

Geotechnical Investigation Proposed Commercial Development

4828 Bank Street Ottawa, Ontario

Prepared for Bank & Dun Developments Inc.

Report PG7262-2 dated October 1, 2024

Table of Contents

1.0	Introduction	.1
2.0	Proposed Development	.1
3.0	Method of Investigation	.2
3.1	Field Investigation	
3.2	Field Survey	.4
3.3	Laboratory Testing	.4
3.4	Analytical Testing	.4
4.0	Observations	.5
4.1	Surface Conditions	.5
4.2	Subsurface Profile	.5
4.3	Groundwater	.6
5.0	Discussion	.8
5.1	Geotechnical Assessment	.8
5.2	Site Grading and Preparation	.8
5.3	Foundation Design	11
5.4	Design for Earthquakes	13
5.5	Slab on Grade Construction	15
5.6	Pavement Design	15
6.0	Design and Construction Precautions1	
6.1	Foundation Drainage and Backfill	17
6.2	Protection of Footings Against Frost Action	17
6.3	Excavation Side Slopes	18
6.4	Pipe Bedding and Backfill	18
6.5	Groundwater Control	19
6.6	Winter Construction	20
6.7	Corrosion Potential and Sulphate2	20
7.0	Recommendations2	21
8.0	Statement of Limitations2	22

Appendices

- Appendix 1Soil Profile and Test Data Sheets
Symbols and Terms
Historical Soil Profile and Test Data Sheets
Rock Core Photographs
Analytical Testing Results
- Appendix 2Figure 1 Key PlanFigures 2 & 3 Seismic Shear Wave Velocity ProfilesDrawing PG7262-2 Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Bank & Dun Developments Inc. to conduct a geotechnical investigation for the proposed commercial development to be located at 4828 Bank Street in the City of Ottawa (reference should be made to Figure 1 - Key Plan in Appendix 2 of this report).

The objectives of the geotechnical investigation were to:

- Determine the subsoil and groundwater conditions at this site by means of boreholes.
- Provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

Investigating for the presence or potential presence of contamination on the subject property was not part of the scope of work of the present investigation. Therefore, the present report does not address environmental issues.

2.0 Proposed Development

Based on the available conceptual plan, it is understood that the proposed development will consist of four slab-on-grade commercial buildings (Buildings A to D) within the subject site.

Further, it is understood that the remainder of the site will generally be occupied by parking areas, access roads, loading zones, and landscaped areas. It is also expected that the subject site will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current geotechnical investigation was carried out from September 12 to 19, 2024, and consisted of advancing a total of 10 boreholes to a maximum depth of 6.2 m below the existing ground surface. Furthermore, at that time, a total of 10 boreholes were completed within the west portion of the subject site a maximum depth of 9.0 m below the existing ground surface along with the current geotechnical program and covered under a different report. In addition, historical test holes were completed by this firm and others in 2005 during previous geotechnical investigations.

The test hole locations were determined in the field by Paterson personnel and distributed in a manner to provide general coverage of the subject site taking into consideration site features and underground utilities. The test hole locations are presented on Drawing PG7262-2 – Test Hole Location Plan included in Appendix 2.

The boreholes were advanced using a low clearance track-mounted auger drill rig operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The testing procedure consisted of augering, excavating, and coring to the required depth at the selected location and sampling the overburden and/or bedrock.

Sampling and In Situ Testing

Soil samples were collected from the boreholes using two different techniques, namely, sampled directly from the auger flights (AU) or collected using a 50 mm diameter split spoon (SS) sampler. The bedrock was cored to assess the bedrock quality. All samples were visually inspected and initially classified on site. The auger and split-spoon samples were placed in sealed plastic bags, and rock cores (RC) were placed in cardboard boxes.

All samples were transported to our laboratory for further examination and classification. The depths at which the auger, split spoon, and rock core samples were recovered from the boreholes are shown as AU, SS, and RC, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1. Photographs of the rock core are presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Diamond drilling was completed at the selected borehole location to confirm the bedrock quality. A recovery value and a Rock Quality Designation (RQD) value were calculated for each drilled section of bedrock and are presented as RC on the Soil Profile and Test Data sheets in Appendix 1. The recovery value is the ratio of the bedrock sample length recovered over the drilled section length, in percentage.

The RQD value is the total length ratio of intact rock core length of more than 100 mm in one drilled section over the length of the drilled section, in percentage. These values are indicative of the quality of the bedrock.

The subsurface conditions observed in the test holes were recorded in detail in the field. The soil profiles are logged on the Soil Profile and Test Data Sheets in Appendix 1 of this report.

Groundwater

For the current investigation, monitoring wells were installed in BH 3-24, BH 6-24, and BH 7-24, and the remainder of the boreholes were fitted with a flexible polyethylene standpipe to permit monitoring of the groundwater levels. The groundwater level readings were obtained after a suitable stabilization period subsequent to the completion of the field investigation.

The groundwater observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data sheets in Appendix 1.

Monitoring Well Installation

Typical monitoring well construction details are described below:

- □ Up to 1.5 m of slotted 32 or 51 mm diameter PVC screens at base the base of the boreholes.
- □ 32 or 51 mm diameter PVC riser pipe from the top of the screen to the ground surface.
- □ No.3 silica sand backfill within annular space around the screen.

- □ 300 mm thick bentonite hole plug directly above the PVC slotted screen.
- □ Clean backfill from the top of the bentonite plug to the ground surface.

Refer to the Soil Profile and Test Data sheets in Appendix 1 for specific well construction details.

3.2 Field Survey

The test hole locations and ground surface elevation at each test hole location were surveyed by Paterson using a high-precision handheld GPS and referenced to a geodetic datum. The locations of the test holes, and the ground surface elevation at each test hole location, are presented on Drawing PG7262 - 2 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples and rock cores were recovered from the subject site and visually examined in our laboratory to review the results of the field logging. Moisture content testing was completed on all recovered soil samples from the current investigation. The results of the testing are presented in Section 4.2 and are provided in Appendix 1.

Sample Storage

All soil samples and rock cores will be stored in the laboratory for a period of one (1) month after issuance of this report. They will then be discarded unless directed otherwise.

3.4 Analytical Testing

Two (2) soil samples were submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The samples were submitted to determine the concentration of sulphate and chloride, the resistivity, and the pH of the samples. The results are presented in Appendix 1 and are discussed further in Section 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently undeveloped, vacant, and grass and/or gravel-covered with small trees throughout various locations. The site is bordered by vacant and undeveloped land to the north, by Bank Street to the east, by Dun Skipper Drive followed by vacant and undeveloped land to the south, and by Cedar Creek Drive followed by residential properties to the west.

Reference should be made to Figure 1 – Key Plan in Appendix 2 of the current report.

The ground surface across the subject site gradually slopes down toward the north with approximate geodetic elevations ranging between 96.0 to 99.9 m. The subject site is relatively at grade with surrounding roadways and properties.

4.2 Subsurface Profile

Overburden

Generally, the subsurface profile at the test hole locations consists of topsoil and/or fill underlain by a silty sand deposit and/or glacial till layer further underlain by bedrock.

Fill extending to depths ranging from 0.5 to 1.1 m below the existing ground surface. The fill was generally observed to consist of brown silty sand with variable amounts of gravel, clay, and crushed stone. Further, a deposit of silty sand extending to a depth of 0.7 m below the existing ground surface was observed at BH 5-24, BH 6-24, BH 15-24, BH 16-24, and BH 17-24. The silty sand layer consists of loose brown silty sand, trace to some gravel and clay.

The fill and silty sand layers were observed to be underlain by a layer of glacial till deposit extended to approximate depths ranging between 1.1 to 5.9 m below the ground surface. The glacial till deposit generally consists of dense to very dense, grey silty sand or sandy silt with variable amounts of gravel, cobbles, and boulders.

Practical refusal to augering was encountered at depths ranging from 0.5 to 2.7 m below the existing ground surface at several borehole locations across the subject site.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at each test hole location.

Bedrock

Bedrock consisting of sandstone with dolomite interbedding was encountered at borehole BH 6-24 at a depth of 4.0 m below the existing ground surface. The bedrock was cored at the locations of borehole BH 6-23 to a depth of 6.2 m. RDQ values indicate that the bedrock consists of good to excellent quality.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at each test hole location.

Based on available geological mapping, the bedrock consists of interbedded sandstone and dolomite of the March Formation and is expected to be encountered at depths ranging from 3 to 5 m.

4.3 Groundwater

Groundwater levels were recorded at each test hole location and presented in Table 1 below. The groundwater level readings are presented in the Soil Profile and Test Data sheets in Appendix 1.

Table 1 – Summa	ry of Groundw	ater Levels		
	Ground	Measured G		
Borehole Number	Surface Elevation (m)	Depth (m)	Elevation (m)	Date Recorded
BH 1-24	99.37	0.25	99.12	
BH 2-24	99.28	Dry	N/A	
BH 3-24*	97.37	1.66	95.71	
BH 4-24	98.52	1.66	96.86	
BH 5-24	97.32	1.87	95.45	September 26, 2024
BH 6-24*	96.86	2.80	94.06	
BH 7-24*	99.30	3.88	95.42	
BH 16-24	97.42	Dry	N/A	
BH 17-24	96.08	Dry	N/A	

Table 1 – Summa	ry of Groundw	ater Levels		
	Ground	Measured G	roundwater Level	
Borehole Number	Surface Elevation (m)	Depth (m)	Elevation (m)	Date Recorded
BH 18A-24	99.73	Dry	N/A	
Note: The ground	surface elevatio	on at each boreho	le location was survey	ed using a handheld

Note: The ground surface elevation at each borehole location was surveyed using a handheld GPS using a geodetic datum.

* - A monitoring well has been installed in these boreholes.

It should be noted that surface water can become trapped within a backfilled borehole that can lead to higher than typical groundwater level observations. It should be noted that groundwater levels are subject to seasonal fluctuations, therefore the groundwater levels could vary at the time of construction.

Long-term groundwater levels can also be estimated based on the observed colour and consistency of the recovered soil samples. Based on these observations, the long-term groundwater table can be expected at approximately elevations from **95.00 to 96.00 m**. The recorded groundwater levels are also provided on the applicable Soil Profile and Test Data sheet presented in Appendix 1.

5.0 Discussion

5.1 Geotechnical Assessment

Based on the available information, it is understood that the proposed development will consist of slab-on-grade commercial buildings. From a geotechnical perspective, the subject site is suitable for the proposed development. It is recommended that the proposed commercial buildings be founded on conventional spread footings bearing on an undisturbed, dense to very dense glacial till deposit or clean surface sounded bedrock.

It is anticipated that the removal of bedrock and/or large boulders will be required for building construction and servicing installation. Therefore, the contractor should be prepared for bedrock removal and the presence of large boulders within the subject site.

Due to the absence of the sensitive silty clay deposit within the subject site, the proposed development will not be subjected to permissible grade raise restrictions.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and any fill containing significant amounts of deleterious or organic materials should be stripped from under any buildings and other settlement sensitive structures.

If encountered, existing foundation walls and other construction debris should be entirely removed from within the building perimeters. Under paved areas, existing construction remnants, such as foundation walls should be excavated to a minimum of 1 m below final grade.

Any soft areas should be removed and backfilled with OPSS Granular B Type II, with a maximum particle size of 50 mm and compacted to 98% of the material's SPMDD.

Fill Placement

Fill placed for grading throughout the building footprint should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. Imported fill material should be tested and approved prior to delivery to the site. The fill should be placed in a maximum 300 mm thick loose lifts and compacted by suitable compaction equipment. Fill placed beneath the building should be compacted to a minimum of 98% of the standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil could be placed as general landscaping fill and beneath exterior parking areas where settlement of the ground surface is of minor concern. These materials should be spread in a maximum of 300 mm thick loose lifts and compacted by the tracks of the spreading equipment to minimize voids. If this material is to be used to build up the subgrade level for areas to be paved, it should be compacted in maximum 300 mm thick loose lifts to at least 98% of the material's SPMDD.

The placement of subgrade material should be reviewed at the time of placement by Paterson personnel. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls, unless used in conjunction with a geocomposite drainage membrane, such as Miradrain G100N or Delta Terraxx.

Fill used for grading beneath the base and subbase layers of paved areas should consist, unless otherwise specified, of clean imported granular fill, such as OPSS Granular A, Granular B Type II or select subgrade material. This material should be tested and approved by Paterson prior to delivery to the site. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the paved areas should be compacted to at least 100% of its SPMDD.

Bedrock/Boulder Removal

Bedrock and/or boulder removal may be required at the subject site and can be accomplished by hoe ramming where the bedrock and/or boulders are weathered, and/or where only small quantities need to be removed. Sound bedrock and/or boulders may be removed by line drilling in conjunction with controlled blasting and/or hoe ramming.

Excavating boulders and bedrock will often lead to over excavation due to the natural aspect of boulders and lamination in the rock. The contractor should be ready to backfill and compact over excavated areas with engineered fill or lean concrete. Paterson should review field conditions as they arise on site.

Prior to considering blasting operations, the blasting effects on the existing services, buildings, and other structures should be addressed. A pre-blast or preconstruction survey of the existing structures located in the proximity of the blasting operations should be carried out prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries or claims related to the blasting operations.

