

Phase II – Environmental Site Investigation

137-141 George Street and 110-116 York Ottawa, Ontario

Prepared for Claridge Homes

Report: PE2709-5 Date: September 10, 2024

TABLE OF CONTENTS

EXEC	UTIV	E SUMMARY	…iv
1.0	INTR	ODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	1
	1.3	Current and Proposed Future Uses	2
	1.4	Applicable Site Condition Standard	2
2.0	BAC	GROUND INFORMATION	3
	2.1	Physical Setting	3
	2.2	Past Investigations	
3.0	SCO	PE OF INVESTIGATION	7
	3.1	Overview of Site Investigation	7
	3.2	Media Investigated	8
	3.3	Phase I Conceptual Site Model	8
	3.4	Deviations from Sampling and Analysis Plan	. 12
	3.5	Impediments	. 12
4.0	INVE	STIGATION METHOD	. 12
	4.1	Subsurface Investigation	. 12
	4.2	Soil Sampling	. 13
	4.3	Field Screening Measurements	. 13
	4.4	Groundwater Monitoring Well Installation	. 14
	4.5	Field Measurement of Water Quality Parameters	. 15
	4.6	Groundwater Sampling	. 15
	4.7	Analytical Testing	. 15
	4.8	Residue Management	. 20
	4.9	Elevation Surveying	. 20
	4.10	Quality Assurance and Quality Control Measures	. 20
5.0	REVI	EW AND EVALUATION	. 20
	5.1	Geology	
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	. 21
	5.3	Fine-Coarse Soil Texture	. 22
	5.4	Soil: Field Screening	. 22
	5.5	Soil Quality	. 22
	5.6	Groundwater Quality	. 25
	5.7	Quality Assurance and Quality Control Results	. 26
	5.8	Phase II Conceptual Site Model	. 30
6.0	CON	CLUSIONS	. 37
7.0	STAT	EMENT OF LIMITATIONS	. 40

List of Figures

Drawing PE2709-11 – Test Hole Location Plan

Analtyical Testing Plans - Soil

Drawing PE2709-12 – Analytical Testing Plan – Soil – Metals Drawing PE2709-12A – Cross Section A-A' – Soil – Metals Drawing PE2709-12A – Cross Section B-B' – Soil - Metals Drawing PE2709-12A – Cross Section C-C' – Soil – Metals

Drawing PE2709-13 – Analytical Testing Plan – Soil – PAHs Drawing PE2709-13A – Cross Section A-A' – Soil - PAHs Drawing PE2709-13B – Cross Section B-B' – Soil – PAHs Drawing PE2709-13C– Cross Section C-C' – Soil – PAHs

Drawing PE2709-14 – Analytical Testing Plan – Soil – PHCs Drawing PE2709-14A – Cross Section A-A' – Soil - PHCs Drawing PE2709-14B – Cross Section B-B' – Soil - PHCs Drawing PE2709-14C – Cross Section C-C' – Soil – PHCs

Drawing PE2709-15 – Analytical Testing Plan – Soil – BTEX Drawing PE2709-15A – Cross Section A-A' – Soil - BTEX Drawing PE2709-15B – Cross Section B-B' – Soil - BTEX Drawing PE2709-15C – Cross Section C-C' – Soil – BTEX

Drawing PE2709-16 – Analytical Testing Plan – Soil – VOCs Drawing PE2709-16A – Cross Section A-A' – Soil – VOCs Drawing PE2709-16B – Cross Section B-B' – Soil - VOCs Drawing PE2709-16C – Cross Section C-C' – Soil – VOCs

Analtyical Testing Plans – Groundwater

Drawing PE2709-17– Analytical Testing Plan – Groundwater – BTEX, VOCs Drawing PE2709-17A – Cross Section A-A' – Groundwater – BTEX, VOCs Drawing PE2709-17B – Cross Section B-B' – Groundwater – BTEX, VOCs Drawing PE2709-17C – Cross Section C-C' – Groundwater – BTEX, VOCs

Drawing PE2709-18– Analytical Testing Plan – Groundwater – Metals, Hg, CrVI, PAHs Drawing PE2709-18A – Cross Section A-A' – Groundwater – Metals, Hg, CrVI, PAHs Drawing PE2709-18B – Cross Section B-B' – Groundwater – Metals, Hg, CrVI, PAHs Drawing PE2709-18C – Cross Section C-C' – Groundwater – Metals, Hg, CrVI, PAHs

Drawing PE2709-19– Analytical Testing Plan – Groundwater – PHCs Drawing PE2709-19A – Cross Section A-A' – Groundwater – PHCs Drawing PE2709-19B – Cross Section B-B' – Groundwater – PHCs

Drawing PE2709-19C – Cross Section C-C' – Groundwater – PHCs

List of Tables

Table A1: Soil Analytical Test Results Compared to MECP Table 3 Standards Residential Property Use

Table A2: Groundwater Analytical Test Results Compared to MECP Table 3 Standards Residential Property Use

List of Appendices

Appendix 1 Sampling and Analysis Plan Soil Profile and Test Data Sheets Symbols and Terms Laboratory Certificates of Analysis

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the property addressed 137-141 George Street and 110-116 York Street, in the City of Ottawa, Ontario. The purpose of the Phase IIESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The Phase II ESA was carried out in conjunction with a Geotechnical Investigation and consisted of three drilling programs were carried out on the following dates: February 24-28, 2023, August 14-16, 2023, and May 8-May 9. Together, the field programs consisted of drilling 16 boreholes to address the APECS identified in the Phase I ESA. Twelve of the boreholes were instrumented with groundwater monitoring wells to assess the groundwater beneath the Phase II Property. The monitoring well installed in BH1-23 was installed at a greater depth than the remainder of the wells, for geotechnical purposes.

The borehole profiles generally consist of a surficial layer of asphaltic concrete (ranging from 0.05-0.06 m in thickness), followed by fill material consisting of brown silty sand with gravel, crushed stone, cobbles and/or trace topsoil (with occasional pieces of building debris). The fill layer extended to a maximum depth of approximately 3.8 m and was underlain by glacial till consisting of a silty sand to sandy silt matrix with gravel, cobbles, and boulders. Grey limestone bedrock was encountered at a maximum depth of approximately 5.9 m below the existing ground surface.

<u>Soil</u>

A total of 40 samples and 4 duplicate samples were submitted for analysis of metals (including As, Sb, Se, Hg and CrVI), benzene, toluene, ethylbenzene xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and/or pH.

Metal, Mercury (Hg), PAH and/or PHC impacts were identified in the fill material across most of the Phase II Property. PHC impacts were also identified in the native glacial till in the southern portion of the Phase II Property.

Groundwater

Groundwater samples from monitoring wells installed in BH2-23, BH3-23, BH5-23 and BH6-23 were collected during the March 8, 2023, sampling event and submitted for laboratory analysis of BTEX, PHCs (F1-F4), and/or VOCs. The majority of the analyzed

PHC parameters were non-detect apart from the PHC F1 concentration in BH1-GW1, which complied with the applicable MECP Table 3 standards. The concentrations of PHC fractions F1 and F2 identified in BH5-23-GW1 exceeded the applicable MECP Table 3 standards, resulting in the completion of a second round of sampling.

All the analyzed VOC parameters were non-detect and therefore comply with the applicable MECP Table 3 standards, apart from the identified chloroform concentrations in BH3-23-GW1 and its duplicate sample (DUP1-23-GW1).

A second round of groundwater sampling was completed on March 23, 2023, and involved the analytical testing of PHCs and/or VOCs from groundwater obtained within BH3-23 and BH5-23. All the analyzed PHC and VOC parameters complied with the applicable MECP Table 3 standards.

A third round of groundwater sampling was completed on June 27, 2023, to obtain a second clean groundwater result from BH5-23, to comply with industry standards. The groundwater sample was submitted for BTEX and PHCs. Based on the analytical test results the concentrations of PHC fractions F1 and F2 once again exceeded the applicable MECP Table 3 standards.

Groundwater samples recovered from BH7-23 through BH9-23 were sampled on August 23, 2023, and submitted for analytical testing of BTEX or VOCs and PHCs. The monitoring well installed in BH10-23 was dry at the time of the sampling event. Apart from the chloroform concentration identified in BH9-23, all parameters complied with the MECP Table 3 standards. It should be noted that the PHC detection limits for Sample BH9-23 were elevated above the standards due to low sample volume.

Groundwater samples recovered from BH1-24, BH3-24 and BH4-24 on May 22, 2024, were submitted for analytical testing of Metals, Mercury, BTEX, VOCs and/or PHCs. Based on the analytical test results, all identified concentrations complied with the MECP Table 3 standards.

Recommendations

A remediation program was recommended in conjunction with site redevelopment, to remove all impacted soil and groundwater from the Phase II Property. Based on the findings of the Phase II ESA, it is expected that most of the fill will require of-site disposal at a registered landfill site. Deeper impacts within the native material are contained primarily to the southwestern corner of the site where groundwater impacts were also observed. It is expected that impacted groundwater, identified within the upper bedrock, near the soil-bedrock interface, will be remediation through the removal of impacted soil and underlying bedrock.

The remediation program is underway, with most of the soil having been removed from the site for disposal at a licenced landfill site or for beneficial reuse at a Class 1 Management Site or Reuse Site, in accordance with O.Reg. 406/19.

This Phase II ESA report will be updated with the findings of the remediation program once post-remediation groundwater monitoring has been completed, in accordance with O.Reg. 153/04, to support the filing of a Record of Site Condition.

1.0 INTRODUCTION

At the request of Claridge Homes, Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment for the property addressed 141 George Street, which includes the civic addresses 137 George Street, 141 George Street, 110 York Street and 116 York Street, in the City of Ottawa, Ontario.

The purpose of this Phase II ESA has been to further address areas of potential environmental concern (APECs) identified on the Phase II Property and to delineated previously identified soil and groundwater impacts. The report also includes findings of previous field investigations.

1.1 Site Description

Address:	137-141 George Street and 110-116 York Street, Ottawa, Ontario
Location:	The Phase I Property is located between York Street and George Street, approximately 20m east of Dalhousie Street, in the City of Ottawa, Ontario. Refer to Figure 1 - Key Plan in the Figures section following the text.
Latitude and Longitude:	45° 25' 43.2" N, 75° 41' 24.9" W
Site Description:	
Configuration:	Rectangular (approximate)
Site Area:	0.41 ha (approximate)
Zoning:	MD2 – Mixed Downtown Use (with a Mature Neighbourhoods Overlay on the York Street parcels)

1.2 Property Ownership

Paterson was engaged to conduct this Phase I-ESA by Mr. Stephen Poon with Claridge Homes, the current property owner. The Claridge Homes head office is located at 210 Gladstone Avenue, Suite 2001, Ottawa, Ontario K2P and 0Z9. Mr. Poon can by reached by telephone at (613) 233-6030.

1.3 Current and Proposed Future Uses

The northern portion of the Phase II Property addressed 110 York Street was most recently occupied by a vacant, two-storey commercial building fronting onto York Street. The building was demolished in April of 2024.

The remainder of the Phase II Property was occupied by commercial parking.

A multi-storey mixed used development is proposed. An underground parking lot associated with the proposed multi-storey residential building will occupy the entirety of the Phase II Property, while above-grade levels will be shared between the residential building and commercial hotel.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of Environment, Conservation and Parks (MECP), April 2011. The MECP selected Table 3 Standards are based on the following considerations:

- **Coarse-grained soil conditions**
- **Full depth generic site conditions**
- □ Non-potable groundwater conditions
- Residential land use

Section 35 of O.Reg. 153/04 applies to the Phase II Property as the Phase II Property and neighbouring properties are all serviced by the municipality.

Section 41 of O.Reg. 153/04 does not apply to the Phase II Property, as the property is not within 30m of an environmentally sensitive area and the pH of the surface soil is between 5 and 9, while the pH of the subsurface soil is between 5 and 11.

Section 43.1 of O.Reg. 153/04 does not apply to the Phase II Property in that the property is not a Shallow Soil property and the property is not within 30m of a water body.

Coarse-grained soil standards were chosen as a conservative approach. Grain size analysis was not completed. The most sensitive intended use of the Phase II Property is residential; therefore, the Residential Standards have been selected for the purpose of this Phase II ESA.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is located between York Street and George Street, approximately 20m east of Dalhousie Street in the City of Ottawa, Ontario. According to the City of Ottawa website, the Phase II Property is situated in a mixed used downtown zone with surrounding properties consisting of commercial and residential land use.

At the time of the most recent site visits, the Phase II Property was primarily occupied by a paved asphaltic parking lot that occupies the central and southern portions of the property. The northern portion of the Phase II Property addressed 110 York Street was occupied by the foundation and building rubble associated with the recently demolished commercial building.

The Phase II Property is relatively flat and at grade with York and Geroge Streets. The regional topography slopes gently downward to the north, towards the Ottawa River. Site drainage occurs primarily through sheet flow to catch basins located in the paved asphaltic parking lot on the Phase II Property as well as along York Street and George Street.

2.2 Past Investigations

As discussed in the Phase I-ESA, the following reports were reviewed prior to conducting this assessment:

Phase I Environmental Site Assessment, 325 Dalhousie Street, 110 York Street and 137 George Street – Ottawa, Ontario, prepared by Pinchin Environmental Ltd., dated May 2012.

Based on the findings of the Phase I ESA, a Phase II ESA was recommended to address the former RFOs on the properties addressed 321 to 325 Dalhousie Street (previously 327 Dalhousie Street, and 351 Dalhousie Street, situated at the northeast corner of the Dalhousie Street and George Street intersection, immediately west/southwest of the Phase I Property.

Phase I and Limited Phase II Environmental Site Assessment, Commercial Property, 325 Dalhousie Street, 110 York Street and 137-141 George Street, Ottawa, Ontario", prepared by Paterson Group Inc., dated June 8, 2012.

Based on the findings of the 2013 Phase I - ESA, environmental concerns were identified with regards to the historical uses of the Phase I Property and adjacent/neighbouring properties.

Based on the findings of the 2012 Phase I - ESA, APECs were identified with regards to the historical uses of the Phase I Property and adjacent/neighbouring properties.

Historical uses of concern included former gasoline service stations, automotive service garages, printers, dry cleaners, and a roofing manufacturer.

A limited subsurface investigation was conducted at 141 George Street on May 11, 2012, and consisted of the placement of one borehole, equipped with a groundwater monitoring well, that was installed at a depth of 5.6 m below the existing ground surface. One water sample was collected from the installed monitoring well and was submitted for analytical testing of volatile organic compounds (VOC) and petroleum hydrocarbon (PHC) parameters. No detectable concentrations of these parameters were identified, and the groundwater was therefore considered to comply with the 2011 MECP standards.

Further investigative work was recommended to assess the potential for impact from remaining potential environmental concerns that were not addressed as part of the Limited Phase II ESA.

 'Phase II Environmental Site Assessment, 110 York Street, 325 Dalhousie Street, 137 and 141 George Street, Ottawa, Ontario, prepared by Paterson Group Inc., dated July 27, 2012.

Four boreholes were advanced on the Phase I Property in July of 2012. The borehole locations were selected to assess the potential for impacts resulting from the identification of historical on-or off-site PCAs. Three of the boreholes were cored into bedrock and instrumented with groundwater monitoring wells.

Based on the results of the Phase II-ESA, petroleum hydrocarbon impacted soil exceeding the applicable MECP Table 3 standards was present on the southern portion of the Phase I Property, in the vicinity of BH1. The hydrocarbon impacts were considered to have resulted from the former RFO at 353 Dalhousie Street. Given that no additional soil impacts were identified at nearby borehole locations, the PHC-impacted material was considered limited in extent.

Demolition debris including pieces of concrete and brick, as well as lead concentrations in exceedance of the applicable MECP Table 3 standards were identified in the fill material underlying the asphaltic pavement in the southern portion of the Phase I Property. The fill layer was determined to vary in thickness from approximately 1.2 to 3 m.

Based on the analytical test results, the PHC and lead impacts were considered limited in extent and did not present an immediate risk to the use of the Phase I Property.

Based on the findings of the Phase II–ESA, it was recommended that the impacted soil be remediated at the time of site redevelopment.

 Supplemental Phase II Environmental Site Assessment, 110 York Street, 321 Dalhousie Street, 137 and 141 George Street, Ottawa, Ontario", prepared by Paterson Group Inc., dated August 10, 2012.

Five additional boreholes were advanced on the Phase I Property on August 9, 2012. The borehole locations were selected to further delineate the PHC impacted soil identified in BH1 during the previous investigation. No monitoring wells were installed at the time of the supplemental investigation.

Based on the results of the Phase II-ESA, PHC-impacted soil exceeding the applicable MECP Table 3 standards was identified in the vicinity of BH1 and BH5. Like the findings presented in the previous subsurface investigation, the soil impacts were considered to have been from the former use of the property at 351/353 Dalhousie Street, as an RFO. Given that the test results met the MECP Table 3 standards at nearby borehole locations, the contaminated soil was considered limited in extent.

 'Phase I Environmental Site Assessment, Proposed Mixed Use Development, 321-325 Dalhousie Street and 137-141 George Street – Ottawa, Ontario, prepared by Paterson dated April 2013.

According to historical research conducted as part of the 2013 Phase I ESA, the Phase I Property was initially developed with residential dwellings in the late 1800s. The portion of the Phase I Property addressed 137 George Street (formerly addressed 125 to 127 George Street) was occupied by a printing establishment from 1950 until 1965. The portion of the Phase I Property addressed 141 George Street (formerly addressed 137, 139 and 141 George Street and was occupied by three (3) units of an 11-unit row house in the 1950s. The neighbouring properties primarily consisted of residential dwellings, a school, office buildings and commercial establishments.

Five PCAs that resulted in APECs on the Phase I Property were identified with respect to the historical use of the Phase I Property and surrounding lands. The identified PCA's are as follows:

- □ Retail fuel outlet on the property addressed as 321 Dalhousie Street.
- Former retail fuel outlet on the property addressed 351 Dalhousie Street (currently addressed as 353 Dalhousie Street), immediately to the west of 137 George Street.
- Printer formerly located at 125-127 George Street (currently the parking lot addressed as 137 George Street).
- Dry-cleaning business at 343 Dalhousie Street, immediately to the west of 137 George Street.
- □ Fill material of unknown quality across the Phase I Property.

Past subsurface environmental investigations conducted for the subject property identified soil and groundwater impacted with petroleum hydrocarbons (PHCs) above the 2011 MECP Table 3 standards, on the southwestern portion of the site. A lead concentration exceeding the 2011 standard was also identified in the fill layer on the southwestern portion of the site. Based on the heterogeneous nature of the fill material and the presence of fill material across the subject property, pockets of metal-impacted fill were expected to be encountered across the site.

It was recommended that groundwater conditions be reassessed, prior to conducting a soil and groundwater remediation program.

 'Updated Phase II-Environmental Site Assessment, Commercial Property, 325 Dalhousie Street, 110 York Street and 137-141 George Street, Ottawa, Ontario, prepared by Paterson dated November 29, 2013.

The Phase II-ESA Updated consisted of third round of sampling at the subject property, carried out on November 12, 2013. The purpose of the sampling event was to confirm the chloroform concentrations previous identified in the groundwater at the Phase II Property, had decreased, and to reassess the PHC F2 concentrations previously identified in BH1.

Due to insufficient sample volume at BH1, the analysis of the F2 parameter could not be completed, however samples from BH1, BH2 and BH4 were submitted for analytical testing of VOCs. Chloroform was not identified in any of the samples analysed; BTEX parameters as well and/or acetone were identified at concentrations well below the Table 3 Standards.

A remedial action plan consisting of a full-depth approach whereby all PHC and metal impacted soil would be removed from the boundaries of the subject property was recommended.

Phase I-Environmental Site Assessment, 137-141 George Street and 110-116 York Street, Ottawa, Ontario, prepared by Paterson dated September 4, 2024

Based on the findings of the recent Phase I-ESA in combination with a review of previous reports, no new APECs were identified on the subject parcels of land addressed 137-141 George Street and 110 York Street. Fill material of unknown quality and the use of road salt for deicing purposes during winter conditions were identified as APECs on the newly included parcel of land addressed 116 York. A Phase II-ESA was recommended and carried out.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The Phase II ESA, carried out in conjunction with a Geotechnical Investigation, included three separate drilling programs carried out during the interim of February 24, 2023, and May 2024.

The February 2023 investigation consisted of drilling six (6) boreholes, four (4) of which (BH2-23, BH3-23, BH5-23, and BH6-23) were instrumented with groundwater monitoring wells. These boreholes were placed to further address APECs identified during past Phase I-ESAs and provide coverage of the site for Geotechnical purposes.

The following August 2023 field program consists of the placement of four (4) boreholes, all instrumented with groundwater monitoring wells (BH7-23 through BH10-23). The purpose of the boreholes was to laterally and vertically delineate groundwater impacts identified during the February 2023 investigation.

Finally, the May 2024 field program consisted of drilling five (5) boreholes across the parcel addressed 116 York Street; this parcel had not been included in the previous investigations. Three (3) of the boreholes were instrumented with groundwater monitoring wells to access the groundwater table, if required.

The boreholes were drilled to a maximum depth of 15.3 m below the ground surface (mbgs).

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern identified during the Phase I ESA.

The contaminants of potential concern for the soil and/or groundwater on the Phase II Property include the following:

- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)
- Petroleum Hydrocarbons (PHCs)
- □ Metals (including arsenic (As), antimony (Sb), selenium (Se), mercury (Hg) and hexavalent chromium (CrVI)
- Polycyclic Aromatic Hydrocarbons (PAHs)
- □ Volatile Organic Compounds

In accordance with Section 49.1 of O.Reg.153/04, as amended, electrical conductivity (EC) and sodium adsorption ratio (SAR) are not considered to be CPCs.

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting

The Geological Survey of Canada website on the Urban Geology of the National Capital Area was consulted as part of this assessment. Based on this information, the bedrock in the area of the Phase I Property consists of interbedded limestone and shale of the Verulam Formation. Overburden soils are shown as glacial till, with a drift thickness on the order of 3 to 5 m. The findings of the previously completed surface investigations confirm the reported depths.

Groundwater is anticipated to flow in a northwesterly direction, towards the Ottawa River.

Existing Buildings and Structures

The northern portion of the Phase I Property is occupied by a vacant two-storey commercial building.

Water Bodies and Areas of Natural and Scientific Interest

No water bodies are present on the Phase I Property. The closest water body is the Ottawa River, located approximately 720m west of the Phase I Property.

No areas of natural scientific interest were identified within the Phase I Study Area.

Water Well Records

A search of the MECP 's web site for all drilled well records within 250 m of the Phase I Property was conducted on February 13, 2023. Two well records were documented for the Phase I Property and pertain to monitoring wells that were installed in 2012. The monitoring wells were installed in conjunction with the previously mentioned Phase II – ESA that was completed following the identification of APECs on the Phase I Property.

In addition to the documented records, three more monitoring wells were installed on the Phase I Property in conjunction with previously completed subsurface investigations. Based on the observations made during the geotechnical and environmental assessments, the water table was intercepted at depths ranging from 3.7 to 4.5 m below the existing ground surface. Interbedded limestone and shale bedrock was encountered at a maximum depth of 5 m below the existing ground surface.

Two monitoring well records were documented for the adjacent property to the west addressed 325 Dalhousie Street. An additional three monitoring well records were documented for properties within the Phase I Study Area. The monitoring wells were drilled to depths ranging from 1.5 to 4.57 m below grade.

The identified off-site monitoring wells are not considered to be indicative of the potential for environmental impacts on the Phase I Property.

Bedrock was encountered at a maximum depth of 5.41 m below the existing ground surface, and the groundwater table was intercepted at an average depth of 4.2 m. A copy of the well records has been appended to this report.

Neighbouring Land Use

The neighbouring lands within the Phase I Study Area is primarily residential with some commercial land use. Current land use is shown on Drawing PE2709-2R – Surrounding Land Use Plan, in the Figures section of this report.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

Based on the findings of this Phase I ESA Update, four on-site and five off-site potentially contaminating activities (PCAs), were deemed to result in areas of potential environmental concern (APECs) with respect to the Phase I Property. These APECs and associated PCAs and CPCs are presented in the table below.

Table 1: Are	Table 1: Areas of Potential Environmental Concern										
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern with respect to Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)						
APEC 1 Importation of Fill Material of Unknown Quality	Entire Phase I Property	"Item 30 – Importation of Fill Material of Unknown Quality"	On-site	Metals Hg CrVI PAHs BTEX PHCs (F1–F4)	Soil						
APEC 2 Former Aboveground Storage Tank (AST)	Southwestern portion of the Phase I Property	"Item 28 – Gasoline and Associated Products Storage in Fixed Tanks"	On-site	BTEX PHCs (F1-F4)	Soil Groundwater						
APEC 3 Former Printer	Southern/sout hwestern portion of the Phase I Property	"Item 31 – Ink Manufacturing, Processing and Bulk Storage"	On-site	VOCs	Soil Groundwater						
APEC 4 Former Dry Cleaner and Machine Shop	Western portion of the Phase I Property	"Item 37 – Operation of Dry- Cleaning Equipment (where chemicals are used)"and other	Adjacent property to the west	Metals PHCs BTEX VOCs	Soil and/or Groundwater						
APEC 5 Former Retail Fuel Outlet	Southern portion of the Phase I Property	"Item 28 – Gasoline and Associated Products Storage in Fixed Tanks"	Adjacent property to the southwest	BTEX PHCs (F1-F4)	Soil Groundwater						
APEC 6 Former Refined Petroleum Industry and Roofing Manufacturer	Southern portion of the Phase I Property	"Item 41 – Petroleum- derived Gas Refining, Manufacturing, Processing and Bulk Storage' Other	Further South of the Phase I Property, across George Street	BTEX PHCs (F1–F4) PAHs VOCs	Soil and/or Groundwater						

Table 1: Areas of Potential Environmental Concern										
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern with respect to Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)					
APEC 7 Former Automotive Service Garage	Southern portion of the Phase I Property	"Item 52 – Storage, Maintenance, Fueling and Repair of Equipment Vehicles, and Material Used to Maintain Transportation Systems"	Further South of the Phase I Property, across George Street	BTEX PHCs (F1–F4) PAHs VOCs	Soil Groundwater					
APEC 8 Former Printer and Dry- Cleaner	Southern portion of the Phase I Property	"Item 31 – Ink Manufacturing, Processing and Bulk Storage" "Item 37 – Operation of Dry- Cleaning Equipment (where chemicals are used)"	Further South of the Phase I Property, across George Street	Metals VOCs	Soil Groundwater					
APEC 9 Central, southern, and eastern portions of the Phase I purposes N/A On-site EC/SAR Soil and Groundwate										
site condition sta that a substance conditions of sno	purposes 1 – In accordance with Section 49.1 of O.Reg. 153/04 standards are deemed to be met if an applicable site condition standard is exceeded at a property solely because the qualified person has determined that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both. The exemption outlined in Section 49.1 is being relied up with respect to the RSC property.									

Based on the significant coverage of asphaltic concrete on the Phase I Property, the use of salt during conditions of snow and ice is highly probable. As such, an additional APEC was included to account for the use of salt on the property. O.Reg. 153/04 is being relied upon.

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I-ESA is considered to be sufficient to conclude that there are historical on-site and offsite PCAs that have resulted in APECs on the Phase I Property.

Additional off-site PCAs identified within the study area are not considered to represent APECs on the Phase I Property based on their separation distances and/or orientations relative to the subject land.

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report. No deviations from the sampling and analysis plan were identified during the Phase II ESA.

3.5 Impediments

Physical impediments encountered during the Phase II ESA program include underground utilities, the former building foundation, and parked vehicles which limited the location of certain boreholes.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation was conducted in stages during the interim of February 24, 2023, through May 9, 2024, in conjunction with a Geotechnical Investigation.

A total of 15 boreholes were drilled to depths ranging from approximately 3.6m to 15.3m below ground surface (bgs). Eleven of the boreholes were instrumented with groundwater monitoring wells upon their completion.

The boreholes were drilled with a low clearance drill rig operated by George Downing Estate Drilling of Hawkesbury, Ontario, under full-time supervision of Paterson personnel. The borehole locations are indicated on the attached Drawing PE2709-11- Test Hole Location Plan.

Borehole and monitoring well locations from previous investigations are also presented on Drawing PE2709-11.

4.2 Soil Sampling

A total of 83 soil samples were obtained from the boreholes by means of grab sampling from auger flights/auger samples and split spoon sampling.

Split spoon samples were taken at approximate 0.76 m intervals. Rock core samples were collected with the use of coring equipment.

The depths at which split spoon, auger flight and rock core samples were obtained from the boreholes are shown as "**SS**", "**AU**" and "**RC**" respectively on the Soil Profile and Test Data Sheets provided in Appendix 2. Note that borehole logs from previous investigations are also included.

The borehole profiles generally consist of a surficial layer of asphaltic concrete (ranging from 0.05-0.06 m in thickness), followed by fill material consisting of brown silty sand with gravel, crushed stone, cobbles and/or trace topsoil. Building debris fragments, including concrete, brick, metal and/or wood, were identified in the fill layer at BH2-23, BH7-23, BH8-23, BH1-24 and BH3-24.

The fill layer extended to a maximum depth of 3.58 m in BH6-23 and was underlain by glacial till consisting of a silty sand to sandy silt matrix with gravel, cobbles, and boulders. The fill material within BH7-23 was underlain by a concrete slab which had previously served as a crane base during the development of the adjacent property to the west. Grey limestone bedrock was encountered at a maximum depth of 5.64 m below the existing ground surface.

Petroleum hydrocarbon odours were noted in soil samples recovered from BH5-23, BH7-23, BH8-23 and BH10-23.

Borehole locations are shown on Drawing PE2709-11 – Test Hole Location Plan.

4.3 Field Screening Measurements

Soil samples recovered at the time of sampling were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey. Allowing the samples to stabilize to room temperature ensures consistency of readings between samples.

To measure the soil vapours, the analyser probe is inserted into the nominal headspace above the soil sample. A photo ionization detector (PID) or Gastech was used to measure the vapour concentrations.

The sample is agitated/manipulated gently as the measurement is taken. The peak reading registered within the first 15 seconds is recorded as the vapour measurement.

The maximum vapour readings measured were obtained from Samples BH5-23-SS6 and BH8-23-SS6 and were recorded as 341.5 ppm and 1,500 ppm. Otherwise, the vapour readings were generally less than 50ppm. The high vapour reading is indicative of potential significant contamination from lighter fraction petroleum hydrocarbons. The vapour screening can not be relied upon to identify heavier petroleum products. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

4.4 Groundwater Monitoring Well Installation

Four environmental groundwater monitoring wells and one deep geotechnical monitoring well were installed on the Phase II Property as part of the subsurface investigation.

The monitoring wells consisted of 32 mm Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

Borehole locations and elevations were surveyed geodetically by Paterson personnel.

TABLE 2 -	TABLE 2 - Monitoring Well Construction Details												
Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type							
BH1-23 (Geo)	61.52	15.32	12.3-15.3	11.5-15.3	3.6-11.5	Flushmount							
BH2-23	61.53	7.6	4.6-7.6	4.2-7.6	2.4-4.2	Flushmount							
BH3-23	61.87	7.6	4.5-7.6	3.9-7.6	2.4-4	Flushmount							
BH5-23	62.08	6.8	3.7-6.8	3.3-6.8	1.8-3.3	Flushmount							
BH6-23	62.09	7.1	4.1-7.1	4.1-7.1	2.4-3.4	Flushmount							
BH1-24	60.78	10.03	7.03-10.03	6.67-10.03	0.00-7.03	Flushmount							
BH3-24	60.92	10.26	7.26-10.26	6.67-10.26	0.00-7.26	Flushmount							
BH4-24	61.33	10.34	7.34-10.34	6.12-10.34	0.00-7.34	Flushmount							

4.5 Field Measurement of Water Quality Parameters

The first round of groundwater sampling was conducted on March 8, 2023. Water quality parameters were measured in the field using a multi-parameter analyzer. Parameters measured in the field included temperature, pH, and electrical conductivity. Secon and third rounds of sampling were carried out in March 23, 2023 and June 27, 2023 for BH3-23 and/or BH5-23, however the results of the initial sampling event are presented below.

Field parameters were measured after each well volume purged. Wells were purged prior to sampling until at least three well volumes had been removed, the field parameters were relatively stable, or the well was dry. Stabilized field parameter values are summarized in Table 3.

Table 3: G	Table 3: Groundwater Quality Parameters									
Well ID	/ell ID Temperature (°C) Conductivity (µs)									
March 8, 202	3									
BH2-23	9.2	3989	7.96							
BH3-23	9.7	2778	8.19							
BH5-23	11.3	2453	7.58							
BH6-23	12.3	3595	12.4							

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment.

Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation.

Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil and groundwater samples, as well as analyzed parameters are presented in Tables 4 and 5, respectively.

TABLE	E 4 – Analyz	ed Pa	rame	ters for	Sub	omit	ted Soil Samples	
	Sampla		Pa	rameter				
Sample ID	Sample Depth & Stratigraphic Unit	Metals ¹	BTEX	PHCs F₁-F₄	PAHs	VOCs	Rationale	
BH1-23- SS2	0.76 – 1.37 m Silty Sand (Fill Material)	x	x	х	x		Assess fill material of unknown quality. Sample depth determined by CPC, location of APEC and associated medium.	
BH1-23- SS3	1.60 – 2.20 m Silty Sand (Fill Material)	х	x	х	x		Assess fill material of unknown quality. Sample depth determined by CPC, location of APEC and associated medium.	
BH1-23- SS4	2.30 – 2.90 m Silty Sand (Fill Material)			x		x	Assess potential soil impacts resulting from various off-site industries (eastern portion of Phase II Property). Sample depth determined by CPC, location of APEC and associated medium.	
BH1-23- SS5	3.2 – 3.4 m Glacial Till (Native)		x	х			Assess potential impacts resulting from various off-site industries (eastern portion of Phase II Property). Sample depth determined by CPC, location of APEC and associated medium.	
BH2-23- SS2	0.8 – 1.4 m Silty Sand (Fill Material)	х	x	х	х		Assess fill material of unknown quality. Sample depth determined by CPC, location of APEC and associated medium.	
BH2-23- SS4	2.4-3.0 m Silty Sand (Fill Material)	х	x	х			Assess fill material of unknown quality. Sample depth determined by CPC, location of APEC and associated medium.	
BH2-23- SS5	3.10 – 3.70 m Glacial till (Native)			х		x	Assess potential soil impacts resulting from various off-site industries (northeastern portion of Phase II Property) and general coverage. Sample depth determined by CPC, location of APEC and associated medium.	
BH3-23- AU2	0.25 –0.61 m Silty Sand (Fill)	х	x	х	х		Assess fill material of unknown quality. Sample depth determined by CPC, location of APEC and associated medium.	
BH3-23- SS4	1.6 - 2.2 m Silty Sand (Fill)	х	х	х	x	х	Assess fill material of unknown quality and general coverage. Sample depth determined by CPC, location of APEC and associated medium.	
BH3-23- SS5	3.2 – 3.6 m Glacial Till (Native)	x	x	x		x	Assess potential soil impacts resulting from the former dry cleaner and machine shop previously located on the adjacent property to the west (western portion of Phase II Property) and general coverage. Sample depth determined by CPC, location of APEC and associated medium.	
DUP1-23 (duplicate of BH3- 23-SS5)	3.2 – 3.6 m Glacial Till (Native)					x	Assess potential soil impacts resulting from the former dry cleaner and machine shop previously located on the adjacent property to the west (western portion of Phase II Property) and general coverage. Sample depth determined by CPC, location of APEC and associated medium.	
BH3-23- SS6	4.6 – 5.2 m Glacial Till (Native)	x				x	Assess potential soil impacts resulting from the former dry cleaner and machine shop previously located on the adjacent property to the west (western portion of Phase II Property) and general coverage. Sample depth determined by CPC, location of APEC and associated medium.	
BH4-23- SS3	0.77 - 1.37 m Silty Sand (Fill)	х	x	х	х		Assess fill material of unknown quality and general coverage. Sample depth determined by CPC, location of APEC and associated medium.	
BH4-23- SS4	1.6 - 2.2 m Glacial Till (Native)	х	х	х	х		Assess fill material of unknown quality and general coverage. Sample depth determined by CPC, location of APEC and associated medium.	

TABLE	E 4 – Analyzo	ed Pa	ramet	ters for	omit	ted Soil Samples	
Sample	Sample Depth		Pa	ırameter			
ID	& Stratigraphic Unit	Metals ¹	BTEX	PHCs F ₁ -F ₄	PAHs	VOCs	Rationale
BH5-23- AU1	0.06 – 0.25 m Silty Sand (Fill)	х	x	x	х		Assess fill material of unknown quality and potential for soil impacts resulting from the former AST and printer previously located on the Phase II Property (southwestern portion of the Phase II Property). Sample depth determined by CPC, location of APEC and associated medium.
BH5-23- SS3	1.6 – 2.2 m Silty Sand (Fill)	х	x	x	x		Assess fill material of unknown quality and potential for soil impacts resulting from the former AST and printer previously located on the Phase II Property (southwestern portion of the Phase II Property). Sample depth determined by CPC, location of APEC and associated medium.
BH5-23- SS6	4 – 4.6 m Glacial Till (Native)	x		x		x	Assess potential for soil impacts resulting from the former AST and printer previously located on the Phase II Property, as well as former retail fuel outlet on adjacent property to the west (southwestern portion of the Phase II Property). Sample depth determined by CPC, location of APEC and associated medium.
DUP (duplicate of BH5- 23-SS6	4 – 4.6 m Glacial Till (Native)	х		x		x	Assess potential for soil impacts resulting from the former AST and printer previously located on the Phase II Property, as well as former retail fuel outlet on adjacent property to the west (southwestern portion of the Phase II Property). Sample depth determined by CPC, location of APEC and associated medium.
BH6-23- SS2	0.77 – 1.37 m Silty Sand (Fill)	х	х	х	х		Assess fill material of unknown quality and general coverage. Sample depth determined by CPC, location of APEC and associated medium.
BH6-23- SS5	3.2 – 3.4 m Silty Sand (Fill)	х	х	х	х		Assess fill material of unknown quality and general coverage Sample depth determined by CPC, location of APEC and associated medium.
BH7-23- SS3	1.5-2.1 m Glacial Till (Native)		x	x			Delineation of previously identified PHC impacts. Samples selected based on results of vapour screening in
BH8-23- SS6	3.8-4.4 m Glacial Till (Native)		х	х			combination with depth.
BH1-24- AU1	0-0.3 m Silty Sand (Fill)	х	x	х	x		Assess potential impacts in the fill. Sample selected based
BH1-24- SS3	1.5-2.1 m Silty Sand (Fill)	х	х	х	х		on depth and visual observations.
BH1-24- SS5	3.0-3.6 m Glacial Till (Native)	х	х	х	х		Sample selected based on vapour screening and depth, to characterize soil for off-site disposal purposes.
BH2-24- AU1	0.1-0.3 m Silty Sand (Fill)	х	х	х	х		Assess potential impacts in the fill. Sample selected based on depth and visual observations.
BH2-24- SS3	1.5-2.1 m Glacial Till (Native)	х	х	х	х		Sample selected based on vapour screening and depth, to characterize soil for off-site disposal purposes.
BH3-24- AU1	0-0.46 m Silty Sand (Fill)	х	х	х	х		Assess potential impacts in the fill. Sample selected based on depth and visual observations.
BH3-24- SS5	3.0-3.6 m Glacial Till (Native)	х	х	х	x		Sample selected based on vapour screening and depth, to characterize soil for off-site disposal purposes.
BH4-24- AU1	0-0.46 m Silty Sand (Fill)	х	x	х	x		Assess potential impacts in the fill. Sample selected based
BH4-24- SS2	0.73-1.37 m Silty Sand (Fill)	х	x	х	x		on depth and visual observations.

	Sample		Pa	rameter				
Sample ID	Depth & Stratigraphic Unit	Metals ¹	BTEX	PHCs F ₁ - F ₄	PAHs	VOCs	Rationale	
BH4-24- SS3	1.52-2.13 m Glacial Till (Native)	х			х		Sample selected based on vapour screening and depth, to	
BH4-24- SS6	3.81-4.42 m Glacial Till (Native)	х	x	х			characterize soil for off-site disposal purposes.	
BH5-24- AU1	0.05-0.46 m Silty Sand (Fill)	х	х	х	х		Assess potential impacts in the fill. Sample selected based on depth and visual observations.	
BH5-24- SS2 (Bottom)	0.76-1.37 m Glacial Till (Native)	х	х	х			Sample selected based on vapour screening and depth, to characterize soil for off-site disposal purposes.	

The submitted soil samples were selected for analysis based on vapour screening and field observations, in combination with information obtained during previous investigations, to assess APECs and associated CPCs identified in the Phase I – ESA.

As indicated, samples were also analysed to characterize soil for possible off-site beneficial reuse, in accordance with O.Reg. 406/19, as excess soil is expected to be generated during redevelopment. A comparison of the soil results to the Excess Soil Quality Standards, is provided under separate cover.

TABLE 5- Te	TABLE 5- Testing Parameters for Submitted Groundwater Samples											
		Parameters Analyzed										
Sample ID	Screened Interval		втех	VOCs	Metals ¹	SHA	Rationale					
B2-23-GW1	4.6-7.6 m Glacial Till into Bedrock	х	х	х			Assess potential groundwater impacts resulting from various off-site industries (northeastern portion of Phase II Property). The screened interval was selected based on the depth at which the highest concentrations would likely be present (i.e., Top of water table, which straddles the soil/bedrock interface)					

Г

TABLE 5- Te	TABLE 5- Testing Parameters for Submitted Groundwater Samples											
				amete alyze								
Sample ID	Screened Interval	PHCs F ₁ -F ₄	втех	vocs	Metals ¹	PAHs	Rationale					
BH3-23-GW1	4.5-7.6 m Glacial Till into Bedrock		x	х			Assess potential groundwater impacts resulting from the former dry cleaner and machine shop previously located on the adjacent property to the west and for general coverage (western portion of Phase II Property) The screened interval was selected based on the depth at which the highest concentrations would likely be present (i.e., Top of water table, which straddles the soil/bedrock interface)					
DUP1-23- GW1 (duplicate of BH3-23-GW1)	4.5-7.6 Glacial Till into Bedrock		x	х			Assess potential groundwater impacts resulting from the former dry cleaner and machine shop previously located on the adjacent property to the west and for general coverage (western portion of Phase II Property). The screened interval was selected based on the depth at which the highest concentrations would likely be present (i.e., Top of water table, which straddles the soil/bedrock interface)					
BH5-23-GW1	3.7-6.8 Glacial Till into Bedrock	x	x	x			Assess potential groundwater impacts resulting from the former AST and printer on the Phase II Property, as well as the former retail fuel outlet on the adjacent property to the west (southwestern portion of the Phase II Property) The screened interval was selected based on the depth at which the highest concentrations would likely be present (i.e., Top of water table, which straddles the soil/bedrock interface)					
BH6-23-GW1	4.1-7.1 Glacial Till into Bedrock	х	х	х			General Coverage					
BH3-23-GW2	4.5-7.6 m Glacial Till into Bedrock	х	х	х			Confirm previous chloroform results have dissipated.					
BH5-23-GW2	3.7-6.8 m Glacial Till into Bedrock	х	х				Confirm previous PHC results.					
BH5-23-GW3	3.7-6.8 m Glacial Till into Bedrock	х	х									
BH7-23-GW1	3.8-6.8 m Glacial Till into Bedrock	х	х				Lateral delineation of impacts at BH5-23.					
BH8-23-GW1	9.1-12.2 m Bedrock	х	Х	х			Vertical delineation of impacts at BH5-23.					
BH9-23-GW1	6.0-9.0 Bedrock	Х	Х				Lateral delineation of impacts at BH5-23.					
BH1-24-GW1	7.0-10.3 m Bedrock	Х	Х		х	х						
BH3-24-GW1	7.0-10.3 m Bedrock				х	х	General Coverage (no groundwater CPC identified)					
BH4-24-GW1	7.0-10.3 m Bedrock				х	х						

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All soil cuttings, purge water and fluids from equipment cleaning were retained on-site.

4.9 Elevation Surveying

The ground surface elevations at each borehole location were surveyed by Paterson personnel with a high-precisions GPS unit.

4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

The borehole profiles generally consist of a surficial layer of asphaltic concrete (ranging from 0.05-0.06 m in thickness), followed by fill material consisting of brown silty sand with gravel, crushed stone, cobbles and/or trace topsoil. Building debris fragments, including concrete, brick, metal and/or wood, were identified in the fill layer at BH2-23, BH7-23, BH8-23, BH1-24 and BH3-24.

The fill layer extended to a maximum depth of 3.58 m in BH3-23 and was underlain by glacial till consisting of a silty sand to silty clay matrix with gravel, cobbles and boulders. The fill material within BH6-23 was underlain by a concrete slab which had previously served as a crane base during the development of the adjacent property to the west. Grey limestone bedrock was encountered at a maximum depth of 5.64 m below the existing ground surface.

Groundwater was measured at depths ranging from approximately 2.5 to 6.3 mbgs. Based on field observations, the overburden was not considered to be the water bearing unit. Monitoring well BH10-23 installed within the overburden was dry. The groundwater is expected to be present within the bedrock near the soil-bedrock interface.

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling event on March 8, 2023, using an electronic water level meter. Groundwater levels were recorded from the monitoring wells installed in BH1-23, B2-23, BH3-23, BH5-23 and BH6-23. Groundwater levels are summarized below in Table 6.

TABLE 6 -	TABLE 6 - Groundwater Level Measurements											
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement								
BH1-23	61.52	4.49	57.03	March 8, 2023								
BH2-23	60.53	4.98	55.55	March 8, 2023								
BH3-23	61.87	3.48	58.39	March 8, 2023								
BH5-23	62.09	2.51	59.58	March 8, 2023								
BH6-23	62.08	2.77	59.31	March 8, 2023								
BH3-23	61.87	4.52	57.35	March 23, 2023								
BH5-23	62.09	3.99	58.1	March 23, 2023								
BH6-23	62.08	4.91	57.17	March 23, 2023								
BH1-24	60.78	3.46	57.32	May 22, 2024								
BH3-24	60.92	6.15	54.78	May 22, 2024								
BH4-24	61.33	6.29	55.04	May 22, 2024								

Based on the groundwater elevations measured during the March 2023 sampling event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE2709-11 – Test Hole Location Plan.

Based on the contour mapping, groundwater flow at the Phase II Property is in an easterly direction. The local groundwater flow may have been influenced by the deep excavation on the adjacent property to the east. Regional groundwater flow is expected to be in a northerly direction. It should be noted that groundwater levels are expected to fluctuate throughout the year with seasonal variations.

A horizontal hydraulic gradient of approximately 0.07 m/m was calculated.

5.3 Fine-Coarse Soil Texture

Grain size analysis was not completed as part of this investigation. Coarse grained soil standards were chosen based on the nature of the recovered soil samples.

5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling resulted in vapour readings ranging generally from 0.1 less than 50 ppm. Hydrocarbon odours were observed in soil Samples BH5-23-SS6 and BH8-23-SS6 which had the highest vapour readings of approximately 345 ppm and 1,500 ppm.

Building debris fragments, including concrete, brick, metal and/or wood, were identified in the fill layer at BH2-23, BH7-23, BH8-23, BH1-24 and BH3-24. No other unusual/deleterious materials or substances were identified within the fill material across the Phase II Property during the subsurface investigations.

The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

Based on the findings of the field screening in combination with sample depth and location, 33 soil samples and 4 duplicate samples were submitted for analysis of metals (including As, Sb, Se, Hg and/or CrVI), PAHs, BTEX, PHCs (F1-F4), VOCs and/or pH. The results of all the analytical testing completed on the Phase II Property (including past assessments) are presented in Table A1 appended to this report. The laboratory Certificates of Analysis are also provided in the Appendix.

Metals (including As, Sb, Se), Hg and CrVI

All of the analyzed metal parameters are in compliance with the applicable MECP Table 3 Standards, with the exception of lead, mercury, and zinc in soil Sample BH2-23-SS2 and lead and mercury in soil Samples BH3-23-AU2 and BH4-24-SS2. Additionally, soil Sample BH4-SS3, which was submitted during the 2012 assessment, and Sample BH5-24-AU1, exceeded the MECP Table 3 standard for only lead.

Sample BH4-24-SS3 was submitted for analysis of methyl mercury due to the exceedance of mercury in Sample BH4-24-SS2. Methyl mercury was not detected in the sample analysed.

The analytical results for metals (including As, Sb, Se, CrVI and Hg) tested in soil are shown on Drawing PE2709-12– Analytical Testing Plan – Soil (Metals).

<u>PAHs</u>

Various PAH parameters identified in soil Samples BH2-23-SS2, BH3-23-AU2, BH1-24-SS3, BH2-24-AU1, BH3-24-AU1, BH4-24-AU1, BH4-24-SS2 and BH5-24-AU1, exceed the MECP Table 3 Standards. All other samples analysed meet the MECP Table 3 Residential Standards.

The analytical results for PAHs tested in soil are shown on PE2709-13 – Analytical Testing Plan – Soil (PAHs).

<u>PHCs (F1-F4)</u>

All the detected PHC concentrations in the analysed soil samples comply with the applicable MECP Table 3 Standards, apart from PHC fraction F_3 concentrations in soil Samples BH1-23-SS4, BH2-23-SS2, BH5-23-AU1, BH4-24-AU1, and PHC fractions F_1 and F_2 in Sample BH8-23-SS6. The analytical results for PHCs tested in soil are shown on Drawing PE2709-14 – Analytical Testing Plan – Soil (PHCs).

Additionally, soil Sample BH1-SS7 that was submitted as part of the 2012 assessment, had PHC fraction F_1 and F_2 that exceeded the applicable MECP Table 3 standards.

<u>BTEX</u>

No BTEX concentrations were identified in any of the samples analysed except for Sample BH8-23-SS6 which identified concentrations of BTEX well below the MECP Table 3 standards. All samples analysed comply with the MECP Table 3 standards. The analytical results for BTEX tested in soil are shown on Drawing PE2709-15 – Analytical Testing Plan – Soil (BTEX).

VOCs

No VOC parameters were identified in the samples analysed. As such, the results comply with the MECP Table 3 standards. The analytical results for VOCs tested in soil are shown on Drawing PE2709-16 – Analytical Testing Plan – Soil (VOCs).

The maximum parameter concentrations identified within the soil samples are listed below in Table 7.

Parameter	Maximum Concentration (µg/g)	Soil Sample	Depth Interv (m BGS)
Antimony	2.2	BH2-23-SS2	0.8-1.4
Arsenic	10.2	BH6-23-SS5	3.2-3.4
Barium	321	BH2-23-SS2	0.8-1.4
Beryllium	0.6	BH2-23-SS2	0.8-1.4
Boron	16.2	BH6-23-SS2	0.76-1.37
Cadmium	0.6	BH2-23-SS2	0.8-1.4
Chromium	29.2	BH2-23-SS2	0.8-1.4
Cobalt	11.8	BH6-23-SS5	3.2-3.4
Copper	120	BH2-23-SS2	0.8-1.4
Lead	524	BH4-SS3	0.8-1.2
Mercury	2.7	BH2-23-SS2	0.8-1.4
Molybdenum	5.4	BH6-23-SS5	3.2-3.4
Nickel	20.3	BH6-23-SS5	3.2-3.4
Selenium	1.3	BH2-23-SS2	0.8-1.4
Silver	1.8	BH1-AU1	0-0.25
Vanadium	<u>321</u>	BH1-AU1	0-0.25
Zinc	<u>429</u>	BH2-23-SS2	0.8-1.4
Acenaphthene	0.76	BH2-23-SS2	0.8-1.4
Acenaphthylene	0.19	BH2-23-SS2	0.8-1.4
Anthracene	<u>1.58</u>	BH2-23-SS2	0.8-1.4
Benzo[a]anthracene	2.72	BH2-23-SS2	0.8-1.4
Benzo[a]pyrene	2.37	BH2-23-SS2	0.8-1.4
Benzo[b]fluoranthene	3	BH2-23-SS2	0.8-1.4
Benzo[g,h,i]perylene	1.45	BH2-23-SS2	0.8-1.4
Benzo[k]fluoranthene	<u>1.68</u>	BH2-23-SS2	0.8-1.4
Chrysene	2.68	BH2-23-SS2	0.8-1.4
Dibenzo[a,h]anthracene	0.38	BH2-23-SS2	0.8-1.4
Fluoranthene	<u>6.09</u>	BH2-23-SS2	0.8-1.4
Fluorene	0.53	BH2-23-SS2	0.8-1.4
ndeno [1,2,3-cd] pyrene	<u>1.4</u>	BH2-23-SS2	0.8-1.4
1-Methylnaphthalene	0.13	BH2-23-SS2	0.8-1.4
2-Methylnaphthalene	0.18	BH2-23-SS2	0.8-1.4
lethylnaphthalene (1&2)	0.31	BH2-23-SS2	0.8-1.4
Naphthalene	0.22	BH2-23-SS2	0.8-1.4
Phenanthrene	4.82	BH2-23-SS2	0.8-1.4
Pyrene	4.84	BH2-23-SS2	0.8-1.4
PHCs (C6-C10)	182	BH1-SS7	4.6-4.7
PHCs (C10-C16)	118	BH1-SS7	4.6-4.7
PHCs (C16-C34)	699	BH5-23-AU1	0.06-0.25
PHCs (C34-C50)	1650	BH5-23-AU1	0.06-0.25
ylbenzene	0.1	BH5-23-SS6	4-4.6
, lenes, total	0.22	BH5-23-SS6	4-4.6

Bold and Underlined – Results exceed the selected MECP standards

5.6 Groundwater Quality

Five groundwater samples (including one duplicate) from monitoring wells installed in BH2-23, BH3-23, BH5-23 and BH6-23 were submitted for laboratory analysis of BTEX, PHCs and VOCs. The groundwater samples were obtained from the screened intervals noted in Table 2.

Six groundwater samples collected during the 2012 investigation, from previously existing monitoring wells in BH1, BH4 and BH1-11, were submitted for analytical testing of BTEX, PHCs and VOCs.

Analytical testing results from both the current program and 2012 investigation are presented in Table A2. The laboratory Certificates of Analysis are provided in Appendix 1.

PHCs (F1-F4)

Hydrocarbon parameters were not identified in any of the samples except for samples recovered from BH1 (2012), BH5-23, BH7-23 and BH1-24. The concentrations of PHC F_1 or PHC F_4 identified in BH1 (2012), BH7-23 and BH1-24, complied with the MECP Table 3 standards. Concentrations of PHC F_1 and F_2 identified in groundwater samples BH5-23-GW1 exceeded the MECP Table 3 standards, resulting in the completion of a second round of sampling.

Groundwater from BH5-23 was resampled and submitted for analytical testing of BTEX and PHCs. All the analytical test results from the second groundwater sampling event complied with the applicable MECP Table 3 standards.

A third groundwater sampling event with clean results was required to meet industry standards, however the results of this sampling event identified concentrations of PHC F_1 and F_2 similar to that identified in BH5-23-GW1, at levels above the MECP Table 3 standards.

The analytical results for groundwater tested are shown on Drawing PE2709-19– Analytical Testing Plan – Groundwater (PHCs).

BTEX/VOCs

No VOC parameters were identified in any of the samples analysed, apart from chloroform identified in BH1-GW1, BH4-GW1, BH4-GW2, BH3-23-GW1, DUP1-23-GW1, and BH8-23-GW1. Except for BH8-23-GW1, all wells were resampled, and chloroform was not identified.

The chloroform in the groundwater samples resulted from the use of municipally treated water for the bedrock coring process required for installation of monitoring wells. All concentrations of chloroform identified were less than 240 μ g/L as lited in Table A of the MECP document entitled "Guidance for Addressing Chloroform at a Record of Site Condition Property" and as such, the exemption in Paragraph 2 of Section 49.1 or O.Reg. 153/04 is being relied upon.

All BTEX parameters identified were in compliance with the MECP Table 3 standards.

The analytical results for BTEX and VOCs in groundwater are shown on Drawing PE2709-17– Analytical Testing Plan – Groundwater (BTEX, VOCs).

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of the March 2023 sampling events were handled in accordance with the Analytical Protocol with respect to preservation method, storage requirement, and container type. As per Subsection 47(3) of O.Reg. 153/04, as amended, under the Environmental Protection Act, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

Four duplicate soil samples were collected from BH3-23-SS5 (DUP1-23), BH5-23-SS6 (DUP), BH1-24-SS5 (DUP1) and BH4-24-SS6 (DUP2), and were submitted for metals, PHCs, and/or VOCs. The duplicates were collected with the intent of calculating the relative percent difference (RPD) between duplicate sample values, as a way of assessing the quality of the analytical test results.

The RPD calculations for BH5-23-SS6, BH1-24-SS5 and BH4-24-SS6 and their respective duplicate samples are provided in Tables 8A-8C.

All of the analyzed VOC concentrations in BH3-23-SS5 and its duplicate sample, DUP1-23, were not detected above the laboratory method detection limit; as such these results are not tabulated below.

Table 8A - Q	A/QC – S	oil – BH5-23-	SS6 and D	UP	
Parameter	MDL (µg/g)	BH5-23-SS6	DUP	RPD (%)	QA/QC Result
Arsenic	1.0	4.1	4.6	11.5	Meets Target
Barium	1.0	129	211	48	Does Not Meet Target
Boron	5.0	8	8.9	5.3	Meets Target
Chromium	5.0	13.5	15.5	13.7	Meets Target
Cobalt	1.0	4.5	4.9	4.2	Meets Target
Copper	5.0	5	5.5	9.5	Meets Target
Lead	1.0	5	5.1	2	Meets Target
Nickel	5.0	11.4	12.5	9.2	Meets Target
Vanadium	10.0	15.4	18	4.2	Meets Target
Zinc	20.0	32.4	36.8	12.1	Meets Target
PHC F1	7	7	8	13	Meets Target
PHC F ₂	4	4	28	150	Does Not Meet Target
Ethylbenzene	0.05	0.1	0.08	22	Does Not Meet Target
Xylenes, total	0.05	0.22	0.21	4.6	Meets Target
	lethod Dete detected a	ection Limit bove the MDL			

The remaining parameter concentrations were not detected in either or both the original sample and duplicate, therefore, the RPD values cannot be calculated.

Table 8B - QA/QC	– Soil -	- BH1-24-S	S5 and [DUP1	
Parameter	MDL (µg/g)	BH1-24- SS5	DUP1	RPD (%)	QA/QC Result
Arsenic	1.0	2.1	2.2	4.7	Meets Target
Barium	1.0	35.8	35.9	0.28	Meets Target
Boron	5.0	8	5.2	46.7	Does not Meet Target
Chromium	5.0	11.8	12.2	3.3	Meets Target
Cobalt	1.0	4.6	4.8	4.3	Meets Target
Copper	5.0	6.8	7.8	13.7	Meets Target
Lead	1.0	4	4.2	4.9	Meets Target
Nickel	5.0	8.3	8.7	4.7	Meets Target
Vanadium	10.0	18.7	19.1	2.1	Meets Target
Acenaphthene	0.02	0.02	0.02	0	Meets Target
Anthracene	0.02	0.06	0.06	0	Meets Target
Benzo[a]anthracene	0.02	0.05	0.05	0	Meets Target
Benzo[b]pyrene	0.02	0.04	0.04	0	Meets Target
Benzo[b]fluoranthene	0.02	0.04	0.03	28.6	Does not Meet Target
Benzo[g,h,i]perylene	0.02	0.02	0.03	40	Does not Meet Target
Benzo[k]fluoranthene	0.02	0.03	0.03	0	Meets Target
Chrysene	0.02	0.05	0.05	0	Meets Target
Fluoranthene	0.02	0.2	0.18	10.5	Meets Target
Fluorene	0.02	0.03	0.02	40	Does not Meet Target
Naphthalene	0.01	0.04	0.02	67	Does not Meet Target
Phenanthrene	0.02	0.19	0.18	5.4	Meets Target
Pyrene	0.02	0.14	0.14	0	Meets Target
Notes:					

MDL – Method Detection Limit

nd – not detected above the MDL

Parameter	MDL (µg/g)	BH1-24- SS5	DUP2	RPD (%)	QA/QC Result
Arsenic	1.0	3	2.7	10.5	Meets Target
Barium	1.0	36.7	43	15.8	Meets Target
Boron	5.0	7.4	7.7	4.0	Meets Target
Chromium	5.0	9.5	10.5	10	Meets Target
Cobalt	1.0	2.9	3.3	12.9	Meets Target
Lead	1.0	5.6	5.6	0	Meets Target
Nickel	5.0	6.5	7.1	8.8	Meets Target
Vanadium	10.0	13.6	14.9	9.1	Meets Target

MDL – Method Detection Limit

nd – not detected above the MDL

Typically, RPD values below 20% indicate satisfactory quality. The relative percent difference (RPD) results calculated for three soil parameters (barium, ethylbenzene and PHC F2) identified in Sample BH5-23-SS6 and its duplicate, as well as for boron and several PAH parameters in Sample BH1-24-SS4 and its duplicate, fell outside of the acceptable range of 20%, and thus do not meet the data quality objectives outlined in the Sampling and Analysis Plan, appended to this report.

Despite the exceeded RPD values calculated for the soil samples and the corresponding duplicate, it should be noted that the concentrations of the parameters were well within the applicable MECP Table 3 Standards in both samples.

As a result, it is our opinion that the decision-making usefulness of the samples is not considered to be impaired, and thus the quality of the collected field data is sufficient to meet the overall objectives of this assessment.

A duplicate groundwater sample (DUP1-23-GW1) was obtained from the monitoring well installed in BH3-23 and submitted for laboratory analysis of VOC parameters. The RPD calculations for the original groundwater and duplicate sample are provided in Table 13.

Parameter	MDL (µg/L)	BH3-23- GW1	DUP1-23- GW1	RPD (%)	QA/QC Result
Benzene	0.5	0.6	0.6	0	Meets Target
Chloroform	0.5	2.5	2.6	4	Meets Target
Toluene	0.5	3.4	3.5	2.8	Meets Target
Xylenes, Total	0.5	4.5	4.2	7	Meets Target

All of the calculated RPD values from BH3-23-GW1 and the duplicate samples BH1-23-GW1 are well below the required 20%.

The quality of the field data collected during the Phase II ESA is considered to be sufficient to meet the overall objectives of the assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/04, as amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

Based on the results of the Phase I ESA completed for the subject property, nine (9) PCAs were considered to result in APECs on the Phase II Property. The identified APECs on the Phase II Property are presented in Table 1 in the Phase I CSM and are as follows:

- APEC 1: Resulting from the importation of fill material of unknown quality (PCA #30);
- □ APEC 2: Resulting from the presence of a former on-site aboveground storage tank (AST) (PCA #28);
- □ APEC 3: Resulting from the presence of a former printer previously located on the southwestern portion of the Phase II Property (PCA #31);
- □ APEC 4: Resulting from the presence of a former dry cleaner and machine shop on the adjacent property to the west (PCA #37).
- □ APEC 5: Resulting from the presence of a former retail fuel outlet on the adjacent property to the west (PCA #28).
- APEC 6: Resulting from the presence of a former refined petroleum industry and roofing manufacturer previously located to the south, across George Street (PCAs #41 and #28);
- □ APEC 7: Resulting from the presence of a former automotive service garage previously located to the south, across George Street (PCA#52);
- □ APEC 8: Resulting from the presence of a former printer and drycleaner previously located to the south, across George Street (PCA #31 and #37)

APEC 9: Application of road salt for the removal of snow and de-icing purposes (PCA #NA)

Based on the findings of the Phase I ESA, it is considered likely that road salt was applied to the surface of the parking lot across the Phase II Property for the safety of vehicular and pedestrian traffic under conditions of ice and/or snow. Although not defined as a specific PCA under Column A of Table 2 of O.Reg. 153/04, the use of salt for safety purposes is considered to result in an APEC on the Phase I Property (APEC 4).

According to Section 49.1 of O.Reg. 153/04, if an applicable site condition standard is exceeded at a property solely because of the following reason, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act: "The qualified person has determined, based on a phase one environmental site assessment or a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both."

In accordance with Section 49.1 of O.Reg. 153/04, any EC and SAR concentrations on the RSC Property that exceed the MECP Table 3 Standards for a residential/institutional land use are deemed not to be exceeded for the purpose of Part XV.1 of the Act. This exemption is being relied on for APEC 9.

Contaminants of Potential Concern

The following CPCs are identified with respect to the Phase II Property:

- Metals (including arsenic (As), antimony (Sb), selenium (Se), mercury (Hg) and hexavalent chromium (CrVI)) (Soil);
- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) (Soil and/or Groundwater);
- D Petroleum Hydrocarbons (PHCs) (Soil and/or Groundwater);
- D Polycyclic Aromatic Hydrocarbons (PAHs) (Soil); and
- □ Volatile Organic Compounds (VOCs) (Soil and/or Groundwater)

In accordance with Section 49.1 of O.Reg.153/04, as amended, electrical conductivity (EC) and sodium adsorption ratio (SAR) are not considered to be CPCs.

Subsurface Structures and Utilities

The Phase I Property is situated in a municipally serviced area. Underground utility services on the subject land during the Phase I site visits include natural gas, electrical, cable, sewer and water services. Services have since been decommissioned.

No potable wells or private sewage systems were observed on the Phase I Property at the time of the site visit. No other subsurface structures were identified at the time of the site visit apart from the foundation associated with the former structure at 110 York Street.

Physical Setting

Site Stratigraphy

The stratigraphy of the Phase II Property generally consists of:

Groundwater was encountered within the overburden at depths ranging from 2.51 to 6.29 mbgs.

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1.

- Asphaltic concrete; encountered at depths ranging from approximately 0.05 to 0.06 mbgs.
- Fill material consisting of brown or grey silty sand with gravel, crushed stone, cobbles and/or trace topsoil; extending to a maximum depth of approximately 3.6 mbgs in BH6-23. Building debris fragments, including concrete, brick, metal and/or wood, were identified in the fill layer at BH2-23, BH7-23, BH8-23, BH1-24 and BH3-24.
- Glacial Till; consisting of brown to grey silty sand to sandy silt matrix with gravel, cobbles and boulders extending to a maximum depth of 5.64 mbgs. (The fill material within BH7-23 was underlain by a concrete slab which had previously served as a crane base during the development of the adjacent property to the west.)
- Grey limestone bedrock was encountered at a maximum depth of 5.64 mbgs.

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is provided in the Soil Profile and Test Data Sheets in Appendix 1.

Hydrogeological Characteristics

Groundwater was encountered at the soil-bedrock interface at depths ranging from 2.77 to 6.29 mbgs. Based on field observations, the soil is not considered to be a water-bearing unit; it is anticipated that the water table exists within the bedrock.

Based on the March 2023 groundwater monitoring event, groundwater flow was measured in an eastern direction with a hydraulic gradient of 0.07 m/m. It should be noted that groundwater levels are expected to fluctuate throughout the year with seasonal variations. The flow direction in the immediate vicinity of the Phase II Property is expected to have been influenced by the deep excavation on the adjacent property to the east. Regional groundwater flow is expected to be in a northerly direction, toward the Ottawa River. Groundwater contours are shown on Drawing PE2709-11 – Test Hole Location Plan.

Approximate Depth to Bedrock

Grey limestone bedrock was confirmed at each borehole location; depth to bedrock at the Phase II Property ranges from approximately 4.6 to 5.6m below grade.

Approximate Depth to Water Table

The water table was measured at depths ranging from 2.77 to 6.29 mbgs.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation does not apply to the Phase II Property, in that the subject property is not within 30m of an environmentally sensitive area and the pH of the surface soil is between 5 and 9 while the pH of the subsurface soil is between 5 and 11.

Section 43.1 of the Regulation does not apply to the Phase II Property given the property is not a shallow soil property and is not within 30m of a body of water.

Areas Where Excess Soil Has Been Finally Placed on the Phase II Property

No excess soil has been finally placed on, in or under the Phase II Property.

Existing Buildings and Structures

The northern portion of the Phase I Property was most recently occupied by a vacant, two-storey commercial building fronting onto York Street (civic address 110 York Street). The former structure was demolished in April 2024.

Proposed Buildings and Other Structures

The proposed site development for the Phase II Property will consist of a multistorey, mixed-used development comprised of residential dwellings and a commercial hotel. An underground parking lot will occupy the entire Phase II Property below grade.

Environmental Condition

Areas Where Contaminants are Present

Based on the findings of the current Phase II ESA, including the results of past investigations, fill material impacted with metals, mercury, PHCs and PAHs was identified in pockets across the site. Additionally, PHC impacted glacial till was also identified on the southern portion of the Phase II Property, primarily within the southwest corner. A PHC F_3 concentration identified at BH1-23 on the southeastern portion of the site within the native material, is considered to be from a separate source.

Groundwater impacted with PHCs was identified at BH5-23; based on the findings of the Phase II ESA, the impacted groundwater is confined within the southwestern portion of the Phase II Property. The groundwater impacts are expected to be present within the soil-bedrock interface.

Types of Contaminants

Contaminants include metals, mercury, PHC and PAH concentrations in the soil, as well as PHC F₁ and F₂ concentrations in the groundwater. Note that methyl mercury was also analysed in a soil sample recovered from BH4-24, given the mercury exceedance; no methyl mercury was identified in the sample analysed.

Contaminated Media

Based on the findings of this Phase II ESA, the fill material across most of the site and the native glacial till on the southern portion of Phase II Property, has been impacted with PHCs, metals, mercury and/or PAHs.

Groundwater within the southwestern portion of the site has been impacted with PHC F_1 and PHC F_2 concentrations.

What Is Known About Areas Where Contaminants Are Present

The impacted fill material is considered to have resulted from the importation of fill material of unknown quality, for historical grading purposes following the demolition of previously existing buildings on the Phase II Property.

The native glacial till within the southwestern corner of the site is considered to have resulted from the former operation of a retail fuel outlet (RFO) on the adjacent property to the west.

Similarly, the groundwater on this portion of the site is impacted with residual PHC concentrations considered to have originated from the former RFO.

A PHC F_3 concentration identified at BH1-23 on the southeastern portion of the site within the native material, is expected to be from a separate source, possibly associated with former buildings on this portion of the site.

Distribution and Migration of Contaminants

Based on the findings of the Phase I and Phase II ESA, contaminants of concern identified within the fill material are not considered to have migrated significantly beyond the fil layer.

The native glacial till impacts are also considered to be limited in extent and are isolated primarily to the southern portion of the Phase II Property.

Discharge of Contaminants

Based on the findings of this Phase II ESA, the shallow soil impacts are considered to have resulted from the importation of fill material of unknown quality. The PHC impacted native glacial till on the southwestern portion of the Phase II Property is considered to have resulted from the former operation of an RFO on the adjacent property to the west, while the PHC F_3 concentration identified on the southeastern portion of the site within the native soil, may be associated with former on-site buildings on this portion of the Phase II Property.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Given the site was covered with asphaltic concrete outside of the former building footprints, significant downward leaching of contaminants is expected to have occurred, although some leaching by means of infiltration of precipitation may have occurred through cracks in the asphaltic concrete.

Groundwater levels and/or flow are not considered to have had a significant affect on contaminant distribution at the RSC Property; based on the Phase II ESA, groundwater impacts are confined to the southwestern portion of the property within the upper layers of bedrock near the soil-bedrock interface.

Potential for Vapour Intrusion

Based on the findings of the Phase II ESA, the potential for vapour intrusion is negligible given that soil impacted with volatile compounds (PHCs) was situated outside of the building footprint.

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the property addressed 137-141 George Street and 110-116 York Street, in the City of Ottawa, Ontario. The purpose of the Phase IIESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The Phase II ESA was carried out in conjunction with a Geotechnical Investigation and consisted of three drilling programs were carried out on the following dates: February 24-28, 2023, August 14-16, 2023, and May 8-May 9. Together, the field programs consisted of drilling 16 boreholes to address the APECS identified in the Phase I ESA. Twelve of the boreholes were instrumented with groundwater monitoring wells to assess the groundwater beneath the Phase II Property. The monitoring well installed in BH1-23 was installed at a greater depth than the remainder of the wells, for geotechnical purposes.

The borehole profiles generally consist of a surficial layer of asphaltic concrete (ranging from 0.05-0.06 m in thickness), followed by fill material consisting of brown silty sand with gravel, crushed stone, cobbles and/or trace topsoil (with occasional pieces of building debris). The fill layer extended to a maximum depth of approximately 3.8 m and was underlain by glacial till consisting of a silty sand to sandy silt matrix with gravel, cobbles, and boulders. Grey limestone bedrock was encountered at a maximum depth of approximately 5.9 m below the existing ground surface.

<u>Soil</u>

A total of 40 samples and 4 duplicate samples were submitted for analysis of metals (including As, Sb, Se, Hg and CrVI), benzene, toluene, ethylbenzene xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and/or pH.

Metal, Mercury (Hg), PAH and/or PHC impacts were identified in the fill material across most of the Phase II Property. PHC impacts were also identified in the native glacial till in the southern portion of the Phase II Property.

Groundwater

Groundwater samples from monitoring wells installed in BH2-23, BH3-23, BH5-23 and BH6-23 were collected during the March 8, 2023, sampling event and submitted for laboratory analysis of BTEX, PHCs (F1-F4), and/or VOCs. The majority of the analyzed PHC parameters were non-detect apart from the PHC F1 concentration in BH1-GW1, which complied with the applicable MECP Table 3 standards. The concentrations of PHC fractions F1 and F2 identified in BH5-23-GW1 exceeded the applicable MECP Table 3 standards, resulting in the completion of a second round of sampling.

All the analyzed VOC parameters were non-detect and therefore comply with the applicable MECP Table 3 standards, apart from the identified chloroform concentrations in BH3-23-GW1 and its duplicate sample (DUP1-23-GW1).

A second round of groundwater sampling was completed on March 23, 2023, and involved the analytical testing of PHCs and/or VOCs from groundwater obtained within BH3-23 and BH5-23. All the analyzed PHC and VOC parameters complied with the applicable MECP Table 3 standards.

A third round of groundwater sampling was completed on June 27, 2023, to obtain a second clean groundwater result from BH5-23, to comply with industry standards. The groundwater sample was submitted for BTEX and PHCs. Based on the analytical test results the concentrations of PHC fractions F1 and F2 once again exceeded the applicable MECP Table 3 standards.

Groundwater samples recovered from BH7-23 through BH9-23 were sampled on August 23, 2023, and submitted for analytical testing of BTEX or VOCs and PHCs. The monitoring well installed in BH10-23 was dry at the time of the sampling event. Apart from the chloroform concentration identified in BH9-23, all parameters complied with the MECP Table 3 standards. It should be noted that the PHC detection limits for Sample BH9-23 were elevated above the standards due to low sample volume.

Groundwater samples recovered from BH1-24, BH3-24 and BH4-24 on May 22, 2024, were submitted for analytical testing of Metals, Mercury, BTEX, VOCs and/or PHCs. Based on the analytical test results, all identified concentrations complied with the MECP Table 3 standards.

Recommendations

A remediation program was recommended in conjunction with site redevelopment, to remove all impacted soil and groundwater from the Phase II Property. Based on the findings of the Phase II ESA, it is expected that most of the fill will require of-site disposal at a registered landfill site. Deeper impacts within the native material are contained primarily to the southwestern corner of the site where groundwater impacts were also observed. It is expected that impacted groundwater, identified within the upper bedrock, near the soil-bedrock interface, will be remediation through the removal of impacted soil and underlying bedrock.

The remediation program is underway, with most of the soil having been removed from the site for disposal at a licenced landfill site or for beneficial reuse at a Class 1 Management Site or Reuse Site, in accordance with O.Reg. 406/19.

This Phase II ESA report will be updated with the findings of the remediation program once post-remediation groundwater monitoring has been completed, in accordance with O.Reg. 153/04, to support the filing of a Record of Site Condition.

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared under the supervision of a Qualified Person, in general accordance with O. Reg 153/04. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Claridge Homes. Notification from Claridge Homes and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Mohammed Ramadan, B.Sc.

