/h) v/c Ratio 0.15 0.66 95% Queue Length, Q95 (veh) 0.5 4.1 47.2 Control Delay (s/veh) 13.3 2.2 Level of Service (LOS) Α Ε В Approach Delay (s/veh) 3.2 47.2 Approach LOS Α Ε

EXHIBIT 4.24 2019 EXISTING PEAK AM HOUR ANALYSIS - Albion/Mitch Owens

		нс	S Sigr	nalize	d Inte	rsect	ion R	esul	ts Sun	ımary	•				
General Inform	nation								Intersec	lian Inf			U	414	II KI U
	nauon										_			JĻ	
Agency				A l	i- D-4-	E-1-4	7 0000		Duration		0.250		-		
Analyst		City of Ottown				-	7, 2023	$\overline{}$	Area Typ	e	Other				
Jurisdiction		City of Ottawa		-	Period		AM Hou	_	PHF	Dariad	0.92	20	- X		•
Urban Street		5546 Albion Road		-	sis Year	_	er 16, 2	_	Analysis	Perioa	1> 7:0	JU	5		
Intersection	4!	Albion/Mitch Owen		File N		2019_	_ex_am.	xus					-	বাকিং	2 10 2
Project Descrip	tion	MacEwen Service	Centre -	EXISTIN	g Alvi									(1) (1) (1)	LIBERT .
Demand Infor	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	T	- R	L	T	R	L	Т	R
Demand (v), v	/eh/h			422	308		\perp	44	1 234				105		125
Signal Informa	ation		_			-		_							
Cycle, s	100.0	Reference Phase	2	1	13	<u> </u>	16 7	el .					A		\triangle
Offset, s	0	Reference Point	Begin		1	1	1	4_		ļ.,		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	Off	Green		58.1	10.3	0.0		0.0		, l	4		
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	4.6	3.3	0.0		0.0		5	6	7	
T OTOC INIOGC	Tixed	Cimat. Sup 14/6	Oll	Ttou	12.0		1.0	10.0	7 10.0	0.0					
Timer Results				EB	L	EBT	WB	L	WBT	NBI	-	NBT	SBL		SBT
Assigned Phas	е			5		2			6						4
Case Number						4.0			7.3						9.0
Phase Duration	se Duration, s				7	84.6			64.9						15.4
Change Period	ge Period, (Y+R c), s			6.6		6.8			6.8						5.1
Max Allow Hea	dway (/	<i>MAH</i>), s		3.0		0.0			0.0						3.2
Queue Clearan	ice Time	e (g s), s		12.3	3										9.8
Green Extension	n Time	(ge), s		0.8		0.0			0.0						0.4
Phase Call Pro	bability			1.00											1.00
Max Out Proba	bility			0.00		_		_			_	_		_	0.00
Movement Gro	oup Res	sults			EB	_		WE	3		NB	_		SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2			6	16				7		14
Adjusted Flow	Rate (v), veh/h		459	335			479	203				114		114
Adjusted Satura	ation Flo	ow Rate (s), veh/h/	ln	1647	1702			166	0 1573				1507		1407
Queue Service	Time (g s), S		10.3	3.6			16.6	6.1				7.3		7.8
Cycle Queue C	learanc	e Time (<i>g c</i>), s		10.3	3.6			16.6	6.1				7.3		7.8
Green Ratio (g	7/C)			0.73	0.85			0.59	0.59				0.11		0.11
Capacity (c),	/eh/h			684	1453			980	929				170		159
Volume-to-Cap	acity Ra	ntio (X)		0.671	0.230			0.48	9 0.219				0.671		0.718
Back of Queue	(Q), r	n/In (50 th percentil	e)	18.9	2.1			46	15.6				23.4		24.5
Back of Queue	(Q), v	eh/ln (50 th percent	ile)	2.4	0.3			5.6	1.9				2.7		2.8
Queue Storage	Ratio (RQ) (50 th percen	tile)	0.07	0.00			0.09	0.10				0.17		0.05
Uniform Delay	(d 1), s	/veh		7.8	1.9			11.8	9.6				42.6		42.8
Incremental De	cremental Delay (d 2), s/veh				0.4			1.7	0.5				1.7		2.3
Initial Queue D	itial Queue Delay (d ȝ), s/veh				0.0			0.0	0.0				0.0		0.0
Control Delay (ontrol Delay (d), s/veh				2.3			13.5	5 10.2				44.3		45.1
evel of Service (LOS)				А	Α			В	В				D		D
Approach Delay, s/veh / LOS				5.7		Α	12.5	5	В	0.0			44.7		D
Intersection De				13	3.7						В				
Multimadal Da					ED) A /F)		NID			ep.	
	ultimodal Results edestrian LOS Score / LOS				EB	В	2.19	WE	В	2.02	NB	В	1.94	SB	- D
				1.76	-		_	-		_	$\overline{}$		1.94		В
Bicycle LOS So	ore / LC	75		1.80	,	В	1.62	<u> </u>	В	0.00	,	Α			F

EXHIBIT 4.25 2019 EXISTING PEAK PM HOUR ANALYSIS - Albion/Mitch Owens

		нся	S Sigr	nalize	d Inte	ersect	ion R	esul	ts Su	nmary	,				
0 11.6										41				4 사하	
General Inforn	nation									ction Inf			- 6	J	Control of the last of the las
Agency						le :			Duratio		0.250				
Analyst				-		e Feb 1		\rightarrow	Area Ty	ре	Othe	r			
Jurisdiction		City of Ottawa		Time F			PM Hou		PHF		0.92			w i	÷
Urban Street		5546 Albion Road		Analys	is Yea	r Octob	er 16, 2	019	Analysi	s Period	1> 7:	00	7		
Intersection		Albion/Mitch Owens	S	File Na	ame	2019_	_ex_pm.	xus							
Project Descrip	tion	MacEwen Service	Centre -	Existing	g PM								N	4 1 4	THE
Demand Inform					EB		-	W			NB	_		SE	_
Approach Move	ement			ᆫ	Т	R	L	T	_		T	R	L	Т	_
Demand (v), v	/eh/h			212	416			55	3 14	2			170		392
Ciamal Inform	. 41 a.a.							_							
Signal Informa		Poforonce Phase	2		B	 	167	d					Z		人
Cycle, s	110.0	Reference Phase	2		\Box			ŧ				1	2		3
Offset, s	0	Reference Point	Begin	Green		51.5	29.7	0.0							
Uncoordinated		Simult. Gap E/W	Off	Yellow		4.6	3.3	0.0	-	-		/	`		
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	2.2	1.8	0.0	0.0	0.0	_	5	6		1
Timer Results				EBI		EBT	WB		WBT	NB		NBT	SBL		SBT
Assigned Phas				5	-	2	110	-	6	140	_	III	OBL		4
Case Number	-			1.0	_	4.0		_	7.3	-				-	9.0
Phase Duration				16.9	-	75.2	_	-	58.3	_				-	34.8
Change Period		-) c		6.6	\rightarrow	6.8	_	-	6.8	-				-	5.1
		, .		3.0	-	0.0	-	-	0.0	-	-		-	-	3.2
Max Allow Hea	_ , ,			9.9	-	0.0	-	-	0.0	-			-	-	28.6
Queue Clearan				0.4	-	0.0	-	-	0.0	-	-		-	-	1.1
Green Extension Phase Call Pro		(<i>g</i> _e), s		1.00	\rightarrow	0.0	_	-	0.0	-	_		-	-	1.00
Max Out Proba				0.00	-		_	-		_				-	0.00
Wax Out 1 Toba	Dility			0.00						-					0.00
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2			6	16				7		14
Adjusted Flow	Rate (v), veh/h		230	452			601	124				185		404
Adjusted Satura	ation Flo	ow Rate (s), veh/h/	ln	1581	1660			1660	1560				1511		1609
Queue Service	Time (g s), S		7.9	12.7			32.6	5.0				11.0		26.6
Cycle Queue C	learanc	e Time (<i>g</i> _c), s		7.9	12.7			32.6	5.0				11.0		26.6
Green Ratio (g	7/C)			0.58	0.69			0.48	0.48				0.28		0.28
Capacity (c), v	/eh/h			366	1146			792	745				422		449
Volume-to-Cap	acity Ra	ntio (X)		0.630	0.394			0.75	9 0.166	i			0.438		0.900
Back of Queue	(Q), r	m/ln (50 th percentile	e)	20.6	31.6			106.	6 14.3				34.2		88.9
		eh/ln (50 th percent		2.5	3.8			13.0	1.7				4.0		11.2
Queue Storage	Ratio (RQ) (50 th percen	tile)	0.08	0.06			0.21	0.09				0.24		0.18
Uniform Delay	(d 1), s	/veh		18.3	8.5			23.5	16.3				32.5		38.2
Incremental De	lay (d 2), s/veh		0.7	1.0			6.7	0.5				0.3		8.1
Initial Queue D	elay (d	з), s/veh		0.0	0.0			0.0	0.0				0.0		0.0
Control Delay (d), s/ve	eh		19.0	9.5			30.3	16.8				32.8		46.3
Level of Service				В	Α			С	В				С		D
Approach Dela				12.7	_	В	28.0)	С	0.0			42.1		D
Intersection De	•						6.9						С		
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS				1.76	3	В	2.19	9	В	2.0	0	В	1.95		В
Bicycle LOS So	core / LC	OS		1.62	2	В	1.68	3	В	0.0	0	Α			F