As a general guideline, peak particle velocities (measured at the structures) should not exceed 50 mm/s during the blasting program to reduce the risks of damage to the existing structures. The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

Excavation side slopes in sound bedrock can be carried out using near vertical sidewalls. A minimum 1 m horizontal ledge should be left between the bottom of the overburden excavation and the top of the bedrock surface to provide an area to allow for potential sloughing of the overburden. The 1 m horizontal ledge setback can be eliminated with a shoring program which has drilled piles extending below the proposed founding elevation.

Vibration Considerations

Construction operations are also the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels should be incorporated in the construction operations to maintain, as much as possible, a cooperative environment with the residents.

The following construction equipment could be a source of vibrations: piling rig, hoe ram, compactor, dozer, crane, truck traffic, etc. Vibrations, whether caused by blasting operations or by construction operations, could be the cause of the source of detrimental vibrations on the nearby buildings and structures. Therefore, it is recommended that all vibrations be limited.

Two parameters are used to determine the permissible vibrations, namely, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz).

In addition, it should be noted that the guidelines are for current construction standards. Considering that these guidelines are above perceptible human level and, in some cases, could be very disturbing to some people, a pre-construction survey is recommended to be completed to minimize the risks of claims during or following the construction of the proposed buildings.

5.3 Foundation Design

Bearing Resistance Value (Conventional Shallow Foundation)

Clean Surface Sounded Bedrock

Footings supported directly on clean, surface-sounded bedrock can be designed using a factored bearing resistance value at ultimate limit states (ULS) of **3,000 kPa**. A geotechnical resistance factor of 0.5 was applied to the bearing resistance value at ULS.

A clean, surface-sounded bedrock bearing surface should be free of loose materials, and have no near surface seams, voids, fissures or open joints which can be detected from surface sounding with a rock hammer.

Soil Bearing Surface

Footings placed on an undisturbed, dense to very dense glacial till can be designed using a bearing resistance value at serviceability limit states (SLS) of **200 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **325 kPa**.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of the concrete for the footings. The bearing resistance value at SLS will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively.

Settlement

Footings bearing on an undisturbed soil or an acceptable weathered bedrock bearing surface or an approved engineered fill and designed for the bearing resistance values at SLS provided herein will be subjected to potential postconstruction total and differential settlements of 25 and 20 mm, respectively.

Footings bearing on an acceptable bedrock bearing surface and designed for the bearing resistance values provided herein will be subjected to negligible potential post-construction total and differential settlements.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels.

Adequate lateral support is provided to an undisturbed glacial till or a weathered bedrock bearing surface when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil or weathered bedrock or a material of the same or higher capacity as the in situ soil or weathered bedrock.

Adequate lateral support is provided to a sound bedrock bearing medium when a plane extending horizontally and vertically from the footing perimeter at a minimum of 1H:6V (or shallower) passes through sound bedrock or a material of the same or higher capacity as the bedrock, such as concrete.

Bedrock/Soil Transition

Where a footing is founded partly on bedrock and partly on soil, it is recommended to decrease the soil bearing resistance value by 25% for the portion placed on a soil bearing medium to reduce the potential long-term total and differential settlements.

Also, at the soil/bedrock transitions, it is recommended that a minimum depth of 500 mm of bedrock be removed from below the founding elevation for a minimum length of 2 m on the bedrock side. This area should be subsequently reinstated with an engineered fill, such as OPSS Granular A or Granular B Type II and compacted to a minimum of 98% of the material SPMDD.

The width of the sub-excavation should be a minimum of 500 mm greater than the width of the footing. Steel reinforcement, extending a minimum of 3 m on both sides of the 2 m long transition, should be placed in the top portions of the footing and foundation walls.

5.4 Design for Earthquakes

Shear wave velocity testing was completed for the subject site to determine the applicable seismic site classification for the proposed building in accordance with Table 4.1.8.4.A of the Ontario Building Code 2012.

The shear wave velocity testing was completed by Paterson personnel. The results of the shear wave velocity test are provided in Figures 2 and 3 in Appendix 2 of the present report.

Field Program

The seismic array was located within the proposed building footprint, as presented in Drawing PG7262-2 - Test Hole Location Plan attached to the present report. Paterson field personnel placed 24 horizontal 4.5 Hz geophones mounted to the surface by means of two 75 mm ground spike attached to the geophone land case. The geophones were spaced at 2 m intervals and were connected by a geophone spread cable to a Geode 24 Channel seismograph.

The seismograph was also connected to a laptop computer and a hammer trigger switch attached to a 12 pound dead blow hammer. The hammer trigger switch sends a start signal to the seismograph. The hammer is used to strike an I-Beam seated into the ground surface, which creates a polarized shear wave. The hammer shots are repeated between four (4) to eight (8) times at each shot location to improve signal to noise ratio.

The shot locations are also completed in forward and reverse directions (i.e.striking both sides of the I-Beam seated parallel to the geophone array). The shot locations were 10.0, 3.0 and 2.0 m away from the first geophone and last geophone, and at the centre of the geophone array.

Data Processing and Interpretation

Interpretation of the shear wave velocity results was completed by Paterson personnel. Shear wave velocity measurement was made using reflection/refraction methods. The interpretation is performed by recovering arrival times from direct, reflected and refracted waves. The interpretation is repeated at each shot location to provide an average shear wave velocity, Vs_{30} , of the upper 30 m profile immediately below the proposed building foundation. The layer intercept times, velocities from different layers and critical distances are interpreted from the shear wave records to compute the bedrock depth at each location.

The bedrock velocity was interpreted using the main refractor wave velocity, which is considered a conservative estimate of the bedrock velocity due to the increasing quality of the bedrock with depth. It should be noted that as bedrock quality increases, the bedrock shear wave velocity also increases. Based on our testing results, the average overburden shear wave velocity is **638 m/s**, while the bedrock shear wave velocity is **2,794 m/s**. Further, the testing results indicate the average overburden thickness to be approximately 7 m.

For slab-on-grade construction, the Vs_{30} was calculated using the standard equation for average shear wave velocity calculation from the Ontario Building Code (OBC) 2012 and as presented below.

$$V_{s30} = \frac{Depth_{of interest}(m)}{\left(\frac{Depth_{Layer1}(m)}{V_{s_{Layer1}}(m/s)} + \frac{Depth_{Layer2}(m)}{V_{s_{Layer2}}(m/s)}\right)}$$
$$V_{s30=} \frac{30 m}{\left(\frac{7 m}{638 m/s} + \frac{23 m}{2,794 m/s}\right)}$$

 $V_{s30=}$ 1,562 m/s

Based on the results of the seismic testing, the average shear wave velocity Vs_{30} , for the proposed buildings in the commercial development is **1,562 m/s**. It should be noted that even though the calculated Vs_{30} corresponds to a Site Class A, as the foundation elevation is expected to be located more than 3 m from the bedrock surface, a Site Class A is not applicable. Therefore, a **Site Class C** is applicable for the design of the proposed commercial development as per Table 4.1.8.4.A of the OBC 2012.

The soils underlying the subject site are not susceptible to liquefaction.

5.5 Slab on Grade Construction

With the removal of all topsoil and fill, containing significant amounts of deleterious or organic materials, the native soil and/or approved fill is considered to be an acceptable subgrade surface on which to commence backfilling for floor slab construction.

For structures with slab-on-grade construction, it is recommended that the upper 200 mm of sub-slab fill consist of OPSS Granular A crushed stone compacted to a minimum of 98% of the materials SPMDD.

All backfill material within the footprint of the proposed buildings should be placed in a maximum 300 mm thick loose layers and compacted to a minimum of 98% of the material's SPMDD.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab.

5.6 Pavement Design

For design purposes, the following pavement structures, presented below, are recommended for the design of car only parking areas, heavy truck parking areas, and access at the subject site.

Table 2 - Recommended Pavement Structure - Car-Only Parking Areas									
Thickness (mm)	Material Description								
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete								
150	BASE - OPSS Granular A Crushed Stone								
300	SUBBASE - OPSS Granular B Type II								
SUBGRADE - Either in situ soil, fill or OPSS Granular B Type I or II material placed over in situ soil.									

Thickness (mm)	Material Description
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
450	SUBBASE - OPSS Granular B Type II

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. Weak subgrade conditions may be experienced over service trench fill materials. This may require the use of a geotextile, such as Terratrack 200 or equivalent, thicker subbase or other measures that can be recommended at the time of construction as part of the field observation program.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable compaction equipment.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage

For slab on grade projects, the use of a perimeter foundation drain is optional, but highly recommended to mitigate frost heave and movement of the backfill material around the foundations and especially near access doors. The system should consist of a 100 mm to 150 mm diameter perforated and corrugated plastic pipe, surrounded on all sides by 150 mm of 19 mm clear crushed stone, which is placed at the footing level or at a minimum 0.6 m below the concrete sidewalks around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Foundation Backfill

If the proposed buildings include below-grade space, backfill against the exterior sides of the foundation walls should consist of free-draining, non-frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geo-composite board, such as Delta Terraxx, MiraDrain G100N or equivalent, connected to the perimeter foundation drainage system.

If the proposed buildings do not include below-grade space, then backfill against the exterior sides of the foundation wall may consist of on-site excavated fill, provided it is maintained in an unfrozen state and at a suitable moisture content for compaction. Imported granular materials, such as clean sand or OPSS Granular B Type II granular material, should otherwise be used for this purpose.

6.2 **Protection of Footings Against Frost Action**

Perimeter footings of heated structures are recommended to be insulated against the deleterious effects of frost action. A minimum 1.5 m thick soil cover, or an equivalent combination of soil cover and foundation insulation, should be provided in this regard.

Exterior unheated footings, such as isolated piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure, and require additional protection, such as soil cover of 2.1 m, or an equivalent combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

Temporary Side Slopes

The temporary excavation side slopes anticipated should either be excavated to acceptable slopes or retained by shoring systems from the beginning of the excavation until the structure is backfilled. For the proposed development, it is expected that sufficient room will be available for the greater part of the excavation to be undertake by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsurface soil is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should maintain safe working distance from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

Excavation below the bedrock should be benched a minimum of 450 mm from the overburden if opened over an extended period and can be completed near vertical.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent material specifications and standard detail drawings from the department of public works and services, infrastructure services branch of the City of Ottawa.

A minimum of 150 mm of OPSS Granular A should be placed for bedding for sewer or water pipes when placed on a soil subgrade. If the bedding is placed on bedrock, the thickness of the bedding should be increased to 300 mm. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to a minimum of 300 mm above the obvert of the pipe, should consist of OPSS Granular A (concrete or PSM PVC pipes) or sand (concrete pipe). The bedding and cover materials should be placed in maximum 225 mm thick lifts and compacted to 98% of the SPMDD.

It should generally be possible to re-use the moist (not wet) site-generated fill above the cover material if the excavation and filling operations are carried out in dry weather conditions. All cobbles larger than 200 mm in their longest direction should be segregated from re-use as trench backfill.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD. All cobbles larger than 200 mm in their longest direction should be segregated from re-use as trench backfill.

6.5 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Groundwater Control for Building Construction

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project. The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (GU – General Use cement) would be appropriate for this site. The chloride content and pH of the samples indicate that they are not a significant factor in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a non-aggressive to very aggressive corrosive environment.

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that a material testing and observation program be performed by the geotechnical consultant. The following aspects of the program should be performed by Paterson:

- □ Review of the final design grading and servicing details from a geotechnical perspective.
- **Q** Review and inspection of the installation of the foundation drainage systems.
- □ Observation of all bearing surfaces prior to the placement of concrete.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- □ Field density tests to determine the level of compaction achieved.
- □ Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory inspection program by the geotechnical consultant.

All excess soil must be handled as per *Ontario Regulation 406/19: On-Site and Excess Soil Management*.

8.0 Statement of Limitations

The recommendations provided in this report are in accordance with the present understanding of the project. Paterson requests permission to review the recommendations when the drawings and specifications are completed.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine the suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Bank & Dun Developments Inc., or their agents, is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Paterson Group Inc.

Yashar Ziaeimehr, M.A.Sc., EIT

Joey R. Villeneuve, P.Eng., ing., M.A.Sc.