Kaup Munch:

Karyn Munch, P.Eng., Q.P.ESA

Report Distribution:

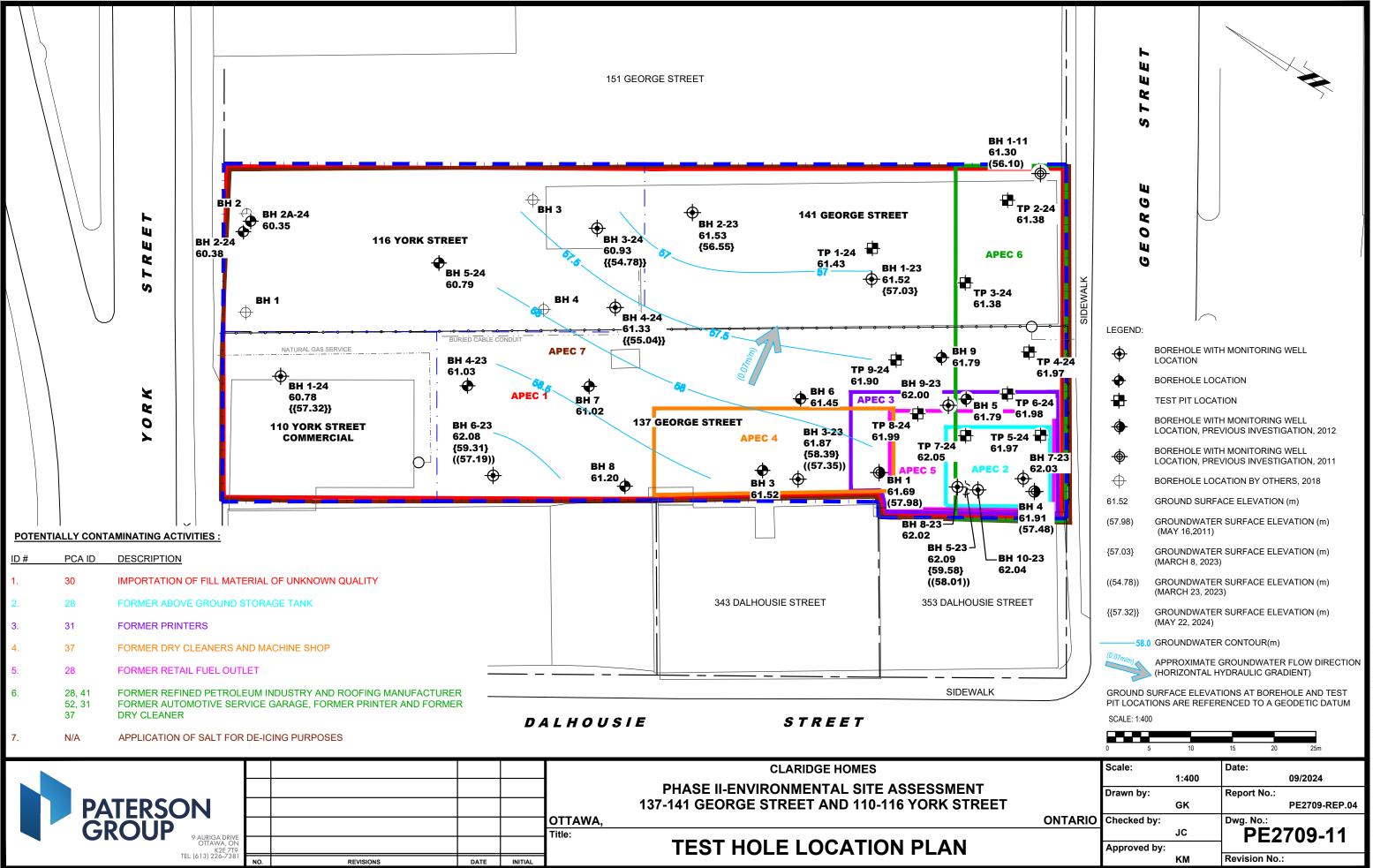
Claridge HomesPaterson Group

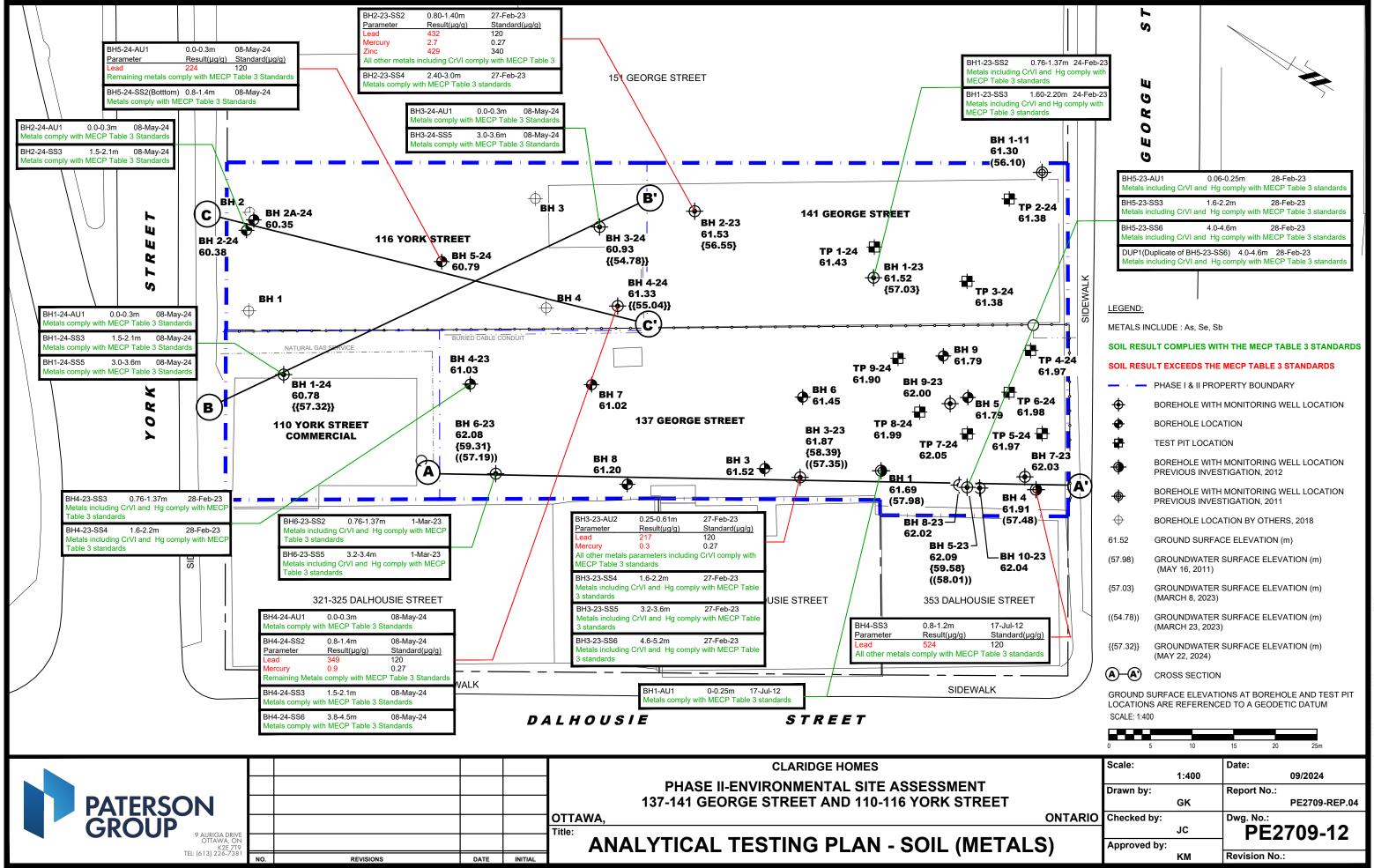
FIGURES

DRAWING PE2709-11 – TEST HOLE LOCATION PLAN

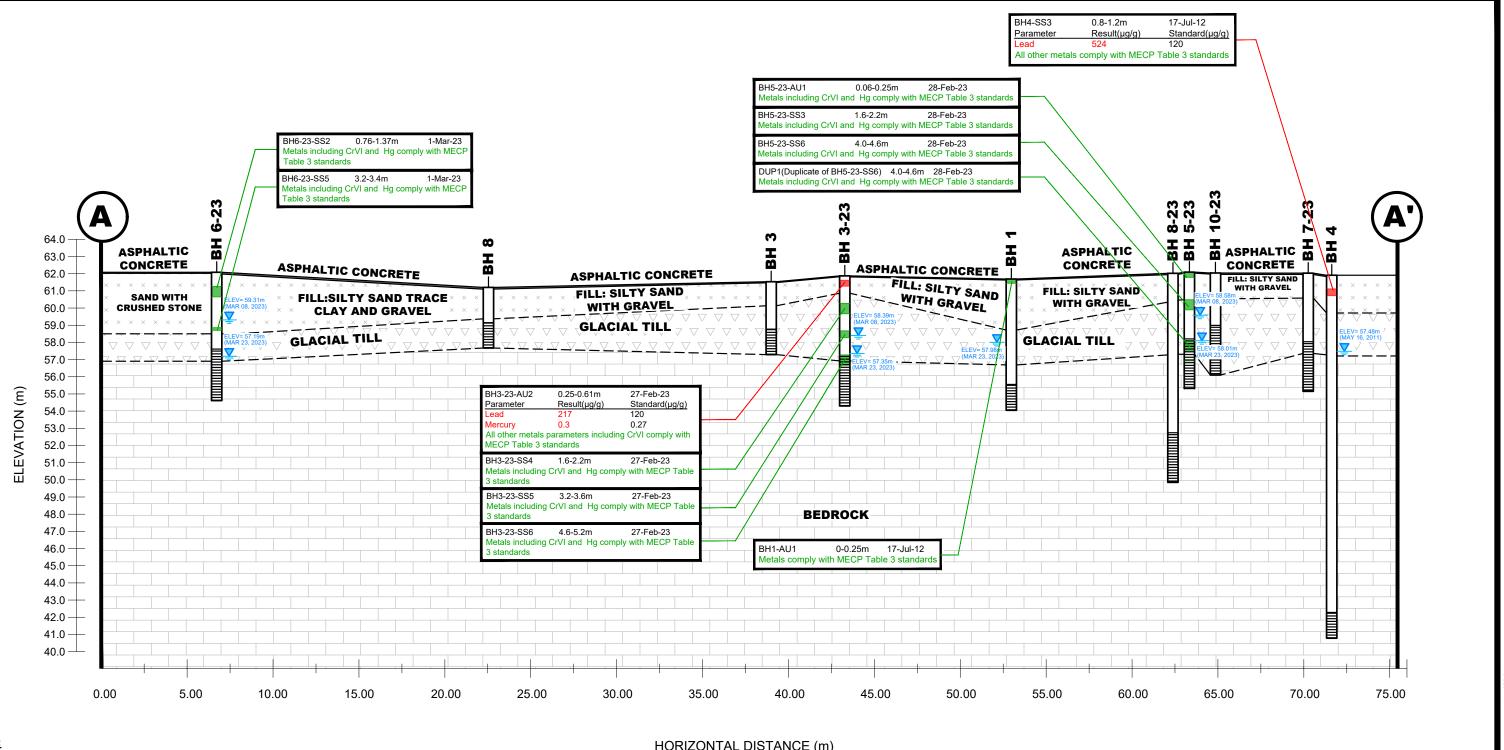
DRAWING PE2709-12 – ANALYTICAL TESTING PLAN – SOIL-METALS DRAWING PE2709-12A – CROSS SECTION A-A' – SOIL-METALS DRAWING PE2709-12B – CROSS SECTION B-B' – SOIL-METALS DRAWING PE2709-12C – CROSS SECTION C-C' – SOIL-METALS

DRAWING PE2709-13 – ANALYTICAL TESTING PLAN – SOIL-PAHS DRAWING PE2709-13A – CROSS SECTION A-A' – SOIL-PAHS DRAWING PE2709-13B – CROSS SECTION B-B' – SOIL-PAHS DRAWING PE2709-13C– CROSS SECTION C-C' – SOIL-PAHS

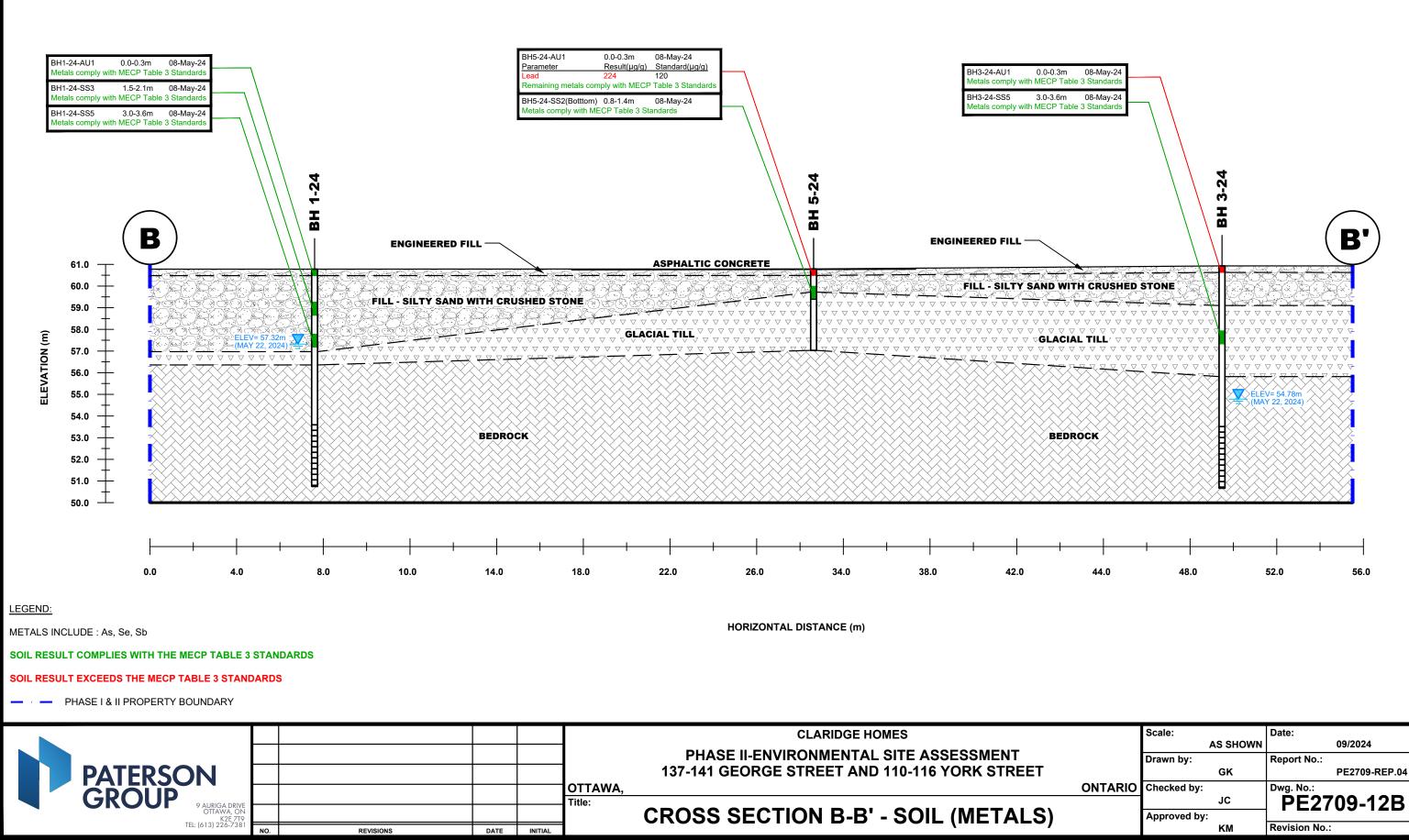

DRAWING PE2709-14 – ANALYTICAL TESTING PLAN – SOIL-PHCS DRAWING PE2709-14A – CROSS SECTION A-A' – SOIL-PHCS DRAWING PE2709-14B – CROSS SECTION B-B' – SOIL-PHCS DRAWING PE2709-14C – CROSS SECTION C-C' – SOIL-PHCS

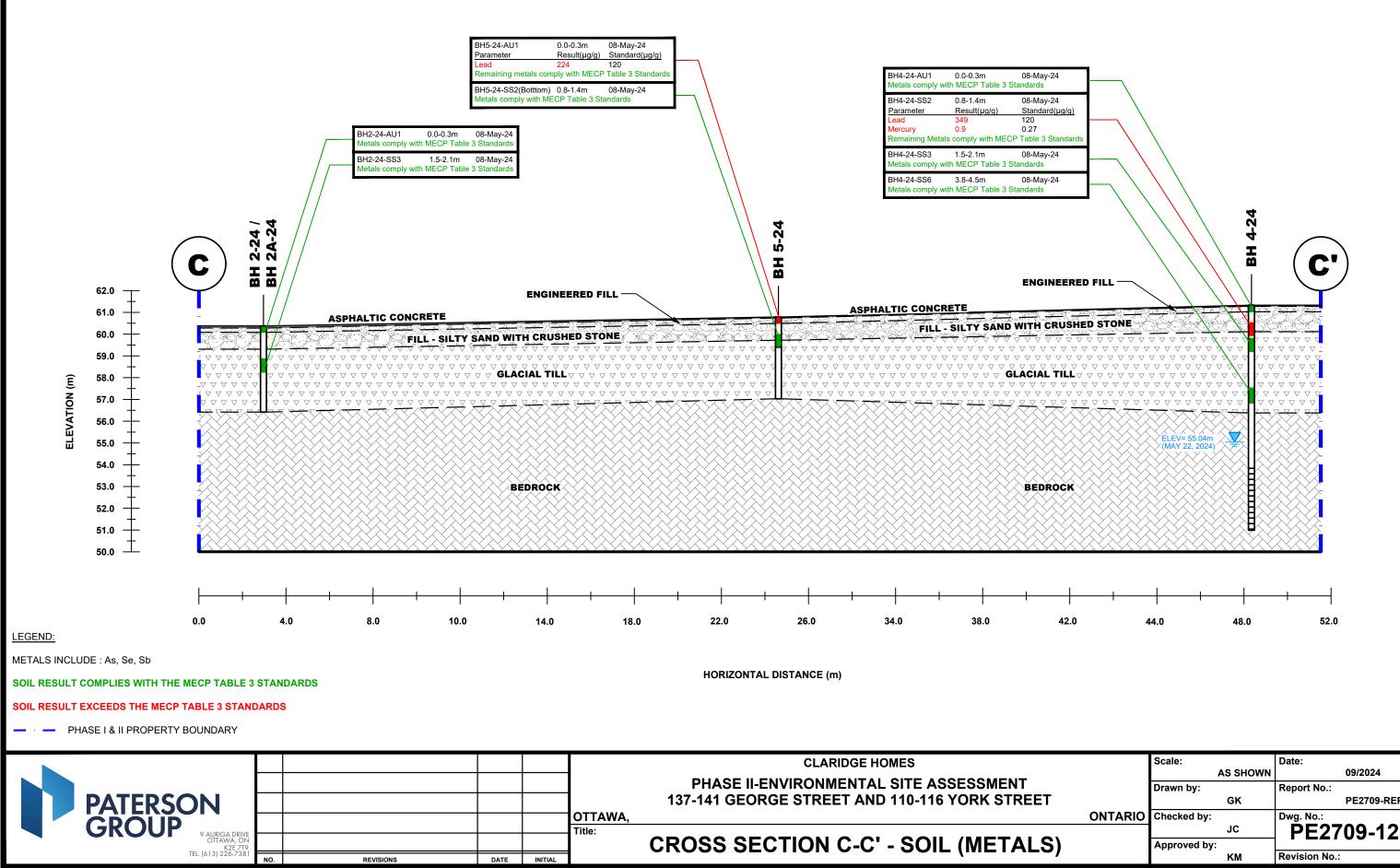

DRAWING PE2709-15 – ANALYTICAL TESTING PLAN – SOIL-BTEX DRAWING PE2709-15A – CROSS SECTION A-A' – SOIL-BTEX DRAWING PE2709-15B – CROSS SECTION B-B' – SOIL-BTEX DRAWING PE2709-15C – CROSS SECTION C-C' – SOIL-BTEX

DRAWING PE2709-16 – ANALYTICAL TESTING PLAN – SOIL-VOCs DRAWING PE2709-16A – CROSS SECTION A-A' – SOIL-VOCs DRAWING PE2709-16B – CROSS SECTION B-B' – SOIL-VOCs DRAWING PE2709-16C – CROSS SECTION C-C' – SOIL-VOCs

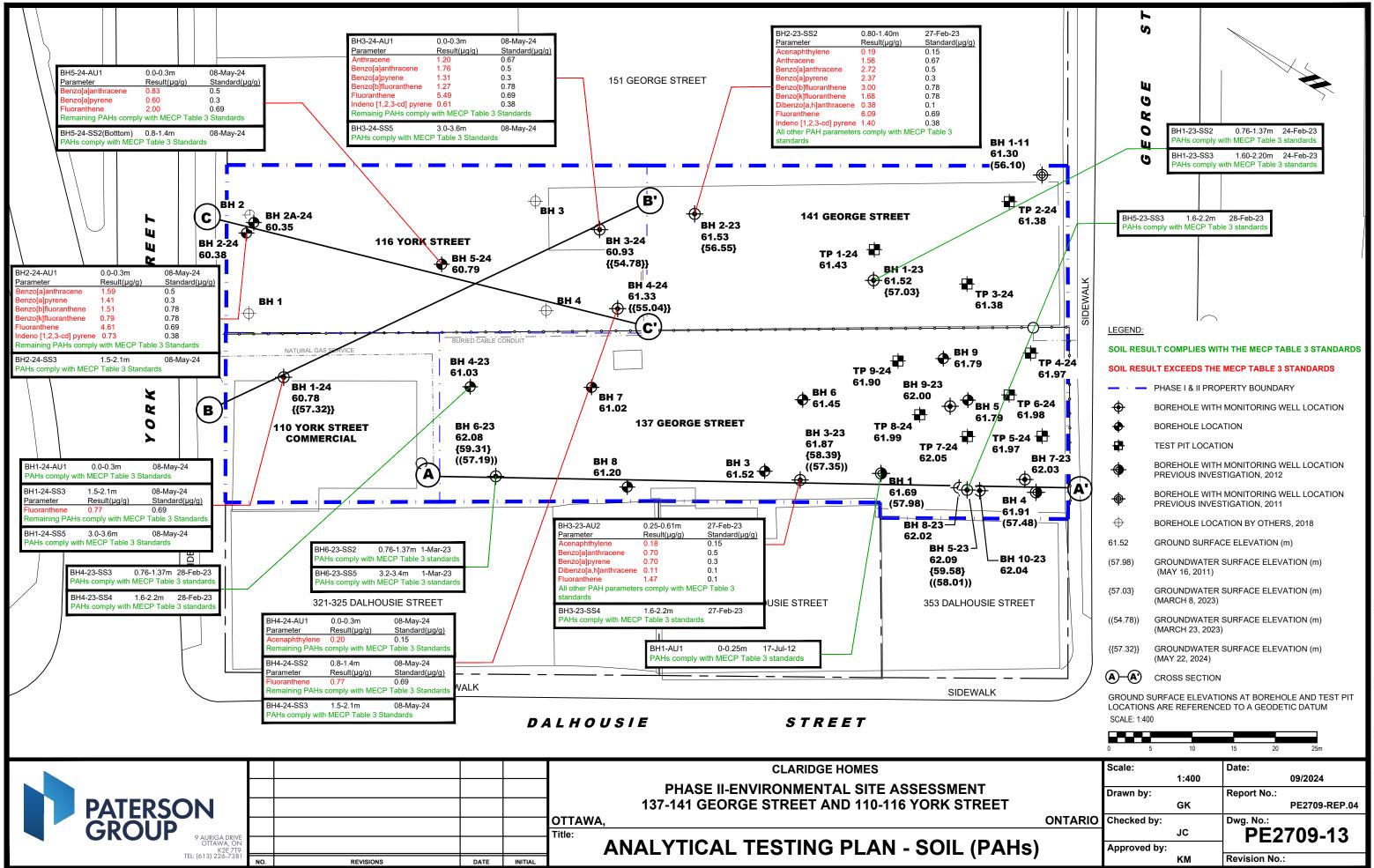

DRAWING PE2709-17 – ANALYTICAL TESTING PLAN – GROUNDWATER-BTEX, VOCs DRAWING PE2709-17A – CROSS-SECTION A – A' – GROUNDWATER-BTEX, VOCs DRAWING PE2709-17B – CROSS-SECTION B – B' – GROUNDWATER-BTEX, VOCs DRAWING PE2709-17C – CROSS-SECTION C – C' – GROUNDWATER-BTEX, VOCs DRAWING PE2709-18 – ANALYTICAL TESTING PLAN – GROUNDWATER-METALS, HG, CRVI, PAHS DRAWING PE2709-18A – CROSS-SECTION A – A' – GROUNDWATER-METALS, HG, CRVI, PAHS DRAWING PE2709-18B – CROSS-SECTION B – B' – GROUNDWATER-METALS, HG, CRVI, PAHS DRAWING PE2709-18C – CROSS-SECTION C – C' – GROUNDWATER-METALS, HG, CRVI, PAHS DRAWING PE2709-19 – ANALYTICAL TESTING PLAN – GROUNDWATER-PHCS DRAWING PE2709-19A – CROSS-SECTION A – A' – GROUNDWATER-PHCS DRAWING PE2709-19B – CROSS-SECTION B – B' – GROUNDWATER-PHCS DRAWING PE2709-19C – CROSS-SECTION C – C' – GROUNDWATER-PHCS

PHCS

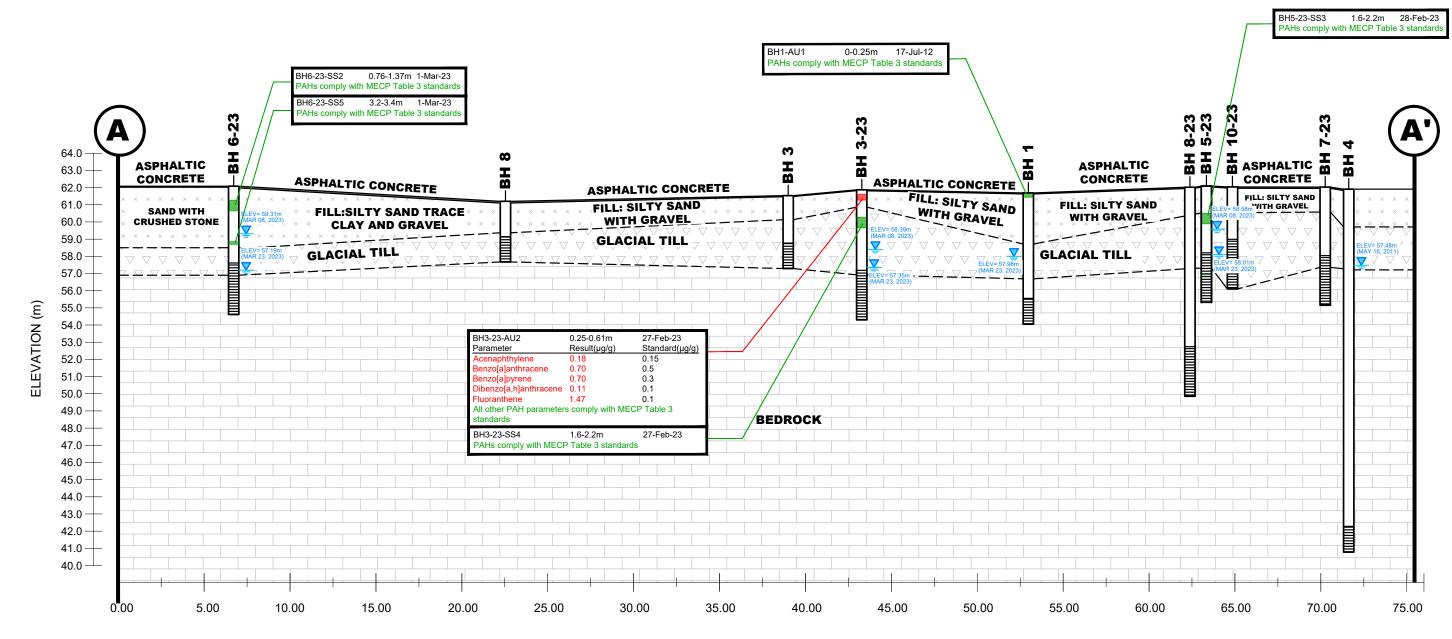


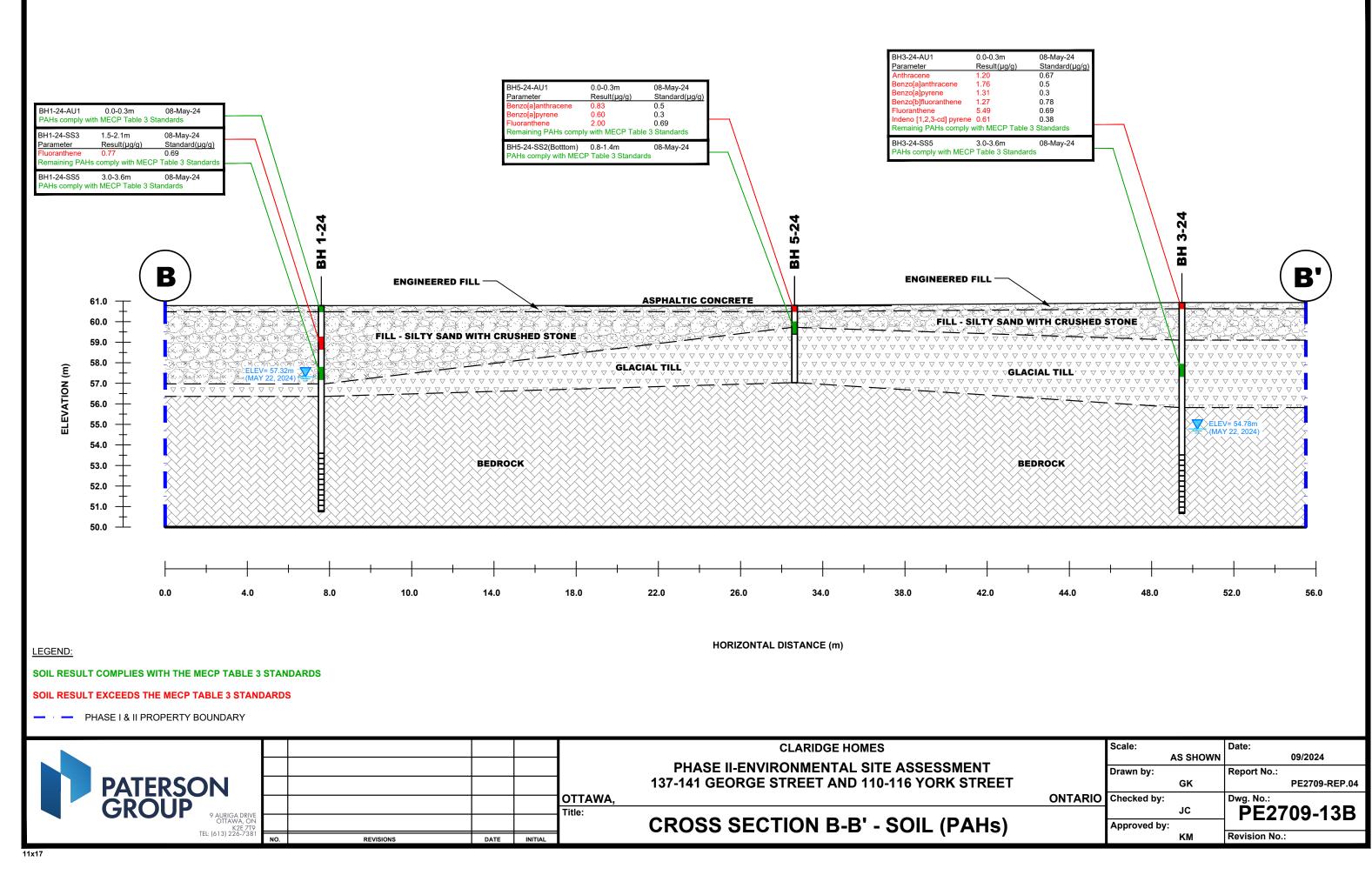


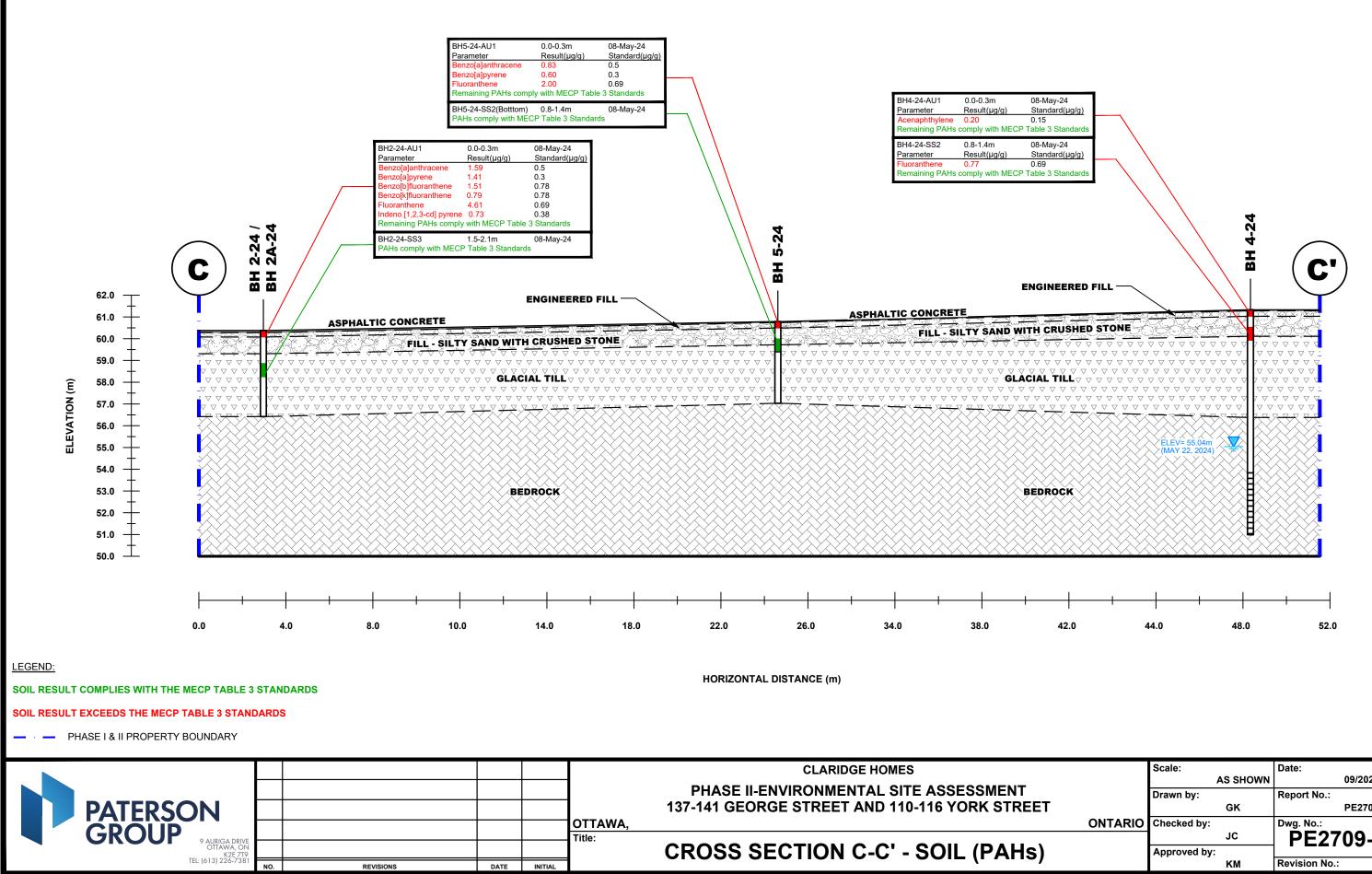
40.0											
0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00	55.00
<u>LEGEND:</u> METALS INCLUDE : As, Se, Sb							HORIZONTAL	DISTANCE (m)			
SOIL RESULT COMPLIES WITH THE MECP TAE SOIL RESULT EXCEEDS THE MECP TABLE 3 S	TANDARDS	DS									
PHASE I & II PROPERTY BOUNDAR	Y							CI	ARIDGE HO	MES	
PATERSO GROUP	N					OTTAWA,	-	E II-ENVIROI GEORGE STR			
	K2E 7T9 (613) 226-7381	NO.	REVISIONS	DA	TE INITIAL	_ Title: =	CROSS	SECTIO	N A-A' -	SOIL (I	METALS)
1x17											



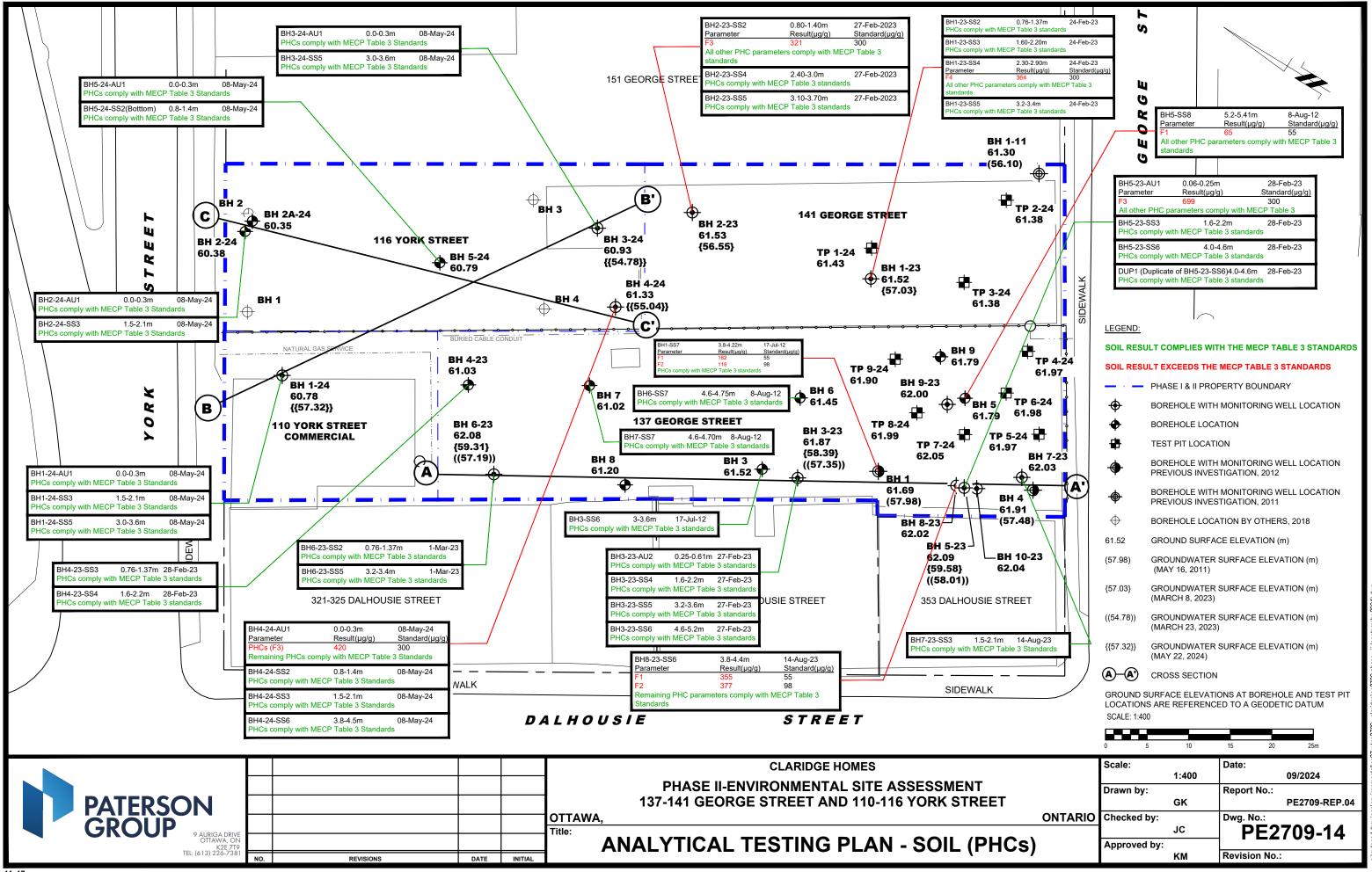
Scale:		Date:	
	AS SHOWN		09/2024
Drawn by:		Report No.:	
	GK		PE2709-REP.04
Checked by:		Dwg. No.:	
	JC	PE27	′09-12A
Approved by			••••
	КМ	Revision No.:	
	Drawn by: Checked by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:



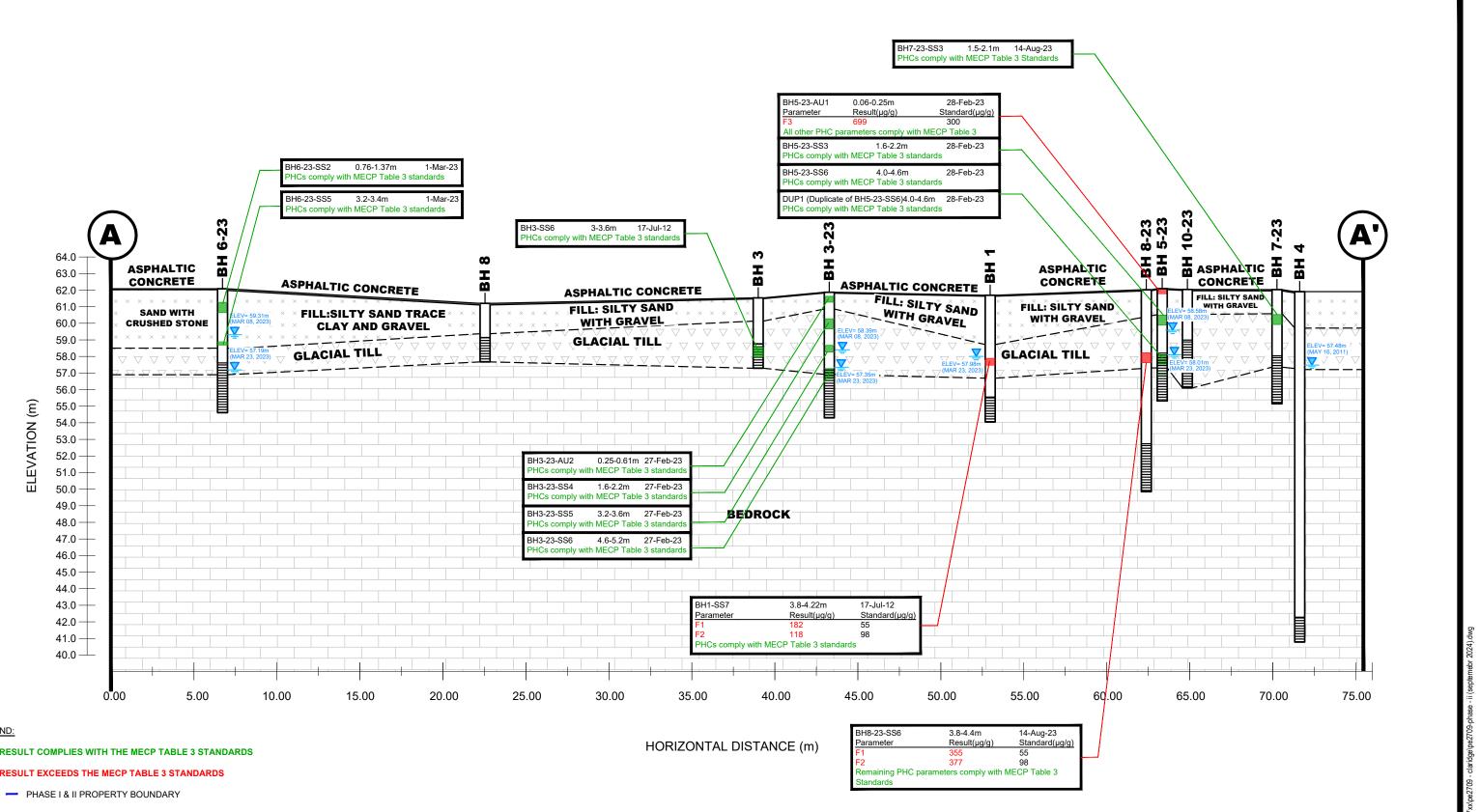

	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PF27	09-12C
	Approved by	:		
		КМ	Revision No.:	

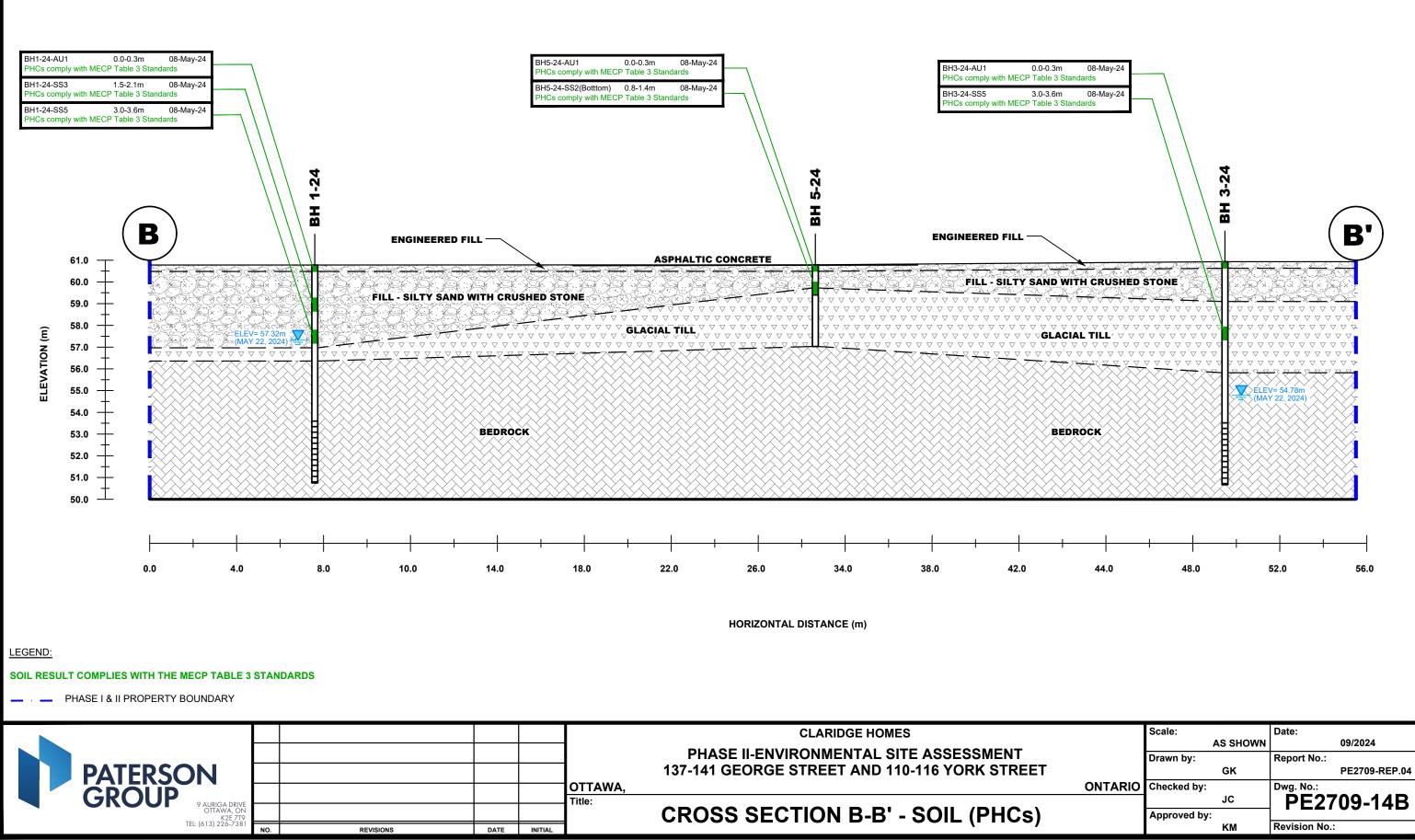


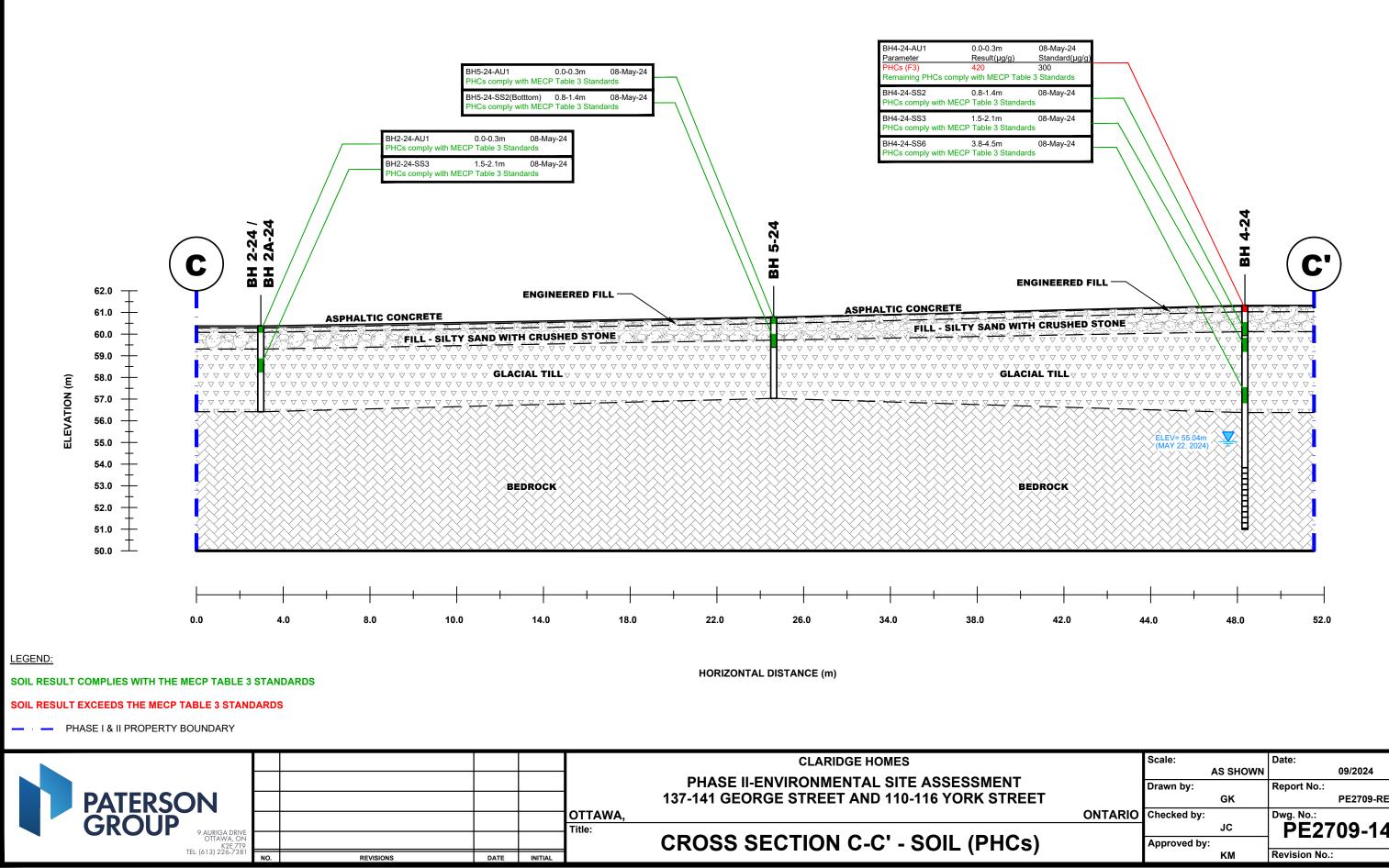
43.0 42.0 41.0 40.0												
	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00	55.00
LEGEND: SOIL RESULT COMPLIES SOIL RESULT EXCEEDS		STANDARDS	ARDS					HORIZONTAL	DISTANCE (m	1)		
P/	ATERSO ROUP	Ν					OTTAWA,		E II-ENVIRC	CLARIDGE HOM		
		9 AURIGA DRIVE OTTAWA, ON K2E 7T9 :: (613) 226-7381	NO.	REVISIONS	DATI	E INITIAL	= 1100.	CROS	S SECT	ION A-A	' - SOIL	(PAHs)
11x17												



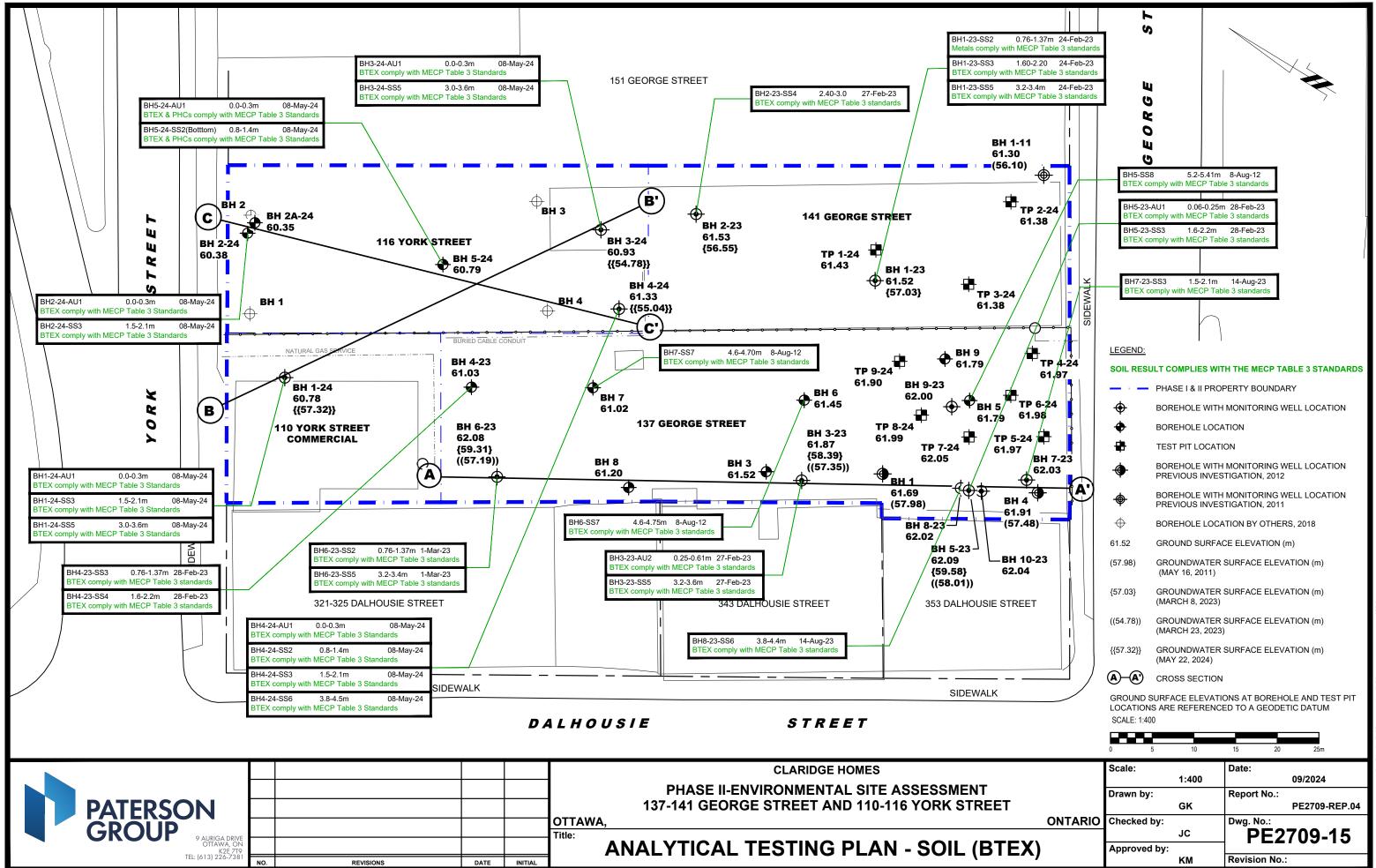
	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PE27	09-13A
	Approved by	:		
		KM	Revision No.:	

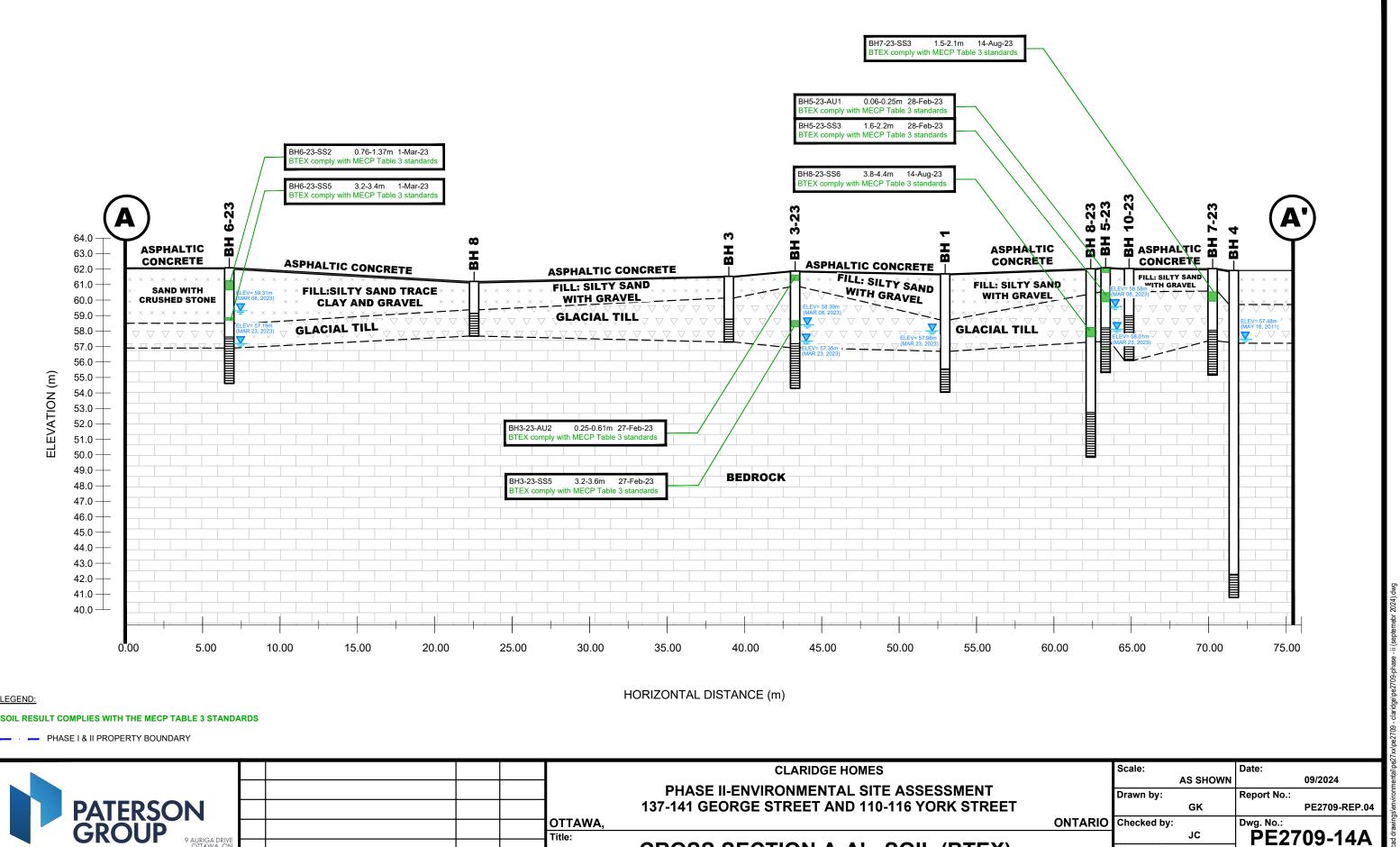



	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PF27	09-13C
	Approved by	:	• == •	
		KM	Revision No.:	



PHASE I & II PROPERTY BOUNDARY PATERSON					PHASE II-ENVIR 137-141 GEORGE S OTTAWA,	CLARIDGE HOMES ONMENTAL SITE ASSESSMENT IREET AND 110-116 YORK STREET
9 AURIGA DRIVE OTTAWA, ON K2E TIP TEL: (613) 226-7381	NO.	REVISIONS	DATE	INITIAL	CROSS SECT	ION A-A' - SOIL (PHCs)




	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PE27	′09-14A
	Approved by	:		••••
		KM	Revision No.:	

Scale:		Date:	
	AS SHOWN		09/2024
Drawn by:		Report No.:	
_	GK	-	PE2709-REP.04
Checked by:		Dwg. No.:	
-	JC	PE27	'09-14C
Approved by:			•••••
	KM	Revision No.:	
	Checked by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:

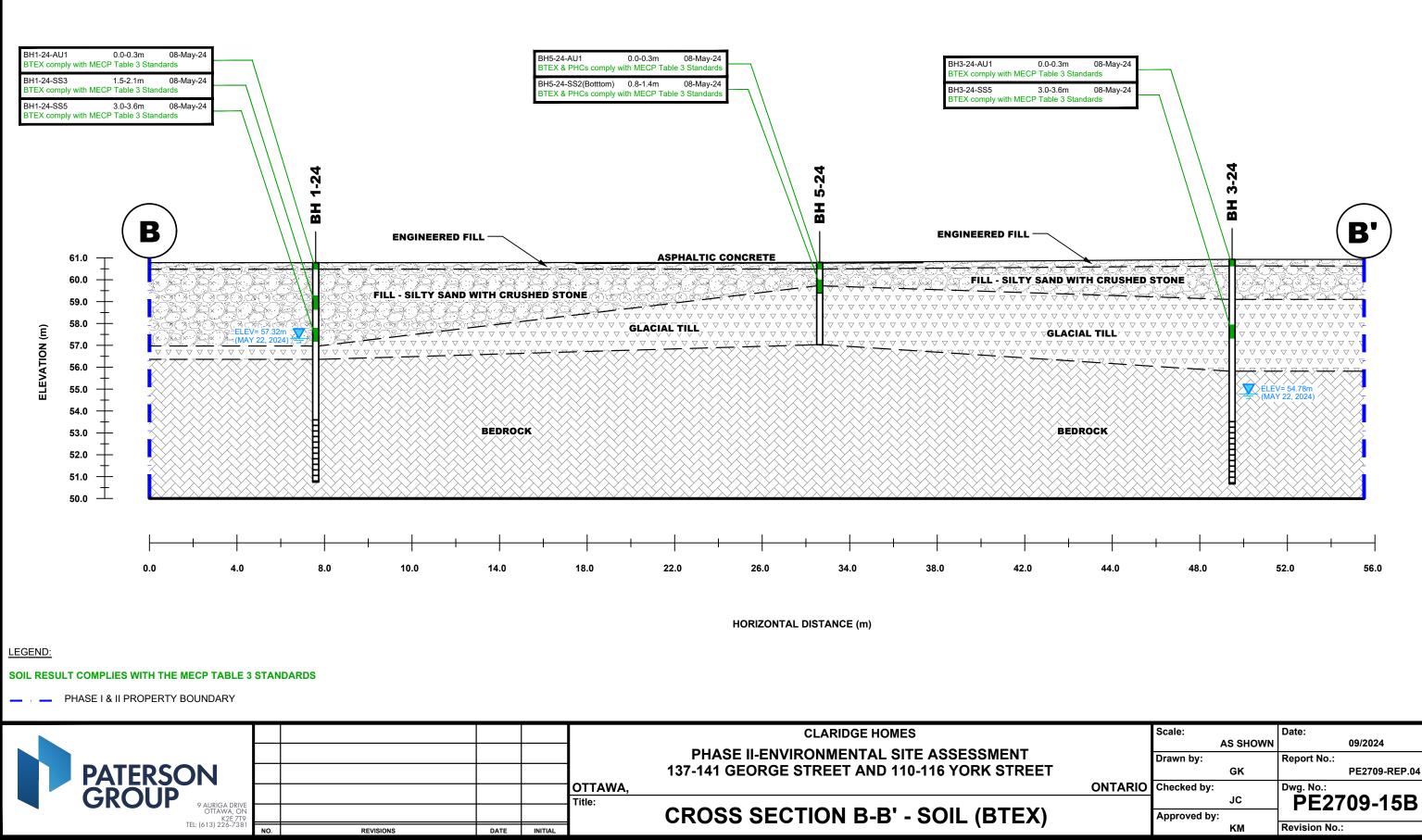
Title:

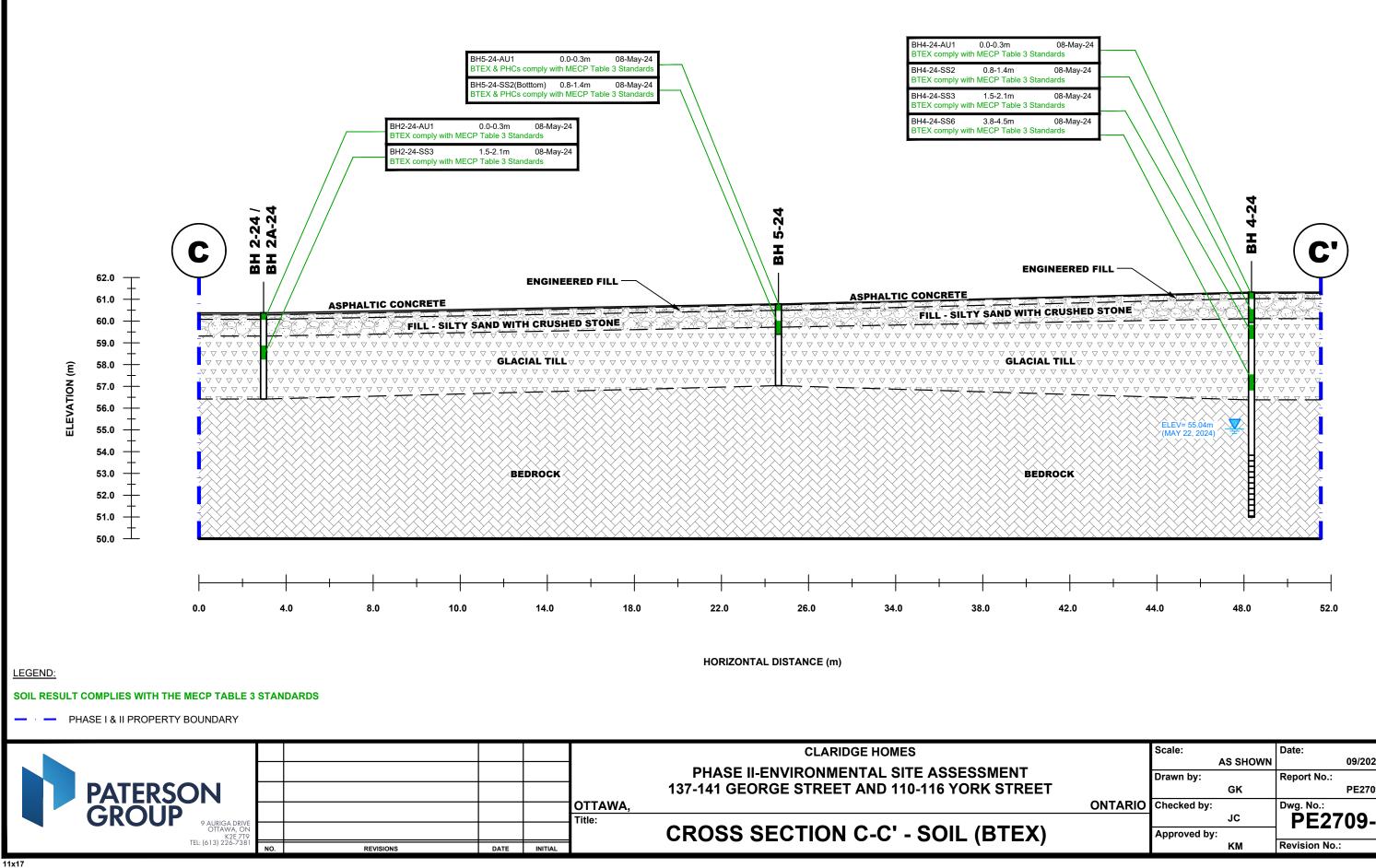
DATE

INITIAL

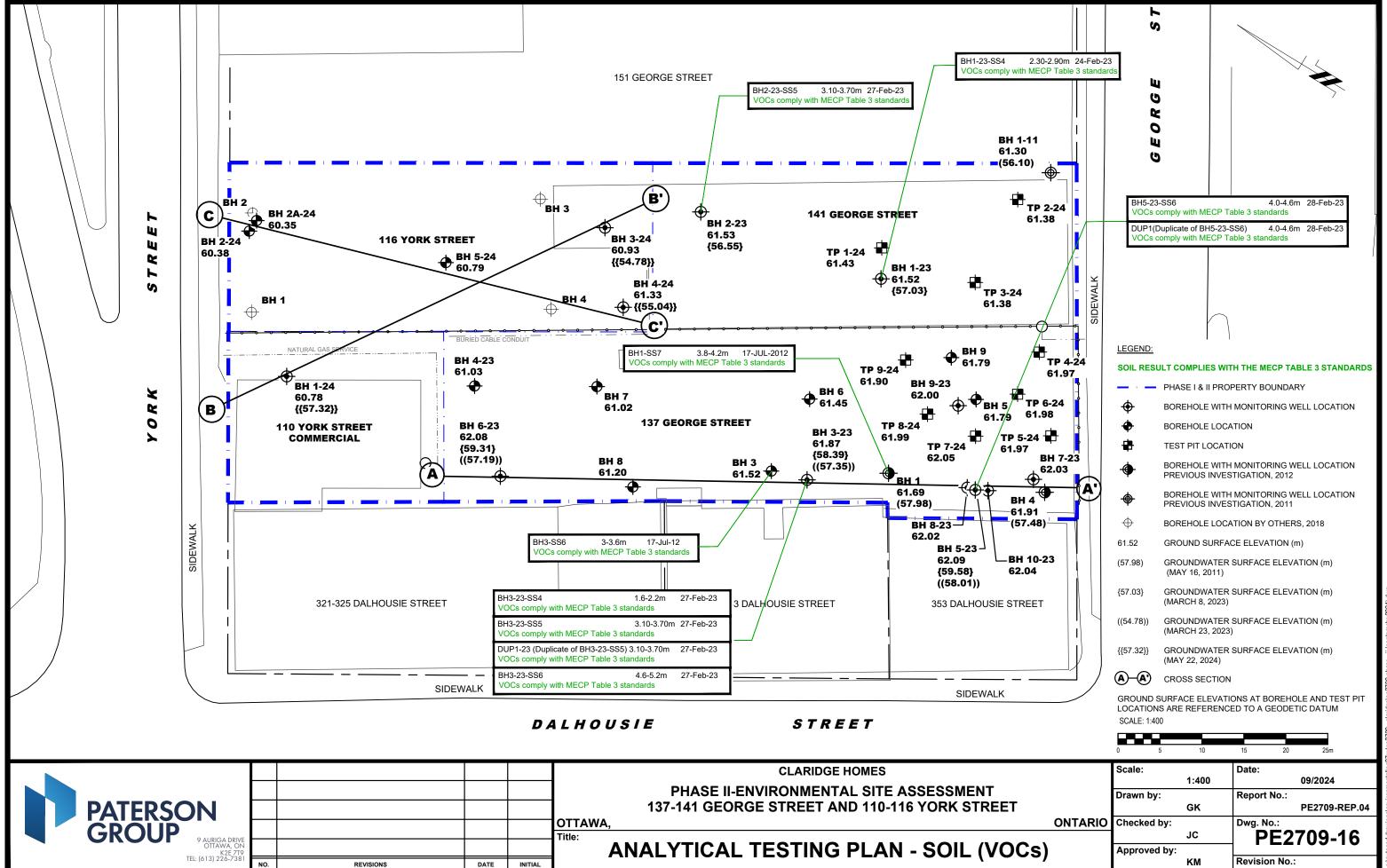
CROSS SECTION A-A' - SOIL (BTEX)

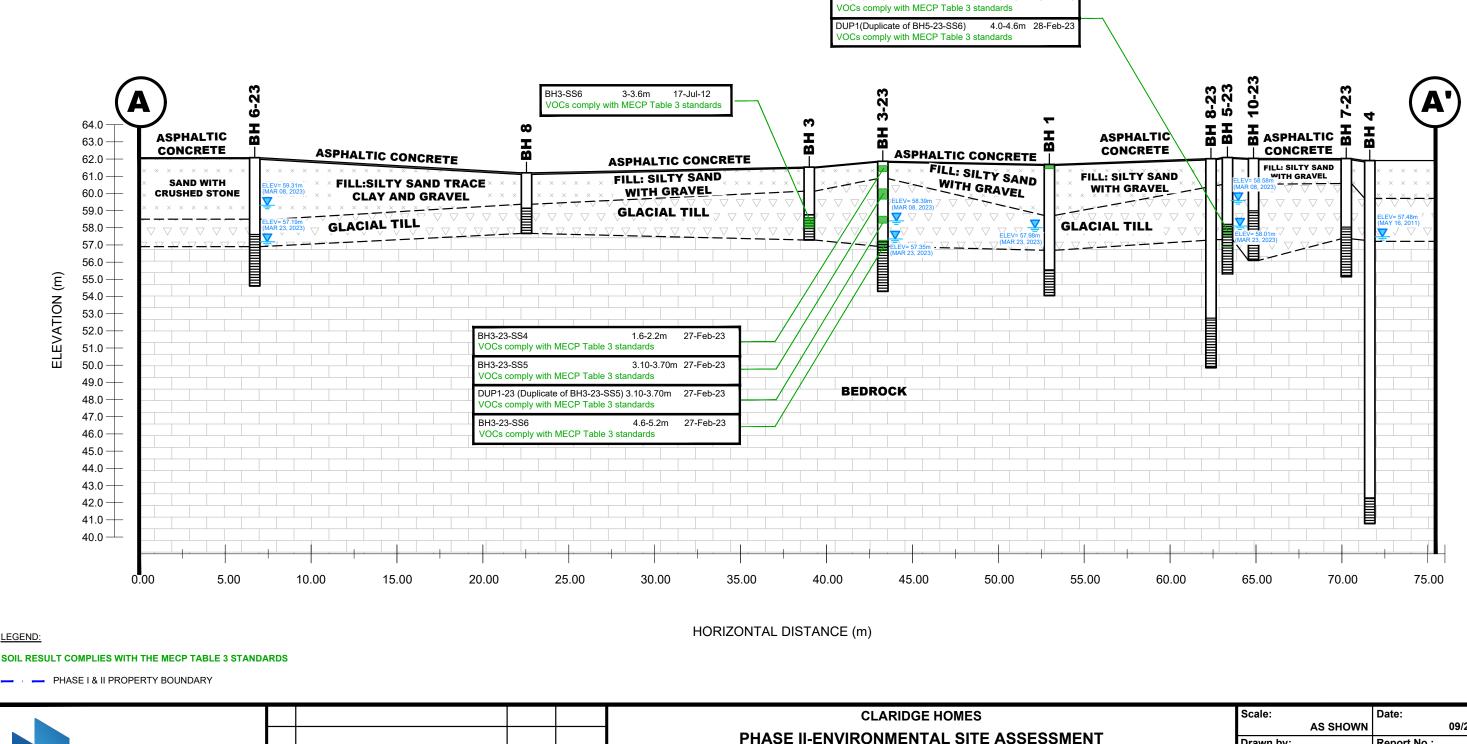
SOIL RESULT COMPLIES WITH THE MECP TABLE 3 STANDARDS


9 AURIGA DRIVI OTTAWA, ON


NO.