EXHIBIT 4.26 2024 BACKGROUND PEAK AM HOUR ANALYSIS - Albion/Mitch Owens

	НС	S Sign	alize	d Inte	rsect	ion R	esult	ts Sum	mary					
General Information	•							Intersect	ion Info	rmatic	'n	1 2	시시하) k U
	1						\rightarrow			0.250			J١	
Agency			A l	i- D-t-	Tab 4	7 0000	\rightarrow	Duration,		_				
Analyst	0:4 6.04				Feb 1		\rightarrow	Area Type	•	Other				
Jurisdiction	City of Ottawa		Time F			AM Hou	\rightarrow	PHF	2 a ai a ai	0.92	20			-
Urban Street	5546 Albion Road	-		sis Year	_		_	Analysis I	erioa	1> 7:0)0	-		,
Intersection	Albion/Mitch Owen		File Na			bak_an	1.xus					-	4144	1111
Project Description	MacEwen Service	Centre -	Backgr	ound A	M	_	_	_	_	_	_	-	(*)	UMINI
Demand Information	n			EB			WE	3		NB		_	SB	
Approach Movemen				T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h	<u> </u>		466	340	+ '`	1	487	_	_	<u> </u>	1	116	<u> </u>	138
Demand (v), venim	_		400	040		-	401	200				110		100
Signal Information				$\overline{}$		JJ.	$\overline{}$	$\overline{}$	$\overline{}$					1
Cycle, s 100	0 Reference Phase	2	1	\bowtie	.⊫ 3 *	# 3	1					4		\sim
Offset, s 0	Reference Point	Begin		45.0	55.0	11.0	1		-		1	2	3	4
Uncoordinated No		Off	Green Yellow		55.0 4.6	3.3	0.0	0.0	0.0		,	←		
Force Mode Fixe	-	Off	Red	2.0	2.2	1.8	0.0	0.0	0.0		5	6	7	8
T GIGG III GG	ominate dap i we	0	1100	12.0	12.2	11.0	10.0	10.0	10.0					
Timer Results			EBI		EBT	WBI		WBT	NBL		NBT	SBL		SBT
Assigned Phase			5		2		_	6						4
Case Number			1.0		4.0		\rightarrow	7.3					\rightarrow	9.0
Phase Duration, s			21.8	3	83.6		_	61.8					_	16.4
Change Period, (Y+	R c) s		6.6	\rightarrow	6.8	_		6.8						5.1
Max Allow Headway			3.0	-	0.0	_	_	0.0					_	3.2
Queue Clearance Ti	· //		14.3	-	0.0	_	_	0.0					+	10.8
Green Extension Tin	(0)		0.9	-	0.0	_	_	0.0		_			-	0.4
Phase Call Probabili	, , ,		1.00	$\overline{}$	0.0	_	_	0.0					_	1.00
Max Out Probability	ıy		0.00	-		_	_	_		_			-	0.00
Wax Out 1 Tobability			0.00			_	-	_		-		_	-	0.00
Movement Group F	lesults			EB			WB			NB			SB	
Approach Movemen			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement			5	2			6	16				7		14
Adjusted Flow Rate	(v), veh/h		507	370			529	224				126		128
	Flow Rate (s), veh/h/	/In	1647	1702			1660	1573				1508		1408
Queue Service Time	. , , .		12.3	4.3			20.6	_				8.0		8.8
Cycle Queue Cleara	, • ,		12.3	4.3			20.6	7.3				8.0		8.8
Green Ratio (g/C)	(3 -), -		0.72	0.84			0.56	_				0.12		0.12
Capacity (c), veh/h			641	1437			929	881				185		173
Volume-to-Capacity	Ratio (X)		0.790	0.257			-	0.254				0.681		0.742
	m/ln (50 th percentil	le)	24.7	3.5				19.4				25.6		27.5
	veh/ln (50 th percent		3.1	0.4			7.2	2.4				3.0		3.1
	(RQ) (50 th percer	_	0.10	0.01			0.12	_				0.18		0.05
Uniform Delay (d 1)	, , ,		10.8	2.2			14.2	_				42.0		42.3
Incremental Delay (1.5	0.4			2.5	0.7				1.6		2.3
Initial Queue Delay (,		0.0	0.0			0.0	0.0				0.0		0.0
Control Delay (d), s			12.3	2.6			16.8	12.0				43.6		44.7
Level of Service (LO			B	A			В	B				D D		D
Approach Delay, s/v	·		8.2		Α	15.3		В	0.0			44.2		D
Approach Delay, S/V			0.2			5.9	,	-	0.0			B 44.2		D
Intersection Dolars	VEIT / LUG		_		10	<i>ງ</i> . ອ				-		n n		
Intersection Delay, s														
				FR			\/\P			NR			SP	
Intersection Delay, s Multimodal Results Pedestrian LOS Sco			1.76	EB	В	2.18	WB	В	2.03	NB	В	1.94	SB	В

Generated: 2/17/2023 4:42:24 PM

EXHIBIT 4.27 2024 BACKGROUND PEAK PM HOUR ANALYSIS - Albion/Mitch Owens

Reference Point E Simult. Gap E/W Simult. Gap N/S	2 Begin Off	Time F Analys File Na	Period sis Year ame ound P EB T 459	Year 2	PM Hou 024 bak_pn	we WE 611	R	h :	0.250 Other 0.92 1> 7:0 NB			SB T	* <u>-</u>
546 Albion Road Albion/Mitch Owens MacEwen Service Ce Reference Phase Reference Point Simult. Gap E/W Simult. Gap N/S	2 Begin Off	Time F Analys File Na Backgro L 234 Green Yellow Red	Period Sis Year ame ound PEB T 459 12.9 4.6	Peak I Year 2 2024_M	PM Hou 024 bak_pn	we WE 611	Duration, Area Type PHF Analysis F	Period	0.250 Other 0.92 1> 7:0	00		J↓ **}* SB	THE R
546 Albion Road Albion/Mitch Owens MacEwen Service Ce Reference Phase Reference Point Simult. Gap E/W Simult. Gap N/S	2 Begin Off	Time F Analys File Na Backgro L 234 Green Yellow Red	Period Sis Year ame ound PEB T 459 12.9 4.6	Peak I Year 2 2024_M	PM Hou 024 bak_pn	WE T 611	Area Type PHF Analysis F	Period	Other 0.92 1> 7:0	00	L	SB	R
546 Albion Road Albion/Mitch Owens MacEwen Service Ce Reference Phase Reference Point Simult. Gap E/W Simult. Gap N/S	2 Begin Off	Time F Analys File Na Backgro L 234 Green Yellow Red	Period Sis Year ame ound PEB T 459 12.9 4.6	Peak I Year 2 2024_M	PM Hou 024 bak_pn	ve T 611	PHF Analysis F	Period	0.92 1> 7:0 NB	00	L	SB	R
546 Albion Road Albion/Mitch Owens MacEwen Service Ce Reference Phase Reference Point Simult. Gap E/W Simult. Gap N/S	2 Begin Off	Analys File Na Backgro L 234 Green Yellow Red	sis Year ame ound P EB T 459 12.9 4.6	Year 2 2024_ M	024 bak_pm	ver T 611	Analysis F		1> 7:0		L	SB	R
Reference Phase Reference Point Elimult. Gap N/S	2 Begin Off	Elle Na Backgro L 234 Green Yellow Red	EB T 459	2024_M	L 32.7	WE T 611	3 R		NB		L	SB	R
Reference Phase Reference Point Emult. Gap E/W Simult. Gap N/S	2 Begin Off	L 234 Green Yellow Red	EB T 459	R 45.9	32.7	WE T 611	R	L	_	R	L	SB	R
Reference Phase Reference Point E Simult. Gap E/W Simult. Gap N/S	2 Begin Off	L 234 Green Yellow Red	EB T 459	R 45.9	32.7	611	R	L	_	R	L	SB	R
Reference Point E Simult. Gap E/W Simult. Gap N/S	Begin Off	Green Yellow Red	T 459	45.9	32.7	611	R	L	_	R	-		R
Reference Point E Simult. Gap E/W Simult. Gap N/S	Begin Off	Green Yellow Red	T 459	45.9	32.7	611	R	L	_	R	-		R
Reference Point E Simult. Gap E/W Simult. Gap N/S	Begin Off	Green Yellow Red	459 12.9 4.6	45.9	32.7	611				R	-		-
Reference Point E Simult. Gap E/W Simult. Gap N/S	Begin Off	Green Yellow Red	12.9 4.6				1 157	Т			4		人
Reference Point E Simult. Gap E/W Simult. Gap N/S	Begin Off	Yellow Red	12.9				Т	Т			4		人
Reference Point E Simult. Gap E/W Simult. Gap N/S	Begin Off	Yellow Red	12.9								4		^
Reference Point E Simult. Gap E/W Simult. Gap N/S	Begin Off	Yellow Red	12.9										
Simult. Gap E/W	Off	Yellow Red	4.6			0.0				1	2	3	
Simult. Gap N/S		Red		4.6		0.0	0.0	0.0	_	_	~		
	Oll		12.0	2.2	3.3	0.0	0.0	0.0		_ [7	
s c		EBL		2.2	1.0	0.0	10.0	10.0		-			
S.		LDL		EBT	WBI		WBT	NBL		NBT	SBL		SBT
S		5	-	2	VVD		6	NDL	_	INDI	ODL	-	4
S		1.0		4.0			7.3						9.0
		19.5	-	72.2		_	52.7					-	37.8
		6.6	\rightarrow	6.8		_	6.8					-	5.1
	-	3.0	-	0.0		-	0.0		-			-	3.2
		12.4	-	0.0		-	0.0		_			+	31.5
-	_		-	0.0	_	-	0.0		-		-	-	
g e), S		1.00	\rightarrow	0.0		-	0.0				-	-	1.2
	_	_	-			-	_		-		-	+	
_	_	0.00	_			-	_	-	-	-	_	-	0.01
Its			EB			WB			NB			SB	
				R	L		R	L		R	L		R
			_		_	_	-	_		- ' '	$\overline{}$		14
veh/h		_				_	_	_					449
		-				_	_				_		1610
		-					_						29.5
		-	_				-				_		29.5
(g v), v		-					_				_		0.31
		-				_	_				_		493
n(X)							_						0.910
											$\overline{}$		101.3
							_						12.8
	_	-				_	-				-		0.20
- / ()	·,	-				_	-				_		36.7
		-				_	-				-		11.2
		-				_	-				_		0.0
		-				_	-				_		47.9
		-				_	-				_		-
100		-		D	40.0	_	-	0.0			_		
		17.3)	U	0.0					D
/ LUS				35	0.4						ט		
			ED			VAID			ND			CD.	
08		1 70		В	2.40	_	В	2.00	INB	D	4.05	38	D
			$\overline{}$			-	_				1.95		B F
and (v), veh/h al Information e, s	veh/h Rate (s), veh/h/ln), s Filme (g c), s o (X) In (50 th percentile) O() (50 th percentile) Sh s/veh , s/veh OS / LOS	ts L 5 veh/h 254 Rate (s), veh/h/ln 1581), s 10.4 Fime (gc), s 10.4 0.55 296 0 (X) 0.859 n (50 th percentile) 30 n/ln (50 th percentile) 30 Q) (50 th percentile) 25.6 s/veh 2.8 , s/veh 0.0 28.4 C .OS 17.3	L T 5 2 veh/h 254 499 Rate (s), veh/h/ln 1581 1660), s 10.4 15.9 Time (gc), s 10.4 15.9 0.55 0.66 296 1101 0.859 0.453 n (50 th percentile) 30 41.6 Q) (50 th percentile) 3.6 5.1 Q) (50 th percentile) 0.12 0.08 eh 25.6 10.3 s/veh 2.8 1.3 , s/veh 0.0 0.0 28.4 11.7 C B COS 17.3 EB	ts	ts	ts EB WB L T R L T veh/h 254 499 664 Rate (s), veh/h/ln 1581 1660 1660), s 10.4 15.9 42.1 Time (gc), s 10.4 15.9 42.1 0.55 0.66 0.43 296 1101 708 0 (X) 0.859 0.453 0.938 0 (50 th percentile) 30 41.6 160.2 2/In (50 th percentile) 3.6 5.1 19.5 Q) (50 th percentile) 0.12 0.08 0.32 eh 25.6 10.3 30.2 s/veh 2.8 1.3 21.7 , s/veh 0.0 0.0 0.0 28.4 11.7 51.9 C B D Acceptable 0.0 0.0 Acceptable 0.0 0.0 Acceptable 0.0 0.0	L	L	L	L	The color of the	L	