Report Distribution:

- Bank & Dun Developments Inc. (Email Copy)
- Paterson Group (1 Copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS SYMBOLS AND TERMS HISTORICAL SOIL PROFILE AND TEST DATA SHEETS ROCK CORE PHOTOGRAPHS ANALYTICAL TESTING RESULTS

PATERSON GROUP

P:/Autocad Drawings/Test Hole Data Files/PG72xx/PG7262/data.sqlite 2024-10-02, 10:34 Paterson_Template MR

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 376	6245.1	0				NORTHIN	G : 50	1932	9.13			E	LEVA	TION	: 99.37			
PROJECT: Proposed Residential and Commercia	al Deve	lopme	nts									FIL	E NO	.:	PG72	262		
BORINGS BY: CME-55 Low Clearance Drill REMARKS:						DATE: 0	ontom	hor 1	າງ	124		нс	DLE NO	0. :	BH 1	-24		
REMARNS.			DATE: September 12, 2024 HOLE NO. : BH 1 SAMPLE PEN. RESIST. (BLOWS/0.3m)															
					S	AMPLE				D	CPT (50mn	n DIA. C	CONE)				
	-		c	5	(%		LEN 1	~ [<u>20</u> חווע	4(ED SU		60 STDEN		80 Cur (kP	2)	NO	Ê
SAMPLE DESCRIPTION	strata plot	Ê	TYPE AND NO		RECOVERY (%)	N, Nc OR RQD	CONTENT 6)						RENGT			aj	PIEZOMETER CONSTRUCTION	ELEVATION (m)
	ATA	DEPTH (m)	A A A	Č	OVE	c OR	WATER C (%)		<u>2</u> ۹۲ (۱۹	20	4		60 NTENT		80 LL (%	、 、	SOME	VATIO
GROUND SURFACE	STR	Б	Ž	=	REC	z z	MAI		- H	20	4	- (80	,	PIEZ	
FILL: Crushed stone 0.10m [99.27m]		0 _	X	-						-		-				0	.2 m 💆 202	 24-09-26
FILL: Loose, silty sand, trace clay and gravel		-	X	AU 1			21.93			0								99-
0.69m [98.68m] /		-								-			· · ·		-			
GLACIAL TILL: Dense to very dense silty sand, with	~ ~ ~ ~ ~	1_	X	SS 2	79	31-9-24-34	25.0			0								-
gravel, cobbles and boulders, trace clay	~ ~ ~ ~ · ~ ~ ~ ~ ~	-	\square			33				-					-			98-
- Clay content decreasing with depth	~ ~ ~ ~ ~ ~ ~ ~	-	\bigtriangledown	e				_										-
		2-	Ň	SS	33	23-50-/-/ 50/0.08	6.92	0		: :								-
	~ ~ ~ ~ <u>`</u>	-		SS 4	71	50-/-/-/	7.39	0		-			· · ·		-			97
End of Borehole		-				50/0.13				-	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		
Practical refusal to augering at 2.31 m depth		3-								- - - 						· · ·		
Traducal relusar to adgeing at 2.51 m depth										-			· · ·		-			
(GWL at 0.25 m - September 26, 2024)																		96
										-					-	:		
		4-								(* * * * * * - -	· · · · · · · · · · · · · · · · · · ·			•••••	· · · · · [· · · · · ·	(****** * *		-
										-	· · · · · · ·					· · ·		95-
										-					-			
		5_												•••••				-
										-								94
										-								-
		6-								-			· · · · · · · · · · · ·					
		-								-	· · ·				-			93-
		7_								-								-
										-					-			
										- 						: 		92-
										-	· · ·				-			
		8-									· · · · · · · · · · · · · · · · · · ·					: 		
										- - 			- - -			: : : :		91-
										-								-
		9_												· · · · .		: :		
										-					-			90-
										· · · · · ·	· · · · · · · · · · · · · · · · · · ·			•••••	· · · · · · · · · · · · · · · · · · ·	****** * *		=
		10 -													-	:		
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE)ULD BE	
READ IN CONJUNCTION WITH ITS COORESPONDING REF	ύκτ. Ρ	ALERS	UN G	iKOl	JH IS	S NUT RESP	UNSIB	LE FC	DR TH	IE UN	IAUTH	URIZ	ED USI	E OF 1	HIS DA	IA.	PAGE:	1/1

PATERSON GROUP

Geotechnical Investigation

PROJECT: Proposed Residential and Commercia BORINGS BY: CME-55 Low Clearance Drill									FILE NO. :	PG7262	
REMARKS:			_			DATE: S	epteml	ber 12, 2024	HOLE NO. :	BH 2-24	
						SAMPLE			. RESIST. (BLOWS/0 PT (50mm DIA. CON		
SAMPLE DESCRIPTION	STRATA PLOT	l (m)	TYPE AND NO.		RECOVERY (%)	N, N¢ OR RQD	WATER CONTENT (%)		40 60 D SHEAR STRENGT HEAR STRENGTH, 0 40 60		PIEZOMETER CONSTRUCTION
GROUND SURFACE	STRAT	DEPTH (m)	ТУРЕ		RECO/	N, NC C	WATEF		ATER CONTENT (%		PIEZOI
ILL: Gravel and crushed stone 0.10m [99.18m],		0 -	X	AU 1			4.6	0	40 00	00	
0.69m [98.59m]/ GLACIAL TILL: Compact to very dense, brown silty		- - 1-	X	SS 2	79	3-8-18-41	21.11	O			
and, with gravel, cobbles and boulders, trace clay	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	\square	SS 3	94	26 12-40-50-/	7.12	0			
Clay content decreasing with depth 2.44m [96.84m]	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2	\square	SS 4 St	91	90/0.13	7.12	0			
ind of Borehole	<u> </u>	-		S	91	26-50-/-/ 50/0.13	1.17				
Practical refusal to augering at 2.44 m depth		3-									
Borehole dry - September 26, 2024)		4-									
		-									
		5-									
		-									
		6							· · · · · · · · · · · · · · · · · · ·		
		7-									
		-						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
		8-									
		9									
		- - 10 -									

PATERSON GROUP

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9	EASTING: 376						NORTHIN	G : 50	19379.03		EL	EVATIO	1: 97.37	
PROJECT: Proposed Residential BORINGS BY: CME-55 Low Clearar		al Deve	lopme	ents							FILE	E NO. :	PG7262	
REMARKS:							DATE: S	eptem	iber 12, 2024	Ļ	HOL	E NO. :	BH 3-24	
						S,	AMPLE		• •			BLOWS/0.3		
								T	20		50mm 10	DIA. CONE 60	=) 80	
SAMPLE DESCRIPTION		ГОТ	_		IYPE AND NO.	(%) X	Rap	WATER CONTENT (%)				TRENGTH ENGTH, Ci	l, Cur (kPa) ı (kPa)	MONITORING WELL CONSTRUCTION
		STRATA PLOT	DEPTH (m)		AN	RECOVERY (%)	N, Nc OR RQD	ER C (%)	20	4	0	60	80	STRU
	GROUND SURFACE	STR	DEP.		171	REC	ž ž	WAT	PL (%)			ITENT (%) 60	LL (%)	MON
FILL: Crushed stone	، / 0.08m [97.29m]		0 -	X	-									
FILL: Loose, brown silty sand, with gr	avel		-	X	AU 1			5.95	0		· · · · · ·			88
GLACIAL TILL: Compact to very dens	0.69m [96.68m] /		_							-	· · ·			88
sand to sandy silt, some gravel, trace	•	[[]] [] [] []] [] []] [] []] [] []] [] []] [] []] [] [] []] [] []] [] [] [] []] [] [] [] []] [] [] [] []] [] [] [] [] [] [] []] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []] [1		SS 2	83	3-5-6-15 11	13.5	0					88
, , <u>,</u>	2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	Ħ							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		.7 m 🔽 2024
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	X	SS 3	92	8-24-29-41	14.91	0	-	· · ·			- 2024
		V V V V V V V V V V V V	2-				53							
	2.67m [94.70m]	~ ~ ~ ~ ~	-	\mathbb{X}	SS 4	71	26-50-/-/	11.58	o		· · · · · · · · · · · · · · · · · · ·			
End of Borehole				F			50/0.03			-	· · ·			
	a al a un the		3-									· · · · · · · · · · · · · · · · · · ·		
Practical refusal to augering at 2.67 n	n depth		-								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
GWL at 1.66 m - September 26, 2024	4)		4-											
			4-											
			-								· · · · · · · · · · · · · · · · · · ·			
			5-								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
			-											
			-											
			6-											
			-							-	· · ·			
			-								· · · · · · · ·			
			7-								· · · · ·	· · · · · · · · · · · · · · · · · · ·		
			-							-				
			-											
			8-								· · · · ·			
			-								· · ·			
			-											
			9-											
			-							-	· · ·			
			-										· · · · · · · · · · · · · · · · · · ·	
			10 -	1						-				

PATERSON GROUP

Geotechnical Investigation

PROJECT: Proposed Residential and Commercia BORINGS BY: CME-55 Low Clearance Drill	IDeve	iopme	rits							FIL	E NO. :	PG72	62		
REMARKS:						DATE: S	epteml	ber 12, 2024		но					
					S	AMPLE					BLOWS/0. DIA. CON				
	_						ENT	20	4	40 60 80				N	
SAMPLE DESCRIPTION	strata plot	(E			RECOVERY (%)	N, Nc OR RQD	WATER CONTENT (%)	A PEAI				HEAR STRENGTH, Cur (kPa) AR STRENGTH, Cu (kPa)			
	RATA	DEPTH (m)		4 U L	COV	Nc O	ATER (PL (%)		R CO	60 NTENT (%)	80 LL (%)		PIEZOMETER CONSTRUCTION	
GROUND SURFACE	<u>~~~</u>	<u> </u>	2	-	R	ź	Ž	20	4	0	60	80	_	≣ ö	_
ILL: Crushed stone		-	X	AU 1			4.86	0		: :					
TLL: Loose brown silty sand, with gravel		-	X	◄											
<u>0.69m [97.83m]/</u> SLACIAL TILL: Compact, brown silty sand to sandy	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	 	∇	2	00	E E 7 40	00.40								3
ilt, with gravel, cobbles and boulders, trace clay	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- -	Ŵ	SS 2	63	5-5-7-13 12	20.13	0							
-	$\nabla \nabla \nabla \nabla$	-		SS 3	0	50-/-/-/						· · · · · · · · · · · · · · · · · · ·		7	124
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-				50/0.05				: :					-
2.18m [96.34m]	~ ~ ~ ~ ~	2	\times	SS 4	100		7.54	0		· · · · · · · · · · · · · · · · · · ·					
End of Borehole		-				50/0.08									
Practical refusal to supering at 2.10 m donth		-													
Practical refusal to augering at 2.18 m depth		3_													
GWL at 1.66 m - September 26, 2024)		-								-					
										· · · · · · · · · · · · · · · · · · ·			•••••		
		4-													
		-								: :					
		-										· · · · · · · · · · · · · · · · · · ·	:		
													:		
		5													
		-													
		-													
		6-													
		7-													
										:					
													·····		
										: :					
		8						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
		-						·····					: 		
		-								-					
		9_											:		
		-								: :					
		-										· · · · · · · · · · · · · · · · · · ·	·····		
		10 -	1					: :		. :			:		

PATERSON GROUP

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 PROJECT: Proposed Residentia	EASTING: 3762			nts		NORTHIN		-			
BORINGS BY: CME-55 Low Clearar		2010	Spinol	10					FILE NO. :	PG7262	
REMARKS:						DATE: S	eptem	ber 12, 2024	HOLE NO. :	BH 5-24	
					; ;	SAMPLE	1		SIST. (BLOWS/0.3 50mm DIA. CONE		
SAMPLE DESCRIPTION		strata plot	(m)	type and no.	RECOVERY (%)	N, Nc OR RQD	WATER CONTENT (%)	△ REMOULDED SH ▲ PEAK SHEA	0 60 IEAR STRENGTH R STRENGTH, Cu 0 60		PIEZOMETER CONSTRUCTION
		TRAT	DEPTH (m)	/PE /		Nc O	ATER)		R CONTENT (%)	LL (%)	EZON
		່ ດ		X			3	20 4	0 60	80	
Loose, brown SILTY SAND, trace gra				X	AU 1		9.62	Ō			
GLACIAL TILL: Very dense, brown sil	ty sand, with 🖓		1 1 1 1	X ž	2 91		8.36	o			
cobbles and boulders, trace gravel	v v	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-			50/0.13					
	~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		\mathbb{X}_{2}	20 89	29-50-/-/ 50/0.08	7.91	0			1.9 m 202
	v . V	,	2	_	_						
End of Borehole		~ ~ ~ ~ / ~ ~ ~ ~		\mathbb{Z}_{2}^{2}	75	46-50-/-/ 50/0.05	7.88	0			
			3-								
Practical refusal to augering at 2.51 n	n depth										
GWL at 1.87 m - September 26, 202	4)									· · · · · · · · · · · · · · · · · · ·	
			4							· · · · · · · · · · · · · · · · · · ·	
			5							· · · · · · · · · · · · · · · · · · ·	
			6							· · · · · · · · · · · · · · · · · · ·	
										· · · · · · · · · · · · · · · · · · ·	
			7-								
			8-								
			9_								
								· · · · · · · · · · · · · · · · · · ·			
			10 -								

PATERSON GROUP

Geotechnical Investigation

4828 Bank Street, Ottawa, Ontario

COORD. SYS.: MTM ZONE 9 EASTING: 376	6201.4	6			NORTHIN	G : 50	19413.96		ELEVATIO	DN: 96.86		
PROJECT: Proposed Residential and Commercia BORINGS BY: CME-55 Low Clearance Drill	al Deve	lopme	nts						FILE NO. :	PG7262		
REMARKS:					DATE: S	eptem	ber 13, 2024		HOLE NO.	: BH 6-24		
					SAMPLE			DCPT (5	SIST. (BLOWS/ 50mm DIA. CO	NE)	-	
	F		ö	()		TENT		4(סבר פע		80		-
SAMPLE DESCRIPTION	strata plot	(m)	type and no.	RECOVERY (%)	N, Nc OR RQD	WATER CONTENT (%)	△ REMOULDED SHE ▲ PEAK SHEAR 20 40		R STRENGTH,	MONITORING WELL CONSTRUCTION		
	TRAT	DEPTH (m)	ΥPE		NC 0	ATE	PL (%)		R CONTENT (%			
GROUND SURFACE	ى: ا	<u> </u>	Ѓн	2	z	3	20	40	60	80	≥õ ⊡	i
TOPSOIL and organics 0.28m [96.58m] Loose, brown SILTY SAND, some clay 0.69m [96.17m]		-	A 🔆			23.24	o					-
GLACIAL TILL: Very dense, brown silty sand, occasional gravel, cobbles and boulders		1	SS 2	92	24-30-45-50 75	8.8	0				96	;
- Boulders between 1.8 m to 3.0 m depth	7	2-	ss 3	80	23-50-/-/ 50/0.1	9.86	0				95	;
- Coring was completed through out boulders			RC 1	19								-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3-									2.8 m ▼ 2024-09-2 94	6 -
3_96m [92_90m]	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		RC 2	100) RQD 100						93	
BEDROCK: good to excellent quality, interbedded grey sandstone and dolomite		4	RC 3 R(-
		5-									92	
		-	RC 4	100	RQD 100						91	- - - 1-
6.15m [90.71m] End of Borehole		6-										-
		=								· · · · · · · · · · · · · · · · · · ·		-
(GWL at 2.80 m - September 26, 2024)		7-									90)
		-								· · · · · · · · · · · · · · · · · · ·		-
											89	- -
		8										-
												-
		9-									88	;
		-										-
		10 -						<u> </u>	· · ·		87	<u></u>
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE READ IN CONJUNCTION WITH ITS COORESPONDING REF											OULD BE PAGE: 1/1	