REVISIONS


K2E 7T9 TEL: (613) 226-738


P.04
A

	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PE27	09-15C
	Approved by			
		KM	Revision No.:	

Title:

DATE

INITIAL

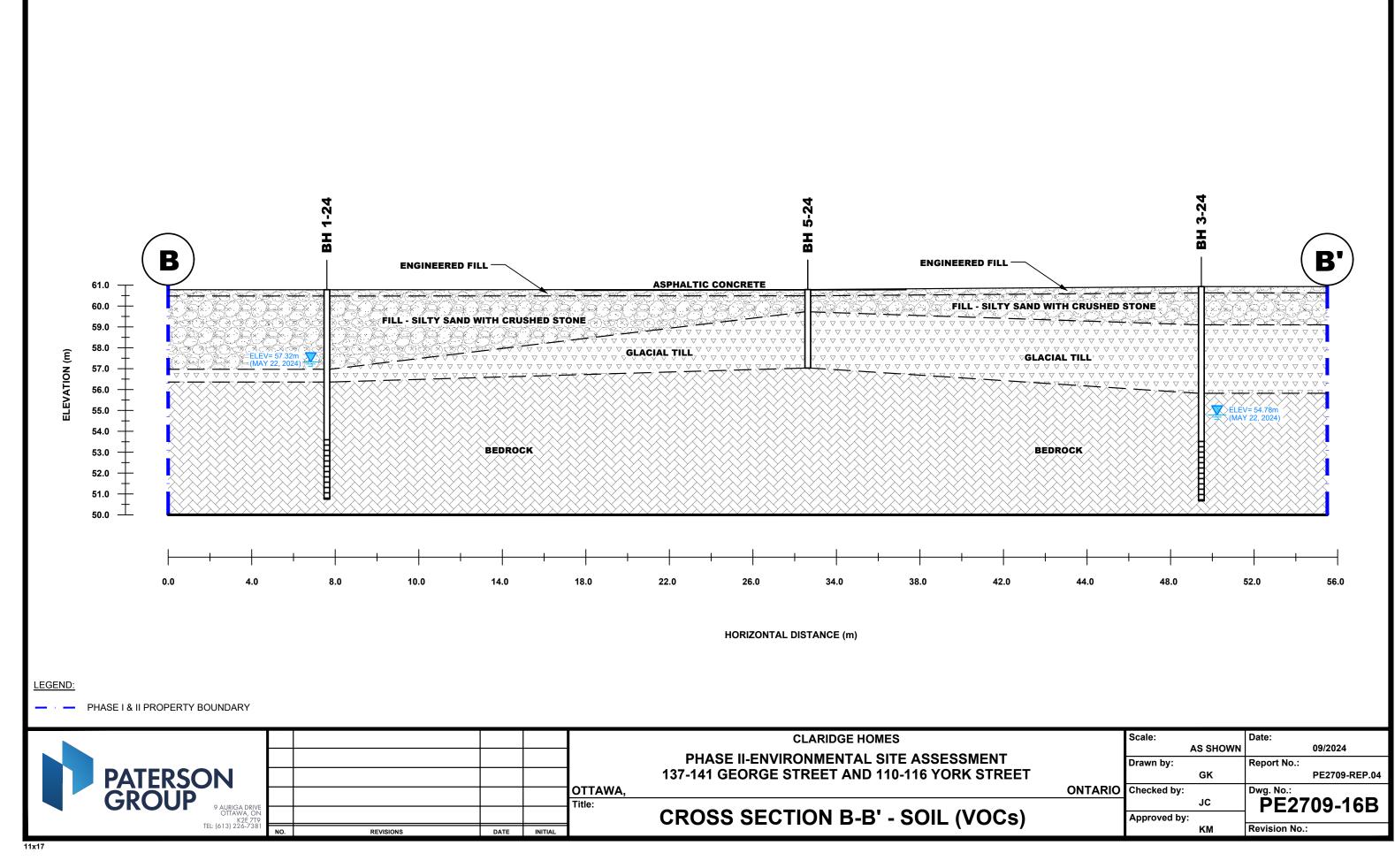
PHASE II-ENVIRONMENTAL SITE ASSESSMENT 137-141 GEORGE STREET AND 110-116 YORK STREET OTTAWA,

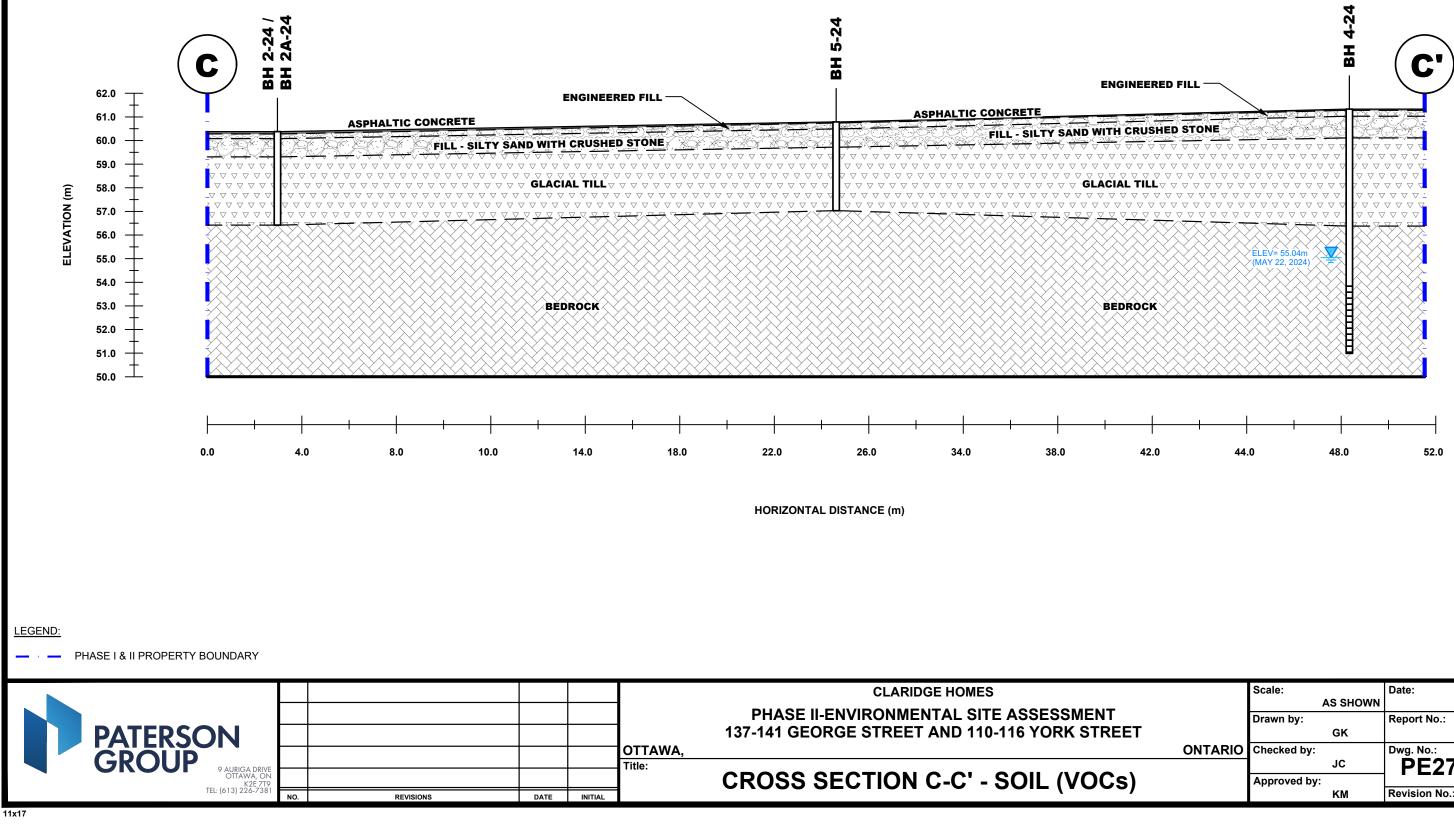
BH5-23-SS6

4.0-4.6m 28-Feb-23

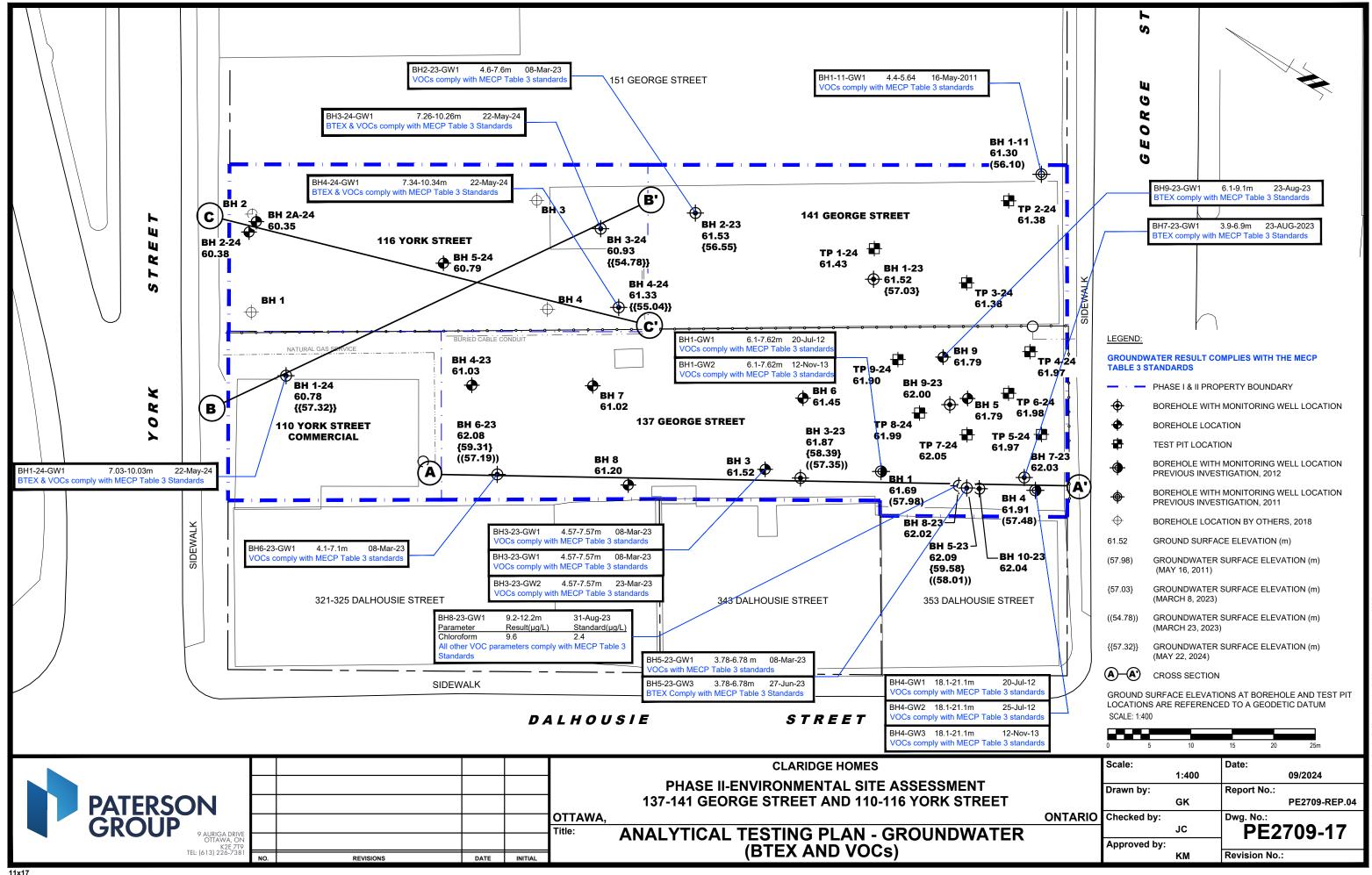
CROSS SECTION A-A' - SOIL (VOCs)

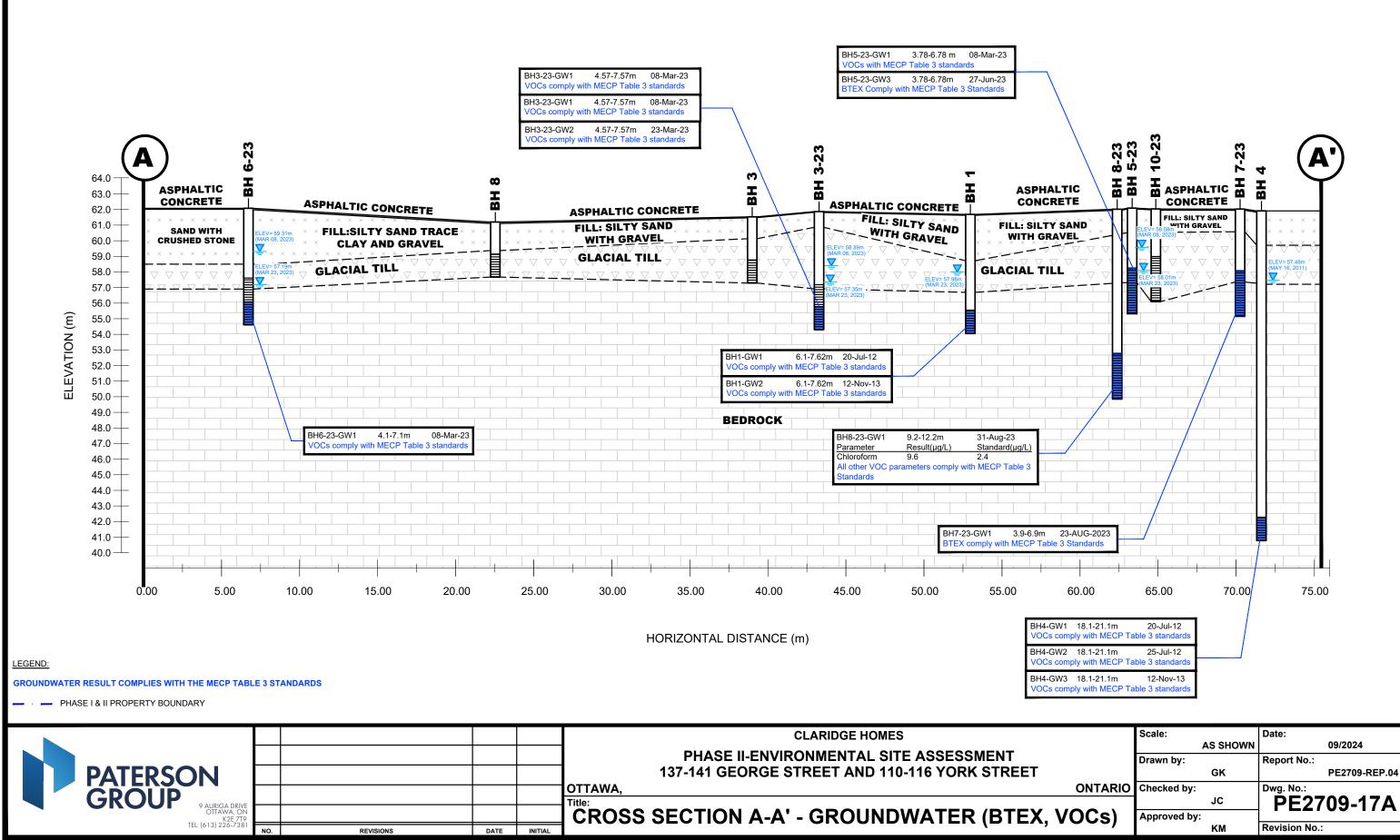
PATERSON GROUP

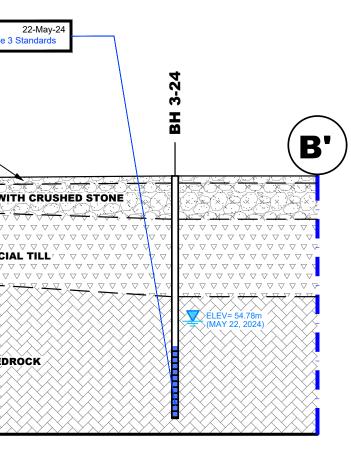

9 AURIGA DRIVI OTTAWA, ON

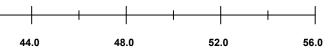

NO.

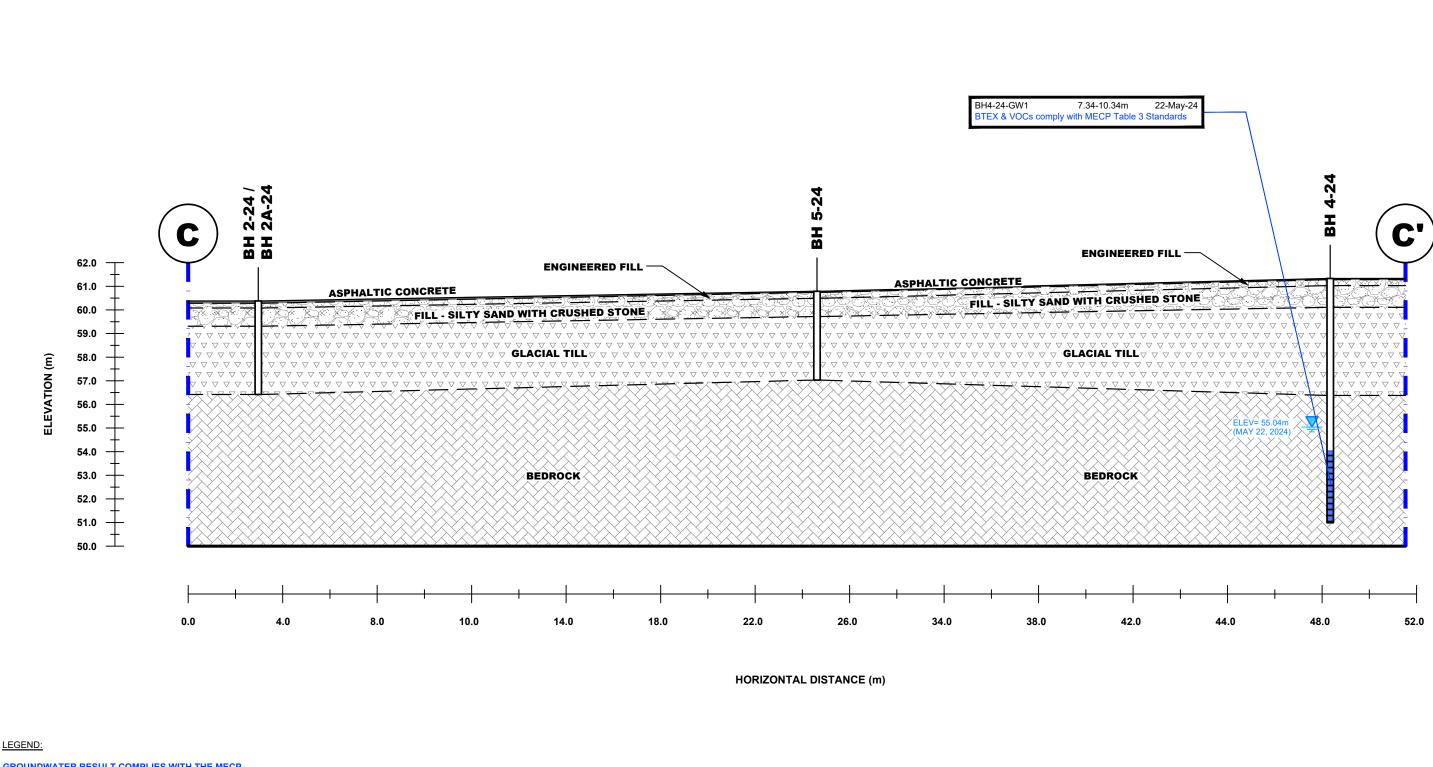
REVISIONS


K2E 7T9 TEL: (613) 226-738


	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PE27	09-16A
	Approved by			
		КМ	Revision No.:	

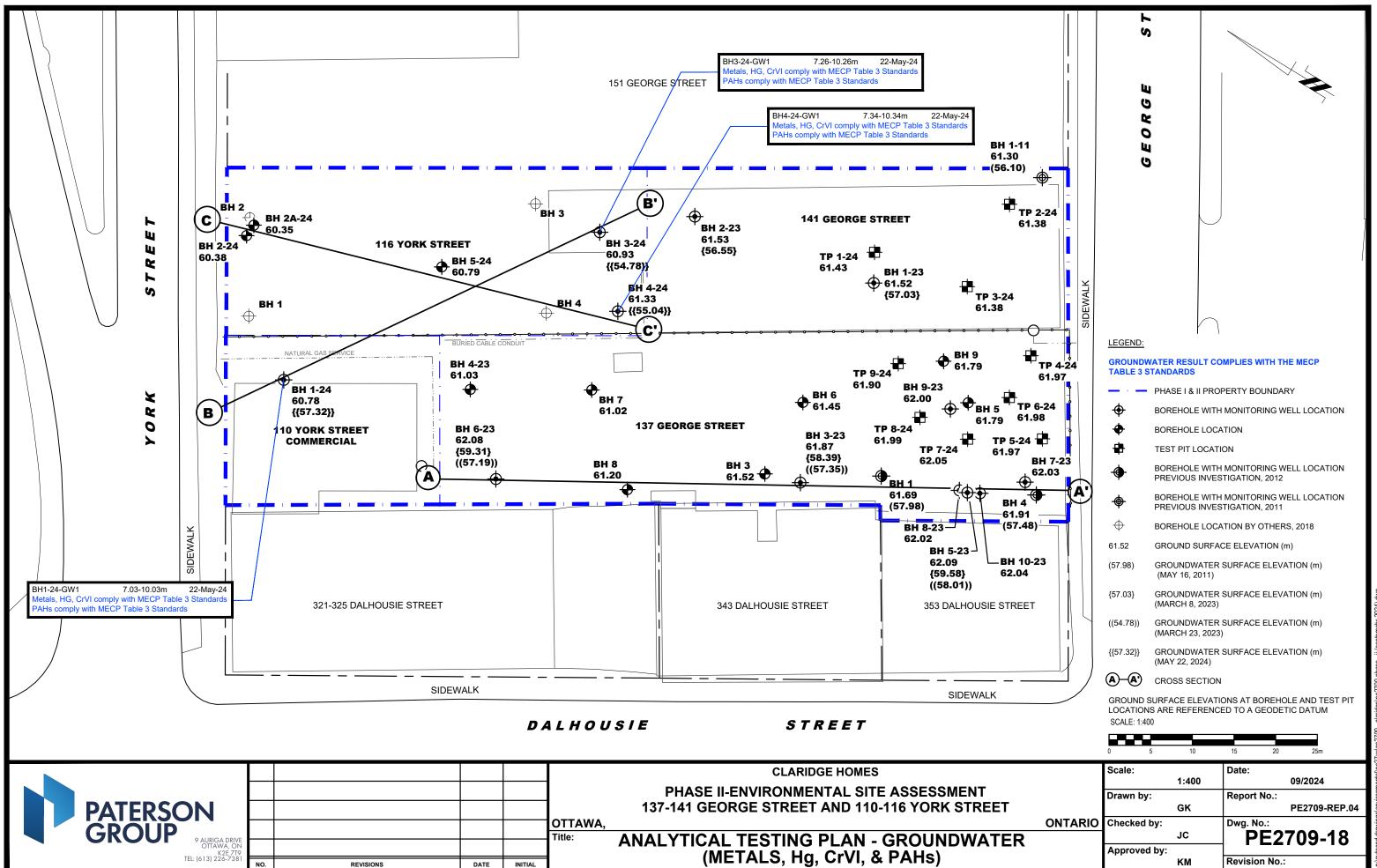



	Scale:	AS SHOWN	Date:	09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:	10	Dwg. No.:	
		JC	PE2/	′09-16C
	Approved by	: KM	Revision No.:	

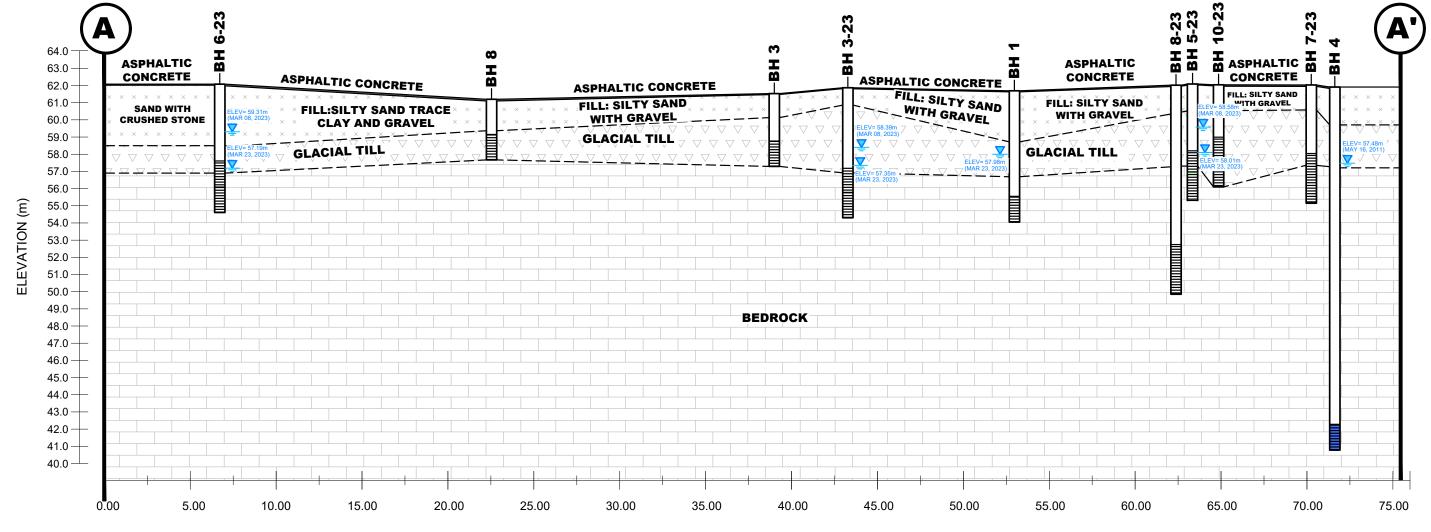


BH1-24 BTEX	4-GW1 & VOCs comply	7.03-10.03m with MECP Table	22-May-24 3 Standards]									BH3-24-GW1 BTEX & VOCs	7.26-10.26m comply with MECP Table
					I-24							5-24		
		\frown			BH 1							BH		
		(\mathbf{B})				ENG	INEERED FILL —	$\overline{\}$				-	ENGINE	
	61.0 +			3.50.5		z ka ka				ASPHALTIC			00000	60626006
(m) NO	60.0 + 59.0 + 58.0 + 57.0 +													
ELEVATION (m)	56.0 55.0 54.0 53.0 52.0 51.0 50.0						BED	PROCK						BE
		<u> </u>				+ +					+ + +		1	
		0.0	4	.0	8.0	10.	0 14.	.0	18.0	22.0	26.0	34.0	38.0	42.0
												STANCE (m)		
TABLE 3 ST	TANDARDS	COMPLIES WITH												
									_					
	ΡΑ	TERSO	ON						1	137-14	ASE II-ENVIRC 1 GEORGE ST			
	Ğ	TERSOROUP	9 AURIGA DR OTTAWA, K2E ; TEL: (613) 226-7	RIVE ON 7T9 381 NO.		REVISIONS	DA	TE INITIAL	OTTAW Title:		SS SECTIO (BTI	N B-B' - G EX AND V	ROUNDW OCs)	/ATER
1x17														

Scale:		Date:	
	AS SHOWN		09/2024
Drawn by:		Report No.:	
	GK		PE2709-REP.04
Checked by:		Dwg. No.:	
	JC	PE27	09-17B
Approved by	:		•••••=
	KM	Revision No.:	
	Drawn by: Checked by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:

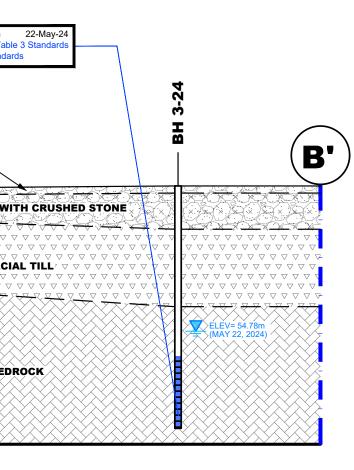


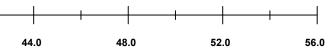
GROUNDWATER RESULT COMPLIES WITH THE MECP TABLE 3 STANDARDS


PHASE I & II PROPERTY BOUNDARY

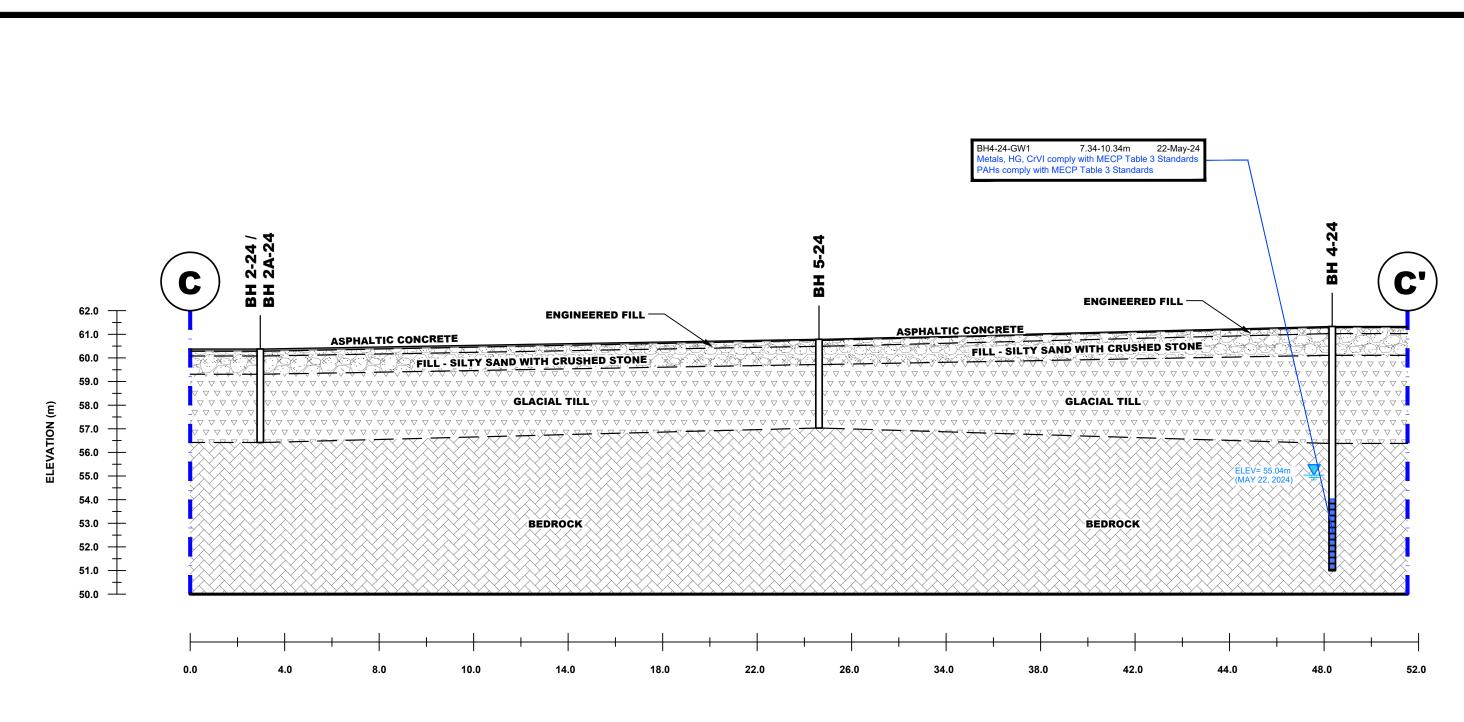
CLARIDGE HOMES PHASE II-ENVIRONMENTAL SITE ASSESSMENT PATERSON GROUP 137-141 GEORGE STREET AND 110-116 YORK STREET OTTAWA, CROSS SECTION C-C' - GROUNDWATER (BTEX, 9 AURIGA DRIVE OTTAWA, ON K2E 7T9 TEL: (613) 226-738 NO. REVISIONS DATE INITIAL

Scale:		Date:	
	AS SHOWN		09/2024
Drawn by:		Report No.:	
	GK		PE2709-REP.04
Checked by:		Dwg. No.:	
	JC	PE27	09-17C
Approved by	:		
	КМ	Revision No.:	
	Drawn by: Checked by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:


PA	TERSC ROUP						OTTAWA, Title:						
	TEDCC								E II-ENVIRO	NMENTAL S	SITE ASSES		
									С		IES		-
LEGEND: GROUNDWATER RESULT	COMPLIES WITH 1 ROPERTY BOUNDA		3 STANDARDS					HORIZONTAL I	DISTANCE (m)			
	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00	55.00	
													_
40.0 -													
42.0 - 41.0 -													
43.0 -													
43.0													
46.0 - 45.0 -													

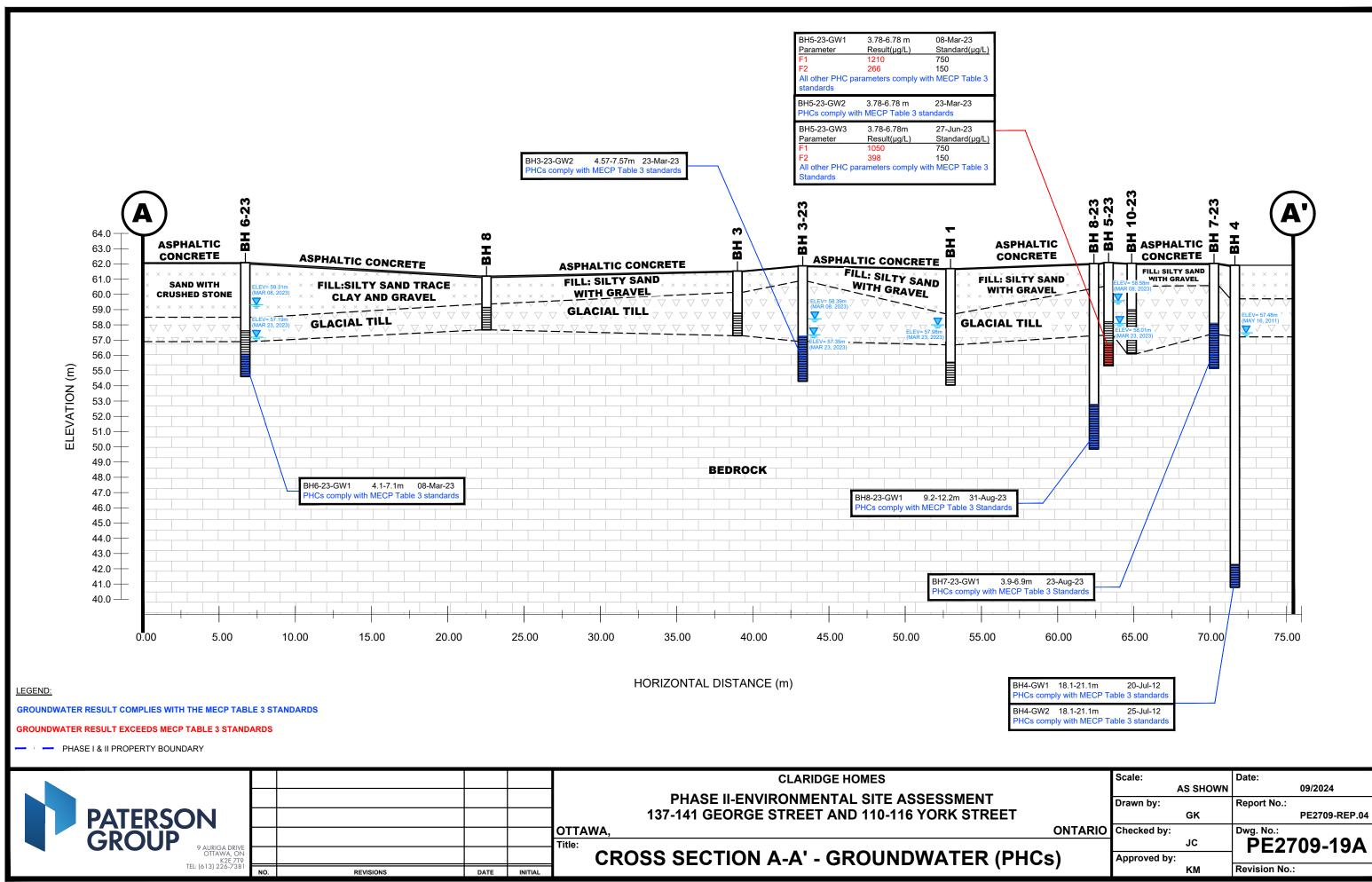


11x1

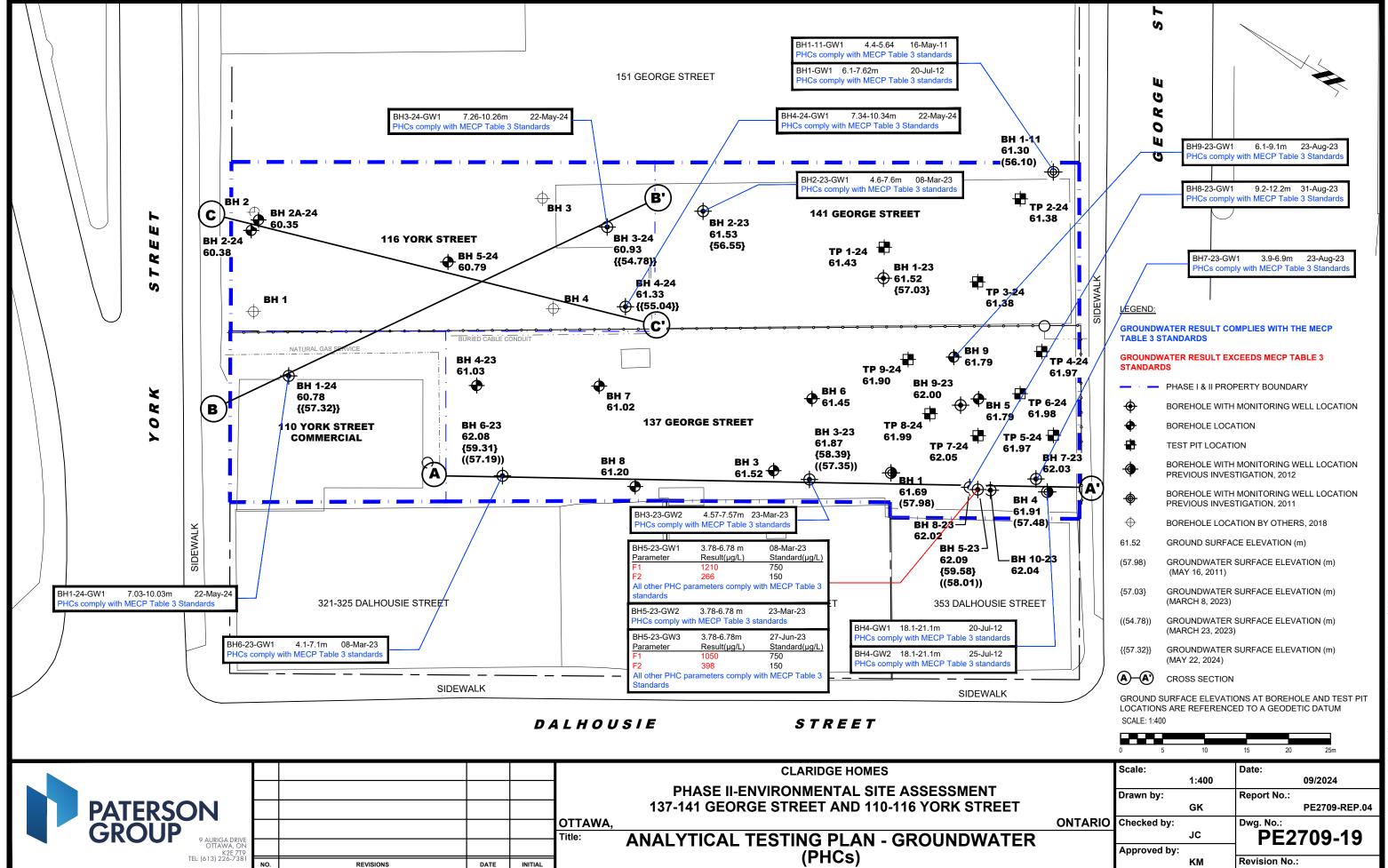

	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PE27	09-18A
	Approved by:			
		KM	Revision No.:	

BH1-24 Metals, PAHs c	HG, CrVI comply	7.03-10.03m 2 with MECP Table 3 Table 3 Standards	22-May-24 Standards									BH3-24-GW1 Metals, HG, C PAHs comply	7.26-10.26m CrVI comply with MECP Ta with MECP Table 3 Stand
		B		— BH 1-24	ENGINEE	RED FILL —					— BH 5-24	ENGINE	ERED FILL
ELEVATION (m)	61.0					SAND WITH CRU			ASPHALTIC				
	54.0 53.0 52.0 51.0 50.0	↓ ↓ ↓ ↓ ↓ ↓ ↓	4.0	+ + + + + + + + + + + + + + + + + + + +	+ + + 10.0	BEDROC -+	-+	18.0	+ + + 22.0	+	+ + + - +	+ + +	BE + + + 42.0
										HORIZONTAL	DISTANCE (m)		
TABLE 3 ST	ANDARDS	OMPLIES WITH TH											
	PAI	TERSO OUP	N _					OTTAWA	, , ,	ASE II-ENVIR I GEORGE S	CLARIDGE HO CONMENTAL TREET AND	SITE ASSES 110-116 YOF	RK STREET
1x17	GK		9 AURIGA DRIVE OTTAWA, ON K2E 779 (613) 226-7381 NO.		REVISIONS	DATE	INITIAL	Title:	CRO		ON B-B' - (S, Hg, CrV		

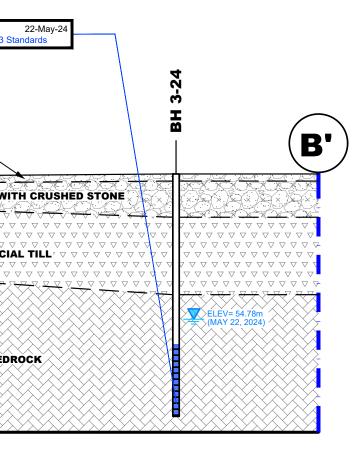
Scale:		Date:	
	AS SHOWN		09/2024
Drawn by:		Report No.:	
	GK		PE2709-REP.04
Checked by:		Dwg. No.:	
	JC	PE27	09-18B
Approved by	:		
	KM	Revision No.:	
	Drawn by: Checked by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:	AS SHOWN Drawn by: GK Checked by: JC Approved by:

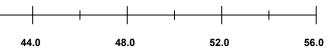


HORIZONTAL DISTANCE (m)

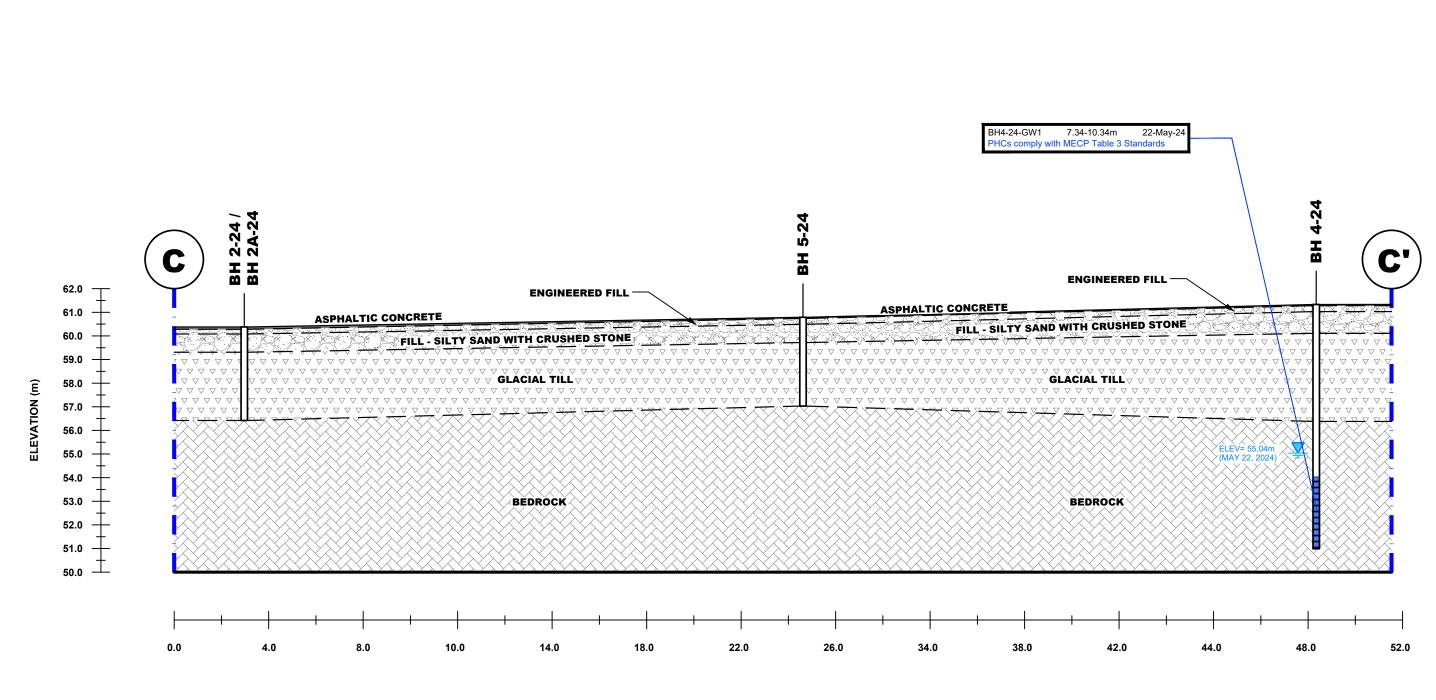

LEGEND:

GROUNDWATER RESULT COMPLIES WITH THE MECP TABLE 3 STANDARDS


	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PE27	′09-18C
	Approved by		• == •	
		KM	Revision No.:	



	0
	5
	5
	Ē
	ā
	Ē
	. 9
	<u>a</u>
	17
Γ.	l à
	1 7
	<u> </u>
Γ.	
	- ased
	٥
	Ū
	ά
	2
Γ.	2
	σ
	1-0070au
	٥
	C
	⊔ ₫
	, C
	12
	α
	6
	2.200 - 6
	σ
Γ.	5
	ā
Γ.	_ ⊂
	5
Γ.	- C
	1.2
	5
	1.5
	2
	1.5
	-
	ā
	nta
	antal
	nental
	mental
	nmental
	numental
	ironmental
	vironmental
	nvironmental
	environmental
	Nenvironmental
	s\environmental
	ins\environmental
	ings/environmental
	wings\environmental
	awings\environmental
	rawings\environmental
	drawings\environmental
	drawings/environmental
	d drawings/environmental
	ad drawings/environmental
	cad drawings/environmental
	ncad drawings/environmental
	Itocad drawings/environmental
	autocad drawings\environmental



B P	8H1-24-GW1 PHCs comply with	7.03-10.03m 2 h MECP Table 3 Stand	22-May-24									BH3- PHCs	24-GW1 7.26-10.26m s comply with MECP Table 3
		B		- BH 1-24	ENGINE	ERED FILL — \					- BH 5-24	ENGIN	
ELEVATION (m)	61.0 60.0 59.0 58.0 57.0 56.0 55.0 54.0 53.0					ERED FILL							
	52.0 + 51.0 + 50.0 +	+ 0.0	4.0	+	+	-+	-+	18.0	+	26.0	+	+ + + - +	++ 42.0
TABLE 3 ST	ANDARDS	Complies with the								HORIZONTAL	DISTANCE (III)		
	PA	TERSO OUP	N					οτταψα	137-14 [°]	1 GEORGE S	CLARIDGE HO RONMENTAL STREET AND	SITE ASSE 110-116 YO	RK STREET
1x17	GK		9 AURIGA DRIVE OTTAWA, ON K2E 7T9 (613) 226-7381		REVISIONS	DATE	INITIAL	Title:	CRO	SS SECTI	ON B-B' - ((PHCs)	GROUND	WATER

	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PE27	09-19B
	Approved by	:		
		КМ	Revision No.:	

HORIZONTAL DISTANCE (m)

LEGEND:

GROUNDWATER RESULT COMPLIES WITH THE MECP TABLE 3 STANDARDS

PHASE I & II PROPERTY BOUNDARY

CLARIDGE HOMES PHASE II-ENVIRONMENTAL SITE ASSESSMENT PATERSON GROUP 137-141 GEORGE STREET AND 110-116 YORK STREET OTTAWA, Title: 9 AURIGA DRIVE OTTAWA, ON K2E 7T9 TEL: (613) 226-738 **CROSS SECTION C-C' - GROUNDWATER (PHO** NO. REVISIONS DATE INITIAL

11x17

	Scale:		Date:	
		AS SHOWN		09/2024
	Drawn by:		Report No.:	
		GK		PE2709-REP.04
ONTARIO	Checked by:		Dwg. No.:	
		JC	PF27	09-19C
Cs)	Approved by	:		
		KM	Revision No.:	
		r ivi	Revision No	

TABLES

TABLE A1: SOIL ANALYTICAL RESULTS COMPARED TO MECPTABLE 3 STANDARDS RESIDENTIAL PROPERTY USE

TABLE A2: SOIL ANALYTICAL RESULTS COMPARED TO MECPTABLE 3 STANDARDS RESIDENTIAL PROPERTY USE

Table A1: Soil Analytical Test Results Compared to MECP Table 3 Standards Residential Property Use

Parameter	Units	MDL	Regulation	BH1-AU1	BH1-SS7	BH3-SS6	BH4-SS3	BH5-SS8	BH6-SS7	BH7-SS7	BH1-23-SS2	BH1-23-553	BH1-23-SS4	BH1-23-SS5	BH2-23-SS2	BH2-23-SS4	BH2-23-SS5	BH3-23-AU2	BH3-23-SS4	BH3-23-SS5	DUP1-23	BH3-23-SS6	BH4-23-SS3	BH4-23-SS4	BH5-23-AU1	BH5-23-SS3	BH5-23-SS6	BH6-23-SS2	BH6-23-SS5
Sample Depth (Reg 153/04-Table 3 Residential,	1229217-01 0.00-0.25	1229139-01 3.80-4.20	1229139-03 3.00-3.60	1229217-02 0.80-1.20	1232102-01 5.20-5.41	1232102-02 4.60-4.75	1232102-03 4.60-4.70	2310245-12 0.76-1.37	2310245-01	2309081-02 2.29-2.90	2310245-13 3.20-3.40	2310245-02 0.80-1.40	2310245-03 2.40-3.00	2309472-01 3.05-3.66	2310245-04 0.25-0.61	2310245-05 1.60-2.20	2310245-14 3.20-3.60	2309472-07 3.20-3.60	2310245-15 4.20-5.60	2309472-05 0.76-1.37	2310245-06 1.60-2.20	2310245-07 0.06-0.25	2310245-08	2310245-09 4.00-4.60	2309472-06 0.76-1.37	2310245-10 3.20-3.40
Sample Date			coarse	17/Jul/2012	3.80-4.20 17/Jul/2012			5.20-5.41 8/Aug/2012	4.60-4.75 8/Aug/2012		0.76-1.37 24/Feb/2023	24/Feb/2023						0.25-0.61 27/Feb/2023			3.20-3.60 27/Feb/2023	4.20-5.60 27/Feb/2023	0.76-1.37 28/Feb/2023		28/Feb/2023			0.76-1.37 28/Feb/2023	
hsical Characteristics	% by Wt.	0.1		98.6	89.1	90.4	89.6	74.0	96.4	96.5	90.7	93.2	92.5	92.2	88.4	92.7	92.6	90.6	96.2	90.5	93.4	91.1	92.5	92.5	92.6	98.4	94.2	96.5	94.7
ieneral Inorganics	76 DY WL.	0.1		58.0	05.1	50.4	85.0	74.0	50.4	50.5	30.7	33.2	32.5	32.2	00.4	32.7	52.0	50.0	50.2	50.5	33.4	51.1	52.5	32.3	52.0	50.4	54.2	30.5	54.7
SAR	N/A	0.01	5.0	-	-	-	-	-	-	-	1.9	0.8	-	-	1.61	1.77	-	2.16	1.19	1.54	-	2.07	4.39	4.44	0.9	1.32	1.25	4.65	1.88
Conductivity H	uS/cm pH Units	5.00	NV		-	-	-	-	-		943	- 469			1360 7.69	693 7.76		7.66	209	- 260	-	7.88	1160 7.59	1090	- 280	293 7.89	226	1770 7.89	3310
Metals																													
Antimony	ug/g dry ug/g dry	1.0	7.5	<1 2		-	2	-	-	-	ND (1.0) 3.5	ND (1.0) 3.8	-		2.2	ND (1.0) 2.6	-	2.2 6.8	ND (1.0) 4.1	ND (1.0) 2.9	-	ND (1.0) 2.5	ND (1.0) 3.4	ND (1.0) 3.5	ND (1.0) 5.9	ND (1.0) 2.8	ND (1.0) 4.1	ND (1.0) 2.2	ND (1.0) 10.2
Barium	ug/g dry	1.0	390	20	-	-	184	-	-		62.5	30.7	-	-	321	27.1	-	126	38.6	87.3	-	68.1	31.3	27.1	24.1	38.1	129	211	64.7
Beryllium	ug/g dry	0.5	4.0	<0.5	-	-	<0.5	-		-	ND (0.5) ND (5.0)	ND (0.5) 6.4	-		0.6	ND (0.5) 6.5	-	0.6 ND (5.0)	ND (0.5) 5.6	ND (0.5) 5.3		ND (0.5) 8.1	ND (0.5) 6.8	ND (0.5) 7.2	ND (0.5) 6.8	ND (0.5) 5.6	ND (0.5)	ND (0.5) 16.2	ND (0.5) 11.6
Cadmium	ug/g dry ug/g dry	0.5	1.2	<0.5	-	-	0.5	-	-		ND (5.0) ND (0.5)	6.4 ND (0.5)	-		0.6	6.5 ND (0.5)		ND (5.0) ND (0.5)	5.6 ND (0.5)	5.3 ND (0.5)	-	8.1 ND (0.5)	6.8 ND (0.5)	7.2 ND (0.5)	6.8 ND (0.5)	5.6 ND (0.5)	8 ND (0.5)	16.2 ND (0.5)	ND (0.5)
Chromium (VI)	ug/g dry	0.2	8.0	-	-	-	-	-	-	-	ND (0.2)	ND (0.2)	-	-	ND (0.2)	ND (0.2)	-	ND (0.2)	ND (0.2)	ND (0.2)	-	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Chromium Cobalt	ug/g dry ug/g dry	5	160 22	7	-	-	14	-	-	-	14.9 3.9	12.2	-	•	29.2	10.1 3.6	-	16.7 5.7	4.2	9.9	-	10.8 2.8	13 3.3	12.5	15.9 6.8	10.5 3.7	13.5 4.5	5.5	13.6
Copper	ug/g dry	5	140	6	-	-	17	-	-		13	9.3	-		120	5.7		36.6	8.7	ND (5.0)	-	ND (5.0)	6.1	7	12.4	5.9	ND (5.0)	7.2	9.6
Lead Mercupy	ug/g dry ug/g dry	0.1	120 0.27	9	-	-	524	-	-	-	61.9 0.2	3.6 ND (0.1)	-	-	432	3.2 ND (0.1)	-	217 0.3	5.3 ND (0.1)	3.3 ND (0.1)	-	2.8 ND (0.1)	12.3 ND (0.1)	4.5 ND (0.1)	32.5 ND (0.1)	4.5 ND (0.1)	5 ND (0.1)	5.8 ND (0.1)	19.7 ND (0.1)
Molybdenum	ug/g dry	1	6.9	2	-	-	1	-	-		ND (1.0)	ND (0.1)	-	-	1.1	ND (1.0)	-	1.3	ND (1.0)	ND (1.0)	-	ND (1.0)	ND (1.0)	ND (0.1)	6.7	ND (0.1)	ND (1.0)	1	5.4
Nickel	ug/g dry	5	100	11	-	-	8	-	-	-	8.7	8.2	-	-	17	7.1	-	14.3	8.6	6.8	-	7.2	7.5	7.7	15.6	6.8	11.4	10.1	20.3
Silver	ug/g dry ug/g dry	0.3	2.4 20	<1 1.8	-	-	<1 1.5	-	-		ND (1.0) ND (0.3)	ND (1.0) ND (0.3)	-		1.3	ND (1.0) ND (0.3)		ND (1.0) ND (0.3)	ND (1.0) ND (0.3)	ND (1.0) ND (0.3)	-	ND (1.0) ND (0.3)	ND (1.0) ND (0.3)	ND (1.0) ND (0.3)	ND (1.0) ND (0.3)	ND (1.0) ND (0.3)	ND (1.0) ND (0.3)	ND (1.0) ND (0.3)	ND (1.0) ND (0.3)
Fhallium	ug/g dry	1	1.0	<1	-	-	<1	-	-		ND (1.0)	ND (1.0)	-	-	ND (1.0)	ND (1.0)		ND (1.0)	ND (1.0)	ND (1.0)	-	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Jranium Vanadium	ug/g dry ug/g dry	1	23	<1 30	-	-	<1 20	-	-		ND (1.0) 17.2	ND (1.0) 17.5	-	-	ND (1.0) 26.1	ND (1.0) 15.7	-	ND (1.0) 22.1	ND (1.0) 19.2	ND (1.0) 15.7	-	ND (1.0) 12.9	ND (1.0) 18.9	ND (1.0) 19.5	ND (1.0) 25.8	ND (1.0) 14.3	ND (1.0) 15.4	ND (1.0) ND (10.0)	ND (1.0) 10.5
linc	ug/g dry	10	340	<20		-	191	· ·	-	-	55.3	21.8	-		429	ND (20.0)	-	74.8	20.5	ND (20.0)	-	ND (20.0)	32.1	23.8	26.3	ND (20.0)	ND (20.0)	ND (20.0)	ND (20.0)
Methyl Mercury	ug/g dry	0.00005	0.0084		<u> </u>		-	<u> </u>	· ·	· · _	· ·	-			· · ·	<u> </u> · −	-		· ·	<u> </u>	· · ·	· · ·		-	· ·	· ·	· ·		
/olatiles Acetone	ug/g dry	0.5	16	-	ND (0.50)	ND (0.50)	-	· ·	-	-		-	ND (0.50)		· ·		ND (0.50)		ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)		-			ND (0.50)	· ·	· ·
Benzene	ug/g dry	0.02	0.21	-	ND (0.02)	ND (0.02)	-	•	-			-	ND (0.02)			· ·	ND (0.02)		ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)		-	-	-	ND (0.02)	-	-
Bromodichloromethane Bromoform	ug/g dry ug/g dry	0.05	13 0.27		ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-		-	-	-	-	ND (0.05) ND (0.05)	-	-		ND (0.05) ND (0.05)	· ·	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-		ND (0.05) ND (0.05)		
Bromomethane	ug/g dry	0.05	0.05		ND (0.05)	ND (0.05)	-	· ·	-	-	· ·	-	ND (0.05)		· ·	· ·	ND (0.05)	· ·	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		-	-	-	ND (0.05)	· ·	
Carbon Tetrachloride Chlorobenzene	ug/g dry	0.05	0.05	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	· ·	-	-	-	-	ND (0.05) ND (0.05)	-		- · ·	ND (0.05) ND (0.05)		ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-			ND (0.05) ND (0.05)	-	
Chlorobenzene Chloroform	ug/g dry ug/g dry	0.05	0.05	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	+ ·	-	-		-	ND (0.05) ND (0.05)				ND (0.05) ND (0.05)		ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-	-	ND (0.05) ND (0.05)		
Dibromochloromethane	ug/g dry	0.05	9.4		ND (0.05)	ND (0.05)	-	-	-		-	-	ND (0.05)			-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			-	-	ND (0.05)		
Dichlorodifluoromethane 1,2-Dichlorobenzene	ug/g dry ug/g dry	0.2	16 3.4	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	-	-	-	-	-	ND (0.05) ND (0.05)	-	-	-	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-	-	ND (0.05) ND (0.05)		-
1,3-Dichlorobenzene	ug/g dry	0.05	4.8		ND (0.05)	ND (0.05)	-	-	-		-	-	ND (0.05)		-	-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			-	-	ND (0.05)		
I,4-Dichlorobenzene I,1-Dichloroethane	ug/g dry ug/g dry	0.05	0.083	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	-	-	-	-	-	ND (0.05) ND (0.05)	-	-	-	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-	-	ND (0.05) ND (0.05)		-
1,2-Dichloroethane	ug/g dry	0.05	0.05		ND (0.05)	ND (0.05)	-	-	-		-	-	ND (0.05)	-	-	-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	-	-	-	-	ND (0.05)		
1,1-Dichloroethylene	ug/g dry	0.05	0.05	-	ND (0.05)	ND (0.05)	-	-	-	-	-	-	ND (0.05)	-	-	-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	-	-	-		ND (0.05) ND (0.05)		-
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	ug/g dry ug/g dry	0.05	0.084		ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	-	-		-	-	ND (0.05) ND (0.05)		-	-	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-	-	ND (0.05)		
1,2-Dichloropropane	ug/g dry	0.05	0.05	-	ND (0.05)	ND (0.05)	-	-	-	-	-	-	ND (0.05)			-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		-	-	-	ND (0.05)	-	-
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	ug/g dry ug/g dry	0.05	0.05		ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	-	-	-	-	-	ND (0.05) ND (0.05)	-	-	-	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-	-	ND (0.05) ND (0.05)		-
1,3-Dichloropropene, total	ug/g dry	0.05	0.05		ND (0.05)	ND (0.05)	-	-	-		-	-	ND (0.05)		-	-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			-	-	ND (0.05)		
Ethylbenzene Ethylene dibromide (dibromoethane, 1,2-)	ug/g dry ug/g dry	0.05	2.0 0.05	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	-	-	-	-	-	ND (0.05) ND (0.05)	-	-	-	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-	-	0.1 ND (0.05)		-
Hexane	ug/g dry	0.05	2.8		ND (0.05)	ND (0.05)	-	-	-		-	-	ND (0.05)	-	-		ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			-	-	ND (0.05)	-	-
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	0.05	16		ND (0.50)	ND (0.50)	-	-	-		-	-	ND (0.50)			-	ND (0.50)	-	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)			-	-	ND (0.50)		
Methyl Isobutyl Ketone Methyl tert-butyl ether	ug/g dry ug/g dry	0.05	1.7 0.75	-	ND (0.50) ND (0.05)	ND (0.50) ND (0.05)	-	-	-	-	-	-	ND (0.50) ND (0.05)	-	-	-	ND (0.50) ND (0.05)	-	ND (0.50) ND (0.05)	ND (0.50) ND (0.05)	ND (0.50) ND (0.05)	ND (0.50) ND (0.05)		-	-	-	ND (0.50) ND (0.05)		-
Methylene Chloride	ug/g dry	0.5	0.1		ND (0.05)	ND (0.05)	-	-	-		-	-	ND (0.05)	-	-	-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		-	-	-	ND (0.05)	-	
Styrene 1,1,1,2-Tetrachloroethane	ug/g dry ug/g dry	2	0.7 0.058	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	-	-		-	-	ND (0.05) ND (0.05)	-	-	-	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-	-	ND (0.05) ND (0.05)	-	-
1,1,2,2-Tetrachloroethane	ug/g dry	0.05	0.05	-	ND (0.05)	ND (0.05)	-	-	-	-	-	-	ND (0.05)	-	-	-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	-	-	-	-	ND (0.05)	-	-
Tetrachloroethylene	ug/g dry	0.05	0.28	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	-		-		-	ND (0.05) ND (0.05)		-	-	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-	-	ND (0.05) ND (0.05)	-	-
Toluene 1,1,1-Trichloroethane	ug/g dry ug/g dry	0.05	0.38		ND (0.05)	ND (0.05)	-	-	-		-	-	ND (0.05)			-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			-	-	ND (0.05)		
1,1,2-Trichloroethane	ug/g dry	0.05	0.05		ND (0.05)	ND (0.05)	-	-	-		-	-	ND (0.05)			-	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)			-	-	ND (0.05)		
Trichloroethylene Trichlorofluoromethane	ug/g dry ug/g dry	0.05	0.061 4.0		ND (0.05) ND (0.05)	ND (0.05) ND (0.05)				· ·			ND (0.05) ND (0.05)		-	· ·	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	-			ND (0.05) ND (0.05)		
Vinyl Chloride	ug/g dry	0.05	0.02	-	ND (0.02)	ND (0.02)	-	· ·	-	-	-	-	ND (0.02)	-	· ·		ND (0.02)		ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)		-			ND (0.02)	-	· ·
m/p-Xylene o-Xylene	ug/g dry ug/g dry	0.05	3.1 3.1		ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-		-	-	-	-	ND (0.05) ND (0.05)	-	-		ND (0.05) ND (0.05)	· ·	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		-	-		0.22 ND (0.05)		1 -
Xylenes, total	ug/g dry	0.05	3.1	-	ND (0.05)	ND (0.05)	-	· ·	-			-	ND (0.05)		· ·		ND (0.05)	<u> </u>	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		-			0.22	-	<u> </u>
BTEX Benzene	ug/a day	0.02	0.21					ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)		ND (0.02)	ND (0.02)	ND (0.02)		ND (0.02)	-	ND (0.02)			ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)		ND (0.02)	ND (0.02)
Benzene Ethylbenzene	ug/g dry ug/g dry	0.02	2.0				-	ND (0.02)	ND (0.02) ND (0.02)	ND (0.02) ND (0.02)	ND (0.02) ND (0.05)	ND (0.02) ND (0.05)	-	ND (0.05)	ND (0.02) ND (0.05)	ND (0.02) ND (0.05)	-	ND (0.02) ND (0.05)		ND (0.05)		-	ND (0.05)	ND (0.02) ND (0.05)	ND (0.02) ND (0.05)	ND (0.02) ND (0.05)		ND (0.02) ND (0.05)	ND (0.02) ND (0.05)
Toluene	ug/g dry	0.05	2.3			-	-	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.05)	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	-	ND (0.05)	•	ND (0.05)	-	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		ND (0.05)	ND (0.05)
m/p-Xylene o-Xylene	ug/g dry ug/g dry	0.05	3.1 3.1		· ·			ND (0.02) ND (0.02)	ND (0.02) ND (0.02)	ND (0.02) ND (0.02)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	-	ND (0.05) ND (0.05)		ND (0.05) ND (0.05)		-	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)		ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
Xylenes, total	ug/g dry	0.05	3.1	-	-	-	-	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.05)	ND (0.05)	-	ND (0.05)	ND (0.05)	ND (0.05)	-	ND (0.05)		ND (0.05)	-	-	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		ND (0.05)	ND (0.05)
Hydrocarbons F1 PHCs (C6-C10)	ug/a da				100	ND (7)		<i>cc</i>	0	ND (7)	ND (2)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)	ND (7)		ND (7)	ND (7)	ND (7)	ND (2)	ND (7)	ND (7)	ND (7)	N(D /7)
F1 PHCs (C6-C10) F2 PHCs (C10-C16)	ug/g dry ug/g dry	7 4	55 98	-	182 118	ND (7) ND (4)	-	65 74	8 <4	ND (7) <4	ND (7) 17	ND (7) ND (4)	ND (7) 43	ND (7) ND (4)	ND (7) ND (40)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	-	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (80)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)	ND (7) ND (4)
F3 PHCs (C16-C34)	ug/g dry	8	300	-	ND (8)	ND (8)	-	<8	<8	62	107	ND (8)	364	ND (8)	312	ND (8)	ND (8)	48	ND (8)	ND (8)	-	ND (8)	ND (8)	ND (8)	699	ND (8)	ND (8)	50	15
4 PHCs (C34-C50) 4G PHCs (gravimetric)	ug/g dry ug/g dry	6 50	2800 2800		ND (6)	ND (6)	-	<6	<6	- 112	70	ND (6)	197	ND (6)	298	ND (6)	ND (6)	23	ND (6)	ND (6)	-	ND (6)	ND (6)	ND (6)	1650	ND (6)	ND (6)	42	
emi-Volatiles	-9/5 JIY		2000																										
Acenaphthene	ug/g dry	0.02	7.9	<0.08		-	-				0.03	ND (0.02)	-	-	0.76	· ·	-	0.07	ND (0.02)	· ·		-	ND (0.02)	ND (0.02)	ND (0.40)	ND (0.02)		ND (0.02)	ND (0.02)
Acenaphthylene Anthracene	ug/g dry ug/g dry	0.02	0.15	<0.08	<u> </u>		-	· ·	· ·	· ·	0.05	ND (0.02) ND (0.02)		-	0.19	<u> </u>	-	0.18 0.29	ND (0.02) ND (0.02)	<u> </u>	· ·		ND (0.02) ND (0.02)	ND (0.02) ND (0.02)	ND (0.40) ND (0.40)	ND (0.02) ND (0.02)	· ·	ND (0.02) ND (0.02)	ND (0.02) ND (0.02)
enzo[a]anthracene	ug/g dry	0.02	0.5	<0.08				· ·			0.23	ND (0.02)	-	-	2.72		-	0.7	ND (0.02)		-		ND (0.02)	ND (0.02)	ND (0.40)	ND (0.02)		ND (0.02)	ND (0.02)
Benzo[a]pyrene Benzo[b]fluoranthene	ug/g dry	0.02	0.3 0.78	<0.08	-	-	-		-	-	0.26	ND (0.02) ND (0.02)	-	-	2.37 3		-	0.7	ND (0.02) ND (0.02)		-		ND (0.02) ND (0.02)	ND (0.02) ND (0.02)	ND (0.40) ND (0.40)	ND (0.02) ND (0.02)		ND (0.02) ND (0.02)	ND (0.02) ND (0.02)
senzo[o]nuorantnene senzo[g,h,i]perylene	ug/g dry ug/g dry	0.02	6.6	<0.08			-				0.29	ND (0.02) ND (0.02)	-		1.45		-	0.73	ND (0.02) ND (0.02)			-	ND (0.02) ND (0.02)	ND (0.02) ND (0.02)	ND (0.40) ND (0.40)	ND (0.02) ND (0.02)		ND (0.02) ND (0.02)	ND (0.02) ND (0.02)
3enzo[k]fluoranthene	ug/g dry	0.02	0.78	<0.08	· ·	-	-		-		0.14	ND (0.02)	-		1.68	· ·	-	0.42	ND (0.02)		-		ND (0.02)	ND (0.02)	ND (0.40)	ND (0.02)		ND (0.02)	ND (0.02)
hrysene Dibenzo[a,h]anthracene	ug/g dry ug/g dry	0.02	7.0	0.82	· ·	-	-	· ·	-	-	0.29	ND (0.02) ND (0.02)	-	-	2.68		-	0.71 0.11	ND (0.02) ND (0.02)	+ :	-		ND (0.02) ND (0.02)	ND (0.02) ND (0.02)	ND (0.40) ND (0.40)	ND (0.02) ND (0.02)	· ·	ND (0.02) ND (0.02)	ND (0.02) ND (0.02)
luoranthene	ug/g dry ug/g dry	0.02	0.1	<0.08	-	-	-	-	-		0.56	ND (0.02)	-	-	6.09		-	1.47	ND (0.02)		-	-	ND (0.02)	ND (0.02) ND (0.02)	ND (0.40)	ND (0.02)	-	ND (0.02)	ND (0.02)
luorene	ug/g dry	0.02	62	<0.08	-	-	-	-			0.02	ND (0.02)	-	-	0.53	-	-	0.08	ND (0.02)		-	-	ND (0.02)	ND (0.02)	ND (0.40)	ND (0.02)	-	ND (0.02)	ND (0.02)
ndeno [1,2,3-cd] pyrene -Methylnaphthalene	ug/g dry ug/g dry	0.02	0.38	<0.08	- ·		-		- ·	· ·	0.14 0.13	ND (0.02) ND (0.02)	-		1.4 0.12	- ·	-	0.37	ND (0.02) ND (0.02)	<u> </u>		-	ND (0.02) ND (0.02)	ND (0.02) ND (0.02)	ND (0.40) ND (0.40)	ND (0.02) ND (0.02)		ND (0.02) ND (0.02)	ND (0.02) ND (0.02)
-Methylnaphthalene	ug/g dry	0.02	0.99	0.13	· ·	· ·	-	· ·		•	0.18	ND (0.02)	-	-	0.16	· ·	-	0.12	ND (0.02)	· ·			ND (0.02)	ND (0.02)	ND (0.40)	ND (0.02)		ND (0.02)	ND (0.02)
	the dealerst	0.04	0.99	0.23		-					0.31 0.14	ND (0.04) ND (0.01)	-	-	0.28	· · ·	-	0.21 0.16	ND (0.04) ND (0.01)	· ·	-		ND (0.04)	ND (0.04)	ND (0.80)	ND (0.04)	-	ND (0.04)	ND (0.04) ND (0.01)
1ethylnaphthalene (1&2)	ug/g dry		0.6	0.05	-	-																			ND (0.20)	ND (0.01)	-		
	ug/g dry ug/g dry ug/g dry	0.01	0.6	0.05 0.32 0.22	-	-	-	-			0.14 0.42 0.5	ND (0.01) ND (0.02) ND (0.02)	-	-	0.22 4.82 4.84	-	-	0.16 0.89 1.28	ND (0.01) ND (0.02) ND (0.02)	-	-	-	ND (0.01) ND (0.02)	ND (0.01) ND (0.02)	ND (0.20) ND (0.40)	ND (0.01) ND (0.02)	-	ND (0.01) ND (0.02)	ND (0.02) ND (0.02)

 Open
 Opn
 Open
 Opn
 O

Table A1: Soil Analytical Test Results Compared to MECP Table 3 Standards Residential Property Use

r	1		1	<u> </u>	1		1	1	1		1	1	1	1	1		1	1	1	1	
Parameter	Units	MDL	Regulation	DUP 2310245-11	BH7-23-SS3 2333190-01	BH8-23-SS6 2333190-02	BH1-24-AU1 2420225-01	BH1-24-SS3 2420225-02	BH1-24-SS5 2420225-03	BH2-24-AU1 2420225-04	BH2-24-SS3 2420225-05	BH3-24-AU1 2420225-06	BH3-24-SS5 2420225-07	BH4-24-AU1 2420225-08	BH4-24-SS2 2420225-09	BH4-24-SS3 2420225-10	BH4-24-SS6 2420225-11	BH5-24-AU1 2420225-12	BH5-24-SS2(BOTTOM) 2420225-13	DUP1 2420225-14	DUP2 2420225-15
Sample Depth (Sample Date			Reg 153/04-Table 3 Residential, coarse	4.00-4.60 28/Feb/2023	1.52-2.13 14/Aug/2023	3.81-4.42 14/Aug/2023	0.00-0.30 8/May/2024	1.52-2.13 8/May/2024	3.05-3.66 8/May/2024	0.10-0.30 8/May/2024	1.52-2.13 8/May/2024	0.00-0.46 9/May/2024	3.05-3.66 9/May/2024	0.00-0.46 9/May/2024	0.76-1.37 9/May/2024	1.52 - 2.13 9/May/2024	3.81-4.42 9/May/2024	0.05-0.46 9/May/2024	0.76-1.37 9/May/2024	3.05-3.66 8/May/2024	3.81-4.42 9/May/2024
Phsical Characteristics % Solids		0.1		96.0	91.8	93.6	91.5	91.5	90.4	96.4	91.8	91.6	92.1	93.6	80.8	93.6	94.5	93.4	92.9	92	93.7
% Solids General Inorganics	% by Wt.				91.6	93.0										95.0					
SAR Conductivity	N/A uS/cm	0.01 5.00	5.0 700	1.43 304	-	-	2.19 2330	1.6 583	1.87 402	4.11	6.83 944	2.29 406	2.08 459	0.28	2.3 272	•	2.21 357	2 363	1.54	2.18 433	1.75 347
pH	pH Units	0.05	NV	-	-	•	N/A	N/A	8.79	7.28	N/A	N/A	7.79	N/A	N/A	-	N/A	7.4	N/A	9.6	N/A
Metals Antimony	ug/g dry	1.0	7.5	ND (1.0)			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	<1.0	<1.0	<1.0
Arsenic	ug/g dry	1.0	18	4.6			2.6	2	2.1	2.7	2.3	2.8	2.9	4	5.2	4.8	3	4.2	2.1	2.2	2.7
Barium Beryllium	ug/g dry ug/g dry	1.0	390 4.0	211 0.5	-	-	99.5 <0.5	29.9 <0.5	35.8	87.8 <0.5	41.1 <0.5	59.5 <0.5	21.3	98.2 <0.5	177 <0.5	36.2	36.7	137 <0.5	30.2	35.9 <0.5	43 <0.5
Boron Cadmium	ug/g dry ug/g dry	0.5	120	8.9 ND (0.5)	-		11 <0.5	6.2 <0.5	<5.0 <0.5	11.1	<5.0 <0.5	6.5 <0.5	7.4 <0.5	7.3 <0.5	5.3 <0.5	6.7 <0.5	7.4	5.2	<5.0 <0.5	5.2 <0.5	7.7
Chromium (VI)	ug/g dry	0.2	8.0	ND (0.2)	-	-	0.8	0.3	<0.2	<0.2	<0.2	0.2	-	<0.2	<0.2	N/A	-	0.4	-	<0.2	-
Chromium Cobalt	ug/g dry ug/g dry	5	160 22	15.5	-	-	20.5	10.5	11.8 4.6	14.8 5.4	11.7 4.6	13 4.7	11.7 3.6	10.4 5.1	18.5 4.6	13.9	9.5	14.2 4.8	10.1 3.6	12.2	10.5 3.3
Copper	ug/g dry	5	140	5.5	-		16.1	9.9	6.8	12.8	8.3	12.4	5.5	11.8	22.7	10.2	<5.0	53.8	6.6	7.8	<5.0
Lead Mercury	ug/g dry ug/g dry	0.1	120	5.1 ND (0.1)	· ·		32.9	10.5 <0.1	4 <0.1	32.1	3.7	43.4	5.2	50.7 <0.1	349 0.9	8.5 <0.1	5.6	0.2	3.7	4.2	5.6
Molybdenum	ug/g dry	1	6.9	ND (1.0)			1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1	<1.0	1.1	<1.0	1.1	<1.0	<1.0	<1.0
Nickel Selenium	ug/g dry ug/g dry	5	100 2.4	12.5 ND (1.0)	-	-	13.2 <1.0	10.8 <1.0	8.3 <1.0	11.5 <1.0	8.4 <1.0	9.5 <1.0	8.3 <1.0	11.3 <1.0	10.2 <1.0	10.4 <1.0	6.5 <1.0	14.9 <1.0	6.9 <1.0	8.7 <1.0	7.1 <1.0
Silver Thallium	ug/g dry	0.3	20	ND (0.3) ND (1.0)	-	-	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0	<0.3 <1.0
Uranium	ug/g dry ug/g dry	1	23	ND (1.0)			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium Zinc	ug/g dry ug/g dry	1 10	86 340	18 ND (20.0)	-		27.5 35.1	14.9 <20.0	18.7 <20.0	25.1 34.7	20.6 <20.0	19.8 45.1	16.7 <20.0	27.6 26.6	21.1 94.5	21.1 75.7	13.6 <20.0	28.8 228	16.2 <20.0	19.1 <20.0	14.9 <20.0
Methyl Mercury	ug/g dry	0.00005	0.0084	-		-	-	-	-	-	-	-	-	-	-	ND(0.00005)	-	-	-	-	-
Volatiles Acetone	ug/g dry	0.5	16	ND (0.50)				-		-	-	-					-	· ·	-	-	<u> </u>
Benzene	ug/g dry	0.02	0.21	ND (0.02)	•	-	•	•	-	-	-	-	-	•	•	•		-	-	-	-
Bromodichloromethane Bromoform	ug/g dry ug/g dry	0.05	13 0.27	ND (0.05) ND (0.05)	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-
Bromomethane Carbon Tetrachloride	ug/g dry	0.05	0.05	ND (0.05) ND (0.05)	-	-			-	-	-	-	-				-	-	-	-	-
Chlorobenzene	ug/g dry ug/g dry	0.05	2.4	ND (0.05)	-	-			· ·			-	-	-	· ·			-	-	<u> </u>	
Chloroform Dibromochloromethane	ug/g dry	0.05	0.05 9.4	ND (0.05) ND (0.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
Dichlorodifluoromethane	ug/g dry ug/g dry	0.05	16	ND (0.05)	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-
1,2-Dichlorobenzene 1 3-Dichlorobenzene	ug/g dry ug/g dry	0.05	3.4 4.8	ND (0.05) ND (0.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,4-Dichlorobenzene	ug/g dry	0.05	0.083	ND (0.05)				-	-	-	-	-	-		-		-	-	-	-	-
1,1-Dichloroethane 1,2-Dichloroethane	ug/g dry ug/g dry	0.05	3.5 0.05	ND (0.05) ND (0.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,1-Dichloroethylene cis-1.2-Dichloroethylene	ug/g dry	0.05	0.05	ND (0.05) ND (0.05)					-	-	-	-	-		-		-	-	-	-	-
trans-1,2-Dichloroethylene trans-1,2-Dichloroethylene	ug/g dry ug/g dry	0.05	3.4 0.084	ND (0.05) ND (0.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloropropane cis-1,3-Dichloropropylene	ug/g dry	0.05	0.05	ND (0.05) ND (0.05)	•	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
trans-1,3-Dichloropropylene	ug/g dry ug/g dry	0.05	0.05	ND (0.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene, total Ethylbenzene	ug/g dry ug/g dry	0.05	0.05	ND (0.05) 0.08	-						-	-	-				-		-	-	<u> </u>
Ethylene dibromide (dibromoethane, 1,2-)	ug/g dry	0.05	0.05	ND (0.05)	-	-	-	-	-	-	-	-		-			-		-	-	-
Hexane Methyl Ethyl Ketone (2-Butanone)	ug/g dry ug/g dry	0.05	2.8	ND (0.05) ND (0.50)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Isobutyl Ketone	ug/g dry	0.05	1.7	ND (0.50)		-	-	-	-	-	-	-	-		-		-	-	-	-	-
Methyl tert-butyl ether Methylene Chloride	ug/g dry ug/g dry	0.05	0.75	ND (0.05) ND (0.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Styrene 1.1.1.2-Tetrachloroethane	ug/g dry	2	0.7	ND (0.05) ND (0.05)	· ·	-			-	-	-	-	-		-		-	-	-	-	-
1,1,2,2-Tetrachloroethane	ug/g dry ug/g dry	0.5	0.05	ND (0.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene Toluene	ug/g dry	0.05	0.28	ND (0.05) ND (0.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-
1,1,1-Trichloroethane	ug/g dry ug/g dry	0.05	0.38	ND (0.05)	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-
1,1,2-Trichloroethane Trichloroethylene	ug/g dry ug/g dry	0.05	0.05	ND (0.05) ND (0.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	ug/g dry	0.05	4.0	ND (0.05)					-	-	-	-	-		-		-	-		-	
Vinyl Chloride m/p-Xylene	ug/g dry ug/g dry	0.05	0.02	ND (0.02) 0.21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
o-Xylene Xylenes, total	ug/g dry	0.05	3.1 3.1	ND (0.05) 0.21	-	-			-	-	-	-	-	-	-		-	-	-	-	-
BTEX	ug/g dry			0.21						-	-	-	· ·				-	· · · · ·	-	-	
Benzene Ethylbenzene	ug/g dry ug/g dry	0.02	0.21 2.0	-	ND (0.02) ND (0.05)	ND (0.02) 0.28	<0.02	<0.02 <0.05	<0.02 <0.05	<0.02	<0.02 <0.05	<0.02 <0.05	<0.02	<0.02	<0.02 <0.05		<0.02	<0.02	<0.02 <0.05	<0.02 <0.05	<0.02 <0.05
Toluene	ug/g dry	0.05	2.3	-	ND (0.05)	0.48	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05
m/p-Xylene o-Xylene	ug/g dry ug/g dry	0.05	3.1 3.1	-	ND (0.05) ND (0.05)	0.36 ND (0.05)	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05	<0.05	<0.05	<0.05 <0.05	<0.05	•	<0.05	<0.05	<0.05	<0.05	<0.05 <0.05
Xylenes, total	ug/g dry	0.05	3.1	-	ND (0.05)	0.36	<0.05	<0.05	<0.05	<0.05	<0.05	0.07	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05
Hydrocarbons F1 PHCs (C6-C10)	ug/g dry	7	55	8	ND (7)	355	<7	<7	<7	<7	<7	<7	<7	<7	<7	-	<7	<7	<7	<7	<7
F2 PHCs (C10-C16) F3 PHCs (C16-C34)	ug/g dry	4 8	98 300	28 ND (8)	ND (4)	377 74	<4	<4 44	<4 <8	<40 164	39 58	<4	<4	<80	6 54		9	<40	<4	<4	<4
F4 PHCs (C34-C50)	ug/g dry ug/g dry	6	2800	ND (8) ND (6)	ND (8) ND (6)	10	105 263	44 74	<8 <6	1040	58	169 135	<8 <6	420 1800	67		14 25	269 777	<8 <6	15 13	<8 <6
F4G PHCs (gravimetric) Semi-Volatiles	ug/g dry	50	2800	· ·	· ·		382			1680		131		2540	87			707	-		<u>⊢ -</u> –]
Acenaphthene	ug/g dry	0.02	7.9	-	· ·	-	<0.02	0.08	0.02	<0.40	<0.02	<0.40	<0.02	<0.02	0.03	<0.02	-	0.1	<0.02	0.02	
Acenaphthylene Anthracene	ug/g dry ug/g dry	0.02	0.15 0.67	-	-		<0.02 0.03	<0.02 0.2	<0.02 0.06	<0.40	<0.02 <0.02	<0.40 1.2	<0.02 <0.02	0.2	0.06	<0.02 <0.02		0.14 0.26	<0.02 <0.02	<0.02	
Benzo[a]anthracene	ug/g dry	0.02	0.5		· ·	-	0.05	0.22	0.05	1.59	<0.02	1.76	<0.02	0.27	0.31	<0.02		0.83	<0.02	0.05	-
Benzo[a]pyrene Benzo[b]fluoranthene	ug/g dry ug/g dry	0.02	0.3 0.78	-	-	-	0.04	0.15 0.16	0.04	1.41	<0.02 <0.02	1.31 1.27	<0.02	0.2	0.26	<0.02	-	0.6	<0.02 <0.02	0.04	
Benzo[g,h,i]perylene	ug/g dry	0.02	6.6		· ·		0.03	0.08	0.02	0.87	<0.02	0.65	<0.02	0.14	0.14	<0.02		0.26	<0.02	<0.02	-
Benzo[k]fluoranthene Chrysene	ug/g dry ug/g dry	0.02	0.78 7.0	-	-	-	0.03	0.12	0.03	0.79	<0.02 <0.02	0.78	<0.02	0.12 0.24	0.16 0.25	<0.02	-	0.42	<0.02 <0.02	0.03	
Dibenzo[a,h]anthracene	ug/g dry	0.02	0.1	-	·	•	<0.02	0.02	<0.02	<0.40	<0.02	<0.40	<0.02	0.03	0.02	<0.02	-	0.08	<0.02	<0.02	-
Fluoranthene Fluorene	ug/g dry ug/g dry	0.02	0.69 62	-	-	-	0.11 <0.02	0.77 0.09	0.2	4.61 <0.40	0.02	5.49 0.43	<0.02 <0.02	0.51 <0.02	0.77	<0.02	-	2 0.09	<0.02	0.18	-
Indeno [1,2,3-cd] pyrene	ug/g dry	0.02	0.38	-	•		0.02	0.08	<0.02	0.73	<0.02	0.61	<0.02	0.07	0.13	<0.02	-	0.25	<0.02	<0.02	
1-Methylnaphthalene 2-Methylnaphthalene	ug/g dry ug/g dry	0.02	0.99	-	-	-	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.40	<0.02 <0.02	<0.40 <0.40	<0.02 <0.02	<0.02	<0.02 <0.02	<0.02	-	0.02	<0.02	<0.02	-
Methylnaphthalene (1&2) Naphthalene	ug/g dry ug/g dry	0.04	0.99 0.6	-	-	-	<0.04 0.02	<0.04 0.06	<0.04 0.04	<0.80 <0.20	<0.04 <0.01	<0.80 0.38	<0.04 <0.01	<0.04 0.01	<0.04 0.04	<0.04 <0.01	-	0.04	<0.04 <0.01	<0.04 0.02	-
Phenanthrene	ug/g dry	0.02	6.2	-	· ·	-	0.06	0.67	0.19	2.4	<0.02	4.17	<0.02	0.19	0.37	<0.02	-	1.02	<0.02	0.18	
Pyrene 2.00 Result exceeds Reg 153/04-Table 3	ug/g dry	0.02	78	-	-		0.09	0.54	0.14	4.59	0.02	4.56	<0.02	0.45	0.73	<0.02	-	1.67	<0.02	0.14	<u> </u>