EXHIBIT 4.28 2029 BACKGROUND PEAK AM HOUR ANALYSIS - Albion/Mitch Owens

		нся	S Sigr	nalize	d Inte	rsect	ion R	esul	ts Sun	ımary	,				
General Inforn	nation							\rightarrow	Intersec				- i	474	THE RESERVE OF THE PARTY OF THE
Agency						I-		\rightarrow	Duration		0.250		_		
Analyst				Analys	sis Date	Feb 1	7, 2023		Area Typ	e	Other	r	.A.		. 2
Jurisdiction		City of Ottawa		Time F	Period		AM Hou	ır	PHF		0.92		*	₩Ţ	←
Urban Street		5546 Albion Road		Analys	sis Year	Year 2	2029		Analysis	Period	1> 7:	00	7		*
Intersection		Albion/Mitch Owen:	s	File N	ame	2029_	bak_an	n.xus							
Project Descrip	tion	MacEwen Service	Centre -	Backgr	ound A	М							Th	4 1 4	YFC
D					ED		_	10/			ND		_	0.5	
Demand Inform					EB		٠.	W		-	NB		+ -	SE	
Approach Move				L	T	R	L	T	_	L	T	R	L 100	Т	_
Demand (v), v	en/n	_	-	514	375		_	53	8 285	-			128	_	152
Signal Informa	ation		_				"IJ L	$\overline{}$	$\overline{}$						
Cycle, s	100.0	Reference Phase	2	1	\bowtie	<u> -3 *</u>	16 2	ı					a		
Offset, s	0	Reference Point	Begin			1		١.,				1	2	;	4
Uncoordinated	No	Simult. Gap E/W	Off	Green Yellow		48.0	12.3	0.0		0.0		, l	4		
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	4.6 2.2	1.8	0.0		0.0		5	6		, 8
. STOC WICKE	1 IXCU	Carrott. Sup 14/5	511	1100	0		, , , ,	0.0	. 0.0	0.0					
Timer Results				EBI		EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Assigned Phas	e			5		2			6						4
Case Number				1.0		4.0			7.3					\rightarrow	9.0
Phase Duration	1. S			27.7	,	82.6		\neg	54.8					\neg	17.4
Change Period		c) s		6.6	-	6.8			6.8					\rightarrow	5.1
Max Allow Hea	, (- ,, -		3.0	-	0.0	_	_	0.0					_	3.2
Queue Clearan	_ , ,			20.0	-	0.0	_		0.0						11.8
Green Extension				0.9	_	0.0	_	_	0.0						0.4
Phase Call Pro		(90),0		1.00	$\overline{}$	0.0			0.0						1.00
Max Out Proba				0.00	-		_	_							0.00
Max Out 1 Toba	ionity .			0.00											0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	(
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2			6	16				7		14
Adjusted Flow	Rate (v), veh/h		559	408			585	248				139		143
Adjusted Satura	ation Flo	ow Rate (s), veh/h/	ln	1647	1702			1660	1573				1508		1409
Queue Service	Time (g s), S		18.0	5.2			27.8	9.6				8.8		9.8
Cycle Queue C	learanc	e Time (<i>g c</i>), s		18.0	5.2			27.8	9.6				8.8		9.8
Green Ratio (g	7/C)			0.71	0.83			0.49	0.49				0.13		0.13
Capacity (c), v	/eh/h			606	1418			810	768				201		188
Volume-to-Cap	acity Ra	ntio (X)		0.922	0.287			0.72	2 0.323				0.691		0.763
Back of Queue	(Q), r	n/In (50 th percentil	e)	59.2	5.2			87.7	27				28.1		30.7
		eh/ln (50 th percent		7.5	0.6			10.7	3.3				3.3		3.5
Queue Storage	Ratio (RQ) (50 th percen	tile)	0.23	0.01			0.18	0.17				0.20		0.06
Uniform Delay	(d 1), s	/veh		18.0	2.5			20.2	15.5				41.4		41.8
Incremental De	lay (d 2), s/veh		11.8	0.5			5.5	1.1				1.6		2.4
Initial Queue D	elay (d	з), s/veh		0.0	0.0			0.0	0.0				0.0		0.0
Control Delay (d), s/ve	eh		29.8	3.0			25.7	_				42.9		44.2
Level of Service				С	Α			С	В				D		D
Approach Dela				18.5		В	23.0		С	0.0			43.6		D
Intersection De	•					23	3.7						С		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS				1.76	3	В	2.16	3	В	2.04		В	1.94		В
Bicycle LOS So	core / LC	OS		2.08	3	В	1.86	3	В	0.00		Α			F

EXHIBIT 4.29 2029 BACKGROUND PEAK PM HOUR ANALYSIS - Albion/Mitch Owens

		HCS	S Sigr	nalize	d Inte	rsect	ion R	esult	s Sum	mary					
General Inforn	nation								ntersect	ion Info	rmatio	n	N.	4 7 4 1	J. L.
Agency								\rightarrow	Ouration.		0.250			11	
Analyst				Δnalve	is Date	Feb 1	7, 2023	_	Area Type		Other		4		
Jurisdiction		City of Ottawa		Time F		-	PM Hou	-	PHF	,	0.92		== ->		•
Urban Street		5546 Albion Road				Year 2		_	Analysis I	Period	1> 7:0)O			
Intersection		Albion/Mitch Owens	2	File Na		_	bak_pm	_	Tilalysis	Criou	1- 7.0	,,,			_
Project Descrip	tion	MacEwen Service (_bakpii	I.AUS					- N	4144	1 1- 1
r roject bescrip	TION .	Waczwell Gervice	Jenue -	Dackgi	ound 1	IVI									
Demand Inform	mation				EB			WB	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	Т	R
Demand (v), v	/eh/h			258	507		_	675	173				208		478
Signal Informa	ation							_	_	_					
Cycle, s	110.0	Reference Phase	2	1	\bowtie	<u> </u>	1 × 3	ı					4		
Offset, s	0	Reference Point	Begin	Cran	10.0	20.0	20.0	100		-		1	2	3	
Uncoordinated	No	Simult. Gap E/W	Off	Green Yellow		38.8 4.6	36.0	0.0	0.0	0.0		7	4		
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	2.2	1.8	0.0	0.0	0.0		5	6	7	
Timer Results				EBI	-	EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Assigned Phas	е			5		2			6						4
Case Number				1.0		4.0			7.3						9.0
Phase Duration	า, ธ			23.4	1	68.9			45.6						41.1
Change Period	, (Y+R	c), s		6.6		6.8			6.8						5.1
Max Allow Hea	dway (/	<i>ИАН</i>), s		3.0		0.0			0.0						3.2
Queue Clearan	ice Time	e (g s), s		16.4	1										34.7
Green Extension	n Time	(g _e), s		0.4		0.0			0.0						1.3
Phase Call Pro	bability			1.00)										1.00
Max Out Proba	bility			0.00											0.05
Movement Gro	oup Res	sults		_	EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2			6	16				7		14
Adjusted Flow	Rate (v), veh/h		280	551			734	150				226		498
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	1581	1660			1660	1559				1511		1610
Queue Service		, ,,		14.4	20.0			39.8	7.5				12.8		32.7
Cycle Queue C				14.4	20.0			39.8	7.5				12.8		32.7
Green Ratio (g				0.52	0.63			0.36	0.36				0.34		0.34
Capacity (c), v	/eh/h			321	1052			600	564				508		541
Volume-to-Cap		tio (X)		0.873	0.524			1.223	0.266				0.445		0.92
Back of Queue	(Q), n	n/ln (50 th percentile	e)	59.9	54.6			278.8	23				39.2		115.
Back of Queue	(Q), ve	eh/ln (50 th percent	ile)	7.3	6.6			33.9	2.8				4.6		14.5
Queue Storage	Ratio (RQ) (50 th percent	tile)	0.23	0.11			0.56	0.14				0.28		0.23
Uniform Delay	(d 1), s	/veh		30.7	12.7			35.1	24.8				28.5		35.1
Incremental De	lay (d 2), s/veh		3.0	1.9			114.8	1.2				0.2		14.4
Initial Queue D	elay (d	з), s/veh		0.0	0.0			0.0	0.0				0.0		0.0
Control Delay (d), s/ve	eh		33.7	14.5			149.9	26.0				28.7		49.5
Level of Service	e (LOS)			С	В			F	С				С		D
Approach Dela	y, s/veh	/LOS		21.0)	С	128.	9	F	0.0			43.0		D
Intersection De	lay, s/ve	h / LOS				66	3.6						E		
Multimodal Re	eulte				EB			WB			NB			SB	
	Juito						_				_				
Pedestrian LOS	Score	/1.0S		1.76	;	В	2.16	; ∥	В	2.01	- 1	В	1.95		В

Generated: 2/17/2023 4:47:57 PM

EXHIBIT 4.30 2024 TOTAL PEAK AM HOUR ANALYSIS - Albion/Mitch Owens

		HCS	S Sigr	nalize	d Inte	rsect	ion R	esult	s Sum	mary					
General Inforn	nation								ntersect	ion Info	rmatic	n	[VI	세시하다	[b]U
Agency	144.011							\rightarrow	Ouration.		0.250			11	
Analyst				Δnalve	is Date	Feb 1	7, 2023	_	Area Type		Other		4		
Jurisdiction		City of Ottawa		Time F		_	AM Hou	\rightarrow	PHF		0.92		÷		•
Urban Street		5546 Albion Road			sis Year			_	Analysis I	Period	1> 7:0	20			
Intersection		Albion/Mitch Owens	e	File Na		_	tot_am.	_	Tilaly 313 I	Criou	1- 7.0				
Project Descrip	tion	MacEwen Service				2024_	ioi_am.	AUS					N.	4144	* \$= 6"
roject bescrip	tion	Waczwell Gervice	Jenue -	Total A	IVI										
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	T	R	L	Т	R	L	T	R	L	Т	R
Demand (v), v	eh/h			459	335		_	490	255				123		134
Signal Informa	ation							_	_	_					1
Cycle, s	100.0	Reference Phase	2	1	\bowtie	<u> </u>	1 × 3	ı					4		
Offset, s	0	Reference Point	Begin	C	140	EE O	44.4	100	-	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	Off	Green Yellow		55.6 4.6	3.3	0.0	0.0	0.0		,	4		
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	2.2	1.8	0.0	0.0	0.0		5	6	7	
Timer Results				EBI	-	EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Assigned Phas	e			5		2		_	6					\dashv	4
Case Number				1.0	-	4.0		_	7.3					_	9.0
Phase Duration				21.5	\rightarrow	83.8		_	62.4					\dashv	16.2
Change Period				6.6	_	6.8		_	6.8					_	5.1
Max Allow Hea	dway (/	<i>MAH</i>), s		3.0		0.0		_	0.0					\dashv	3.2
Queue Clearan	ce Time	(g s), S		14.0)										10.6
Green Extension		(g ⊕), s		0.9	$\overline{}$	0.0			0.0				_	\dashv	0.4
Phase Call Pro				1.00	-			_						_	1.00
Max Out Proba	bility			0.00				_	_					_	0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2			6	16				7		14
Adjusted Flow	Rate (v), veh/h		499	364			533	222				134		124
Adjusted Satura	ation Flo	ow Rate (s), veh/h/	ln	1647	1702			1660	1573				1507		1408
Queue Service	Time (g s), S		12.0	4.2			20.5	7.1				8.6		8.5
Cycle Queue C	learanc	e Time (<i>g c</i>), s		12.0	4.2			20.5	7.1				8.6		8.5
Green Ratio (g	/C)			0.72	0.85			0.57	0.57				0.12		0.12
Capacity (c), v	/eh/h			640	1440			939	890				182		170
Volume-to-Cap	acity Ra	tio (X)		0.780	0.253			0.567	0.249				0.735		0.73
Back of Queue	(Q), n	n/ln (50 th percentil	e)	23.5	3.1			58.9	18.8				27.6		26.5
Back of Queue	(Q), ve	eh/ln (50 th percent	ile)	3.0	0.4			7.2	2.3				3.2		3.0
Queue Storage	Ratio (RQ) (50 th percen	tile)	0.09	0.01			0.12	0.12				0.20		0.05
Uniform Delay	(d 1), s	/veh		10.6	2.1			13.9	11.0				42.4		42.4
Incremental De	lay (d 2), s/veh		1.2	0.4			2.5	0.7				2.2		2.3
Initial Queue D	elay (d	з), s/veh		0.0	0.0			0.0	0.0				0.0		0.0
Control Delay (d), s/ve	eh		11.7	2.5			16.4	11.6				44.6		44.7
Level of Service	e (LOS)			В	Α			В	В				D		D
Approach Dela	y, s/veh	/LOS		7.8		Α	15.0)	В	0.0			44.6		D
Intersection De	lay, s/ve	h / LOS				15	5.8						В		
	eulte				EB			WB			NB			SB	
Multimodal Pa	Itimodal Results				LD			VVD			IND			SD	
Multimodal Re Pedestrian LOS		/1 OS		1.76	;	В	2.18		В	2.03	$\overline{}$	В	1.94	$\overline{}$	В