P:/Autocad Drawings/Test Hole Data Files/PG72xx/PG7262/data.sqlite 2024-10-02, 10:34 Paterson_Template MR

PATERSON GROUP

P:/Autocad Drawings/Test Hole Data Files/PG72xx/PG7262/data.sqlite 2024-10-02, 10:34 Paterson_Template MR

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 37	EASTING: 376274.95 NORTHING: 501931								ELEVATIO	DN: 99.30		
PROJECT: Proposed Residential and Commercia	al Deve	lopme	nts						FILE NO. :	PG7262		
BORINGS BY: CME-55 Low Clearance Drill					DATE 0		40.0004			BH 7-24		
REMARKS:						eptem	ber 13, 2024					
				S	AMPLE				SIST. (BLOWS/0 50mm DIA. COI			
			Ġ			ENT	20	4		80		Ē
SAMPLE DESCRIPTION	strata plot	Ê	type and no.	RECOVERY (%)	RQD	WATER CONTENT (%)			EAR STRENGT R STRENGTH,		MONITORING WELL CONSTRUCTION	ELEVATION (m)
		DEPTH (m)	Ш Ч Ч	OVE	N, NC OR RQD	ER C (%)	20 40			STR	VATIC	
GROUND SURFACE	STR	DEP	TΥΡΙ	REC	ž ž	WAT	PL (%)	4	R CONTENT (%	6) LL (%) 80		ELE
FILL: Crushed stone		0 _	<u> </u>									99
0.61m [98.69m]		-	¥X			7.74	0			·····		99-
FILL: Loose, brown silty sand, with gravel and		-	Ħ									-
crushed stone, trace clay 0.69m [98.61m]		1-	SS 2	92	7-18-20-21	7.26	0		· · · · · · · · · · · · · · · · · · ·			-
GLACIAL TILL: Dense, brown silty sand, with gravel,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	=	\square		38							98-
cobbles and boulders		-	<u>м</u>						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
- Broken rock fragments at 1.93 m depth	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2-	\mathbb{X}	42	16-50-/-/ 50/0.13	7.59	0			· · · · · · · · · · · · · · · · · · ·		-
			4	0	50-/-/-/							97 —
		-	SS X		50/0.1							-
- Boulders and dense silty sand below 2.69 m depth	~ ~ ~ ~ ~		5RC 1	61								-
- Coring was completed through out boulders	V V V V V V V V V V V V	3-	SS 5F	50	50-/-/-/ 50/0.05			•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·			-
- Coning was completed through out boulders		-	0		50/0.05				· · · · · · · · · · · · · · · · · · ·			96 —
		=	RC 2	40							3.9 m 2024	
	~ ~ ~ ~ ~ ~ ~ ~	4_	Ř									- 09-20 - -
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	=	s_{s}^{s}	57	24-50-/-/	10.12	o					95 -
		-	RC 3 S	42	50/0.03				· · · · · · · · · · · · · · · · · · ·			-
		5-	<u> </u>									-
	~ ~ ~ ~ ~ ~ ~ ~	-	4								*2.4 *2.4	94 —
		-	RC 4	31						······································		-
5.89m [93.41m]	<u> </u>							· · ·				-
End of Borehole		6-							· · · · · · · · · · · · · · · · · · ·			-
(GWL at 3.88 m - September 26, 2024)		=								· · · · · · · · · · · · · · · · · · ·		93-
(GWL at 5.00 m - September 20, 2024)		=										-
		7_					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · ·		-
		=										92-
		=										-
		8-										-
		=						· · ·				91-
		=						•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·			-
		9-										-
		9										90 —
												- 08
		10 -										-
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE READ IN CONJUNCTION WITH ITS COORESPONDING REF											PAGE: 1	1/1

PATERSON GROUP

P:/Autocad Drawings/Test Hole Data Files/PG72xx/PG7262/data.sqlite 2024-10-02, 10:34 Paterson_Template MR

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTIN	ASTING: 376195.45 NORTHING: 5019280.99									ELEVATION: 100.52						
PROJECT: Proposed Residential and Con	mmercial Deve	elopme	ents							FILE	NO. :	PG72	62			
BORINGS BY: CME-55 Low Clearance Drill REMARKS:		DATE: S	ber 16, 2024			HOLI	E NO. :	BH 8-2	24							
				s	SAMPLE PEN. RESIST. (BL											
						Ĭ		20	DCPT (5 40		60	=) 80				
SAMPLE DESCRIPTION	PLOT	_	TYPE AND NO.	TYPE AND NO RECOVERY (%)	go	WATER CONTENT (%)			.DED SHE K SHEAR			l, Cur (kPa) ı (kPa))	MONITORING WELL CONSTRUCTION	(m) N	
	ATA F	DEPTH (m)	ANI	OVER	N, Nc OR RQD	ER C (%)		20	40		60	80		STRU	ELEVATION (m)	
GROUND S	URFACE VIEW	DEP.	ΤΥΡΕ	REC	N, N	WAT	P	L (%)	40	— 0 —	60	LL (%)		MON	ELE	
FILL Owner and analyse	00.42m]/	0 -	A N			2.61	0								-	
FILL: Loose to very loose silty sand, trace grave		-	AU 2 /			3.02	0							18	100-	
GLACIAL TILL: Very dense, brown silty sand, v	99.83m]/ 🔍 🗸 🗸	- - -												18	-	
gravel, cobbles and boulders			X S	79	15-25-35-40 60	8.95	0							18	-	
			SS 4	73	16-50-/-/	7.82	0								99-	
		2-	-	24	50/0.13	1.02									-	
- Trace clay between 2.3 m to 2.6 m depth			5 RC		40 50 / /	40.05		-		-					99	
			Xs	82	13-50-/-/ 50/0.13	12.25	0	,				· · · · · · · · · · · · · · · · · · ·			98-	
- Coring was completed through out boulders		3-													-	
		-	SS 6	82	10-21-25-50	9.38	0	-		-					97-	
	~ ~ ~ ~ ~ ~ ~				46/0.1								2	4 4	97—	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4-	RC 2	23											-	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~														-	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		-					-							96-	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5-	RC 3	49				••••		••••					-	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		X X	49									5.4	m 2024	4-09-26 <u>-</u> 95 —	
															-	
End of Borehole	94.50m] v v v	6-											····· <u>8</u>		-	
															94 -	
(GWL at 5.38 m - September 26, 2024)										-					-	
												· · · · · · · · · · · · · · · · · · ·			-	
		-					: 			· · · · · .					93-	
		8-										· · · · · · · · · · · · · · · · · · ·			-	
								-		-					-	
		-													92-	
		9-													-	
								-		-					-	
		-											•••••		91-	
		10 -													-	
DISCLAIMER: THE DATA PRESENTED IN THIS LOO READ IN CONJUNCTION WITH ITS COORESPOND													Α.			
														PAGE:	1/1	

PATERSON GROUP

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 376	6167.8	1			NORTHIN	I G: 50	19263	9263.12 E				ELEVATION: 101.15					
PROJECT: Proposed Residential and Commercia	al Deve	lopme	ents							FIL	E NO. :	PG7	262				
BORINGS BY: CME-55 Low Clearance Drill REMARKS:	DATE: Septen							her 16 2024			LE NO. :						
					AMPLE	optom					BLOWS/0.			-			
				3		L			DCPT (5	50mm	DIA. CON	E)					
			ġ	(%		TEN		20 FMOUI		40				NO	Ê		
SAMPLE DESCRIPTION	strata plot	Ê	TYPE AND NO.	RY (k RQI	CON (9	▲ .	PEAI	K SHEAF	R STR	RENGTH, C	u (kPa)	-,	PIEZOMETER CONSTRUCTION	ELEVATION (m)		
	SATA	DEPTH (m)	Щ Р Д	RECOVERY (%)	N, Nc OR RQD	WATER CONTENT (%)	F	20 PL (%)	40 WATE		60 NTENT (%	80) LL (%	5)	ZOM	EVAT		
GROUND SURFACE	STF	DEI	Σ	RE	ž	M		20	4(—с	60	80	•)				
FILL: Crushed stone and gravel	×	0 -	- X					-							101-		
FILL: Loose, brown silty sand, trace gravel		=	¥ ₩			9.85	0						· · · · · · · ·				
0.69m [100.46m]/		-	\sim					-									
GLACIAL TILL: Very dense, brown silty sand, trace gravel		1	X S	100	12-31-50-/ 81/0.13	8.12	0.								100-		
-		-	m												-		
1.68m [99.47m] End of Borehole	<u> </u>	-	SS	71	29-50-/-/ 50/0.03	7.83	0	-							-		
		2_													99-		
Practical Refusal to auger at 1.68 m depth		=						-							99		
		-										· · · · · · · · · · · · · · · · · · ·					
		3-															
		-						-							98-		
		=															
		-						-									
		4-													97-		
		-											· · · · · · · · · ·				
		-						-									
		5-								•••••			· · · · · · ·		96		
		=															
		6-															
		=						-							95-		
		-						· · · · .			•••••						
		7-															
		-						-							94		
		=															
								-									
		8-							· · · · · · · · · · · · · · · · · · ·						93-		
		-															
		-						-									
		9-													92-		
		=						-		-							
		-									• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·					
		10 -											:	L			
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE READ IN CONJUNCTION WITH ITS COORESPONDING REF														JULD BE			
	UNI. P				UNUT INEOF			< 11E (0 03E 0I	THIS DP	<u>ил</u> .	PAGE:	1/1		

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 376	ASTING: 376167.81 NORTHING: 50								ELEVATION: 101.15					
PROJECT: Proposed Residential and Commercia	l Deve	lopme	nts						FILE NO. :	PG7262				
BORINGS BY: CME-55 Low Clearance Drill								-						
REMARKS:					DATE:	Septeml	ber 16, 2024			BH 9A-2	4			
				SA	MPLE				ST. (BLOWS/					
						F	20	40 DCPT	0mm DIA. COI 60	NE) 80				
SAMPLE DESCRIPTION	Б		Ň	(%)	e	WATER CONTENT (%)		DED SHE	AR STRENG	ſH, Cur (kPa)	PIEZOMETER CONSTRUCTION	<u>ا</u>		
	strata plot	<u>ا</u>	type and no.	RECOVERY (%)	R RG	col (%)			STRENGTH,	SUC:	ELEVATION (m)			
	SATP	DEPTH (m)	Ř	20	N, Nc OR RQD	TER (20 PL (%)	40 WATER	60 R CONTENT (%	80 6) LL (%)		EVAT		
GROUND SURFACE	STI	B	Σ	Ш Ш	ž	M	20	40	60	80	분양			
FILL: Crushed stone		0 _										101-		
FILL: Loose, brown silty sand, trace gravel		-												
0.69m [100.46m]/									· · ·	· · · ·		-		
GLACIAL TILL: Very dense, brown silty sand, trace	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1-										-		
gravel		-										100-		
1.55m [99.60m]	~ ~ ~ ~	-					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		-		
End of Borehole												-		
Drastical Datural to surger at 1 FF m death		2-						•••••••••••••••••••••••••••••••••••••••		·) · · · · · · · · · · · · · · · · · ·		99-		
Practical Refusal to auger at 1.55 m depth		-										-		
(Borehole dry - September 26, 2024)														
(borenole dry - September 20, 2024)		3-								· · · · · · · · · · · · · · · · · · ·		-		
												98-		
		-								· · · · · · · · · · · · · · · · · · ·		-		
		-										-		
		4-										97-		
									· · ·	· · · ·				
												-		
		5-										-		
		- 5										96-		
												-		
												-		
		6												
		-										95-		
												-		
												-		
		/										94-		
												-		
		8-										-		
												93-		
								•••••••••••••••••••••••••••••••••••••••				-		
		9-										92-		
		10 -												
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE											IOULD BE			
READ IN CONJUNCTION WITH ITS COORESPONDING REF	PORT. P	ATERS	ON GRO	OUP IS	NOT RES	PONSIBI	LE FOR THE L	JNAUTHC	RIZED USE C	OF THIS DATA.	PAGE:	1/1		

PATERSON GROUP

P:/Autocad Drawings/Test Hole Data Files/PG72xx/PG7262/data.sqlite 2024-10-02, 10:34 Paterson_Template MR