 Open
 Result exceeds Reg 153/04-Table 3 Residential, coarse Standards

 ND(0.2)
 MDL exceeds Reg 153/04-Table 3 Residential, coarse Standards

 ND(0.2)
 ND concentrations identified above the MDL

 Parameter not analysed

 NV
 No value given for indicated parameter

Phase II ESA 137-141 George Street and 110-116 York Street Ottawa, Ontario

Parameter	Units	MDL	Regulation	BH1-GW1 1121005-01	BH1-GW1 1229249-01	BH4-GW1 1229249-03	BH4-GW2 1230199-01	BH1-GW2 1346233-01	BH4-GW3 1346233-03	BH2-23-GW1	BH3-23-GW1	BH5-23-GW1	BH6-23-GW1	DUP1-23-GW1	BH3-23-GW2	BH5-23-GW2	BH5-23-GW3	BH7-23-GW1	BH9-23-GW1	BH8-23-GW1	BH1-24-GW1	B
Sample De	epth (m)	1	Reg 153/04-Table 3 Non-Potable	1121005-01 4.4-5.64	1229249-01 6.1-7.62	1229249-03 18.1-21.1	1230199-01 18.1-21.1	1346233-01 6.1-7.62	1346233-03 18.1-21.1	2310387-01 4.6-7.6	2310387-02 4.57-7.57	2310387-03 3.78-6.78	2310387-04 4.1-7.1	2310387-05 4.57-7.57	2312554-01 4.57-7.57	2312554-02 3.78-6.78	2326362-01 3.78-6.79	2334476-01 3.83-6.88	2334476-02 6.02-9.07	2335491-01 9.12-12.17	2422099-01 7.03-10.03	12
Sample		1	Groundwater, coarse	16/May/2011	20/Jul/2012	20/Jul/2012	25/Jul/2012	12/Nov/2013	12/Nov/2013	8/Mar/2023	8/Mar/2023	8/Mar/2023	8/Mar/2023	8/Mar/2023	23/Mar/2023	23/Mar/2023	27/Jun/2023	23/Aug/2023	23/Aug/2023	31/Aug/2023	22/May/2024	1
Metals Mercury	ug/L	0.1	0.29	-	-			-	-		-	-	-	-			-	-		-	ND (0.1)	+
Antimony	ug/L	0.5	20000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.5	t
Arsenic	ug/L	1	1900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (1)	1
Barium Beryllium	ug/L ug/L	0.5	29000	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	831 ND (0.5)	+
Boron	ug/L	10	45000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	403	
Cadmium	ug/L	0.1	2.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (0.1)	I
Chromium Chromium (VI)	ug/L ug/L	1 10	810		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (1) ND (10)	÷
Cobalt	ug/L	0.5	66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (0.5)	T
Copper	ug/L ug/L	0.5	87	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	2.3	-
Molybdenum	ug/L	0.5	9200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.7	t
Nickel	ug/L	1	490	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1
Selenium Silver	ug/L ug/L	0.1	63	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	ND (1) ND (0.1)	ł
Sodium	ug/L	200	2300000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	908000	t
Thallium	ug/L	0.1	510	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.1	I
Uranium Vanadium	ug/L ug/L	0.1	420		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.6	t
Zinc	ug/L	5	1100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (5)	T
Volatiles																						Ŧ
Acetone Benzene	ug/L ug/L	5.0	130000 44	ND (5.0) ND (0.5)	82.4 ND (0.5)	40.6	104 ND (0.5)	ND (5.0) ND (0.5)	117 8	ND (5.0) ND (0.5)	ND (5.0) 0.6	ND (5.0) ND (0.5)	ND (5.0) ND (0.5)	ND (5.0) 0.6	ND (5.0) ND (0.5)	- ND (0.5)	- 1.2	- 3.6	- ND (0.5)	ND (5.0) ND (0.5)	- ND (0.5)	t
Bromodichloromethane	ug/L	0.5	85000	ND (0.5)	ND (0.5)	3.8	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	-	ND (0.5)	-	t
Bromoform Bromomethane	ug/L	0.5	380	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	-	-	-	-	ND (0.5) ND (0.5)	-	ł
Bromomethane Carbon Tetrachloride	ug/L ug/L	0.5	0.79	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)		-	· ·	· ·	ND (0.5) ND (0.2)	· ·	t
Chlorobenzene	ug/L	0.5	630	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	-		· ·	ND (0.5)	· ·	t
Chloroform Dibromochloromethane	ug/L ug/L	0.5	2.4	ND (0.5) ND (0.5)	16.1 ND (0.5)	21.8 ND (0.5)	3.1 ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	2.5 ND (0.5)	ND (0.5) ND (0.5)	1 ND (0.5)	2.6 ND (0.5)	ND (0.5) ND (0.5)	-	-	-	-	9.6 ND (0.5)	-	╀
Dichlorodifluoromethane	ug/L ug/L	1.0	4400	ND (0.5)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	ND (0.5) ND (1.0)	-	-		· ·	ND (0.5) ND (1.0)	· ·	t
1,2-Dichlorobenzene	ug/L	0.5	4600	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	0.7	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	-	ND (0.5)	-	Ţ
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ug/L ug/L	0.5	9600	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	-	-	-	-	ND (0.5) ND (0.5)	-	ł
1,1-Dichloroethane	ug/L	0.5	320	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)		-	-	-	ND (0.5)	-	t
1,2-Dichloroethane	ug/L	0.5	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	-	ND (0.5)	-	I
1,1-Dichloroethylene	ug/L ug/L	0.5	1.6	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)		-	-	-	ND (0.5) ND (0.5)	-	ł
trans-1,2-Dichloroethylene	ug/L	0.5	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	-	ND (0.5)	-	T
1,2-Dichloropropane	ug/L	0.5	16	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	-	ND (0.5)	-	F
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	ug/L ug/L	0.5	5.2	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	-	-	-	-	ND (0.5) ND (0.5)	-	t
1,3-Dichloropropene, total	ug/L	0.5	5.2	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	-	ND (0.5)	-	T
Ethylbenzene Ethylene dibromide (dibromoethane, 1	ug/L	0.5	2300	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	1.2	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	17 ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	ND (0.5) ND (0.2)	9.2	10.7	0.9	ND (0.5)	ND (0.5) ND (0.2)	ND (0.5)	+
Hexane	1, ug/L ug/L	1.0	51	- ND (1.0)	2.1	- ND (1.0)	- ND (1.0)	- ND (1.0)	- ND (1.0)	ND (0.2) ND (1.0)	ND (0.2) ND (1.0)	ND (0.2) ND (1.0)	ND (0.2) ND (1.0)	ND (0.2) ND (1.0)	ND (0.2) ND (1.0)	-	-	-	-	ND (0.2) ND (1.0)	-	t
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	470000	ND (5.0)	10.7	8.4	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	-	-	-	-	ND (5.0)	-	T
Methyl Isobutyl Ketone Methyl tert-butyl ether	ug/L ug/L	5.0	140000	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	ND (5.0) ND (2.0)	-	-	-	-	ND (5.0) ND (2.0)	-	ł
Methylene Chloride	ug/L	5.0	610	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)		-	-	-	ND (5.0)	-	t
Styrene	ug/L	0.5	1300	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	-	ND (0.5)	-	I
1,1,1,2-Tetrachloroethane	ug/L ug/L	0.5	3.3	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	•	-	-	-	ND (0.5) ND (0.5)	-	ł
Tetrachloroethylene	ug/L	0.5	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	-	ND (0.5)	-	T
Toluene 1.1.1-Trichloroethane	ug/L	0.5	18000	ND (0.5) ND (0.5)	6.2 ND (0.5)	5.6 ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.4 ND (0.5)	ND (0.5) ND (0.5)	3.4 ND (0.5)	1 ND (0.5)	ND (0.5) ND (0.5)	3.5 ND (0.5)	ND (0.5) ND (0.5)	2.4	1	1.5	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	+
1,1,1-Trichloroethane	ug/L ug/L	0.5	4.7	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	-	-	-	-	ND (0.5) ND (0.5)	-	t
Trichloroethylene	ug/L	0.5	1.6	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	-	-	-	-	ND (0.5)	-	1
Trichlorofluoromethane Vinyl Chloride	ug/L	1.0	2500	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)	-	-	-	-	ND (1.0) ND (0.5)	-	ł
m/p-Xylene	ug/L ug/L	0.5	4200	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) 1.6	ND (0.5) ND (0.5)	3.2	22	ND (0.5) ND (0.5)	3.2	ND (0.5) ND (0.5)	11.5	12.4	- 6	- ND (0.5)	ND (0.5) ND (0.5)	- ND (0.5)	t
o-Xylene	ug/L	0.5	4200	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	1.1	ND (0.5)	1	2	ND (0.5)	1	ND (0.5)	1.4	0.9	0.8	ND (0.5)	ND (0.5)	ND (0.5)	Ţ
Xylenes, total BTEX	ug/L	0.5	4200	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	2.8	ND (0.5)	4.1	24	ND (0.5)	4.2	ND (0.5)	12.9	13.2	6.8	ND (0.5)	ND (0.5)	ND (0.5)	╀
Benzene	ug/L	0.5	44	ND (0.5)	ND (0.5)	1.1	ND (0.5)	ND (0.5)	8	ND (0.5)	0.6	ND (0.5)	ND (0.5)	0.6	ND (0.5)	ND (0.5)	1.2	3.6	ND (0.5)	ND (0.5)	ND (0.5)	t
Ethylbenzene	ug/L	0.5	2300	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	1.2	ND (0.5)	ND (0.5)	17	ND (0.5)	ND (0.5)	ND (0.5)	9.2	10.7	0.9	ND (0.5)	ND (0.5)	ND (0.5)	Ŧ
Toluene m/p-Xylene	ug/L ug/L	0.5	18000 4200	ND (0.5) ND (0.5)	6.2 ND (0.5)	5.6 ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	1.4	ND (0.5) ND (0.5)	3.4 3.2	22	ND (0.5) ND (0.5)	3.5	ND (0.5) ND (0.5)	2.4	1 12.4	1.5	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	╀
o-Xylene	ug/L	0.5	4200	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	1.1	ND (0.5)	1	2	ND (0.5)	1	ND (0.5)	1.4	0.9	0.8	ND (0.5)	ND (0.5)	ND (0.5)	t
Xylenes, total Hydrocarbons	ug/L	0.5	4200	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	2.8	ND (0.5)	4.1	24	ND (0.5)	4.2	ND (0.5)	12.9	13.2	6.8	ND (0.5)	ND (0.5)	ND (0.5)	╀
F1 PHCs (C6-C10)	ug/L	25	750	ND (25)	45	ND (25)	ND (25)			ND (25)		1210	ND (25)	-	ND (25)	742	1050	450	ND (25)	ND (25)	ND (25)	t
F2 PHCs (C10-C16)	ug/L	100	150	ND (100)	ND (100)	ND (100)	ND (100)			ND (100)		266	ND (100)	-	ND (100)	ND (100)	398	ND (100)	ND (100)	ND (476)	ND (100)	T
F3 PHCs (C16-C34) F4 PHCs (C34-C50)	ug/L ug/L	100	500	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	ND (100) ND (100)	-	-	ND (100) ND (100)	-	ND (100) ND (100)	ND (100) ND (100)	-	ND (100) ND (100)	ND (476) ND (476)	ND (100) 282	╀				
Semi-Volatiles	ug/ c	100		100 (100)				<u> </u>							1001	10 (100)					202	t
Acenaphthene	ug/L	0.05	600	-		-	-	-			-		-	-	-	-	-	-	-	-	ND (0.05)	F
Acenaphthylene Anthracene	ug/L ug/L	0.05	1.8 2.4	1 .		· ·			· ·		· ·		· ·	-	-	-	-	· ·	-		ND (0.05) ND (0.01)	╀
Benzo[a]anthracene	ug/L	0.01	4.7		· ·					-		· ·		-	-	-	-	· ·		· ·	ND (0.01)	t
Benzo[a]pyrene Benzo[b]fluoranthene	ug/L	0.01	0.81	· · _					-	-	-			-	-	-	-		-		ND (0.01)	Ŧ
Benzo[b]fluoranthene Benzo[g,h,i]perylene	ug/L ug/L	0.05	0.75	1				-					-	-		-	-			-	ND (0.05) ND (0.05)	t
Benzo[k]fluoranthene	ug/L	0.05	0.4			-	-	•			-	•	-	-	-	-	-		-	-	ND (0.05)	1
Chrysene Dibonzo(a blanthracono	ug/L	0.05	1.0	· · _					-	-	-		-	-	-	-	-		-		ND (0.05)	Ŧ
Dibenzo[a,h]anthracene Fluoranthene	ug/L ug/L	0.05	0.52					-					-	-	-	-	-			-	ND (0.05) ND (0.01)	t
Fluorene	ug/L	0.05	400	· ·	-			-				-	-	-		-	-		· ·	-	ND (0.05)	1
Indeno [1,2,3-cd] pyrene	ug/L	0.05	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (0.05) ND (0.05)	╀
1-Methylnaphthalene 2-Methylnaphthalene	ug/L ug/L	0.05	1800						-		-		-	-	-	-	-	-		-	ND (0.05) ND (0.05)	t
Methylnaphthalene (1&2)	ug/L	0.10	1800	-	-			-			-	· ·	-	-		-	-	· ·	· ·		ND (0.10)	t
Naphthalene Phenanthrene	ug/L ug/L	0.05	1400 580		-	· ·	-			-	-		-	-	-	-	-	-	-	-	ND (0.05) ND (0.05)	╀
Prenanthrene Pyrene	ug/L ug/L	0.05	68									· ·		-		-		· ·	<u> </u>		ND (0.05) ND (0.01)	t
200				-	-	-	-	-	-	-	-	-	-		-		-	-	-			-

 uppl
 0.01
 68

 2.00
 Result exceeds Reg 153/04-Table 3 Non-Potable Groundwater, coarse Standards

 N0(0.2)
 MDL exceeds Reg 153/04-Table 3 Non-Potable Groundwater, coarse Standards

 N0(0.2)
 No concentrations identified above the MDL

 Parameter not analysed

 NV
 No value given for indicated parameter

Phase II ESA 137-141 George Street and 110-116 York Street Ottawa, Ontario

BH3-24-GW1	DUA 24 CH/4
BH3-24-GW1 2422099-02	BH4-24-GW1 2422099-03
7.26-10.26	
22/May/2024	22/May/2024
ND (0.1)	ND (0.1)
0.8	0.7
ND (1) 882	1 377
ND (0.5)	ND (0.5)
164	172
ND (0.1) ND (1)	ND (0.1) ND (1)
ND (10)	ND (10)
ND (0.5)	ND (0.5)
2.7	2.6
9.7	12.1
2	1 4
ND (1) ND (0.1)	4 ND (0.1)
1430000	783000
0.1 3.9	0.1 2.5
0.6	0.7
ND (5)	ND (5)
-	-
-	-
-	-
-	-
-	-
	-
-	-
-	-
	-
-	-
-	-
	-
-	-
-	-
	-
-	-
-	-
	-
-	-
-	-
-	-
-	-
-	-
	-
-	-
-	-
-	-
	-
-	-
-	-
-	-
-	-
-	-
	-
	· ·
	-
-	-
-	-
ND (0.05)	ND (0.05)
ND (0.05)	ND (0.05)
ND (0.01) ND (0.01)	ND (0.01) ND (0.01)
ND (0.01)	ND (0.01)
ND (0.05)	ND (0.05)
ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
ND (0.05)	ND (0.05)
ND (0.05)	ND (0.05)
ND (0.01) ND (0.05)	ND (0.01) ND (0.05)
ND (0.05)	ND (0.05)
ND (0.05)	ND (0.05)
ND (0.05) ND (0.10)	ND (0.05) ND (0.10)
ND (0.05)	ND (0.05)
ND (0.05)	ND (0.05)
ND (0.01)	ND (0.01)

APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Sampling & Analysis Plan

137-141 George Street and 110-116 York Street Ottawa, Ontario

Prepared for Claridge Homes

Report: PE2709-SAP_Rev May 1, 2024

TABLE OF CONTENTS

PAGE

1.0	SAMPLING PROGRAM	. 1
2.0	ANALYTICAL TESTING PROGRAM	. 3
3.0	 STANDARD OPERATING PROCEDURES. 3.2 Monitoring Well Installation Procedure	. 7
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	. 9
5.0	DATA QUALITY OBJECTIVES	10
6.0	PHYSICAL IMPEDIMENTS	11

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Claridge Homes, to conduct a Phase II – Environmental Site Assessment (Phase II ESA) for the property addressed 141 George Street, in the City of Ottawa, Ontario.

Based on the findings of the Phase I ESA, the following subsurface investigation program was developed.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH1-23	Eastern portion of the Phase II Property; to assess potential impacts resulting from the presence of fill material of unknown quality as well as general coverage for the geotechnical program.	12-15 m; to intercept the groundwater table for the purpose of installing a monitoring well as part of the geotechnical program.
BH2-23	Northern portion of the Phase II Property; to assess potential impacts resulting from the importation of fill material of unknown quality.	5-8 m; to intercept the groundwater table for the purpose of installing a monitoring well.
BH3-23	Western portion of the Phase II Property; to assess potential impacts resulting from former off-site dry cleaner and machine shop.	5-8 m; to intercept the groundwater table for the purpose of installing a monitoring well.
BH4-23	Northwestern portion of the Phase II Property; to assess potential impacts resulting from the importation of fill material of unknown quality.	12-15 m to provide general coverage for the environmental and geotechnical programs.
BH5-23	Southwestern portion of the Phase II Property; to assess potential impacts resulting from former on- site aboveground storage tank (AST), off-site retail fuel outlet and various former off-site industries.	5-8 m; to intercept the groundwater table for the purpose of installing a monitoring well.
BH6-23	Northwestern portion of the Phase II Property; to assess potential impacts resulting from the presence of fill material of unknown quality.	5-8 m; to intercept the groundwater table for the purpose of installing a monitoring well.
BH7-23	Southwestern portion of the Phase II Property; to delineate soil and/or groundwater impacts	5-7m; to intercept groundwater table for the purpose of installing a monitoring well and laterally delineate impacts identified at BH5-23
BH8-23		9-12m; to vertically delineate groundwater impacts identified at BH5-23
BH9-23		6-9m; to laterally delineate impacts identified at BH5-23
BH10-23		3-6m; shallow monitoring well installation, to determine if groundwater present in overburden
BH1-24	To provide general coverage of the site fill and proposed building footprint for environmental and	7-10m; to access groundwater table if required
BH2-24	geotechnical purposes.	4m – assess fill and underlying native
BH3-24		7-10m; to access groundwater table if
BH4-24		required
BH5-24		4m – assess fill and underlying native

Borehole locations are shown on Drawing PE2709-11 – Test Hole Location Plan, appended to the main report.

At each borehole, split-spoon samples of the overburden soils will be obtained at 0.76 m (2'6") intervals. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following the borehole drilling, groundwater monitoring wells will be installed in all three boreholes to allow for the collection of groundwater samples.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the Phase II Property is based on the following general considerations:

- □ At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site.
- □ At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site.
- □ In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP site condition standards.
- In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward.
- Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA.

The analytical testing program for soil at the Phase I Property is based on the following general considerations:

- Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained).
- Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.
- ☐ At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water-bearing.
- Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

- Glass soil sample jars
- □ two buckets
- □ cleaning brush (toilet brush works well)
- □ dish detergent
- methyl hydrate
- d water (if not available on site water jugs available in trailer)
- □ latex or nitrile gloves (depending on suspected contaminant)
- RKI Eagle organic vapour meter or MiniRae photoionization detector (depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a geodetic benchmark, if one is available, or a temporary site benchmark which can be tied in at a later date if necessary.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

- Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
- Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
- □ If sampling for VOCs, BTEX, or PHCs F₁, a soil core from each soil sample, which may be analyzed, must be taken and placed in the laboratory-provided methanol vial.
- □ Note all and any odours or discolouration of samples.
- □ Split spoon samplers must be washed between samples.
- If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
- As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
- If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.

Spoon Washing Procedure

All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples.

- □ Obtain two buckets of water (preferably hot if available)
- Add a small amount of dish soap to one bucket
- □ Scrub spoons with brush in soapy water, inside and out, including tip
- **Rinse in clean water**
- □ Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well)
- □ Allow to dry (takes seconds)
- □ Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

- Samples should be brought to room temperature; this is specifically important in colder weather. Soil must not be frozen.
- □ Turn instrument on and allow to come to zero calibrate if necessary
- If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed.
- Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations are encountered.
- Break up large lumps of soil in the sample bag, taking care not to puncture bag.
- □ Insert probe into soil bag, creating a seal with your hand around the opening.
- Gently manipulate soil in bag while observing instrument readings.
- **Record** the highest value obtained in the first 15 to 25 seconds
- Make sure to indicate scale (ppm or LEL); also note which instrument was used (RKI Eagle 1 or 2, or MiniRae).
- □ Jar samples and refrigerate as per Sampling and Analysis Plan.

3.2 Monitoring Well Installation Procedure

Equipment

- ☐ 5' x 2" threaded sections of Schedule 40 PVC slotted well screen (5' x 1 ¼" if installing in cored hole in bedrock)
- □ 5' x 2" threaded sections of Schedule 40 PVC riser pipe (5' x 1 ¼" if installing in cored hole in bedrock)
- □ Threaded end-cap
- □ Slip-cap or J-plug
- □ Asphalt cold patch or concrete
- □ Silica Sand
- Bentonite chips (Holeplug)
- □ Steel flushmount casing

Procedure

- Drill borehole to required depth, using drilling and sampling procedures described above.
- If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
- □ Only one monitoring well should be installed per borehole.
- Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
- Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
- Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
- □ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen.
- Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand.
- Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected).
- Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground surface.

3.3 Monitoring Well Sampling Procedure

Equipment

- □ Water level metre or interface probe on hydrocarbon/LNAPL sites
- Spray bottles containing water and methanol to clean water level tape or interface probe
- Peristaltic pump
- D Polyethylene tubing for peristaltic pump
- □ Flexible tubing for peristaltic pump
- Latex or nitrile gloves (depending on suspected contaminant)
- □ Allen keys and/or 9/16" socket wrench to remove well caps
- Graduated bucket with volume measurements
- D pH/Temperature/Conductivity combo pen
- □ Laboratory-supplied sample bottles

Sampling Procedure

- Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
- Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
- Measure total depth of well.
- Clean water level tape or interface probe using methanol and water. Change gloves between wells.
- □ Calculate volume of standing water within well and record.
- Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
- Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
- □ Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
- **□** Replace well cap and flushmount casing cap.

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

- All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
- □ All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
- Where groundwater samples are to be analyzed for VOCs, one laboratoryprovided trip blank will be submitted for analysis with every laboratory submission.
- Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
- □ Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS

Physical impediments to the Sampling and Analysis plan may include:

- □ The location of underground utilities
- Poor recovery of split-spoon soil samples
- □ Insufficient groundwater volume for groundwater samples
- Breakage of sampling containers following sampling or while in transit to the laboratory
- Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
- Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
- Drill rig breakdowns
- Winter conditions
- □ Other site-specific impediments

Site-specific impediments to the Sampling and Analysis plan are discussed in the body of the Phase II ESA repor

SOIL PROFILE AND TEST DATA

▲ Full Gas Resp. △ Methane Elim.

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic					·					LE N F27	o. 7 09			
REMARKS				_					но	DLE I	NO.			
BORINGS BY CME 55 Power Auger					DATE .	July 17, 2	2012		1	<u>H 1</u>				
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Photo I ● Vola						ng Wel
	STRATA	ТҮРЕ	NUMBER	°% RECOVERY	N VALUE or RQD			○ Lowe	er Ex	cplo	sive	Lim	it %	Monitoring Well Construction
GROUND SURFACE	ß		Z	RE	z Ó	0	-61.69	20	40)	60	80)	ž
50 mm Asphaltic concrete over 0.25 Crushed stone FILL: Sand and gravel 0.69	XXX	AU AU	1 2			0-	-01.09							
FILL: Brown silty sand, trace clay,		ss	3	42	9	1-	-60.69			· · · · · ·		·····		
brick, gravel, cobbles		ss	4	50	26	2-	-59.69		· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	······································	
FILL: Brown silty clay with sand and gravel		ss	5	33	9									
2.97		× ss	6	100	50+	3-	-58.69							
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles		ss	7	50	12	4-	-57.69							
5.00		SS	8	67	50+	5-	-56.69							
		RC	1	92	67		-55.69			· · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
BEDROCK: Grey limestone		– RC	2	100	100	7-	-54.69							
End of Borehole 7.62										· · · · · · · · · · · · · · · · · · ·				
(GWL @ 3.71m-July 20, 2012)								100	200	0	300	40	0 5	500
								RKI				ppm		

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St.

100

200

RKI Eagle Rdg. (ppm) • Full Gas Resp. \triangle Methane Elim.

300

400

500

9 Auriga Drive, Ottawa, Ontario K2E 7T9					Ot	tawa, Or	ntario					
DATUM Geodetic					1				FILE PE2	NO. 2 709		
REMARKS						Luby 17 0	010		HOLE BH	-		
BORINGS BY CME 55 Power Auger	E		SAN	IPLE		July 17, 2		Photo		∠ tion De	ector	/ell
SOIL DESCRIPTION	A PLOT		æ	RY	Ë۵	DEPTH (m)	ELEV. (m)	• Vol	atile Org	anic Rdg	(ppm)	Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	° ≈ © © ©	VALUE r rod			O Low	er Exp	losive L	imit %	Const
GROUND SURFACE	ß		N	RE	N N N N	0-	-62.02	20	40	60	80	ž
Asphaltic concrete0.05		≩ AU	1			0-	02.02					
FILL: Brown silty sand with gravel		§ AU ∛ SS	2 3	29	6	1-	-61.02					
1.22		4.33	3	29	0		01.02				· · · · · · · · · · · · · · · · · · ·	
GLACIAL TILL: Brown silty clay		ss	4	21	23	2-	-60.02				• • • • • • • • • • • • • • •	
with sand, gravel, cobbles, boulders		ss	5	42	13							
3.30		ss	6	36	50+	3-	-59.02					
GLACIAL TILL: Brown silty sand with gravel, cobbles, boulders		× SS	7	80	50+	4-	-58.02					
<u>4.90</u>		∑ss	8			5-	-57.02					<u>1111111111</u> ▲
		RC	1	100	47		57.02					
						6-	-56.02					
BEDROCK: Grey limestone		RC	2	100	100	7-	-55.02				· · · · · · · · · · · · · · · · · · ·	
		RC	3	100	100	8-	-54.02					
End of Borehole 8.76												
(GWL @ 4.50m-July 20, 2012)												

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM	Geodetic

RE	MA	RK	S

FILE NO.
PE2709

BORINGS BY CME 55 Power Auger				п	ATE .	July 17, 2	012		HOLE		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		onizat	ion Detector anic Rdg. (ppm)	Well
	STRATA F	ТҮРЕ	NUMBER	°. ≈	N VALUE or RQD	(m)	(m)			osive Limit %	Monitoring Well Construction
GROUND SURFACE	N N		z	E	z °	0	01 50	20	40	60 80	ž
Asphaltic concrete0.05		AU	1 2			0-	-61.53				
FILL: Brown silty sand with gravel, crushed stone 1.40		ss	3	77	50+	1-	-60.53				
		ss	4	0	15	2-	-59.53				
GLACIAL TILL: Brown silty sand with gravel, cobbles, boulders		ss	5	50	17	3-	-58.53				
		ss ss	6 7	50 0	34 50+		00.00				
4.24		_ 33	/	0	50+	4-	-57.53				
End of Borehole Practical refusal to augering at 4.24m depth											
										300 400 50 Rdg. (ppm) p. △ Methane Elim.	00

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic									FILE NO. PE2709
REMARKS				HOLE NO.					
BORINGS BY CME 55 Power Auger				D	ATE .	July 18, 2	012	1	BH 4
SOIL DESCRIPTION	SAMPLE					DEPTH (m)	ELEV. (m)		tile Organic Rdg. (ppm)
		STRATA I TYPE NUMBER			N VALUE or RQD	(11)	(11)	 Lowe 	onization Detector Image: Construction of the construction o
GROUND SURFACE	S		Z	% RECOVERY	zÖ			20	40 60 80 S
25mm Asphaltic concrete over 0.30 Crushed stone		AU ∰AU	1 2			0-	-61.91		
FILL: Brown silty sand with gravel, cobbles, brick and concrete		ss	3	25	3	1-	-60.91		
2.21		ss	4	42	27	2-	-59.91		
		ss	5	33	24				
GLACIAL TILL: Brown silty sand with gravel, cobbles, boulders		ss	6	50	33	3-	-58.91		
		≍ SS	7	40	50+	4-	-57.91		
4.70		 RC	1	100	72	5-	-56.91		
		- RC	2	100	100	6-	-55.91		
		_				7-	-54.91		
BEDROCK: Grey limestone		RC	3	100	100	8-	-53.91		
						9-	-52.91		
		RC	4	100	100	10-	-51.91		
		RC	5	100	87	11-	-50.91		
						12-	-49.91		<u>. </u> ∃ Ξ 200 300 400 500 Eagle Rdg. (ppm) as Resp. △ Methane Elim.

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic

REMARKS

FILE NO.
PE2709

BORINGS BY CME 55 Power Auge		C	DATE .	July 18, 2	HOLE NO. BH 4					
SOIL DESCRIPTION			SAN	IPLE		DEPTH		Photo Ionization Detector Volatile Organic Rdg. (ppm)		
		ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	 Lower Explosive Limit % 	Construction	
GROUND SURFACE	STRATA			8	ZŬ	12-	49.91		≥ 	
		RC	6	100	100	13-	-48.91			
		RC	7	100	100	14-	-47.91			
		_				15-	46.91			
BEDROCK: Grey limestone		RC	8	100	98	16-	-45.91			
		- RC	9	100	100	17-	-44.91			
						18-	-43.91			
		RC	10	100	100	19-	-42.91			
		RC	11	100	100	20-	-41.91			
2 End of Borehole	l. <u>13</u>					21-	-40.91			
(GWL @ 4.43m-July 20, 2012)										
(GWL @ 4.43m-July 20, 2012)										
								100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.		

SOIL PROFILE AND TEST DATA

FILE NO.

PE2709

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic DATUM

REMARKS	
BORINGS BY	CME 5

BORINGS BY CME 55 Power Auger		•		D	HOLE NO. BH 5						
SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH	ELEV.	 Photo Ionization Detector Volatile Organic Rdg. (ppm) 			
	STRATA I	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD	(m)	(m)	 Lower Explosive Limit % 			
GROUND SURFACE	03		Z	R	z o	0	01 70	20	40	60 80	Monitoring Well Construction
Asphaltic concrete0.10						0-	-61.79				
FILL: Dark brown silty clay, some sand, gravel, crushed stone		¥ AU	1	47		1-	-60.79		• • • • • • • • • • • • •		
		ss	2	17	9	· ·	00.75				
- some mortar by 1.5m depth 2.21		ss	3	21	3	2-	-59.79		· · · · · · · · · · · ·		
		ss	4	50	23						
GLACIAL TILL: Brown silty clay		ss	5	67	33	3-	-58.79				· · · · · · · · · · · · · · · · · · ·
with sand, gravel, cobbles		ss	6	62	53	4-	-57.79				
		ss	7	67	61	5-	-56.79				
5.41 End of Borehole		≍-SS	8		50+						·····
Practical refusal to augering at 5.41m depth											
									Eagle R	300 400 dg. (ppm) △ Methane E	500

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic

DATUM Geodetic									FILE NO		
REMARKS									HOLE		
BORINGS BY CME 55 Power Auger				C	DATE	August 8,	2012	1	BH 6		
SOIL DESCRIPTION			SAN	IPLE	1	DEPTH	ELEV.	Photo I • Vola			
	STRATA PLOT	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)	○ Lowe	er Explo	sive Limit	Monitoring Vell
GROUND SURFACE	ν.	L .	IN	REC	N OF V			20	40	60 80	Σ
Asphaltic concrete0.10		XX				0-	-61.45				
		S AU	1								
FILL: Brown silty sand with gravel, crushed stone, trace clay		ss	2	42	4	1-	-60.45			·····	
crushed stone, trace clay		ss	3	54	8						· (· · · · · · · · · · · · · · · · · ·
2.44			U			2-	-59.45			······································	
<u>~</u>	SS 4 58 40										
GLACIAL TILL: Brown silty clay with sand, gravel, cobbles		ss	5	86	50+	3-	-58.45				
with sand, gravel, cobbles		≍ SS	6	80	50+						
			-			4-	-57.45				
4.75 End of Borehole		∑.SS	7	43	50+						·····
Practical refusal to augering at											
4.75m depth											
								100		300 400	500
								RKI	Eagle Ro	dg. (ppm) △ Methane	Elim.

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM	G

DATUM Geodetic									FILE NO			
REMARKS									HOLE N			
BORINGS BY CME 55 Power Auger		1		D	DATE	August 8,	2012		BH 7			
SOIL DESCRIPTION			SAMPLE			DEPTH (m)	ELEV. (m)	Volatile ()raanic Rdc			g Well	
	STRATA PLOT	ТҮРЕ	LYPE	NUMBER	% RECOVERY	VALUE r ROD	(11)	(11)	 Lowe 	r Explos	sive Limit %	Monitoring Well
GROUND SURFACE	ß		z	RE	N OF U		01.00	20	40	60 80	ž	
Asphaltic concrete0.10						0-	-61.02					
	\bigotimes	AU	1							•••••••••••••••••••••••••••••••••••••••		
	\bigotimes	ss	2	17	11	1-	60.02		·····	······································	· · · · ·	
	\bigotimes	∆ 33	2									
FILL: Brown silty sand with gravel, cobbles, concrete, asphalt, trace	\bigotimes		~	05	17							
organics	\bigotimes	ss	3	25	17	2-	59.02					
	\bigotimes									•••••••••••••••••••••••••••••••••••••••		
		∬ ss	4	75	26							
<u>3.20</u>		F -				3-	-58.02				<u></u>	
		∦ ss	5	21	21							
GLACIAL TILL: Grey-brown silty clay with sand, gravel, cobbles							57.00					
clay with sand, gravel, cobbles		∦ ss∣	6	29	23	4-	-57.02					
4.70		⊥ ¤.ss	7	80	50+						444 444	
End of Borehole			,	00	00+							
Practical refusal to augering at												
4.70m depth												
											:	
								100		300 400	500	
										lg. (ppm) ∆ Methane Eli	m.	

SOIL PROFILE AND TEST DATA

 \blacktriangle Full Gas Resp. \bigtriangleup Methane Elim.

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic									FILE NO		
				_			0010		HOLE N		
BORINGS BY CME 55 Power Auger	1			C	DATE	August 8,	2012		BH 8		
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)			ic Rdg. (ppm)	Ig Well
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD		()	○ Lowe	r Explos	sive Limit %	Monitoring Well
GROUND SURFACE	N N		z	RE	z °	0	C1 00	20	40	60 80	ĮΣ
Asphaltic concrete0.10			4			- 0-	-61.20				
FILL: Brown silty sand, trace clay and gravel		× AU	1	29	11	1-	-60.20				
and graver			2	25							
<u>1.83</u>	3	∦-ss	3	58	30	2-	-59.20				
GLACIAL TILL: Brown to grey silty clay with sand, gravel, cobbles		ss	4	46	69		50.00				
		ss	5	52	59	3-	-58.20				
3.53	<u>}\^^^^</u>	<u></u>		02					<u> </u>		
Practical refusal to augering at 3.53m depth											
								100 RKI I	200 C	300 400 3g. (ppm)	500

SOIL PROFILE AND TEST DATA

FILE NO.

Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic

DATUM

DEMARKO									PE270	09	
REMARKS										D.	
BORINGS BY CME 55 Power Auger				D	ATE	August 8,	2012		BH 9		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)			n Detector c Rdg. (ppm)	g Well
	STRATA	ТҮРЕ	NUMBER	∾ RECOVERY	N VALUE or RQD	(11)		• Lowe	r Explos	ive Limit %	Monitoring Well Construction
GROUND SURFACE	5		N	REC	z ^ö			20	40	60 80	E
Asphaltic concrete 0.10	XXX					0-	-61.79				
FILL: Brown silty sand with gravel, clay, brick, mortar		AU SS	1 2		4	1-	-60.79				-
1.40 End of Borehole		<u> </u>									
Practical refusal to augering at 1.40m depth											
									agle Rd	:00 400 5 g. (ppm) △ Methane Elim.	00

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 141 George Street Ottawa Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

						lawa, Oi			1	
DATUM Geodetic									FILE NO. PE2289	
REMARKS									HOLE NO.	
BORINGS BY Portable Drill				D	ATE I	May 11, 2	2011		BH 1-11	
SOIL DESCRIPTION	РГОТ		SAN			DEPTH (m)	ELEV. (m)		onization Detector tile Organic Rdg. (ppm)	> ō
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(11)	(11)	 Lowe 	r Explosive Limit %	nitorin
GROUND SURFACE	S E	H	ŊŊ	REC	N N N			20	- 40 60 80	≥Ö
Interlocking brick0.06	\times					0-	-61.30			
		ss	1	58	9					։ ։ ։ ։ ։ ։ ։ ։ ։ ։ ։ ։ ։ ։ ։ ։ ։ ։ ։
FILL: Brown silty sand with gravel										
		ss	2	8	4	1-	-60.30			
1.07							00.00			
1.37		∦. ∫ss	3	33	46					
GLACIAL TILL: Brown silty sand with gravel and clay, trace cobbles		1 33	3	33	40					
		V				0-	-59.30			
2.26		SS	4	53	50+	2-	-59.30			
<u>_</u>		<u> </u>								
		RC	1	32						
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and boulders		-								
Sand, gravel, cobbles and boulders		RC	2	18		3-	-58.30			
			~							
		RC	3	100						
		RC	4	64						
<u>3.96</u>						4-	-57.30			
		RC	5	100						
BEDROCK: Grey limestone		_								
			_			5-	-56.30			
		RC	6	71		Ū	00.00			
		- RC	7							
5.64 End of Borehole	· · · ·		1						· · · · · · · · · · · · · · · · · · ·	
(GWL @ 5.20m - May 16, 2011)										
								100	200 300 400	500
								RKI E	Eagle Rdg. (ppm)	
								∣ ▲ Full Ga	as Resp. 🛆 Methane El	ım.

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic

DATUM Geodetic									FILE NO.		
REMARKS									HOLE NO	0.	
BORINGS BY CME-55 Low Clearance	Drill			D	ATE	February	24, 2023	8	BH 1-2	23	
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)			n Detector c Rdg. (ppm)	ng Well
	STRATA	ТҮРЕ	NUMBER	° ≈ © © © ©	N VALUE or RQD				-	ive Limit %	Monitoring Well Construction
GROUND SURFACE		7-		<u> </u>	-	0-	61.52	20	40 (60 80	
Asphaltic concrete0.05 FILL: Crushed stone0.30 FILL: Dark brown silty sand, some0.69		₿ AU SS	1	29	14	1-	-60.52				
Igravel FILL: Brown silty sand with gravel — and crushed stone		ss	3	58	20	2-	-59.52	•			
and crushed stone2.74		ss	4	54	23	2	-59.52				
		x X ss	5	86	50+	3-	-58.52	•			-
GLACIAL TILL: Dense to very dense, brown silty sand to sandy silt with gravel, cobbles and boulders		RC	1			4-	-57.52				<u>IIIIIIII</u> IIIIIIIIIIIIIIIIIIIIIIIIIIII
5.36		-		100	07	5-	-56.52				
		RC	2	100	87	6-	-55.52		· · · · · · · · · · · · · · · · · · ·		
		RC	3	100	100	7-	-54.52		· · · · · · · · · · · · · · · · · · ·		
						8-	-53.52				
		RC	4	100	100	9-	-52.52				
BEDROCK: Good to excellent quality, grey limestone		RC	5	100	100	10-	-51.52				
						11-	-50.52				
		RC	6	100	100	12-	-49.52				
		RC	7	100	100	13-	-48.52				
		_				14-	-47.52				
		RC	8	100	100	15-	-46.52				
End of Borehole											
(GWL @ 4.49m - March 8, 2023)											
									Eagle Rd	500 400 9 g. (ppm) △ Methane Elim	⊐ 500 ı.

SOIL PROFILE AND TEST DATA

FILE NO.

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic

DATUM

REMARKS										PE2	709		
				_	1					HOLE			
BORINGS BY CME-55 Low Clearance	Drill			D	ATE	February	24, 2023			BH 2	2-23		
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH (m)	ELEV. (m)				ion Dete anic Rdg.		g Well ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(11)	(11)	○ Lo	ower	Expl	osive Li	mit %	Monitoring Well Construction
GROUND SURFACE	s N	_	Z	RE	zÓ			2	0	40	60	80	ž
Asphaltic concrete 0.06		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				0-	-61.53						
FILL: Crushed stone with sand 0.69		8 AU	1					•					
		X ss	2	42	5	1-	-60.53	•					
FILL: Brown silty sand, some gravel, wood, crushed stone, trace brick		ss	3	58	15	2-	-59.53	•					
2.59		∦-ss	4	62	38			•					
		x ss	5	100	50+	3-	-58.53						
GLACIAL TILL: Dense to verv		⊿ 33 ¤ SS	5 6	100	50+								<u>իրիրի</u>
GLACIAL TILL: Dense to very dense, brown silty sand to sandy silt with gravel, cobbles and boulders			1	100	50+	4-	-57.53		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
						5-	-56.53						I
5.64		RC	2	100	100								
						6-	-55.53						
BEDROCK: Excellent quality, grey		-											
limestone		RC	3	100	100	7-	-54.53		· · · · · · · · ·				
7.75													
End of Borehole	<u> </u>												
(GWL @ 4.98m - March 8, 2023)													
(0112 @ 1100111 1110101 0, 2020)													
								10		200 agla r			00
											Rdg. (pp . △ Metha		

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM

DATUM Geodetic										FILE NO			
REMARKS										HOLE N	0.		
BORINGS BY CME-55 Low Clearance I	Drill			D	ATE	-ebruary	27, 2023			BH 3-	-23		
SOIL DESCRIPTION	РГОТ			MPLE		DEPTH (m)	ELEV. (m)			onizatio tile Organ			ng Well uction
	STRATA	ЭДҮТ	NUMBER	% RECOVERY	N VALUE or ROD			0 L	owe	r Explos	sive Lin	nit %	Monitoring Well Construction
				R	Z °	0-	61.87	2	20	40	60 8	30 	∠
Asphaltic concrete0.06		ອົAU ≊_AU	1 2			_							
and crushed stone 1.01		∦-ss	3	50	18	1-	60.87						
FILL: Brown silty sand to sandy silt, some gravel, cobbles, trace topsoil		ss	4	58	33	2-	-59.87				· · · · · · · · · · · · · · · · · · ·		
GLACIAL TILL: Compact to dense, brown silty sand to sandy silt with gravel, cobbles and boulders		ss	5	42	27	3-	-58.87	•					<u>1111111111</u> ₩ 11111111111
						4-	-57.87						
4.95		= SS	6	100	50+			•					
1 .30		 RC	1	100	100	5-	-56.87						
		10		100	100		FF 07						
BEDROCK: Excellent quality, grey		_				6-	-55.87						
limestone		RC	2	100	100	7-	-54.87						
7.57							54.07						
End of Borehole													
(GWL @ 3.48m - March 8, 2023)													
											200		20
								F		200 Eagle Ro as Resp. 2	lg. (ppi		JU

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic									FILE N			
REMARKS BORINGS BY CME-55 Low Clearance I	٦rill				ate f	ebruary	27 2022		HOLE	NO.		
	FLOT		SAN	IPLE		DEPTH	ELEV.	Photo l	onizati	on Dete		Vell
SOIL DESCRIPTION			ĸ	RY	ВQ	(m)	(m)	• Vola	tile Orga	nic Rdg. (ppm)	ring /
	STRATA	лүрб	NUMBER	% RECOVERY	N VALUE or RQD				-	sive Li		Monitoring Well
GROUND SURFACE		<u>a</u> ∵AU	1	<u></u> щ	-	0-	61.03	20	40	60	80	~
Asphaltic concrete 0.05 FILL: Crushed stone with sand 0.25 FILL: Brown sand		AU SS	2 3	25	18	1-	-60.03	•				-
- some crushed stone by 0.6m dept45		ss	4	46	24							
GLACIAL TILL: Compact to dense,		A 22	4	40	24	2-	-59.03					-
brown silty sand with gravel, cobbles and boulders		_				3-	-58.03					-
4.65		RC	1	35		4-	-57.03		· · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•
		RC	2	100	93	5-	-56.03					-
		_				6-	-55.03					
		RC	3	100	100	7-	-54.03					
		_				8-	-53.03					•
		RC	4	100	100	9-	-52.03		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
BEDROCK: Excellent quality, grey limestone		RC	5	100	100	10-	-51.03					
		_					-50.03					-
		RC	6	100	100				· · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , ,	
		_				12-	-49.03					
		RC	7	100	100	13-	-48.03					
		- RC	8	100	100	14-	-47.03					
15.16 End of Borehole			-			15-	-46.03					
								100 RKI E ▲ Full Ga		dg. (pp	m)	 00

SOIL PROFILE AND TEST DATA

FILE NO.

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic

REMARKS									PE270	19	
BORINGS BY CME-55 Low Clearance	Drill			D	ATE	February	28, 2023	3	HOLE NO		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Photo	Ionizatior	Detector Rdg. (ppm)	Well
GROUND SURFACE	STRATA P	ТҮРЕ	NUMBER	°% RECOVERY	N VALUE or RQD	(m)	(m)		er Explos	ive Limit %	Monitoring Well Construction
		<i>r</i> .		щ		0-	62.09	20	40 6	50 80 	
Asphaltic concrete0.06 FILL: Dark brown silty sand, some0.25 gravel101	5	ğ AU ∛-ss	1 2	50	50	1-	-61.09				
FILL: Dark brown silty sand with		∦ ss X ss	2	33	22						
GLACIAL TILL: Compact to very		∆ SS ∑ SS	4	92	50+	2-	-60.09	•			<u>111111</u> ■
dense, brown silty sand to sandy silt with gravel, cobbles and boulders		∦ss	5	67	37	3-	-59.09	•			
- grey by 4.1m depth		ss	6	96	50+	4-	-58.09			34	
4.93	3 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	SS	7	100	50+	5-	-57.09				
BEDROCK: Good to excellent quality, grey limestone		RC _	1	100	76	6-	-56.09				
6.78	3 <u></u>	RC	2	100	100						
End of Borehole	<u> </u>										<u>+··I I·</u>
(GWL @ 2.51m - March 8, 2023)											
									Eagle Rd		⊣ 500

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic REMARKS										LE NO. E270	9	
BORINGS BY CME-55 Low Clearance	Drill			D	ATE	February	28. 2023	}		DLE NO		
			SAN	/PLE							Detector	lell
SOIL DESCRIPTION	A PLOT		~	Х	Шо	DEPTH (m)	ELEV. (m)	• Vo	latile (Organic	Rdg. (ppm)	Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD			O Low	/er E	kplosi	ve Limit %	nitori onstr
GROUND SURFACE	ร		NC	REC	N O H O		<u> </u>	20	40) 6	60 80	₹O
Asphaltic concrete0.06		g AU	1			0-	-62.08	•				
		ss	2	54	18	1-	61.08	•		· · · · · · · · · · · · · · · · · · ·		
FILL: Dark brown sand with crushed stone		ss	3	58	26					· · · · · · · · · · · · · · · · · · ·		
310116						2-	-60.08			· · · · · · · · · · · · · · · · · · ·		
		X SS	4	58	19	3-	-59.08			· · · · · · · · · · · · · · · · · · ·		IIV IIV IIV
<u>3.58</u>		⊠ SS	5	70	50+					• • • • • • • • • • • • •		
Reinforced concrete slab (former		RC	1	100		4-	-58.08			•		
crane base) 5.18		_				5-	-57.08			· · · · · · · · · · · · · · · · · · ·		
0.10		RC	2	100	95		07.00			• • • • • • • • • •		
BEDROCK: Excellent quality, grey		_				6-	-56.08			· · · · · · · · · · ·		
limestone		RC	3	100	100	-	FF 00			• • • • • • • • • • • • • • • • • • • •		
<u>7.47</u>						/-	-55.08			· · · · · · · · · · · · · · · · · · ·		
End of Borehole												
(GWL @ 2.77m - March 8, 2023)												
								100 RK	20 Eag		00 400 50 g. (ppm)	00
											Methane Elim.	

SOIL PROFILE AND TEST DATA

FILE NO.

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic

DATUM

REMARKS										PE	2709)		
											E NO.			
BORINGS BY CME-55 Low Clearance	Drill			D	DATE	August 14	4, 2023			BH	7-23	5		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.					Detec t Rdg. (pp		d Well
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	0 L	ower	Ехр	losiv	e Limi	it %	Monitoring Well Construction
GROUND SURFACE	N I		۶.	REC	zö	_		2	20	40	60	80)	ž
Asphaltic concrete 0.08		AU	1			0-	-62.03							
FILL: Brown silty sand wtih gravel and crushed stone, trace brick 1.45		ss	2	8	18	1-	-61.03				······································		······································	
		ss	3	50	14	2-	-60.03			4			· · · · · · · · · · · · · · · · · · ·	
GLACIAL TILL: Compact to yory		ss	4	50	38									
GLACIAL TILL: Compact to very dense, brown silty sand with gravel, cobbles and boulders		x ss	5	67	50+	3-	-59.03	<u> </u>	x					
		= SS	6	100	50+	4-	-58.03 '	<u> </u>					······································	
4.67		=.SS	7	100	50+			•					· · · · · · · · · · · · · · · · · · ·	
						5-	-57.03							
BEDROCK: Good to excellent quality, grey limestone						6-	-56.03				·····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
6.88								· · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
								F				40 (ppm Methane)	 00

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic									FILE NO. PE2709		
REMARKS									HOLE NO.		
BORINGS BY CME-55 Low Clearance	Drill			D	ATE /	August 14	4, 2023		BH 8-23		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		Ionization Detention Detention		tion
	STRATA I	ТҮРЕ	NUMBER	°. ∧ Secovery	VALUE r RQD	(m)	(m)		er Explosive Li	mit %	Construction
GROUND SURFACE	-S		NC	REC	N N N			20	40 60	80	20
Asphaltic concrete0.10		AU	1			0-	-62.02				
FILL: Brown silty sand, some gravel and crushed stone, trace brick and 07 wood		ss	2	25	7	1-	-61.02	<u> </u>			
		ss	3	50	25	2-	-60.02 4	4			
GLACIAL TILL: Compact to very dense, brown silty sand with gravel, cobbles and boulders		ss	4	58	25	3-	-59.02				1111111
		ss	5	25	44			Δ			
4.75		ss	6	50	50+	4-	-58.02				
		RC	1	100	62	5-	-57.02				
		_				6-	-56.02				
BEDROCK: Fair to excellent quality,		RC	2	100	100	7-	-55.02				
grey limestone						8-	-54.02				111111
		RC	3	100	100	9-	-53.02				
		RC	4	100	100	10-	-52.02				
							-51.02				
		RC	5	100	100						
<u>12.17</u> End of Borehole						12-	-50.02				
								100		400 500	
									Eagle Rdg. (pp as Resp. △ Metha		

SOIL PROFILE AND TEST DATA

FILE NO.

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM Geodetic

DEMARKO									PE270	19	
REMARKS BORINGS BY CME-55 Low Clearance [Drill			D	ATE	August 16	6, 2023		HOLE NO		
SOIL DESCRIPTION	РГОТ		SAN	IPLE	1	DEPTH	ELEV.			Detector Rdg. (ppm)	Well
GROUND SURFACE	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		r Explos	ive Limit %	Monitoring Well Construction
	·~~~	×				0-	-62.00	20	-+0 (<u>।</u> जिन्ह
Asphaltic concrete0.08 FILL: Brown silty sand, some gravel69 and crushed stone		§ AU ∛ SS	1 2	67	8	1-	-61.00				
		A 90	~	07	0		0.100				
		ss	3	836	22	2-	-60.00				
GLACIAL TILL: Compact to very		∦ ss	4	75	31						
dense, brown silty sand with gravel, cobbles and boulders		ss	5	67	46	3-	-59.00				
- some clay by 4.5m depth		ss	6	75	17	4-	-58.00				
		x ss	7	60	50+	5-	-57.00				
5.43			8	50	50+	5	57.00				
		RC_	1	100	100	6-	-56.00				
BEDROCK: Excellent quality, grey limestone		RC	2	100	100	7-	-55.00				
		RC	3	100	100	8-	-54.00				
9.07 End of Borehole						9-	-53.00				
									Eagle Rd	g. (ppm)	00
								L ▲ Full Ga	as Hesp. ∆	Methane Elim.	

SOIL PROFILE AND TEST DATA

FILE NO. PE2709

Phase II - Environmental Site Assessment 137 & 141 George Street and 110 York Street Ottawa, Ontario

9 Auriga Drive, Ottawa, Ontario K2E 7T9

DATUM	Geodetic

REI	MAF	IKS	

BORINGS BY CME-55 Low Clearance	Drill	ľ		D	ATE	August 1	4, 2023			HOLE NO			I
SOIL DESCRIPTION	PLOT			MPLE		DEPTH (m)	ELEV. (m)	1			Detec Rdg. (p		Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			0 L	 Lower Explosive Limit % 				lonitorii Constri
GROUND SURFACE				R	z ^o	0-	62.04	2	20 4	10 € │ : : :	50 8 	0	2
						1-	61.04			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • •		
									· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
						2-	60.04						
OVERBURDEN						0	50.04						
						3-	-59.04						
						4-	-58.04					••••••••••••	
						-	00.04						
						5-	-57.04					· · · · · · · · · · · · · · · · · · ·	
5.04													
5.94 End of Borehole													
											00 **		
								1 F	00 2 RKI Ea g	00 3 gle Rd	00 40 g. (ppn	יט 50 ביטי (ב	00
								▲ F	ull Gas	_ Resp. ∆	Methar	e Elim.	

patersongr		In	Con	sulting		SOII	_ PRO	FILE AN	ND TEST	T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T		a p	Eng	ineers	11	nase I - Ei 6 York St ttawa, Or	treet	ental Site A	lssessmen	t	
EASTING: 368143.796 NORTHING DATUM: Geodetic	3 : 50	32427	7.793	ELEVA		: 60.78			FILE NO.	PE6422	2
REMARKS: BORINGS BY: CME-55 Low Clearance	Drill			r	DATE:	May 8	2024		HOLE NO.	BH 1-2	4
			SAN	IPLE .				Photo I	onization D		1
SAMPLE DESCRIPTION	A PLOT		R	RY	۳.	DEPTH (m)	ELEV. (m)	Volatile	e Organic Rdg	. (ppm)	
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			C Lowe 20	r Explosive	e Limit % 80	MONITORING WELL CONSTRUCTION
FILL: Compact brown silty sand with crushed concrete and stone,		AU	1			0-	-60.78	•			
trace brick, metals, wood		377									գնուներոներին երերաներին երերուներին երերուներին երերուներին երերություն։
		ss	2	21	10	1-	-59.78	•			
		ss	3	42	4	2	-58.78	•			
FILL: Stiff to very stiff brown silty	9	₩ ₩-				2	-50.70				
clay with some sand, curshed stone and concrete, trace cobbles, brick,		ss	4	25	9	3-	-57.78	•			
wood, metals		ss	5	54	31		01.10	•	· · · · · · · · · · · · · · · · · · ·		<u>hihih</u> ¥
3.8 GLACIAL TILL: Very dense grey	1 XX	ss	6	29	+50	4-	-56.78				որոր որուս
sandy silt with gravel, cobbles and boulders 4.4 BEDROCK: Excellent quality grey	2		0	29	+50						<u>իկկի</u>
limestone bedrock with interbedded shale seams		RC	1	100	97	5-	-55.78			· · · · · · · · · · · · · · · · · · ·	
			1	100	97						1 - 1 - 1 - 1
						6-	-54.78				<u>Դերերերին հերհեր</u> Դերերերեր
		RC	2	100	100						
			-		100	7-	-53.78				
		RC	3	100	100	8-	-52.78				
			•								
						9-	-51.78				
10.0	3	RC	4	100	100	10	50 70		· · · · · · · · · · · · · · · · · · ·		
End of Borehole		-				10-	-50.78				
(GWL @ 3.46m - May 22, 2024)											
								100 RKI E	200 300 Eagle Rdg.		00
								▲ Full Ga	as Resp. △ M	lethane Elim.	

natersonar		ır	Con	sulting		SOIL	_ PRO	FILE AI	ND TES	T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T9 SOIL PROFILE AND TEST DATA Phase I - Environmental Site Assessment 116 York Street Ottawa, Ontario											
EASTING: 368156.266 NORTHING DATUM: Geodetic	: 50)3244(0.634	ELEVA		•			FILE NO.	PE6422	2
REMARKS:									HOLE NO.		
BORINGS BY: CME-55 Low Clearance				0	DATE:	May 8	, 2024			BH 2-24	4
SAMPLE DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		onization I e Organic Rdg		CTION
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(11)	(11)	○ Lowe	er Explosive	e Limit %	PIEZOMETER
GROUND SURFACE	S		ž	RE	z°	- 0-	-60.38	20	40 60	80	° ∎
ASPHALT 0.10 FILL: Compact granualr with 0.20 crushed stone and gravel FILL: Compact brown silty sand with some clay, trace graveland crushed stone		AU	1					•			
GLACIAL TILL: Dense to very	7	-ss	2	29	5	1-	-59.38	•			
dense brown silty sand with clay, trace gravel, occasional cobbles and boulders											
		ss	3	63	15	2-	-58.38	•			-
		ss	4	42	16			•			-
						3-	-57.38				
		ss	5		49			•			
3.96	5										
End of Borehole											
									200 300 Eagle Rdg. as Resp. △ M	(ppm)	00

patersongr		In	Con	sulting		SOIL	_ PRO	FILE AND TEST DATA			
9 Auriga Drive, Ottawa, Ontario K2E 7T9		u p	Eng	ineers	Phase I - Environmental Site Assessment 116 York Street Ottawa, Ontario						
EASTING: 368157.789 NORTHING:)3244().535	ELEVA		1: 60.35	itario	FILE NO. PE6422			
DATUM: Geodetic REMARKS:								HOLE NO.			
BORINGS BY: CME-55 Low Clearance				0	DATE	May 8	, 2024	BH 2A-24			
SAMPLE DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.	Photo Ionization Detector ● Volatile Organic Rdg. (ppm) ○ Lower Explosive Limit % 20 40 60 80			
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	C Lower Explosive Limit %			
GROUND SURFACE	STR	F	NN	RECO	N V						
Inferred OVERBURDEN						- 0-	-60.35				
						1-	-59.35				
						2-	-58.35				
						3-	-57.35				
		Π									
		ss	6	17	+50		-56.35				
		[]									
		Π									
		ss	7		+50			♦			
<u>5.18</u>		Д.									
End of Borehole											
								100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.			

patersongr		In	Con	sulting	1	SOII	L PRO	FILE AND TEST DATA
9 Auriga Drive, Ottawa, Ontario K2E 7T		μŅ	Eng	ineers	11	iase I - Ei 6 York St tawa, Or	treet	ental Site Assessment
EASTING: 368178.7 NORTHING DATUM: Geodetic	: 50)32404	4.654	ELEV				FILE NO. PE6422
REMARKS: BORINGS BY: CME-55 Low Clearance	Drill			г	DATE:	May 8	, 2024	HOLE NO. BH 3-24
			SAN	IPLE				
SAMPLE DESCRIPTION	A PLOT		R	RY	≝₀	DEPTH (m)	ELEV. (m)	Volatile Organic Rdg. (ppm)
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	0	co oo	Photo Ionization Detector Image: Molecular state of the state of t
FILL: Brown silty sand with gravel and crushed stone, occasional		AU	1			0-	-60.93	
concrete, brick and wood, trace clay		ss	2	17	2	1-	-59.93	
GLACIAL TILL: Dense to very	3	∦-ss	3	21	6	2-	-58.93	
dense brown sandy silt with some gravel, occasional cobbles and boulders - Sandy pocket @ 2.29 m		ss	4	25	32	3-	-57.93	
		ss	5	29	+50	5	07.00	
		RC	1	21	0	4-	-56.93	
BEDROCK: Excellent quality grey	1	ss	6		+50	5-	-55.93	
limestone bedrock with interbedded shale seams		RC	2	83	100	6-	-54.93	
		RC	3	100	100	7-	-53.93	
						8-	-52.93	
		RC	4	100	100	9-	-51.93	
<u>10.2</u>		RC	5	100	100	10-	-50.93	
End of Borehole (GWL @ 6.15m - May 22, 2024)								
								100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongr		ır	Con	sulting		SOII	_ PRO	FILE A	ND TEST	DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T			Eng	ineers	11	nase I - Er 6 York St tawa, Or	treet	ental Site	Assessment	:	
EASTING: 368171.728 NORTHING DATUM: Geodetic	: 50	32397	7.855	ELEV					FILE NO.	PE6422	
REMARKS: BORINGS BY: CME-55 Low Clearance	Drill				DATE:	May 9	2024		HOLE NO.	BH 4-24	1
BURINGS BT: CIVIE-33 LOW Clearance			SAN	/IPLE				Photo	lonization D		
SAMPLE DESCRIPTION	A PLOT				ш_	DEPTH (m)	ELEV. (m)		e Organic Rdg.		
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			 Lowe 20 	er Explosive 40 60	Limit % 80	MONITORING WELL CONSTRUCTION
ASPHALT 0.03		AU	1			0-	-61.33	•		······································	
sand with gravel and crushed stone FILL: Firm dark brown silty clay with sand and gravel, some crushed		ss	2	54	6	1-	-60.33	•			
stone, trace topsoil GLACIAL TILL: Compact to very dense brown sandy silt, gravel, occasional cobbles and boulders		ss	3	38	18	2-	-59.33	•			
		ss	4	13	29			•			
		ss	5	50	12	3-	-58.33	•			
		ss	6	50	+50	4-	-57.33	•			
BEDROCK: Good to excellent quality grey limestone bedrock with	5	∦.ss	7	29	+50	5-	-56.33	•			
interbedded shale seams		RC	1	100	67	6-	-55.33				
		RC	2	100	86						⊻
						7-	-54.33				
		RC	3	100	100	8-	-53.33				
						9-	-52.33			· · · · · · · · · · · · · · · · · · ·	
		RC	4	100	8	10-	-51.33				
End of Borehole (GWL @ 6.29m - May 22, 2024)											
									200 300 Eagle Rdg. (as Resp. △ M		0

natersonar		ır	Con	sulting		SOIL	_ PRO	FILE AI	ND TEST	DATA			
	9 Auriga Drive, Ottawa, Ontario K2E 7T9 SOIL PROFILE AND TEST DATA 9 Auriga Drive, Ottawa, Ontario K2E 7T9 Phase I - Environmental Site Assessment												
EASTING: 368165.269 NORTHING DATUM: Geodetic	3 : 50	32418	3.67	ELEVA	-		itano		FILE NO.	PE6422	2		
REMARKS:									HOLE NO.				
BORINGS BY: CME-55 Low Clearance	Drill			D	ATE:	May 9	, 2024	1		BH 5-24	1		
SAMPLE DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		onization D		TION		
			R	ERY	۳a	(m)	(m)			(PPIII)	RUC		
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD				er Explosive		PIEZOMETER CONSTRUCTION		
GROUND SURFACE		æ ·	_	2		0-	-60.79	20	40 60	80	S		
FILL: Granular, brown silty sand 0.2		AU	1										
with gravel and crushed stone	- 💥												
clay, gravel, crushed stone		*											
		1											
1.0	7 🔆	∦ ∔-ss	2	54	5	1-	-59.79						
GLACIAL TILL: Compact to dense brown silty sand with clay and gravel,		100	2	54	5			T					
occasional cobbles and boulders													
		$\overline{\mathbf{h}}$											
		ss	3	63	29			•					
		1			_	2-	-58.79						
		\mathbf{N}											
		ss	4	38	+50			••••••••••••••••••••••••••••••••••••••					
]\											
						3-	-57.79						
		N											
		ss	5	54	20			•					
		\mathbb{N}											
End of Borehole <u>3.7</u>	<u>6 \^^^^</u>	-											
Practical refusal to augering @ 3.76													
m													
								100 RKI	200 300 Eagle Rdg. (400 50 (ppm)	00		
									as Resp. \triangle M				

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, St, is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

Low Sensitivity:	St < 2
Medium Sensitivity:	2 < St < 4
Sensitive:	$4 < S_t < 8$
Extra Sensitive:	8 < St < 16
Quick Clay:	St > 16

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50 0-25	Poor, shattered and very seamy or blocky, severely fractured Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC%	-	Natural water content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic Limit, % (water content above which soil behaves plastically)
PI	-	Plasticity Index, % (difference between LL and PL)
Dxx	-	Grain size at which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
0	•	and the second discuss the second

Cc and Cu are used to assess the grading of sands and gravels: Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'c / p'o
Void Rati	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Dan Arnott

Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 13160	Report Date: 20-Jul-2012
Project: PE2709	Order Date: 18-Jul-2012
Custody: 94851	Order #: 1229139

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1229139-01	BH1-SS7
1229139-02	BH2-SS8
1229139-03	BH3-SS6

Dale Robertson, BSc Laboratory Director

Approved By:

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Paterson Group Consulting Engineers Client PO: 13160

Project Description: PE2709

Order #: 1229139

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date An	alysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	18-Jul-12	20-Jul-12
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	19-Jul-12	20-Jul-12
Solids, %	Gravimetric, calculation	19-Jul-12	19-Jul-12
VOCs	EPA 8260 - P&T GC-MS	18-Jul-12	20-Jul-12

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 10

Client: Paterson Group Consulting Engineers

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

ient PO: 13160 Project Description: PE2709					
	Client ID:	BH1-SS7	BH2-SS8	BH3-SS6	-
	Sample Date:	17-Jul-12 1229139-01	17-Jul-12 1229139-02	17-Jul-12 1229139-03	-
Г	Sample ID: MDL/Units	Soil	Soil	Soil	
Physical Characteristics	WDL/Onits	001		001	
% Solids	0.1 % by Wt.	89.1	91.7	90.4	-
Volatiles			1		-
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chloromethane	0.20 ug/g dry	<0.20	<0.20	<0.20	-
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dibromoethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloroethylene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Methyl Butyl Ketone (2-Hexanone)	2.00 ug/g dry	<2.00	<2.00	<2.00	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 10

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order #: 1229139

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

client PO: 13160		Project Description	n: PE2709		
	Client ID: Sample Date: Sample ID:	BH1-SS7 17-Jul-12 1229139-01	BH2-SS8 17-Jul-12 1229139-02	BH3-SS6 17-Jul-12 1229139-03	
	MDL/Units	Soil	Soil	Soil	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2,4-Trichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3,5-Trimethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
4-Bromofluorobenzene	Surrogate	102%	109%	115%	-
Dibromofluoromethane	Surrogate	92.6%	92.9%	91.6%	-
Toluene-d8	Surrogate	97.3%	100%	103%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	182	20	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	118	18	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 10

Client: Paterson Group Consulting Engineers

Client PO: 13160

Hydrocarbons F1 PHCs (C6-C10)

F2 PHCs (C10-C16)

F3 PHCs (C16-C34)

F4 PHCs (C34-C50)

Bromodichloromethane

Carbon Tetrachloride

Dibromochloromethane

Dichlorodifluoromethane

1,2-Dibromoethane

1.2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1.1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethylene

1,2-Dichloropropane

Ethylbenzene

Hexane

Stvrene

Toluene

cis-1,2-Dichloroethylene

trans-1,2-Dichloroethylene

1,2-Dichloroethylene, total

cis-1,3-Dichloropropylene

1,3-Dichloropropene, total

Methyl Isobutyl Ketone

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1.1.2.2-Tetrachloroethane

Methylene Chloride

Tetrachloroethylene

1.2.4-Trichlorobenzene

1,1,1-Trichloroethane

1.1.2-Trichloroethane

Trichlorofluoromethane

1,3,5-Trimethylbenzene

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Trichloroethylene

Vinyl chloride

Xylenes, total

m,p-Xylenes

o-Xylene

trans-1,3-Dichloropropylene

Methyl Ethyl Ketone (2-Butanone)

Methyl Butyl Ketone (2-Hexanone)

Volatiles

Acetone

Benzene

Bromoform

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Analyte

Method Quality Control: Blank

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Notes

RPD

Limit

Project Description: PE2709

Units

ug/g

Source

Result

%REC

Reporting

Limit

7

4

8

6

0.50

0.02

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.20

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.50

2.00

0.50

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.02

0.05

0.05

0.05

Result

ND

9.36

7.69

8.43

		_

RPD

%REC

Limit

P :	1-800-749-1947
Ε:	PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

50-140

50-140

50-140

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA

117

96.1

105

123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 10

Client: Paterson Group Consulting Engineers

Method Quality Control: Duplicate

Client PO: 13160

Analyte

m,p-Xylenes

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

o-Xylene

Project Description: PE2709

Reporting

. Limit

Result

Order #: 1229139 Report Date: 20-Jul-2012

RPD

Limit

RPD

Order Date:18-Jul-2012

Notes

Units

Source

Result

%REC

%REC

Limit

Hydrocarbons							
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND		40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND		30	
F3 PHCs (C16-C34)	37	8	ug/g dry	129	110		QR-01
F4 PHCs (C34-C50)	69	6	ug/g dry	136	65.		QR-01
Physical Characteristics							
% Solids	87.3	0.1	% by Wt.	91.9	5.2	2 25	
Volatiles			·				
Acetone	ND	0.50	ug/g dry	ND		50	
Benzene	ND	0.02	ug/g dry	ND		50	
Bromodichloromethane	ND	0.05	ug/g dry	ND		50	
Bromoform	ND	0.05	ug/g dry	ND		50	
Bromomethane	ND	0.05	ug/g dry	ND		50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND		50	
Chlorobenzene	ND	0.05	ug/g dry	ND		50	
Chloroethane	ND	0.05	ug/g dry	ND		50	
Chloroform	ND	0.05	ug/g dry	ND		50	
Chloromethane	ND	0.20	ug/g dry	ND		50	
Dibromochloromethane	ND	0.05	ug/g dry	ND		50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND		50	
1,2-Dibromoethane	ND	0.05	ug/g dry	ND		50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND		50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND		50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND		50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND		50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND		50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND		50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND		50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND		50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND		50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND		50 50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND		50	
Ethylbenzene	ND	0.05	ug/g dry	ND		50	
Hexane	ND	0.05		ND		50	
	ND	0.05	ug/g dry	ND		50	
Methyl Ethyl Ketone (2-Butanone)	ND	2.00	ug/g dry	ND		50	
Methyl Butyl Ketone (2-Hexanone)	ND	2.00 0.50	ug/g dry	ND		50 50	
Methyl Isobutyl Ketone			ug/g dry				
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND		50 50	
Methylene Chloride	ND	0.05	ug/g dry	ND			
Styrene	ND	0.05	ug/g dry	ND		50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND		50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND		50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND		50	
Toluene	ND	0.05	ug/g dry	ND		50	
1,2,4-Trichlorobenzene	ND	0.05	ug/g dry	ND		50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND		50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND		50	
Trichloroethylene	ND	0.05	ug/g dry	ND		50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND		50	
1,3,5-Trimethylbenzene	ND	0.05	ug/g dry	ND		50	
Vinyl chloride	ND	0.02	ug/g dry	ND		50	