EXHIBIT 4.31 2024 TOTAL PEAK PM HOUR ANALYSIS - Albion/Mitch Owens

		HCS	S Sigr	nalize	d Inte	rsect	ion R	esult	ts Sum	mary					
General Inform	nation								Intersect	ion Info	ormatic	n	N N	4 7 4 1	.]b[<u>\</u>
Agency								\rightarrow	Duration.		0.250			J.	
Analyst				Δnalve	is Date	Feb 1	7, 2023		Area Type		Other				
Jurisdiction		City of Ottawa		Time F		-	PM Hou	\rightarrow	PHF	<u> </u>	0.92				•
Urban Street		5546 Albion Road			sis Year			_	Analysis l	Period	1> 7:0	00			
Intersection		Albion/Mitch Owens	e	File Na		_	tot_pm.	_	Allalysis	Cilou	1- 7.0				_
Project Descrip	tion	MacEwen Service				2024_	tot_piii.	.xus					N.	বাক্দ	* \$= 6"
r roject bescrip	, lion	INACEWEIT GETVICE	Centre -	Total	IVI										
Demand Infori	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			232	453		_	619	156				195		425
Signal Informa	ation							_		_					
Cycle, s	110.0	Reference Phase	2	1	\vdash	- -3 ⁴	1 × 2						4		
Offset, s	0	Reference Point	Begin		'	100	00.4	1		100		1	2	3	
Uncoordinated	No	Simult. Gap E/W	Off	Green Yellow	12.4	46.9	32.1	0.0	0.0	0.0		,	4		
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	2.2	1.8	0.0	0.0	0.0		5	6	7	
		Carrier Cap 1110			12.0		1111	10.0	10.0	10.0					
Timer Results				EBI	-	EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Assigned Phas	е			5		2			6						4
Case Number				1.0		4.0			7.3						9.0
Phase Duration	າ, ຣ			19.0)	72.8			53.7						37.2
Change Period	, (Y+R	c), S		6.6		6.8			6.8						5.1
Max Allow Hea	dway (/	<i>MAH</i>), s		3.0		0.0			0.0						3.2
Queue Clearan	ice Time	e (g s), s		12.0)										30.9
Green Extension	n Time	(g e), s		0.4		0.0			0.0						1.2
Phase Call Pro	bability			1.00)										1.00
Max Out Proba	bility			0.00										\perp	0.01
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2			6	16				7		14
Adjusted Flow), veh/h		252	492			673	133				212		440
•		ow Rate (s), veh/h/	ln	1581	1660			1660	1560				1511		1610
Queue Service		, ,,		10.0	15.4			42.4	_				12.5		28.9
		e Time (g c), s		10.0	15.4			42.4	-				12.5		28.9
Green Ratio (g		(0)		0.56	0.67			0.44	_				0.30		0.30
Capacity (c),				294	1110			722	679				455		485
Volume-to-Cap		atio (X)		0.857	0.444			0.931	_				0.465		0.90
		m/ln (50 th percentile	e)	28.7	39.7			159.1	17.1				38.6		98.9
	, ,	eh/ln (50 th percent	,	3.5	4.8			19.3	_				4.5		12.5
		RQ) (50 th percen		0.11	0.08			0.32	-				0.28		0.20
Uniform Delay		, , , ,		24.9	10.0			29.5	_				31.2		37.0
Incremental De	. , , ,			2.8	1.3			20.4	0.6				0.3		10.6
Initial Queue D		, .		0.0	0.0			0.0	0.0				0.0		0.0
Control Delay (, .		27.7	11.3			49.9	19.8				31.5		47.6
Level of Service	e (LOS)			С	В			D	В				С		D
Approach Dela				16.8	3	В	44.9		D	0.0			42.4		D
Intersection De						34	4.7						С		
Madeina - del D	le-							\^(C)			ND			0.0	
Multimodal Re		/1.06		4 7/	EB	D	0.40	WB		2.04	NB	D	4.05	SB	P
Pedestrian LOS				1.76	-	В	2.18	-	В	2.01	$\overline{}$	В	1.95		В
Bicycle LOS So	core / L(J8		1.72	<u> </u>	В	1.82	<u> </u>	В	0.00		Α			F

Generated: 2/17/2023 4:45:52 PM

EXHIBIT 4.32 2029 TOTAL PEAK AM HOUR ANALYSIS - Albion/Mitch Owens

		HCS	Sigr	alize	d Inte	rsect	ion R	esult	s Sum	mary					
General Inforn	nation								ntersect	ion Info	ormatio	n	[2]	[4] J. [4] [4]	. In L
Agency	144.011							\rightarrow	Duration.		0.250	· · ·		11	
Analyst				Δnalvs	is Date	Feb 1	7, 2023	_	Area Type		Other		4		
Jurisdiction		City of Ottawa		Time F		-	AM Hou	\rightarrow	PHF	,	0.92		→ ÷		•
Urban Street		5546 Albion Road			sis Year			\rightarrow	Analysis I	Period	1> 7:0	10			
Intersection		Albion/Mitch Owens	2	File Na		_	tot_am.	_	-trialy 515	Criou	1- 7.0	,,,	-		_
Project Descrip	tion	MacEwen Service (2023_	tot_am.	Aus					5	4144	* 1- 6
roject bescrip	tion	WIACEWEIT GETVICE	Jenue -	Total A	VI										
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			507	371		_	545	282				135		148
Signal Informa	ation							_	_	_					
Cycle, s	100.0	Reference Phase	2	1	\bowtie	□ 3 *	1 × 2						4		
Offset, s	0	Reference Point	Begin			40.0	40.4	100		-		1	2	3	
Uncoordinated	No	Simult. Gap E/W	Off	Green Yellow		49.2	3.3	0.0	0.0	0.0		7	4		
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	2.2	1.8	0.0	0.0	0.0		5	6	7	
		,													
Timer Results				EBI	-	EBT	WBI	L	WBT	NBL		NBT	SBL		SBT
Assigned Phas	е			5		2			6						4
Case Number				1.0		4.0			7.3						9.0
Phase Duration	1, S			26.9)	82.8			56.0						17.2
Change Period	, (Y+R	c), s		6.6		6.8		$\neg \vdash$	6.8					\top	5.1
Max Allow Hea	dway (/	<i>ИАН</i>), s		3.0		0.0			0.0						3.2
Queue Clearan	ce Time	e (g s), S		19.1											11.5
Green Extension	n Time	(g _θ), s		0.9		0.0			0.0						0.4
Phase Call Pro	bability			1.00)										1.00
Max Out Proba	bility			0.00											0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2			6	16				7		14
Adjusted Flow I	Rate (v), veh/h		551	403			592	246				147		139
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	1647	1702			1660	1573				1508		1408
Queue Service		. , ,		17.1	5.1			27.8	9.3				9.4		9.5
Cycle Queue C	learanc	e Time (<i>g c</i>), s		17.1	5.1			27.8	9.3				9.4		9.5
Green Ratio (g				0.71	0.84			0.50	0.50				0.13		0.13
Capacity (c), v	/eh/h			599	1423			829	786				197		184
Volume-to-Cap		tio (X)		0.919	0.283			0.715	0.313				0.745		0.75
Back of Queue	(Q), n	n/ln (50 th percentile	e)	58.4	4.7			86.5	25.9				30.2		29.8
Back of Queue	(Q), ve	eh/ln (50 th percent	ile)	7.4	0.6			10.5	3.2				3.5		3.4
Queue Storage	Ratio (RQ) (50 th percent	tile)	0.23	0.01			0.17	0.16				0.22		0.06
Uniform Delay	(d 1), s	/veh		17.6	2.4			19.5	14.8				41.9		41.9
Incremental De	lay (d 2), s/veh		10.9	0.5			5.2	1.0				2.1		2.4
Initial Queue D	elay (d	з), s/veh		0.0	0.0			0.0	0.0				0.0		0.0
Control Delay (d), s/ve	eh		28.5	2.9			24.7	15.9				44.0		44.3
Level of Service	e (LOS)			С	Α			С	В				D		D
Approach Dela	y, s/veh	/LOS		17.7	7	В	22.1		С	0.0			44.1		D
Intersection De	lay, s/ve	h / LOS				23	3.1						С		
	eulte				EB			WB			NB			SB	
Multimodal Da	Juito				LD						IND			SD	
Multimodal Re Pedestrian LOS		/1.08		1.76	;	В	2.16	; I	В	2.03		В	1.94		В