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 376	6135.9	3			NORTHIN	G : 50	19308.57		ELEVATIO	N: 100.35		
PROJECT: Proposed Residential and Commercia	al Deve	elopme	ents						FILE NO. :	PG7262		
BORINGS BY: CME-55 Low Clearance Drill REMARKS:					DATE: S	eptem	ber 16, 2024		HOLE NO. :	BH10-24		
				S	SAMPLE				SIST. (BLOWS/0.	3m)		
				\top	1	5	20	DCPT (5 40	50mm DIA. CON 0 60	E) 80		
SAMPLE DESCRIPTION	Ŀ		ġ	(%)	8	ER CONTENT (%)		DED SH	EAR STRENGT	H, Cur (kPa)	MONITORING WELL CONSTRUCTION	<u>ع</u>
	strata plot	DEPTH (m)	TYPE AND NO.	RECOVERY (%)	N, Nc OR RQD	R CO (%)	▲ PEA 20	K SHEAF 4(R STRENGTH, C 0 60	u (kPa) 80	ORIN	ELEVATION (m)
	TRAI	EPT	ΥPE	С Ш С	, Nc (WATER (%	PL (%)		R CONTENT (%)		LINO	LEV
GROUND SURFACE	s xxxx	0	<u>н</u>	~	Z	5	20	4(0 60	80	≥ບ /	ш
FILL: Crushed stone and gravel0.13m [100.22m] / FILL: Loose, brown silty sand, trace gravel		-	¥⊠			5.08	0				88	100-
		-	<u> </u>								88	-
GLACIAL TILL: Very dense, brown silty sand, with	~ ~ ~ ~ ~ ~ ~ ~	1-	Ss 2	79	16-20-35-43	9.16	0			· · · · · · · · · · · · · · · · · · ·	88	-
cobbles and boulders, trace gravel		-	Av		55						88	- 99
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	ss 3	100	14-39-50-/	8.63	0			· · · · · · · · · · · · · · · · · · ·	88	99—
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2-			89/0.03						88	-
	~ ~ ~ ~ ~	-	4		00 50 //	7.00					88	98-
	~ ~ ~ ~ ~	-	SS 4	82	29-50-/-/ 50/0.13	7.69	0	· · · · · · · · · · · · · · · · · · ·			88	-
- Coring was completed through out boulders	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3-	RC 1	25							88	-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	م	54	10-12-27-43	0.11	0				88	97 —
	~ ~ ~ ~ ~ ~ ~ ~	-	$\mathbb{N}^{\mathbb{N}}$	194	39	9.44					88	-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	SS 6		21-50-/-/						.1 m ▼ 2024	-
		4 -			50/0.1					4	.1 m ⊻ 2024	_
- Rock fragments below 4.4 m depth	~ ~ ~ ~ ~	-	SS 7	39	50-/-/-/ 50/0.13							96 —
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_			50/0.15							-
		5-	RC 2	20						· · · · · · · · · · · · · · · · · · ·		-
	V V V V V V V V V V V V	-		32			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		95 —
		-										-
6.07m [94.28m] End of Borehole		6-									3 <u>-</u> 3	-
		-					· · · · · · · · · · · · · · · · · · ·			·····		94 —
(GWL at 4.07 m - September 26, 2024)		-										-
		7-						· · · · · ·		· · · · · · · · · · · · · · · · · · ·		-
		-										93 –
												-
		8-										-
		-										92 —
												-
		9-										-
		-										91_
		-										-
		10 -								· · · · · · · · · · · · · · · · · · ·		
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE											OULD BE	
READ IN CONJUNCTION WITH ITS COORESPONDING REF	-URI. P	RIERS		JUPI	SINUL RESP	ONSIR	LE FUR I HE L	INAUTH	URIZED USE OF	THIS DATA.	PAGE: '	1/1

PATERSON GROUP

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING:						NORTHIN	G : 50	19314.49			LEVATIO		
PROJECT: Proposed Residential and Comme SORINGS BY: CME-55 Low Clearance Drill	rcial Deve	elopme	ents							FILF	E NO. :	PG7262	
REMARKS:						DATE: S	eptem	ber 17, 2024		HOI	LE NO. :	BH11-24	
					S	AMPLE					BLOWS/0.		
							ħ	20		50mm 0	DIA. CONI 60	E) 80	_
SAMPLE DESCRIPTION	LOT			2 2	(%) J	B	WATER CONTENT (%)						PIEZOMETER CONSTRUCTION
	ń STRATA PLOT	DEPTH (m)			RECOVERY (%)	N, Nc OR RQD	я С С	·20	4	0	ENGTH, C 60	80	OMET
GROUND SURFAC	STRA	DEPT			RECO	N, Nc	WATE	PL (%)	WATE 4	<u> </u>	NTENT (%) 60	LL (%)	PIEZO
ilLL: Crushed stone and gravel		0		-			-	20	4	<u> </u>	00	80	
SILTY SAND, trace gravel			X	AU 1			1.32	o		· · · · · · ·			
0.69m [99.23m GLACIAL TILL: Dense, brown silty sand, with grave	17 17 17	-											
obbles and boulders		1-	X	SS 2	83	6-21-21-50 42	8.33	0		·····		· · · · · · · · · · · · · · · · · · ·	
	~ ~ ~ ~ ~	-	H	33	40	42 50-/-/-/	6.21	0					
1.78m [98.14n		-		SS	40	50/0.13	0.21	0	-				
Ind of Borehole		2-						· · · · · · · · · · · · · · · · · · ·					
Practical Refusal to auger at 1.78 m depth													
										-			
Borehole dry - September 26, 2024)		3-											
		-											
		4-											
		-										· · · · · · · · · · · · · · · · · · ·	
		-								-			
		5-								· · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
		-										· · · · · · · · · · · · · · · · · · ·	
		-											
		6-							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
		-										· · · · · · · · · · · · · · · · · · ·	
		7-											
		8-											
		-									- - - - - - -	· · · · · · · · · · · · · · · · · · ·	
		9-											
		-											
		10 -							1			· · ·	

PATERSON GROUP

Geotechnical Investigation

4828 Bank Street, Ottawa, Ontario

COORD. SYS.: MTM ZONE 9 EASTING: 376	6163.4	7			NORTHIN	G : 50	19346.	65		EL	EVATIO	N: 98.54		
PROJECT: Proposed Residential and Commercia	al Deve	lopme	nts							FILE	E NO. :	PG7262	2	
BORINGS BY: CME-55 Low Clearance Drill							h 47	0004		ноі	F NO ·	BH12-2	Λ	
REMARKS:					DATE: S	epterni	ber 17,				BLOWS/0.3		-	
				S	AMPLE				DCPT (50mm	DIA. CONE)		
	⊢		ö	(%	_	TENT		20 MOUI	4 חפר פו		60	80 , Cur (kPa)	S K	Ê
SAMPLE DESCRIPTION	PLOT	Ê	TYPE AND NO	RECOVERY (%)	N, Nc OR RQD	R CONTENT (%)		PEA	SHEA	R STRI	ENGTH, Cu	u (kPa)	MONITORING WELL CONSTRUCTION	ELEVATION (m)
	STRATA	DEPTH (m)	Ъ Р	SOVE	S S S	WATER (%	PI	<u>20</u> - (%)	4 WATE		60 ITENT (%)	80 LL (%)	NITO NSTF	EVATI
GROUND SURFACE	STI	DE	Σ	RE	ź	WA		20	4	<u> </u>	60	80	<u>₽</u> 0	E
TOPSOIL and organics		0 -	छ <u>्</u> न			19.15		0		-				-
Loose, brown SILTY SAND, trace clay		-	¥ ¥			19.15		U						98-
			SS 2	83	4-7-3-3	22.83	: : : :	0						
		-	\\ [™]	03	4-7-3-3	22.03		0				· · · · · · · · · · · · · · · · · · ·		
GLACIAL TILL: Dense to very dense, brown silty		-												97 –
sand, with gravel, cobbles and boulders	~ ~ ~ ~ ~	-	SS 3	71	2-2-10-33	19.64		Ó						
		2-	\square		12	11.55	0				•••••			
- Coring was completed through out boulders	V V V V V V V V V V V V	-												96-
		-	RC 1	45			: : : :							
		3-	X SS 4	100	50-/-/-/	12.77	0							
3.58m [94.96m]	0 0 0 0 0 0 0 0 0 0 0 0	-	S S		50/0.08								4 2	-
BEDROCK: good quality, interbedded grey		-											<u>.</u>	95 -
sandstone and dolostone		4—	RC 2	100	RQD 88								4.2 m ▼ 202	4-09-26 -
		-	Ľ.							-				-
		-												94 –
		5—												-
		-	RC 3	97	RQD 86					-				-
		-												93-
6.10m [92.44m]		6-												-
End of Borehole		-								-				
		-					· · · · · · · · · · · · · · · · · · ·				•••••	····		92 -
(GWL at 4.17 m - September 26, 2024)		7-												
		-					· · · · · · · · · · · · · · · · · · ·				•••••	· · · · · · · · · · · · · · · · · · ·		91-
		8-												-
		-								-				-
							· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·						90-
										-				
		9							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
		-												89-
		10 -						÷						-
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE						וח דוום י					2001 ורביי			
READ IN CONJUNCTION WITH ITS COORESPONDING REF													PAGE:	1/1

P://Autocad Drawings/Test Hole Data Files/PG72xx/PG7262/data.sqlite 2024-10-02, 10:34 Paterson_Template MR

PATERSON GROUP

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 376	6107.9	4			NORTHIN	G : 50	19374.85		ELEVATIO	N: 99.11		
PROJECT: Proposed Residential and Commercia	al Deve	elopme	ents						FILE NO. :	PG7262		
BORINGS BY: CME-55 Low Clearance Drill REMARKS:					DATE: S	epteml	ber 17, 2024		HOLE NO. :	BH13-24		
					SAMPLE		■ P		SIST. (BLOWS/0.			
						TN	20	DCPT (5	50mm DIA. CON 0 60	E) 80		
SAMPLE DESCRIPTION	РГОТ		No	(70) A	son v	R CONTENT (%)	△ REMOUL ▲ PEA		EAR STRENGTH R STRENGTH, C		MONITORING WELL CONSTRUCTION	(m) N
	ATA P	DEPTH (m)	TYPE AND NO.		N, NC OR RQD	ER C (%)		4(0 60	80	ITORI	ELEVATION (m)
GROUND SURFACE	STRATA	DEPI	TYPE		N, N	WATER (%	PL (%)	WATE 40	R CONTENT (%)	LL (%)	MON	ELE
FILL: Loose, brown silty sand, trace gravel and		0 -										99-
cobbles		-	\mathbf{X}	AU 1		12.61	o					
		-	\square	2								-
		- 1	X	SS 2	1 3-4-4-12 8	26.45		0				98-
GLACIAL TILL: Very dense, brown silty sand, trace		-	\square			9.26	0					
gravel and cobbles	~ ~ ~ ~ · ~ ~ ~ ~ ~	2-	X	e SS 3	1 15-30-37-50 67	6.86	0					-
	~ ~ ~ ~ ~	-									88	97-
		-		82 10	0 47-42-50-/ 92/0.1	7.1	0				88	97-
		3-			02/0.1							-
	~ ~ ~ ~ , ~ ~ ~ ~ ~	-	\mathbb{N}	د 25 Sg 10	0 30-38-39-50	7 89	0				88	96
		-	Дʻ	ω '0	77	1.00					50e 50e	-
	0 0 0 0 0 0 0 0 0 0 0 0	4-	\square	9								-
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	M	SS 7	1 18-30-50-/ 80/0.13	7.36	0					95-
	7 7 7 7 7 7 7 7 7 7 7 7	-		SS 7	1 16-50-/-/	6.61	0					-
- Brown sand seam between 5.3 m to 5.4 m depth	~ ~ ~ ~ · ~ ~ ~ ~ ~	5-		ဖုိ	50/0.13	0.01						
- Grey below 5.4 m depth 5.41m [93.70m]	~ ~ ~ ~ ~	-		8 8 8 9 10	0 50-/-/-/	12.03	0			Ę	5 3 m 202	4-09-26 <u>-</u>
End of Borehole		-		0	50/0.08		· · · · · · · · · · · · · · · · · · ·					-
(GWL at 5.28 m - September 26, 2024)		6-										93-
		=										-
		-										-
		7-								· · · · · · · · · · · · · · · · · · ·		92-
		-										-
		-										
		8-								· · · · · · · · · · · · · · · · · · ·		91-
		-										-
		-										-
		9-										90-
		-										
		10										
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE				FRSO				NHO IT V). THIS LOG SH		
READ IN CONJUNCTION WITH ITS COORESPONDING REF											PAGE:	1/1