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

ND

ND

6.68

5.51

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

ug/g dry

ug/g dry

ug/g dry

ug/g dry

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

113

93.0

WWW.PARACELLABS.COM

0.05

0.05

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA

ND

ND

ND

ND

123 Christina St. N. Sarnia, ON N7T 5T7

50-140

50-140

Page 6 of 10

50

50

Client: Paterson Group Consulting Engineers

Client PO: 13160

Project Description: PE2709

Order #: 1229139

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Method Quality Control: Duplicate									
Analyte	Reporting Result Limit) Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes	
Surrogate: Toluene-d8	5.93	ug/g dry	ND	100	50-140				

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 10

Client: Paterson Group Consulting Engineers

cis-1,2-Dichloroethylene

1,2-Dichloropropane

Ethylbenzene

Hexane

Styrene

Toluene

trans-1,2-Dichloroethylene

cis-1,3-Dichloropropylene

Methyl Isobutyl Ketone

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Methylene Chloride

Tetrachloroethylene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,3,5-Trimethylbenzene

Trichloroethylene

Vinyl chloride

m,p-Xylenes

trans-1,3-Dichloropropylene

Methyl Ethyl Ketone (2-Butanone)

Methyl Butyl Ketone (2-Hexanone)

Method Q

Client PO: 13160	Project Description: PE2709								
Method Quality Control	ol: Spike								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	218	7	ug/g	ND	109	80-120			
F2 PHCs (C10-C16)	66	4	ug/g	ND	82.5	80-120			
F3 PHCs (C16-C34)	189	8	ug/g	ND	94.5	80-120			
F4 PHCs (C34-C50)	100	6	ug/g	ND	83.6	80-120			
Volatiles									
Acetone	11.7	0.50	ug/g	ND	117	50-140			
Benzene	4.10	0.02	ug/g	ND	102	60-130			
Bromodichloromethane	4.63	0.05	ug/g	ND	116	60-130			
Bromoform	5.17	0.05	ug/g	ND	129	60-130			
Bromomethane	3.46	0.05	ug/g	ND	86.6	50-140			
Carbon Tetrachloride	4.20	0.05	ug/g	ND	105	60-130			
Chlorobenzene	4.53	0.05	ug/g	ND	113	60-130			
Chloroethane	4.37	0.05	ug/g	ND	109	50-140			
Chloroform	4.60	0.05	ug/g	ND	115	60-130			
Chloromethane	2.70	0.20	ug/g	ND	67.4	50-140			
Dibromochloromethane	5.17	0.05	ug/g	ND	129	60-130			
Dichlorodifluoromethane	3.18	0.05	ug/g	ND	79.6	50-140			
1,2-Dibromoethane	4.94	0.05	ug/g	ND	123	60-130			
1,2-Dichlorobenzene	5.09	0.05	ug/g	ND	127	60-130			
1,3-Dichlorobenzene	4.75	0.05	ug/g	ND	119	60-130			
1,4-Dichlorobenzene	4.79	0.05	ug/g	ND	120	60-130			
1,1-Dichloroethane	4.51	0.05	ug/g	ND	113	60-130			
1,2-Dichloroethane	4.37	0.05	ug/g	ND	109	60-130			
1,1-Dichloroethylene	2.92	0.05	ug/g	ND	73.1	60-130			

ug/g

ND

112

86.3

104

122

125

97.4

110

108

128

129

121

92.0

111

117

127

87.7

111

90.3

98.8

129

87.3

107

88.2

79.1

97.0

60-130

60-130

60-130

60-130

60-130

60-130

60-130

50-140

50-140

50-140

50-140

60-130

60-130

60-130

60-130

60-130

60-130

60-130

60-130

60-130

60-130

50-140

60-130

50-140

60-130

4.47

3.45

4.17

4.87

5.01

3.90

4.38

10.8

12.8

12.9

12.1

3.68

4.45

4.66

5.08

3.51

4.44

3.61

3.95

5.15

3.49

4.30

3.53

3.16

7.76

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.50

2.00

0.50

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.02

0.05

WWW.PARACELLABS.COM

P: 1-800-749-1947

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 10

Order #: 1229139

Report Date: 20-Jul-2012

Order Date:18-Jul-2012

Client: Paterson Group Consulting Engineers

Client PO: 13160

Project Description: PE2709

Order #: 1229139 Report Date: 20-Jul-2012

Order Date:18-Jul-2012

Method Quality Control: Spike										
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes	
o-Xylene	4.23	0.05	ug/g	ND	106	60-130				
Surrogate: 4-Bromofluorobenzene	7.10		ug/g		88.8	50-140				

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 10

Client: Paterson Group Consulting Engineers

Client PO: 13160

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Qualifier Notes:

QC Qualifiers :

QR-01 : Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 10 of 10

OPARACEL	T F		ED.	/E.		Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8						Chain of Custody (Lab Use Only)							
LABORATORIES LTD.										No	94	851							
OTTAWA KINGSTON NIAGARA MISSIS	e: paracei@parace									Pag	e of	. (
ient Name: Project Reference: PE 2209 ontact Name: Dan Arnott Quote # Idress: 154 Colonnade Rd PO# 12160								TAT: Regular 3 Day											
Telephone: 613, 226.7381		5		Email Address: davn of Ca	Patersa	Aro	p,	Ca							Date R	equired:			+
Criteria: O. Reg. 153/04 Table O. Reg. 153/11 (Current) Table 3	RSC	Filing		1	V			B (St	orm)	[]5	SUB (S	Sanitary)	Muni	cipality:			Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)															nalyses				
Paracel Order Number: 229139	ix	Air Volume	of Containers	1					s by ICP/MS			VS)							
Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHCs	VOCs	PAHs	Metals by	Hg	CrVI	B (HWS)							
1 BHL-557	S		2	17-JJ-12		X	X												1
2 BHZ- 858	5					X	X												1
3 BH3-556	5		V	<u>V</u>		X	X												1
4	18.15																		
5															i ne				
6																			
7																			
8																			
9		A												1					
10																			
Comments:							//	2			,					Method	of Delive	ery: V-L	
Repringuished By (Pring & Sign):			ver/Depo	ti -		ed at 1	#b:/	Tr.	2		10	7.	_	/erified	NC	V.		L	
VAN AKNOU	Date/Tin	ne:			Date/1	ime:	11	01	11	1	X	11) 1	Date/Ti	me: *	Tulu	181	17	2:1

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Dan Arnott

Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 13161	Report Date: 24-Jul-2012
Project: PE2709	Order Date: 19-Jul-2012
Custody: 94801	Order #: 1229217

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** BH1-AU1 1229217-01 1229217-02 BH4-SS3

Mark Frate Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client PO: 13161

Order #: 1229217

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Project Description: PE2709

Report Date: 24-Jul-2012 Order Date:19-Jul-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Metals	EPA 6020 - Digestion - ICP-MS	20-Jul-12 21-Jul-12
PAHs by GC-MS, standard scan	EPA 8270 - GC-MS, extraction	20-Jul-12 24-Jul-12
Solids, %	Gravimetric, calculation	20-Jul-12 20-Jul-12

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Client: Paterson Group Consulting Engineers

Report Date: 24-Jul-2012 Order Date:19-Jul-2012

	Project Description	n: PE2709		
Client ID:	BH1-AU1	BH4-SS3	-	-
	17-Jul-12	18-Jul-12	-	-
			-	-
MDL/Units	5011	501	-	-
0.1 % by W/t	00.0	00.0		
0.1 /0 by Wt.	98.6	89.6	-	-
1 µg/g dry	-1			
				-
				-
			-	-
		+ +	-	-
			-	-
	<0.5	0.5	-	-
5 ug/g dry	7	14	-	-
1 ug/g dry	3	3	-	-
5 ug/g dry	6	17	-	-
1 ug/g dry	9	524	-	-
1 ug/g dry	2	1	-	-
5 ug/g dry	11	8	-	-
1 ug/g dry	<1	<1	-	-
0.3 ug/g dry	1.8	1.5	-	-
1 ug/g dry	<1	<1	-	-
1 ug/g dry	<1	<1	-	-
10 ug/g dry	30	20	-	-
20 ug/g dry	<20	191	-	-
•				•
0.02 ug/g dry	<0.08 [1]	-	-	-
0.02 ug/g dry	<0.08 [1]	-	-	-
0.02 ug/g dry	<0.08 [1]	-	-	-
0.02 ug/g dry	0.09	-	-	-
0.02 ug/g dry	<0.08 [1]	-	-	-
0.02 ug/g dry		-	-	-
0.02 ug/g dry	<0.08 [1]	-	-	-
0.02 ug/g dry	<0.08 [1]	-	-	-
0.02 ug/g dry		-	-	-
0.02 ug/g dry	0.82	-	-	-
0.02 ug/g dry		-	-	-
0.02 ug/g dry		-	-	-
	Sample Date: Sample ID: MDL/Units 0.1 % by Wt. 1 ug/g dry 1 ug/g dry 1 ug/g dry 0.5 ug/g dry 5.0 ug/g dry 0.5 ug/g dry 1 ug/g dry 0.3 ug/g dry 1 ug/g dry 1 ug/g dry 0.02 ug/g dry <t< td=""><td>Client ID: Sample Date: Sample ID:BH1-AU1 17-Jul-12 1229217-01 SoilMDL/UnitsSoil0.1 % by Wt.98.61 ug/g dry<1</br></td>1 ug/g dry21 ug/g dry200.5 ug/g dry<0.5</t<>	Client ID: Sample Date: Sample ID:BH1-AU1 17-Jul-12 	Sample Date: Sample D2: 17 -Jul-12 1229217-01 Soil 18 -Jul-12 1229217-02 SoilMDL/UnitsSoilSoil0.1 % by Wt.98.689.61 ug/g dry221 ug/g dry201840.5 ug/g dry<0.5	Client ID: Sample Date: BH1-AU1 17-Jul-12 1229217-01 BH4-SS3 18-Jul-12 1229217-02 - MDL/Units Soil Soil Soil - 0.1 % by Wt. 98.6 89.6 - 1 ug/g dry <1

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

○ PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 24-Jul-2012

Order Date:19-Jul-2012

Client PO: 13161	0	Project Description	n: PE2709	-	
	Client ID: Sample Date: Sample ID:	BH1-AU1 17-Jul-12 1229217-01	BH4-SS3 18-Jul-12 1229217-02	- - -	
	MDL/Units	Soil	Soil	-	-
Fluorene	0.02 ug/g dry	<0.08 [1]	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.08 [1]	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	0.10	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	0.13	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	0.23	-	-	-
Naphthalene	0.01 ug/g dry	0.05	-	-	-
Phenanthrene	0.02 ug/g dry	0.32	-	-	-
Pyrene	0.02 ug/g dry	0.22	-	-	-
2-Fluorobiphenyl	Surrogate	113%	-	-	-
Terphenyl-d14	Surrogate	108%	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Paterson Group Consulting Engineers

Client PO: 13161

Nickel

Silver

Zinc

Selenium

Thallium

Uranium

Vanadium

Method Quality Control: Blank

	IIII OI. DIAIIK								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1	ug/g						
Arsenic	ND	1	ug/g						
Barium	ND	1	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5	ug/g						
Cobalt	ND	1	ug/g						
Copper	ND	5	ug/g						
Lead	ND	1	ug/g						
Molybdenum	ND	1	ug/g						
AP 1 1		_	3,0						

ug/g

ug/g

ug/g

ug/g

ug/g

ug/g

ug/g

ND

ND

ND

ND

ND

ND

ND

5

1

0.3

1

1

10

20

Project Description: PE2709

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Order #: 1229217

Report Date: 24-Jul-2012

Order Date:19-Jul-2012

Client: Paterson Group Consulting Engineers

Client PO: 13161

Project Description: PE2709

Report Date: 24-Jul-2012 Order Date:19-Jul-2012

Order #: 1229217

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1	ug/g dry	ND			0.0	30	
Arsenic	ND	1	ug/g dry	ND			0.0	30	
Barium	14.2	1	ug/g dry	13.9			2.8	30	
Beryllium	ND	0.5	ug/g dry	ND			0.0	30	
Boron	ND	5.0	ug/g dry	ND			0.0	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	10.2	5	ug/g dry	10.0			2.3	30	
Cobalt	2.4	1	ug/g dry	2.3			2.8	30	
Copper	ND	5	ug/g dry	ND			0.0	30	
Lead	ND	1	ug/g dry	1.8			0.0	30	
Molybdenum	1.2	1	ug/g dry	ND			0.0	30	
Nickel	6.3	5	ug/g dry	6.1			4.0	30	
Selenium	ND	1	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1	ug/g dry	ND			0.0	30	
Uranium	ND	1	ug/g dry	ND			0.0	30	
Vanadium	14.8	10	ug/g dry	13.8			6.7	30	
Zinc	ND	20	ug/g dry	ND			0.0	30	
Physical Characteristics									
% Solids	84.8	0.1	% by Wt.	88.0			3.6	25	

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 6 of 8

Client: Paterson Group Consulting Engineers

Client PO: 13161

Method Quality Control: Spike

Drojact	Description	DE3700
Project	Description:	PEZ/09

Report Date: 24-Jul-2012

Order #: 1229217

Order Date:19-Jul-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	51.0		ug/L	0.01	102	70-130			
Arsenic	49.5		ug/L	0.1	98.7	70-130			
Barium	55.5		ug/L	5.5	100	70-130			
Beryllium	52.8		ug/L	0.08	105	70-130			
Boron	48.3		ug/L	0.5	95.6	70-130			
Cadmium	47.8		ug/L	0.007	95.5	70-130			
Chromium	55.4		ug/L	4.0	103	70-130			
Cobalt	50.9		ug/L	0.9	99.9	70-130			
Copper	50.9		ug/L	1.5	98.8	70-130			
Lead	51.4		ug/L	0.7	101	70-130			
Molybdenum	48.1		ug/L	0.07	96.1	70-130			
Nickel	52.8		ug/L	2.4	101	70-130			
Selenium	50.2		ug/L	ND	100	70-130			
Silver	41.4		ug/L	0.01	82.7	70-130			
Thallium	56.7		ug/L	ND	114	70-130			
Uranium	51.7		ug/L	0.1	103	70-130			
Vanadium	57.7		ug/L	5.5	104	70-130			
Zinc	53.2		ug/L	4.2	98.0	70-130			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 7 of 8

Client: Paterson Group Consulting Engineers

Order #: 1229217

Report Date: 24-Jul-2012 Order Date: 19-Jul-2012

Client PO: 13161 Qualifier Notes:

Sample Qualifiers :

1: Elevated detection limits due to the nature of the sample matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 Niagara Falls, ON L2J 0A:

123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

OTTAWA KINGSTON NIAGARA MISSISS	RI	RUST ESPC ELIAE © SA	NSIN BLE.						300- Ottav p: 1- e: pa	wa, C 800- irace	St. Ontai 749- I@pi		4J8 bs.com		a Nº	ab Use (801	
Paterson Group Inc. Contact Name: Dan Arnott Address: 154 Colounade Rol, Ottawa, Telephone: Gl3, 276, 7381 Criteria: []O. Reg. 153/04 Table _ NO. Reg. 153/11 (Current)	Table 3	RSC	Filing		bl C pate	150	ng	rou Isu	<u>р</u> . В (St	Ca orm)				Date		y [3 Day 1 Day Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S Paracel Order Number:		Air Volume	Containers	Paint) A (Air) O (Sample		F1-F4+BTEX			by ICP/MS				quired	Analyse	'S			
Sample ID/Location Name 1 BHI - AVI 2 BH4 - SS3 3 4	S Matrix	Air V	- # of C	Date 17-Jul-12 [8-Jul-12	Time	- PHCs F	VOCs	PAHS	X Metals	Hg	CrVI	B (HWS)		250 ; 11	nl 			1
5 6 7 8 9																		
10 Comments:														,		of Delive Par		1
Relinquisted By (Brist & Sign) DAN ARNOTT Date/Time: 1 = 23 pm, 19 - Jul - 12	Receive Date/Tin Tempera		11	use 1/12_30	Receiv SUN 35m Date/T Tempe	EEP ime:	ORI	19		12	(5,05	Date/	ied By: MUC Tinte: erified [Tuly		Ls	

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Dan Arnott

Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 12278	Report Date: 9-Aug-2012
Project: PE2709	Order Date: 8-Aug-2012
Custody: 5106	Order #: 1232102

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID
BH5-SS8
BH6-SS7
BH7-SS7

Mark Fisto Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Paterson Group Consulting Engineers Client PO: 12278

Project Description: PE2709

Order #: 1232102

Report Date: 09-Aug-2012 Order Date:8-Aug-2012

Analysis Summary Table

Analysia	Mathed Deference (Depariation	Extraction Data A	nalvoja Data
Analysis	Method Reference/Description	Extraction Date A	inalysis Date
BTEX	EPA 8260 - P&T GC-MS	8-Aug-12	9-Aug-12
CCME PHC F1	CWS Tier 1 - P&T GC-FID	8-Aug-12	9-Aug-12
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	8-Aug-12	9-Aug-12
Solids, %	Gravimetric, calculation	9-Aug-12	9-Aug-12

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 2 of 7

Client: Paterson Group Consulting Engineers

Order #: 1232102

Report Date: 09-Aug-2012 Order Date:8-Aug-2012

Client PO: 12278		Project Description	: PE2709		-
	Client ID: Sample Date: Sample ID:	BH5-SS8 08-Aug-12 1232102-01	BH6-SS7 08-Aug-12 1232102-02	BH7-SS7 08-Aug-12 1232102-03	
	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics					
% Solids	0.1 % by Wt.	74.0	96.4	96.5	-
Volatiles			•	•	•
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene-d8	Surrogate	90.2%	92.8%	93.3%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	65	8	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	74	<4	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	62	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	112	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

Client: Paterson Group Consulting Engineers

Client PO: 12278

Project Description: PE2709

Order #: 1232102

Report Date: 09-Aug-2012 Order Date:8-Aug-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	3.22		ug/g		101	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 7

Client: Paterson Group Consulting Engineers Client PO: 12278

Project Description: PE2709

Order #: 1232102

Report Date: 09-Aug-2012 Order Date:8-Aug-2012

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Physical Characteristics % Solids	68.7	0.1	% by Wt.	66.6			3.1	25	

P: 1-800-749-1947 E: paracel@paracellabs.com www.paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645. Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 7

Client: Paterson Group Consulting Engineers

Client PO: 12278

Project Description: PE2709

Order #: 1232102

Report Date: 09-Aug-2012 Order Date:8-Aug-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	205	7	ug/g	ND	103	80-120			
Volatiles									
Benzene	3.89	0.02	ug/g	ND	97.1	60-130			
Ethylbenzene	2.78	0.05	ug/g	ND	69.4	60-130			
Toluene	3.99	0.05	ug/g	ND	99.7	60-130			
m,p-Xylenes	6.54	0.05	ug/g	ND	81.8	60-130			
o-Xylene	2.69	0.05	ug/g	ND	67.2	60-130			
Surrogate: Toluene-d8	2.72		ug/g		85.1	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 7

Client: Paterson Group Consulting Engineers

Client PO: 12278

Project Description: PE2709

Order #: 1232102

Report Date: 09-Aug-2012 Order Date:8-Aug-2012

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 7

OPARACEL LABORATORIES LTD.	RELIABLE .				3 C p	Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com			Chain of Custody (Lab Use Only) N? 5106				
OTTAWA	AUGA	• SAF	RNIA			www.paracellabs.com				Page of			
Client Name: Puterson Group Inc. Contact Name: Dan Arnott Address: 154 Colonnade Rd Ottawa, ON K2E 755 Telephone: Criteria: 1 10. Reg. 153/04 Table NO. Reg. 153/11 (Current	Table	11050	Quote # PO # Email #	Address:	2709 122= etersorgi			Dan)	Date Re	[] Regular [] 2 Day quired:	[]3 Da	y	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S				7.1		COME	[] 3UB (310)				[] Other:	
Paracel Order Number:	os (Stornivs	antary Se	1	raint) A (Air) U (Other)		1 1	Re	quired Ar	alyses			
1232102	Matrix	Air Volume	of Containers	Sampl	e Taken	Xats	PHCS						Je
Sample ID/Location Name	Ma	Air	#	Date	Time	(4)	Pr					Y	Lagy
2 BH6-SS7 3 BH7-SS7 4	S. V		22	BAK-R	loan Ipn 2pm	/			120	V	► 1 Vía)		>>
5					1.1								
6													
7													
8									1				
9				and the second									
Comments: Will call w/ P.O.	Sam	pte	#1	Shou	ld re	ad	SS8	per	Dar	2. M	lethod of Deliv	ery:	
Rotinquished By (Print & Sign):	Receive	d by Driv	ver/Depo	t	Receive	ed at Lub	A	1	Verified	By:	The	T,	1
DAN ARNOTT	Date/Ti	me:			Date/Ti	ime:	due	to	Date/Tir	ne: A	150	tr	<u> </u>
Date/Time: 3, 40pm 8-Aug-12	Temper		0	C			8.5 0	3:470		fied By:	M	HO	5
		Chain	of Cu	stody (Blank)	- Rev 0.0 De	cembe	r 2011				4	:48 ₆	2

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Karyn Munch

Client PO: 56968 Project: PE2709 Custody:

Report Date: 13-Mar-2023 Order Date: 8-Mar-2023

Order #: 2310245

This Certificate of Analysis contains analytical data applicable to the following samples as submitted :

Paracel ID	Client ID
2310245-01	BH1-23-SS3
2310245-02	BH2-23-SS2
2310245-03	BH2-23-SS4
2310245-04	BH3-23-AU2
2310245-05	BH3-23-SS4
2310245-06	BH4-23-SS4
2310245-07	BH5-23-AU1
2310245-08	BH5-23-SS3
2310245-09	BH5-23-SS6
2310245-10	BH6-23-SS5
2310245-11	DUP
2310245-12	BH1-23-SS2
2310245-13	BH1-23-SS5
2310245-14	BH3-23-SS5
2310245-15	BH3-23-SS6

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Order #:	2310245

Report Date: 13-Mar-2023 Order Date: 8-Mar-2023

Project Description: PE2709

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	7-Mar-23	7-Mar-23
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	9-Mar-23	10-Mar-23
Conductivity	MOE E3138 - probe @25 °C, water ext	9-Mar-23	9-Mar-23
Mercury by CVAA	EPA 7471B - CVAA, digestion	10-Mar-23	10-Mar-23
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	10-Mar-23	10-Mar-23
PHC F1	CWS Tier 1 - P&T GC-FID	7-Mar-23	7-Mar-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	8-Mar-23	10-Mar-23
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	9-Mar-23	9-Mar-23
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	8-Mar-23	11-Mar-23
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	9-Mar-23	9-Mar-23
SAR	Calculated	9-Mar-23	10-Mar-23
Solids, %	CWS Tier 1 - Gravimetric	9-Mar-23	9-Mar-23

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 56968

Report Date: 13-Mar-2023 Order Date: 8-Mar-2023

Project Description: PE2709

	Client ID: Sample Date: Sample ID: MDL/Units	BH1-23-SS3 24-Feb-23 09:00 2310245-01 Soil	BH2-23-SS2 27-Feb-23 09:00 2310245-02 Soil	BH2-23-SS4 27-Feb-23 09:00 2310245-03 Soil	BH3-23-AU2 27-Feb-23 09:00 2310245-04 Soil
Physical Characteristics	mberonito		<u> </u>		ļ
% Solids	0.1 % by Wt.	93.2	88.4	92.7	90.6
General Inorganics	-+ +		ł	ł	
SAR	0.01 N/A	0.80	1.61	1.77	2.16
Conductivity	5 uS/cm	469	1360	693	442
рН	0.05 pH Units	-	7.69	7.76	7.66
Metals	+ +		•		•
Antimony	1.0 ug/g dry	<1.0	2.2	<1.0	2.2
Arsenic	1.0 ug/g dry	3.8	8.0	2.6	6.8
Barium	1.0 ug/g dry	30.7	321	27.1	126
Beryllium	0.5 ug/g dry	<0.5	0.6	<0.5	0.6
Boron	5.0 ug/g dry	6.4	7.0	6.5	<5.0
Cadmium	0.5 ug/g dry	<0.5	0.6	<0.5	<0.5
Chromium	5.0 ug/g dry	12.2	29.2	10.1	16.7
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	3.8	7.1	3.6	5.7
Copper	5.0 ug/g dry	9.3	120	5.7	36.6
Lead	1.0 ug/g dry	3.6	432	3.2	217
Mercury	0.1 ug/g dry	<0.1	2.7	<0.1	0.3
Molybdenum	1.0 ug/g dry	<1.0	1.1	<1.0	1.3
Nickel	5.0 ug/g dry	8.2	17.0	7.1	14.3
Selenium	1.0 ug/g dry	<1.0	1.3	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	0.6	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	17.5	26.1	15.7	22.1
Zinc	20.0 ug/g dry	21.8	429	<20.0	74.8
volatiles			ł	ł	• • • • •
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene-d8	Surrogate	123%	127%	124%	118%
Hydrocarbons					

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 56968

Order #: 2310245

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

	Client ID: Sample Date: Sample ID: MDL/Units	BH1-23-SS3 24-Feb-23 09:00 2310245-01 Soil	BH2-23-SS2 27-Feb-23 09:00 2310245-02 Soil	BH2-23-SS4 27-Feb-23 09:00 2310245-03 Soil	BH3-23-AU2 27-Feb-23 09:00 2310245-04 Soil
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<40 [1]	<4	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	312	<8	48 [2]
F4 PHCs (C34-C50)	6 ug/g dry	<6	298	<6	23 [2]
Semi-Volatiles			•	•	
Acenaphthene	0.02 ug/g dry	<0.02	0.76	-	0.07
Acenaphthylene	0.02 ug/g dry	<0.02	0.19	-	0.18
Anthracene	0.02 ug/g dry	<0.02	1.58	-	0.29
Benzo [a] anthracene	0.02 ug/g dry	<0.02	2.72	-	0.70
Benzo [a] pyrene	0.02 ug/g dry	<0.02	2.37	-	0.70
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	3.00	-	0.73
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	1.45	-	0.38
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	1.68	-	0.42
Chrysene	0.02 ug/g dry	<0.02	2.68	-	0.71
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	0.38	-	0.11
Fluoranthene	0.02 ug/g dry	<0.02	6.09	-	1.47
Fluorene	0.02 ug/g dry	<0.02	0.53	-	0.08
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	1.40	-	0.37
1-Methylnaphthalene	0.02 ug/g dry	<0.02	0.12	-	0.09
2-Methylnaphthalene	0.02 ug/g dry	<0.02	0.16	-	0.12
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	0.28	-	0.21
Naphthalene	0.01 ug/g dry	<0.01	0.22	-	0.16
Phenanthrene	0.02 ug/g dry	<0.02	4.82	-	0.89
Pyrene	0.02 ug/g dry	<0.02	4.84	-	1.28
2-Fluorobiphenyl	Surrogate	106%	101%	-	108%
Terphenyl-d14	Surrogate	115%	110%	-	108%

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 56968

Order #: 2310245

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

	Client ID: Sample Date: Sample ID:	BH3-23-SS4 27-Feb-23 09:00 2310245-05	BH4-23-SS4 28-Feb-23 09:00 2310245-06	BH5-23-AU1 28-Feb-23 09:00 2310245-07	BH5-23-SS3 28-Feb-23 09:00 2310245-08
Physical Characteristics	MDL/Units	Soil	Soil	Soil	Soil
% Solids	0.1 % by Wt.	96.2	92.5	92.6	98.4
General Inorganics		30.2	02.0	02.0	50.4
SAR	0.01 N/A	1.19	4.44	0.90	1.32
Conductivity	5 uS/cm	209	1090	280	293
рН	0.05 pH Units	-	-	-	7.89
Metals				•	
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Arsenic	1.0 ug/g dry	4.1	3.5	5.9	2.8
Barium	1.0 ug/g dry	38.6	27.1	24.1	38.1
Beryllium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Boron	5.0 ug/g dry	5.6	7.2	6.8	5.6
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	11.3	12.5	15.9	10.5
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	4.2	3.5	6.8	3.7
Copper	5.0 ug/g dry	8.7	7.0	12.4	5.9
Lead	1.0 ug/g dry	5.3	4.5	32.5	4.5
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	<1.0	<1.0	6.7	<1.0
Nickel	5.0 ug/g dry	8.6	7.7	15.6	6.8
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	19.2	19.5	25.8	14.3
Zinc	20.0 ug/g dry	20.5	23.8	26.3	<20.0
Volatiles					
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

[Client ID: Sample Date: Sample ID: MDL/Units	BH3-23-SS4 27-Feb-23 09:00 2310245-05 Soil	BH4-23-SS4 28-Feb-23 09:00 2310245-06 Soil	BH5-23-AU1 28-Feb-23 09:00 2310245-07 Soil	BH5-23-SS3 28-Feb-23 09:00 2310245-08 Soil
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
4-Bromofluorobenzene	Surrogate	98.1%	-	-	-

Client PO: 56968

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

	Client ID: Sample Date: Sample ID: MDL/Units	BH3-23-SS4 27-Feb-23 09:00 2310245-05 Soil	BH4-23-SS4 28-Feb-23 09:00 2310245-06 Soil	BH5-23-AU1 28-Feb-23 09:00 2310245-07 Soil	BH5-23-SS3 28-Feb-23 09:00 2310245-08 Soil
Dibromofluoromethane	Surrogate	104%	-	-	-
Toluene-d8	Surrogate	121%	-	-	-
Benzene	0.02 ug/g dry	-	<0.02	<0.02	<0.02
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	<0.05
Toluene-d8	Surrogate	-	126%	126%	120%
Hydrocarbons	<u></u>			Į	
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<80 [1]	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	699	<8
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	1650	<6
Semi-Volatiles			•		
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Anthracene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Benzo [a] anthracene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Benzo [a] pyrene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Chrysene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Fluoranthene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Fluorene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	<0.80 [1]	<0.04
Naphthalene	0.01 ug/g dry	<0.01	<0.01	<0.20 [1]	<0.01
Phenanthrene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
Pyrene	0.02 ug/g dry	<0.02	<0.02	<0.40 [1]	<0.02
2-Fluorobiphenyl	Surrogate	104%	96.1%	69.4%	95.0%

	Client ID: Sample Date:		BH4-23-SS4 28-Feb-23 09:00	BH5-23-AU1 28-Feb-23 09:00	BH5-23-SS3 28-Feb-23 09:00
	Sample ID:	2310245-05	2310245-06	2310245-07	2310245-08
	MDL/Units	Soil	Soil	Soil	Soil
Terphenyl-d14	Surrogate	109%	111%	101%	111%

Order #: 2310245

Report Date: 13-Mar-2023 Order Date: 8-Mar-2023

Project Description: PE2709

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 56968

Order #: 2310245

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

	Client ID: Sample Date: Sample ID:	BH5-23-SS6 28-Feb-23 09:00 2310245-09 Soil	BH6-23-SS5 01-Mar-23 09:00 2310245-10 Soil	DUP 28-Feb-23 09:00 2310245-11 Soil	BH1-23-SS2 24-Feb-23 09:00 2310245-12 Soil
Physical Characteristics	MDL/Units	301	301	001	301
% Solids	0.1 % by Wt.	94.2	94.7	96.0	92.4
General Inorganics	ļļ			ļ	
SAR	0.01 N/A	1.25	1.88	1.43	1.90
Conductivity	5 uS/cm	226	3310	304	943
Metals			•		•
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	4.1	10.2	4.6	-
Barium	1.0 ug/g dry	129	64.7	211	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	0.5	-
Boron	5.0 ug/g dry	8.0	11.6	8.9	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Chromium	5.0 ug/g dry	13.5	13.6	15.5	-
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	-
Cobalt	1.0 ug/g dry	4.5	11.8	4.9	-
Copper	5.0 ug/g dry	<5.0	9.6	5.5	-
Lead	1.0 ug/g dry	5.0	19.7	5.1	-
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	-
Molybdenum	1.0 ug/g dry	<1.0	5.4	<1.0	-
Nickel	5.0 ug/g dry	11.4	20.3	12.5	-
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	-
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Vanadium	10.0 ug/g dry	15.4	10.5	18.0	-
Zinc	20.0 ug/g dry	<20.0	<20.0	<20.0	-
Volatiles					
Acetone	0.50 ug/g dry	<0.50	-	<0.50	-
Benzene	0.02 ug/g dry	<0.02	-	<0.02	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	<0.05	-
Bromoform	0.05 ug/g dry	<0.05	-	<0.05	-
Bromomethane	0.05 ug/g dry	<0.05	-	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	<0.05	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	-
Chloroform	0.05 ug/g dry	<0.05	-	<0.05	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	<0.05	-

Client PO: 56968

Report Date: 13-Mar-2023 Order Date: 8-Mar-2023

Project Description: PE2709

	Client ID: Sample Date: Sample ID: MDL/Units	BH5-23-SS6 28-Feb-23 09:00 2310245-09 Soil	BH6-23-SS5 01-Mar-23 09:00 2310245-10 Soil	DUP 28-Feb-23 09:00 2310245-11 Soil	BH1-23-SS2 24-Feb-23 09:00 2310245-12 Soil
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	<0.05	-
Ethylbenzene	0.05 ug/g dry	0.10	-	0.08	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	-	<0.05	-
Hexane	0.05 ug/g dry	<0.05	-	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	<0.05	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	<0.05	-
Styrene	0.05 ug/g dry	<0.05	-	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
Toluene	0.05 ug/g dry	<0.05	-	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	<0.05	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	<0.05	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	<0.02	-
m,p-Xylenes	0.05 ug/g dry	0.22	-	0.21	-
o-Xylene	0.05 ug/g dry	<0.05	-	<0.05	-
Xylenes, total	0.05 ug/g dry	0.22	-	0.21	-
4-Bromofluorobenzene	Surrogate	98.2%	-	98.4%	-
Dibromofluoromethane	Surrogate	108%	-	104%	-

Client PO: 56968

Report Date: 13-Mar-2023 Order Date: 8-Mar-2023

Project Description: PE2709

г	Client ID: Sample Date: Sample ID:	BH5-23-SS6 28-Feb-23 09:00 2310245-09 Soil	BH6-23-SS5 01-Mar-23 09:00 2310245-10 Soil	DUP 28-Feb-23 09:00 2310245-11 Soil	BH1-23-SS2 24-Feb-23 09:00 2310245-12 Soil
Toluene-d8	MDL/Units Surrogate	121%	-	120%	-
-	0.02 ug/g dry			12070	
Benzene		-	<0.02	-	<0.02
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene	0.05 ug/g dry	-	<0.05	-	<0.05
m,p-Xylenes	0.05 ug/g dry	-	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	-	<0.05	-	<0.05
Xylenes, total	0.05 ug/g dry	-	<0.05	-	<0.05
Toluene-d8	Surrogate	-	123%	-	122%
Hydrocarbons	-			I	
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	8	<7
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	28	17
F3 PHCs (C16-C34)	8 ug/g dry	<8	15	<8	107
F4 PHCs (C34-C50)	6 ug/g dry	<6	11	<6	70
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	<0.02	-	-
Acenaphthylene	0.02 ug/g dry	-	<0.02	-	-
Anthracene	0.02 ug/g dry	-	<0.02	-	-
Benzo [a] anthracene	0.02 ug/g dry	-	<0.02	-	-
Benzo [a] pyrene	0.02 ug/g dry	-	<0.02	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	<0.02	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	<0.02	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	<0.02	-	-
Chrysene	0.02 ug/g dry	-	<0.02	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	<0.02	-	-
Fluoranthene	0.02 ug/g dry	-	<0.02	-	-
Fluorene	0.02 ug/g dry	-	<0.02	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	<0.02	-	-
1-Methylnaphthalene	0.02 ug/g dry	-	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g dry	-	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	<0.04	-	-
Naphthalene	0.01 ug/g dry	-	<0.01	-	-
Phenanthrene	0.02 ug/g dry	-	<0.02	-	_
Pyrene	0.02 ug/g dry	-	<0.02	_	_
2-Fluorobiphenyl	Surrogate	-	105%	-	-
Terphenyl-d14	Surrogate	-	116%	-	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 56968

Order #: 2310245

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

	Client ID: Sample Date: Sample ID: MDL/Units	BH1-23-SS5 24-Feb-23 09:00 2310245-13 Soil	BH3-23-SS5 27-Feb-23 09:00 2310245-14 Soil	BH3-23-SS6 27-Feb-23 09:00 2310245-15 Sojl	
Physical Characteristics	MDL/Units	001	501	501	-
% Solids	0.1 % by Wt.	92.2	90.5	91.1	-
General Inorganics				<u> </u>	
SAR	0.01 N/A	-	1.54	2.07	-
Conductivity	5 uS/cm	-	260	317	-
рН	0.05 pH Units	-	-	7.88	-
Metals	· · · ·			1	
Antimony	1.0 ug/g dry	-	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	-	2.9	2.5	-
Barium	1.0 ug/g dry	-	87.3	68.1	-
Beryllium	0.5 ug/g dry	-	<0.5	<0.5	-
Boron	5.0 ug/g dry	-	5.3	8.1	-
Cadmium	0.5 ug/g dry	-	<0.5	<0.5	-
Chromium	5.0 ug/g dry	-	9.9	10.8	-
Chromium (VI)	0.2 ug/g dry	-	<0.2	<0.2	-
Cobalt	1.0 ug/g dry	-	3.2	2.8	-
Copper	5.0 ug/g dry	-	<5.0	<5.0	-
Lead	1.0 ug/g dry	-	3.3	2.8	-
Mercury	0.1 ug/g dry	-	<0.1	<0.1	-
Molybdenum	1.0 ug/g dry	-	<1.0	<1.0	-
Nickel	5.0 ug/g dry	-	6.8	7.2	-
Selenium	1.0 ug/g dry	-	<1.0	<1.0	-
Silver	0.3 ug/g dry	-	<0.3	<0.3	-
Thallium	1.0 ug/g dry	-	<1.0	<1.0	-
Uranium	1.0 ug/g dry	-	<1.0	<1.0	-
Vanadium	10.0 ug/g dry	-	15.7	12.9	-
Zinc	20.0 ug/g dry	-	<20.0	<20.0	-
Volatiles					
Acetone	0.50 ug/g dry	-	-	<0.50	-
Benzene	0.02 ug/g dry	-	-	<0.02	-
Bromodichloromethane	0.05 ug/g dry	-	-	<0.05	-
Bromoform	0.05 ug/g dry	-	-	<0.05	-
Bromomethane	0.05 ug/g dry	-	-	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	-	-	<0.05	-
Chlorobenzene	0.05 ug/g dry	-	-	<0.05	-
Chloroform	0.05 ug/g dry	-	-	<0.05	-

Report Date: 13-Mar-2023 Order Date: 8-Mar-2023

Project Description: PE2709

	Client ID: Sample Date: Sample ID: MDL/Units	BH1-23-SS5 24-Feb-23 09:00 2310245-13 Soil	BH3-23-SS5 27-Feb-23 09:00 2310245-14 Soil	BH3-23-SS6 27-Feb-23 09:00 2310245-15 Soil	- - -
Dibromochloromethane	0.05 ug/g dry	-	-	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	-	-	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	-	-	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	-	-	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	-	-	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	-	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	-	-	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	-	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	-	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	-	-	<0.05	-
Ethylbenzene	0.05 ug/g dry	-	-	<0.05	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	-	-	<0.05	-
Hexane	0.05 ug/g dry	-	-	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	-	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	-	-	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	-	-	<0.05	-
Methylene Chloride	0.05 ug/g dry	-	-	<0.05	-
Styrene	0.05 ug/g dry	-	-	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	-	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	-	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	-	-	<0.05	-
Toluene	0.05 ug/g dry	-	-	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	-	-	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	-	-	<0.05	-
Trichloroethylene	0.05 ug/g dry	-	-	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	-	-	<0.05	-
Vinyl chloride	0.02 ug/g dry	-	-	<0.02	-
m,p-Xylenes	0.05 ug/g dry	-	-	<0.05	-
o-Xylene	0.05 ug/g dry	-	-	<0.05	-
Xylenes, total	0.05 ug/g dry	-	-	<0.05	-
4-Bromofluorobenzene	Surrogate	-	-	103%	-

Client PO: 56968

Report Date: 13-Mar-2023 Order Date: 8-Mar-2023

Project Description: PE2709

	F				
	Client ID:	BH1-23-SS5	BH3-23-SS5	BH3-23-SS6	-
	Sample Date:	24-Feb-23 09:00	27-Feb-23 09:00	27-Feb-23 09:00	-
	Sample ID:	2310245-13	2310245-14	2310245-15	-
	MDL/Units	Soil	Soil	Soil	-
Dibromofluoromethane	Surrogate	-	-	106%	-
Toluene-d8	Surrogate	-	-	125%	-
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene-d8	Surrogate	125%	119%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	-

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 56968

Method Quality Control: Blank

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

General Inorganics ND 5 usicm Canductivity ND 7 usign F1 PFCs (C6.C10) ND 7 usign F2 PFCs (C10.C16) ND 8 usign F3 PFCs (C10.C16) ND 8 usign F3 PFCs (C10.C16) ND 6 usign F4 PFCs (C3.C3.21) ND 8 usign Metais Animony ND 1.0 usign Barlum ND 0.5 usign Cadmium ND 0.5 usign Cadmium ND 0.5 usign Chromium (Vi) ND 0.5 usign Copper ND 1.0 usign Copper ND 0.1 usign Mexury ND 0.1 usign Moticarum ND 0.0 usign No 0.1 usign usign Cadmium ND	RPD Limit	RPD	%REC Limit	%REC	Source Result	Units	Reporting Limit	Result	Analyte
HydrocarbonsF1 PHCs (C50-C16)ND4ug/gF3 PHCs (C16-C33)ND6ug/gF4 PHCs (C30-C50)ND6ug/gMatterND1.0ug/gAntimonyND1.0ug/gAssenicND1.0ug/gEaronND0.0ug/gEaronND0.0ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND1.0ug/gCadmiumND1.0ug/gCadmiumND1.0ug/gCadmiumND1.0ug/gCadmiumND1.0ug/gLaadND1.0ug/gLaadND1.0ug/gLaadND1.0ug/gCadmiumND1.0ug/gSeleniumND1.0ug/gThatlitimND1.0ug/gCadmiumND1.0ug/gCadmiumND0.2ug/gSeleniumND0.02ug/gCadmiumND0.02ug/gCadmiumND0.02ug/gCadmiumND0.02ug/gCadmiumND0									General Inorganics
HydrocarbonsF1 PHCs (C50-C16)ND4ug/gF3 PHCs (C16-C33)ND6ug/gF4 PHCs (C30-C50)ND6ug/gMatterND1.0ug/gAntimonyND1.0ug/gAssenicND1.0ug/gEaronND0.0ug/gEaronND0.0ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND0.5ug/gCadmiumND1.0ug/gCadmiumND1.0ug/gCadmiumND1.0ug/gCadmiumND1.0ug/gCadmiumND1.0ug/gLaadND1.0ug/gLaadND1.0ug/gLaadND1.0ug/gCadmiumND1.0ug/gSeleniumND1.0ug/gThatlitimND1.0ug/gCadmiumND1.0ug/gCadmiumND0.2ug/gSeleniumND0.02ug/gCadmiumND0.02ug/gCadmiumND0.02ug/gCadmiumND0.02ug/gCadmiumND0						uS/cm	5	ND	Conductivity
i F 1 PCs (G-C10) ND 7 ug0 F3 PFS (C10-C16) ND 8 ug0 F3 PFS (C10-C30) ND 6 ug0 Matals ND 1.0 ug1 Antimony ND 1.0 ug1 Assenic ND 1.0 ug1 Barlum ND 0.5 ug1 Barlum ND 0.5 ug1 Boron ND 5.0 ug1 Cadamium ND 5.0 ug1 Chromium (V) ND 5.0 ug1 Cadamium ND 1.0 ug1 Cadamium ND 5.0 ug1 Cadamium ND 1.0 ug1 Cadamium ND 1.0 ug1 Cadamium ND 1.0 ug1 Mecusy ND									Hydrocarbons
PPLCs (C10-C16)NDAug/gF1 PHCs (C34-C50)ND8ug/gAntinonyND1.0ug/gAntinonyND1.0ug/gAnsenicND1.0ug/gBarlumND0.5ug/gBerglininND0.5ug/gContoniumND0.5ug/gContoniumND0.5ug/gContoniumND0.5ug/gContonium (Vi)ND0.5ug/gCoberND1.0ug/gCoberND1.0ug/gCoperND0.1ug/gCoberND1.0ug/gCoberND1.0ug/gCoberND1.0ug/gMercuryND1.0ug/gNickelND1.0ug/gNickelND1.0ug/gShrenND1.0ug/gShrenND1.0ug/gShrenND1.0ug/gShrenND0.0ug/gContainND0.0ug/gShrenND0.0ug/gShrenND0.0ug/gContainND0.0ug/gShrenND0.0ug/gShrenND0.0ug/gShrenND0.0ug/gContainND0.0ug/gContainND0.0ug/gContain <td></td> <td></td> <td></td> <td></td> <td></td> <td>ua/a</td> <td>7</td> <td>ND</td> <td>-</td>						ua/a	7	ND	-
F3 PHCs (C16-C34)ND8ug/gHetalsAntinonyND1.0ug/gAssenicND1.0ug/gBarlumND1.0ug/gBarlumND0.5ug/gCadmiumND0.5ug/gBoronND0.5ug/gBoronND0.5ug/gBoronND0.5ug/gBoronND0.5ug/gCommunND5.0ug/gCommunND5.0ug/gCommunND5.0ug/gComparisonND1.0ug/gComparisonND1.0ug/gMalydenumND1.0ug/gMolydenumND1.0ug/gSilverND0.00.0ug/gZincND0.00.0ug/gZincND0.00.0ug/gZincND0.00.0ug/gBencilinND0.00.02ug/gBencilinND0.02ug/gBencilinND0.02ug/gBencilinND0.02ug/gJanliumND0.02ug/gBencilinND0.02ug/gBencilinND0.02ug/gBencilinND0.02ug/gJanliumND0.02ug/gJanliumND0.02ug/gBencilinND0.02u									
F4 PHCs (C34-C50)ND6ug/gMetalsND1.0ug/gAnsericND1.0ug/gArsericND1.0ug/gBarlurnND0.0ug/gBeryllunND0.5ug/gBeryllunND0.5ug/gCadmurnND0.5ug/gChromlurnND0.5ug/gCadmurnND0.5ug/gChromlurnND5.0ug/gCopperND5.0ug/gLeadND1.0ug/gMetalsND0.1ug/gMetalsND0.1ug/gMetalsND0.1ug/gMetalsND0.1ug/gMetalsND0.1ug/gMetalsND0.1ug/gMetalsND0.1ug/gMetalsND0.1ug/gSilverND0.3ug/gSilverND0.0ug/gZancND0.02ug/gZancND0.02ug/gAsenaphthenND0.02ug/gBerzo Jal JorantenceND0.02ug/gBerzo Jal JorantenceND0.02ug/gBerzo Jal JorantenceND0.02ug/gBerzo Jal JorantenceND0.02ug/gBerzo Jal JorantenceND0.02ug/gBerzo Jal JorantenceND0.02ug/g<									
Metals ND 1.0 ug/g Antimony ND 1.0 ug/g Assenic ND 1.0 ug/g Barlum ND 1.0 ug/g Barlum ND 5.0 ug/g Boron ND 5.0 ug/g Cadmium ND 5.0 ug/g Chromium ND 5.0 ug/g Chromium ND 5.0 ug/g Cotati ND 1.0 ug/g Cotati ND 1.0 ug/g Lead ND 1.0 ug/g Mercury ND 1.0 ug/g Molydenum ND 1.0 ug/g Silver ND 1.0 ug/g Silver ND 1.0 ug/g Vanadum ND 1.0 ug/g Silver ND 0.02 ug/g Selenium ND 0.02 ug/g									
Animony ND 1.0 ug/g Ansenic ND 1.0 ug/g Barlum ND 0.5 ug/g Berglium ND 0.5 ug/g Cadmium ND 0.5 ug/g Cadmium ND 0.5 ug/g Chromium(V) ND 0.2 ug/g Copper ND 1.0 ug/g Copper ND 1.0 ug/g Copper ND 1.0 ug/g Mercury ND 0.1 ug/g Molydeenum ND 1.0 ug/g Nickel ND 1.0 ug/g Selenium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 0.0 ug/g Zinc ND 0.0 ug/g Zinc ND 0.0 ug/g Asenaphthylene ND 0.02 ug/g Ansenaphthylene ND 0.02 ug/g Baroz (a, I) perylene<						3-3			
Arsenic ND 1.0 ug/g Barlum ND 1.0 Ug/g Beryllum ND 0.5 Ug/g Cadmium ND 0.5 Ug/g Cadmium ND 0.5 Ug/g Chromium (M) ND 0.5 Ug/g Chromium (M) ND 5.0 Ug/g Copper ND 5.0 Ug/g Copper ND 5.0 Ug/g Marcury ND 0.1 Ug/g Marcury ND 0.1 Ug/g Marcury ND 0.1 Ug/g Selenium ND 1.0 Ug/g Selenium ND 1.0 Ug/g Selenium ND 1.0 Ug/g Selenium ND 0.0 Ug/g Selenium ND 0.0 Ug/g Selenium ND 0.0 Ug/g Selenium ND 0.0 Ug/g </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>ua/a</td> <td>1.0</td> <td>ND</td> <td></td>						ua/a	1.0	ND	
BarlumND1.0ug'gBeryllumND1.0ug'gBoronND5.0ug'gCadmiumND5.0ug'gChromium (VI)ND0.2ug'gChromiumND5.0ug'gChromiumND5.0ug'gChromiumND5.0ug'gCabaltND1.0ug'gCoperND1.0ug'gLeadND1.0ug'gMercuryND0.1ug'gMikbdenumND1.0ug'gNikelND1.0ug'gSilverND0.1ug'gSilverND1.0ug'gJandamND1.0ug'gJandamND1.0ug'gJandamND1.0ug'gJandamND1.0ug'gJandamND1.0ug'gJandamND0.02ug'gJandamND0.02ug'gJandamND0.02ug'gJandamND0.02ug'gJandamND0.02ug'gBenzo [a] antinzceneND0.02ug'gBenzo [a] pryeneND0.02ug'gBenzo [b] fuorantheneND0.02ug'gBenzo [b] hubrantheneND0.02ug'gBenzo [b] hubrantheneND0.02ug'gHubrantheneND0.02ug'gHubranthen									
Berginum ND 0.5 ug/g Boron ND 0.5 ug/g Cadmium ND 0.5 ug/g Chornium (VI) ND 0.2 ug/g Cabal ND 1.0 ug/g Cabalt ND 1.0 ug/g Cabalt ND 1.0 ug/g Lead ND 1.0 ug/g Mercury ND 1.0 ug/g Molyderum ND 1.0 ug/g Nickel ND 1.0 ug/g Selenium ND 1.0 ug/g Selenium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zanc ND 1.0 ug/g Zanc ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Acenaphthylee ND 0.02 ug/g Berzo [s]n fluoranthene ND 0.02 ug/g									
Boron ND 5.0 ug'g Cadmium ND 0.2 ug'g Chromium (VI) ND 0.2 ug'g Chromium ND 5.0 ug'g Chromium ND 5.0 ug'g Copper ND 5.0 ug'g Copper ND 5.0 ug'g Mercary ND 0.1 ug'g Mercary ND 0.1 ug'g Nickel ND 1.0 ug'g Silver ND 0.3 ug'g Silver ND 1.0 ug'g Zinc ND 1.0 ug'g Zinc ND 0.02 ug'g Zinc ND 0.02 ug'g Anthracene ND 0.02 ug'g Benzo [a pryrene ND 0.02 ug'g Benzo [a pryrene ND 0.02 ug'g Benzo [a pryrene ND 0.02 ug'									
Cadmium ND 0.5 ug/g Chromium (N) ND 5.0 ug/g Chomium (N) ND 5.0 ug/g Chadit ND 1.0 ug/g Chadit ND 5.0 ug/g Lead ND 1.0 ug/g Mercury ND 1.0 ug/g Molydenum ND 1.0 ug/g Nickel ND 1.0 ug/g Selenium ND 1.0 ug/g Silver ND 1.0 ug/g Thailum ND 1.0 ug/g Vanadum ND 1.0 ug/g Silver ND 0.0 ug/g Sampolitime ND 0.0 ug/g Antracene ND 0.02 ug/g Antracene ND 0.02 ug/g Benzo [a] phracene ND 0.02 ug/g Benzo [a] phracene ND 0.02									
Chromium (VI) ND 0.2 ug/g Chromium ND 5.0 ug/g Cobalt ND 1.0 ug/g Copper ND 5.0 ug/g Copper ND 1.0 ug/g Mercury ND 0.1 ug/g Molydenum ND 1.0 ug/g Nickel ND 5.0 ug/g Silver ND 1.0 ug/g Silver ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zine ND 1.0 ug/g Acenaphthene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] intracene ND									
Chonwinn ND 5.0 ug/g Cobalt ND 5.0 ug/g Copper ND 5.0 ug/g Lead ND 1.0 ug/g Mercury ND 1.0 ug/g Molydoenum ND 1.0 ug/g Selenium ND 1.0 ug/g Selenium ND 1.0 ug/g Thallium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g Zinc ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] nutracene <									
Copper ND 5.0 ug/g Lead ND 1.0 ug/g Mercury ND 0.1 ug/g Molybdenum ND 1.0 ug/g Nickel ND 1.0 ug/g Selenium ND 1.0 ug/g Selenium ND 1.0 ug/g Thailum ND 1.0 ug/g Vanadium ND 1.0 ug/g Zine ND 1.0 ug/g Zine ND 0.02 ug/g Zine ND 0.02 ug/g Acenaphthytene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] fuoranthene ND 0.02 ug/g Benzo [a] fuoranthene ND 0.02 ug/g Benzo [a] fuoranthene ND 0.02 ug/g Fluorene ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.0</td> <td>ND</td> <td></td>							5.0	ND	
Copper ND 5.0 ug/g Lead ND 1.0 ug/g Mercury ND 0.1 ug/g Molybdenum ND 1.0 ug/g Nickel ND 1.0 ug/g Selenium ND 1.0 ug/g Selenium ND 1.0 ug/g Thaillum ND 1.0 ug/g Traillum ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 0.0 ug/g Zinc ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] prene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Fluorene ND							1.0	ND	Cobalt
Lead ND 1.0 ug/g Mercury ND 0.1 ug/g Molybdenum ND 1.0 ug/g Nickel ND 5.0 ug/g Silver ND 0.3 ug/g Silver ND 0.3 ug/g Thailium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 1.0 ug/g Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [a] pyrene<							5.0	ND	Copper
Molyddenum ND 1.0 ug/g Nickel ND 5.0 ug/g Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Thallium ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 20.0 ug/g Acenaphthene ND 0.02 ug/g Acenaphthylere ND 0.02 ug/g Antracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] hyfene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g <						ug/g	1.0	ND	Lead
Nickel ND 5.0 ug/g Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Thallum ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 2.0 ug/g Zinc ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] huranthene ND 0.02 ug/g						ug/g	0.1		
Selenium ND 1.0 ug/g Silver ND 0.3 ug/g Thallium ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zine ND 20.0 ug/g Semi-Volatiles Vanadium ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] prynen ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [c] hluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [c] h.] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indero [1,2,3-cd] pyrne ND 0.02 ug/g Indero [1,2,3-cd] pyrne ND 0.02									
Silver ND 0.3 ug/g Thallium ND 1.0 ug/g Vanadium ND 10.0 ug/g Vanadium ND 10.0 ug/g Zinc ND 20.0 ug/g Semi-Volatiles ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] prene ND 0.02 ug/g Benzo [a] huracene ND 0.02 ug/g Benzo [a] prene ND 0.02 ug/g Benzo [a] huracene ND 0.02 ug/g Benzo [a] huranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02									
Thalium ND 1.0 ug/g Uranium ND 1.0 ug/g Vanadium ND 1.0 ug/g Zinc ND 20.0 ug/g Semi-Volatiles Acenaphthylene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] prene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Ibenzo [a] nathracene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND									
Uranium ND 1.0 ug/g Vanadium ND 10.0 ug/g Zinc ND 20.0 ug/g Semi-Volatiles ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] nutracene ND 0.02 ug/g Benzo [a] nutracene ND 0.02 ug/g Benzo [g] huroanthene ND 0.02 ug/g Benzo [g], hi] perylene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Fluoranthene									
Vanadium ND 10.0 ug/g Zinc ND 20.0 ug/g Semi-Volatiles ND 0.02 ug/g Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] infuranthene ND 0.02 ug/g Benzo [a], janthracene ND 0.02 ug/g Benzo [a, h] anthracene ND 0.02 ug/g Benzo [a, h] anthracene ND 0.02 ug/g Chroanthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Hothyinaphthalene									
Zinc ND 20.0 ug/g Semi-Volatiles Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [b, fluoranthene ND 0.02 ug/g Benzo [k, fluoranthene ND 0.02 ug/g Benzo [k, fluoranthene ND 0.02 ug/g Chrysne ND 0.02 ug/g Diberzo [a, h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Semi-Volatiles Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [b, fluoranthene ND 0.02 ug/g Benzo [b, fluoranthene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1/2,3-cd] pyrene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g									
Acenaphthene ND 0.02 ug/g Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [g, h.j] perylene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a, h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g I-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Maphthalene ND 0.02 ug/g Surrogate: Z-Fluorob						ug/g	20.0	ND	
Acenaphthylene ND 0.02 ug/g Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g 1ndeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Naphthalene ND 0.02 ug/g Pyrene ND<						,	0.00		
Anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [a] anthracene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [g,h,i] perylene ND 0.02 ug/g Benzo [g,h,i] perylene ND 0.02 ug/g Benzo [a,h] anthracene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluoro									
Benzo [a] anthracene ND 0.02 ug/g Benzo [a] pyrene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [c], nj perylene ND 0.02 ug/g Benzo [c], nj perylene ND 0.02 ug/g Benzo [k], fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Naphthalene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate:									
Benzo [a] pyrene ND 0.02 ug/g Benzo [b] fluoranthene ND 0.02 ug/g Benzo [g,h.i] perylene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surogate: Terphenyl-d14 1.64 ug/g 123 <									
Benzo [b] fluoranthene ND 0.02 ug/g Benzo [g,h,i] perylene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: 2-Fluorobiphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140									
Benzo [g,h,i] perylene ND 0.02 ug/g Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Mapthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 Surrogate: Terphenyl-d14 1.64 ug/g 123 Volatiles 50-140									
Benzo [k] fluoranthene ND 0.02 ug/g Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140									
Chrysene ND 0.02 ug/g Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.02 ug/g Naphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140									
Dibenzo [a,h] anthracene ND 0.02 ug/g Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Naphthalene ND 0.02 ug/g Naphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles Acetone ND 0.50 ug/g									
Fluoranthene ND 0.02 ug/g Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene (1&2) ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140									
Fluorene ND 0.02 ug/g Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.02 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140									
Indeno [1,2,3-cd] pyrene ND 0.02 ug/g 1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: 7erphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140									
1-Methylnaphthalene ND 0.02 ug/g 2-Methylnaphthalene ND 0.02 ug/g Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140							0.02	ND	Indeno [1,2,3-cd] pyrene
Methylnaphthalene (1&2) ND 0.04 ug/g Naphthalene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140								ND	1-Methylnaphthalene
Naphthalene ND 0.01 ug/g Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140						ug/g			
Phenanthrene ND 0.02 ug/g Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g ug/g 123 50-140									Methylnaphthalene (1&2)
Pyrene ND 0.02 ug/g Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140									
Surrogate: 2-Fluorobiphenyl 1.56 ug/g 117 50-140 Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g 123 50-140									
Surrogate: Terphenyl-d14 1.64 ug/g 123 50-140 Volatiles ND 0.50 ug/g							0.02		
Volatiles Acetone ND 0.50 ug/g									
Acetone ND 0.50 ug/g			50-140	123		ug/g		1.64	
55									Volatiles
						ug/g		ND	Acetone
Benzene ND 0.02 ug/g							0.02	ND	Benzene
Bromodichloromethane ND 0.05 ug/g						ug/g			
Bromoform ND 0.05 ug/g						ug/g			
Bromomethane ND 0.05 ug/g									
Carbon Tetrachloride ND 0.05 ug/g									
Chlorobenzene ND 0.05 ug/g						ug/g	0.05	ND	Chlorobenzene

Method Quality Control: Blank

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1.2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1.4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND ND	0.05 0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total Surrogate: 4-Bromofluorobenzene	9.44	0.05	ug/g <i>ug/g</i>		118	50-140			
Surrogate: 4-Bromofluoromethane	9.44 8.12				102	50-140 50-140			
•			ug/g						
Surrogate: Toluene-d8	9.93		ug/g		124	50-140			
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND ND	0.05 0.05	ug/g						
Xylenes, total Surrogate: Toluene-d8	9.93	0.05	ug/g		124	50-140			
Surroyate. 1010ene-00	9.90		ug/g		124	50-140			

Client PO: 56968

Method Quality Control: Duplicate

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	0.78	0.01	N/A	0.76			2.6	30	
Conductivity	214	5	uS/cm	216			0.9	5	
pH	7.18	0.05	pH Units	7.20			0.3	2.3	
Hydrocarbons		0.00	pri onito				0.0	2.0	
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	9	8	ug/g	14			39.7	30	
F4 PHCs (C34-C50)	ND	6	ug/g	10			NC	30	
Metals			3.5						
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	11.1	1.0	ug/g	9.8			12.6	30	
Barium	37.0	1.0	ug/g	37.7			1.7	30	
Beryllium	1.4	0.5	ug/g	1.3			4.2	30	
Boron	23.2	5.0	ug/g	20.6			11.8	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	0.7	0.2	ug/g	1.0			25.5	35	
Chromium	29.4	5.0	ug/g	28.0			4.6	30	
Cobalt	18.9	1.0	ug/g	18.1			4.0	30	
Copper	58.3	5.0	ug/g	55.7			4.6	30	
Lead	7.8	1.0	ug/g	6.3			20.8	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	36.6	5.0	ug/g	34.7			5.4	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	35.7	10.0	ug/g	33.7			5.8	30	
Zinc	78.9	20.0	ug/g	75.4			4.6	30	
Physical Characteristics									
% Solids	93.2	0.1	% by Wt.	93.2			0.1	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Chrysene	ND	0.02	ug/g	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g	ND			NC	40	
Fluoranthene	ND	0.02	ug/g	ND			NC	40	
Fluorene	ND	0.02	ug/g	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
Naphthalene	ND	0.01	ug/g	ND			NC	40	
Phenanthrene	ND	0.02	ug/g	ND			NC	40	
Pyrene	ND	0.02	ug/g	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	1.28		ug/g		83.9	50-140			
Surrogate: Terphenyl-d14	1.44		ug/g		93.9	50-140			
Volatiles									
Acetone	ND	0.50	ug/g	ND			NC	50	
Benzene	ND	0.02	ug/g	ND			NC	50	

Method Quality Control: Duplicate

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
					-				
Bromodichloromethane	ND	0.05	ug/g	ND			NC	50	
Bromoform	ND	0.05	ug/g	ND			NC	50	
Bromomethane	ND	0.05	ug/g	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g	ND			NC	50	
Chloroform	ND	0.05	ug/g	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g	ND			NC	50	
Hexane	ND	0.05	ug/g	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g	ND			NC	50	
Styrene	ND	0.05	ug/g	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND	100	50 4 40	NC	50	
Surrogate: 4-Bromofluorobenzene	8.72		ug/g		102	50-140			
Surrogate: Dibromofluoromethane	8.95		ug/g		104	50-140			
Surrogate: Toluene-d8	10.4		ug/g		121	50-140			
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	10.4		ug/g		121	50-140			

Method Quality Control: Spike

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit Notes	6
Hydrocarbons									
F1 PHCs (C6-C10)	182	7	ug/g	ND	91.2	80-120			
F2 PHCs (C10-C16)	119	4	ug/g	ND	130	60-140			
F3 PHCs (C16-C34)	304	8	ug/g	14	129	60-140			
F4 PHCs (C34-C50)	171	6	ug/g	10	113	60-140			
Metals									
Antimony	35.6	1.0	ug/g	ND	70.9	70-130			
Arsenic	52.4	1.0	ug/g	3.9	97.0	70-130			
Barium	60.2	1.0	ug/g	15.1	90.4	70-130			
Beryllium	49.0	0.5	ug/g	0.5	96.9	70-130			
Boron	53.9	5.0	ug/g	8.3	91.3	70-130			
Cadmium	46.1	0.5	ug/g	ND	92.2	70-130			
Chromium (VI)	5.2	0.2	ug/g	1.0	69.5	70-130		QM-05	
Chromium	63.2	5.0	ug/g	11.2	104	70-130			
Cobalt	56.9	1.0	ug/g	7.3	99.3	70-130			
Copper	71.3	5.0	ug/g	22.3	98.0	70-130			
Lead	47.8	1.0	ug/g	2.5	90.5	70-130			
Mercury	1.42	0.1	ug/g	ND	94.8	70-130			
Molybdenum	50.5	1.0	ug/g	ND	101	70-130			
Nickel	63.5	5.0	ug/g	13.9	99.1	70-130			
Selenium	45.7	1.0	ug/g	ND	91.1	70-130			
Silver	42.6	0.3	ug/g	ND	85.0	70-130			
Thallium	45.6	1.0	ug/g	ND	91.0	70-130			
Uranium	47.5	1.0	ug/g	ND	94.4	70-130			
Vanadium	66.6	10.0	ug/g	13.5	106	70-130			
Zinc	75.7	20.0	ug/g	30.2	91.2	70-130			
Semi-Volatiles			00						
Acenaphthene	0.144	0.02	ug/g	ND	75.3	50-140			
Acenaphthylene	0.131	0.02	ug/g ug/g	ND	68.5	50-140 50-140			
Anthracene	0.139	0.02	ug/g	ND	72.8	50-140			
Benzo [a] anthracene	0.100	0.02	ug/g ug/g	ND	74.5	50-140			
Benzo [a] pyrene	0.149	0.02	ug/g	ND	77.8	50-140			
Benzo [b] fluoranthene	0.204	0.02	ug/g	ND	107	50-140			
Benzo [g,h,i] perylene	0.131	0.02	ug/g	ND	68.4	50-140			
Benzo [k] fluoranthene	0.155	0.02	ug/g	ND	80.9	50-140			
Chrysene	0.172	0.02	ug/g	ND	90.0	50-140			
Dibenzo [a,h] anthracene	0.133	0.02	ug/g	ND	69.8	50-140			
Fluoranthene	0.144	0.02	ug/g	ND	75.1	50-140			
Fluorene	0.141	0.02	ug/g	ND	73.7	50-140			
Indeno [1,2,3-cd] pyrene	0.141	0.02	ug/g	ND	74.0	50-140			
1-Methylnaphthalene	0.168	0.02	ug/g	ND	87.7	50-140			
2-Methylnaphthalene	0.171	0.02	ug/g	ND	89.7	50-140			
Naphthalene	0.164	0.01	ug/g	ND	85.6	50-140			
Phenanthrene	0.150	0.02	ug/g	ND	78.5	50-140			
Pyrene	0.140	0.02	ug/g	ND	73.4	50-140			
Surrogate: 2-Fluorobiphenyl	1.17	0.02	ug/g ug/g		76.4	50-140			
Surrogate: Terphenyl-d14	1.31		ug/g		85.7	50-140			
Volatiles									
Acetone	11.3	0.50	ug/g	ND	113	50-140			
	11.0	0.00	~9,9			00110			

Order #: 2310245

Report Date: 13-Mar-2023

Order Date: 8-Mar-2023

Project Description: PE2709

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	3.57	0.02	ug/g	ND	89.3	60-130			
Bromodichloromethane	3.64	0.05	ug/g	ND	90.9	60-130			
Bromoform	4.02	0.05	ug/g	ND	101	60-130			
Bromomethane	4.19	0.05	ug/g	ND	105	50-140			
Carbon Tetrachloride	3.55	0.05	ug/g	ND	88.8	60-130			
Chlorobenzene	3.95	0.05	ug/g	ND	98.7	60-130			
Chloroform	3.69	0.05	ug/g	ND	92.3	60-130			
Dibromochloromethane	4.20	0.05	ug/g	ND	105	60-130			
Dichlorodifluoromethane	3.11	0.05	ug/g	ND	77.7	50-140			
1,2-Dichlorobenzene	3.53	0.05	ug/g	ND	88.3	60-130			
1,3-Dichlorobenzene	3.62	0.05	ug/g	ND	90.5	60-130			
1,4-Dichlorobenzene	3.45	0.05	ug/g	ND	86.3	60-130			
1,1-Dichloroethane	3.97	0.05	ug/g	ND	99.3	60-130			
1,2-Dichloroethane	3.63	0.05	ug/g	ND	90.9	60-130			
1,1-Dichloroethylene	3.78	0.05	ug/g	ND	94.5	60-130			
cis-1,2-Dichloroethylene	3.59	0.05	ug/g ug/g	ND	89.8	60-130			
trans-1,2-Dichloroethylene	3.59	0.05	ug/g ug/g	ND	89.8	60-130			
1,2-Dichloropropane	3.42	0.05	ug/g ug/g	ND	85.5	60-130			
cis-1,3-Dichloropropylene	3.42	0.05		ND	85.2	60-130 60-130			
			ug/g						
trans-1,3-Dichloropropylene	3.52	0.05	ug/g	ND	88.0	60-130			
Ethylbenzene	3.86	0.05	ug/g	ND	96.5	60-130			
Ethylene dibromide (dibromoethane, 1,2	3.94	0.05	ug/g	ND	98.5	60-130			
Hexane	4.02	0.05	ug/g	ND	101	60-130			
Methyl Ethyl Ketone (2-Butanone)	9.70	0.50	ug/g	ND	97.0	50-140			
Methyl Isobutyl Ketone	8.58	0.50	ug/g	ND	85.8	50-140			
Methyl tert-butyl ether	7.65	0.05	ug/g	ND	76.5	50-140			
Methylene Chloride	4.10	0.05	ug/g	ND	103	60-130			
Styrene	3.94	0.05	ug/g	ND	98.5	60-130			
1,1,1,2-Tetrachloroethane	4.00	0.05	ug/g	ND	100	60-130			
1,1,2,2-Tetrachloroethane	4.22	0.05	ug/g	ND	105	60-130			
Tetrachloroethylene	4.07	0.05	ug/g	ND	102	60-130			
Toluene	4.00	0.05	ug/g	ND	100	60-130			
1,1,1-Trichloroethane	3.58	0.05	ug/g	ND	89.6	60-130			
1,1,2-Trichloroethane	3.45	0.05	ug/g	ND	86.2	60-130			
Trichloroethylene	3.37	0.05	ug/g	ND	84.1	60-130			
Trichlorofluoromethane	4.47	0.05	ug/g	ND	112	50-140			
Vinyl chloride	3.53	0.02	ug/g	ND	88.2	50-140			
m,p-Xylenes	8.06	0.05	ug/g	ND	101	60-130			
o-Xylene	4.11	0.05	ug/g	ND	103	60-130			
Surrogate: 4-Bromofluorobenzene	7.53		ug/g		94.2	50-140			
Surrogate: Dibromofluoromethane	7.79		ug/g		97.4	50-140			
Surrogate: Toluene-d8	8.30		ug/g		104	50-140			
Benzene	3.57	0.02	ug/g	ND	89.3	60-130			
Ethylbenzene	3.86	0.05	ug/g	ND	96.5	60-130			
Toluene	4.00	0.05	ug/g	ND	100	60-130			
m,p-Xylenes	8.06	0.05	ug/g	ND	101	60-130			
o-Xylene	4.11	0.05	ug/g	ND	103	60-130			
Surrogate: Toluene-d8	8.30		ug/g		104	50-140			

Sample Qualifiers :

2 : Some peak(s) in the GC-FID Chromatogram are not typical of petroleum hydrocarbon distillates. May be the result of high concentrations of non-mineral based compounds not completely removed by the method cleanup. Results may be biased high.