EXHIBIT 4.33 2029 TOTAL PEAK PM HOUR ANALYSIS - Albion/Mitch Owens

		нс	S Sigr	alize	d Inte	ersect	ion R	esul	ts Sum	mary					
Camanal Inform	4:							-	l4	ian Infa			l u	4 1 4	ChU
General Inform	nation	1						\rightarrow	Intersect				Í	JĻ	
Agency				Analus	is Dat	Tob 1	7 2022	\rightarrow	Duration,		0.250				N.
Analyst		0.4 6.04				Feb 1		\rightarrow	Area Type	9	Other				~ E
Jurisdiction		City of Ottawa		Time F		_	PM Hou	\rightarrow	PHF	7ii	0.92	20			←
Urban Street		5546 Albion Road	-	-	sis Yea			_	Analysis I	Period	1> 7:0	JU	- 5		-
Intersection		Albion/Mitch Owen		File Na		2029_	tot_pm.	xus					-	4 1 4 1	
Project Descrip	tion	MacEwen Service	Centre -	lotal Pi	IVI								-	[N] [] NY	JUNIO.
Demand Inform	nation				EB	_	$\overline{}$	VVE	3		NB	_	$\overline{}$	SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v				256	502			683	3 172				218		470
Signal Informa	tion				2		77						_		人
Cycle, s	110.0	Reference Phase	2		ĸ	_ ``	B					_	ዻ ૢ⊢	2	K X
Offset, s	0	Reference Point	Begin	Green	16.6	39.5	35.4	0.0	0.0	0.0		'	K	3	
Uncoordinated	No	Simult. Gap E/W	Off	Yellow		4.6	3.3	0.0	0.0	0.0		~	←		
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.0	2.2	1.8	0.0	0.0	0.0		6	6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Assigned Phase	e			5	_	2		-	6				_	_	4
Case Number				1.0	+	4.0	_	-	7.3		-		-	-	9.0
Phase Duration		`		23.2	2	69.5	_	_	46.3		_		_	-	40.5
Change Period				6.6	-	6.8	_	-	6.8		_		-	-	5.1
Max Allow Head				3.0		0.0	_	_	0.0				_	_	3.2
Queue Clearan				16.2	2			-			-		-	-	34.1
Green Extension		(g e), s		0.4	_	0.0		_	0.0		_		-	-	1.3
Phase Call Prol				1.00	-			-	_		-		-	-	1.00
Max Out Proba	DIIITY			0.00	,		_	_	_		_		_		0.04
Movement Gro	up Res	sults			EB			WB	_		NB			SB	
Approach Move	_			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2			6	16				7		14
Adjusted Flow F	Rate (v), veh/h		278	546			742	150				237		489
Adjusted Satura	ation Flo	ow Rate (s), veh/h/	ln	1581	1660			1660	1559				1511		1610
Queue Service	Time (g s), S		14.2	19.4			40.5	7.4				13.7		32.1
Cycle Queue C	learanc	e Time (g c), s		14.2	19.4			40.5	7.4				13.7		32.1
Green Ratio (g	/C)			0.53	0.64			0.37	0.37				0.33		0.33
Capacity (c), v	/eh/h			319	1061			610	574				500		533
Volume-to-Capa	acity Ra	ntio (X)		0.872	0.514			1.216	0.262				0.474		0.918
Back of Queue	(Q), n	n/ln (50 th percentil	e)	59.4	52.7			279.3	22.7				41.9		112.6
		eh/ln (50 th percent		7.2	6.4			34.0	2.8				4.9		14.2
Queue Storage	Ratio (RQ) (50 th percen	tile)	0.23	0.11			0.56	0.14				0.30		0.23
Uniform Delay	(d 1), s.	/veh		30.9	12.3			34.8	24.3				29.2		35.4
Incremental De	lay (d 2), s/veh		2.9	1.8			111.7	1.1				0.3		13.8
Initial Queue De	elay (d	з), s/veh		0.0	0.0			0.0	0.0				0.0		0.0
Control Delay (d), s/ve	eh		33.8	14.0			146.5	25.4				29.5		49.1
Level of Service	(LOS)			С	В			F	С				С		D
Approach Delay	y, s/veh	/LOS		20.7	7	С	126.	1	F	0.0			42.7		D
Intersection De	lay, s/ve	eh / LOS				65	5.8						E		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				1.76	-	В	2.16	-	В	2.01		В	1.95		В
Bicycle LOS Sc	ore / LC	72		1.85)	В	1.96)	В	0.00		Α			F

Generated: 2/17/2023 4:50:09 PM

EXHIBIT 4.34 2019 EXISTING PEAK AM HOUR ANALYSIS - Stagecoach/Mitch Owens

nation								Inters	ection Inf	ormati	on	Į.	4 74 1	la L
iddioii							\rightarrow	Duratio		0.250				
			Analys	ie Date	Feb 1	7 2023	$\overline{}$		· ·	-		4		
	City of Ottawa				_	·	\rightarrow		урс	_		→ ->		+
	-				_		\rightarrow		is Pariod	_	00	-{		
		Twens			_			Allalys	is i cilou	12 7.	00	-		
tion	_				2013_	cx_aiii.	.Aus					5	1 1 4 Y	7 1
	INICOLIVOIT COIVICE	5011110	EXIONIT	,										
nation				EB			W	В		NB			SB	
ement			L	Т	R	L	T	F	≀ L	T	R	L	Т	R
eh/h				314	55	107	46	5	161		427			
tion					_	ь	_	_						
	Poforonce Phase	2	1	5	= . :	-					$\overline{}$			
						1					1	Y 2	3	
					42.3	31.7	-	-						
		-					-				E	2	7	5
rixed	Simult. Gap N/S	Oll	Neu	_ L.L	4.4	Z.	10.0	, _[0.	0.0		3	6	-	
			EBI		EBT	WB	L	WBT	NB	L	NBT	SBL		SBT
e					2	1		6			8			
					8.3	1.0		4.0			9.0			
. S							-		-				\top	
	c), s					-	-	6.8			_			
	, .					_	-	0.0	-		_		\top	
						-	-				_			
	10 /			\neg	0.0	0.0		0.0	-	\neg	0.5		\top	
	(3 - 7, -					_	-				1.00			
bility						1.00)				1.00		工	
un Pos	ulto			ED			\//D		_	ND			S.D.	
	uita				R			_			R	1 1		R
			-		_	_	_	+ '`	_	<u>'</u>	_	-		
) veh/h				12				_					\vdash
	,.	ln.					_	-	_		_			
	, ,					-		_	_		_			1
						-	_	-	_		_			
	5 .ano (g c), 5					_	_	_	_		_			1
						-	_	-	_		-			
	itio (X)					_	_	_			_			
		e)						$\overline{}$	_					
						-	_	-	_		_			
						_	_	-	-		-			
	- / \						_	-			_			
				2.4		0.1	_	-	0.1		21.8			
, ,	,.			0.0		0.0	_	-	0.0		0.0			
				22.8		14.8	-	-	25.5		54.2			
- , ,				С		В	В		С		D			1
			22.8		С	-		В		1	D	0.0		
						_			1					
sults				EB			WB			NB			SB	
Score	/LOS		2.16	5	В	1.95	5	В	2.10) [В	1.78		В
and Information and (v), veh/h al Information a, s		mation memory m	City of Ottawa Stagecoach Road Analys Stagecoach/Mitch Owens Ition MacEwen Service Centre - Existing Mation Interpret	City of Ottawa Time Period Stagecoach Road Analysis Year Stagecoach/Mitch Owens File Name Ition MacEwen Service Centre - Existing AM Analysis Year Ition MacEwen Service Centre - Existing AM Ition Ition	City of Ottawa Time Period Peak	City of Ottawa Stagecoach Road Analysis Year October 16, 2	Stagecoach Road Stagecoach/Mitch Owens File Name 2019_ex_am.xus	City of Ottawa Stagecoach Road Analysis Year October 16, 2019 October 16, 20	City of Ottawa Stagecoach Road Stagecoach Mich Owens Stagecoach Mich O	City of Ottawa Time Period Reak AM Hour PHF 0.92	City of Ottawa Time Period Stagecoach Moto Nowns Stagecoach Mich Owens File Name 2019_ex_am.xus 2019_ex_am.xus	City of Ottawa Time Period Stagecoach Road Analysis Year Analysis Year Analysis Cotober 16, 2019 Analysis Period 127,00 Analysis Analysis Period 127,00 Analysis Period Analysis	City of Ottawa Time Period Peak AM Hour PHF 0.92	

EXHIBIT 4.35 2019 EXISTING PEAK PM HOUR ANALYSIS - Stagecoach/Mitch Owens

		HCS	Sign	alize	d Inte	rsect	ion R	esul	ts Sur	nmary					
General Inform	ation								Intersec	tion Info	ormati	on	Į.	4 74 1	Ja lu
Agency								\rightarrow	Duration		0.250				
Analyst				Analys	is Date	Feb 1	7. 2023	\rightarrow	Area Ty		Other		Δ.		
Jurisdiction		City of Ottawa		Time F		_	PM Hou	\rightarrow	PHF	-	0.92	·	÷		÷
Urban Street		Stagecoach Road			is Year	_	er 16, 2	\rightarrow	Analysis	Period	1> 7:	00	-₹		
Intersection		Stagecoach/Mitch (Owens	File Na			ex pm.		rulalysis	T CHOC	11. 7.		-		
Project Descript	tion	MacEwen Service (2013_	_ex_piii.	.xus					-	1 1 4 Y	1 14 1
r roject Descript	1011	INIACEWEIT OCTVICE V	Jenue -	LXISTING	j i ivi										
Demand Inforn	nation				EB		$\overline{}$	WE	3	$\overline{}$	NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				451	136	384	593	3	120		189			
Signal Informa					-		_					$\overline{}$			
Cycle, s	110.0	Reference Phase	2		è	` ⇒ *	5	2			•		₹ 2	3	
Offset, s	0	Reference Point	Begin	Green	13.9	60.4	15.8	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	Off	Yellow	4.6	4.6	4.2	0.0	0.0	0.0			7		~
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.2	2.2	2.1	0.0	0.0	0.0		5	6	7	T
					_						_			_	-
Timer Results				EBL	-	EBT	WB	L	WBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	•			_	_	2	1	_	6	_	_	8		_	
Case Number					_	8.3	1.0	-	4.0	-	_	9.0		-	
Phase Duration				_	_	67.2	20.7	-	87.9	_	_	22.1		_	
Change Period,	•	,			_	6.8	6.8	-	6.8	-	_	6.3		_	
Max Allow Head		,			_	0.0	3.0	-	0.0	_	_	3.3		_	
Queue Clearan					_		13.3	-		-	_	15.6		_	
Green Extensio		(g _e), s			_	0.0	0.6	-	0.0	_	_	0.2		_	
Phase Call Prob					_		1.00	-		-	_	1.00		_	
Max Out Probal	oility			_	_		0.00)			_	1.00	_	_	
Movement Gro	up Res	ults			EB			WB			NB			SB	_
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				2	12	1	6		3		18			
Adjusted Flow F	Rate (v), veh/h			616		417	645		130		182			
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1596		1661	1730		1695		1428			
Queue Service	Time (g s), S			30.6		11.3	12.5		7.8		13.6			
Cycle Queue C	learanc	e Time (<i>g c</i>), s			30.6		11.3	12.5		7.8		13.6			
Green Ratio (g	/C)				0.56		0.69	0.81		0.15		0.15			
Capacity (c), v	eh/h				891		513	1399		258		218			
Volume-to-Capa	acity Ra	itio (X)			0.692		0.813	0.461		0.505		0.834			
Back of Queue	(Q), n	n/ln (50 th percentile	e)		89.4		37	20.1		25		46.1			
Back of Queue	(Q), ve	eh/ln (50 th percent	ile)		10.9		4.7	2.5		3.3		5.8			
Queue Storage	Ratio (RQ) (50 th percent	tile)		0.18		0.17	0.04		0.17		0.09			
Uniform Delay (d 1), s	/veh			17.5		15.8	4.0		42.8		45.3			
Incremental Del	lay (d 2), s/veh			4.4		3.8	1.1		0.6		17.9			
Initial Queue De		,			0.0		0.0	0.0		0.0		0.0			
Control Delay (d), s/ve	eh			21.9		19.6	5.1		43.4		63.2			
Level of Service	(LOS)				С		В	А		D		E			
Approach Delay				21.9		С	10.8	3	В	54.9		D	0.0		
Intersection Del						21	1.2					(С		
Multimodal Re	sulte				EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.17		В	1.95		В	2.10		В	1.75	_	В
		,		2.17			1.30	-		2.10			1.73		