PATERSON GROUP

Geotechnical Investigation

COJECT: Proposed Residential and Commerce DRINGS BY: CME-55 Low Clearance Drill EMARKS:	cial Deve	elopme	ents							FILE	NO. :	PG72	62	
						DATE: S	Septeml	ber 18, 2024		HOL	E NO. :	BH14	-24	
					S	AMPLE		■ P			LOWS/0.3			
				_			Ł	20	DCPT (5 4(01A. CONE 60	:) 80		z
SAMPLE DESCRIPTION	гот	-		AND NO.	(%) X	RQD	WATER CONTENT (%)	△ REMOUL			TRENGTH NGTH, Cเ		ı)	PIEZOMETER CONSTRUCTION
	STRATA PLOT	DEPTH (m)			RECOVERY (%)	N, Nc OR RQD	ER C (%)	20	40)	60	80		OME
GROUND SURFACE	STR	DEP			REC	ž Ž	WAT	PL (%)	40	<u> </u>	TENT (%) 60	LL (%)		PIEZ
L: Loose, brown silty sand, with crushed stone,		0	X	-			7.00							
ce gravel			宓	A			7.66	0						
1.02m [99.61m	1	-		2			8.65	0				-		0 m V 202
ACIAL TILL: Compact to very dense, brown silty		-i -i	X	SS 2	21	3-3-2-4 5	12.34	o						
nd, some gravel and cobbles, trace clay			F	S 3	64	4-50-/-/	7.96	0		····				
Clay content decreases with depth 1.75m [98.88m			\vdash	SS	04	4-30-/-/ 50/0.13	7.90					-	1	
d of Borehole		2-										· · · · · · · · · · · · · · · · · · ·		
actical Refusal to auger at 1.75 m depth												- - - - -	· · · · ·	
			1									-		
WL at 1.01 m - September 26, 2024)		3-	1						•••••••••••••••••••••••••••••••••••••••	•••••	••••	· · · · · · · · · · · · · · · · · · ·		
												- - - - -		
										-		-		
		4-									••••	- 		
			1										: :	
			1									-		
		5-							•••	····	••••			
			1											
		6-								•••••		- - - - - -		
												-		
												-		
		7-	1							•••••		: : :		
			1							-		-		
											••••	· · · · · · · · · · · · · · · · · · ·		
		8-								· · · · · .				
			1									-		
			1									· · · · · · · · · · · · · · · · · · ·	·····	
		9-										- - - - - - - -		
									· · · · · · · · · · · · · · · · · · ·	•••••		- 		
		10												

PATERSON GROUP

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9	EASTING: 37614						NORTHIN	G . 50	19900.07				N: 97.68	
PROJECT: Proposed Residential BORINGS BY: CME-55 Low Clearan)evel	opme	nts							FILE	E NO. :	PG7262	
							DATE: S	eptemt	ber 18, 2024		HOI	_E NO. :	BH15-25	
						S/	MPLE					BLOWS/0.3		
								Ł	20		50mm 0	DIA. CONE 60	8 0	-
SAMPLE DESCRIPTION	L L L L L L L L L L L L L L L L L L L	5		TYPF AND NO	2	۲ (%)	gD	WATER CONTENT (%)						PIEZOMETER CONSTRUCTION
		strata plot	DEPTH (m)			RECOVERY (%)	N, Nc OR RQD	ы С С С С С С (%)	▲ PEAI 20	4	0	ENGTH, Cι 60	80	OMET
	GROUND SURFACE	STRA	DEPT	ЧРF	-	RECC	N, Nc	MATE	PL (%)			NTENT (%)	LL (%)	PIEZO
OPSOIL and organics	0.05m [97.63m] /		0 -	R		_		-	20	4	U	60	80	
oose, brown SILTY SAND, trace clay			-	었	AU 1			14.24	0					
	0.69m [96.99m] / 💆		-	$\overline{}$	SS 2	43	21-50-/-/	8.36	0					
GLACIAL TILL: Very dense, brown silt	y sand, with		1-	\square	ő	43	50/0.08	0.50						
ravel, cobbles and boulders	~ ~ ~ ~	$\nabla \nabla \nabla$									· · ·		· · ·	
	V V	V V V V V V V	-	\boxtimes	SS 3	80	50-50-/-/	7.05	0			· · ·		
End of Borehole	1.98m [95.70m] 🗸 🗸	v v v	2				50/0.1							
			-								· · ·			
Practical Refusal to auger at 1.98 m d	epth		-										· · · · · · · · · · · · · · · · · · ·	
-			3											
Borehole dry - September 26, 2024)			-								· · ·			
											 		· · · · · · · · · · · · · · · · · · ·	
			4								: : :			
			- -							-	· · ·			
			-											
			_ =											
			5-									•••••	· · · · · · · · · · · · · · · · · · ·	
			-									·····;	· · · · · · · · · · · · · · · · · · ·	
										-	· · ·			
			6-								· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			-								: . ;		·····	
			-							-	· · ·			
			7-										· · · · · · · · · · · · · · · · · · ·	
			-										· · · · · · · · · · · · · · · · · · ·	
			8_								· · · · · · · · · · · · · · · · · · ·			
			-											
			-							•••	· · · · · · · · ·	•••••	· · · · · · · · · · · · · · · · · · ·	
			9_											
			-											
			-							• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			10											

PATERSON GROUP

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 37	6170.5	6			NORTHIN	G : 50	19394	4.51		E	LEVA	ATION	: 97.42			
PROJECT: Proposed Residential and Commercia	al Deve	lopme	nts							FIL	E NC) .:	PG72	62		
BORINGS BY: CME-55 Low Clearance Drill										нс		ο ·	BH16	_21		
REMARKS:					DATE: S	eptem	ber 18							-24		1
				S	AMPLE			•	PEN. RES DCPT (
			Ġ			ENT		20	4		60		80		N	-
SAMPLE DESCRIPTION	strata plot	Ê	type and no.	RECOVERY (%)	N, Nc OR RQD	CONTENT %)	L 🖌		.DED SH K SHEAI				Cur (kPa (kPa)	i)	PIEZOMETER CONSTRUCTION	ELEVATION (m)
	₽T₽	DEPTH (m)	AN	OVE	No.	ER C(%)	<u> </u>	20	4	0	60)	80		OME	ATIC
GROUND SURFACE	STR	DEP	ТҮРІ	REC	ž ž	WATER (%		PL (%)	WATE 4		5 60		LL (%)		E E S	ELE
TOPSOIL and organics 0.13m [97.29m]/		0 _	₹.									,				
Loose, brown SILTY SAND, trace clay		-	A K			19.0		0						: 		97-
0.69m [96.73m] /		-									· · ·					
GLACIAL TILL: Dense to very dense, brown silty		1-	SS 2	83	6-16-21-36	10.17	c)								-
sand, with gravel, cobbles and boulders		-			37											96-
1.78m [95.64m]	~ ~ ~ ~ ~ ~ ~ ~		ss_3	100	30-50-/-/ 50/0.05	8.18	0									-
End of Borehole		2_			50/0.05									: :		-
		=														95
Practical Refusal to auger at 1.78 m depth		-								• • • • • •	· · · · · · · · · · · · · · · · · · ·					
(Borehole dry - September 26, 2024)		3-						· · · · · · ·						: 		
(, , . ,		-											-			94
		=														94
																-
		4-														-
		-										· · · · · · · · · ·				93
		=														-
		5-										•••••		· · · · · · ·		
		-												: : :		92
		-														
		6_												· · · · · · · ·		-
									-	- - -						91-
		=											-			-
		7-														
		=									· · ·					90-
		-						•••••					• • • • • • • • • • • • • • • • • • • •	(
		8-														
		-						-					-			
								•••••			· · · · · · · · · · · · · · · · · · ·	•••••	· · · · · · · · · · · · · · · · · · ·			89-
		9-														
		-										-				
		-						·····			· · · · · · · · · · · · · · · · · · ·	•••••	· · · · · · · · · · · · · · · · · · ·	: : : :		88
		10 -									· · ·	-	-			
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE				SON	GROUP AN					WAS	PRODI	UCFD	THISIO	G SHC	OULD BF	
READ IN CONJUNCTION WITH ITS COORESPONDING REF														A.	PAGE:	

PATERSON GROUP

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 376	6243.0 ⁻	1			NORTHIN	G: 50 ⁻	19438.17		ELEVATIO	N: 96.08		
PROJECT: Proposed Residential and Commercia	l Deve	lopme	nts						FILE NO. :	PG7262		
BORINGS BY: CME-55 Low Clearance Drill					DATE 0		40.0004			BH17-27		
REMARKS:						eptemt	ber 18, 2024					
				S	AMPLE		- C		SIST. (BLOWS/0. 50mm DIA. CON			
			Ġ			ENT	20	4(0 60	80	z	_
SAMPLE DESCRIPTION	strata plot	Ê	type and no.	RECOVERY (%)	N, Nc OR RQD	R CONTENT (%)	A REMOULD		EAR STRENGT R STRENGTH, C		PIEZOMETER CONSTRUCTION	ELEVATION (m)
	ATA I	DEPTH (m)	AN	OVEF	R	ER C (%)		4(0 60	80	OME'	(ATIO
GROUND SURFACE	STR/	DEPI	ТҮРЕ	REC	N, NC	WATER (%	PL (%)	WATE 4(R CONTENT (%) LL (%) 80		ELEY
Loose, brown SILTY SAND, trace clay		0 _					20	40	0 60	00		96 -
		-	¥ ₩			9.58	0		· · · · · · · · · · · · · · · · · · ·		****	-
0.69m [95.39m]		-										-
GLACIAL TILL: Very dense, brown silty clay, with \gravel, cobbles and boulders	V V V V V V V V V V V V	1—	ss 2	31	4-18-50-/ 68/0.03	25.01	0					95 —
_gravel, cobbles and boulders 1.12m [94.96m]/ End of Borehole		-			00/0.00							-
		-										-
Practical Refusal to auger at 1.12 m depth		2-								,		-
												94 -
(Borehole dry - September 26, 2024)		-										-
		-										-
		3-							· · · · · · · · · · · · · · · · · · ·			93-
		-										-
		=										
		4_							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		92
		-										-
		-										-
		5-						· · · · · · · · · · · · · · · · · · ·				91-
		=										
		-					· · · · · · · · · · · · · · · · · · ·					-
		6-										-
		-										90 -
		=										-
		-										-
		7					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			89-
		-					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				-
		-										-
		8_										- 88
		-										-
		-										-
		9-										87-
		-										
		-								· · · · · · · · · · · · · · · · · · ·		-
		10 -										
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE	PROPE	RTY O	F PATER	SON	GROUP AN	D THE (CLIENT FOR W	HO IT V	VAS PRODUCEI). This log sh	OULD BE	
READ IN CONJUNCTION WITH ITS COORESPONDING REF	PORT. P.	ATERS	ON GRO	UPI	S NOT RESP	PONSIBI	LE FOR THE UI	NAUTH	ORIZED USE OI	THIS DATA.	PAGE: 1	1/1

Geotechnical Investigation

SORINGS BY: CME-55 Low Clearance Drill REMARKS:						Contom	nor 18 2024	HOLE NO. :	BH18-24	
						peptemi	per 18, 2024 ■ PEN F	RESIST. (BLOWS/0		
		-		S	AMPLE	F		T (50mm DIA. CON 40 60		_
SAMPLE DESCRIPTION	STRATA PLOT	DEPTH (m)	type and no.	RECOVERY (%)	N, Nc OR RQD	WATER CONTENT (%)		SHEAR STRENGT EAR STRENGTH, C 40 60	H, Cur (kPa) Cu (kPa) 80	PIEZOMETER CONSTRUCTION
GROUND SURFACE	STRA	DEPT	ТҮРЕ	RECC	N, Nc	WATE	PL (%) WA	TER CONTENT (% 40 60	b) LL (%)	PIEZO
ILL: Brown silty sand, with cobbles and boulders 0.51m [99.31m]		0 -					20	40 00	00	
ind of Borehole	× × ×	- - - 1								
Practical Refusal to auger at 0.51 m depth		1								
		-								
		2								
		-								
		3								
		-								
		4-								
		5-								
		- - -								
		-								
		6								
		7								
								····	· · · · · · · · · · · · · · · · · · ·	
		8								
		-								
		9-								
		10 -								

PATERSON GROUP

Geotechnical Investigation

REMARKS:		,				DATE: S	eptem	ber 18, 2024	HOLE NO. :		4
					S	AMPLE		DCPT (SIST. (BLOWS/0.3) 50mm DIA. CONE	1	
SAMPLE DESCRIPTION	STRATA PLOT	DEPTH (m)	TVDE AND NO		RECOVERY (%)	N, N¢ OR RQD	WATER CONTENT (%)	△ REMOULDED SH ▲ PEAK SHEA 20 4 PL (%) WATE	R STRENGTH, Cu 0 60 R CONTENT (%)	(kPa) 80 LL (%)	PIEZOMETER CONSTRUCTION
GROUND SURFACE FILL: Crushed stone, cobbles and boudlers 0.13m [99.60m], FILL: Loose, brown silty sand, trace gravel, cobbles and organics 1.07m [98.66m] GLACIAL TILL: Dense to very dense, brown silty sand, with gravel, cobbles and boulders 2.18m [97.55m] End of Borehole Practical Refusal to auger at 2.18 m depth (Borehole dry - September 26, 2024) (Borehole dry - September 26, 2024)		0 1 2 3 4 5 6 7 9		SS3 SS2 AU1	46	2-3-16-23 19 17-37-46-50 83	7.22 19.55 8.64	0			

PATERSON GROUP

P:/Autocad Drawings/Test Hole Data Files/PG72xx/PG7262/data.sqlite 2024-10-02, 10:34 Paterson_Template MR