QC Qualifiers :

QM-05 The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

LABORATORIES LTD

Client Name: Paterson

Laurent Bävdl. fio K1G 4,J8 1947	Paracel Order Number (Lab Use Only)	Chain Of Custody (Lab Use Only)
racellabs.com abs.com	7310245	
		Page of 4

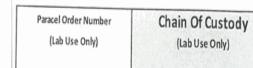
191(12+0)			Deal		0,			()	100	()			117.0							
Contact Name: Karyn Munch	ntact Name: Karyn Munch					Project Ref: PE 2709									Page 1 of 4					
vaaress:															Turna	round	d Time			
9 Auriga Drive			PO #		56	968								1 day	/			3 day		
Telephone: 413 226 7381			E-ma	ii: }			rsongroup.c	•					1 0	2 day	/		V	Regu		
REG 153/04		_			SBery	be @ pater	songroup. ca	1					Date	e Requ	ired:	_				
Table 1 Res/Park Med/Fine REG	Other Regulation		Matrix	Type:	S (Soil,	/Sed.) GW (G	round Water)			100	14		ST.S							
□ Table 2 □ Ind/Comm □ Coarse □ coar			SW (So	urface	Water)	SS (Storm/Sa	nitary Sewer)	13		1		Re	quire	d Ana	lysis					
Table 3 Agri/Other	and think				(Paint)	A (Air) O (Oti	ier)	TEX										Τ		
Table	□ 50-storm			ners				4+B			СP									
For RSC: Yes No Othe		×	Iume	Containers		Sample	Taken	F1-F4+BTEX			by Id			6	AR					
Sample ID/Location Name		Matrix	Air Volume	th of C	-	Date	Time	PHCs	VOCs	PAHs	Metals by		Cr	B (HWS)	Ec/SAR	Hd				
1 BHI-23-553 2 BH2-12-553		5	Ť	2	Feb	24,2023		X	Š	-		Ĩ		m		2		+		
VII2-27-352		1				27,2023			-	X	X	X	X		X			+		
0112-23-334				\vdash		1		X		х	X	×	X		X	X		+		
4 BH3-23-AU2 5 BH3-23- SCI		+	-	\vdash	-	+		X				X	X X	-	X	X		+		
		+		+				X		X	X	X			X		_	+		
11-65- 594		+		+	Feb	28,2.23		X	x	X	χ	X	X		X		_	+		
BH5-23-AV1 BH5-23- 842		+		+		1		X		X	X	X	×		X		_	+		
0.17 67 755		+		+				X		X	X	X	×		X			+		
BH5-23-556		+		+				X		χ	X	X	x		X	×		_		
BH6-23-555		1		ł	March	1,223		X	χ		X	X	×		X		_	\downarrow		
neu(2)					1 40	1,000		×		Х	X	X	X		X					
quished By (Sign)												Metho	d of De	livery:			lance			
quished By (Sign): Blue	Received By Driv	er/De	pot:	1	5	F	Received at Lab:	11		1.2.1	12.12	Verifig	1	A		- 1997 N. 1996		-		
quished By (Print): Bryce Lee	Date/Time:	2/		1	2	15	ate/Time: a D	n	-	-	352	(Q	9	_	1.0	10		
ime: 🙀	Temperature:	14	3/	~:	0		emperature:	031	23	120		Date/1	19456	M	d	81	23	15.		
Custody (Blank).xlsx		12.72	1858-4	12.94	1998		emperature:	9.	2			pH Ver	ifled:		By:		NIK			

Revsion 4.0

Client Name: Pgtison

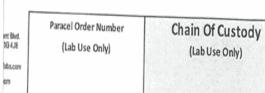
Address:

Contact Name: Karyn Munch



	pad Office 19-2319 St. Laurent Bint, tawa, Ontaris K116 4,8 1-900-749-1947 paranelitanacelitaba.com wu:patacelitaba.com	Paracel Order Number (Lab Use Only)	A COLORADO AND A STREET	f Custody se Only)
Project Ref: PE 270	9		Page	2 of 4
Quote #:				und Time
^{PO #:} 560	168		🗆 1 day	🗆 3 day
E-mail: No. 1 A		the second state of the second	-	

9 Aurigg Prive Telephone: 613 226 738) ØREG 153/04 □ REG 406/19 Other Perrulation		PO E-m	ail: 1	56968 FMUNCH@pifer Berube @pifer	5 50195 mp.cq 13019 cmp.cq							1 day 2 day Requ			□ 3 day ⊡ Regular
Table 1 Res/Park Med/Fine REG 558 PWQ0 Table 2 Ind/Comm Coarse COME MISA		Matrix SW (S	urface	S (Soil/Sed.) GW (G Water) SS (Storm/Sa Paint) A (Air) O (Oti	initary Sewer)	EX				Re	quired	Anal	lysis		
Table SU - Sani SU - Stor Table Mun: For RSC: Yes No Sample ID/Location Name	Matrix	Air Volume	of Containers	Sample	Taken	Cs F1-F4+BTEX	S	st.	Metals by ICP		-	B (HWS)	/s A R		
1 DUP		Air	#	Date	Time	PHCs	VOCs	PAHs	Met	ВН	Cr	B (F	EC/S		
2	5	-	2	Feb 28,2-23		X	x		Х	x	×		x		
3	+														
4															
5														+	+
6															+
7															
8										-					+
9								_			-	-			
10	1				-				_						
	-	-													
inquished By (Sign):										Method	d of Del	ivery:	-		l huciec
Received By D Received By D	river/De	pot:	1	6	Received at Lab: /	1			12 34	Verified	By: 4	2	TUR	- 10	UCIEC
nquished By (Print): Bryse Lee Date/Time;	18/	03	12	Cause 3 1201	Received at Lab: Date/Time: 08	102	12	-	240		1	1	0	h 12	1229
Temperature: Temperature:	1	-		°C 1	l'emperature:	0	2	5.	210.04	pH Veri	25054	10	By:	10/5	1.0
XCMARINE			240.17	Reveion 4.0	Assertion Reads	9	.2	18 647	19.22	201	and the second s	N.	1		



Client Name: Pakison			Proi	ect Ref:	04.45	.)											
Contact Name: Karyn Munch			Quot		PE 2709									Pa	ge <u>3</u>	of	
Address: 9 Auriga Drive			PO #		Teda	,								Turna	round	Time	
			E-ma		56968								1 day			3	day
Telephone: 613 226 738			-		Munch @ Pate Berube @ pate	rsongroup.co							2 day			₽ R	egula
REG 153/04 REG 406/19 Other R	egulation	T -			peros epgr	vson group. (9					Date	Requ	ired:			
□ Table 1 □ Res/Park □ Med/Fine □ REG 559	PWQ0		Matrix	Type:	S (Soil/Sed.) GW (C	Found Water)			1230		Pa	aulea	dAnal	huele	1093		
Table 2 Ind/Comm Coarse Course	I MISA		SW (Su	rface \ P / f	Water) SS (Storm/Saint) A (Air) O (Ot	anitary Sewer)	1			Ser.	ne	quire	d Anal	ysis			
Table 3 Agri/Other SU-Sani	SU-Storm		T	T.,,		ner)	Ě										Γ
J Table	- SU-Storm			ners			4+B1			٩.							
For RSC: Yes No Other:			Air Volume	Containers	Sample	e Taken	F1-F4+BTEX			Metals by ICP				48			
Sample ID/Location Name		Matrix	ir Vol	of C		1	PHCs F	VOCs	PAHs	tals		-	B (HWS)	EC/SAR	-		
1 BH3-23-555		_	4	*	Date	Time	H	\$	ΡA	Me	ĥ	CrVI	B	ŭ	Hď		
2 BH3-23-556		5		2	Feb 27,2-27		X			Χ	Х	х		۲			
3		L		L	L		x	Х		۲	X	X		х	x		
																	T
																	\vdash
															-		\vdash
													-				\vdash
									-								+-
											-						+-
								-		_				_			-
1								-	-		-						-
nents: & These samples are already at t	4 lab. The	ord	e1 nu	mbo	r is 230	9472				-	Method	d of De	livery:	1	16.15	1	
uished By (Sign): Relee	Received By Drive											Th	CAL	FL	C	OUGE	<
strid by (Print): Byce Lee	Date/Time:	-veb	1	1	COUNE		n	2	4	1	/erified	_	20		_		
lime:	Temperature:	10	3/	12	3 1201	Date/Time:08/	03/	23	12	40	Date/Fi	me:N	10	8	2014	123	9
Custody (Blank).xlsx	remperature;				°C	emperature:		.2			H Ver	Bad- I	5	By:	-	10	

6	PA	RA	С	ЕL	
	LABOR	RATOR	IES	LTD.	

Client Name: Pattison		Pro	lect Ref	D/	km											
Contact Name: Karyn Munch		Que	te #:	PE 2709									Pa	ige 4	of 4	
Address: 9 Aurign Drive		PO		56965	X									iround	d Time	
Telephone: 6 7 2.2.6 7-381		E-m	ail: ≮/ Sj	56968 Munch @ pater Berube @ pater	o songroup.co songroup.co	1] 1 day] 2 day e Requ	/			3 day Regula
		Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other)					Re	Required Analysis								
Table Mun: SU-Storm SU-Storm	ix	Air Volume	Containers	Sample	Taken	PHCs F1-F4+BTEX			Metals by ICP			(6	AR			
Sample ID/Location Name 1 BH1-23-552	Matrix	Aür V(# of (Date	Time	HCs	VOCs	PAHs	letals	БН	CrVI	B (HWS)	Ec/SAR	Hd		
2 BH1-23-555	5		18	Feb 24, 103		X	>	۵.	Σ	Ĩ	Ö	۵		×		-
3	٢		2	Ļ		x	-						x	^		+-
4									-					-	-	+-
5								_				_		-+	+	+
6									-							+
7														+	+	+
3														+	+	+
	_		_											+	+	+
	_	_							+				-	+	+	+-
ments: \$\$ These samples an a lready in the lab. The	orde	21 10	mber	is 230909	1				N	Vethod	of Del	ivery:				10000
nquished By (Sign): Klu Received By Drive	er/Dep	ot:	-/	R	eceived at Lab:	1		20	v	/erified	By:	12	ACI	Z	la	CIE
Iquished By (Print): Bry a Lee Date/Time:	3/	03	12	ause 3 12d	ate/Time:OS/	03/	23	12	40 0	ate/Tir	me	M	C	8h	151	35
of Custody (Blank).vlsx	212	C. C. C.	1994	C To Revsion 4.0	emperature:	9	.2	14.50	p	H Veri	fied: []	By:			-

Paracel II LABORATORIES				90 (-23 900 -80 80 80 80 80 80 80 80 80 80 80 80 80 8	Office 119 St. Laurent Blvd. 10-745-1547 Io-745-1547 anacellabs.com anacellabs.com	Pa	racel O (Lab I	irder N Use Of		r		Cł		Of Cu b Use O	stody nly)
n Lour in a		-	ct Ref:	PE	2709								Pa	ge c	of
Contact Name: Samuel Benke, Lang Mun Address: 9 Aunza Drive	ch	Quote	e #:										Turna	round	Time
		PO #:										1 day			🗆 3 day
9 Aunza Drive		E-mai	" F	munchor	atersong	100	yp.	دم				2 day			Regula
Telephone: 615-726-7381		5	beri	munch Op ib <i>eap</i> a te	Songnup.	^					Date	Requ	ired:		-
REG 153/04 REG 406/19 Other Regulation				S (Soil/Sed.) GW (G			1.00			1.163	19.53	12.74	1.128		
Table 1 Res/Park Med/Fine REG 558 PWQ0			rface V	Vater) SS (Storm/Sa	initary Sewer)					Re	quired	d Anal	lysis		
Table 2 Ind/Comm Coarse CCME MISA			P (P	aint) A (Air) O (Ot	her)	X		Γ							
Table 3 Agri/Other SU-Sani SU-Storm			ers			F1-F4+BTEX			٩				¥		
TableMun:		ê B	Containers	Sample	e Taken	1-F4			y IC				8	5t	
For RSC: Yes No Other:	Matrix	Air Volume Air Volume Date					S	<u>م</u>	Metals by ICP		_	B (HWS)	EC/54R	d l	
Sample ID/Location Name	-	Air	0 #	Date	Time	PHCs	VOCS	PAHs	Met	Б,	CrVI	B (F	4		
1 1341-23-552	S		1	Feb. 2412	3	1							V	-	
2															
3															
4															++-
5									1						
6															+
7						1									
8						1					_				
9						+									
10						+				-	_				++-
comments: & Atta Stephanie										Metho	of Del	han			
-Missing Vial From We	rb	5	On	der a	309081					/	PAL	AC	e	la	KIEC
Received By Cign): Received By Dri	ver/De	pot:	1	-	Received at ab:	2.1.2			11.5%	Verified		N		128	~
Relinquished By (Print): Samo Benbi Date/Time:	8	10-		LOUSE	Date/Time:	2	12	T	r	Date/Ti	6	l	10	5	111.
Date/Time: Temperature:	1	23	12	9 1529 °C	Temperature:	69	25	60.		100		10	8	ny	5 6/0
ain of Custody (Blank).v/sx	233	00.27	124	Revsion 4.0	remperature.	15.	9		23	pH Ver	ified: L		By:		

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Sam Berube

Client PO: 56893 Project: PE2709 Custody:

Report Date: 2-Mar-2023 Order Date: 27-Feb-2023

Order #: 2309081

This Certificate of Analysis contains analytical data applicable to the following samples as submitted :

Paracel ID 2309081-01 2309081-02 **Client ID** BH1-23-SS2 BH1-23-SS4

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	1-Mar-23	2-Mar-23
Mercury by CVAA	EPA 7471B - CVAA, digestion	2-Mar-23	2-Mar-23
PHC F1	CWS Tier 1 - P&T GC-FID	28-Feb-23	28-Feb-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	27-Feb-23	28-Feb-23
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	1-Mar-23	1-Mar-23
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	27-Feb-23	2-Mar-23
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	28-Feb-23	28-Feb-23
Solids, %	CWS Tier 1 - Gravimetric	28-Feb-23	28-Feb-23

Report Date: 02-Mar-2023 Order Date: 27-Feb-2023

Client: Paterson Group Consulting Engineers

Client PO: 56893

Report Date: 02-Mar-2023

Order Date: 27-Feb-2023

Project Description: PE2709

	F				<u>г </u>
	Client ID:	BH1-23-SS2	BH1-23-SS4	-	-
	Sample Date: Sample ID:	24-Feb-23 09:00 2309081-01	24-Feb-23 09:00 2309081-02	-	
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					۱۱
% Solids	0.1 % by Wt.	90.7	92.5	-	-
Metals	- + +		•		••
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	3.5	-	-	-
Barium	1.0 ug/g dry	62.5	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	<5.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	14.9	-	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	3.9	-	-	-
Copper	5.0 ug/g dry	13.0	-	-	-
Lead	1.0 ug/g dry	61.9	-	-	-
Mercury	0.1 ug/g dry	0.2	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	8.7	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	17.2	-	-	-
Zinc	20.0 ug/g dry	55.3	-	-	-
Volatiles	•		•		• • • • • •
Acetone	0.50 ug/g dry	-	<0.50	-	-
Benzene	0.02 ug/g dry	-	<0.02	-	-
Bromodichloromethane	0.05 ug/g dry	-	<0.05	-	-
Bromoform	0.05 ug/g dry	-	<0.05	-	-
Bromomethane	0.05 ug/g dry	-	<0.05	-	-
Carbon Tetrachloride	0.05 ug/g dry	-	<0.05	-	-
Chlorobenzene	0.05 ug/g dry	-	<0.05	-	-
Chloroform	0.05 ug/g dry	-	<0.05	-	-
Dibromochloromethane	0.05 ug/g dry	-	<0.05	-	-
Dichlorodifluoromethane	0.05 ug/g dry	-	<0.05	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	-	<0.05	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	-	<0.05	-	-

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Order #: 2309081

Report Date: 02-Mar-2023

Order Date: 27-Feb-2023

Project Description: PE2709

1	Client ID: Sample Date: Sample ID: MDL/Units	BH1-23-SS2 24-Feb-23 09:00 2309081-01 Soil	BH1-23-SS4 24-Feb-23 09:00 2309081-02 Soil	- - -	- - - -
1,4-Dichlorobenzene	0.05 ug/g dry	-	<0.05	-	-
1,1-Dichloroethane	0.05 ug/g dry	-	<0.05	-	-
1,2-Dichloroethane	0.05 ug/g dry	-	<0.05	-	-
1,1-Dichloroethylene	0.05 ug/g dry	-	<0.05	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	-	-
1,2-Dichloropropane	0.05 ug/g dry	-	<0.05	-	_
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	_	<0.05	-	_
Ethylbenzene	0.05 ug/g dry	-	<0.05	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	-	<0.05	-	_
Hexane	0.05 ug/g dry	_	<0.05	-	_
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	_	<0.50	-	_
Methyl Isobutyl Ketone	0.50 ug/g dry	_	<0.50	-	_
Methyl tert-butyl ether	0.05 ug/g dry	-	<0.05	_	_
Methylene Chloride	0.05 ug/g dry	-	<0.05	-	-
Styrene	0.05 ug/g dry	_	<0.05	-	_
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	_	<0.05	-	_
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	-	-
Tetrachloroethylene	0.05 ug/g dry	-	<0.05	-	-
Toluene	0.05 ug/g dry	_	<0.05	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	-	<0.05	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	_	<0.05	-	_
Trichloroethylene	0.05 ug/g dry	_	<0.05	-	_
Trichlorofluoromethane	0.05 ug/g dry	-	<0.05	-	-
Vinyl chloride	0.02 ug/g dry	-	<0.02	-	_
m,p-Xylenes	0.05 ug/g dry	_	<0.05	-	_
o-Xylene	0.05 ug/g dry	_	<0.05	-	-
Xylenes, total	0.05 ug/g dry	_	<0.05	_	_
4-Bromofluorobenzene	Surrogate	-	105%	-	-
Dibromofluoromethane	Surrogate	-	94.4%	-	-
Toluene-d8	Surrogate	-	115%	-	-
Hydrocarbons	7		1		· · · · · · · · · · · · · · · · · · ·
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	-	43	-	-

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

PARACEL LABORATORIES LTD.

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 56893

Report Date: 02-Mar-2023

Order Date: 27-Feb-2023

	Client ID: Sample Date:	BH1-23-SS2 24-Feb-23 09:00 2309081-01	BH1-23-SS4 24-Feb-23 09:00 2309081-02	-	- -
	Sample ID: MDL/Units	Soil	Soil	-	-
F3 PHCs (C16-C34)	8 ug/g dry	-	364	-	-
F4 PHCs (C34-C50)	6 ug/g dry	-	197	-	-
Semi-Volatiles			• • • •		
Acenaphthene	0.02 ug/g dry	0.03	-	-	-
Acenaphthylene	0.02 ug/g dry	0.05	-	-	-
Anthracene	0.02 ug/g dry	0.09	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	0.23	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	0.26	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.29	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.16	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.14	-	-	-
Chrysene	0.02 ug/g dry	0.29	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.04	-	-	-
Fluoranthene	0.02 ug/g dry	0.56	-	-	-
Fluorene	0.02 ug/g dry	0.02	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.14	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	0.13	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	0.18	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	0.31	-	-	-
Naphthalene	0.01 ug/g dry	0.14	-	-	-
Phenanthrene	0.02 ug/g dry	0.42	-	-	-
Pyrene	0.02 ug/g dry	0.50	-	-	-
2-Fluorobiphenyl	Surrogate	101%	-	-	-
Terphenyl-d14	Surrogate	115%	-	-	-

Order #: 2309081

Report Date: 02-Mar-2023

Order Date: 27-Feb-2023

Project Description: PE2709

Method Quality Control: Blank

Analyta	_	Reporting		Source		%REC		RPD	-
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g ug/g						
Metals	NB	0	ug/g						
	ND	1.0							
Antimony	ND ND	1.0 1.0	ug/g						
Arsenic Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g ug/g						
Cadmium	ND	0.5	ug/g ug/g						
Chromium (VI)	ND	0.2	ug/g ug/g						
Chromium	ND	5.0	ug/g ug/g						
Cobalt	ND	1.0	ug/g ug/g						
Copper	ND	5.0	ug/g ug/g						
Lead	ND	1.0	ug/g ug/g						
Mercury	ND	0.1	ug/g ug/g						
Molybdenum	ND	1.0	ug/g ug/g						
Nickel	ND	5.0	ug/g ug/g						
Selenium	ND	1.0	ug/g ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g ug/g						
Vanadium	ND	10.0	ug/g ug/g						
Zinc	ND	20.0	ug/g ug/g						
Semi-Volatiles		20.0	~9 [,] 9						
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.61		ug/g		121	50-140			
Surrogate: Terphenyl-d14	1.63		ug/g		122	50-140			
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
		0.05	uala						
Dibromochloromethane	ND	0.05	ug/g						

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Method Quality Control: Blank

Report Date: 02-Mar-2023

Order Date: 27-Feb-2023

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2-Dichlorobenzene	ND	0.05	ua/a						
1,3-Dichlorobenzene	ND	0.05	ug/g ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g ug/g						
1,1-Dichloroethane	ND	0.05	ug/g ug/g						
1,2-Dichloroethane	ND	0.05	ug/g ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g ug/g						
1,2-Dichloropropane	ND	0.05	ug/g ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g ug/g						
Ethylbenzene	ND	0.05	ug/g ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g ug/g						
Hexane	ND	0.05	ug/g ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g ug/g						
Methylene Chloride	ND	0.05	ug/g ug/g						
Styrene	ND	0.05	ug/g ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g ug/g						
Tetrachloroethylene	ND	0.05	ug/g ug/g						
Toluene	ND	0.05	ug/g ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g ug/g						
Trichloroethylene	ND	0.05	ug/g ug/g						
Trichlorofluoromethane	ND	0.05	ug/g ug/g						
Vinyl chloride	ND	0.03	ug/g ug/g						
m,p-Xylenes	ND	0.02	ug/g ug/g						
o-Xylene	ND	0.05	ug/g ug/g						
Xylenes, total	ND	0.05							
Surrogate: 4-Bromofluorobenzene	8.49	0.05	ug/g		106	50-140			
-			ug/g						
Surrogate: Dibromofluoromethane	7.36		ug/g		92.0	50-140			
Surrogate: Toluene-d8	8.87		ug/g		111	50-140			

Client PO: 56893

Report Date: 02-Mar-2023

Order Date: 27-Feb-2023

Project Description: PE2709

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons			0.110	1 toout					
-		7		ND			NO	40	
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND ND	8 6	ug/g	ND			NC NC	30 30	
F4 PHCs (C34-C50)	ND	U	ug/g	ND			INC	30	
Metals									
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	3.3	1.0	ug/g	3.5			6.1	30	
Barium	71.5	1.0	ug/g	62.5			13.5	30	
Beryllium	ND	0.5	ug/g	ND			NC	30	
Boron	ND	5.0	ug/g	ND			NC	30	
Cadmium	ND	0.5	ug/g	ND			NC NC	30	
Chromium (VI) Chromium	ND 15.5	0.2 5.0	ug/g	ND 14.9			4.4	35 30	
Cobalt	3.9	5.0 1.0	ug/g ug/g	3.9			4.4 0.9	30 30	
Copper	12.2	5.0	ug/g ug/g	3.9 13.0			0.9 6.7	30	
Lead	72.9	1.0	ug/g ug/g	61.9			16.3	30	
Mercury	0.217	0.1	ug/g ug/g	0.228			4.7	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	8.5	5.0	ug/g	8.7			2.6	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	16.6	10.0	ug/g	17.2			3.6	30	
Zinc	54.7	20.0	ug/g	55.3			1.1	30	
Physical Characteristics									
% Solids	92.5	0.1	% by Wt.	92.3			0.2	25	
Semi-Volatiles			···· , ····						
		0.02	uala	ND			NC	40	
Acenaphthene Acenaphthylene	ND ND	0.02	ug/g	ND ND			NC	40 40	
Acenaphinylene	ND	0.02	ug/g ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g ug/g	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Chrysene	ND	0.02	ug/g	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g	ND			NC	40	
Fluoranthene	ND	0.02	ug/g	ND			NC	40	
Fluorene	ND	0.02	ug/g	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
Naphthalene	ND	0.01	ug/g	ND			NC	40	
Phenanthrene	ND	0.02	ug/g	ND			NC	40	
Pyrene	ND	0.02	ug/g	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	1.38		ug/g		98.3	50-140			
Surrogate: Terphenyl-d14	1.73		ug/g		124	50-140			
Volatiles									
Acetone	ND	0.50	ug/g	ND			NC	50	
Benzene	ND	0.02	ug/g	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g	ND			NC	50	
Bromoform	ND	0.05	ug/g	ND			NC	50	
Bromomethane	ND	0.05	ug/g	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g	ND			NC	50	

Order #: 2309081

Report Date: 02-Mar-2023

Order Date: 27-Feb-2023

Project Description: PE2709

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Chloroform	ND	0.05	ug/g	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g	ND			NC	50	
Hexane	ND	0.05	ug/g	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g	ND			NC	50	
Styrene	ND	0.05	ug/g	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05		ND			NC	50	
Surrogate: 4-Bromofluorobenzene	10.1				111	50-140			
Surrogate: Dibromofluoromethane	8.71				95.3	50-140			
0									
Surrogate: 4-Bromofluorobenzene	10.1	0.05	ug/g ug/g ug/g ug/g	ND			NC	50	

Method Quality Control: Spike

Report Date: 02-M
Order Date: 27-Fe
Project Description:

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	163	7	ug/g	ND	81.3	80-120			
F2 PHCs (C10-C16)	89	4	ug/g	ND	102	60-140			
F3 PHCs (C16-C34)	228	8	ug/g	ND	107	60-140			
F4 PHCs (C34-C50)	166	6	ug/g	ND	123	60-140			
Metals									
Arsenic	48.0	1.0	ug/g	1.4	93.2	70-130			
Barium	69.9	1.0	ug/g	25.0	89.9	70-130			
Beryllium	47.5	0.5	ug/g	ND	94.7	70-130			
Boron	44.1	5.0	ug/g	ND	85.0	70-130			
Cadmium	43.9	0.5	ug/g	ND	87.6	70-130			
Chromium (VI)	0.07	0.2	ug/g	ND	35.0	70-130			QM-05
Chromium	54.7	5.0	ug/g	6.0	97.5	70-130			
Cobalt	48.5	1.0	ug/g	1.6	93.8	70-130			
Copper	49.8	5.0	ug/g	5.2	89.3	70-130			
Lead	71.4	1.0	ug/g	24.8	93.3	70-130			
Mercury	1.42	0.1	ug/g	0.228	79.3	70-130			
Molybdenum	45.8	1.0	ug/g	ND	91.2	70-130			
Nickel	50.4	5.0	ug/g	ND	93.8	70-130			
Selenium	45.0	1.0	ug/g	ND	89.6	70-130			
Silver	40.8	0.3	ug/g	ND	81.4	70-130			
Thallium	43.4	1.0	ug/g	ND	86.6	70-130			
Uranium	47.6	1.0	ug/g	ND	94.9	70-130			
Vanadium	54.9	10.0	ug/g	ND	96.0	70-130			
Zinc	64.1	20.0	ug/g	22.1	83.9	70-130			
Semi-Volatiles									
Acenaphthene	0.208	0.02	ug/g	ND	119	50-140			
Acenaphthylene	0.172	0.02	ug/g	ND	98.3	50-140			
Anthracene	0.168	0.02	ug/g	ND	95.7	50-140			
Benzo [a] anthracene	0.136	0.02	ug/g	ND	77.9	50-140			
Benzo [a] pyrene	0.148	0.02	ug/g	ND	84.8	50-140			
Benzo [b] fluoranthene	0.186	0.02	ug/g	ND	106	50-140			
Benzo [g,h,i] perylene	0.155	0.02	ug/g	ND	88.8	50-140			
Benzo [k] fluoranthene	0.157	0.02	ug/g	ND	89.8	50-140			
Chrysene	0.209	0.02	ug/g	ND	120	50-140			
Dibenzo [a,h] anthracene	0.156	0.02	ug/g	ND	89.3	50-140			
Fluoranthene	0.178	0.02	ug/g	ND	102	50-140			
Fluorene	0.204	0.02	ug/g	ND	117	50-140			
Indeno [1,2,3-cd] pyrene	0.161	0.02	ug/g	ND	92.1	50-140			
1-Methylnaphthalene	0.231	0.02	ug/g	ND	132	50-140			
2-Methylnaphthalene	0.235	0.02	ug/g	ND	134	50-140			
Naphthalene	0.240	0.01	ug/g	ND	137	50-140			
Phenanthrene	0.209	0.02	ug/g	ND	119	50-140			
Pyrene	0.177	0.02	ug/g	ND	101	50-140			
Surrogate: 2-Fluorobiphenyl	1.61		ug/g		115	50-140			
Surrogate: Terphenyl-d14	1.95		ug/g		139	50-140			
Volatiles		0.55			100				
Acetone	12.9	0.50	ug/g	ND	129	50-140			
Benzene	4.55	0.02	ug/g	ND	114	60-130			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Order #: 2309081

Mar-2023

eb-2023

: PE2709

Method Quality Control: Spike

Report Date: 02-Mar-2023

Order Date: 27-Feb-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromodichloromethane	3.68	0.05	ug/g	ND	92.1	60-130			
Bromoform	3.39	0.05	ug/g	ND	84.7	60-130			
Bromomethane	4.35	0.05	ug/g	ND	109	50-140			
Carbon Tetrachloride	3.04	0.05	ug/g	ND	75.9	60-130			
Chlorobenzene	4.11	0.05	ug/g	ND	103	60-130			
Chloroform	4.06	0.05	ug/g	ND	101	60-130			
Dibromochloromethane	3.45	0.05	ug/g	ND	86.2	60-130			
Dichlorodifluoromethane	4.12	0.05	ug/g	ND	103	50-140			
1,2-Dichlorobenzene	3.67	0.05	ug/g	ND	91.7	60-130			
1,3-Dichlorobenzene	3.53	0.05	ug/g	ND	88.2	60-130			
1,4-Dichlorobenzene	3.40	0.05	ug/g	ND	85.0	60-130			
1,1-Dichloroethane	4.12	0.05	ug/g	ND	103	60-130			
1,2-Dichloroethane	4.56	0.05	ug/g	ND	114	60-130			
1,1-Dichloroethylene	4.09	0.05	ug/g	ND	102	60-130			
cis-1,2-Dichloroethylene	3.87	0.05	ug/g	ND	96.6	60-130			
trans-1,2-Dichloroethylene	3.73	0.05	ug/g	ND	93.2	60-130			
1,2-Dichloropropane	4.53	0.05	ug/g	ND	113	60-130			
cis-1,3-Dichloropropylene	2.91	0.05	ug/g	ND	72.7	60-130			
trans-1,3-Dichloropropylene	2.62	0.05	ug/g	ND	65.5	60-130			
Ethylbenzene	4.38	0.05	ug/g	ND	110	60-130			
Ethylene dibromide (dibromoethane, 1,2-	3.45	0.05	ug/g	ND	86.2	60-130			
Hexane	3.68	0.05	ug/g	ND	92.0	60-130			
Methyl Ethyl Ketone (2-Butanone)	12.7	0.50	ug/g	ND	127	50-140			
Methyl Isobutyl Ketone	12.1	0.50	ug/g	ND	121	50-140			
Methyl tert-butyl ether	12.2	0.05	ug/g	ND	122	50-140			
Methylene Chloride	4.11	0.05	ug/g	ND	103	60-130			
Styrene	3.42	0.05	ug/g	ND	85.6	60-130			
1,1,1,2-Tetrachloroethane	3.35	0.05	ug/g	ND	83.8	60-130			
1,1,2,2-Tetrachloroethane	3.34	0.05	ug/g	ND	83.4	60-130			
Tetrachloroethylene	3.73	0.05	ug/g	ND	93.2	60-130			
Toluene	4.42	0.05	ug/g	ND	110	60-130			
1,1,1-Trichloroethane	3.44	0.05	ug/g	ND	86.1	60-130			
1,1,2-Trichloroethane	3.93	0.05	ug/g	ND	98.3	60-130			
Trichloroethylene	3.83	0.05	ug/g	ND	95.6	60-130			
Trichlorofluoromethane	3.82	0.05	ug/g	ND	95.4	50-140			
Vinyl chloride	2.89	0.02	ug/g	ND	72.3	50-140			
m,p-Xylenes	8.25	0.05	ug/g	ND	103	60-130			
o-Xylene	4.24	0.05	ug/g	ND	106	60-130			
Surrogate: 4-Bromofluorobenzene	8.35		ug/g		104	50-140			
Surrogate: Dibromofluoromethane	8.33		ug/g		104	50-140			
Surrogate: Toluene-d8	8.58		ug/g		107	50-140			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Qualifier Notes:

QC Qualifiers :

QM-05 The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Par PARACEL				9081	ent Blvd. C1G 4J8 Ilabs.com com		icel Or (Lab U () 9 ()	se On					o Of Cu b Use C	ustody only)	
Client Name: Paterson Greup Inc.		Projec		PER	109							Ρ	age <u>1</u>	of _	
Client Name: Paterson Group Inc. Contact Name: Sarubel Bouche Karyn M	unch	Quote	#:									Turr	around	Time	
Address:		PO #:	F	56893								1 day		🗆 3 day	·
9 Auriza Drive, ottawa, or	V	E-mail	Sb	enseopo	atersongr	eup	• ~ 4					2 day		Regu	ular
Telephone: 613 - 226 - 7381				unchapat							Date	Required			_
REG 153/04 REG 406/19 Other Regulation	N	Aatrix T		(Soil/Sed.) GW (Gr						Ree	auirea	d Analysis			
Table 1 Res/Park Med/Fine REG 558 PWQO			rface W	/ater) SS (Storm/San	itary Sewer)										
Table 2 Ind/Comm Coarse CCME MISA			P (Pi	aint) A (Air) O (Oth	er)	TEX-									
Table 3 Agri/Other SU - Sani SU - Storm			lers			F1-F4+BTEX			СР						
TableMun:		ame	Containers	Sample	Taken	1-1-1			Metals by ICP			ŝ			
For RSC: Yes No Other:	Matrix	Air Volume	of Co		_	PHCs	vocs	PAHs	etals	5	CrVI	(SWH)			
Sample ID/Location Name		Ā	*	Date	Time	ā	ž		2/	БН	V		+		_
1 BH1-23 - SS2	5		1	Feb.24123		\vdash		-		-	-		+		_
2 BH1-23-554	_		2			V	V								_
3 BHI-23-555 (hold)	4		2	- T									_		
4															
5															
6															
7															
8															
9															
10	\top														
Comments: # please place 13H1-23-555 or	n no	old			<u> </u>		2			Metho	nd of De	elivery: WI	24	-	
Relinquished By (Sign):	Driver/D	epot:		asi Asa	Received at tab:	P				Verifie		rdr.	Dani	alas	
Relinquished By (Print): Samuel Baube Date/Time:				271	Date/Time: 2	7/2	3	3:0	550		Time:	C. Bakanta	27.		
Date/Time: Temperature	:			°C	Temperature:	13.	1		P		rified:		W:		

Chain of Custody (Rlank) visy

Revsion 4 N

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Sam Berube

Client PO: 56931 Project: PE2709 Custody:

Report Date: 8-Mar-2023 Order Date: 3-Mar-2023

Order #: 2309472

This Certificate of Analysis contains analytical data applicable to the following samples as submitted :

Paracel ID	Client ID
2309472-01	BH2-23-SS5
2309472-03	BH3-23-SS5
2309472-05	BH4-23-SS3
2309472-06	BH6-23-SS2
2309472-07	DUP1-23

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary

REG 153: Metals by ICP/MS, soil

REG 153: VOCs by P&T GC/MS

REG 153: PAHs by GC-MS

pH, soil

PHC F1

SAR

Solids, %

Mercury by CVAA

PHCs F2 to F4

Analysis Summary Table			
Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	6-Mar-23	7-Mar-23
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	7-Mar-23	7-Mar-23
Conductivity	MOE E3138 - probe @25 °C, water ext	7-Mar-23	7-Mar-23

EPA 7471B - CVAA, digestion

CWS Tier 1 - GC-FID, extraction

EPA 6020 - Digestion - ICP-MS

EPA 8270 - GC-MS, extraction

CWS Tier 1 - P&T GC-FID

EPA 8260 - P&T GC-MS

CWS Tier 1 - Gravimetric

Calculated

EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.

7-Mar-23

6-Mar-23

6-Mar-23

6-Mar-23

7-Mar-23

3-Mar-23

6-Mar-23

7-Mar-23

6-Mar-23

Report Date: 08-Mar-2023 Order Date: 3-Mar-2023

Project Description: PE2709

7-Mar-23

7-Mar-23

7-Mar-23

7-Mar-23

7-Mar-23

6-Mar-23

7-Mar-23

7-Mar-23

6-Mar-23

Client: Paterson Group Consulting Engineers

Client PO: 56931

Order #: 2309472

Report Date: 08-Mar-2023

Order Date: 3-Mar-2023

Project Description: PE2709

	Client ID: Sample Date: Sample ID: MDL/Units	BH2-23-SS5 27-Feb-23 00:00 2309472-01 Soil	BH3-23-SS5 27-Feb-23 00:00 2309472-03 Soil	BH4-23-SS3 28-Feb-23 00:00 2309472-05 Soil	BH6-23-SS2 01-Mar-23 00:00 2309472-06 Soil
Physical Characteristics			<u> </u>		
% Solids	0.1 % by Wt.	92.6	92.7	92.5	96.5
General Inorganics			•		
SAR	0.01 N/A	-	-	4.39	4.65
Conductivity	5 uS/cm	-	-	1160	1770
рН	0.05 pH Units	-	-	7.59	7.89
Metals				1	
Antimony	1.0 ug/g dry	-	-	<1.0	<1.0
Arsenic	1.0 ug/g dry	-	-	3.4	2.2
Barium	1.0 ug/g dry	-	-	31.3	211
Beryllium	0.5 ug/g dry	-	-	<0.5	<0.5
Boron	5.0 ug/g dry	-	-	6.8	16.2
Cadmium	0.5 ug/g dry	-	-	<0.5	<0.5
Chromium	5.0 ug/g dry	-	-	13.0	11.0
Chromium (VI)	0.2 ug/g dry	-	-	<0.2	<0.2
Cobalt	1.0 ug/g dry	-	-	3.3	5.5
Copper	5.0 ug/g dry	-	-	6.1	7.2
Lead	1.0 ug/g dry	-	-	12.3	5.8
Mercury	0.1 ug/g dry	-	-	<0.1	<0.1
Molybdenum	1.0 ug/g dry	-	-	<1.0	1.0
Nickel	5.0 ug/g dry	-	-	7.5	10.1
Selenium	1.0 ug/g dry	-	-	<1.0	<1.0
Silver	0.3 ug/g dry	-	-	<0.3	<0.3
Thallium	1.0 ug/g dry	-	-	<1.0	<1.0
Uranium	1.0 ug/g dry	-	-	<1.0	<1.0
Vanadium	10.0 ug/g dry	-	-	18.9	<10.0
Zinc	20.0 ug/g dry	-	-	32.1	<20.0
Volatiles			•		
Acetone	0.50 ug/g dry	<0.50	<0.50	-	-
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	-

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Report Date: 08-Mar-2023

Order Date: 3-Mar-2023

	Client ID: Sample Date: Sample ID:	BH2-23-SS5 27-Feb-23 00:00 2309472-01	BH3-23-SS5 27-Feb-23 00:00 2309472-03	BH4-23-SS3 28-Feb-23 00:00 2309472-05	BH6-23-SS2 01-Mar-23 00:00 2309472-06
	MDL/Units	Soil	Soil	Soil	Soil
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	<0.05	-	-
Hexane	0.05 ug/g dry	<0.05	<0.05	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	-
Styrene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
4-Bromofluorobenzene	Surrogate	104%	103%	-	-
Dibromofluoromethane	Surrogate	113%	113%	-	-

Client PO: 56931

Report Date: 08-Mar-2023 Order Date: 3-Mar-2023

	Client ID: Sample Date: Sample ID: MDL/Units	BH2-23-SS5 27-Feb-23 00:00 2309472-01 Soil	BH3-23-SS5 27-Feb-23 00:00 2309472-03 Soil	BH4-23-SS3 28-Feb-23 00:00 2309472-05 Soil	BH6-23-SS2 01-Mar-23 00:00 2309472-06 Soil	
Toluene-d8	Surrogate	119%	119%	-	-	
Benzene	0.02 ug/g dry			<0.02	<0.02	
Ethylbenzene	0.05 ug/g dry	_	_	<0.05	<0.05	
Toluene	0.05 ug/g dry	_	_	<0.05	<0.05	
m,p-Xylenes	0.05 ug/g dry	_	_	<0.05	<0.05	
o-Xylene	0.05 ug/g dry	_	_	<0.05	<0.05	
Xylenes, total	0.05 ug/g dry	-	_	<0.05	<0.05	
Toluene-d8	Surrogate	-	-	120%	115%	
Hydrocarbons	- + - +		•	ł	ł	
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	<7	<7	
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	<4	<4	
F3 PHCs (C16-C34)	8 ug/g dry	<8	-	<8	50	
F4 PHCs (C34-C50)	6 ug/g dry	<6	-	<6	42	
Semi-Volatiles			•	1		
Acenaphthene	0.02 ug/g dry	-	-	<0.02	<0.02	
Acenaphthylene	0.02 ug/g dry	-	-	<0.02	<0.02	
Anthracene	0.02 ug/g dry	-	-	<0.02	<0.02	
Benzo [a] anthracene	0.02 ug/g dry	-	-	<0.02	<0.02	
Benzo [a] pyrene	0.02 ug/g dry	-	-	<0.02	<0.02	
Benzo [b] fluoranthene	0.02 ug/g dry	-	-	<0.02	<0.02	
Benzo [g,h,i] perylene	0.02 ug/g dry	-	-	<0.02	<0.02	
Benzo [k] fluoranthene	0.02 ug/g dry	-	-	<0.02	<0.02	
Chrysene	0.02 ug/g dry	-	-	<0.02	<0.02	
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	-	<0.02	<0.02	
Fluoranthene	0.02 ug/g dry	-	-	<0.02	<0.02	
Fluorene	0.02 ug/g dry	-	-	<0.02	<0.02	
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	-	<0.02	<0.02	
1-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	<0.02	
2-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	<0.02	
Methylnaphthalene (1&2)	0.04 ug/g dry	-	-	<0.04	<0.04	
Naphthalene	0.01 ug/g dry	-	-	<0.01	<0.01	
Phenanthrene	0.02 ug/g dry	-	-	<0.02	<0.02	
Pyrene	0.02 ug/g dry	-	-	<0.02	<0.02	
2-Fluorobiphenyl	Surrogate	-	-	a (70)		
Terphenyl-d14	Surrogate	-	-	119%		

Client: Paterson Group Consulting Engineers

Client PO: 56931

Report Date: 08-Mar-2023

Order Date: 3-Mar-2023

	Client ID: Sample Date: Sample ID:	DUP1-23 27-Feb-23 00:00 2309472-07		-	- - -
	MDL/Units	Soil	-	-	-
Physical Characteristics			· · · · ·		
% Solids	0.1 % by Wt.	93.4	-	-	-
Volatiles			<u>г</u>		г
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-

Report Date: 08-Mar-2023 Order Date: 3-Mar-2023

	-				
	Client ID:	DUP1-23	-	-	-
	Sample Date:	27-Feb-23 00:00	-	-	-
	Sample ID:	2309472-07	-	-	-
	MDL/Units	Soil	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
4-Bromofluorobenzene	Surrogate	99.6%	-	_	-
Dibromofluoromethane	Surrogate	111%	-	-	-
Toluene-d8	Surrogate	114%	-	-	-

Г

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 56931

Method Quality Control: Blank

Report Date: 08-Mar-2023

Order Date: 3-Mar-2023

Project Description: PE2709

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
Conductivity	ND	5	uS/cm						
Hydrocarbons		Ũ	40,011						
F1 PHCs (C6-C10)	ND	7	uala						
F2 PHCs (C10-C16)	ND	4	ug/g ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals			00						
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt Copper	ND ND	1.0 5.0	ug/g						
Lead	ND	1.0	ug/g ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium Zinc	ND ND	10.0 20.0	ug/g						
Semi-Volatiles	ND	20.0	ug/g						
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene Chrysene	ND ND	0.02 0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene Phenanthrene	ND ND	0.01 0.02	ug/g						
Pyrene	ND	0.02	ug/g ug/g						
Surrogate: 2-Fluorobiphenyl	1.20	0.02	ug/g ug/g		90.0	50-140			
Surrogate: Terphenyl-d14	1.54		ug/g		115	50-140			
Volatiles			- 3' 3						
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Method Quality Control: Blank

Report Date: 08-Mar-2023

Order Date: 3-Mar-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1.2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	8.90		ug/g		111	50-140			
Surrogate: Dibromofluoromethane	8.64		ug/g		108	50-140			
Surrogate: Toluene-d8	9.44		ug/g		118	50-140			
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	9.44		ug/g		118	50-140			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Method Quality Control: Duplicate

Report Date: 08-Mar-2023

Order Date: 3-Mar-2023

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
SAR	0.79	0.01	N/A	0.78			1.3	30	
Conductivity	479	5	uS/cm	476			0.6	5	
pH	7.26	0.05	pH Units	7.30			0.5	2.3	
Hydrocarbons		0.00	pri ente				010	2.0	
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	321	4	ug/g	317			1.2	30	
F3 PHCs (C16-C34)	7740	8	ug/g	7540			2.5	30	
F4 PHCs (C34-C50)	1310	6	ug/g	1280			2.3	30	
Metals			-3.3						
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	3.6	1.0	ug/g	3.4			6.2	30	
Barium	28.5	1.0	ug/g	31.3			9.6	30	
Beryllium	ND	0.5	ug/g	ND			NC	30	
Boron	5.9	5.0	ug/g	6.8			15.5	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	11.8	5.0	ug/g	13.0			9.8	30	
Cobalt	3.3	1.0	ug/g	3.3			1.6	30	
Copper	6.0	5.0	ug/g	6.1			1.8	30	
Lead	12.2	1.0	ug/g	12.3			1.1	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	7.2	5.0	ug/g	7.5			3.2	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	16.7	10.0	ug/g	18.9			12.4	30	
Zinc	30.8	20.0	ug/g	32.1			4.1	30	
Physical Characteristics									
% Solids	92.0	0.1	% by Wt.	92.5			0.5	25	
Semi-Volatiles								10	
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g	ND			NC NC	40	
Benzo [g,h,i] perylene Benzo [k] fluoranthene	ND ND	0.02 0.02	ug/g	ND ND			NC	40 40	
Chrysene	ND	0.02	ug/g	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g	ND			NC	40	
Fluoranthene	ND	0.02	ug/g ug/g	ND			NC	40	
Fluorene	ND	0.02	ug/g ug/g	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
Naphthalene	ND	0.02	ug/g	ND			NC	40	
Phenanthrene	ND	0.02	ug/g	ND			NC	40	
Pyrene	ND	0.02	ug/g	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	0.885		ug/g		51.7	50-140			
Surrogate: Terphenyl-d14	1.16		ug/g		68.0	50-140			
Volatiles			~- <u>-</u>		00.0				
		0.50	110-1-				NO	50	
Acetone	ND	0.50	ug/g	ND			NC	50	
Benzene	ND	0.02	ug/g	ND			NC	50	

Order #: 2309472

Report Date: 08-Mar-2023

Order Date: 3-Mar-2023

Project Description: PE2709

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Bromodichloromethane	ND	0.05	ug/g	ND			NC	50	
Bromoform	ND	0.05	ug/g	ND			NC	50	
Bromomethane	ND	0.05	ug/g	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g	ND			NC	50	
Chloroform	ND	0.05	ug/g	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g	ND			NC	50	
Hexane	ND	0.05	ug/g	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g	ND			NC	50	
Styrene	ND	0.05	ug/g	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	9.94		ug/g		106	50-140			
Surrogate: Dibromofluoromethane	10.9		ug/g		115	50-140			
Surrogate: Toluene-d8	11.3		ug/g		120	50-140			
Benzene	ND	0.02	ug/g	ND	-		NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	11.3		ug/g		120	50-140			
Surroyale. Toluene-uo	11.3		ug/g		120	50-140			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Report Date: 08-Mar-2023 Order Date: 3-Mar-2023

Project Description: PE2709

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	160	7	ug/g	ND	80.1	80-120			
F2 PHCs (C10-C16)	433	4	ug/g	317	123	60-140			
F3 PHCs (C16-C34)	233	8	ug/g	ND	119	80-120			
F4 PHCs (C34-C50)	121	6	ug/g	ND	97.6	80-120			
Metals									
Antimony	35.2	1.0	ug/g	ND	70.1	70-130			
Arsenic	47.7	1.0	ug/g	1.3	92.7	70-130			
Barium	55.0	1.0	ug/g	12.5	85.0	70-130			
Beryllium	45.7	0.5	ug/g	ND	91.0	70-130			
Boron	44.3	5.0	ug/g	ND	83.1	70-130			
Cadmium	45.2	0.5	ug/g	ND	90.3	70-130			
Chromium (VI)	4.4	0.2	ug/g	ND	81.5	70-130			
Chromium	54.1	5.0	ug/g	5.2	97.7	70-130			
Cobalt	48.0	1.0	ug/g	1.3	93.3	70-130			
Copper	46.3	5.0	ug/g	ND	87.7	70-130			
Lead	47.5	1.0	ug/g	4.9	85.1	70-130			
Mercury	1.15	0.1	ug/g	ND	76.4	70-130			
Molybdenum	49.3	1.0	ug/g	ND	98.2	70-130			
Nickel	49.0	5.0	ug/g	ND	92.1	70-130			
Selenium	42.3	1.0	ug/g	ND	84.3	70-130			
Silver	42.2	0.3	ug/g	ND	84.3	70-130			
Thallium	43.4	1.0	ug/g	ND	86.7	70-130			
Uranium	44.1	1.0	ug/g	ND	87.8	70-130			
Vanadium	55.5	10.0	ug/g	ND	95.8	70-130			
Zinc	53.3	20.0	ug/g	ND	81.0	70-130			
Semi-Volatiles	00.0	20.0	49,9	ne -	01.0	10 100			
Acenaphthene	0.142	0.02	ug/g	ND	85.4	50-140			
Acenaphthylene	0.119	0.02	ug/g	ND	71.5	50-140			
Anthracene	0.120	0.02	ug/g	ND	72.3	50-140			
Benzo [a] anthracene	0.100	0.02	ug/g	ND	60.2	50-140			
Benzo [a] pyrene	0.118	0.02	ug/g	ND	70.9	50-140			
Benzo [b] fluoranthene	0.144	0.02	ug/g	ND	86.6	50-140			
Benzo [g,h,i] perylene	0.124	0.02	ug/g	ND	74.5	50-140			
Benzo [k] fluoranthene	0.137	0.02	ug/g	ND	82.2	50-140			
Chrysene	0.130	0.02	ug/g	ND	78.0	50-140			
Dibenzo [a,h] anthracene	0.121	0.02	ug/g	ND	72.5	50-140			
Fluoranthene	0.113	0.02	ug/g	ND	67.9	50-140			
Fluorene	0.126	0.02	ug/g	ND	75.5	50-140			
Indeno [1,2,3-cd] pyrene	0.121	0.02	ug/g	ND	72.6	50-140			
1-Methylnaphthalene	0.133	0.02	ug/g	ND	79.8	50-140			
2-Methylnaphthalene	0.146	0.02	ug/g ug/g	ND	87.4	50-140			
Naphthalene	0.158	0.02	ug/g ug/g	ND	94.9	50-140			
Phenanthrene	0.130	0.02	ug/g ug/g	ND	74.4	50-140 50-140			
Pyrene	0.124	0.02	ug/g ug/g	ND	68.1	50-140			
Surrogate: 2-Fluorobiphenyl	1.14	0.02	ug/g ug/g		85.8	50-140 50-140			
Surrogate: Zer horosiphenyi Surrogate: Terphenyi-d14	1.58		ug/g ug/g		118	50-140 50-140			
Volatiles			- 3' 5						
Acetone	13.0	0.50		ND	130	50-140			
	13.0	0.50	ug/g	ND	130	50-140			

Report Date: 08-Mar-2023

Order Date: 3-Mar-2023

Project Description: PE2709

Method Quality Control: Spike

Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	4.86 4.94 4.92 4.10 4.62 4.61 4.83 4.93 3.55 4.36 4.31 4.14	0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05	ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/g	ND ND ND ND ND ND ND	121 124 123 102 115 115 121	60-130 60-130 60-130 50-140 60-130 60-130 60-130		
Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene	4.92 4.10 4.62 4.61 4.83 4.93 3.55 4.36 4.31 4.14	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	ug/g ug/g ug/g ug/g ug/g ug/g	ND ND ND ND ND	123 102 115 115 121	60-130 50-140 60-130 60-130		
Bromomethane Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene	4.10 4.62 4.61 4.83 4.93 3.55 4.36 4.31 4.14	0.05 0.05 0.05 0.05 0.05 0.05 0.05	ug/g ug/g ug/g ug/g ug/g ug/g	ND ND ND ND	102 115 115 121	50-140 60-130 60-130		
Carbon Tetrachloride Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene	4.62 4.61 4.83 4.93 3.55 4.36 4.31 4.14	0.05 0.05 0.05 0.05 0.05 0.05	ug/g ug/g ug/g ug/g ug/g	ND ND ND ND	115 115 121	60-130 60-130		
Chlorobenzene Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene	4.61 4.83 4.93 3.55 4.36 4.31 4.14	0.05 0.05 0.05 0.05 0.05	ug/g ug/g ug/g ug/g	ND ND ND	115 121	60-130		
Chloroform Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene	4.83 4.93 3.55 4.36 4.31 4.14	0.05 0.05 0.05 0.05	ug/g ug/g ug/g	ND ND	121			
Dibromochloromethane Dichlorodifluoromethane 1,2-Dichlorobenzene	4.93 3.55 4.36 4.31 4.14	0.05 0.05 0.05	ug/g ug/g	ND		60-130		
Dichlorodifluoromethane 1,2-Dichlorobenzene	3.55 4.36 4.31 4.14	0.05 0.05	ug/g					
1,2-Dichlorobenzene	4.36 4.31 4.14	0.05			123	60-130		
	4.31 4.14		ug/g	ND	88.7	50-140		
1,3-Dichlorobenzene	4.14	0.05		ND	109	60-130		
			ug/g	ND	108	60-130		
1,4-Dichlorobenzene		0.05	ug/g	ND	103	60-130		
1,1-Dichloroethane	4.90	0.05	ug/g	ND	122	60-130		
1,2-Dichloroethane	4.82	0.05	ug/g	ND	121	60-130		
1,1-Dichloroethylene	4.86	0.05	ug/g	ND	122	60-130		
cis-1,2-Dichloroethylene	4.79	0.05	ug/g	ND	120	60-130		
trans-1,2-Dichloroethylene	4.79	0.05	ug/g	ND	120	60-130		
1,2-Dichloropropane	4.75	0.05	ug/g	ND	119	60-130		
cis-1,3-Dichloropropylene	4.76	0.05	ug/g	ND	119	60-130		
trans-1,3-Dichloropropylene	4.25	0.05	ug/g	ND	106	60-130		
Ethylbenzene	4.64	0.05	ug/g	ND	116	60-130		
Ethylene dibromide (dibromoethane, 1,2	4.88	0.05	ug/g	ND	122	60-130		
Hexane	4.47	0.05	ug/g	ND	112	60-130		
Methyl Ethyl Ketone (2-Butanone)	13.0	0.50	ug/g	ND	130	50-140		
Methyl Isobutyl Ketone	12.7	0.50	ug/g	ND	127	50-140		
Methyl tert-butyl ether	9.87	0.05	ug/g ug/g	ND	98.7	50-140		
Methylene Chloride	4.68	0.05	ug/g	ND	117	60-130		
Styrene	4.90	0.05	ug/g ug/g	ND	122	60-130		
1,1,1,2-Tetrachloroethane	4.57	0.05	ug/g ug/g	ND	114	60-130		
1,1,2,2-Tetrachloroethane	4.65	0.05	ug/g ug/g	ND	116	60-130		
Tetrachloroethylene	4.74	0.05	ug/g ug/g	ND	118	60-130		
Toluene	4.60	0.05	ug/g ug/g	ND	115	60-130		
1,1,1-Trichloroethane	4.00	0.05	ug/g ug/g	ND	118	60-130 60-130		
1,1,2-Trichloroethane	4.71	0.05		ND	108	60-130 60-130		
	4.57	0.05	ug/g	ND	108	60-130 60-130		
Trichloroethylene Trichlorofluoromethane			ug/g					
	4.18	0.05 0.02	ug/g		105 96.8	50-140 50-140		
Vinyl chloride	3.87		ug/g	ND				
m,p-Xylenes	9.41	0.05	ug/g	ND	118	60-130		
o-Xylene	4.88	0.05	ug/g	ND	122	60-130		
Surrogate: 4-Bromofluorobenzene	7.86		ug/g		98.2 104	50-140 50-140		
Surrogate: Dibromofluoromethane Surrogate: Toluene-d8	8.34 7.72		ug/g		96.5	50-140 50-140		
Benzene	4.86	0.02	<i>ug/g</i> ug/g	ND	90.5 121	60-130		
Ethylbenzene	4.64	0.02	ug/g ug/g	ND	121	60-130 60-130		
Toluene	4.60	0.05	ug/g ug/g	ND	115	60-130 60-130		
m,p-Xylenes	4.60 9.41	0.05	ug/g ug/g	ND	115	60-130 60-130		
o-Xylene	9.41 4.88	0.05		ND	122	60-130 60-130		
-		0.05	ug/g	UN				
Surrogate: Toluene-d8	7.72		ug/g		96.5	50-140		

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

COPARACEL LABORATORIES LTD.				309472		Par		rder N Use On				Cł		Of Cu: Use On	stody Iv)
Client Name: Samuel Benche / Langer Ma	uge	Projec	ct Ref:	PEZZ	og								Pa	ge o	F
Conract Name: Samuel Banke + Form Mu	nh	Quote	:#:										Turna	round	lime
Address:		PO #:		569	31							1 day			🗆 3 day
9 Aurica Dute		E-mai	:	Spann	apat	eß	ing	n	P	^c a		2 day			C Regular
Telephone: 613.226-7-381				Shawh	hand	ter	sin	call	ILD.	(a	Date	Requ	ired:		
REG 153/04 REG 406/19 Other Regulation		Astriv 1	ûme :/	Soil/Sed.) GW (Gro				9		365	1903	0.00			
Table 1 Res/Park Med/Fine REG 558 PWQ0				Vater) SS (Storm/San						Re	quired	Anal	ysis		
Table 2 Ind/Comm Coarse CCME MISA			P (P	aint) A (Air) O (Othe	er)	Ж									
Table 3 Agri/Other SU - Sani SU - Storm			ers			F1-F4+BTEX			٩					20	
Mun:		â	Containers	Sample 1	aken	1-F4			Metals by ICP				-	2	
For RSC: Yes No Other:	Matrix	Aĭr Volume					ő	ŝ	als t		-	(SWH)	4 4	M	
Sample ID/Location Name		Aür	# of	Date	Time	PHCs	VOCS	PAHs	Met	ВН	CrVI	B (F	-70		
1 BH2- 23-555	5		2	Feb. 2723		V	V								
2 BH2-23-556 (HOLD)			2												
3 131+3-23-555			2				V								
4 BH3-23-556 (HOLD)			2	1								2			
5 BH4.23 - 553			2	Feb . 28723		V		1/	V		V		V	1	
6 BH6-23-552			2	Murl.A3		ŤŻ		Ť	1	· /	~		1	Ť	
7 DUP1-23			2	Teb. 27/23		12	$\overline{}$	·	-	-			V		
8	¥		φ.	NC:2" ATTA			V								
9			-			+									
10						+			-						
Comments:										Color.		No.	1000	-	
										Metho	a of De	iivery:	ans	. /	anec
Relinquished By (Sign): Received By D	river/D	epot:	1	-	Received at Lab:	1949	244	140	11/15	Verifie	d By:	11	1	- 1. C.	- CIEC
Relinquished By (Print):	125	-		LOUIE	Sardn	1040246		nina	1			VV	2	2.00	F
Relinquished By (Print): Same Bache Date/Time: Date/Time: Temperature:	3	103	7/2	3 1033		us,	4:	30				_	m:	3/23	16:36
hain of Custody (Blank), sisx			19	°C Revsion 4.0	emperature:	13.	2		22	pH Ver	rified:		By:		

Paterson Group Consult	g Engineers
9 Auriga Drive	
Ottawa, ON K2E 7T9	
Attn: Sam Berube	Report Date: 18-Aug-2023
Client PO: 58143	Order Date: 15-Aug-2023
Project: PE2709	Order #: 2333190
Custody:	
This Certificate of Analysis co submitted:	ains analytical data applicable to the following samples as
Paracel ID Client ID	
2333190-01 BH7-23	33

2333190-02 BH8-23-SS6

Approved By:

Nosa

Dale Robertson, BSc

Laboratory Director

BTEX by P&T GC-MS

Client: Paterson Group Consulting Engineers

Client PO: 58143

Analysis

PHC F1

Solids, %

PHCs F2 to F4

Analysis Summary Table

Extraction Date

16-Aug-23

16-Aug-23

15-Aug-23

17-Aug-23

Report Date: 18-Aug-2023

Order Date: 15-Aug-2023

Analysis Date

17-Aug-23

17-Aug-23

18-Aug-23

17-Aug-23

Project Description: PE2709

Method Reference/Description

CWS Tier 1 - GC-FID, extraction

EPA 8260 - P&T GC-MS

CWS Tier 1 - P&T GC-FID

CWS Tier 1 - Gravimetric

Client: Paterson Group Consulting Engineers

Client PO: 58143

Report Date: 18-Aug-2023

Order Date: 15-Aug-2023

	-						
	Client ID:	BH7-23-SS3	BH8-23-SS6	-	-		
	Sample Date:	14-Aug-23 09:00	14-Aug-23 09:00	-	-	-	-
	Sample ID:	2333190-01	2333190-02	-	-		
	Matrix:	Soil	Soil	-	-		
	MDL/Units						
Physical Characteristics					•		
% Solids	0.1 % by Wt.	91.8	93.6	-	-	-	-
Volatiles						•	
Benzene	0.02 ug/g	<0.02	<0.02	-	-	-	-
Ethylbenzene	0.05 ug/g	<0.05	0.28	-	-	-	-
Toluene	0.05 ug/g	<0.05	0.48	-	-	-	-
m,p-Xylenes	0.05 ug/g	<0.05	0.36	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	0.36	-	-	-	-
Toluene-d8	Surrogate	128%	126%	-	-	-	-
Hydrocarbons	-						
F1 PHCs (C6-C10)	7 ug/g	<7	355	-	-	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	377	-	-	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	74	-	-	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	10	-	-	-	-

Client: Paterson Group Consulting Engineers

Client PO: 58143

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Volatiles								
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	9.61		%	120	50-140			

Report Date: 18-Aug-2023

Order Date: 15-Aug-2023

Client: Paterson Group Consulting Engineers

Client PO: 58143

Method Quality Control: Duplicate

Order	±٠	2333190
Order	π.	2333130

Report Date: 18-Aug-2023

Order Date: 15-Aug-2023

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	55	4	ug/g	48			13.5	30	
F3 PHCs (C16-C34)	76	8	ug/g	54			NC	30	
F4 PHCs (C34-C50)	12	6	ug/g	6			NC	30	
Physical Characteristics									
% Solids	92.2	0.1	% by Wt.	91.8			0.4	25	
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	11.8		%		129	50-140			

Client: Paterson Group Consulting Engineers

Client PO: 58143

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	176	7	ug/g	ND	87.8	85-115			
F2 PHCs (C10-C16)	163	4	ug/g	48	133	60-140			
F3 PHCs (C16-C34)	310	8	ug/g	54	121	60-140			
F4 PHCs (C34-C50)	173	6	ug/g	6	124	60-140			
Volatiles									
Benzene	3.34	0.02	ug/g	ND	83.4	60-130			
Ethylbenzene	4.70	0.05	ug/g	ND	118	60-130			
Toluene	4.90	0.05	ug/g	ND	123	60-130			
m,p-Xylenes	7.42	0.05	ug/g	ND	92.7	60-130			
o-Xylene	4.50	0.05	ug/g	ND	113	60-130			
Surrogate: Toluene-d8	7.82		%		97.8	50-140			

Order #: 2333190

Report Date: 18-Aug-2023

Order Date: 15-Aug-2023

Client: Paterson Group Consulting Engineers

Client PO: 58143

Qualifier Notes:

QC Qualifiers:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC crite
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 18-Aug-2023

Order Date: 15-Aug-2023

LABORATORIES LID.	PARACEL				Paracel Order Number (Lab Use Only) 23 33 1						(Lab Use Only)				
Client Name: Paterson Group Contact Name: Gours Reputito				ct Ref:	PERTOG								F	age	of J
Contact Name: Sam Berube Address:		Quote	2 #;									Turr	naround	Time	
9 Auriga Dr Ottawa				58	43								1 day		🗆 3 day
			E-mail										2 day		🛛 Regula
Telephone: 613 - 226 -7381				566	:rube@pat	ersongroup						Date Required:			0
REG 153/04 REG 406/19 Other Reg	ulation		Aatrix 1	lune:	S (Soil/Sed.) GW (G	Fround Materia	1.28	124	1200		ie. In	1. Sala	Processore.		
Table 1 Res/Park Med/Fine REG 558	PWQ0		SW (Su	rface V	Vater) SS (Storm/Sa	anitary Sewer)					Re	quire	d Analysis		
Table 2 Ind/Comm Coarse CCME	🗆 misa			P (P	aint) A (Air) O (Ot	her)	X	Γ						TT	
	SU - Storm			ers			F1-F4+BTEX			<u>م</u>					
TableMun:			â	of Containers	Sample	e Taken	1-F4			Metals by ICP					
For RSC: Yes No Other:		Matrix	Air Volume	f Cor			L S	S	s	d sle			B (HWS)		
Sample ID/Location Name		_	Ą	4	Date	Time	PHCs	VOCs	PAHs	Met	붠	Cr	B H		
1 BH7-23-553		5		2	Aug 14/23		X								
2 BHB-23-556		5		2	Aug 14/23		X							++	
3														++	
4														++	
5							-							++	
6						1	+							++	
7							+							+	
8							+							++	
9														+	
10							-							+	
Comments:															
											Metho	d of De	0	10	8 . K. K.
Relinquished By (Sign): Turdy Bloin	Received By Dri	ver/De	pot:			Received at Lab:	Č				Verifie	(HBut	aruce	-50	nuries
Delineral de la Deline a la companya de la companya	Date/Time:	na	1	1062	17.5	HP	120	Re 1	94 S.	1253		U	1		
Date/Time: A	A State Laboration		(Qint)	1. 2	Star Star	Date/Time: Ang 15/23, 16:20 Da				Date/T	ate/Time: Aug 15/23 1632				
hain of Custody (Blank) visx	Temperature:	14			°C	Temperature: C		C			pH Ver			4	St. O. A.

Paterson Gro 9 Auriga Drive Ottawa, ON K2 Attn: Jeremy Ca				
Client PO: 6019	6			Report Date: 31-May-2024 Order Date: 14-May-2024
Project: PE6422				
Custody:			Revised Report	Order #: 2420225
This Certificate	of Analysis contains analytical data applica	e to the following samples as submitted:		
Paracel ID	Client ID	Paracel ID	Client ID	
2420225-01	BH1-24-AU1			
2420225-02	BH1-24-SS3			
2420225-03	BH1-24-SS5			
2420225-04	BH2-24-AU1			
2420225-05	BH2-24-SS3			
2420225-06	BH3-24-AU1			
2420225-07	BH3-24-SS5			
2420225-08	BH4-24-AU1			
2420225-09	BH4-24-SS2			
2420225-10	BH4-24-SS3			
2420225-11	BH4-24-SS6			
2420225-12	BH5-24-AU1			
2420225-13	BH5-24-SS2(BOTTOM)			
2420225-14	DUP1			
2420225-15	DUP2			

Approved By:

Mark Foto

Mark Foto, M.Sc.

BTEX by P&T GC-MS

PHC F4G (gravimetric)

REG 153: Metals by ICP/MS, soil

REG 153: PAHs by GC-MS

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Analysis

Conductivity

pH, soil

PHC F1

SAR

Solids, %

Mercury by CVAA

PHCs F2 to F4

Analysis Summary Table

Chromium, hexavalent - soil

Report Date: 31-May-2024

Order Date: 14-May-2024

Analysis Date

16-May-24

21-May-24

16-May-24

16-May-24

17-May-24

16-May-24

23-May-24

21-May-24

16-May-24

17-May-24

16-May-24

21-May-24

Project Description: PE6422

Extraction Date

16-May-24

21-May-24

16-May-24

16-May-24

17-May-24

16-May-24

22-May-24

16-May-24

16-May-24

15-May-24

16-May-24

17-May-24

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHN	OND HILL
---	----------

Method Reference/Description

EPA 7471B - CVAA, digestion

CWS Tier 1 - P&T GC-FID

MOE E3056 - Extraction, colourimetric

MOE E3138 - probe @25 °C, water ext

CWS Tier 1 - Extraction Gravimetric

CWS Tier 1 - GC-FID, extraction

EPA 6020 - Digestion - ICP-MS

EPA 8270 - GC-MS, extraction

CWS Tier 1 - Gravimetric

Calculated

EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.

EPA 8260 - P&T GC-MS

1-800-749-1947		www.paracellabs.com
----------------	--	---------------------

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

	Client ID:	BH1-24-AU1	BH1-24-SS3	BH1-24-SS5	BH2-24-AU1		
	Sample Date:	08-May-24 09:00	08-May-24 09:00	08-May-24 09:00	08-May-24 09:00	-	-
	Sample ID:	2420225-01	2420225-02	2420225-03	2420225-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics	·				•		
% Solids	0.1 % by Wt.	91.5	91.5	90.4	96.4	-	-
General Inorganics							
SAR	0.01 N/A	2.19	1.60	1.87	4.11	-	-
Conductivity	5 uS/cm	2330	583	402	544	-	-
рН	0.05 pH Units	-	-	8.79	7.28	-	-
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	2.6	2.0	2.1	2.7	-	-
Barium	1.0 ug/g	99.5	29.9	35.8	87.8	-	-
Beryllium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Boron	5.0 ug/g	11.0	6.2	<5.0	11.1	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium	5.0 ug/g	20.5	10.5	11.8	14.8	-	-
Chromium (VI)	0.2 ug/g	0.8	0.3	<0.2	<0.2	-	-
Cobalt	1.0 ug/g	5.7	4.9	4.6	5.4	-	-
Copper	5.0 ug/g	16.1	9.9	6.8	12.8	-	-
Lead	1.0 ug/g	32.9	10.5	4.0	32.1	-	-
Mercury	0.1 ug/g	<0.1	<0.1	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g	1.5	<1.0	<1.0	<1.0	-	-
Nickel	5.0 ug/g	13.2	10.8	8.3	11.5	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Vanadium	10.0 ug/g	27.5	14.9	18.7	25.1	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

	Client ID: Sample Date: Sample ID:	BH1-24-AU1 08-May-24 09:00 2420225-01	BH1-24-SS3 08-May-24 09:00 2420225-02	BH1-24-SS5 08-May-24 09:00 2420225-03	BH2-24-AU1 08-May-24 09:00 2420225-04	-	-
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Metals	-					_	
Zinc	20.0 ug/g	35.1	<20.0	<20.0	34.7	-	-
Volatiles				-			
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene-d8	Surrogate	82.2%	111%	115%	97.6%	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<40	-	-
F3 PHCs (C16-C34)	8 ug/g	105	44	<8	164	-	-
F4 PHCs (C34-C50)	6 ug/g	263 [3]	74	<6	1040 [3]	-	-
F4G PHCs (gravimetric)	50 ug/g	382	-	-	1680	-	-
Semi-Volatiles							
Acenaphthene	0.02 ug/g	<0.02	0.08	0.02	<0.40 [1]	-	-
Acenaphthylene	0.02 ug/g	<0.02	<0.02	<0.02	<0.40 [1]	-	-
Anthracene	0.02 ug/g	0.03	0.20	0.06	0.54	-	-
Benzo [a] anthracene	0.02 ug/g	0.05	0.22	0.05	1.59	-	-
Benzo [a] pyrene	0.02 ug/g	0.04	0.15	0.04	1.41	-	-
Benzo [b] fluoranthene	0.02 ug/g	0.05	0.16	0.04	1.51	-	-
Benzo [g,h,i] perylene	0.02 ug/g	0.03	0.08	0.02	0.87	-	-
Benzo [k] fluoranthene	0.02 ug/g	0.03	0.12	0.03	0.79	-	-
Chrysene	0.02 ug/g	0.04	0.20	0.05	1.92	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

	Client ID:	BH1-24-AU1	BH1-24-SS3	BH1-24-SS5	BH2-24-AU1		
	Sample Date:	08-May-24 09:00	08-May-24 09:00	08-May-24 09:00	08-May-24 09:00	-	-
	Sample ID:	2420225-01	2420225-02	2420225-03	2420225-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles							
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	0.02	<0.02	<0.40 [1]	-	-
Fluoranthene	0.02 ug/g	0.11	0.77	0.20	4.61	-	-
Fluorene	0.02 ug/g	<0.02	0.09	0.03	<0.40	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g	0.02	0.08	<0.02	0.73	-	-
1-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	<0.02	<0.40 [1]	-	-
2-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	<0.02	<0.40 [1]	-	-
Methylnaphthalene (1&2)	0.04 ug/g	<0.04	<0.04	<0.04	<0.80 [1]	-	-
Naphthalene	0.01 ug/g	0.02	0.06	0.04	<0.20 [1]	-	-
Phenanthrene	0.02 ug/g	0.06	0.67	0.19	2.40	-	-
Pyrene	0.02 ug/g	0.09	0.54	0.14	4.59	-	-
2-Fluorobiphenyl	Surrogate	70.3%	66.6%	62.2%	68.0%	-	-
Terphenyl-d14	Surrogate	79.6%	83.4%	79.8%	87.4%	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

	Client ID:	BH2-24-SS3	BH3-24-AU1	BH3-24-SS5	BH4-24-AU1		
	Sample Date:	08-May-24 09:00	09-May-24 09:00	09-May-24 09:00	09-May-24 09:00	-	-
	Sample ID:	2420225-05	2420225-06	2420225-07	2420225-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics	L		1	ł	ł		
% Solids	0.1 % by Wt.	91.8	91.6	92.1	93.6	-	-
General Inorganics							
SAR	0.01 N/A	6.83	2.29	2.08	0.28	-	-
Conductivity	5 uS/cm	944	406	459	156	-	-
рН	0.05 pH Units	-	-	7.79	-	-	-
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	2.3	2.8	2.9	4.0	-	-
Barium	1.0 ug/g	41.1	59.5	21.3	98.2	-	-
Beryllium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Boron	5.0 ug/g	<5.0	6.5	7.4	7.3	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium (VI)	0.2 ug/g	<0.2	0.2	-	<0.2	-	-
Chromium	5.0 ug/g	11.7	13.0	11.7	10.4	-	-
Cobalt	1.0 ug/g	4.6	4.7	3.6	5.1	-	-
Copper	5.0 ug/g	8.3	12.4	5.5	11.8	-	-
Lead	1.0 ug/g	3.7	43.4	5.2	50.7	-	-
Mercury	0.1 ug/g	<0.1	0.1	-	<0.1	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	1.0	-	-
Nickel	5.0 ug/g	8.4	9.5	8.3	11.3	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Vanadium	10.0 ug/g	20.6	19.8	16.7	27.6	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

	Client ID:	BH2-24-SS3	BH3-24-AU1	BH3-24-SS5	BH4-24-AU1		
	Sample Date:	08-May-24 09:00	09-May-24 09:00	09-May-24 09:00	09-May-24 09:00	-	-
	Sample ID:	2420225-05	2420225-06	2420225-07	2420225-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Metals					•		
Zinc	20.0 ug/g	<20.0	45.1	<20.0	26.6	-	-
Volatiles							
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	0.07	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	0.07	<0.05	<0.05	-	-
Toluene-d8	Surrogate	103%	102%	114%	111%	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	39	<4	<4	<80 [2]	-	-
F3 PHCs (C16-C34)	8 ug/g	58	169	<8	420	-	-
F4 PHCs (C34-C50)	6 ug/g	80	135 [3]	<6	1800 [3]	-	-
F4G PHCs (gravimetric)	50 ug/g	-	131	-	2540	-	-
Semi-Volatiles							
Acenaphthene	0.02 ug/g	<0.02	<0.40 [1]	<0.02	<0.02	-	-
Acenaphthylene	0.02 ug/g	<0.02	<0.40 [1]	<0.02	0.20	-	-
Anthracene	0.02 ug/g	<0.02	1.20	<0.02	0.15	-	-
Benzo [a] anthracene	0.02 ug/g	<0.02	1.76	<0.02	0.27	-	-
Benzo [a] pyrene	0.02 ug/g	<0.02	1.31	<0.02	0.20	-	-
Benzo [b] fluoranthene	0.02 ug/g	<0.02	1.27	<0.02	0.19	-	-
Benzo [g,h,i] perylene	0.02 ug/g	<0.02	0.65	<0.02	0.14	-	-
Benzo [k] fluoranthene	0.02 ug/g	<0.02	0.78	<0.02	0.12	-	-
Chrysene	0.02 ug/g	<0.02	1.78	<0.02	0.24	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

	Client ID:	BH2-24-SS3	BH3-24-AU1	BH3-24-SS5	BH4-24-AU1		
	Sample Date:	08-May-24 09:00	09-May-24 09:00	09-May-24 09:00	09-May-24 09:00	-	-
	Sample ID:	2420225-05	2420225-06	2420225-07	2420225-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles							
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	<0.40 [1]	<0.02	0.03	-	-
Fluoranthene	0.02 ug/g	0.02	5.49	<0.02	0.51	-	-
Fluorene	0.02 ug/g	<0.02	0.43 [1]	<0.02	<0.02	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g	<0.02	0.61	<0.02	0.07	-	-
1-Methylnaphthalene	0.02 ug/g	<0.02	<0.40 [1]	<0.02	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g	<0.02	<0.40 [1]	<0.02	0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g	<0.04	<0.80 [1]	<0.04	<0.04	-	-
Naphthalene	0.01 ug/g	<0.01	0.38	<0.01	0.01	-	-
Phenanthrene	0.02 ug/g	<0.02	4.17	<0.02	0.19	-	-
Pyrene	0.02 ug/g	0.02	4.56	<0.02	0.45	-	-
2-Fluorobiphenyl	Surrogate	70.5%	63.0%	66.1%	61.6%	-	-
Terphenyl-d14	Surrogate	87.8%	94.9%	82.5%	68.9%	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

	Client ID:	BH4-24-SS2	BH4-24-SS3	BH4-24-SS6	BH5-24-AU1		
	Sample Date:	09-May-24 09:00	09-May-24 09:00	09-May-24 09:00	09-May-24 09:00	-	-
	Sample ID:	2420225-09	2420225-10	2420225-11	2420225-12		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics	•		•	•	•		
% Solids	0.1 % by Wt.	80.8	93.6	94.5	93.4	-	-
General Inorganics							
SAR	0.01 N/A	2.30	-	2.21	2.00	-	-
Conductivity	5 uS/cm	272	-	357	363	-	-
рН	0.05 pH Units	-	-	-	7.40	-	-
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	1.7	-	-
Arsenic	1.0 ug/g	5.2	4.8	3.0	4.2	-	-
Barium	1.0 ug/g	177	36.2	36.7	137	-	-
Beryllium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Boron	5.0 ug/g	5.3	6.7	7.4	5.2	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	0.5	-	-
Chromium (VI)	0.2 ug/g	<0.2	-	-	0.4	-	-
Chromium	5.0 ug/g	18.5	13.9	9.5	14.2	-	-
Cobalt	1.0 ug/g	4.6	6.4	2.9	4.8	-	-
Copper	5.0 ug/g	22.7	10.2	<5.0	53.8	-	-
Lead	1.0 ug/g	349	8.5	5.6	224	-	-
Mercury	0.1 ug/g	0.9	<0.1	-	0.2	-	-
Molybdenum	1.0 ug/g	<1.0	1.1	<1.0	1.1	-	-
Nickel	5.0 ug/g	10.2	10.4	6.5	14.9	-	
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Vanadium	10.0 ug/g	21.1	21.1	13.6	28.8	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

	Client ID:	BH4-24-SS2	BH4-24-SS3	BH4-24-SS6	BH5-24-AU1		
	Sample Date:	09-May-24 09:00	09-May-24 09:00	09-May-24 09:00	09-May-24 09:00	-	-
	Sample ID:	2420225-09	2420225-10	2420225-11	2420225-12		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Metals					•		
Zinc	20.0 ug/g	94.5	75.7	<20.0	228	-	-
Volatiles							
Benzene	0.02 ug/g	<0.02	-	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	-	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	-	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	-	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	-	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	-	<0.05	<0.05	-	-
Toluene-d8	Surrogate	85.9%	-	126%	98.4%	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	<7	-	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	6	-	9	<40 [2]	-	-
F3 PHCs (C16-C34)	8 ug/g	54	-	14	269	-	-
F4 PHCs (C34-C50)	6 ug/g	67 [3]	-	25	777 [3]	-	-
F4G PHCs (gravimetric)	50 ug/g	87	-	-	707	-	-
Semi-Volatiles	•						
Acenaphthene	0.02 ug/g	0.03	<0.02	-	0.10	-	-
Acenaphthylene	0.02 ug/g	0.06	<0.02	-	0.14	-	-
Anthracene	0.02 ug/g	0.13	<0.02	-	0.26	-	-
Benzo [a] anthracene	0.02 ug/g	0.31	<0.02	-	0.83	-	-
Benzo [a] pyrene	0.02 ug/g	0.26	<0.02	-	0.60	-	-
Benzo [b] fluoranthene	0.02 ug/g	0.23	<0.02	-	0.74	-	-
Benzo [g,h,i] perylene	0.02 ug/g	0.14	<0.02	-	0.26	-	-
Benzo [k] fluoranthene	0.02 ug/g	0.16	<0.02	-	0.42	-	-
Chrysene	0.02 ug/g	0.25	<0.02	-	0.76	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

	Client ID:	BH4-24-SS2	BH4-24-SS3	BH4-24-SS6	BH5-24-AU1		
	Sample Date:	09-May-24 09:00	09-May-24 09:00	09-May-24 09:00	09-May-24 09:00	-	
	Sample ID:	2420225-09	2420225-10	2420225-11	2420225-12		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles	-		-				
Dibenzo [a,h] anthracene	0.02 ug/g	0.02	<0.02	-	0.08	-	-
Fluoranthene	0.02 ug/g	0.77	<0.02	-	2.00	-	-
Fluorene	0.02 ug/g	0.02	<0.02	-	0.09	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g	0.13	<0.02	-	0.25	-	-
1-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	-	0.02	-	-
2-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	-	0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g	<0.04	<0.04	-	0.04	-	-
Naphthalene	0.01 ug/g	0.04	<0.01	-	0.03	-	-
Phenanthrene	0.02 ug/g	0.37	<0.02	-	1.02	-	-
Pyrene	0.02 ug/g	0.73	<0.02	-	1.67	-	-
2-Fluorobiphenyl	Surrogate	54.7%	64.5%	-	64.4%	-	-
Terphenyl-d14	Surrogate	73.9%	88.6%	-	73.5%	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

	Client ID: Sample Date: Sample ID:		DUP1 08-May-24 09:00 2420225-14	DUP2 09-May-24 09:00 2420225-15		-	-
	Matrix:	Soil	Soil	Soil			
	MDL/Units	t					
Physical Characteristics		<u> </u>			· ·		
% Solids	0.1 % by Wt.	92.9	92.0	93.7	-	-	-
General Inorganics							
SAR	0.01 N/A	1.54	2.18	1.75	-	-	-
Conductivity	5 uS/cm	353	433	347	-	-	-
рН	0.05 pH Units	-	9.60	-	-	-	-
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	-	-	-
Arsenic	1.0 ug/g	2.1	2.2	2.7	-	-	-
Barium	1.0 ug/g	30.2	35.9	43.0	-	-	-
Beryllium	0.5 ug/g	<0.5	<0.5	<0.5	-	-	-
Boron	5.0 ug/g	<5.0	5.2	7.7	-	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	-	-	-
Chromium (VI)	0.2 ug/g	-	<0.2	-	-	-	-
Chromium	5.0 ug/g	10.1	12.2	10.5	-	-	-
Cobalt	1.0 ug/g	3.6	4.8	3.3	-	-	-
Copper	5.0 ug/g	6.6	7.8	<5.0	-	-	-
Lead	1.0 ug/g	3.7	4.2	5.6	-	-	-
Mercury	0.1 ug/g	-	<0.1	-	-	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	-	-	-
Nickel	5.0 ug/g	6.9	8.7	7.1	-	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	-	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	-	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	-	-	-
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	-	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