EXHIBIT 4.36 2024 BACKGROUND PEAK AM HOUR ANALYSIS - Stagecoach/Mitch Owens

		HCS	Sign	alize	d Inte	rsect	ion R	esult	s Sun	nmary					
General Inform	ation								ntersec	tion Info	ormatio	on	Į.	4 7 4 1	ja l
Agency								\rightarrow	Duration		0.250				
Analyst				Analys	is Date	Feb 1	7, 2023	-	Area Typ	,	Other				
Jurisdiction		City of Ottawa		Time F		_	AM Hou	$\overline{}$	PHF	,,,	0.92		♦ •		÷
Urban Street		Stagecoach Road			is Year	_		\rightarrow	Analysis	Period	1> 7:	00	-		
Intersection		Stagecoach/Mitch (Owens	File Na		_	bak an	_	ulalyolo	Tenou	11. 7.0	00			_
Project Descript	tion	MacEwen Service (_	Dak_an	1.743					- 6	4 1 4 Y	1 14 1
r roject Descript	1011	INIACEWEIT OCTVICE V	Jenue -	Dackgr	ouria Ai	VI									
Demand Inforn	nation				EB			WE	3	$\overline{}$	NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				347	61	118	513	3	178		471			
, ,															
Signal Informa	tion				_			Т							
Cycle, s	100.0	Reference Phase	2		1	† ¥	5	al			×		→ .		
Offset, s	0	Reference Point	Begin	Green	5.2	41.2	33.7	0.0	0.0	0.0		7	y 2	3	
Uncoordinated	No	Simult. Gap E/W	Off	Yellow		4.6	4.2	0.0	0.0	0.0		'	7		K.
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.2	2.2	2.1	0.0	0.0	0.0		5	6	7	Y
Timer Results				EBL		EBT	WB	L	WBT	NBL	-	NBT	SBL	.	SBT
Assigned Phase	Э					2	1		6			8			
Case Number						8.3	1.0		4.0			9.0			
Phase Duration	, s					48.0	12.0		60.0			40.0			
Change Period,	(Y+R	c), s				6.8	6.8		6.8			6.3			
Max Allow Head	dway (/	<i>MAH</i>), s				0.0	3.0		0.0			3.4		\neg	
Queue Clearan	ce Time	e (gs), s					7.0					34.9			
Green Extensio	n Time	(g e), s				0.0	0.0		0.0			0.0			
Phase Call Prob	ability						0.97	,				1.00			
Max Out Probal	oility						1.00)				1.00			
Movement Gro	up Res	ults			EB		_	WB	_		NB	_		SB	_
Approach Move	ment			L	T	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				2	12	1	6		3		18			
Adjusted Flow F	Rate (v), veh/h			392		128	558		193		488			T
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1661		1447	1589		1632		1456			
Queue Service	Time (g	g s), S			17.9		5.0	21.1		8.8		32.9			
Cycle Queue C	learanc	e Time (<i>g c</i>), s			17.9		5.0	21.1		8.8		32.9			
Green Ratio (g.	/C)				0.42		0.48	0.61		0.35		0.35			
Capacity (c), v	eh/h				701		368	970		566		505			
Volume-to-Capa	acity Ra	itio (X)			0.560		0.348	0.575		0.342		0.966			
Back of Queue	(Q), n	n/ln (50 th percentile	e)		56.7		13.2	57.4		26.4		120.1			
		eh/ln (50 th percent			6.9		1.5	6.7		3.3		15.4			
Queue Storage	Ratio (RQ) (50 th percent	tile)		0.11		0.06	0.11		0.18		0.24			
Uniform Delay (, t			21.9		16.5	13.6		24.2		32.1			
Incremental Del					3.2		0.2	2.5		0.1		31.2			
Initial Queue De		,			0.0		0.0	0.0		0.0		0.0			
Control Delay (25.1		16.7	16.1		24.3		63.2			
Level of Service					С		В	В		С		E			
Approach Delay				25.1		С	16.2	_	В	52.2		D	0.0		
Intersection Del						32	_						3		
Multimodal Re	sults				EB			WB			NB			SB	
aitiiiiJuai Ne		// 00		2.16		В	1.95		В	2.10		В	1.78	_	В
Pedestrian LOS	Score	/108													

EXHIBIT 4.37 2024 BACKGROUND PEAK PM HOUR ANALYSIS - Stagecoach/Mitch Owens

		нся	S Sign	nalize	d Inte	rsect	ion R	esult	ts Sun	nmary	,				
General Inform	nation								Intersec	tion Info	ormati	on	2	4 74	1 1/2
Agency									Duration						
Analyst				Analys	sis Date	Feb 1	7, 2023		Area Typ	Type Other					
Jurisdiction		City of Ottawa		Time F	Period	Peak	PM Hou	ır l	PHF		0.92		⊕ ¬₹	w∯ı	
Urban Street		Stagecoach Road		Analys	sis Year	Year 2	2024	- 4	Analysis	Period	1> 7:	00	7		
Intersection		Stagecoach/Mitch (Owens	File Na	File Name 2024_bak_pm.xus									ጎሰ	
Project Description MacEwen Service Centre -					ound P	M							ħ	4 1 4	YH
Demand Inform				L	EB	,	-	WE	_	-	NB		-	SE	_
Approach Movement					T	R	<u> </u>	T	R	<u> </u>	T	R	<u> </u>	T	R
Demand (v), veh/h					498	150	424	655	5	132		209	_	_	
Signal Informa	tion						à	_	_	_					
Cycle, s	110.0	Reference Phase	2	1	5	╡ <u></u>		4				<u>_</u> _	_ \		
Offset, s	0	Reference Point	Begin				1					1	Y 2	;	3 4
Uncoordinated	No	Simult. Gap E/W	Off	Green		51.0	15.7	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap E/V	Off	Yellow Red	4.6	4.6 2.2	4.2 2.1	0.0	0.0	0.0		F	Y		Y
1 orce Mode	i ixed	Official Gap 19/5	Oll	Neu		۷.۷	Z. I	0.0	10.0	10.0		3	0		
Timer Results				EBI		EBT	WB	L	WBT	NBL		NBT	SBI		SBT
Assigned Phase	e					2	1		6			8			
Case Number						8.3	1.0		4.0			9.0			
Phase Duration	ı. S					57.8	30.2	_	88.0			22.0		\neg	
Change Period		c), s				6.8	6.8	-	6.8			6.3		\rightarrow	
Max Allow Head	_	,				0.0	3.0	-	0.0			3.3		\neg	
Queue Clearan						0.0	23.3	-	0.0			17.5		\rightarrow	
Green Extension				_	_	0.0	0.1	_	0.0	_	_	0.0	_	\neg	
Phase Call Prol		(90),0				0.0	1.00	-	0.0			1.00		\rightarrow	
Max Out Proba					\neg		1.00	_			\neg	1.00		\neg	
								14.5							
Movement Gro		sults			EB					NB L T R			SB I T R		
Approach Move				L	T	R	L	Т	R		T	_	L	Т	R
Assigned Move					2	12	1	6	-	3		18			
Adjusted Flow F				\vdash	682		461	712		143		203		_	
		ow Rate (s), veh/h/	In		1595		1661	1730		1695		1428			
Queue Service					43.2		21.3	14.7		8.6		15.5			
Cycle Queue C		e Time (g_c) , s			43.2		21.3	14.7		8.6		15.5			
Green Ratio (g					0.47		0.69	0.81		0.15		0.15			
Capacity (c), v					755		494	1400	_	257		217			
Volume-to-Capa					0.902		_	0.509	-	0.557		0.937		_	
		n/ln (50 th percentile			148.5		114.2	23.5		28.3		63.5			
		eh/ln (50 th percent			18.1		14.5	3.0		3.7		8.0			
		RQ) (50 th percent	tile)		0.30		0.52	0.05		0.19		0.13			
Uniform Delay					26.6		28.9	4.3		43.2		46.1			
Incremental Delay (d 2), s/veh					16.1		23.7	1.3		1.6		43.3			
Initial Queue Delay (d 3), s/veh					0.0		0.0	0.0	1	0.0		0.0			
Control Delay (d), s/veh					42.7		52.6	5.6		44.9		89.5			
Level of Service		D	_	D	Α		D		F		<u></u>				
Approach Delay	42.7	'	D	24.0	0	С	71.0		E	0.0					
Intersection De	_		37	7.2											
Multimodal Re		EB			WB			NB			SB				
		/1.08		2.17		R	1.0	_	B	2.10		B	1.75	_	
Pedestrian LOS				1.61	-	В	1.9	-	В	2.10	,	B F	-	-	B
Bicycle LOS Score / LOS						В	2.24	4	В			Г	0.00	,	Α

EXHIBIT 4.38 2029 BACKGROUND PEAK AM HOUR ANALYSIS - Stagecoach/Mitch Owens

		HCS	Sign	alize	d Inte	rsect	ion R	esul	ts Sur	nmary						
General Inform	ation								Interse	tion Info	ormati	on	J	4 74 1	Ja U	
Agency	iauon							\rightarrow	Duration		0.250					
Analyst				Analys	ic Date	Feb 1	7, 2023	\rightarrow	Area Ty							
Jurisdiction		City of Ottawa		Time F		_	AM Hou	\rightarrow	PHF	, c	Other		2 -		·-	
Urban Street		Stagecoach Road				_		\rightarrow		Dorind	_	00	4			
Intersection		_	Julana		Analysis Year Year 2029 Analysis Period 1> 7:00 File Name 2029 bak am.xus								-			
	t:	Stagecoach/Mitch (_bak_an	II.XUS						1	1 10 0	
Project Description MacEwen Service Centre -					ourid Ai	VI	_	-	_	_	-	_	_	, . , . , . , . , .	,,,,,,,,,,	
Demand Inforn	nation				EB			WE	3		NB			SB		
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R	
Demand (v), veh/h					383	67	130	566	_	197	<u> </u>	520	<u> </u>	<u> </u>	+ '`	
							100					020				
Signal Informa	tion					Τ.	1	\top	\neg	\neg						
Cycle, s	100.0	Reference Phase	2	1	2	₹	- In	all			l l		→			
Offset, s	0	Reference Point	Begin	Gran	0.0	22.2	20.0		0.0	0.0		1	2	3		
Uncoordinated	No	Simult. Gap E/W	Off	Green Yellow		33.3 4.6	38.8	0.0	0.0	0.0					K	
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.2	2.2	2.1	0.0	0.0	0.0		5	6	7	Y	
Timer Results				EBL		EBT	WB	L	WBT	NBL		NBT	SBL		SBT	
Assigned Phase	e				\neg	2	1	\neg	6		\neg	8		\neg		
Case Number						8.3	1.0		4.0			9.0		\neg		
Phase Duration	. s					40.1	14.8	3	54.9		\neg	45.1		\neg		
Change Period,	(Y+R	c), s				6.8	6.8	-	6.8			6.3				
	•	,				0.0	3.0	-	0.0			3.4		\neg		
Max Allow Headway (<i>MAH</i>), s Queue Clearance Time (<i>g s</i>), s							8.1	-				37.6		\rightarrow		
Green Extensio					\neg	0.0	0.0	-	0.0		\neg	1.2		\neg		
Phase Call Prob		(90),0				0.0	0.98	-	0.0			1.00		\rightarrow		
Max Out Probal							1.00	-				0.35		工		
Movement Gro	up Res	sults		EB WE				WB			NB			SB		
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Move	ment				2	12	1	6		3		18				
Adjusted Flow F	Rate (v), veh/h			433		141	615		214		541				
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	ln		1661		1447	1589		1632		1457				
Queue Service					23.1		6.1	27.8		9.1		35.6				
Cycle Queue C	learanc	e Time (<i>g c</i>), s			23.1		6.1	27.8		9.1		35.6				
Green Ratio (g.	/C)				0.34		0.43	0.56		0.40		0.40				
Capacity (c), v					570		294	889		649		580				
Volume-to-Capa		atio (X)			0.759		0.481	0.692	2	0.330		0.934				
		n/ln (50 th percentile	e)		81.1		16.8	81.6		27		114.8				
		eh/ln (50 th percent			9.9		1.9	9.6		3.4		14.7				
		RQ) (50 th percent			0.16		0.08	0.16		0.18		0.23				
		- , , , ,	,		29.2		21.0	18.3	_	20.9		28.8				
Uniform Delay (d 1), s/veh Incremental Delay (d 2), s/veh					9.2		0.5	4.4		0.1		18.6				
Initial Queue Delay (d 2), s/veh					0.0		0.0	0.0		0.0		0.0				
Control Delay (d), s/veh					38.4		21.5	22.7		21.0		47.5				
Level of Service (LOS)					D		C	C		C		D				
Approach Delay	38.4	_	D	22.5		C	40.0		D	0.0						
Intersection Del	55.5			2.8			10.0			0.0						
Multimodal Results					EB			WB			NB			SB		
Pedestrian LOS		/LOS		2.16	_	В	1.95		В	2.10		В	1.79	_	SB B	
. Jaconian Loc	1.20	\rightarrow	A	1.56	-	В	2.10		F	0.00	-	A				