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 37	6167.6	6			NORTHIN	G: 50	19279.22		ELEVATIO	N: 100.42	
PROJECT: Proposed Residential and Commercia	al Deve	lopme	nts						FILE NO. :	PG7262	
BORINGS BY: CME-55 Low Clearance Drill REMARKS:					DATE: S	epteml	ber 19, 2024	Ļ	HOLE NO. :	BH19-24	
				5	SAMPLE				SIST. (BLOWS/0.:	3m)	
						ħ	20	DCPT (5 40	50mm DIA. CONI 0 60	E) 80	_
SAMPLE DESCRIPTION	ГОТ	_	NO.	Y (%)	D D	CONTENT 6)			EAR STRENGTH R STRENGTH, C		PIEZOMETER CONSTRUCTION ELEVATION (m)
	strata plot	DEPTH (m)	type and no.	RECOVERY (%)	N, Nc OR RQD	ER C(%)	20	40	0 60	80	PIEZOMETER CONSTRUCTIO ELEVATION (m)
GROUND SURFACE	STRA	DEPT	TYPE	RECO	N, Nc	WATER (%	PL (%)		R CONTENT (%)	LL (%)	CONS ELEV
FILL: Crushed stone	YYY	0 -	XI.				20	4(<u>J 60</u>	80	
Loose, brown SILTY SAND, trace gravel		-	¥X₹			8.84	0			· · · · · · · · · · · · · · · · · · ·	100-
0.69m [99.73m] /		-		70	24-50-/-/	5.68	0				
GLACIAL TILL: Very dense to compact, brown to grey silty sand, with cobbles and boulders		1-	\sim s		50/0.1	5.00		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
grey siny sand, with cobbles and boulders		-	22 22	59							99-
- Coring was completed through out cobbles and		-									
boulders		2-	5								
		-	RC 2	50							98-
		-									
		3-									
- Trace clay and rock fragments from 3.4 m to 5.7 m		-	L S	0				· · · · · · · · · · · · · · · · · · ·			97-
depth		-	SS 3	25	22-23-18-23	9.83	0				
	V V V V V V V V V V V V	4-	SS 4	29	41 13-9-11-50	9.68	0			· · · · · · · · · · · · · · · · · · ·	
		-	്റ	20	20	0.00			· · · · ·		96-
		-								4	8 m 🗙 2024-09-26
		5-									
		-								· · · · · · · · · · · · · · · · · · ·	95-
5.77m [94.65m]		-	4	100	RQD 73						
BEDROCK: Fair to excellent quality interbedded grey sandstone and dolomite		6-	S								
		-								· · · · · · · · · · · · · · · · · · ·	94-
		-	RC 5	100	RQD 93						
		7								· · · · · · · · · · · · · · · · · · ·	
7.42m [93.00m] End of Borehole		-								····	93-
		-									
(GWL at 4.85 m - September 26, 2024)		8-									
		-									92 -
		-									
		9								· · · · · · · · · · · · · · · · · · ·	
								- · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	91-
		10 -									
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE	PROPE		F PATEI	RSON	I GROUP AN	D THE (NHO IT V	VAS PRODUCED	. THIS LOG SHO	OULD BE
READ IN CONJUNCTION WITH ITS COORESPONDING REF											PAGE: 1/1

P:/Autocad Drawings/Test Hole Data Files/PG72xx/PG7262/data.sqlite 2024-10-02, 10:34 Paterson_Template MR

Geotechnical Investigation

COORD. SYS.: MTM ZONE 9 EASTING: 37	6115.17	7			NORTHIN	G : 50	19351.94	ELEVATION	I: 100.65	
PROJECT: Proposed Residential and Commercia	al Deve	lopmer	nts					FILE NO. :	PG7262	
BORINGS BY: CME-55 Low Clearance Drill REMARKS:						ontom	ber 19, 2024	HOLE NO. :	BH20-24	
						ehrein		SIST. (BLOWS/0.3		
		-		S	AMPLE	L	DCPT (50mm DIA. CONE	.)	
	L L		ġ	(%	0	CONTENT 6)	20 4 △ REMOULDED SH	0 60 IEAR STRENGTH	80 . Cur (kPa)	NO TE
SAMPLE DESCRIPTION	strata plot	Ē	TYPE AND NO.	RECOVERY (%)	N, Nc OR RQD	R CON	PEAK SHEA	R STRENGTH, Cu	ı (kPa)	PIEZOMETER CONSTRUCTION ELEVATION (m)
	RATA	DEPTH (m)	PEA	COVI	Nc OI	WATER (%		0 60 R CONTENT (%)	80 LL (%)	EVAT
GROUND SURFACE	ST		≥	R	ź	Ž	20 4	— <u>0</u> —— · · ·	80	불응 긟
Overburden		0 -								
		-								100-
		1_								
		' -								
		-								99 -
		2								
		-								
		-								98 -
		3-							· · · · · · · · · · · · · · · · · · ·	
		-								97 –
3.84m[96.81m] GLACIAL TILL: Brown, silty sand and gravel, with										51
rock fragments, occasional cobbles and boulders	0 0 0 0 0 0 0 0 0 0 0 0	4-1	Ss1	33	15-30-50-/ 80/0.05	13.87	0		· · ·	
		-/			00/0.00				· · · · · · · · · · · · · · · · · · ·	06
	V V V V V V V V V V V V	_ =								96 -
- Coring was completed through out boulders		5-	RC 2	40						
	~ ~ ~ ~ ~ ~ ~ ~		2 2 2 2	46						م- م-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-								95 –
		6-							· · · · · · · · · · · · · · · · · · ·	
		-								
BEDROCK: Excellent quality interbedded grey		-								94 –
sandstone and dolomite		7	RC 3	100	RQD 100					3 m ▼ 2024-09-26
		-								93-
		8	4							
		-	RC 4	100	RQD 100				· · · · · · · · · · · · · · · · · · ·	
		-								92-
9.04m [91.61m] End of Borehole		9-								
(GWL at 7.27 m - September 26, 2024)		-							· · · · · · · · · · · · · · · · · · ·	
		10 -								91-
DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE										
READ IN CONJUNCTION WITH ITS COORESPONDING REF										PAGE: 1/1
										- AGE. 1/1

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value				
Very Soft	<12	<2				
Soft	12-25	2-4				
Firm	25-50	4-8				
Stiff	50-100	8-15				
Very Stiff	100-200	15-30				
Hard	>200	>30				

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Cc	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and	Cu are	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above p'_c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

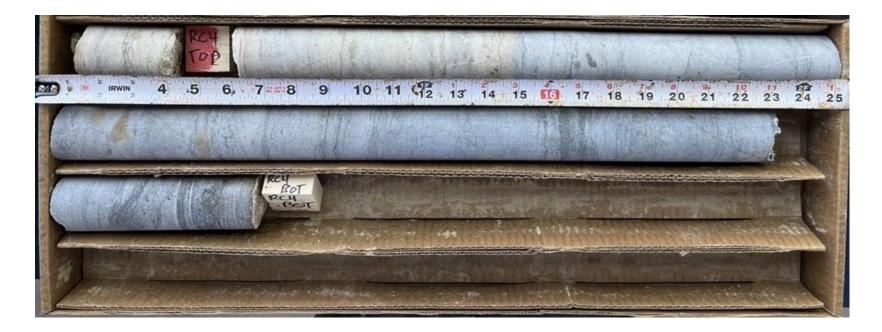
MONITORING WELL AND PIEZOMETER CONSTRUCTION

patersongro	וו	ın	Con	sulting		SOI	L PRO	FILE 8	ιTE	ST DA	TA	
28 Concourse Gate, Unit 1, Ottawa, ON		-	Engi	neers	P	ieotechnic roposed [ottawa, C	Developr		ık Str	eet at Bl	ais Roa	ad
DATUM Ground surface elevation Surveying.	is pro	ovideo	by ,	Annis	_				FILE		G062	7
REMARKS									HOLE	NO.		-
BORINGS BY CME 55 Power Auger				D	ATE	21 JUL 0)5			В	H10	
SOIL DESCRIPTION	PLOT		SAN	APLE		DEPTH (m)	ELEV. (m)			Blows/0 1 Dia. Co		eter ction
	STRATA	түре	NUMBER	% RECOVERY	VALUE ROD		1,	• v	Vater	Content	%	Piezometer Construction
GROUND SURFACE	Ś		Z	E E	Z Z	·	97.80	20	40	60	во	
TOPSOIL 0.28							97.80					
GLACIAL TILL: Very dense, brown sandy silt with		ss	1	73	73-	- 1	96.80	***				
gravel, cobbles and boulders		Δ				'	- 90.00					
boulders												
		ss	2	100	50-	+						
End of Borehole 1.80	2-2-2											
Practical refusal to augering @ 1.80m depth												
(GWL @ 1.62m-Sep. 6/05)												
								20 Shea	40 ar Stre	60 ength (kl		00
								▲ Undis				

patersongro	ור	In	Con	sulting		SO	L PRC	FILE 8	k TE	ST DA	٩ΤΑ	
28 Concourse Gate, Unit 1, Ottawa, ON		-	Engi	ineers	PI	eotechnic oposed I	Developr		nk Str	eet at B	lais Roa	ad
DATUM Ground surface elevation Surveying.			d by i	Annis (_	ttawa, Cullivan Vo			FILE		G062	7
REMARKS									HOL	E NO.		
BORINGS BY CME 55 Power Auger				DA	TE	21 JUL 0	05			F	PH 4	
SOIL DESCRIPTION	PLOT		SAN	NPLE		DEPTH	ELEV.			Blows/ n Dia. C		tion
	STRATA F	түре	NUMBER	RECOVERY	, ROD	(m) Long	(m)			Conten		Piezometer Construction
GROUND SURFACE	STF	F	Ð	REC	> Z 0			20	40	60	80	20°
TOPSON	1998					- 0-	-98.64					
0.28												88
							97.64					
GLACIAL TILL: Very dense, brown silty fine sand with						''	-97.04					
gravel, cobbles and boulders												
boulders												
						2-	96.64					. 1
End of Borehole 2.37	1.1.1.A	k ss	1		50+	·						C HS
Practical refusal to augering @ 2.37m depth												
(BH dry-Sep. 6/05)								20	40	60	80 1	-00
								She	ar Str	ength (k d ∆ Rem	Pa)	
								▲ Und	sturbed	л — нет	ouided	

JAC	LIM	WHITFORD ITED	BC	R	EHC	E	R	ECO	RD)										g	90	-6			
		Ship & Krakow Architec												_			ROJ								
LO	CATION							L			-		-	_			ORI					ode			
- 1	Ê	DRING	-	1	1		PLES		1	-		-	-	IN	ED S	-	URS	_	-			_	-	-	
ŝ			PLOT	WATER LEVEL	-	F (50				100			15			_	200	0	
	ELEVATION	SOIL DESCRIPTION	E	2	W	NUMBER	RECOVERY	N-UALUE								-1					Wp	ч		H	1
DEPTH	EUA		STRATA	TE	түре	Ę	00	1 H			-						ERG ST,				ун Згл	-0	*	4	
- I	3		in	Ĩ	-	-	E.	zŭ									EST					j	•		
0 -	99.70	Ground Surface					mim		L.,	10		20	-	30		40	5	0	60		70		80	_	ſ
	99.4	Dark brown, TOPSOIL an NOOTMAT	d 🦉	4																				1	Statistics of the second se
- 4		Brown and grey, fine to											1												Contraction of the local division of the loc
-		medium, SAND, trace silt																							Contraction of the local division of the loc
14					11					1	Π	П	T	П			Π		Ш		T	Π			
	98.1				<u> </u>	-	-						1							11					
111		Very dense, brown, silty	Į.		ss	1	250																		And a state of the
2	97.4	sand, some gravel and roc fragments at top of	k i		-				Ħ	t			T	ili	1		m	Ħ	tt	Ħ		Ħ	Ħ	t	
100	51.4	bedrock, TILL	125	1	11-				111	T	Ħ		T		T	I	Ħ	H	II	tt	T	III	Ħ	I	
		End of Borehole (Bedrock	5		11																				
3-					11		1		H	+	Ш				Н	₩	₩			-		Н	₩	H	
		 Split spoon refusal 			11																				
1		april op o			11							1													
4				L	11						Ш	1	Ш		Ш		Ш	Ш						Ц	
1					11	1											Ш						1		
					11			1				and a second		-											
					11	1		1															-		
- 5 -	÷				11							T	I	1			III						1		
. 2		6			11																				
13					11		1											-						1	
6-					11						Ħ	Ť			Ħ			t	III	T	Ħ	T	Ť	Ť	
1					11											111	111								
			1		11																				
-7-					11	1			-		#			-		+	-	-	Н		+		-	H	
					11		1																		
					11																				
- 8 -					11						11					1.1			Ш		-	1			
•																-					-				The second
					11																				The second secon
					11			1																	Contraction of the local division of the loc
- 9 -									Ħ	Ħ	Ħ		İ	Ť	Ì	1	III	Ħ	H			T	I	T	A NUMBER OF TAXABLE PARTY.
. :					11																				
					11								1												
-10-				1	11	1	1	1	1	11		11	11		111	1	111		111	111	111		11	Ļ	i
											'ocl 'iel					etei	Te	38					Ŋ	f	
									1														V	1	

ŧ


Photograph of Rock Core obtained from BH 6-24 from intervals RC1, RC2, and RC3

Rock Core RC1 interval ranged between 6' to 9'8"; Rock Core RC2 interval ranged between 9'8" to 13'2"; Rock Core RC3 interval ranged between 13'2" to 15'3"