	1			1	1 1		
	Client ID:	BH5-24-SS2(BOTTO	DUP1	DUP2			
	Sample Date:	M) 09-May-24 09:00	08-May-24 09:00	09-May-24 09:00			
	Sample Date: Sample ID:	2420225-13	2420225-14	2420225-15		-	-
	Matrix:	Soil	Soil	Soil			
	MDL/Units						
Metals							
Vanadium	10.0 ug/g	16.2	19.1	14.9		-	-
Zinc	20.0 ug/g	<20.0	<20.0	<20.0	-	-	-
Volatiles	2010 49,9	-20.0	20.0	-20.0	l – – – – – –		
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	-	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	-	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	-	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	-	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	-	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	-	-	-
Toluene-d8	Surrogate	126%	107%	106%	-	-	-
Hydrocarbons				•			
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	-	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	-	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	15	<8	-	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	13	<6	-	-	-
Semi-Volatiles							
Acenaphthene	0.02 ug/g	<0.02	0.02	-	-	-	-
Acenaphthylene	0.02 ug/g	<0.02	<0.02	-	-	-	-
Anthracene	0.02 ug/g	<0.02	0.06	-	-	-	-
Benzo [a] anthracene	0.02 ug/g	<0.02	0.05	-	-	-	-
Benzo [a] pyrene	0.02 ug/g	<0.02	0.04	-	-	-	-
Benzo [b] fluoranthene	0.02 ug/g	<0.02	0.03	-	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g	<0.02	<0.02	-	-	-	-
Benzo [k] fluoranthene	0.02 ug/g	<0.02	0.03	-	-	-	-
Chrysene	0.02 ug/g	<0.02	0.05	-	-	-	-

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

	Client ID:	BH5-24-SS2(BOTTO M)	DUP1	DUP2			
	Sample Date:	09-May-24 09:00	08-May-24 09:00	09-May-24 09:00		-	-
	Sample ID:	2420225-13	2420225-14	2420225-15			
	Matrix:	Soil	Soil	Soil			
	MDL/Units	İ I					
Semi-Volatiles							•
Dibenzo [a,h] anthracene	0.02 ug/g	<0.02	<0.02	-	-	-	-
Fluoranthene	0.02 ug/g	<0.02	0.18	-	-	-	-
Fluorene	0.02 ug/g	<0.02	0.02	-	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g	<0.02	<0.02	-	-	-	-
1-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	-	-	-	-
2-Methylnaphthalene	0.02 ug/g	<0.02	<0.02	-	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g	<0.04	<0.04	-	-	-	-
Naphthalene	0.01 ug/g	<0.01	0.02	-	-	-	-
Phenanthrene	0.02 ug/g	<0.02	0.18	-	-	-	-
Pyrene	0.02 ug/g	<0.02	0.14	-	-	-	-
2-Fluorobiphenyl	Surrogate	72.6%	54.1%	-	-	-	-
Terphenyl-d14	Surrogate	105%	62.6%	-	-	-	-

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics								
Conductivity	ND	5	uS/cm					
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
F4G PHCs (gravimetric)	ND	50	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium (VI)	ND	0.2	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Mercury	ND	0.1	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
Semi-Volatiles								
Acenaphthene	ND	0.02	ug/g					
Acenaphthylene	ND	0.02	ug/g					
Anthracene	ND	0.02	ug/g					

Report Date: 31-May-2024

Order Date: 14-May-2024

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Method Quality Control: Blank

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [a] anthracene	ND	0.02	ug/g					
Benzo [a] pyrene	ND	0.02	ug/g					
Benzo [b] fluoranthene	ND	0.02	ug/g					
Benzo [g,h,i] perylene	ND	0.02	ug/g					
Benzo [k] fluoranthene	ND	0.02	ug/g					
Chrysene	ND	0.02	ug/g					
Dibenzo [a,h] anthracene	ND	0.02	ug/g					
Fluoranthene	ND	0.02	ug/g					
Fluorene	ND	0.02	ug/g					
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g					
1-Methylnaphthalene	ND	0.02	ug/g					
2-Methylnaphthalene	ND	0.02	ug/g					
Methylnaphthalene (1&2)	ND	0.04	ug/g					
Naphthalene	ND	0.01	ug/g					
Phenanthrene	ND	0.02	ug/g					
Pyrene	ND	0.02	ug/g					
Surrogate: 2-Fluorobiphenyl	0.688		%	51.6	50-140			
Surrogate: Terphenyl-d14	1.11		%	83.4	50-140			
Volatiles								
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.74		%	109	50-140			

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Method Quality Control: Duplicate

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	2.09	0.01	N/A	2.19			4.7	30	
Conductivity	2300	5	uS/cm	2330			1.3	5	
pН	6.22	0.05	pH Units	6.24			0.3	2.3	
Hydrocarbons F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	79	8	ug/g	105			28.5	30	
F4 PHCs (C34-C50)	194	6	ug/g	263			30.4	30	QR-05
Metals									
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	3.4	1.0	ug/g	3.4			0.6	30	
Barium	314	1.0	ug/g	333			6.0	30	
Beryllium	1.1	0.5	ug/g	1.0			9.1	30	
Boron	13.6	5.0	ug/g	13.3			2.9	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	0.2	0.2	ug/g	0.2			0.0	35	
Chromium	48.8	5.0	ug/g	50.0			2.6	30	
Cobalt	15.5	1.0	ug/g	16.1			3.6	30	
Copper	31.1	5.0	ug/g	32.3			3.8	30	
Lead	23.7	1.0	ug/g	24.3			2.3	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	32.8	5.0	ug/g	33.5			2.1	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	66.6	10.0	ug/g	68.8			3.2	30	
Zinc	86.5	20.0	ug/g	90.3			4.3	30	
Physical Characteristics									

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Analyte

Method Quality Control: Duplicate

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

Notes

		Entric		rtooun		Ennix		Ennix	
% Solids	92.5	0.1	% by Wt.	91.8			0.8	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Chrysene	ND	0.02	ug/g	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g	ND			NC	40	
Fluoranthene	ND	0.02	ug/g	ND			NC	40	
Fluorene	ND	0.02	ug/g	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g	ND			NC	40	
1-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
2-Methylnaphthalene	ND	0.02	ug/g	ND			NC	40	
Naphthalene	ND	0.01	ug/g	ND			NC	40	
Phenanthrene	ND	0.02	ug/g	ND			NC	40	
Pyrene	ND	0.02	ug/g	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	1.44		%		66.7	50-140			
Surrogate: Terphenyl-d14	1.92		%		88.7	50-140			
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	9.46		%		108	50-140			

Source

Result

Units

Reporting

Limit

Result

%REC

Limit

%REC

RPD

Limit

RPD

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	186	7	ug/g	ND	108	85-115			
F2 PHCs (C10-C16)	102	4	ug/g	ND	117	60-140			
F3 PHCs (C16-C34)	342	8	ug/g	105	111	60-140			
F4 PHCs (C34-C50)	395	6	ug/g	263	96.9	60-140			
F4G PHCs (gravimetric)	920	50	ug/g	ND	92.0	80-120			
Metals									
Arsenic	46.9	1.0	ug/g	1.4	91.1	70-130			
Barium	166	1.0	ug/g	133	65.4	70-130			QM-07
Beryllium	47.4	0.5	ug/g	ND	94.0	70-130			
Boron	47.2	5.0	ug/g	5.3	83.8	70-130			
Cadmium	42.6	0.5	ug/g	ND	85.0	70-130			
Chromium (VI)	4.2	0.2	ug/g	0.2	72.5	70-130			
Chromium	68.0	5.0	ug/g	20.0	95.9	70-130			
Cobalt	53.0	1.0	ug/g	6.4	93.2	70-130			
Copper	57.9	5.0	ug/g	12.9	89.9	70-130			
Lead	52.8	1.0	ug/g	9.7	86.2	70-130			
Mercury	1.43	0.1	ug/g	ND	95.0	70-130			
Molybdenum	45.5	1.0	ug/g	ND	90.4	70-130			
Nickel	58.6	5.0	ug/g	13.4	90.5	70-130			
Selenium	45.2	1.0	ug/g	ND	90.1	70-130			
Silver	37.2	0.3	ug/g	ND	74.3	70-130			
Thallium	45.2	1.0	ug/g	ND	90.1	70-130			
Uranium	47.6	1.0	ug/g	ND	94.7	70-130			
Vanadium	74.6	10.0	ug/g	27.5	94.1	70-130			
Zinc	77.2	20.0	ug/g	36.1	82.1	70-130			
Semi-Volatiles									
Acenaphthene	0.221	0.02	ug/g	ND	81.6	50-140			
Acenaphthylene	0.231	0.02	ug/g	ND	85.3	50-140			
Anthracene	0.247	0.02	ug/g	ND	91.3	50-140			
Benzo [a] anthracene	0.195	0.02	ug/g	ND	72.0	50-140			

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [a] pyrene	0.159	0.02	ug/g	ND	58.9	50-140			
Benzo [b] fluoranthene	0.178	0.02	ug/g	ND	65.7	50-140			
Benzo [g,h,i] perylene	0.166	0.02	ug/g	ND	61.3	50-140			
Benzo [k] fluoranthene	0.194	0.02	ug/g	ND	71.7	50-140			
Chrysene	0.205	0.02	ug/g	ND	75.9	50-140			
Dibenzo [a,h] anthracene	0.174	0.02	ug/g	ND	64.4	50-140			
Fluoranthene	0.251	0.02	ug/g	ND	92.8	50-140			
Fluorene	0.209	0.02	ug/g	ND	77.1	50-140			
Indeno [1,2,3-cd] pyrene	0.146	0.02	ug/g	ND	54.1	50-140			
1-Methylnaphthalene	0.205	0.02	ug/g	ND	75.7	50-140			
2-Methylnaphthalene	0.173	0.02	ug/g	ND	64.0	50-140			
Naphthalene	0.208	0.01	ug/g	ND	76.9	50-140			
Phenanthrene	0.208	0.02	ug/g	ND	77.0	50-140			
Pyrene	0.249	0.02	ug/g	ND	92.0	50-140			
Surrogate: 2-Fluorobiphenyl	1.34		%		62.0	50-140			
Surrogate: Terphenyl-d14	1.82		%		84.0	50-140			
Volatiles									
Benzene	2.97	0.02	ug/g	ND	74.3	60-130			
Ethylbenzene	3.01	0.05	ug/g	ND	75.4	60-130			
Toluene	2.88	0.05	ug/g	ND	72.0	60-130			
m,p-Xylenes	6.29	0.05	ug/g	ND	78.6	60-130			
o-Xylene	2.73	0.05	ug/g	ND	68.3	60-130			

Report Date: 31-May-2024

Order Date: 14-May-2024

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Report Date: 31-May-2024

Order Date: 14-May-2024

Project Description: PE6422

Qua	lifier	Notes:	

due to dilution required because of high target analyte concentration.
s due to the nature of the sample matrix.
H4-24-AU1, BH5-24-AU1
return to baseline by C50
H1-24-AU1, BH2-24-AU1, BH3-24-AU1, BH4-24-AU1, BH4-24-SS2, BH5-24-AU1
s outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
than normally accepted. Remaining batch QA\QC was acceptable. May be sample effect.

Sample Data Revisions:

None

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60196

Work Order Revisions / Comments:

Revision 1 - Revised report includes additional metals and PAH analyses.

Other Report Notes:

- n/a: not applicable
- ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 31-May-2024

Order Date: 14-May-2024

(EL LTD.): 24	20225	nt Bhd. 16 4.8 Isbs.com Iom		racel O (Lab I	Use Oi	nly)	_		Ch			usto Only)	dy	
	Faterson Group Inc.				Proje	ect Ref:	PE6422									Pa	ge 1	of 2		_
	Jerenny Camposarco	ne			Quot	e #:										Turna	roun	d Tim	e	_
	9 AURIGA DRIVE				PO #:		60196							1 0	1 day				🗖 3 d	lay
Tol	OTTAWA ON K2E 7	Т9			E-mai	il:	jcamposarcone(@patersongroup.c	a						2 day				🗵 Re	gula
rea	613-226-7381				1		kmunch@paters	songroup.ca						Date	Requ	ired:				
-	REG 153/04 🛛 REG 406/19	Other	Regulation	Ι.						11.17		1.524	10.14							=
	Table 1 Res/Park Med/Fine	e 🔲 REG 558	D PWQO	1 '	SW (Su	iype: urface	S (Soil/Sed.) GW Water) SS (Storm,	(Ground Water) /Sanitary Sewer)					Re	quire	d Ana	lysis				
	Table 2 Ind/Comm Coarse	CCME	🗆 MISA				Paint) A (Air) O (X	Γ	T				1	1				
	Table 3 Agri/Other	🔲 SU - Sani	SU - Storm			sus			+ BTEX			4								
-	For RSC: Yes No	Mun:			me	Containers	Sam	ple Taken	F1-F4 +			y ICP								
_		Other:		Matrix	Air Volume	of Cor			Ē	S	۴	Metals by		-	B (HWS)			æ		
1	Sample ID/Locatio BH1-24-AU1	on Name		<u> </u>	Air	*	Date	Time	무	vocs	PAHs	Met	f	C_V	B	ح	B	SAR		
2	BH1-24-SS3			S	L	2	5/8/2024		V		~	~	~	~			~	1		
3	BH1-24-SS5			s		2	5/8/2024		4		4	4	4	4			4	1		
4	BH2-24-AU1			S		2	5/8/2024		4		4	1	1	~		\checkmark	~	~		
5				S		2	5/8/2024		1		¥	1	~	>		1	~	~		
6	BH2-24-SS3			S		2	5/8/2024		1		~	~	~	~			~	 ✓ 		
_	BH3-24-AU1			S		2	5/9/2024		1		~	~	~	~			~	~		
7	BH3-24-SS5			S		2	5/9/2024		1			~				~	~	~	\Box	
3	BH4-24-AU1			S		2	5/9/2024		~	\square	~	~	~	~		\square	~		\square	Γ
-+	BH4-24-SS2			s		2	5/9/2024		~	\square	~	~	~					~	\square	
_	BH4-24-SS3			s		2	5/9/2024		Ē	\square	R	0	7	\square			\square	П	\square	
	ents: HOLD - BH4-24-SS3 aished By (Sign):		Received By Driv	ver/De;	pot:	1		Received at Lab:						arc	elivery:		Cou	i.e		
inqui	ished By (Print): Jeremy Camposa		Date/Time:		83728 0.000			Data	Sp					(1)	2					
e/Ti	me: 5/13/2024	cone	Temperature:				04		414,	202	44	250	Date/T	ime	m	ay	24	09	128	
of	Custorly (Black) view		remperature;				°C	Temperature:	27				pH Ver	ified:	AN	By:				

Revision 4.0

(PARAC	EL RI		Par						(Lab	urder N Use Oi		r		Cł		Of C	Custo Only)	ody	
Clier	nt Name: Paterson Group Inc.				Proje	ct Ref:	PE6422									Pa	ge 2	of 2		
	act Name: Jeremy Camposarco	ne			Quot	e #:								+		Turna	aroun	d Tim	e e	
Add	9 AURIGA DRIVE				PO #:	(50196] 1 day				3 3	day
	OTTAWA ON K2E 7	Т9			E-mai	l: j	camposarcone(@patersongroup.c	a					1 🗆	2 day				🗵 Re	gula
Tele	phone: 613-226-7381				1	ł	munch@paters	songroup.ca						Date	Requ	ired:				-
	REG 153/04 REG 406/19 Fable 1 Res/Park Med/Fin Fable 2 Ind/Comm Coarse	Other Regulatio	WQO		Matrix 1 SW (Su	rface V	S (Soil/Sed.) GW Vater) SS (Storm Paint) A (Air) O (BTEX				Re	equire	d Ana	lysis				
1	Table 3 Agri/Other Table For RSC: Yes No	SU - Sani Si Mun: Other:	U - Storm	rix	Air Volume	of Containers	Sam	ple Taken	F1-F4 +	s	s	Metals by ICP			B (HWS)			~		
	Sample ID/Location	on Name		Matrix	Air \	to #	Date	Time	문	VOCs	PAHs	Meta	P	Cr	B (H	Hd	ы Ш	SAR		
1	BH4-24-SS6			s		2	5/9/2024		1			1					~	~		
2	BH5-24-AU1			s		2	5/9/2024		1		~	~	~	~		\checkmark	~	~		
3	BH5-24-SS2(BOTTOM)			s		23	5/9/2024		1			~					~	~		
4	DUP1			s		2	5/8/2024		1		1	1	1	~			~	~		\square
5	DUP2			s		2	5/9/2024		4			1					~	~		\square
6																		\square		
7												\square						\square		\square
8																		\square	\square	\square
9											\square	\square	\square			\square		\square	\square	
10									\square	\square	\square	\square						\square	\square	Ē
Comm	uished By (Sign):	Recei	ived By Dri	ver/De	pot:			Received at Lab:					R	d of De	-01		Lite			
Reling	uished By (Print) Jaramy Compor							So						0-	•					2
Date/1	- belefity Campos	dicollo	/Time:						414,	2020	14	250,	Date/	rified:	Jay	24	0	928	3	
oace/	ime: 5/3/2024	Temp	erature:				°C	Temperature:	12.7	-		v	pH Ve	rified:	RIA	By:				

Chain of Custody (Blank) sise

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group Consulting Engineers (Ottawa) 9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Jeremy Camposarcone

Paracel Report No. 2420225 PE6422 Client Project(s): Client PO: 60196 Reference: #24-017 Standing Offer 2024

Order Date: 14-May-24 Report Date: 31-May-24

CoC Number:

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID **Client ID** 2420225-10

BH4-24-SS3

Analysis Methyl Mercury - soil

ALS Canada Ltd.

	CER	TIFICATE OF ANALYSIS		
Work Order	: WT2413665	Page	: 1 of 2	
Client	: Paracel Laboratories Ltd	Laboratory	: ALS Environmental - Waterloo	
Contact	: Mark Foto	Account Manager	: Costas Farassoglou	
Address	: 2319 St. Laurent Blvd. Unit 300	Address	: 60 Northland Road, Unit 1	
	Ottawa ON Canada K1G 4J8		Waterloo ON Canada N2V 2B8	
Telephone	: 613 731 9577	Telephone	: 613 225 8279	
Project	: 2420225	Date Samples Received	: 28-May-2024 12:10	
PO	:	Date Analysis Commenced	: 02-Jun-2024	
C-O-C number	:	Issue Date	: 13-Jun-2024 09:08	
Sampler	: CLIENT			
Site	:			
Quote number	: Standing Offer 2024			
No. of samples received	: 1			
No. of samples analysed	: 1			

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Kinny Wu	Lab Analyst	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
µg/kg	micrograms per kilogram

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Soil/Solid			Cli	ient sample ID	BH4-24-SS3	 	
(Matrix: Soil/Solid)							
			Client samp	ling date / time	09-May-2024 09:00	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	WT2413665-001	 	
					Result	 	
Speciated Metals							
Methylmercury (as MeHg)	22967-92-6	E538/VA	0.050	µg/kg	<0.050	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

	QUALITY CON	FROL INTERPRETIVE REI	PORT
Work Order	:WT2413665	Page	: 1 of 5
Client	Paracel Laboratories Ltd	Laboratory	: ALS Environmental - Waterloo
Contact	: Mark Foto	Account Manager	: Costas Farassoglou
Address	: 2319 St. Laurent Blvd. Unit 300	Address	60 Northland Road, Unit 1
	Ottawa ON Canada K1G 4J8		Waterloo, Ontario Canada N2V 2B8
Telephone	:613 731 9577	Telephone	: 613 225 8279
Project	: 2420225	Date Samples Received	: 28-May-2024 12:10
PO	:	Issue Date	: 13-Jun-2024 09:08
C-O-C number	:		
Sampler	: CLIENT		
Site	:		
Quote number	: Standing Offer 2024		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid					E١	/aluation: × =	Holding time excee	edance ; 🔹		Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Speciated Metals : Methylmercury in Soil by GCAFS										
Glass soil jar/Teflon lined cap [ON MECP]										
BH4-24-SS3	E538	09-May-2024	07-Jun-2024	28	29	*	10-Jun-2024	28 days	3 days	✓
				days	days	EHT				

Legend & Qualifier Definitions

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

atrix: Soil/Solid Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specificati							
Quality Control Sample Type		Count		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Methylmercury in Soil by GCAFS	E538	1479163	1	11	9.0	5.0	✓
Laboratory Control Samples (LCS)							
Methylmercury in Soil by GCAFS	E538	1479163	2	11	18.1	10.0	✓
Method Blanks (MB)							
Methylmercury in Soil by GCAFS	E538	1479163	1	11	9.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Methylmercury in Soil by GCAFS	E538 ALS Environmental - Vancouver	Soil/Solid	DeWild et al. (2004)/EPA 1630 (mod)	This method follows procedures published by DeWild, Olund, Olsen and Tate (2004) for the US Geological Survey (Techniques and Methods 5A-7). Samples are leached with an acidic copper sulphate solution to solubilize methylmercury for inorganic complexes. The methylmercury is then extracted into dichloromethane and then an aliquot is back extracted into ultra-pure water. The extract is analyzed by aqueous phase ethylation, purge and trap, desorption and GC separation. The separated species are then pyrolized to elemental Hg and quantified by cold vapour atomic flourescence spectroscopy. Results are reported "as MeHg".
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Methylmercury Soil Digestion	EP538 ALS Environmental - Vancouver	Soil/Solid	DeWild et al. (2004)	This method follows procedures published by DeWild, Olund, Olsen and Tate (2004) for the US Geological Survey (Techniques and Methods 5A-7). Samples are leached with an acidic copper sulphate solution to solubilize methylmercury for inorganic complexes. The methylmercury is then extracted into dichloromethane and then an aliquot is back extracted into ultra-pure water. The extract is analyzed by aqueous phase ethylation, purge and trap, desorption and GC separation. The separated species are then pyrolized to elemental Hg and quantified by cold vapour atomic flourescence spectroscopy. Results are reported "as MeHq".

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page WT2413665 : 1 of 3 Client : Paracel Laboratories Ltd Laboratory : ALS Environmental - Waterloo : Mark Foto Account Manager Contact : Costas Farassoglou Address Address : 2319 St. Laurent Blvd. Unit 300 :60 Northland Road, Unit 1 Ottawa ON Canada K1G 4J8 Waterloo, Ontario Canada N2V 2B8 Telephone 613 731 9577 Telephone :613 225 8279 Project :2420225 Date Samples Received :28-May-2024 12:10 PO Date Analysis Commenced :02-Jun-2024 :----C-O-C number Issue Date : 13-Jun-2024 09:08 :-----Sampler : CLIENT Site :----Quote number : Standing Offer 2024 No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Kinny Wu	Lab Analyst	Vancouver Metals, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot. CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Speciated Metals (C	C Lot: 1479163)											
VA24B0502-001	Anonymous	Methylmercury (as MeHg)	22967-92-6	E538	0.050	µg/kg	0.230	0.133	0.097	Diff <2x LOR		

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number Method	od	LOR	Unit	Result	Qualifier
Speciated Metals (QCLot: 1479163)						
Methylmercury (as MeHg)	22967-92-6 E538		0.05	µg/kg	<0.050	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

b-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier		
Speciated Metals (QCLot: 1479163)											
Methylmercury (as MeHg)	22967-92-6	E538	0.05	µg/kg	10 µg/kg	92.1	70.0	130			

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:						Reference Material (RM) Report							
					RM Target	Recovery (%)	Recovery L	imits (%)					
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier				
Speciated Metals	(QCLot: 1479163)												
QC-1479163-003	RM	Methylmercury (as MeHg)	22967-92-6	E538	14.8 µg/kg	108	70.0	130					

TRUSTED. RESPONSIVE. RELIABLE. 300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontract Order

SENDING LABORATORY:

Paracel Laboratories Ltd. 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 Phone: 613-731-9577

Fax: 613-731-9064

RECEIVING LABORATORY:

ALS Laboratory Group (Vancouver) 8081 Lougheed Highway

Burnaby, BC V5A 1W9 Phone: (604) 253-4188

Fax:

INVOICE TO:

Paracel Laboratories Ltd. 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 Phone: 613-731-9577

Fax: 613-731-9064

Date Requested:	15-May-24	Required Regulation	Realsz	
Project Number:	2420225	Turnaround		
Submitted By:	Sarah Scullion	Time	Standlard	

Sample ID	Matrix	Analyses Requested:	Sampled	Comments	
BH4-24-SS3	Soil	Methyl Mercury - soil	09-May-24 09:00		
					• · · · •

BB 05/29/24 8.40 10:10

Environmental Division Waterloo Work Order Reference

_

.

AB Sublet

Please email all results to mfoto@paracellabs.com, dbloom@paracellabs.com, drobertson@paracellabs.com

Be	Mar	18/019	
Released By	TY	Date / Tim	e
Temperature prior to Shipping	: 10	0	

Lara R.	28/05/24
Received By	Date
13.5°C ->ICE PACK	
12:10	

OTTAWA « CALGARY « MISSISSAUGA « KINGSTON « LONDON » NIAGARA « WINDSOR 1-800-749-1947 « www.paracellabs.com Page1of1

Chain Of Custody (Lab Use Only)

CI	ient Name: Deterson Original							\sim											
	Paterson Group Inc.			Proj	ect Ref:	PE6422									Pa	ge 1	of 2		
	Jerenny Camposarcor	ne		Quo	te #:										Turna	roun	d Tim	ne –	
A	dress: 9 AURIGA DRIVE			PO #	PO#: 60196							1 day				3 3	day		
	OTTAWA ON K2E 7T9			E-ma	ail:	jcamposarcone@p	patersongroup.c	a					2 day				× Re		
Tel	Telephone: 613-226-7381			1		kmunch@patersor							Date Required:						0
[REG 153/04 🛛 REG 406/19	Other Regulation	Regulation			- Paranan Branking													
	Table 1 🗌 Res/Park 🔲 Med/Fine	REG 558 PWQO				S (Soil/Sed.) GW (G Water) SS (Storm/S:						Re	quire	d Ana	lysis				
	Table 2 🔲 Ind/Comm 🗌 Coarse				V (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other)				8										
	Table 3 Agri/Other	SU - Sani SU - Storn			5			BTEX											
	Table	Mun:		zix Containers Containers			Taken	4 + +	s	0	Metals by ICP								
	For RSC: Yes No	Other:	ž	Air Volume	Cont			F1-F4						(SMH)					
	Sample ID/Location	n Name	Matrix	Air V	Jo #	Date	Time	문	vocs	PAHs	Meta	BH	Cr	B (H	F	ы	SAR		
1	BH1-24-AU1		s		2	5/8/2024			Ē	~	1	1	~		Ē	1	~		
2	BH1-24-SS3		s		2	5/8/2024				~	1	~	~			~	~		
3	BH1-24-SS5		s		2	5/8/2024		1		~	1	1	~			V		H	F
4	BH2-24-AU1		s		2	5/8/2024		$\overline{}$		1	1				V	1	F	H	F
5	BH2-24-SS3		s		2	5/8/2024			⊨		1				H	-		H	╞
6	BH3-24-AU1		s		2	5/9/2024			⊢		V		~		H	-		H	-
7	BH3-24-SS5		s		2	5/9/2024			\vdash	H			H			-		⊣	F
8	BH4-24-AU1		s		2	5/9/2024			님		~	 I 			H	-		┢	F
9	BH4-24-SS2		s		2	5/9/2024			님		⊨		H	H	H	Ŀ		⊣	
10	BH4-24-SS3		s		2	5/9/2024		ľ		~			Ľ	H	H	Ľ	Ľ	H	F
omm	ents: HOLD - BH4-24-SS3		3		2	5/9/2024					\underline{O}								L
													od of De			0			
elinquished By (Sign): Received By Driver/Depo			pot:	ot: Received at Lab:			0100	Varifi				Carlicel Courie							
elinquished By (Print) Jeremy Camposarcone Date/Time:			1	Sp			Sp	SP				0,5							
te/Time: 5/(3/2024				Date/Time: May 14, 2024 4,250, Date/T			e/Time: 5 May 24 0928												
ate/Time: S/13/2024 Temperature:				e, dat	°C Temperature: Q 7 pH Veri				H Verified: AVA By:										
						Pouldan 4.0													

Chain Of Custody Paracel Order Number (Lab Use Only) (Lab Use Only) 2420225

Client Name: Project Ref: PE6422 Paterson Group Inc. Page 2 of 2 Contact Name: Jeremy Camposarcone Quote #: **Turnaround Time** Address: PO #: 9 AURIGA DRIVE 60196 🗌 1 day 🗌 3 day OTTAWA ON K2E 7T9 E-mail: jcamposarcone@patersongroup.ca 🗌 2 day Regular Telephone: 613-226-7381 kmunch@patersongroup.ca Date Required: REG 153/04 KREG 406/19 Other Regulation Matrix Type: S (Soil/Sed.) GW (Ground Water) **Required Analysis** Table 1 Res/Park Med/Fine REG 558 D PWQO SW (Surface Water) SS (Storm/Sanitary Sewer) Table 2 Ind/Comm Coarse P (Paint) A (Air) O (Other) CCME MISA BTEX Table 3 Agri/Other SU - Sani SU - Storm Containers СР PHC F1-F4 + Table Mun: Sample Taken Air Volume ģ For RSC: Yes No Other: B (HWS) Matrix Metals PAHs VOCs SAR Sr Jo # Sample ID/Location Name С Date Time 문 Æ 1 BH4-24-SS6 S 2 5/9/2024 1 1 1 1 2 BH5-24-AU1 s 2 5/9/2024 1 1 1 1 1 1 1 ν 3 BH5-24-SS2(BOTTOM) 22 S 5/9/2024 1 V V V 4 DUP1 S 2 5/8/2024 1 1 1 1 V 1 1 5 DUP2 S 2 5/9/2024 1 1 1 1 6 7 8 9 10 Comments: Method of Delivery: Paracel Court Relinquished By (Sign): Received By Driver/Depot: Verified By: Received at Lab: Go Relinquished By (Print Jeremy Camposarcone Date/Time: Date/Time: Mai Date/Time: 24 0928 May 14, 2024 4.250 Date/Time: 5/3. Temperature: pH Verified: 2024 °C Temperature: By: 12.7 Chain of Custody (Blank) visi

Revision 4.0

TRUSTED. **RESPONSIVE.** RELIABLE.

e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🖲 NIAGARA FALLS 🖲 MISSISSAUGA SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Nepean, ON K2E 7T7 Attn: Eric Leveque

Client Proje Custo Phone: (613) 226-7381 Fax: (613) 226-6344

nt PO: 10564	Report Date: 17-May-2011
ect: PE2289	Order Date: 16-May-2011
ody: 84729	Order #: 1121005

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID 1121005-01 BH1-GW1

Mark Fiste Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 10564

Project Description: PE2289

Order #: 1121005

Report Date: 17-May-2011 Order Date:16-May-2011

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	16-May-11 16-May-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	16-May-11 17-May-11
VOCs	EPA 624 - P&T GC-MS	16-May-11 16-May-11

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 2 of 9

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10564

Project Description: PE2289

Order #: 1121005 Report Date: 17-May-2011

Order Date:16-May-2011

Jient PO: 10564		Project Descripti	00: PE2289		
	Client ID:	BH1-GW1	-	-	-
	Sample Date:	16-May-11	-	-	-
-	Sample ID:	1121005-01	-	-	-
	MDL/Units	Water	-	-	-
Volatiles					
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroethane	1.0 ug/L	<1.0	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Chloromethane	3.0 ug/L	<3.0	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dibromoethane	0.2 ug/L	<0.2	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Butyl Ketone (2-Hexanone)	10.0 ug/L	<10.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 9

Order #: 1121005

Report Date: 17-May-2011 Order Date:16-May-2011

Client: Paterson Group Cons	ulting Engineers			Order	Date:16-May-20
lient PO: 10564		Project Descriptio	n: PE2289		-
	Client ID:	BH1-GW1	-	-	-
	Sample Date:	16-May-11 1121005-01	-	-	-
	Sample ID: MDL/Units	Water	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	_	-	_
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	_
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	_
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
1,2,4- Trimethylbenzene	0.5 ug/L	<0.5	-	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	94.3%	-	-	-
Dibromofluoromethane	Surrogate	95.5%	-	-	-
Toluene-d8	Surrogate	101%	-	-	-
lydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-
F1 + F2 PHCs	125 ug/L	<125	-	-	-
F3 + F4 PHCs	200 ug/L	<200	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 9

Client: Paterson Group Consulting Engineers

Method Quality Control: Blank

Client PO: 10564

Project Description: PE2289

Order #: 1121005 Report Date: 17-May-2011

Order Date:16-May-2011

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles			0						
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	ND ND	0.5 0.5	ug/L ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,2,4- Trimethylbenzene	ND	0.5	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L		107	E0 440			
Surrogate: 4-Bromofluorobenzene	34.3		ug/L		107	50-140			
Surrogate: Dibromofluoromethane	30.2		ug/L		94.4	50-140			
Surrogate: Toluene-d8	32.5		ug/L		102	50-140			

P: 1-800-749-1947

WWW.PARACELLABS.COM

E: PARACEL@PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 9

Client: Paterson Group Consulting Engineers Client PO: 10564

Project Description: PE2289

Report Date: 17-May-2011

Order #: 1121005

Order Date:16-May-2011

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroethane	ND	1.0	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Chloromethane Dibromochloromethane	ND ND	3.0 0.5	ug/L	ND ND				30 30	
Dichlorodifluoromethane	ND	1.0	ug/L ug/L	ND				30	
1,2-Dibromoethane	ND	0.2	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.2	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1.1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene 1,1,1,2-Tetrachloroethane	ND ND	0.5 0.5	ug/L	ND ND				30 30	
1,1,2-Tetrachloroethane	ND	0.5 0.5	ug/L ug/L	ND				30 30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1.2.4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
1,2,4- Trimethylbenzene	ND	0.5	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	33.4		ug/L	ND	104	50-140			
Surrogate: Dibromofluoromethane	31.5		ug/L	ND	98.5	50-140			
Surrogate: Toluene-d8	31.4		ug/L	ND	98.1	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 9

Client: Paterson Group Consulting Engineers

Client PO: 10564

Method Quality Control: Spike

Report Date: 17-May-2011 Order Date:16-May-2011

	_	Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1980	25	ug/L	ND	98.8	68-117			
F2 PHCs (C10-C16)	1260	100	ug/L	ND	79.0	61-129			
F3 PHCs (C16-C34)	4180	100	ug/L	ND	104	61-129			
F4 PHCs (C34-C50)	3000	100	ug/L	ND	125	61-129			
Volatiles			~ <u>9</u> /=		.20	01.120			
Acetone	71.9	5.0	ug/L	ND	71.9	50-140			
Benzene	30.5	0.5	ug/L	ND	76.2	60-130			
Bromodichloromethane	37.8	0.5	ug/L	ND	94.4	60-130			
Bromoform	39.2	0.5	ug/L	ND	98.0	60-130			
Bromomethane	22.5	0.5	ug/L	ND	56.2	50-140			
Carbon Tetrachloride	39.6	0.2	ug/L	ND	99.1	60-130			
Chlorobenzene	32.8	0.5	ug/L	ND	82.1	60-130			
Chloroethane	24.4	1.0	ug/L	ND	61.0	50-140			
Chloroform	36.6	0.5	ug/L	ND	91.5	60-130			
Chloromethane	23.0	3.0	ug/L	ND	57.5	50-140			
Dibromochloromethane	39.0	0.5	ug/L	ND	97.4	60-130			
Dichlorodifluoromethane	34.1	1.0	ug/L	ND	85.3	50-140			
1,2-Dibromoethane	30.4	0.2	ug/L	ND	75.9	60-130			
1,2-Dichlorobenzene	37.8	0.5	ug/L	ND	94.4	60-130			
1,3-Dichlorobenzene	37.4	0.5	ug/L	ND	93.6	60-130			
1,4-Dichlorobenzene	37.5	0.5	ug/L	ND	93.8	60-130			
1,1-Dichloroethane	28.0	0.5	ug/L	ND	70.0	60-130			
1,2-Dichloroethane	37.8	0.5	ug/L	ND	94.4	60-130			
1,1-Dichloroethylene	31.2	0.5	ug/L	ND	78.0	60-130			
cis-1,2-Dichloroethylene	31.5	0.5	ug/L	ND	78.7	60-130			
trans-1,2-Dichloroethylene	33.5 27.7	0.5 0.5	ug/L	ND ND	83.7 69.2	60-130 60-130			
1,2-Dichloropropane cis-1,3-Dichloropropylene	33.7	0.5	ug/L ug/L	ND	84.3	60-130 60-130			
trans-1,3-Dichloropropylene	36.5	0.5	ug/L	ND	91.2	60-130 60-130			
Ethylbenzene	30.9	0.5	ug/L	ND	77.3	60-130			
Hexane	29.0	1.0	ug/L	ND	72.6	60-130			
Methyl Ethyl Ketone (2-Butanone)	50.9	5.0	ug/L	ND	50.9	50-140			
Methyl Butyl Ketone (2-Hexanone)	56.0	10.0	ug/L	ND	56.0	50-140			
Methyl Isobutyl Ketone	59.3	5.0	ug/L	ND	59.3	50-140			
Methyl tert-butyl ether	129	2.0	ug/L	ND	129	50-140			
Methylene Chloride	32.6	5.0	ug/L	ND	81.4	60-130			
Styrene	29.1	0.5	ug/L	ND	72.8	60-130			
1,1,1,2-Tetrachloroethane	38.6	0.5	ug/L	ND	96.6	60-130			
1,1,2,2-Tetrachloroethane	30.3	0.5	ug/L	ND	75.8	60-130			
Tetrachloroethylene	36.6	0.5	ug/L	ND	91.5	60-130			
Toluene	32.6	0.5	ug/L	ND	81.6	60-130			
1,2,4-Trichlorobenzene	34.1	0.5	ug/L	ND	85.4	60-130			
1,1,1-Trichloroethane	40.6	0.5	ug/L	ND	101	60-130			
1,1,2-Trichloroethane	32.3	0.5	ug/L	ND	80.8	60-130			
Trichloroethylene	34.5	0.5	ug/L	ND	86.3	60-130			
Trichlorofluoromethane	41.5	1.0	ug/L	ND	104	60-130			
1,2,4- Trimethylbenzene	34.9	0.5	ug/L		87.2	60-130 60-130			
1,3,5-Trimethylbenzene Vinyl chloride	39.4 23.7	0.5 0.5	ug/L	ND ND	98.6 59.3	60-130 50-140			
m,p-Xylenes	23.7 65.4	0.5 0.5	ug/L ug/L	ND ND	59.3 81.7	50-140 60-130			
o-Xylene	32.5	0.5 0.5	ug/L ug/L	ND	81.2	60-130 60-130			
Surrogate: 4-Bromofluorobenzene	29.9	0.0	ug/L		93.6	50-130 50-140			
Surrogate: Dibromofluoromethane	31.8		ug/L ug/L		99.3	50-140			
Sanogato. Distomonationalionenano	01.0		ug/L		00.0	00 170			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 9

Order #: 1121005

Client: Paterson Group Consulting Engineers

Client PO: 10564

Project Description: PE2289

Order #: 1121005

Report Date: 17-May-2011 Order Date:16-May-2011

Method Quality Control: Spike

Analyte	Reporti Result Limit	ng Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Toluene-d8	25.2	ug/L		78.6	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 9

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 10564

Project Description: PE2289

Order #: 1121005

Report Date: 17-May-2011 Order Date:16-May-2011

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 9

OPARACEL LABORATORIES LTD.	RES	SPONS IABLE	VE.					30	t: 61 80	aurent Blvd DN K1G 4J8 3-731-9577 00-749-1947 3-731-9064		(lab use o	
OTTAWA NIAGARA FALLS MISSIS					1	Reg. Drinking W	ater	e: p		cellabs.com	Nº.	8	4729
Client Name: Paterson Group	Projec	Ref: P	E228	9		Vaterworks Name				9	Dr		of 13
Contact Name: Eric Leve Gue	Quote				1	Vaterworks Num	ber:						of
Contact Name: Eric Leveque, Address: 28 Concourse Gate, Unit!	PO #	105	64		1	ddress:	1			<u>49</u>	Print Name:	mple Tak	
Ottawa ON	E-mail	Address:			7	After hours Cont	act:				Signature:	1. 10	DINSON
Telephone: 613 226-7381	Fax:	Vezue	- Opai	erson	group,ca	ublic Health Un	it				Signature.	Lj	l.
Matrix Types: S-Soil/Sed GW-Ground Water St	W-Surface	Water	SS Stor	m/Sonit							TAT: 🕅	-day 2	2-day Reg
Samples submitted under: (Indicate ONLY one)	ounder	water	Type of	niv Sanna	le: R = Raw; T	w-Drinking	Water RD	W-Reg	gulated Di	rinking Wa	ater P - Paint	A-Air	0-Other
Samples submitted under: (Indicate ONLY one) O. Reg 153 (511) Table 3 O. Reg 170/03 O. Reg 318 CCME O. Reg 243/07 O. Reg 319/08 Other	/08 🔲 Priva r:	te well	Location	n Types: S	= Surface Wate	= I reated; $D = 1$ r; $G = Ground$	Distribution Water			Requ	ired Analyse	S	
Paracel Order Number	Matrix	Air Volume	Type of Sample	of Containers	Samp	le Taken	Free / Combined Chlorine Residual mg/L	005	C 3(F1-F4)				
Sample ID / Location Name		1	Ty	0 #	Date	Time	Fre	01	PHC				
1 BHI-GWI	GW			3	May16/11			V	V				
2					Troppop I	000			~				
3													÷
4													
5													
6													
7	_												
8									_	-			
9				-									
10													
Comments:													
								Pres	ervation V	erification:	pH_	Tempera	ture D
Relinquished By (Print & Sign): T. Robinson							Lab Use Onl		inted by.	46	de la		
111	Receiv					Received	11	1		Verified	In		1
Date/Time: May 16 2011 gam	Driver/ Date/T				making states to the sold is to be been and share the	t Lab:	Al	TT.	The	By: Date/Tin	1.(1	K	

Walk-in

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Fax: (613) 226-6344

Phone: (613) 226-7381

Client PO: 12261	Report Date: 24-Jul-2012
Project: PE2709	Order Date: 20-Jul-2012
Custody: 94393	Order #: 1229249

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID
BH1-GW1
BH2-GW1
BH4-GW1

Approved By:

Mark Fisto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Paterson Group Consulting Engineers Client PO: 12261

Project Description: PE2709

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	20-Jul-12 23-Jul-12
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	20-Jul-12 21-Jul-12
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	23-Jul-12 24-Jul-12
VOCs	EPA 624 - P&T GC-MS	20-Jul-12 23-Jul-12

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 11

Client: Paterson Group Consulting Engineers

Order #: 1229249

Report Date: 24-Jul-2012 Order Date: 20-Jul-2012

lient PO: 12261	Client ID:	Project Description BH1-GW1	BH2-GW1	BH4-GW1	-
	Sample Date:	20-Jul-12	20-Jul-12	20-Jul-12	-
	Sample ID:	1229249-01	1229249-02	1229249-03	-
Г	MDL/Units	Water	Water	Water	-
/olatiles	•				
Acetone	5.0 ug/L	82.4	691	40.6	-
Benzene	0.5 ug/L	<0.5	2.4	1.1	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	3.8	-
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Chloroethane	1.0 ug/L	<1.0	<1.0	<1.0	-
Chloroform	0.5 ug/L	16.1	14.4	21.8	-
Chloromethane	3.0 ug/L	<3.0	<3.0	<3.0	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	<0.2	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	1.0	<0.5	-
Hexane	1.0 ug/L	2.1	2.2	<1.0	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	10.7	8.0	8.4	-
Methyl Butyl Ketone (2-Hexanone)	10.0 ug/L	<10.0	<10.0	<10.0	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 11

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Client PO: 12261		Project Description			
	Client ID: Sample Date:	BH1-GW1 20-Jul-12	BH2-GW1 20-Jul-12	BH4-GW1 20-Jul-12	-
	Sample ID:	1229249-01	1229249-02	1229249-03	-
	MDL/Units	Water	Water	Water	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	6.2	5.8	5.6	-
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	1.2	<0.5	-
o-Xylene	0.5 ug/L	<0.5	1.6	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	2.8	<0.5	-
4-Bromofluorobenzene	Surrogate	110%	117%	109%	-
Dibromofluoromethane	Surrogate	106%	110%	106%	-
Toluene-d8	Surrogate	98.4%	94.8%	97.2%	-
Hydrocarbons			1	i	•
F1 PHCs (C6-C10)	25 ug/L	45	43	<25	-
F2 PHCs (C10-C16)	100 ug/L	<287	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	<287	<100	<100	-
F4 PHCs (C34-C50)	100 ug/L	<287	<100	<100	-
Semi-Volatiles	- I		1		T
Acenaphthene	0.05 ug/L	-	<0.05	-	-
Acenaphthylene	0.05 ug/L	-	<0.05	-	-
Anthracene	0.01 ug/L	-	<0.01	-	-
Benzo [a] anthracene	0.01 ug/L	-	<0.01	-	-
Benzo [a] pyrene	0.01 ug/L	-	<0.01	-	-
Benzo [b] fluoranthene	0.05 ug/L	-	<0.05	-	-
Benzo [g,h,i] perylene	0.05 ug/L	-	<0.05	-	-
Benzo [k] fluoranthene	0.05 ug/L	-	<0.05	-	-
Biphenyl	0.05 ug/L	-	0.12	-	-
Chrysene	0.05 ug/L	-	<0.05	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	-	<0.05	-	-

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 11

Client: Paterson Group Consulting Engineers

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Client PO: 12261		Project Description	. DE2700	0	
Cilent PO. 12201				1	
	Client ID:	BH1-GW1	BH2-GW1	BH4-GW1	-
	Sample Date:	20-Jul-12	20-Jul-12	20-Jul-12	-
	Sample ID:	1229249-01	1229249-02	1229249-03	-
	MDL/Units	Water	Water	Water	-
Fluoranthene	0.01 ug/L	-	<0.01	-	-
Fluorene	0.05 ug/L	-	0.06	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	-	<0.05	-	-
1-Methylnaphthalene	0.05 ug/L	-	0.33	-	-
2-Methylnaphthalene	0.05 ug/L	-	0.40	-	-
Methylnaphthalene (1&2)	0.10 ug/L	-	0.73	-	-
Naphthalene	0.05 ug/L	-	0.82	-	-
Phenanthrene	0.05 ug/L	-	<0.05	-	-
Pyrene	0.01 ug/L	-	<0.01	-	-
2-Fluorobiphenyl	Surrogate	-	73.4%	-	-
Terphenyl-d14	Surrogate	-	80.8%	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 11

Client: Paterson Group Consulting Engineers

Client PO: 12261

Analyte

Method Quality Control: Blank

RPD

%REC

Limit

Report Date: 24-Jul-2012

RPD

Limit

Project Description: PE2709

Units

Source

Result

%REC

Reporting

Limit

Result

Order Date:20-Jul-2012

Notes

		Linne	Onito	Result		Linne	10.0	Linne	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Semi-Volatiles			- y -						
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.00	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.00	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.00	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.00	ug/L						
Surrogate: 2-Fluorobiphenyl	19.0	0.01	ug/L		95.2	50-140			
Surrogate: Terphenyl-d14	18.0		ug/L		90.0	50-140			
Volatiles					-	-			
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1.3-Dichloropropylene		0.5	ua/l						
cis-1,3-Dichloropropylene	ND	0.5 0.5	ug/L ug/L						
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	ND ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND								

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

WWW.PARACELLABS.COM

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 11

Client: Paterson Group Consulting Engineers

Client PO: 12261

Surrogate: Toluene-d8

Method Quality Control: Blank

Report Date: 24-Jul-2012

Order #: 1229249

Order Date:20-Jul-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	37.9		ug/L		118	50-140			
Surrogate: Dibromofluoromethane	25.4		ug/L		79.4	50-140			
			- <u> </u>						

ug/L

34.7

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

108

50-140

Page 7 of 11

Client: Paterson Group Consulting Engineers

Method Quality Control: Duplicate

Client PO: 12261

Project Description: PE2709

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Order #: 1229249

REC	%REC Limit	RPD	RPD Limit	Notes

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles			-						
		5.0						20	
Acetone Benzene	ND ND	5.0 0.5	ug/L	ND ND				30 30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform			ug/L					30	
Bromomethane	ND ND	0.5 0.5	ug/L	ND ND				30 30	
			ug/L					30	
Carbon Tetrachloride	ND	0.2	ug/L	ND					
Chlorobenzene Chloroethane	ND	0.5	ug/L	ND				30 30	
	ND	1.0	ug/L	ND					
Chloroform	ND	0.5	ug/L	ND				30	
Chloromethane	ND	3.0	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dibromoethane	ND	0.2	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	38.4		ug/L	ND	120	50-140			
Surrogate: Dibromofluoromethane	35.1		ug/L	ND	110	50-140			
Surrogate: Toluene-d8	35.3		ug/L	ND	110	50-140			
	00.0					00 / 10			

P :	1-800-749-1947
E :	PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 11

Client: Paterson Group Consulting Engineers

Client PO: 12261

Hydrocarbons F1 PHCs (C6-C10) F2 PHCs (C10-C16) F3 PHCs (C16-C34) F4 PHCs (C34-C50) Semi-Volatiles Acenaphthene Acenaphthylene Anthracene

Benzo [a] anthracene Benzo [a] pyrene Benzo [b] fluoranthene Benzo [g,h,i] perylene Benzo [k] fluoranthene

Dibenzo [a,h] anthracene

Indeno [1,2,3-cd] pyrene

1-Methylnaphthalene

Biphenyl

Chrysene

Fluorene

Fluoranthene

Analyte

Method Qualit

		Project Des	cription: Pl	2709					
ty Control: Spike)								
	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
	1910	25	ug/L	ND	95.7	68-117			
	1230	100	ug/L	ND	76.7	60-140			
	3300	100	ug/L	ND	82.5	60-140			
	2390	100	ug/L	ND	99.6	60-140			
	3.44	0.05	ug/L	ND	68.9	50-140			
	3.49	0.05	ug/L	ND	69.7	50-140			
	3.55	0.01	ug/L	ND	71.0	50-140			
	3.88	0.01	ug/L	ND	77.6	50-140			
	3.44	0.01	ug/L	ND	68.9	50-140			
	4.66	0.05	ug/L	ND	93.2	50-140			
	3.22	0.05	ug/L	ND	64.3	50-140			
	4.86	0.05	ug/L	ND	97.3	50-140			
	3.54	0.05	ug/L	ND	70.8	50-140			

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

ND

ND

82.1

78.0

84.1

80.4

60.8

62.6

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140 50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140 50-140

50-140

50-140

50-140 50-140

50-140

50-140 50-140

50-140

50-140

			<u>-</u> <u>-</u>			
2-Methylnaphthalene	3.44	0.05	ug/L	ND	68.8	
Naphthalene	3.70	0.05	ug/L	ND	74.1	
Phenanthrene	3.89	0.05	ug/L	ND	77.8	
Pyrene	4.41	0.01	ug/L	ND	88.2	
Surrogate: 2-Fluorobiphenyl	17.8		ug/L		89.1	
Volatiles						
Acetone	75.4	5.0	ug/L	ND	75.4	
Benzene	43.2	0.5	ug/L	ND	108	
Bromodichloromethane	42.0	0.5	ug/L	ND	105	
Bromoform	38.1	0.5	ug/L	ND	95.2	
Bromomethane	30.1	0.5	ug/L	ND	75.3	
Carbon Tetrachloride	41.2	0.2	ug/L	ND	103	
Chlorobenzene	43.1	0.5	ug/L	ND	108	
Chloroethane	42.2	1.0	ug/L	ND	106	
Chloroform	43.5	0.5	ug/L	ND	109	
Chloromethane	34.1	3.0	ug/L	ND	85.2	
Dibromochloromethane	40.1	0.5	ug/L	ND	100	
Dichlorodifluoromethane	43.5	1.0	ug/L	ND	109	
1,2-Dibromoethane	36.9	0.2	ug/L	ND	92.2	
1,2-Dichlorobenzene	32.1	0.5	ug/L	ND	80.3	
1,3-Dichlorobenzene	32.4	0.5	ug/L	ND	80.9	
1,4-Dichlorobenzene	33.9	0.5	ug/L	ND	84.8	
1,1-Dichloroethane	46.0	0.5	ug/L	ND	115	
1,2-Dichloroethane	40.8	0.5	ug/L	ND	102	
1,1-Dichloroethylene	27.7	0.5	ug/L	ND	69.2	
cis-1,2-Dichloroethylene	35.0	0.5	ug/L	ND	87.6	
trans-1,2-Dichloroethylene	34.6	0.5	ug/L	ND	86.4	
1,2-Dichloropropane	41.1	0.5	ug/L	ND	103	

4.10

3.90

4.20

4.02

3.04

3.13

0.05

0.05

0.01

0.05

0.05

0.05

P: 1-800-749-1947 E : PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 11

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

Client: Paterson Group Consulting Engineers

Client PO: 12261

Vinyl chloride

m,p-Xylenes

o-Xylene

Method Quality Control: Spike

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
cis-1,3-Dichloropropylene	33.9	0.5	ug/L	ND	84.8	50-140			
trans-1,3-Dichloropropylene	44.0	0.5	ug/L	ND	110	50-140			
Ethylbenzene	36.4	0.5	ug/L	ND	91.1	50-140			
Hexane	43.3	1.0	ug/L	ND	108	50-140			
Methyl Ethyl Ketone (2-Butanone)	62.5	5.0	ug/L	ND	62.5	50-140			
Methyl Butyl Ketone (2-Hexanone)	67.9	10.0	ug/L	ND	67.9	50-140			
Methyl Isobutyl Ketone	63.7	5.0	ug/L	ND	63.7	50-140			
Methyl tert-butyl ether	72.8	2.0	ug/L	ND	72.8	50-140			
Methylene Chloride	34.3	5.0	ug/L	ND	85.8	50-140			
Styrene	29.9	0.5	ug/L	ND	74.8	50-140			
1,1,1,2-Tetrachloroethane	42.6	0.5	ug/L	ND	107	50-140			
1,1,2,2-Tetrachloroethane	49.5	0.5	ug/L	ND	124	50-140			
Tetrachloroethylene	43.0	0.5	ug/L	ND	108	50-140			
Toluene	40.0	0.5	ug/L	ND	100	50-140			
1,2,4-Trichlorobenzene	43.2	0.5	ug/L	ND	108	50-140			
1,1,1-Trichloroethane	41.4	0.5	ug/L	ND	104	50-140			
1,1,2-Trichloroethane	37.5	0.5	ug/L	ND	93.8	50-140			
Trichloroethylene	36.9	0.5	ug/L	ND	92.4	50-140			
Trichlorofluoromethane	34.8	1.0	ug/L	ND	87.0	50-140			
1,3,5-Trimethylbenzene	28.6	0.5	ug/L	ND	71.5	50-140			
V/incut_ala_la_uiala_	10.7	0.5			400	FO 4 40			

ug/L

ug/L

ug/L

ND

ND

ND

109

111

98.9

50-140

50-140

50-140

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

43.7

89.0

39.6

0.5

0.5

0.5

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Page 10 of 11

Client: Paterson Group Consulting Engineers

Client PO: 12261

Project Description: PE2709

Order #: 1229249

Report Date: 24-Jul-2012 Order Date: 20-Jul-2012

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

WWW.PARACELLABS.COM

 GA
 SARNIA

 Unit #27
 123 Christina St. N.

 L5N 6J3
 Sarnia, ON N7T 5T7

Page 11 of 11

OPARACEL	The second se									Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com					Chain of Custody (Lab Use Only) Nº 94393			
OTTAWA KINGSTON	AUGA	◉ SAF	RNIA		2211	1		٧	WW.	parac	cellabs	.com			Page	c⊥ of	4	
Client Name: DKGLSAT GLAUP (NU Contact Name: HARK D'ARCY				Project Reference: Quote # PO #	157		59						1			1	3 Day	
Address: 1SH Celonnade ford South Telephone: (613)226-7381				Email Address:	1226 ARCY@1		éf s	bre	Ro	w.	A		_	Date Re	quired:			T
Criteria: [] O. Reg. 153/04 Table [)(O. Reg. 153/11 (Current)	lable3	RSC	Filing									8 (Sanitar	y) Muni	cipality:			Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	6 (Storm/S	anitary S	ewer) P	(Paint) A (Air) O (Other)							Requ	ired Ar	nalyses				
Paracel Order Number: 229249	trix	Air Volume	of Containers	Sample	Taken	s F1-F4+BTEX	S	Is	Metals by ICP/MS		CrVI B (HWS)							
Sample ID/Location Name	Matrix	Air	#	Date	Time	PHCs	VOCs	PAHs	Met	Hg	CrVI B (HV							
1 BHI-GWI	GW		2	July 29 2012		X	Х			_	_							/
2 BUZ-GWI	GW		4	July 20,2012		X	X	X		_	_	-						/
3 BHH - Gwa	60		3	July 19,20	é	X	X	X	_	7	-		no P	AH o	analy		Per	/
4				V		+	-			-	-			-	-	fea	h	
5						+	-			+	+						-	
6			-			+	-		-		+				-			
8						-	\vdash			_	+			1	-			
9						1			-		-							
10						1	T	F										
Comments: Unable to recover enough can for RHCC 3 VOCS Thank	ple h	or 2,	e vials	\$ Joont Decay	1 1	<i></i>	1		V	FL SS	uh Arci	f you De	r chi r Sei	211-1	Method	of Deliv	ery:	
Relinquished By (Print & Sign):	Receive	d by Dri	ver/Dep	st:	Receiv	ed at I	at!	n		/	T	10-	Verifie	d By	C		• 1	
Mableloys PBS	Date/Ti	me;		10.101.10	Date/T	ime:	1	f.	- G	11	ZA	to	Date/T	ime:	Tul	20	112	12:2
Date/Time: July 20, 2012, 1/12	Temper	ature:		°C	Tempe	rature	9	1,1	°C	11	1.0	la	pH Ver	ified []	By:	N	1	

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

Phone: (613) 226-7381 Fax: (613) 226-6344

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 12263 Report Date: 26-Jul-2012 Project: PE2709 Order Date: 25-Jul-2012 Order #: 1230199 Custody: 94819

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1230199-01 BH4-GW2 1230199-02 BH2-GW2

Mark Frata

Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Paterson Group Consulting Engineers Client PO: 12263

Project Description: PE2709

Order #: 1230199

Report Date: 26-Jul-2012 Order Date:25-Jul-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	26-Jul-12 26-Jul-12
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	26-Jul-12 26-Jul-12
VOCs	EPA 624 - P&T GC-MS	26-Jul-12 26-Jul-12

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Client: Paterson Group Consulting Engineers

Order #: 1230199

Report Date: 26-Jul-2012 Order Date: 25-Jul-2012

lient PO: 12263	Client ID:	Project Description BH4-GW2	BH2-GW2	-	-
	Sample Date:	25-Jul-12	25-Jul-12	-	-
	Sample ID:	1230199-01	1230199-02	-	-
Г	MDL/Units	Water	Water	-	-
/olatiles			1 1		1
Acetone	5.0 ug/L	104	1020	-	-
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
Chloroethane	1.0 ug/L	<1.0	<1.0	-	-
Chloroform	0.5 ug/L	3.1	9.9	-	-
Chloromethane	3.0 ug/L	<3.0	<3.0	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Hexane	1.0 ug/L	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	26.1	-	-
Methyl Butyl Ketone (2-Hexanone)	10.0 ug/L	<10.0	<10.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order #: 1230199

Report Date: 26-Jul-2012 Order Date: 25-Jul-2012

Client PO: 12263		Project Description	n: PE2709		
	Client ID: Sample Date: Sample ID:	BH4-GW2 25-Jul-12 1230199-01	BH2-GW2 25-Jul-12 1230199-02	-	- - -
Styrene	MDL/Units 0.5 ug/L	Vater <0.5	Water <0.5	-	-
	0.5 ug/L				-
1,1,1,2-Tetrachloroethane	-	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
4-Bromofluorobenzene	Surrogate	110%	108%	-	-
Dibromofluoromethane	Surrogate	110%	109%	-	-
Toluene-d8	Surrogate	112%	106%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Paterson Group Consulting Engineers

Client PO: 12263

Project Description: PE2709

Report Date: 26-Jul-2012

Order #: 1230199

Order Date:25-Jul-2012

Method Quality Control: E	Blank								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
Volatiles			~ <u>9</u> , =						
		5.0							
Acetone Benzene	ND	5.0	ug/L						
Bromodichloromethane	ND ND	0.5 0.5	ug/L						
Bromoform	ND	0.5	ug/L ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND ND	0.5	ug/L						
1,2-Dichloropropane cis-1,3-Dichloropropylene	ND	0.5 0.5	ug/L ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane 1,1.2-Trichloroethane	ND	0.5 0.5	ug/L						
Trichloroethylene	ND ND	0.5 0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	37.1		ug/L		116	50-140			
Surrogate: Dibromofluoromethane	31.8		ug/L		99.5	50-140			
Surrogate: Toluene-d8	38.5		ug/L		120	50-140			
canogato. Totaono ao	00.0		ug/L		.20	00 140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Client: Paterson Group Consulting Engineers

Client PO: 12263

Project Description: PE2709

Report Date: 26-Jul-2012

Order #: 1230199

Order Date:25-Jul-2012

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles			0						
		5.0						20	
Acetone	ND ND	5.0 0.5	ug/L	ND ND				30 30	
Benzene Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L ug/L	ND				30	
Carbon Tetrachloride	ND	0.3	ug/L	ND				30	
Chlorobenzene	ND	0.2	ug/L	ND				30	
Chloroethane	ND	1.0	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
								30	
Chloromethane Dibromochloromethane	ND ND	3.0 0.5	ug/L ug/L	ND ND				30 30	
Dichlorodifluoromethane	ND	0.5 1.0	ug/L ug/L	ND				30 30	
1,2-Dibromoethane	ND	0.2		ND				30	
·	ND	0.2	ug/L	ND				30	
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1.4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
,	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane 1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	2.0 5.0		ND				30	
Styrene	ND	0.5	ug/L ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5		ND				30	
Tetrachloroethylene	ND	0.5	ug/L ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1.2.4-Trichlorobenzene	ND	0.5		ND				30	
	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND	0.5	ug/L ug/L	ND				30 30	
Trichloroethylene	ND	0.5		ND				30 30	
Trichlorofluoromethane	ND	0.5 1.0	ug/L ug/L	ND				30 30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L ug/L	ND				30 30	
Vinvl chloride	ND	0.5		ND				30 30	
, , , , , , , , , ,	ND	0.5	ug/L ug/L	ND ND				30 30	
m,p-Xylenes o-Xylene	ND	0.5		ND				30 30	
Surrogate: 4-Bromofluorobenzene		0.5	ug/L		100	50-140		30	
	34.9		ug/L	ND	109				
Surrogate: Dibromofluoromethane	35.1		ug/L	ND	110	50-140			
Surrogate: Toluene-d8	37.2		ug/L	ND	116	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Client: Paterson Group Consulting Engineers

Client PO: 12263

Vinyl chloride

m,p-Xylenes

Surrogate: 4-Bromofluorobenzene

o-Xylene

- -_ ... _

Order #: 1230199
Report Date: 26-Jul-20

26-Jul-2012 Order Date:25-Jul-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1910	25	ug/L	ND	95.4	68-117			
Volatiles									
Acetone	87.7	5.0	ug/L	ND	87.7	50-140			
Benzene	34.4	0.5	ug/L	ND	86.1	50-140			
Bromodichloromethane	31.0	0.5	ug/L	ND	77.6	50-140			
Bromoform	35.8	0.5	ug/L	ND	89.6	50-140			
Bromomethane	26.3	0.5	ug/L	ND	65.7	50-140			
Carbon Tetrachloride	30.3	0.2	ug/L	ND	75.8	50-140			
Chlorobenzene	42.4	0.5	ug/L	ND	106	50-140			
Chloroethane	37.6	1.0	ug/L	ND	93.9	50-140			
Chloroform	32.3	0.5	ug/L	ND	80.8	50-140			
Chloromethane	30.1	3.0	ug/L	ND	75.2	50-140			
Dibromochloromethane	39.0	0.5	ug/L	ND	97.6	50-140			
Dichlorodifluoromethane	27.9	1.0	ug/L	ND	69.8	50-140			
1,2-Dibromoethane	39.2	0.2	ug/L	ND	98.0	50-140			
1,2-Dichlorobenzene	32.3	0.5	ug/L	ND	80.8	50-140			
1,3-Dichlorobenzene	32.3	0.5	ug/L	ND	80.8	50-140			
1,4-Dichlorobenzene	33.0	0.5	ug/L	ND	82.4	50-140			
1,1-Dichloroethane	43.9	0.5	ug/L	ND	110	50-140			
1,2-Dichloroethane	29.7	0.5	ug/L	ND	74.3	50-140			
1,1-Dichloroethylene	36.2	0.5	ug/L	ND	90.4	50-140			
cis-1,2-Dichloroethylene	29.6	0.5	ug/L	ND	74.1	50-140			
trans-1,2-Dichloroethylene	47.4	0.5	ug/L	ND	119	50-140			
1,2-Dichloropropane	34.1	0.5	ug/L	ND	85.2	50-140			
cis-1,3-Dichloropropylene	49.7	0.5	ug/L	ND	124	50-140			
trans-1,3-Dichloropropylene	46.9	0.5	ug/L	ND	117	50-140			
Ethylbenzene	33.5	0.5	ug/L	ND	83.7	50-140			
Hexane	30.0	1.0	ug/L	ND	75.0	50-140			
Methyl Ethyl Ketone (2-Butanone)	104	5.0	ug/L	ND	104	50-140			
Methyl Butyl Ketone (2-Hexanone)	76.8	10.0	ug/L	ND	76.8	50-140			
Methyl Isobutyl Ketone	74.5	5.0	ug/L	ND	74.5	50-140			
Methyl tert-butyl ether	99.8	2.0	ug/L	ND	99.8	50-140			
Methylene Chloride	37.6	5.0	ug/L	ND	94.1	50-140			
Styrene	29.1	0.5	ug/L	ND	72.7	50-140			
1,1,1,2-Tetrachloroethane	40.3	0.5	ug/L	ND	101	50-140			
1,1,2,2-Tetrachloroethane	51.5	0.5	ug/L	ND	129	50-140			
Tetrachloroethylene	39.5	0.5	ug/L	ND	98.7	50-140			
Toluene	30.0	0.5	ug/L	ND	75.0	50-140			
1,2,4-Trichlorobenzene	27.0	0.5	ug/L	ND	67.6	50-140			
1,1,1-Trichloroethane	30.1	0.5	ug/L	ND	75.2	50-140			
1,1,2-Trichloroethane	30.5	0.5	ug/L	ND	76.2	50-140			
Trichloroethylene	28.5	0.5	ug/L	ND	71.2	50-140			
Trichlorofluoromethane	32.2	1.0	ug/L	ND	80.6	50-140			
1,3,5-Trimethylbenzene	26.0	0.5	ug/L	ND	65.0	50-140			
Vinul ablarida	20.2	0.5	ua/I		72.2	50 1 40			

Project Description: PE2709

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

29.3

68.0

36.6

25.8

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

0.5

0.5

0.5

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

73.2

85.0

91.5

80.8

50-140

50-140

50-140

50-140

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 8

Client: Paterson Group Consulting Engineers

Client PO: 12263

Project Description: PE2709

Order #: 1230199

Report Date: 26-Jul-2012 Order Date: 25-Jul-2012

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

OPARACEL LABORATORIES LTD.	nin in dispersional positive see that a						Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com						G 4J8	Chain of Custody (Lab Use Only) Nº 94819				
OTTAWA © KINGSTON © NIAGARA © MISSISS	AUGA	• SAF	RNIA			www.paracellabs.com								P	age _	of		
Client Name: PATERSON GROUP INC. Contact Name: MARK D'ARLY		Project Reference: PE2729 Quote #										— TAT: Regular 3 Day						
Address: 154 COLONNADE FORD SOUTH Telephone: (613)226-7381		PO# 12263 Email Address: MDAKLY @ PATEKSONGFOWP.CA					uf.A				Date Required:							
Criteria: [] O. Reg. 153/04 Table [)(O. Reg. 153/11 (Current	Table 3	RSC	Filing		-						[]	SUB (S	Sanitary) Mu	nicipality	y)] Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	SS (Storm/S	anitary S	ewer) P	(Paint) A (Air) O (Other)]	Required A	Analys	es			
Paracel Order Number: 230199	rix.	Air Volume	of Containers	Sample	e Taken	FI-F4+BTEX	0		is by ICP/MS			WS)						
Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHCs	VOCs	PAHs	Metals	Hg	CrVI	B (HWS)						
1 BHH-GWZ	GW			July 25	12:30 pm	X	X											
2 BH2-GW2	GW			July 25	10 am	X	X											
3				0														
4				_			_			_		_		_	_		-	
5										_					_	_	_	
6							_			_	_	_			-			
7										_	_	_		_				-
8			-				_			_	_	-		-				
10							_			_	_	-		-		+	+	
Comments: PHGs FI@ BH2-GW2	 														Meth	od of Del	ivery: UK-	in
Relinquished By (Print & Sign):	Receive	d by Dri	ver/Depo	it:	t: Received at Lab:							ied By: M(
Date/Time:	Date/Time: Temperature: °C				Date/Ti Temper		Tul 19	Y	25/ 8°C	112	5	5:4		Time: Juy 25/12 60				

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Karyn Munch

Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 15215	Report Date: 18-Nov-2013
Project: PE2709	Order Date: 13-Nov-2013
Custody: 99019	Order #: 1346233

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1346233-01	BH1-GW2
1346233-02	BH2-GW3
1346233-03	BH4-GW3

Approved By:

Mark Fato

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Order #: 1346233

Report Date: 18-Nov-2013 Order Date:13-Nov-2013

Client: Paterson Group Consulting Engineers Client PO: 15215

Project Description: PE2709

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	nalysis Date
VOCs by P&T GC-MS	EPA 624 - P&T GC-MS	15-Nov-13	15-Nov-13

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Client: Paterson Group Consulting Engineers

Report Date: 18-Nov-2013 Order Date:13-Nov-2013

Client PO: 15215		Project Descript	ion: PE2709	0.001					
	Client ID:	BH1-GW2	BH2-GW3	BH4-GW3	-				
	Sample Date:	12-Nov-13	12-Nov-13	12-Nov-13	-				
-	Sample ID:	1346233-01	1346233-02	1346233-03	-				
	MDL/Units	Water	Water	Water	-				
Volatiles	5.0 "		T						
Acetone	5.0 ug/L	<5.0	15.3	117	-				
Benzene	0.5 ug/L	<0.5	11.7	8.0	-				
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-				
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-				
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-				
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-				
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-				
Chloroethane	1.0 ug/L	<1.0	<1.0	<1.0	-				
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	-				
Chloromethane	3.0 ug/L	<3.0	<3.0	<3.0	-				
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-				
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-				
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	<0.2	-				
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-				
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-				
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-				
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-				
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-				
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-				
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-				
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-				
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	<0.5	-				
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-				
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-				
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-				
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-				
Ethylbenzene	0.5 ug/L	<0.5	5.9	1.2	-				
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-				
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	-				
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	<10.0	<10.0	-				
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-				
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-				
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-				

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

WWW.PARACELLABS.COM

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order #: 1346233 Report Date: 18-Nov-2013

Order Date:13-Nov-2013

Client PO: 15215		Project Descript	ion: PE2709	Order	Older Dale. 13-N0V-2013			
	Client ID: Sample Date: Sample ID:	BH1-GW2 12-Nov-13 1346233-01	BH2-GW3 12-Nov-13 1346233-02	BH4-GW3 12-Nov-13 1346233-03	- - -			
Γ	MDL/Units	Water	Water	Water	-			
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-			
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-			
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-			
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-			
Toluene	0.5 ug/L	<0.5	<0.5	1.4	-			
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-			
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-			
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-			
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-			
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-			
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	1.2	<0.5	-			
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-			
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	1.6	-			
o-Xylene	0.5 ug/L	<0.5	<0.5	1.1	-			
Xylenes, total	0.5 ug/L	<0.5	<0.5	2.8	-			
4-Bromofluorobenzene	Surrogate	103%	98.5%	99.7%	-			
Dibromofluoromethane	Surrogate	116%	118%	118%	-			
Toluene-d8	Surrogate	98.9%	98.5%	97.9%	-			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Paterson Group Consulting Engineers Client PO: 15215

Method Quality Control: Blank

Project Description: PE2709

Report Date: 18-Nov-2013

Order #: 1346233

Order Date:13-Nov-2013

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	uğ/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND ND	0.5	ug/L						
m,p-Xylenes		0.5	ug/L						
o-Xylene	ND	0.5 0.5	ug/L						
Xylenes, total	ND 83.4	0.5	ug/L		104	50-140			
Surrogate: 4-Bromofluorobenzene			ug/L		104				
Surrogate: Dibromofluoromethane	91.8		ug/L		115	50-140			
Surrogate: Toluene-d8	78.0		ug/L		97.5	50-140			

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Client: Paterson Group Consulting Engineers Client PO: 15215

Project Description: PE2709

Report Date: 18-Nov-2013 Order Date:13-Nov-2013

Method Quality Control: Duplicate

Volatiles Acetone Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane	370 1.00 ND ND ND ND ND 2.25 ND	5.0 0.5 0.5 0.5 0.5 0.2 0.5 1.0	ug/L ug/L ug/L ug/L ug/L ug/L	336 ND ND ND ND			9.6 0.0	30 30 30	
Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene	1.00 ND ND ND ND ND ND 2.25	0.5 0.5 0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L ug/L	ND ND ND				30	
Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene	ND ND ND ND ND 2.25	0.5 0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L	ND ND			0.0		
Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene	ND ND ND ND 2.25	0.5 0.5 0.2 0.5	ug/L ug/L ug/L	ND				20	
Bromomethane Carbon Tetrachloride Chlorobenzene	ND ND ND 2.25	0.5 0.2 0.5	ug/L ug/L					30	
Carbon Tetrachloride Chlorobenzene	ND ND ND 2.25	0.2 0.5	ug/L	ND				30	
Chlorobenzene	ND ND 2.25	0.5	ug/L					30	
	ND 2.25			ND			0.0	30	
Chloroethane	2.25	1.0	ug/L	ND			0.0	30	
Onoroculario			ug/L	ND				30	
Chloroform	ND	0.5	ug/L	2.27			0.9	30	
Chloromethane	ND	3.0	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dibromoethane	ND	0.2	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			0.0	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	1.06	0.5	ug/L	1.01			4.8	30	
Hexane	25.5	1.0	ug/L	22.0			14.4	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND			0.0	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND			0.0	30	
Toluene	254	0.5	ug/L	253			0.3	30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND			0.0	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			0.0	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			0.0	30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	7.88	0.5	ug/L	7.21			8.9	30	
o-Xylene	1.90	0.5	ug/L	1.83			3.8	30	
Surrogate: 4-Bromofluorobenzene	78.9		ug/L	ND	98.6	50-140			
Surrogate: Dibromofluoromethane	89.6		ug/L	ND	112	50-140			
Surrogate: Toluene-d8	76.9		ug/L	ND	96.1	50-140			

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Order #: 1346233

Client: Paterson Group Consulting Engineers Client PO: 15215

Project Description: PE2709

Report Date: 18-Nov-2013

Order #: 1346233

Order Date:13-Nov-2013

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	112	5.0	ug/L	ND	112	50-140			
Benzene	43.0	0.5	ug/L	ND	107	60-130			
Bromodichloromethane	29.3	0.5	ug/L	ND	73.2	60-130			
Bromoform	24.4	0.5	ug/L	ND	60.9	60-130			
Bromomethane	37.0	0.5	ug/L	ND	92.6	50-140			
Carbon Tetrachloride	24.7	0.2	ug/L	ND	61.7	60-130			
Chlorobenzene	39.8	0.5	ug/L	ND	99.4	60-130			
Chloroethane	36.9	1.0	ug/L	ND	92.3	50-140			
Chloroform	33.9	0.5	ug/L	ND	84.8	60-130			
Chloromethane	32.9	3.0	ug/L	ND	82.3	50-140			
Dibromochloromethane	25.4	0.5	ug/L	ND	63.4	60-130			
Dichlorodifluoromethane	37.1	1.0	ug/L	ND	92.6	50-140			
1,2-Dibromoethane	38.2	0.2	ug/L	ND	95.4	60-130			
1,2-Dichlorobenzene	34.5	0.5	ug/L	ND	86.3	60-130			
1,3-Dichlorobenzene	34.8	0.5	ug/L	ND	87.0	60-130			
1,4-Dichlorobenzene	31.7	0.5	ug/L	ND	79.2	60-130			
1,1-Dichloroethane	41.2	0.5	ug/L	ND	103	60-130			
1,2-Dichloroethane	31.1	0.5	ug/L	ND	77.7	60-130			
1,1-Dichloroethylene	41.9	0.5	ug/L	ND	105	60-130			
cis-1,2-Dichloroethylene	45.4	0.5	ug/L	ND	114	60-130			
trans-1,2-Dichloroethylene	49.4	0.5	ug/L	ND	124	60-130			
1,2-Dichloropropane	43.4	0.5	ug/L	ND	109	60-130			
cis-1,3-Dichloropropylene	38.3	0.5	ug/L	ND	95.8	60-130			
trans-1,3-Dichloropropylene	34.0	0.5	ug/L	ND	85.0	60-130			
Ethylbenzene	32.4	0.5	ug/L	ND	80.9	60-130			
Hexane	47.7	1.0	ug/L	ND	119	60-130			
Methyl Ethyl Ketone (2-Butanone)	97.2	5.0	ug/L	ND	97.2	50-140			
Methyl Butyl Ketone (2-Hexanone)	81.8	10.0	ug/L	ND	81.8	50-140			
Methyl Isobutyl Ketone	78.1	5.0	ug/L	ND	78.1	50-140			
Methyl tert-butyl ether	83.6	2.0	ug/L	ND	83.6	50-140			
Methylene Chloride	38.7	5.0	ug/L	ND	96.6	60-130			
Styrene	37.7	0.5	ug/L	ND	94.2	60-130			
1,1,1,2-Tetrachloroethane	29.0	0.5	ug/L	ND	72.4	60-130			
1,1,2,2-Tetrachloroethane	40.8	0.5	ug/L	ND	102	60-130			
Tetrachloroethylene	30.4	0.5	ug/L	ND	75.9	60-130			
Toluene	31.6	0.5	ug/L	ND	79.0	60-130			
1,2,4-Trichlorobenzene	26.1	0.5	ug/L	ND	65.2	60-130			
1,1,1-Trichloroethane	24.3	0.5	ug/L	ND	60.8	60-130			
1,1,2-Trichloroethane	41.2	0.5	ug/L	ND	103	60-130			
Trichloroethylene	37.6	0.5	ug/L	ND	94.1	60-130			
Trichlorofluoromethane	27.0	1.0	ug/L	ND	67.5	60-130			
1,3,5-Trimethylbenzene	28.9	0.5	ug/L	ND	72.2	60-130			
Vinyl chloride	36.2	0.5	ug/L	ND	90.5	50-140			
m,p-Xylenes	77.4	0.5	ug/L	ND	96.8	60-130			
o-Xylene	33.0	0.5	ug/L	ND	82.4	60-130			
Surrogate: 4-Bromofluorobenzene	72.5		ug/L		90.6	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 8

Client: Paterson Group Consulting Engineers Client PO: 15215

Project Description: PE2709

Order #: 1346233

Report Date: 18-Nov-2013 Order Date:13-Nov-2013

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

> P: 1-800-749-1947 E: paracel@paracellabs.com www.paracellabs.com

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

(CARACEL TRUSTED. LABORATORIES LTD. RELIABLE.								3 C p	00-2)ttaw : 1-8	a, On 00-74	t. Laur tario <i>F</i> 9-1947	ent Blvc (1G 4J8 7 ellabs.c		Chain of Custody (Lab Use Only) Nº 99019					
ОТ	TAWA © KINGSTON ⊚ NIAGARA ⊛ MISS	ISSAUG	A 🖲	SARN	IA							ellabs.				Pag	e L o	f		
Client N Contact Address Telepho	Name: Karyn Munch 154 Colonnade Rals,	. 11 9 17			Project Reference Quote # PO # 52 Email Address:	PEZ- RIS	709 Yoh	a) p	at	ors	on	8104	ıp.(Regul [] 2 Day equired:] 3 Day] 1 Day		
	ne: 613-226-7381	(10)	650	00 1 1]								0			Othow				
	[: [] O. Reg. 153/04 (As Amended) Table [] RSC Filing Fype: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SI									naly		respant	£		1]	Other				
Parace	el Order Number: 346233	ix	Air Volume	of Containers	Sample	e Taken	F1-F4+BTEX			s by ICP		WS)	m daw							
	Sample ID/Location Name	Matrix	Air V	fo #	Date	Time	PHCs	VOCs	PAHs	Metals by	Hg	CrVI B (HWS)			02					
1	BH1-GW2	GW		2	NOV.12/12	am	1	2					V	- h II			1.1			
2	BHZ-(-W3	GW			1	1		0					H							
3	BH4-6W3	GW		V	$ \rangle$			0					P							
4					2501		0													
• 5			- 12	in		1.1.1.1.1.1.1		-				1	-							
6																-				
7							_					_		-	-	-		-		
8							-		-			-			-	-	-	-		
9 10					0	Dec alte		-				_	10.00	-	-		-	+		
Comme	ents:				-											Metho	d of Deliv	verv:	1	
	A HATPAR AND																		ON	
	shed By (Sign): KUUNCh .	Received	E	1	Deau	E SI	ived at	Por						Verifie	d By:	2	_	-L		
Relinquis Date/Tim	shed By (Print): KMUUUA ie: N(N, 13, 2013 .	Date/Tin Tempera		3/11	/13 Z:3		Time: perature				3	0	3.4	Date/T pH Ve	ime: rified [Nov	13/1	3 L	F:36	

Chain of Custody (Env) - Rev 0.5 May 2013

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Karyn Munch

Client PO: 56980 Project: PE2709 Custody:

Report Date: 14-Mar-2023 Order Date: 9-Mar-2023

Order #: 2310387

This Certificate of Analysis contains analytical data applicable to the following samples as submitted :

Paracel ID	Client ID
2310387-01	BH2-23-GW1
2310387-02	BH3-23-GW1
2310387-03	BH5-23-GW1
2310387-04	BH6-23-GW1
2310387-05	DUP1-23-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 14-Mar-2023

Order #: 2310387

Order Date: 9-Mar-2023

Project Description: PE2709

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	10-Mar-23	10-Mar-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	10-Mar-23	13-Mar-23
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	10-Mar-23	10-Mar-23

Client: Paterson Group Consulting Engineers

Client PO: 56980

Order #: 2310387

Report Date: 14-Mar-2023 Order Date: 9-Mar-2023

Project Description: PE2709

[Client ID: Sample Date: Sample ID: MDL/Units	BH2-23-GW1 08-Mar-23 00:00 2310387-01 Ground Water	BH3-23-GW1 08-Mar-23 00:00 2310387-02 Ground Water	BH5-23-GW1 08-Mar-23 00:00 2310387-03 Ground Water	BH6-23-GW1 08-Mar-23 00:00 2310387-04 Ground Water
Volatiles					
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	0.6	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroform	0.5 ug/L	<0.5	2.5	<0.5	1.0
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	0.7	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	17.0	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	3.4	1.0	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

PARACEL LABORATORIES LTD.