EXHIBIT 4.39 2029 BACKGROUND PEAK PM HOUR ANALYSIS - Stagecoach/Mitch Owens

		нся	S Sigr	nalized	d Inte	rsect	ion R	esult	ts Sun	nmary						
General Inform	nation								Intersec	tion Info	ormatio	on		414	, j. l.	
Agency									Duration							
Analyst				Analys	is Date	Feb 1	7, 2023		Area Typ	е	Other	<i>z</i> ,				
Jurisdiction		City of Ottawa		Time F	eriod	Peak I	РМ Ног	ır	PHF		0.92		⊕ ¬ *			
Urban Street		Stagecoach Road		Analys	is Year	Year 2	2029	- 4	Analysis	Period	1> 7:	00	*			
Intersection		Stagecoach/Mitch (Owens	File Na	File Name 2029_bak_pm.xus									ጎተ		
Project Description MacEwen Service Centre -					ound Pl	M							ħ	414	7 14 17	
Demand Inform				L	EB		-	WE	_		NB	_	-	SB	_	
Approach Movement					Т	R	L	T	R	느	T	R	느	T	R	
Demand (v), veh/h					550	166	468	723	3	146		231	_		_	
Signal Informa	tion						1		$\overline{}$	_						
Cycle, s	110.0	Reference Phase	2	1	5	≓L⊾ ≵	∥	_				<u>_</u> _	_			
Offset, s	0	Reference Point	Begin				1	4				1	Y 2	3	4	
Uncoordinated	No	Simult. Gap E/W	Off	Green		50.2	15.7	0.0	0.0	0.0						
Force Mode	Fixed	Simult. Gap E/V	Off	Yellow Red	2.2	4.6	2.1	0.0	0.0	0.0		E		7	Y	
Force Mode	rixeu	Simult. Gap N/S	Oil	Neu	2.2	2.2	2.1	0.0	0.0	0.0		0	0	,		
Timer Results				EBL		EBT	WB	L	WBT	NBL		NBT	SBL		SBT	
Assigned Phase	 е					2	1	_	6			8		_		
Case Number						8.3	1.0		4.0			9.0		\rightarrow		
Phase Duration				_		57.0	31.0	_	88.0			22.0		_		
Change Period,		c) s		_		6.8	6.8	-	6.8			6.3				
Max Allow Head	_	,		_	_	0.0	3.0	_	0.0	_	_	3.3	_	_		
Queue Clearan				_		0.0	27.2	-	0.0			18.7		_		
Green Extensio				_	-	0.0	0.0	_	0.0	_		0.0		-		
Phase Call Prol		(<i>g e)</i> , s		-		0.0	1.00	-	0.0	_		1.00		_		
Max Out Probal				_	_		1.00	_		_	_	1.00		-		
Wax Cut I Toba	Dinity						1.00					1.00				
Movement Gro	up Res	sults			EB WB					NB			SB			
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Move	ment				2	12	1	6		3		18				
Adjusted Flow F	Rate (v), veh/h			753		509	786		159		227				
Adjusted Satura	ation Flo	ow Rate (s), veh/h/	ln		1595		1661	1730		1695		1428				
Queue Service	Time (g s), s			51.2		25.2	17.5		9.6		16.7				
Cycle Queue C	learanc	e Time (<i>g c</i>), s			51.2		25.2	17.5		9.6		16.7				
Green Ratio (g	/C)				0.47		0.69	0.81		0.15		0.15				
Capacity (c), v	/eh/h				742		446	1400		257		217				
Volume-to-Capa	acity Ra	atio (X)			1.014		1.141	0.562	2	0.617		1.048				
		n/In (50 th percentil	e)		206		168	28.7		32.4		81.6				
Back of Queue	(Q), v	eh/ln (50 th percent	ile)		25.0		21.4	3.6		4.2		10.3				
Queue Storage	Ratio (RQ) (50 th percen	tile)		0.41		0.76	0.06		0.22		0.16				
Uniform Delay ((d 1), s	/veh			29.4		35.6	4.6		43.7		46.6				
Incremental De					36.7		87.1	1.6		3.3		74.2				
Initial Queue Delay (d 3), s/veh					0.0		0.0	0.0		0.0		0.0				
Control Delay (d), s/veh					66.1		122.7	6.2		46.9		120.8				
Level of Service (LOS)					F		F	Α		D		F				
Approach Delay	66.1		Е	52.0	5	D	90.4		F	0.0						
Intersection Del				2.4						E						
Multimodal Re	Multimodal Results							WB			NB			SB	SB	
Pedestrian LOS	Score	/LOS		2.17		В	1.95	5	В	2.10		В	1.75	j	В	
Bicycle LOS Sc	ore / LO	os		1.73		В	2.45	5	В			F	0.00)	Α	

EXHIBIT 4.40 2024 TOTAL PEAK AM HOUR ANALYSIS - Stagecoach/Mitch Owens

		HCS	Sigr	nalize	d Inte	ersect	ion R	esult	s Sur	nmary					
General Inform	ation								ntersec	tion Info	ormatio	on	Į.	4 74 1	Ja U
Agency								\rightarrow	Duration		0.250				
Analyst				Analys	is Date	Feb 1	7, 2023		Area Typ		<i>1</i>				
Jurisdiction		City of Ottawa		Time F			AM Hou	-	PHF	-	Other		→→→		<u>+</u>
Urban Street		Stagecoach Road						-		Period	1> 7:	00			
Intersection		Stagecoach/Mitch (Owens		Analysis Year Year 2024 Analysis Period 1> 7:00 File Name 2024 tot am.xus										
Project Descrip	tion	MacEwen Service (2024_	tot_am.	.xus						1144	7 4
1 Toject Descrip	Total A	VI													
Demand Information					EB		$\overline{}$	WE	3	$\overline{}$	NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h					349	61	126	516	3	176		480			
, ,															
Signal Informa	tion				_		_	\top							
Cycle, s	100.0	Reference Phase	2		2	†≉ ¥	5	2					→ .		
Offset, s	0	Reference Point	Begin	Green	5.2	41.2	33.7	0.0	0.0	0.0		1	x Z	3	
Uncoordinated	No	Simult. Gap E/W	Off	Yellow		4.6	4.2	0.0	0.0	0.0			7		K
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.2	2.2	2.1	0.0	0.0	0.0		5	6	7	ľ
Timer Results				EBI	-	EBT	WB	L	WBT	NBL		NBT	SBL	. [SBT
Assigned Phase	Э					2	1		6			8			
Case Number						8.3	1.0		4.0			9.0			
Phase Duration	, s					48.0	12.0		60.0			40.0		\neg	
Change Period,	(Y+R	c), s				6.8	6.8		6.8			6.3			
Max Allow Head	dway (/	<i>MAH</i>), s				0.0	3.0		0.0			3.4		\neg	
Queue Clearance Time (g s), s							7.4					35.9			
Green Extensio	n Time	(g e), s				0.0	0.0		0.0			0.0		\neg	
Phase Call Prol	ability						0.98	3				1.00			
Max Out Proba	oility						1.00)				1.00			
Movement Gro	up Res	ults		EB WE				WB			NB			SB	-
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				2	12	1	6		3		18			
Adjusted Flow F	Rate (v), veh/h			393		137	561		191		498			
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	ln		1662		1447	1589		1632		1456			
Queue Service	Time (g s), S			17.9		5.4	21.3		8.7		33.9			
Cycle Queue C	earanc	e Time (<i>g c</i>), s			17.9		5.4	21.3		8.7		33.9			
Green Ratio (g	/C)				0.42		0.48	0.61		0.35		0.35			
Capacity (c), v	eh/h				701		368	970		566		505			
Volume-to-Capa	acity Ra	itio (X)			0.561		0.372	0.578		0.338		0.985			
Back of Queue	(Q), n	n/ln (50 th percentile	e)		56.9		14.2	58		26.1		128.1			
		eh/ln (50 th percent			7.0		1.6	6.8		3.3		16.4			
Queue Storage	Ratio (RQ) (50 th percent	tile)		0.11		0.06	0.12		0.17		0.26			
Uniform Delay (, t			21.9		16.6	13.6		24.2		32.4			
Incremental Delay (d 2), s/veh					3.2		0.2	2.5		0.1		36.0			
Initial Queue Delay (d 3), s/veh					0.0		0.0	0.0		0.0		0.0			
Control Delay (d), s/veh					25.1		16.9	16.1		24.3		68.4			
Level of Service (LOS)					С		В	В		С		E			
Approach Delay, s/veh / LOS						С	16.3	_	В	56.1		E	0.0		
Intersection De	25.1			3.7						C					
Multimodel Peculto					EB			WB			NB			SB	
Multimodal Results Pedestrian LOS Score / LOS					EB			VVB			IND			SB	
	Coore	/1.08		2.16		В	1.95		В	2.10		В	1.79		В