Recovery RC1 (%) = 19; Recovery RC2 (%) = 100; Recovery RC3 (%) = 100

Rock Quality Designation RC1 (RQD - %) = N/A - Boulder; Rock Quality Designation RC2 (RQD - %) = 100; Rock Quality Designation RC3 (RQD - %) = 89

Photograph of Rock Core obtained from BH 6-24 from interval RC4

Rock Core interval ranged between 15'3" to 20'2"

Recovery (%) = 100

Rock Quality Designation (RQD - %) = 100

Photograph of Rock Core obtained from BH 7-24 from intervals RC1, RC2, RC3, and RC4

Rock Core RC1 interval ranged between 8'10" to 11'; Rock Core RC2 interval ranged between 11' to 14'1"; Rock Core RC3 interval ranged between 14'1" to 16'1"; Rock Core RC4 interval ranged between 16'1" to 19'4"

Recovery RC1 (%) = 61; Recovery RC2 (%) = 40; Recovery RC3 (%) = 42; Recovery RC4 (%) = 31

Rock Quality Designation RC1 (RQD - %) = N/A - Boulder; Rock Quality Designation RC2 (RQD - %) = N/A - Boulder; Rock Quality Designation RC3 (RQD - %) = N/A - Boulder; Rock Quality Designation RC4 (RQD - %) = N/A - Boulder

Photograph of Rock Core obtained from BH 8-24 from intervals RC1, RC2, and RC3

Rock Core RC1 interval ranged between 5'4" to 9'5"; Rock Core RC2 interval ranged between 9'5" to 14'5"; Rock Core RC3 interval ranged between 14'5" to 19'9"

Recovery RC1 (%) = 24; Recovery RC2 (%) = 23; Recovery RC3 (%) = 49

Rock Quality Designation RC1 (RQD - %) = N/A - Boulder; Rock Quality Designation RC2 (RQD - %) = N/A - Boulder; Rock Quality Designation RC3 (RQD - %) = N/A - Boulder

Photograph of Rock Core obtained from BH 10-24 from intervals RC1, and RC2

Rock Core RC1 interval ranged between 8'10" to 10'2"; Rock Core RC2 interval ranged between 14' to 19'11"

Recovery RC1 (%) = 25; Recovery RC2 (%) = 32

Rock Quality Designation RC1 (RQD - %) = N/A - Boulder; Rock Quality Designation RC2 (RQD - %) = N/A - Boulder

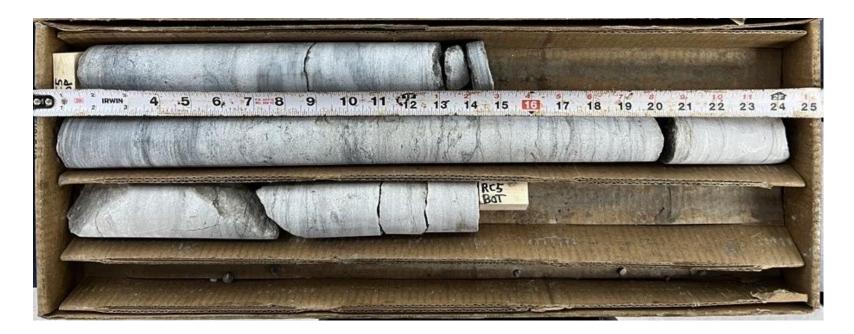
Photograph of Rock Core obtained from BH 12-24 from intervals RC1, and RC2 Rock Core RC1 interval ranged between 7'6" to 10'2"; Rock Core RC2 interval ranged between 10'2" to 15'1" Recovery RC1 (%) = 45; Recovery RC2 (%) = 100 Rock Quality Designation RC1 (RQD - %) = N/A - Boulder; Rock Quality Designation RC2 (RQD - %) = 88

Photograph of Rock Core obtained from BH 12-24 from interval RC3

Rock Core interval ranged between 15'1" to 20'

Recovery (%) = 97

Rock Quality Designation (RQD) = 86


Photograph of Rock Core obtained from BH 19-24 from intervals RC1, RC2, RC3, and RC4

Rock Core RC1 interval ranged between 3'7" to 5'; Rock Core RC2 interval ranged between 5' to 10'; Rock Core RC3 interval ranged between 10' to 11'6"; Rock Core RC4 interval ranged between 14'11" to 19'10"

Recovery RC1 (%) = 59; Recovery RC2 (%) = 50; Recovery RC3 (%) = 0; Recovery RC4 (%) = 100

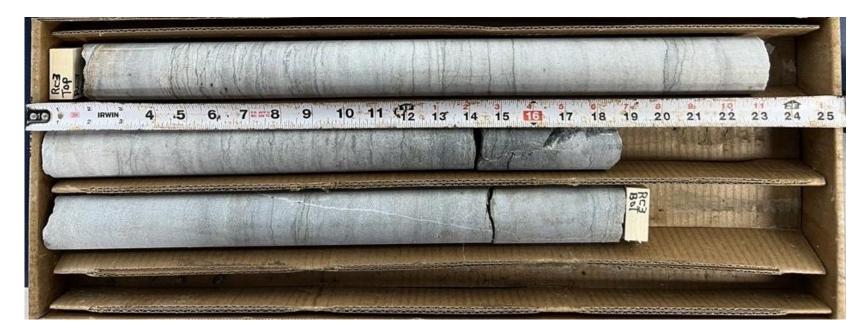
Rock Quality Designation RC1 (RQD - %) = N/A - Boulder; Rock Quality Designation RC2 (RQD - %) = N/A - Boulder; Rock Quality Designation RC3 (RQD - %) = N/A - Boulder; Rock Quality Designation RC4 (RQD - %) = 73

Photograph of Rock Core obtained from BH 19-24 from interval RC5

Rock Core interval ranged between 19'10" to 24'4"

Recovery (%) = 94

Rock Quality Designation (RQD) = 93


Photograph of Rock Core obtained from BH 20-24 from intervals RC1, and RC2

Rock Core RC1 interval ranged between 14'10" to 20'1"; Rock Core RC2 interval ranged between 19'6" to 24'10"

Recovery RC1 (%) = 46; Recovery RC2 (%) = 100

Rock Quality Designation RC1 (RQD - %) = N/A - Boulder; Rock Quality Designation RC2 (RQD - %) = 100

Photograph of Rock Core obtained from BH 20-24 from interval RC3

Rock Core RC3 interval ranged between 24'10" to 29'8"

Recovery RC3 (%) = 100

Rock Quality Designation RC3 (RQD - %) = 100

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 61301

Report Date: 24-Sep-2024

Order Date: 18-Sep-2024

Project Description: PG7262

	Client ID:	BH5-24 SS3	-	-	-		
	Sample Date:	12-Sep-24 09:00	-	-	-	-	-
	Sample ID:	2438281-01	-	-	-		
	Matrix:	Soil	-	-	-		
	MDL/Units						
Physical Characteristics	••				•		
% Solids	0.1 % by Wt.	92.0	-	-	-	-	-
General Inorganics							
рН	0.05 pH Units	7.48	-	-	-	-	-
Resistivity	0.1 Ohm.m	78.1	-	-	-	-	-
Anions							
Chloride	10 ug/g	<10	-	-	-	-	-
Sulphate	10 ug/g	11	-	-	-	-	-

OTTAWA • MISSISSAUGA • HAMILTON • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Certificate of Analysis

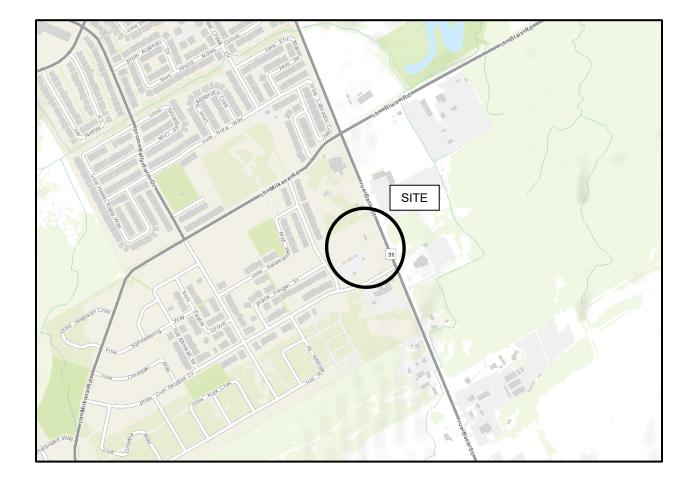
Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 61303

Report Date: 24-Sep-2024

Order Date: 18-Sep-2024

Project Description: PG7262


	Client ID:	BH7-24 SS3	-	-	-		
	Sample Date:	18-Sep-24 09:00	-	-	-	-	-
	Sample ID:	2438284-01	-	-	-		
	Matrix:	Soil	-	-	-		
	MDL/Units						
Physical Characteristics				•			
% Solids	0.1 % by Wt.	92.8	-	-	-	-	-
General Inorganics							
рН	0.05 pH Units	7.43	-	-	-	-	-
Resistivity	0.1 Ohm.m	29.3	-	-	-	-	-
Anions							
Chloride	10 ug/g	<10	-	-	-	-	-
Sulphate	10 ug/g	225	-	-	-	-	-

APPENDIX 2

FIGURE 1 - KEY PLAN

FIGURES 2 & 3 – SEISMIC SHEAR WAVE VELOCITY PROFILES DRAWING PG7262-2 - TEST HOLE LOCATION PLAN

FIGURE 1

KEY PLAN

Figure 2 – Shear Wave Velocity Profile at Shot Location -3.5 m

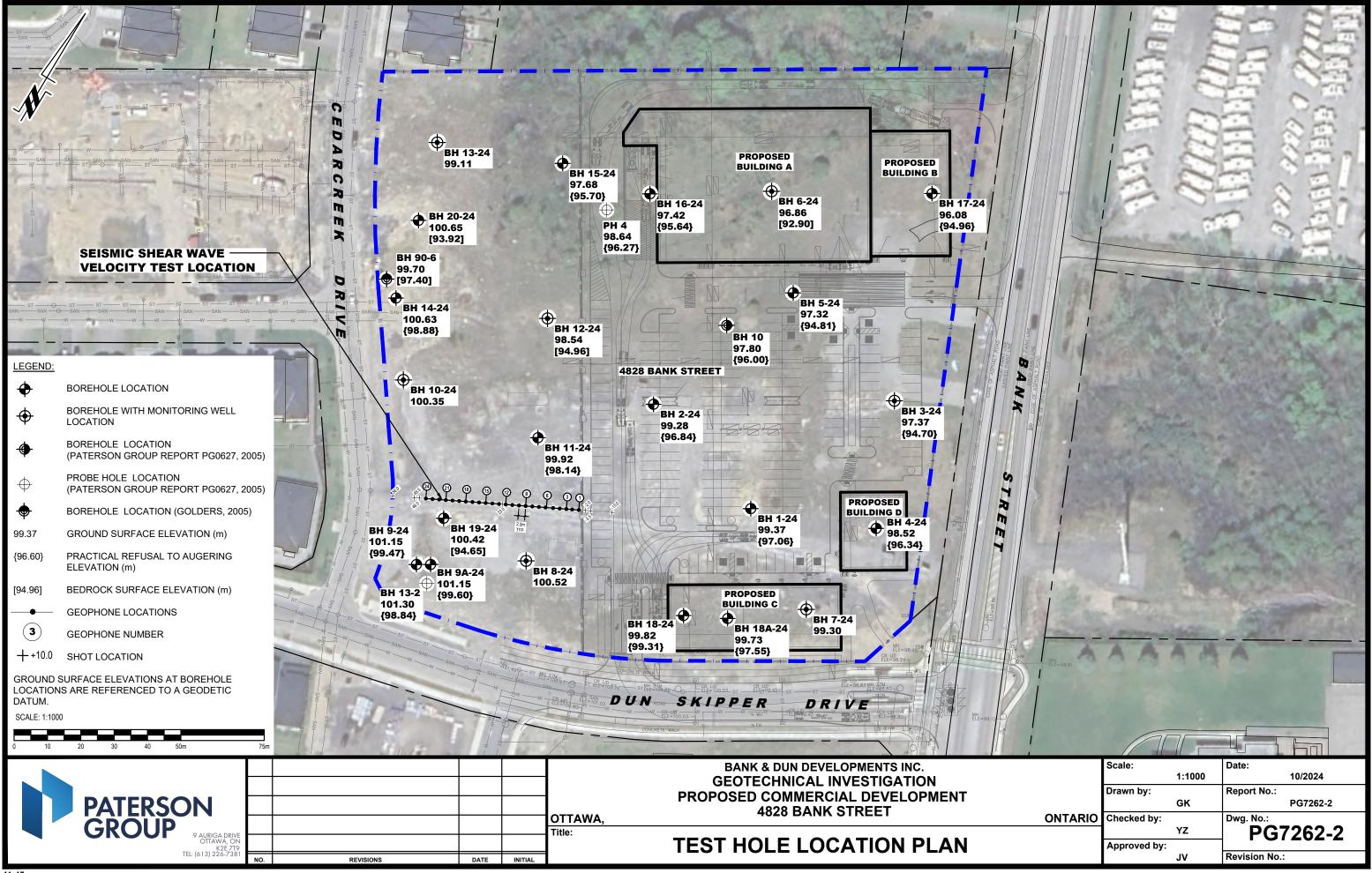


Figure 3 – Shear Wave Velocity Profile at Shot Location 48 m

16