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 56980

Report Date: 14-Mar-2023 Order Date: 9-Mar-2023

Project Description: PE2709

	F		1	Γ	r
	Client ID:	BH2-23-GW1	BH3-23-GW1	BH5-23-GW1	BH6-23-GW1
	Sample Date:	08-Mar-23 00:00	08-Mar-23 00:00	08-Mar-23 00:00	08-Mar-23 00:00
	Sample ID:	2310387-01	2310387-02	2310387-03	2310387-04
	MDL/Units	Ground Water	Ground Water	Ground Water	Ground Water
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	3.2	22.0	<0.5
o-Xylene	0.5 ug/L	<0.5	1.0	2.0	<0.5
Xylenes, total	0.5 ug/L	<0.5	4.1	24.0	<0.5
4-Bromofluorobenzene	Surrogate	108%	109%	117%	108%
Dibromofluoromethane	Surrogate	105%	102%	115%	111%
Toluene-d8	Surrogate	110%	110%	108%	110%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	1210	<25
F2 PHCs (C10-C16)	100 ug/L	<100	-	266	<100
F3 PHCs (C16-C34)	100 ug/L	<100	-	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	-	<100	<100

Client: Paterson Group Consulting Engineers

Client PO: 56980

Report Date: 14-Mar-2023

Order Date: 9-Mar-2023

Project Description: PE2709

	Client ID:	DUP1-23-GW1	-	-	-
	Sample Date:	08-Mar-23 00:00	-	-	-
	Sample ID: MDL/Units	2310387-05 Ground Water	-	-	-
Volatiles	MDL/Onits				_
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	0.6	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroform	0.5 ug/L	2.6	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethane, 1	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	3.5	-	-	-

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Report Date: 14-Mar-2023 Order Date: 9-Mar-2023

ordor Bato. o Mar 2020

Project Description: PE2709

	Client ID:	DUP1-23-GW1	-	-	-
	Sample Date:	08-Mar-23 00:00	-	-	-
	Sample ID:	2310387-05	-	-	-
	MDL/Units	Ground Water	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	3.2	-	-	-
o-Xylene	0.5 ug/L	1.0	-	-	-
Xylenes, total	0.5 ug/L	4.2	-	-	-
4-Bromofluorobenzene	Surrogate	112%	-	-	-
Dibromofluoromethane	Surrogate	108%	-	-	-
Toluene-d8	Surrogate	109%	-	-	-

Method Quality Control: Blank

Report Date: 14-Mar-2023

Order Date: 9-Mar-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles			3,						
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	87.8		ug/L		110	50-140			
Surrogate: Dibromofluoromethane	82.0		ug/L		102	50-140			
Surrogate: Toluene-d8	88.8		ug/L		111	50-140			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Method Quality Control: Duplicate

Order #: 2310387

Report Date: 14-Mar-2023

Order Date: 9-Mar-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles		20	sg, =						
	ND	5.0		ND			NO	00	
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene Bromodichloromethane	ND ND	0.5 0.5	ug/L	ND ND			NC NC	30 30	
Bromodichioromethane Bromoform	ND ND		ug/L				NC	30 30	
		0.5	ug/L	ND					
Bromomethane Carbon Tetrachloride	ND ND	0.5 0.2	ug/L	ND ND			NC NC	30 30	
Chlorobenzene	ND	0.2	ug/L	ND			NC	30 30	
Chloroform	ND	0.5	ug/L	ND			NC	30 30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30 30	
			ug/L					30 30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC		
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND ND	0.5 0.5	ug/L	ND ND			NC NC	30 30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30 30	
1.1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30 30	
1,1-Dichloroethylene	ND	0.5	ug/L ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	•	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	•	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2	ND	0.3	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1.1.2.2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	87.6	0.0	ug/L		109	50-140		00	
Surrogate: Dibromofluoromethane	85.5		ug/L		103	50-140			
Surrogate: Toluene-d8	87.9		ug/L		110	50-140 50-140			
Sunogale. ISidene-us	07.9		uy/L		110	50-140			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Method Quality Control: Spike

Report Date: 14-Mar-2023 Order Date: 9-Mar-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1950	25	ug/L	ND	97.6	68-117			
F2 PHCs (C10-C16)	1780	100	ug/L	ND	111	60-140			
F3 PHCs (C16-C34)	4660	100	ug/L	ND	119	60-140			
F4 PHCs (C34-C50)	2500	100	ug/L	ND	101	60-140			
Volatiles									
Acetone	103	5.0	ug/L	ND	103	50-140			
Benzene	44.3	0.5	ug/L	ND	111	60-130			
Bromodichloromethane	48.2	0.5	ug/L	ND	120	60-130			
Bromoform	44.0	0.5	ug/L	ND	110	60-130			
Bromomethane	33.6	0.5	ug/L	ND	84.0	50-140			
Carbon Tetrachloride	44.1	0.2	ug/L	ND	110	60-130			
Chlorobenzene	44.0	0.5	ug/L	ND	110	60-130			
Chloroform	33.5	0.5	ug/L	ND	83.7	60-130			
Dibromochloromethane	41.9	0.5	ug/L	ND	105	60-130			
Dichlorodifluoromethane	49.9	1.0	ug/L	ND	125	50-140			
1,2-Dichlorobenzene	40.8	0.5	ug/L	ND	102	60-130			
1,3-Dichlorobenzene	39.6	0.5	ug/L	ND	99.0	60-130			
1,4-Dichlorobenzene	38.1	0.5	ug/L	ND	95.3	60-130			
1,1-Dichloroethane	41.9	0.5	ug/L	ND	105	60-130			
, 1,2-Dichloroethane	44.8	0.5	ug/L	ND	112	60-130			
1,1-Dichloroethylene	46.7	0.5	ug/L	ND	117	60-130			
cis-1,2-Dichloroethylene	41.4	0.5	ug/L	ND	104	60-130			
trans-1,2-Dichloroethylene	39.0	0.5	ug/L	ND	97.4	60-130			
1,2-Dichloropropane	50.2	0.5	ug/L	ND	126	60-130			
cis-1,3-Dichloropropylene	47.6	0.5	ug/L	ND	119	60-130			
trans-1,3-Dichloropropylene	41.8	0.5	ug/L	ND	104	60-130			
Ethylbenzene	47.0	0.5	ug/L	ND	117	60-130			
Ethylene dibromide (dibromoethane, 1,2	47.4	0.2	ug/L	ND	119	60-130			
Hexane	41.0	1.0	ug/L	ND	102	60-130			
Methyl Ethyl Ketone (2-Butanone)	128	5.0	ug/L	ND	128	50-140			
Methyl Isobutyl Ketone	139	5.0	ug/L	ND	139	50-140			
Methyl tert-butyl ether	107	2.0	ug/L	ND	107	50-140			
Methylene Chloride	39.6	5.0	ug/L	ND	99.0	60-130			
Styrene	40.4	0.5	ug/L	ND	101	60-130			
1,1,1,2-Tetrachloroethane	43.4	0.5	ug/L	ND	108	60-130			
1,1,2,2-Tetrachloroethane	43.3	0.5	ug/L	ND	108	60-130			
Tetrachloroethylene	39.4	0.5	ug/L	ND	98.4	60-130			
Toluene	47.1	0.5	ug/L	ND	118	60-130			
1,1,1-Trichloroethane	46.4	0.5	ug/L	ND	116	60-130			
1,1,2-Trichloroethane	49.0	0.5	ug/L	ND	122	60-130			
Trichloroethylene	43.8	0.5	ug/L	ND	110	60-130			
Trichlorofluoromethane	49.8	1.0	ug/L	ND	125	60-130			
Vinyl chloride	34.1	0.5	ug/L	ND	85.2	50-140			
m,p-Xylenes	87.7	0.5	ug/L	ND	110	60-130			
o-Xylene	44.9	0.5	ug/L	ND	112	60-130			
Surrogate: 4-Bromofluorobenzene	85.5		ug/L		107	50-140			
Surrogate: Dibromofluoromethane	67.1		ug/L		83.9	50-140			
Surrogate: Toluene-d8	84.3		ug/L		105	50-140			

OTTAWA . MISSISSAUGA . HAMILTON . KINGSTON . LONDON . NIAGARA . WINDSOR . RICHMOND HILL

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

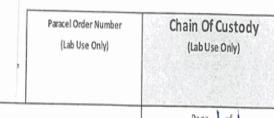
- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.


Order #: 2310387

Report Date: 14-Mar-2023 Order Date: 9-Mar-2023 Project Description: PE2709

Client Name: Pgteison

gterson		Deala	tct Ref:	A							1111	(29.142 S)	and the state	
Contact Name: Karyn Munch		_		PE 2709							Page of			
Address:		Quot										Turr	around	Time
9 Auriga Drive				980								1 day		🗆 3 day
· · · · · · · · · · · · · · · · · · ·		E-mai	ĸ	Munch @ 19t	erson gaup.c	٩					2 day		🗹 Regular	
613 226 7381			S	Berube@ pate	rson group, c	٩						Required:		
Greg 153/04 □ REG 406/19 Other Regulation		Matrix		6 / 0 . II / 0		19.30			1.33	100.000	100	15 2.15 10	A. C. Mark	
Table 1 Res/Park Med/Fine REG 558 PWQC		SW (Su	lype: Irface \	S (Soil/Sed.) GW (G Water) SS (Storm/Sa	Fround Water) anitary Sewer)	1				Req	uired	Analysis		
□ Table 2 □ Ind/Comm □ Coarse □ CCME □ MISA			P (F	Paint) A (Air) O (Ot	her)	×		650			976		1 1	
Table 3 🗌 Agri/Other 🔲 SU - Sani 🗌 SU - St	orm		۲ ۲			BTEX								
Table Mun:		e	aine	Sample	Taken	F1-F4+			GР					
For RSC: Yes No Other:	ĕ	Aīr Volume	of Containers				6		s by			(S)		
Sample ID/Location Name	Matrix	Aīr V	# of	Date	Time	PHCs	VOCs	PAHs	Metals by ICP	ВН	Š	B (HWS)		
1 BH2-23- 4W1	GW		3	March 8,2+2	5	X	x		~	-	4		++	
2 BH 3-23 - GW1	1		2	1		~	x			\rightarrow	-		+	+
3 BH5-23 - GW1			3			-	-			\rightarrow	\rightarrow		+	
4 BH6 -23 - QUI			3			X	X		_		-		+ +	
5 DUP1-23 - GW1			2			X	×						+	
6			-				X				_			
7														
8										\rightarrow				
9														
0														
mments:														
									1	Vethod	of Deli	iverv:		/
inquished By (Sign): PULL Received B	Driver/De	anat: 1	10.0							And in case of the local diversion of the local diversion of the local diversion of the local diversion of the	- 60	CACE	26	anne
Inquished By (Print)	1831	1	1.	TAUSE	Received at Lab:	2	~	-		/erified	11)		
Inquished By (Print): Bryce Lee Date/Time		03	1/2	3 1519	Date/Time: Mc	ar 7	In	43	4	Date/Tin	ne: L	1	12	22/5/
re/Time: March 9 2023 Temperatu	re:	1	142	°C	Temperature:		2.8			oH Verif			100	and the

Revsion 4.0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Sam Berube

Client PO: 57092 Project: PE2709 Custody:

Report Date: 29-Mar-2023 Order Date: 24-Mar-2023

Order #: 2312554

This Certificate of Analysis contains analytical data applicable to the following samples as submitted :

Paracel ID 2312554-01 2312554-02

Client ID BH3-23-GW2 BH5-23-GW2

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 29-Mar-2023 Order Date: 24-Mar-2023

Order #: 2312554

Project Description: PE2709

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	28-Mar-23	28-Mar-23
PHC F1	CWS Tier 1 - P&T GC-FID	27-Mar-23	28-Mar-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	27-Mar-23	28-Mar-23
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	27-Mar-23	28-Mar-23

Client PO: 57092

Order #: 2312554

Report Date: 29-Mar-2023

Order Date: 24-Mar-2023

Project Description: PE2709

	Client ID:	BH3-23-GW2 23-Mar-23 09:00	BH5-23-GW2 23-Mar-23 09:00	-	-
	Sample Date: Sample ID:	2312554-01	2312554-02	-	-
Ι	MDL/Units	Ground Water	Ground Water	-	-
Volatiles			• •		
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Client PO: 57092

Report Date: 29-Mar-2023 Order Date: 24-Mar-2023

Project Description: PE2709

	Client ID: Sample Date:	BH3-23-GW2 23-Mar-23 09:00	BH5-23-GW2 23-Mar-23 09:00	-	-
	Sample ID:	2312554-01	2312554-02	-	-
	MDL/Units	Ground Water	Ground Water	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	131%	-	-	-
Dibromofluoromethane	Surrogate	96.5%	-	-	-
Toluene-d8	Surrogate	121%	-	-	-
Benzene	0.5 ug/L	-	<0.5	-	-
Ethylbenzene	0.5 ug/L	-	9.2	-	-
Toluene	0.5 ug/L	-	2.4	-	-
m,p-Xylenes	0.5 ug/L	-	11.5	-	-
o-Xylene	0.5 ug/L	-	1.4	-	-
Xylenes, total	0.5 ug/L	-	12.9	-	-
Toluene-d8	Surrogate	-	115%	-	-
Hydrocarbons	· ·				
F1 PHCs (C6-C10)	25 ug/L	<25	742	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	<100	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	<100	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	-

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 57092

Method Quality Control: Blank

Report Date: 29-Mar-2023

Order Date: 24-Mar-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene Ethylene dibromide (dibromoethane, 1,2	ND	0.5 0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	106		ug/L		133	50-140			
Surrogate: Dibromofluoromethane	76.8		ug/L		96.0	50-140			
Surrogate: Toluene-d8	100		ug/L		125	50-140			
Benzene	ND	0.5	ug/L		120	00 170			
Ethylbenzene	ND	0.5	ug/L ug/L						
Toluene	ND	0.5	ug/L ug/L						
m,p-Xylenes	ND	0.5	ug/L ug/L						
o-Xylene	ND	0.5	ug/L ug/L						
Xylenes, total	ND	0.5	ug/L ug/L						
Surrogate: Toluene-d8	100	0.0	ug/L		125	50-140			
ounogate. Toluene-uo	100		uy/L		125	50-140			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Method Quality Control: Duplicate

Report Date: 29-Mar-2023

Order Date: 24-Mar-2023

Project Description: PE2709

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles			-						
Acetone	ND	5.0	ug/l	ND			NC	30	
Benzene	ND ND	5.0 0.5	ug/L	ND			NC	30 30	
Benzene Bromodichloromethane	ND ND	0.5 0.5	ug/L ug/L	ND ND			NC	30 30	
Bromoform	ND	0.5	ug/L ug/L	ND			NC	30 30	
Bromomethane	ND	0.5	ug/L ug/L	ND			NC	30 30	
Carbon Tetrachloride	ND	0.3	ug/L	ND			NC	30	
Chlorobenzene	ND	0.2	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	99.7		ug/L		125	50-140			
Surrogate: Dibromofluoromethane	77.2		ug/L		96.6	50-140			
Surrogate: Toluene-d8	100		ug/L		126	50-140			
Benzene	ND	0.5	ug/L	ND	-		NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
0-Aylene	ND	0.0	uų/L				NC	50	

Method Quality Control: Spike

Report Date: 29-Mar-2023

Order Date: 24-Mar-2023

Project Description: PE2709

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1950	25	ug/L	ND	97.4	68-117			
F2 PHCs (C10-C16)	1870	100	ug/L	ND	117	60-140			
F3 PHCs (C16-C34)	4600	100	ug/L	ND	117	60-140			
F4 PHCs (C34-C50)	2530	100	ug/L	ND	102	60-140			
Volatiles									
Acetone	120	5.0	ug/L	ND	120	50-140			
Benzene	33.2	0.5	ug/L	ND	83.0	60-130			
Bromodichloromethane	34.5	0.5	ug/L	ND	86.2	60-130			
Bromoform	41.8	0.5	ug/L	ND	104	60-130			
Bromomethane	36.1	0.5	ug/L	ND	90.2	50-140			
Carbon Tetrachloride	35.9	0.2	ug/L	ND	89.7	60-130			
Chlorobenzene	38.6	0.5	ug/L	ND	96.6	60-130			
Chloroform	36.5	0.5	ug/L	ND	91.2	60-130			
Dibromochloromethane	42.2	0.5	ug/L	ND	105	60-130			
Dichlorodifluoromethane	40.9	1.0	ug/L	ND	102	50-140			
1,2-Dichlorobenzene	33.3	0.5	ug/L	ND	83.4	60-130			
1,3-Dichlorobenzene	36.1	0.5	ug/L	ND	90.3	60-130			
1,4-Dichlorobenzene	31.6	0.5	ug/L	ND	79.1	60-130			
1,1-Dichloroethane	38.0	0.5	ug/L	ND	95.1	60-130			
1,2-Dichloroethane	34.7	0.5	ug/L	ND	86.8	60-130			
1,1-Dichloroethylene	36.8	0.5	ug/L	ND	92.0	60-130			
cis-1,2-Dichloroethylene	35.1	0.5	ug/L	ND	87.8	60-130			
trans-1,2-Dichloroethylene	33.9	0.5	ug/L	ND	84.8	60-130			
1,2-Dichloropropane	30.3	0.5	ug/L	ND	75.8	60-130			
cis-1,3-Dichloropropylene	30.2	0.5	ug/L	ND	75.6	60-130			
trans-1,3-Dichloropropylene	32.1	0.5	ug/L	ND	80.3	60-130			
Ethylbenzene	36.7	0.5	ug/L	ND	91.7	60-130			
Ethylene dibromide (dibromoethane, 1,2-	38.9	0.2	ug/L	ND	97.3	60-130			
Hexane	35.4	1.0	ug/L	ND	88.4	60-130			
Methyl Ethyl Ketone (2-Butanone)	107	5.0	ug/L	ND	107	50-140			
Methyl Isobutyl Ketone	83.5	5.0	ug/L	ND	83.5	50-140			
Methyl tert-butyl ether	90.6	2.0	ug/L	ND	90.6	50-140			
Methylene Chloride	34.4	5.0	ug/L	ND	86.0	60-130			
Styrene	37.1	0.5	ug/L	ND	92.7	60-130			
1,1,1,2-Tetrachloroethane	40.6	0.5	ug/L	ND	102	60-130			
1,1,2,2-Tetrachloroethane	45.4	0.5	ug/L	ND	114	60-130			
Tetrachloroethylene	39.4	0.5	ug/L	ND	98.6	60-130			
Toluene	41.4	0.5	ug/L	ND	103	60-130			
1,1,1-Trichloroethane	34.1	0.5	ug/L	ND	85.3	60-130			
1,1,2-Trichloroethane	30.2	0.5	ug/L	ND	75.4	60-130			
Trichloroethylene	33.6	0.5	ug/L	ND	84.1	60-130			
Trichlorofluoromethane	37.9	1.0	ug/L	ND	94.7	60-130			
Vinyl chloride	42.6	0.5	ug/L	ND	107	50-140			
m,p-Xylenes	77.0	0.5	ug/L	ND	96.3	60-130			
o-Xylene	38.7	0.5	ug/L	ND	96.7	60-130			
Surrogate: 4-Bromofluorobenzene	77.8		ug/L		97.3	50-140			
Surrogate: Dibromofluoromethane	75.8		ug/L		94.8	50-140			
Surrogate: Toluene-d8	81.7		ug/L		102	50-140			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Report Date: 29-Mar-2023

Order Date: 24-Mar-2023

Project Description: PE2709

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	33.2	0.5	ug/L	ND	83.0	60-130			
Ethylbenzene	36.7	0.5	ug/L	ND	91.7	60-130			
Toluene	41.4	0.5	ug/L	ND	103	60-130			
m,p-Xylenes	77.0	0.5	ug/L	ND	96.3	60-130			
o-Xylene	38.7	0.5	ug/L	ND	96.7	60-130			
Surrogate: Toluene-d8	81.7		ug/L		102	50-140			

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Order #: 2312554

Report Date: 29-Mar-2023 Order Date: 24-Mar-2023 Project Description: PE2709

🎯 PARACEL 🛄 🛄		aurent Bird. b KfiG-4,8 947 aerikhte.com				Paracel Order Number (Lab Use Only)				er	Chain Of Custody (Lab Use Only)					
LABORATORIES LTD					ibs.com	27	3/2	R	1							
lient Name: Paterson		Projec	t Ref:	PE 2709		V .	_/				100.48	120025	Page	1 of	1	
ontact Name: Sam Berube		Quote	#:								-	T	urnaro	times a	-	
^{ddress:} 9 Auriga Drive		PO #:	57	092								1 day			□ 3 d	av
-		E-mail									1	2 day			🗹 Rej	,
slephone: 613 226 7381			S	Berube @ part	ersin georb	٠cq						Requi				uiu
REG 153/04 REG 406/19 Other Regulation				6/0.11/0.11.em/		180	12.28		53.50	Stor	altrine	1940		1.502		
] Table 1 🗌 Res/Park 🗌 Med/Fine 🗌 REG 558 🗌 PWQO				S (Soil/Sed.) GW (G Vater) SS (Storm/Sa		10				Re	quire	d Analy	ysis			
] Table 2 🗌 Ind/Comm 🗌 Coarse 🔲 CCME 🗌 MISA				aint) A (Air) O (Ot		X	0.017		1111		6.90					
Table 3 🗌 Agri/Other 🗌 SU - Sani 🗌 SU - Storm			S			F1-F4+BTEX										
Table Mun:		au	taine	Sample	Taken	1-F4			1 CF							
For RSC: Yes No	trix	Aīr Volume	of Containers								(SWH)					
Sample ID/Location Name	Matrix	Aïr	# of	Date	Time	PHCs	VOCS	PAHs	Meta	БН	CV	B (H				
	qu		3	March 23,2-1	В	X	X				-			+		
2 BH5-23- 942	l		l	L		X							-	+	++	
3														+	++	
4														+	+	
5						-								+	+	
6						+								+	+	
7						+		-		-				+-	+	
8						+		-						+-		_
9						-								+	+	_
0						+		-						+		_
mments:										1.10	1.10	-	5	4	1/4	01.11
				\frown	2					Metho	d of De	liver	h	N	Y	
linquished By (Sign): Blue Received By Drived	ver/De	pot:	1		Received at Lab:	[65.7].C	105	140	1.14	Verified	d By:	P	SY.	4	V	
linguished By (Print): Bryce Lee Date/Time:	1	10	10		Date/Time:		and y	Ne M	110			4	p	2		-
te/Time: March 24, 2-23 Temperature:	2/0	051	20	1 Opm	Temperature:			5	1.1.1.1	Date/T	14	M	lorg	BU	13	1
in of Custody (Blank).v/sx		X	2	C Revsion 4.0	remperature:					pH Ver	ifled:		By:	A		

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Sam Berube

Client PO: 57798 Project: PE2709 Custody: 140789

Report Date: 7-Jul-2023 Order Date: 28-Jun-2023

Order #: 2326362

This Certificate of Analysis contains analytical data applicable to the following samples as submitted :

Paracel ID 2326362-01

Client ID BH5-23-GW3

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 07-Jul-2023 Order Date: 28-Jun-2023 Project Description: PE2709

Order #: 2326362

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	2-Jul-23	2-Jul-23
PHC F1	CWS Tier 1 - P&T GC-FID	30-Jun-23	2-Jul-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	5-Jul-23	6-Jul-23

Client PO: 57798

Certificate of Analysis Client: Paterson Group Consulting Engineers

Report Date: 07-Jul-2023

Order Date: 28-Jun-2023

Project Description: PE2709

	_				
	Client ID:	BH5-23-GW3	-	-	-
	Sample Date:	27-Jun-23 09:00	-	-	-
	Sample ID:	2326362-01	-	-	-
	MDL/Units	Ground Water	-	-	-
Volatiles					
Benzene	0.5 ug/L	1.2	-	-	-
Ethylbenzene	0.5 ug/L	10.7	-	-	-
Toluene	0.5 ug/L	1.0	-	-	-
m,p-Xylenes	0.5 ug/L	12.4	-	-	-
o-Xylene	0.5 ug/L	0.9	-	-	-
Xylenes, total	0.5 ug/L	13.2	-	-	-
Toluene-d8	Surrogate	104%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	1050	-	-	-
F2 PHCs (C10-C16)	100 ug/L	398	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Client PO: 57798

Report Date: 07-Jul-2023

Order Date: 28-Jun-2023

Project Description: PE2709

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	84.9		ug/L		106	50-140			

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 57798

Order #: 2326362

Report Date: 07-Jul-2023 Order Date: 28-Jun-2023

Project Description: PE2709

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	84.4		ug/L		106	50-140			

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 57798

Method Quality Control: Spike

Report Date: 07-Jul-2023

Order Date: 28-Jun-2023

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1740	25	ug/L	ND	87.1	68-117			
F2 PHCs (C10-C16)	1930	100	ug/L	ND	121	60-140			
F3 PHCs (C16-C34)	4280	100	ug/L	ND	109	60-140			
F4 PHCs (C34-C50)	2420	100	ug/L	ND	97.6	60-140			
Volatiles									
Benzene	25.7	0.5	ug/L	ND	64.4	60-130			
Ethylbenzene	33.8	0.5	ug/L	ND	84.4	60-130			
Toluene	32.8	0.5	ug/L	ND	82.1	60-130			
m,p-Xylenes	67.5	0.5	ug/L	ND	84.4	60-130			
o-Xylene	32.5	0.5	ug/L	ND	81.2	60-130			
Surrogate: Toluene-d8	80.0		ug/L		100	50-140			

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 57798

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the

laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC crite

- When reported, data for F4G has been processed using a silica gel cleanup.

Report Date: 07-Jul-2023 Order Date: 28-Jun-2023 Project Description: PE2709

GPARACEL III		icel I	D: 2	326362	n C		(Lab l	rder N Jse On	nly)	r			Lab Use	Custo Only)	
Client Name: Paterson Grap Inc. Contact Name: Samue (Bencher Address: 9 Auriga Drive Telephone: 613-226-7381			ct Ref:	PE27	09								Page	[`of	1
Address:		Quote										Tu	rnarou	nd Time	5
A 1		PO #:		. 57	798							1 day		[🗆 3 day
1 Auriga Drive		E-mai								1		2 day		Ļ	Regular
Telephone: 613-226-7381			SĮ	servisia	Patersan	gro	μp		ત્ર		Date	Require	d:		
Table 1 Res/Park Med/Fine REG 558 P	n		Туре:	S (Soil/Sed.) (W) Vater) SS (Storm/S	round Water)		-			Re	quired	Analysi	is		
Table 2 Ind/Comm Coarse CCME N	ISA		P (P	aint) A (Air) O (O	ther)	X						-			
TableMun:	- Storm	ume	Containers	Samp	e Taken	F1-F4+BTEX			by ICP			S)			
For RSC: Yes No Other: Sample ID/Location Name	Matrix	Air Volume	of Co			PHCs	vocs	PAHs	Metals by		CrVI	B (HWS)			
1 BH5-23-GU-3		-	22	Date	Time		5	<u>ĉ</u>	Σ	Ð	Ü				
2	વા	U	2	June 27/	72	-								$\left \right $	
3			-												
4				,											-
5															
6														+	
7															
8										_					
9							_			_					-
10										-				$\left \right $	
Comments:	, · .			s. 10						Metho		ivery: cel	Car		
and the	ed By Driver/I	Depot:			Received at Lab:					Verified			CCA	The	
Relinquished By (Print): Samuer Beruba Date	Time:				Date/Time;	06	240	1	_	Date/Ti	me:	Sp	20.0		GULL
Data/Time.						Verified: By: 1									
Chain of Custody (Env) xlsx	n na Guile.			Revision 4.0		7	1.1	2.2	Enn	,					

Report Date: 8-Sep-202 Order Date: 1-Sep-202
Report Date: 8-Sep-202

 Paracel ID
 Client ID

 2335491-01
 BH8-23-GW1

Approved By:

Mark Foto

Mark Foto, M.Sc.

Client: Paterson Group Consulting Engineers

Client PO: 58284

PHCs F2 to F4

Analysis PHC F1

Analysis Summary Table

REG 153: VOCs by P&T GC/MS

Extraction Date

7-Sep-23

6-Sep-23

7-Sep-23

Report Date: 08-Sep-2023

Order Date: 1-Sep-2023

Analysis Date

7-Sep-23

6-Sep-23

7-Sep-23

Project Description: PE2709

Method Reference/Description

CWS Tier 1 - GC-FID, extraction

CWS Tier 1 - P&T GC-FID

EPA 624 - P&T GC-MS

Client: Paterson Group Consulting Engineers

Client PO: 58284

Report Date: 08-Sep-2023

Order Date: 1-Sep-2023

Project Description: PE2709

	-			i			
	Client ID:	BH8-23-GW1	-	-	-		
	Sample Date:	31-Aug-23 09:00	-	-	-	-	-
	Sample ID:	2335491-01	-	-	-		
	Matrix:	Ground Water	-	-	-		
	MDL/Units						
Volatiles				-			
Acetone	5 ug/L	<5.0	-	-	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
Chloroform	0.5 ug/L	9.6	-	-	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-	-	-
Dichlorodifluoromethane	1 ug/L	<1.0	-	-	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-	-	-
Ethylene dibromide (dibromoethane,	0.2 ug/L	<0.2	-	-	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-	-	-
Hexane	1 ug/L	<1.0	-	-	-	-	-
					•	•	•

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 58284

Report Date: 08-Sep-2023

Order Date: 1-Sep-2023

Project Description: PE2709

	-						
	Client ID:	BH8-23-GW1	-	-	-		
	Sample Date:	31-Aug-23 09:00	-	-	-	-	-
	Sample ID:	2335491-01	-	-	-		
	Matrix:	Ground Water	-	-	-		
	MDL/Units						
Volatiles			-				
Methyl Ethyl Ketone (2-Butanone)	5 ug/L	<5.0	-	-	-	-	-
Methyl Isobutyl Ketone	5 ug/L	<5.0	-	-	-	-	-
Methyl tert-butyl ether	2 ug/L	<2.0	-	-	-	-	-
Methylene Chloride	5 ug/L	<5.0	-	-	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-	-	-
Trichlorofluoromethane	1 ug/L	<1.0	-	-	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-	-	-
4-Bromofluorobenzene	Surrogate	112%	-	-	-	-	-
Dibromofluoromethane	Surrogate	112%	-	-	-	-	-
Toluene-d8	Surrogate	95.0%	-	-	-	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<476 [1]	-	-	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<476 [1]	-	-	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<476 [1]	-	-	-	-	-

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 58284

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	25	ug/L					
F2 PHCs (C10-C16)	ND	100	ug/L					
F3 PHCs (C16-C34)	ND	100	ug/L					
F4 PHCs (C34-C50)	ND	100	ug/L					
Volatiles								
Acetone	ND	5.0	ug/L					
Benzene	ND	0.5	ug/L					
Bromodichloromethane	ND	0.5	ug/L					
Bromoform	ND	0.5	ug/L					
Bromomethane	ND	0.5	ug/L					
Carbon Tetrachloride	ND	0.2	ug/L					
Chlorobenzene	ND	0.5	ug/L					
Chloroform	ND	0.5	ug/L					
Dibromochloromethane	ND	0.5	ug/L					
Dichlorodifluoromethane	ND	1.0	ug/L					
1,2-Dichlorobenzene	ND	0.5	ug/L					
1,3-Dichlorobenzene	ND	0.5	ug/L					
1,4-Dichlorobenzene	ND	0.5	ug/L					
1,1-Dichloroethane	ND	0.5	ug/L					
1,2-Dichloroethane	ND	0.5	ug/L					
1,1-Dichloroethylene	ND	0.5	ug/L					
cis-1,2-Dichloroethylene	ND	0.5	ug/L					
trans-1,2-Dichloroethylene	ND	0.5	ug/L					
1,2-Dichloropropane	ND	0.5	ug/L					
cis-1,3-Dichloropropylene	ND	0.5	ug/L					
trans-1,3-Dichloropropylene	ND	0.5	ug/L					
1,3-Dichloropropene, total	ND	0.5	ug/L					
Ethylbenzene	ND	0.5	ug/L					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L					
Hexane	ND	1.0	ug/L					
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L					
Methyl Isobutyl Ketone	ND	5.0	ug/L					

Report Date: 08-Sep-2023

Order Date: 1-Sep-2023

Client: Paterson Group Consulting Engineers

Client PO: 58284

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl tert-butyl ether	ND	2.0	ug/L					
Methylene Chloride	ND	5.0	ug/L					
Styrene	ND	0.5	ug/L					
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L					
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L					
Tetrachloroethylene	ND	0.5	ug/L					
Toluene	ND	0.5	ug/L					
1,1,1-Trichloroethane	ND	0.5	ug/L					
1,1,2-Trichloroethane	ND	0.5	ug/L					
Trichloroethylene	ND	0.5	ug/L					
Trichlorofluoromethane	ND	1.0	ug/L					
Vinyl chloride	ND	0.5	ug/L					
m,p-Xylenes	ND	0.5	ug/L					
o-Xylene	ND	0.5	ug/L					
Xylenes, total	ND	0.5	ug/L					
Surrogate: 4-Bromofluorobenzene	90.5		%	113	50-140			
Surrogate: Dibromofluoromethane	87.8		%	110	50-140			
Surrogate: Toluene-d8	77.5		%	96.9	50-140			

Order #: 2335491

Report Date: 08-Sep-2023

Order Date: 1-Sep-2023

Client: Paterson Group Consulting Engineers

Client PO: 58284

Hydrocarbons F1 PHCs (C6-C10)

Bromodichloromethane

Analyte

Volatiles

Acetone

Benzene

Bromoform

Bromomethane

Method Quality Control: Duplicate

Report Date: 08-Sep-2023

Order Date: 1-Sep-2023

Project Description: PE2709

Notes

Carbon Tetrachloride	ND	0.2	ug/L	ND	NC 30	
Chlorobenzene	ND	0.5	ug/L	ND	NC 30	
Chloroform	3.48	0.5	ug/L	2.81	21.3 30	
Dibromochloromethane	1.95	0.5	ug/L	1.84	5.8 30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND	NC 30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND	NC 30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND	NC 30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND	NC 30	
1,1-Dichloroethane	ND	0.5	ug/L	ND	NC 30	
1,2-Dichloroethane	ND	0.5	ug/L	ND	NC 30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND	NC 30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND	NC 30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND	NC 30	
1,2-Dichloropropane	ND	0.5	ug/L	ND	NC 30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND	NC 30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND	NC 30	
Ethylbenzene	ND	0.5	ug/L	ND	NC 30	
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L	ND	NC 30	
Hexane	ND	1.0	ug/L	ND	NC 30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND	NC 30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND	NC 30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND	NC 30	
Methylene Chloride	ND	5.0	ug/L	ND	NC 30	

Source

Result

ND

ND

ND

1.40

ND

ND

Units

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Reporting

Limit

25

5.0

0.5

0.5

0.5

0.5

Result

ND

ND

ND

1.81

ND

ND

%REC

Limit

%REC

RPD

Limit

30

30

30

30

30

30

RPD

NC

NC

NC

25.5

NC

NC

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Tetrachloroethylene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethylene

Vinyl chloride

m,p-Xylenes

o-Xylene

Surrogate: Surrogate: Surrogate:

Client: Paterson Group Consulting Engineers

Client PO: 58284

Analyte

Styrene

Toluene

Method Quality Control: Duplicate

Reporting

Limit

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1.0

0.5

0.5

0.5

Result

ND

Notes

Report Date: 08-Sep-2023

Order Date: 1-Sep-2023

Project Description: PE2709

e: 4-Bromofluorobenzene	98.8	%	123	50-140
e: Dibromofluoromethane	102	%	128	50-140
z: Toluene-d8	79.9	%	99.9	50-140

Source

Result

ND

Units

ug/L

%REC

Limit

%REC

RPD

Limit

30

30

30

30

30

30

30

30

30

30

30

30

RPD

NC

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 58284

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1840	25	ug/L	ND	92.1	85-115			
F2 PHCs (C10-C16)	1540	100	ug/L	ND	96.2	60-140			
F3 PHCs (C16-C34)	4720	100	ug/L	ND	120	60-140			
F4 PHCs (C34-C50)	2710	100	ug/L	ND	109	60-140			
Volatiles									
Acetone	98.3	5.0	ug/L	ND	98.3	50-140			
Benzene	36.7	0.5	ug/L	ND	91.8	60-130			
Bromodichloromethane	38.0	0.5	ug/L	ND	95.0	60-130			
Bromoform	45.1	0.5	ug/L	ND	113	60-130			
Bromomethane	45.5	0.5	ug/L	ND	114	50-140			
Carbon Tetrachloride	38.3	0.2	ug/L	ND	95.6	60-130			
Chlorobenzene	39.5	0.5	ug/L	ND	98.7	60-130			
Chloroform	38.9	0.5	ug/L	ND	97.3	60-130			
Dibromochloromethane	43.3	0.5	ug/L	ND	108	60-130			
Dichlorodifluoromethane	39.8	1.0	ug/L	ND	99.6	50-140			
1,2-Dichlorobenzene	44.2	0.5	ug/L	ND	111	60-130			
1,3-Dichlorobenzene	42.8	0.5	ug/L	ND	107	60-130			
1,4-Dichlorobenzene	42.9	0.5	ug/L	ND	107	60-130			
1,1-Dichloroethane	34.9	0.5	ug/L	ND	87.4	60-130			
1,2-Dichloroethane	35.0	0.5	ug/L	ND	87.6	60-130			
1,1-Dichloroethylene	44.5	0.5	ug/L	ND	111	60-130			
cis-1,2-Dichloroethylene	42.6	0.5	ug/L	ND	106	60-130			
trans-1,2-Dichloroethylene	42.1	0.5	ug/L	ND	105	60-130			
1,2-Dichloropropane	33.7	0.5	ug/L	ND	84.2	60-130			
cis-1,3-Dichloropropylene	41.2	0.5	ug/L	ND	103	60-130			
trans-1,3-Dichloropropylene	42.8	0.5	ug/L	ND	107	60-130			
Ethylbenzene	36.0	0.5	ug/L	ND	90.0	60-130			
Ethylene dibromide (dibromoethane, 1,2-)	41.7	0.2	ug/L	ND	104	60-130			
Hexane	47.5	1.0	ug/L	ND	119	60-130			
Methyl Ethyl Ketone (2-Butanone)	95.4	5.0	ug/L	ND	95.4	50-140			

Report Date: 08-Sep-2023

Order Date: 1-Sep-2023

Project Description: PE2709

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Client: Paterson Group Consulting Engineers

Client PO: 58284

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl Isobutyl Ketone	84.4	5.0	ug/L	ND	84.4	50-140			
Methyl tert-butyl ether	92.8	2.0	ug/L	ND	92.8	50-140			
Methylene Chloride	49.4	5.0	ug/L	ND	123	60-130			
Styrene	37.1	0.5	ug/L	ND	92.8	60-130			
1,1,1,2-Tetrachloroethane	39.5	0.5	ug/L	ND	98.8	60-130			
1,1,2,2-Tetrachloroethane	33.9	0.5	ug/L	ND	84.7	60-130			
Tetrachloroethylene	45.0	0.5	ug/L	ND	113	60-130			
Toluene	37.3	0.5	ug/L	ND	93.2	60-130			
1,1,1-Trichloroethane	39.6	0.5	ug/L	ND	99.0	60-130			
1,1,2-Trichloroethane	38.3	0.5	ug/L	ND	95.8	60-130			
Trichloroethylene	38.1	0.5	ug/L	ND	95.2	60-130			
Trichlorofluoromethane	42.0	1.0	ug/L	ND	105	60-130			
Vinyl chloride	42.8	0.5	ug/L	ND	107	50-140			
m,p-Xylenes	74.5	0.5	ug/L	ND	93.1	60-130			
o-Xylene	34.5	0.5	ug/L	ND	86.2	60-130			
Surrogate: 4-Bromofluorobenzene	78.8		%		98.5	50-140			
Surrogate: Dibromofluoromethane	87.4		%		109	50-140			
Surrogate: Toluene-d8	86.6		%		108	50-140			

Report Date: 08-Sep-2023

Order Date: 1-Sep-2023

Client: Paterson Group Consulting Engineers

Client PO: 58284

Qualifier Notes:

Sample Qualifiers :

1: Elevated Reporting Limits due to limited sample volume.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Report Date: 08-Sep-2023

Order #: 2335491

Order Date: 1-Sep-2023

PARACEL		ace	1D:	233	35491	it Blvd. G 4J8 ibs.com am	Paracel Order Number (Lab Use Only) 2335491					Chain Of Custody (Lab Use Only)					
Client Name: Paterson Group			Proje	ct Ref:	PERTON							Page 1 of 1					
Contact Name: Samuel Berube Address:			Quote #:										Turnarour				
9 Auriga Dr, Ottan			PO #:		8284							🗆 1 day	r		3 day		
			E-mai									2 day		闼	Regular		
615 006 1381			5berube@patersongroup.ca.										ired:				
	ner Regulation		Matrix 1	Type:	S (Soil/Sed.) GW (Sround Water)	18.19		0.336	1236							
Table 1 Res/Park Med/Fine REG 558	D PWQO]	SW (Su	rface V	Nater) SS (Storm/S	anitary Sewer)	nitary Sewer)							equired Analysis			
Table 2 Ind/Comm Coarse CCME CCME	MISA		P (Paint) A (Air) O (Other)							Τ				T			
Table 3 Agri/Other SU - San SU - San Table Mun:	i 🛛 SU - Storm		v in Sample Taken							<u>م</u>							
			ame	ntair	Sampl	e Taken	1-1-1-1			Ā		1					
For RSC: Yes No Other: Sample ID/Location Name		Matrix	Air Volume	of Containers			PHCs F1-F4+btte	vocs	PAHs	Metals by	5	B (HWS)					
1 BH8 - 23 - GWI			R	*	Date	Time			2	ž	Ê Z	B			\perp		
2		G٧		5	Aug 31/23		×	Х		_	_				\perp		
3										_	_				\perp		
4										_	+				\perp		
5										+					\perp		
6							-			+	_						
7										_	_				\perp		
8															\perp		
9															\perp		
10										_	_						
Comments:										-							
										Me	thod of D	elivery;	Ik-ir				
telinquished By (Sign):	gn): Received By Driver/D					Received at Lab:	1.0	100.24		Ver	ified By:	wa	(11-13)			
elinquished By (Print): Trudy Blair	By (Print): Tranche Blans Date/Time:					and the second second	HP					SD					
	Temperature:			and a second	80	5001,0510000				1.10	ertime: Sept 1, 2025 4:4/10						
ain of Custody (Blank), xlsx		°C Temperature Revsion 4.0			Temperature: 0,7°C pH Ve				Verified:	/erified: By:							

Paterson Group Consulting Engineers (Ottawa)	
9 Auriga Drive	
Ottawa, ON K2E 7T9	
Attn: Karyn Munch	
	Report Date: 31-May-2024
Client PO: 60290	Order Date: 27-May-2024
Project: PE6422	Order #: 2422099
Custody:	Order #. 2422099

 Paracel ID
 Client ID

 2422099-01
 BH1-24-GW1

 2422099-02
 BH3-24-GW1

 2422099-03
 BH4-24-GW1

Approved By:

Jose

Dale Robertson, BSc

Laboratory Director

BTEX by P&T GC-MS

Mercury by CVAA

Metals, ICP-MS

PHCs F2 to F4

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Analysis

PHC F1

Analysis Summary Table

Chromium, hexavalent - water

REG 153: PAHs by GC-MS

Report Date: 31-May-2024

Order Date: 27-May-2024

Analysis Date

28-May-24

28-May-24

28-May-24

29-May-24

28-May-24

31-May-24

31-May-24

Project Description: PE6422

Extraction Date

28-May-24

28-May-24

28-May-24

28-May-24

28-May-24

30-May-24

30-May-24

OTTAWA • MISSISSAUGA	 HAMILTON 	KINGSTON	 LONDON 	NIAGARA	WINDSOR	 RICHMOND 	HILL
----------------------	------------------------------	----------	----------------------------	---------	---------	------------------------------	------

Method Reference/Description

EPA 624 - P&T GC-MS

EPA 200.8 - ICP-MS

MOE E3056 - colourimetric

EPA 245.2 - Cold Vapour AA

CWS Tier 1 - P&T GC-FID

CWS Tier 1 - GC-FID, extraction

EPA 625 - GC-MS, extraction

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Report Date: 31-May-2024

Order Date: 27-May-2024

Project Description: PE6422

	ан Г	tt ID: BH1-24-GW1 BH3-24-GW1					T
	Client ID:			BH4-24-GW1	-		
	Sample Date:	22-May-24 12:20	22-May-24 12:30	22-May-24 12:40	-	-	-
	Sample ID:	2422099-01	2422099-02	2422099-03	-		
	Matrix:	Ground Water	Ground Water	Ground Water	-		
	MDL/Units						
Metals							1
Mercury	0.1 ug/L	<0.1	<0.1	<0.1	-	-	-
Antimony	0.5 ug/L	0.5	0.8	0.7	-	-	-
Arsenic	1 ug/L	<1	<1	1	-	-	-
Barium	1 ug/L	831	882	377	-	-	-
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Boron	10 ug/L	403	164	172	-	-	-
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	-	-	-
Chromium (VI)	10 ug/L	<10	<10	<10	-	-	-
Chromium	1 ug/L	<1	<1	<1	-	-	-
Cobalt	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Copper	0.5 ug/L	2.3	2.7	2.6	-	-	-
Lead	0.1 ug/L	1.1	0.4	0.6	-	-	-
Molybdenum	0.5 ug/L	5.7	9.7	12.1	-	-	-
Nickel	1 ug/L	1	2	1	-	-	-
Selenium	1 ug/L	<1	<1	4	-	-	-
Silver	0.1 ug/L	<0.1	<0.1	<0.1	-	-	-
Sodium	200 ug/L	908000	1430000	783000	-	-	-
Thallium	0.1 ug/L	0.1	0.1	0.1	-	-	-
Uranium	0.1 ug/L	1.6	3.9	2.5	-	-	-
Vanadium	0.5 ug/L	1.2	0.6	0.7	-	-	-
Zinc	5 ug/L	<5	<5	<5	-	-	-
Volatiles							
Benzene	0.5 ug/L	<0.5	-	-	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-	-	-

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Report Date: 31-May-2024

Order Date: 27-May-2024

Project Description: PE6422

	ан Г				1		
	Client ID:	BH1-24-GW1	BH3-24-GW1	BH4-24-GW1	-		
	Sample Date:	22-May-24 12:20	22-May-24 12:30	22-May-24 12:40	-	-	-
	Sample ID:	2422099-01	2422099-02	2422099-03	-		
	Matrix:	Ground Water	Ground Water	Ground Water	-		
	MDL/Units						
Volatiles					-		
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-	-	-
Toluene-d8	Surrogate	100%	-	-	-	-	-
Hydrocarbons	-						
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-	-	-
F4 PHCs (C34-C50)	100 ug/L	282	-	-	-	-	-
Semi-Volatiles						-	
Acenaphthene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Acenaphthylene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Anthracene	0.01 ug/L	<0.01	<0.01	<0.01	-	-	-
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	<0.01	-	-	-
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	<0.01	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Chrysene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Fluoranthene	0.01 ug/L	<0.01	<0.01	<0.01	-	-	-
Fluorene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Report Date: 31-May-2024

Order Date: 27-May-2024

	Client ID:	BH1-24-GW1	BH3-24-GW1	BH4-24-GW1	-		
	Sample Date:	22-May-24 12:20	22-May-24 12:30	22-May-24 12:40	-	-	-
	Sample ID:	2422099-01	2422099-02	2422099-03	-		
	Matrix:	Ground Water	Ground Water	Ground Water	-		
	MDL/Units						
Semi-Volatiles					•		•
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	<0.10	-	-	-
Naphthalene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Phenanthrene	0.05 ug/L	<0.05	<0.05	<0.05	-	-	-
Pyrene	0.01 ug/L	<0.01	<0.01	<0.01	-	-	-
2-Fluorobiphenyl	Surrogate	63.0%	60.5%	61.4%	-	-	-
Terphenyl-d14	Surrogate	88.3%	93.3%	96.3%	-	-	-

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	25	ug/L					
F2 PHCs (C10-C16)	ND	100	ug/L					
F3 PHCs (C16-C34)	ND	100	ug/L					
F4 PHCs (C34-C50)	ND	100	ug/L					
Metals								
Mercury	ND	0.1	ug/L					
Antimony	ND	0.5	ug/L					
Arsenic	ND	1	ug/L					
Barium	ND	1	ug/L					
Beryllium	ND	0.5	ug/L					
Boron	ND	10	ug/L					
Cadmium	ND	0.1	ug/L					
Chromium (VI)	ND	10	ug/L					
Chromium	ND	1	ug/L					
Cobalt	ND	0.5	ug/L					
Copper	ND	0.5	ug/L					
Lead	ND	0.1	ug/L					
Molybdenum	ND	0.5	ug/L					
Nickel	ND	1	ug/L					
Selenium	ND	1	ug/L					
Silver	ND	0.1	ug/L					
Sodium	ND	200	ug/L					
Thallium	ND	0.1	ug/L					
Uranium	ND	0.1	ug/L					
Vanadium	ND	0.5	ug/L					
Zinc	ND	5	ug/L					
Semi-Volatiles								
Acenaphthene	ND	0.05	ug/L					
Acenaphthylene	ND	0.05	ug/L					
Anthracene	ND	0.01	ug/L					
Benzo [a] anthracene	ND	0.01	ug/L					
Benzo [a] pyrene	ND	0.01	ug/L					

Report Date: 31-May-2024

Order Date: 27-May-2024

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Method Quality Control: Blank

Report Date: 31-May-2024

Order Date: 27-May-2024

Project Description: PE6422

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [b] fluoranthene	ND	0.05	ug/L					
Benzo [g,h,i] perylene	ND	0.05	ug/L					
Benzo [k] fluoranthene	ND	0.05	ug/L					
Chrysene	ND	0.05	ug/L					
Dibenzo [a,h] anthracene	ND	0.05	ug/L					
Fluoranthene	ND	0.01	ug/L					
Fluorene	ND	0.05	ug/L					
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L					
1-Methylnaphthalene	ND	0.05	ug/L					
2-Methylnaphthalene	ND	0.05	ug/L					
Methylnaphthalene (1&2)	ND	0.10	ug/L					
Naphthalene	ND	0.05	ug/L					
Phenanthrene	ND	0.05	ug/L					
Pyrene	ND	0.01	ug/L					
Surrogate: 2-Fluorobiphenyl	16.4		%	81.8	50-140			
Surrogate: Terphenyl-d14	25.1		%	125	50-140			
Volatiles								
Benzene	ND	0.5	ug/L					
Ethylbenzene	ND	0.5	ug/L					
Toluene	ND	0.5	ug/L					
m,p-Xylenes	ND	0.5	ug/L					
o-Xylene	ND	0.5	ug/L					
Xylenes, total	ND	0.5	ug/L					
Surrogate: Toluene-d8	78.1		%	97.6	50-140			

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Method Quality Control: Duplicate

Report Date: 31-May-2024

Order Date: 27-May-2024

Project Description: PE6422

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
Metals									
Mercury	ND	0.1	ug/L	ND			NC	20	
Antimony	ND	0.5	ug/L	ND			NC	20	
Arsenic	1.3	1	ug/L	1.3			1.4	20	
Barium	90.7	1	ug/L	86.8			4.4	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	36	10	ug/L	38			3.6	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Chromium (VI)	ND	10	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	8.75	0.5	ug/L	9.06			3.5	20	
Copper	ND	0.5	ug/L	ND			NC	20	
Lead	0.23	0.1	ug/L	0.32			NC	20	
Molybdenum	0.50	0.5	ug/L	ND			NC	20	
Nickel	1.9	1	ug/L	1.9			3.0	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	82200	200	ug/L	88500			7.4	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Uranium	0.3	0.1	ug/L	0.3			4.1	20	
Vanadium	2.17	0.5	ug/L	2.19			1.1	20	
Zinc	ND	5	ug/L	ND			NC	20	
Volatiles									
Benzene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: Toluene-d8	79.0		%		98.8	50-140			

OTTAWA - MISSISSAUGA - HAMILTON - KINGSTON - LONDON - NIAGARA - WINDSOR - RICHMOND HILL

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1820	25	ug/L	ND	91.0	85-115			
F2 PHCs (C10-C16)	1230	100	ug/L	ND	76.6	60-140			
F3 PHCs (C16-C34)	3360	100	ug/L	ND	85.8	60-140			
F4 PHCs (C34-C50)	2170	100	ug/L	ND	87.5	60-140			
Metals									
Mercury	2.87	0.1	ug/L	ND	95.7	70-130			
Arsenic	53.4	1	ug/L	1.3	104	80-120			
Barium	137	1	ug/L	86.8	99.6	80-120			
Beryllium	50.6	0.5	ug/L	ND	101	80-120			
Boron	80	10	ug/L	38	84.9	80-120			
Cadmium	51.0	0.1	ug/L	ND	102	80-120			
Chromium (VI)	190	10	ug/L	ND	95.0	70-130			
Chromium	53.2	1	ug/L	ND	105	80-120			
Cobalt	59.1	0.5	ug/L	9.06	100	80-120			
Copper	48.5	0.5	ug/L	ND	96.1	80-120			
Lead	43.3	0.1	ug/L	0.32	86.0	80-120			
Molybdenum	46.6	0.5	ug/L	ND	92.3	80-120			
Nickel	51.0	1	ug/L	1.9	98.1	80-120			
Selenium	46.5	1	ug/L	ND	92.1	80-120			
Silver	42.1	0.1	ug/L	ND	84.2	80-120			
Sodium	9910	200	ug/L	ND	99.1	80-120			
Thallium	45.9	0.1	ug/L	ND	91.6	80-120			
Uranium	46.0	0.1	ug/L	0.3	91.4	80-120			
Vanadium	56.8	0.5	ug/L	2.19	109	80-120			
Zinc	46	5	ug/L	ND	90.1	80-120			
Semi-Volatiles									
Acenaphthene	4.43	0.05	ug/L	ND	88.5	50-140			
Acenaphthylene	4.74	0.05	ug/L	ND	94.9	50-140			
Anthracene	5.18	0.01	ug/L	ND	104	50-140			
Benzo [a] anthracene	4.02	0.01	ug/L	ND	80.5	50-140			

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Report Date: 31-May-2024

Order Date: 27-May-2024

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzo [a] pyrene	3.84	0.01	ug/L	ND	76.9	50-140			
Benzo [b] fluoranthene	3.98	0.05	ug/L	ND	79.5	50-140			
Benzo [g,h,i] perylene	3.87	0.05	ug/L	ND	77.3	50-140			
Benzo [k] fluoranthene	4.99	0.05	ug/L	ND	99.8	50-140			
Chrysene	4.13	0.05	ug/L	ND	82.5	50-140			
Dibenzo [a,h] anthracene	3.83	0.05	ug/L	ND	76.7	50-140			
Fluoranthene	5.06	0.01	ug/L	ND	101	50-140			
Fluorene	4.22	0.05	ug/L	ND	84.4	50-140			
Indeno [1,2,3-cd] pyrene	3.87	0.05	ug/L	ND	77.3	50-140			
1-Methylnaphthalene	4.01	0.05	ug/L	ND	80.3	50-140			
2-Methylnaphthalene	4.00	0.05	ug/L	ND	80.0	50-140			
Naphthalene	4.19	0.05	ug/L	ND	83.8	50-140			
Phenanthrene	4.55	0.05	ug/L	ND	91.0	50-140			
Pyrene	5.12	0.01	ug/L	ND	102	50-140			
Surrogate: 2-Fluorobiphenyl	15.7		%		78.5	50-140			
Surrogate: Terphenyl-d14	22.4		%		112	50-140			
Volatiles									
Benzene	35.7	0.5	ug/L	ND	89.2	60-130			
Ethylbenzene	37.3	0.5	ug/L	ND	93.3	60-130			
Toluene	37.1	0.5	ug/L	ND	92.8	60-130			
m,p-Xylenes	74.0	0.5	ug/L	ND	92.4	60-130			
o-Xylene	34.4	0.5	ug/L	ND	86.0	60-130			

Order #: 2422099

Report Date: 31-May-2024

Order Date: 27-May-2024

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 60290

Qualifier Notes:

QC Qualifiers:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Page 11 of 12

Order #: 2422099

Report Date: 31-May-2024

Order Date: 27-May-2024

GPARACEL			22099	Paracel Order Number (Lab Use Only) 2422099						Chain Of Custody (Lab Use Only)								
Client Name: PATERSON			Proje	ct Ref: (PE 642	2						Page of						
Contact Name: KAMP Murch			Quote #:									\vdash		Turna	round	Tim	е е	
- Wal (55).			PO#: 60290									1 🗆] 1 day	,		I	🗆 3 d	Jav
9 AURIGA Dr. NEPEAN,	on.		E-mai	l: /	-	2						2 day				💐 Re	,	
Telephone: 613-226 -7381			1 1	5m	ANCH OF	ATENSO	μG	ray	<i>o.C</i>	а			e Requ				- (IC)	5 anar
REG 153/04 REG 406/19 Othe		-				0		9.95 C	the for	0.13		nequ			Saret-Si	eta su	=	
Table 1 Res/Park Med/Fine REG 558	D PWQ0		Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer)					Re						equired Analysis				
Table 2 Ind/Comm Coarse CCME			(aint) A (Air) O (Ot		14	1	<u> </u>									
Table 3 Agri/Other SU - Sani	SU - Storm			2			- X	2										
TableMun:			e	of Containers	Sample	e Taken	8 TEX	FLALS		H	AH							
For RSC: Yes No Other:		iž.	Air Volume	Cont			5	-£	5	>	P							
Sample ID/Location Name		Matrix	Air V	# of (Date	Time	Ť	9	Ha	UU	12	t						
1 BH1-24-GW1		Gw	~	7	hear azla		×	-							\neg	_	$ \rightarrow $	
2 BHZ BH3-24-6	w/1			46	MAY 22/24	(X	╞──	⊫	H		=	_	Щ
3 BH4-24-GW1				<u>70</u> 4		12:30p	╞		X	1	X		Ŀ	닏				\square
4		-		4		12:400	╞	\times	\times	×	\boldsymbol{X}		Ľ	Ц	Щļ			
5																		
6																		
7								\square		\square	\square		\square	\square				
8										\square	\square	\square	Ē	F		T		T
9							Ħ	F		H	H	H	H	H		=#	=#	=
10							H	H	片	H	片	片	片	⊢	═╬	═╬	=#	=
Comments:																		_
1 1											metho	Pin	livery:	1	100		. ,	
telinquished By (Sign): Received at Depot:						Received at Lab;	en i				Verifie	Paracel Courses						
Relinquished By (Print): Date/Time:				Received at Lab									So					
DOMINIC LANDAM				Date/Figne:			ite/Figney May 24 1629 Date				Date/T	e/Time: May 28, 2024 9.016m						
Date/Time: Temperature:				°C Temperature			erature: 15-2 PH V				pH Ver	I Verified: By: SD						

Posicion 5 0

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontracted Analysis

Paterson Group Consulting Engineers (Ottawa) 9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Jeremy Camposarcone

Paracel Report No. 2420225 PE6422 Client Project(s): Client PO: 60196 Reference: #24-017 Standing Offer 2024

Order Date: 14-May-24 Report Date: 31-May-24

CoC Number:

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID **Client ID** 2420225-10

BH4-24-SS3

Analysis Methyl Mercury - soil

ALS Canada Ltd.

	CERTIFICATE OF ANALYSIS								
Work Order	: WT2413665	Page	: 1 of 2						
Client	: Paracel Laboratories Ltd	Laboratory	: ALS Environmental - Waterloo						
Contact	: Mark Foto	Account Manager	: Costas Farassoglou						
Address	: 2319 St. Laurent Blvd. Unit 300	Address	: 60 Northland Road, Unit 1						
	Ottawa ON Canada K1G 4J8		Waterloo ON Canada N2V 2B8						
Telephone	: 613 731 9577	Telephone	: 613 225 8279						
Project	: 2420225	Date Samples Received	: 28-May-2024 12:10						
PO	:	Date Analysis Commenced	: 02-Jun-2024						
C-O-C number	:	Issue Date	: 13-Jun-2024 09:08						
Sampler	: CLIENT								
Site	:								
Quote number	: Standing Offer 2024								
No. of samples received	: 1								
No. of samples analysed	: 1								

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Kinny Wu	Lab Analyst	Metals, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
µg/kg	micrograms per kilogram

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Soil/Solid	il/Solid Client sample ID					 	
(Matrix: Soil/Solid)							
Client sampling date / time				09-May-2024 09:00	 	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	WT2413665-001	 	
					Result	 	
Speciated Metals							
Methylmercury (as MeHg)	22967-92-6	E538/VA	0.050	µg/kg	<0.050	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

	QUALITY CONTROL INTERPRETIVE REPORT								
Work Order	:WT2413665	Page	: 1 of 5						
Client	Paracel Laboratories Ltd	Laboratory	: ALS Environmental - Waterloo						
Contact	: Mark Foto	Account Manager	: Costas Farassoglou						
Address	: 2319 St. Laurent Blvd. Unit 300	Address	60 Northland Road, Unit 1						
	Ottawa ON Canada K1G 4J8		Waterloo, Ontario Canada N2V 2B8						
Telephone	:613 731 9577	Telephone	: 613 225 8279						
Project	: 2420225	Date Samples Received	: 28-May-2024 12:10						
PO	:	Issue Date	: 13-Jun-2024 09:08						
C-O-C number	:								
Sampler	: CLIENT								
Site	:								
Quote number	: Standing Offer 2024								
No. of samples received	:1								
No. of samples analysed	:1								

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• <u>No</u> Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

atrix: Soil/Solid Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time										
Analyte Group : Analytical Method	Method	Sampling Date	Extraction / Preparation Analysis							
Container / Client Sample ID(s)			Preparation Holding Times Eval			Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual			Rec	Actual	
Speciated Metals : Methylmercury in Soil by GCAFS										
Glass soil jar/Teflon lined cap [ON MECP]										
BH4-24-SS3	E538	09-May-2024	07-Jun-2024	28	29	*	10-Jun-2024	28 days	3 days	✓
				days	days	EHT				

Legend & Qualifier Definitions

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid		Evaluation	n: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	Count Frequency (%			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Methylmercury in Soil by GCAFS	E538	1479163	1	11	9.0	5.0	✓
Laboratory Control Samples (LCS)							
Methylmercury in Soil by GCAFS	E538	1479163	2	11	18.1	10.0	✓
Method Blanks (MB)							
Methylmercury in Soil by GCAFS	E538	1479163	1	11	9.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Methylmercury in Soil by GCAFS	E538 ALS Environmental - Vancouver	Soil/Solid	DeWild et al. (2004)/EPA 1630 (mod)	This method follows procedures published by DeWild, Olund, Olsen and Tate (2004) for the US Geological Survey (Techniques and Methods 5A-7). Samples are leached with an acidic copper sulphate solution to solubilize methylmercury for inorganic complexes. The methylmercury is then extracted into dichloromethane and then an aliquot is back extracted into ultra-pure water. The extract is analyzed by aqueous phase ethylation, purge and trap, desorption and GC separation. The separated species are then pyrolized to elemental Hg and quantified by cold vapour atomic flourescence spectroscopy. Results are reported "as MeHg".
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Methylmercury Soil Digestion	EP538 ALS Environmental - Vancouver	Soil/Solid	DeWild et al. (2004)	This method follows procedures published by DeWild, Olund, Olsen and Tate (2004) for the US Geological Survey (Techniques and Methods 5A-7). Samples are leached with an acidic copper sulphate solution to solubilize methylmercury for inorganic complexes. The methylmercury is then extracted into dichloromethane and then an aliquot is back extracted into ultra-pure water. The extract is analyzed by aqueous phase ethylation, purge and trap, desorption and GC separation. The separated species are then pyrolized to elemental Hg and quantified by cold vapour atomic flourescence spectroscopy. Results are reported "as MeHq".

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page WT2413665 : 1 of 3 Client : Paracel Laboratories Ltd Laboratory : ALS Environmental - Waterloo : Mark Foto Account Manager Contact : Costas Farassoglou Address Address : 2319 St. Laurent Blvd. Unit 300 :60 Northland Road, Unit 1 Ottawa ON Canada K1G 4J8 Waterloo, Ontario Canada N2V 2B8 Telephone 613 731 9577 Telephone :613 225 8279 Project :2420225 Date Samples Received :28-May-2024 12:10 PO Date Analysis Commenced :02-Jun-2024 :----C-O-C number Issue Date : 13-Jun-2024 09:08 :-----Sampler : CLIENT Site :----Quote number : Standing Offer 2024 No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Kinny Wu	Lab Analyst	Vancouver Metals, Burnaby, British Columbia

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot. CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Speciated Metals (QC Lot: 1479163)											
VA24B0502-001	Anonymous	Methylmercury (as MeHg)	22967-92-6	E538	0.050	µg/kg	0.230	0.133	0.097	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Speciated Metals (QCLot: 1479163)						
Methylmercury (as MeHg)	22967-92-6 I	E538	0.05	µg/kg	<0.050	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid						Laboratory Co	ontrol Sample (LCS)	Report				
						Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier			
Speciated Metals (QCLot: 1479163)												
Methylmercury (as MeHg)	22967-92-6	E538	0.05	µg/kg	10 µg/kg	92.1	70.0	130				

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:		Reference Material (RM) Report							
			RM Target	Recovery (%)	Recovery L				
Laboratory sample ID	Reference Material ID	Analyte CAS Number		Method	Concentration	RM	Low	High	Qualifier
Speciated Metals	(QCLot: 1479163)								
QC-1479163-003	RM	Methylmercury (as MeHg)	22967-92-6	E538	14.8 µg/kg	108	70.0	130	

TRUSTED. RESPONSIVE. RELIABLE. 300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Subcontract Order

SENDING LABORATORY:

Paracel Laboratories Ltd. 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 Phone: 613-731-9577

Fax: 613-731-9064

RECEIVING LABORATORY:

ALS Laboratory Group (Vancouver) 8081 Lougheed Highway

Burnaby, BC V5A 1W9 Phone: (604) 253-4188

Fax:

INVOICE TO:

Paracel Laboratories Ltd. 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 Phone: 613-731-9577

Fax: 613-731-9064

Date Requested:	15-May-24	Required Regulation	Realsz				
Project Number:	2420225	Turnaround		1			
Submitted By:	Sarah Scullion	Time	Standlard				

Sample ID	Matrix	Analyses Requested:	Sampled	Comments	
BH4-24-SS3	Soil	Methyl Mercury - soil	09-May-24 09:00		
Let-					

BB 05/29/24 8.40 10:10

Environmental Division Waterloo Work Order Reference

.

AB Sublet

Please email all results to mfoto@paracellabs.com, dbloom@paracellabs.com, drobertson@paracellabs.com

- Abe	Mar	18/019	
Released By	77	Date / Tim	e
Temperature prior to Shipping	10	0	

Lara R.	28/05/24
Received By	Date
13.5°C ->ICE PACK	
12:10	

OTTAWA « CALGARY « MISSISSAUGA « KINGSTON « LONDON » NIAGARA « WINDSOR 1-800-749-1947 « www.paracellabs.com Page1of1

Chain Of Custody (Lab Use Only)

Cli	ient Name: Potoreen Orean I							\sim		-									
Faterson Group Inc.				Proj	Project Ref: PE6422							Page 1 of 2							
Address				Quo	Quote #:								Turnaround Time						
9 AURIGA DRIVE				PO #	PO#: 60196								1 day				🔲 3 day		
-	OTTAWA ON K2E 7T9 Telephone: 613-226-7381				E-mail: jcamposarcone@patersongroup.ca					2 day				🗵 Regular					
Tel					kmunch@patersongroup.ca								Date Required:						
REG 153/04 REG 406/19 Other Regulation											121.2								
Table 1 Res/Park Med/Fine REG 558 PWQ0				Matrix SW (S	latrix Type: S (Soil/Sed.) GW (Ground Water) W (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other)			Required Analysis											
	Table 2 Ind/Comm Coarse CCME MISA							×	T -			1							
	Table 3 Agri/Other	🗆 SU - Sani 📃 SU - Sto	rm		ya			BTEX											
	Table	Mun:		e	# of Container	Sample Taken		4 + +	s	0	ils by ICP			(SMH)					
	For RSC: Yes 🛛 No	Other:		/olum				F1-F4											
_	Sample ID/Location	n Name	Matrix	Air		Date	Time	유	vocs	PAHs	Metals	Pf	2 Z	B (H	H	ы	SAR		
1 BH1-24-AU1			S		2	5/8/2024		1		~	1	1	1			~	~		
2	BH1-24-SS3		S		2	5/8/2024		1		1	1	~	~			~	~		
3	BH1-24-SS5		s	1	2	5/8/2024		1	H	1	V	~	~						
4	BH2-24-AU1		s	1	2	5/8/2024			H	1	1		1		~				
5	BH2-24-SS3		s	-	2	5/8/2024			H										
6	BH3-24-AU1		s	-	2	5/9/2024		H	H		-		V						
7	BH3-24-SS5		s	-	2	5/9/2024		F	H	H	-		F						
8	BH4-24-AU1		s		2	5/9/2024			H		~					╠═╡			
9	BH4-24-SS2		s		2	5/9/2024		누극	님				 ✓ 						
.0	BH4-24-SS3		s		2			Ľ	닏				Ľ		┡	Ľ	Ľ		
mme	ents: HOLD - BH4-24-SS3		3		2	5/9/2024				7	\mathbb{Q}								
												Metho				0			
linquished By (Sign): Received By Driver/Dep			pot:	Poot: Received at Lab:			Verifie				Crucel Courie								
linguished By (Print)			83.22									SS							
te/Time: 5/13/2024 Temperature:				Date/Time: May 14, 2024 4.25			250	pH Verified: PMAY 24 0928											
n of (Custorly (Blank) visx	Temperature		8.30	4.2	°C	Temperature:	27				pH Ve	rified:	AN.	4 ^{by:}		83. 1		
						Revision 4.0													

Chain Of Custody Paracel Order Number (Lab Use Only) (Lab Use Only) 2420225

Client Name: Project Ref: PE6422 Paterson Group Inc. Page 2 of 2 Contact Name: Jeremy Camposarcone Quote #: **Turnaround Time** Address: PO #: 9 AURIGA DRIVE 60196 🗌 1 day 🗌 3 day OTTAWA ON K2E 7T9 E-mail: jcamposarcone@patersongroup.ca 🗌 2 day Regular Telephone: 613-226-7381 kmunch@patersongroup.ca Date Required: REG 153/04 KREG 406/19 Other Regulation Matrix Type: S (Soil/Sed.) GW (Ground Water) **Required Analysis** Table 1 Res/Park Med/Fine REG 558 D PWQO SW (Surface Water) SS (Storm/Sanitary Sewer) Table 2 Ind/Comm Coarse P (Paint) A (Air) O (Other) CCME MISA BTEX Table 3 Agri/Other SU - Sani SU - Storm Containers СР PHC F1-F4 + Table Mun: Sample Taken Air Volume ģ For RSC: Yes No Other: B (HWS) Matrix Metals PAHs VOCs SAR Sr Jo # Sample ID/Location Name С Date Time 문 Æ 1 BH4-24-SS6 S 2 5/9/2024 1 1 1 1 2 BH5-24-AU1 s 2 5/9/2024 1 1 1 1 1 1 1 ν 3 BH5-24-SS2(BOTTOM) 22 S 5/9/2024 1 V V V 4 DUP1 S 2 5/8/2024 1 1 1 1 V 1 1 5 DUP2 S 2 5/9/2024 1 1 1 1 6 7 8 9 10 Comments: Method of Delivery: Paracel Court Relinquished By (Sign): Received By Driver/Depot: Verified By: Received at Lab: Go Relinquished By (Print Jeremy Camposarcone Date/Time: Date/Time: Mai Date/Time: 24 0928 May 14, 2024 4.250 Date/Time: 5/3. Temperature: pH Verified: 2024 °C Temperature: By: 12.7 Chain of Custody (Blank) visi

Revision 4.0