EXHIBIT 4.41 2024 TOTAL PEAK PM HOUR ANALYSIS - Stagecoach/Mitch Owens

_		HCS	S Sigr	alize	d Inte	rsect	ion R	esult	s Sun	nmary					
General Inform	nation								ntersec	tion Info	ormatio	on	Į.	4 74 1	Ja U
Agency	10011							\rightarrow	Duration)					
Analyst				Analys	sis Date	Feb 1	7. 2023	_	Area Typ						
Jurisdiction		City of Ottawa		Time F		_	PM Hou	-	PHF	,,,	Other				<u>+</u>
Urban Street		Stagecoach Road									1> 7:	00	- ₹		
Intersection		Stagecoach/Mitch (Owens		File Name 2024 tot pm.xus										
Project Descrip	tion	MacEwen Service (2024_	tot_piii	Aus					- 6	1144	74
WideEwell dervice define					IVI										
Demand Information					EB		$\overline{}$	WE	3	$\overline{}$	NB			SB	
Approach Move	ment			L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), veh/h					499	150	435	659)	130		216			
, ,															
Signal Informa	tion							\top							
Cycle, s	110.0	Reference Phase	2		5	†≠ ¥	-	2					→ .		
Offset, s	0	Reference Point	Begin	Green	24 2	50.2	15.7	0.0	0.0	0.0		1	2	3	
Uncoordinated	No	Simult. Gap E/W	Off	Yellow		4.6	4.2	0.0	0.0	0.0			7		K
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.2	2.2	2.1	0.0	0.0	0.0		5	6	7	<u> </u>
Timer Results				EBI	-	EBT	WB	L	WBT	NBL		NBT	SBL	. [SBT
Assigned Phase	Э					2	1		6			8			
Case Number						8.3	1.0		4.0			9.0			
Phase Duration	, s					57.0	31.0		88.0			22.0		\neg	
Change Period,	(Y+R	c), S				6.8	6.8		6.8			6.3			
Max Allow Head	dway (/	<i>MAH</i>), s				0.0	3.0		0.0			3.3		\neg	
Queue Clearance Time (g_s), s							25.0					18.2			
Green Extensio	n Time	(g e), s				0.0	0.0		0.0			0.0		\neg	
Phase Call Prol	bability						1.00					1.00			
Max Out Proba	bility						1.00)				1.00			
Movement Gro	up Res	sults		EB WE				WB			NB			SB	-
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				2	12	1	6		3		18			
Adjusted Flow F	Rate (v), veh/h			682		473	716		141		211			Т
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	ln		1596		1661	1730		1695		1428			
Queue Service	Time (g	g s), s			43.8		23.0	14.8		8.5		16.2			
Cycle Queue C	learanc	e Time (<i>g c</i>), s			43.8		23.0	14.8		8.5		16.2			
Green Ratio (g	/C)				0.47		0.69	0.81		0.15		0.15			
Capacity (c), v	eh/h				743		496	1400		257		217			
Volume-to-Capa	acity Ra	atio (X)			0.917		0.953	0.512		0.549		0.972			
Back of Queue	(Q), n	n/In (50 th percentile	e)		153.5		122.7	23.8		27.8		69.9			
		eh/ln (50 th percent			18.7		15.6	3.0		3.6		8.8			
Queue Storage	Ratio (RQ) (50 th percent	tile)		0.31		0.56	0.05		0.19		0.14			
Uniform Delay ((d1), s	/veh			27.4		30.1	4.3		43.2		46.4			
Incremental Delay (d 2), s/veh					18.1		28.6	1.3		1.4		52.8			
Initial Queue Delay (d 3), s/veh					0.0		0.0	0.0		0.0		0.0			
Control Delay (d), s/veh					45.5		58.8	5.6		44.6		99.3			
Level of Service (LOS)					D		Е	Α		D		F			
Approach Delay, s/veh / LOS					5	D	26.7	_	С	77.3		E	0.0		-
Intersection Delay, s/veh / LOS).5)		
Multimodal Results					EB			WB			NB			QD.	
wullimodal Re	2.17		В	1.95		В	2.10	_	В	1.75		SB B			
	C	Pedestrian LOS Score / LOS Bicycle LOS Score / LOS													

EXHIBIT 4.42 2029 TOTAL PEAK AM HOUR ANALYSIS - Stagecoach/Mitch Owens

		HCS	S Sigr	alize	d Inte	ersect	tion R	esult	ts Sun	nmary					
General Inform	nation								Intersec	tion Info	ormati	on	2	4 74 1	Ja L
Agency								\rightarrow	Duration						
Analyst				Analys	is Date	E Feb 1	7, 2023	_	Area Tyr) r					
Jurisdiction		City of Ottawa		Time F		_	AM Hou	-	PHF	-	Other		→→→		<u>+</u>
Urban Street		Stagecoach Road									1> 7:	00			
Intersection		Stagecoach/Mitch (Owens		File Name 2029 tot am.xus										_
Project Descript	tion	MacEwen Service (2023	_tot_am	.xus						1144	7 4
wideEwell edivide centre					VI										
Demand Inforn	nation				EB		$\overline{}$	WE	3	$\overline{}$	NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h					385	67	138	569	9	195		529			
Signal Informa	tion				-		┙								
Cycle, s	100.0	Reference Phase	2		è	ˈ ≒	5	2			•		7		
Offset, s	0	Reference Point	Begin	Green	8.5	32.2	39.4	0.0	0.0	0.0		'	2 4	3	
Uncoordinated	No	Simult. Gap E/W	Off	Yellow		4.6	4.2	0.0	0.0	0.0			7		K
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.2	2.2	2.1	0.0	0.0	0.0		5	6	7	
Timer Results				EBI	-	EBT	WB	L	WBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	9					2	1		6			8			
Case Number						8.3	1.0		4.0			9.0			
Phase Duration	, S					39.0	15.3	3	54.3			45.7			
Change Period,	(Y+R	c), S				6.8	6.8		6.8			6.3			
Max Allow Head	dway (I	<i>MAH</i>), s				0.0	3.0		0.0			3.4			
Queue Clearance Time (g s), s							8.6					38.3			
Green Extensio	n Time	(g _e), s				0.0	0.0		0.0			1.1			
Phase Call Prob	bability						0.98	3				1.00			
Max Out Probal	bility						1.00)				0.46			
Movement Gro	up Res	sults		EB WE				WB			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				2	12	1	6		3		18			
Adjusted Flow F	Rate (v), veh/h			434		150	618		212		551			
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	ln		1662		1447	1589		1632		1457			
Queue Service	Time (g s), s			23.6		6.6	28.5		8.9		36.3			
Cycle Queue C	learanc	e Time (<i>g c</i>), s			23.6		6.6	28.5		8.9		36.3			
Green Ratio (g	/C)				0.33		0.43	0.55		0.40		0.40			
Capacity (c), v	eh/h				552		288	879		659		588			
Volume-to-Capa	acity Ra	atio (X)			0.786		0.520	0.704	I	0.322		0.937			
Back of Queue	(Q), n	n/In (50 th percentile	e)		84.4		18.3	84.2		26.3		117.6			
		eh/ln (50 th percent			10.3		2.1	9.9		3.3		15.1			
Queue Storage	Ratio (RQ) (50 th percent	tile)		0.17		0.08	0.17		0.18		0.24			
Uniform Delay (d 1), s	/veh			30.2		21.7	18.8		20.4		28.6			
Incremental Delay (d 2), s/veh					10.8		0.5	4.7		0.1		19.3			
Initial Queue Delay (d 3), s/veh					0.0		0.0	0.0		0.0		0.0			
Control Delay (d), s/veh					41.0		22.3	23.5		20.5		47.9			
Level of Service (LOS)					D		С	С		С		D			
Approach Delay, s/veh / LOS						D	23.3	3	С	40.3		D	0.0		
Intersection Del			3	3.8					(С					
Multimodal Results					EB			WB			NB			SB	
Pedestrian LOS		/LOS		2.16		В	1.95		В	2.10		В	1.79	_	В
Bicycle LOS Sc		1.20	-	A	1.58	-	В			F	0.00	-	A		

EXHIBIT 4.43 2029 TOTAL PEAK PM HOUR ANALYSIS - Stagecoach/Mitch Owens

		нся	Sign	alize	d Inte	ersect	ion R	esult	ts Sun	nmary					
General Inform	nation									tion Info			i i	4 74 4	2 4
Agency								$\overline{}$	Duration	,	0.250		-		<u>-</u>
Analyst						Feb 1		-	Area Ty						- 4
Jurisdiction		City of Ottawa		Time F			PM Hou		PHF		0.92		4		- -
Urban Street		Stagecoach Road		Analys	is Year	Year 2	2029		Analysis	Period	1> 7:0	00	7		¥
Intersection		Stagecoach/Mitch (Owens	File Na	File Name 2029_tot_pm.xus									ጎሰ	
Project Descrip	tion	MacEwen Service (Centre -	Total Pl	М								ħ	4 1 4 4	141
Demand Information					EB		_	WE	3	_	NB			SB	
Approach Movement					T	R	T.	T	R	L	T	R	L	T	R
Demand (v), veh/h					551	166	479	727		144		238	 		1
Signal Informa	tion				-							_			
Cycle, s	110.0	Reference Phase	2		l è	⊤⊨: <u>*</u>	1 5	2			×		→ 。	0	,
Offset, s	0	Reference Point	Begin	Green	24.2	50.2	15.7	0.0	0.0	0.0		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	Off	Yellow		4.6	4.2	0.0	0.0	0.0		•	7		K.2
Force Mode	Fixed	Simult. Gap N/S	Off	Red	2.2	2.2	2.1	0.0	0.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	WB	L	WBT	NBL		NBT	SBL		SBT
Assigned Phase						2	1		6			8			
Case Number						8.3	1.0		4.0			9.0			
Phase Duration					_	57.0	31.0	-	88.0		_	22.0		\perp	
Change Period,	•	,			_	6.8	6.8	-	6.8			6.3		_	
Max Allow Head	dway (/	<i>MAH</i>), s			\perp	0.0	3.0	-	0.0		\perp	3.3		\perp	
Queue Clearan	ce Time	e (gs), s					27.2	2				18.7			
Green Extensio	n Time	(g e), s				0.0	0.0	_	0.0			0.0		_	
Phase Call Prol	bability						1.00	_				1.00		_	
Max Out Proba	bility					_	1.00)	_			1.00		_	
Movement Gro	up Res	sults		EB WB						NB	_		SB		
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move					2	12	1	6		3		18			
Adjusted Flow F), veh/h			755		521	790		157		235			
		ow Rate (s), veh/h/l	n		1595		1661	1730		1695		1428			
Queue Service					51.2		25.2	17.7	_	9.5		16.7			
Cycle Queue C					51.2		25.2	17.7		9.5		16.7			
Green Ratio (g	/C)				0.47		0.69	0.81		0.15		0.15			
Capacity (c), v	reh/h				742		446	1400		257		217			
Volume-to-Capa	acity Ra	ntio (X)			1.018		1.168	0.565	5	0.608		1.083			
Back of Queue	(Q), n	n/ln (50 th percentile	e)		207.4		177.9	29.1		31.8		86.7			
		eh/ln (50 th percent			25.2		22.6	3.7		4.1		10.9			
Queue Storage	Ratio (RQ) (50 th percent	tile)		0.41		0.81	0.06		0.21		0.17			
Uniform Delay ((d1), s	/veh			29.4		35.6	4.6		43.6		46.6			
Incremental Delay (d 2), s/veh					37.5		97.2	1.7		3.0		84.9			
Initial Queue Delay (d 3), s/veh					0.0		0.0	0.0		0.0		0.0			
Control Delay (d), s/veh					66.9		132.8	6.2		46.6		131.5			
Level of Service (LOS)					F		F	Α		D		F			
Approach Delay	66.9		Е	56.5	5	Е	97.5		F	0.0					
Intersection De			66	3.2					-	E					
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				2.17	_	В	1.95	-	В	2.10		В	1.75	-	В
Bicycle LOS Sc	1.74		В	2.47	7	В			F	0.00		Α			