

Hydrogeological Assessment Report – Rev.3

2545 9th Line Road, Metcalfe, Ontario

ASB Greenworld Limited

July 3, 2024

The Power of Commitment

Contents

2 2 2 2 3 4 4
2 2 3 4 4
2 2 3 4 4
2 3 4 4
3 4 4
4
4
5
5
5
6
7
7
7
7
8
8
8
9
9
9
14 15
15
15
16
18
19

Table Index

Table 2.1	Summary of MECP Well Record Data	3
Table 2.2	Summary of On-Site MECP Well Record Data	4
Table 4.1	Water Level Summary	8
Table 4.2	Aquifer Performance Testing Summary	9
Table 4.3	Test Well Water Quality Summary – TW-2 and TW-3	10
Table 4.4	Field Parameters TW-2	14
Table 4.5	Field Parameters TW-3	14
Table 4.6	Distance Between Pumping Well and Observation Wells	14
Table 4.7	Maximum Drawdowns in Pumping and Observation Wells	14
Table 5.1	Water Usage	15

Figure Index

22
23
24
25
26
27

Appendices

- Appendix A MECP Well Records
- Appendix B Photographs
- Appendix C Aquifer Performance Testing
- Appendix D Water Well Certificates of Analyses
- Appendix E Observation Well Hydrographs
- Appendix F Nitrate Impact Assessment Calculations

1. Introduction

GHD Limited (GHD) was retained by ASB Greenworld Limited (ASB or "the Client") to complete a hydrogeological assessment in support of a proposed development of the property located at 2545 9th Line Road, in Metcalfe, Ontario (herein referred to as "Site" or "Property"). The Site is approximately 14.3 hectares (ha) in size and is located east of 9th Line Road. The Site and surrounding properties are located in an area of Ottawa that is zoned Rural Use. The location of the Site is provided on the **Site Location Plan, Figure 1**.

The Site is currently developed with several buildings and warehouses with asphalt and gravel parking areas and agricultural fields that is serviced by drilled wells and a septic system. Historically, the Site has been used for agricultural, commercial, and residential purposes since at least 1945. ASB proposes to use the Site for storage and distribution of their garden products.

This report has been prepared for the purposes of examining the hydrogeological characteristics of the Site and assessing the capacity of selected Site wells to supply the proposed development. The scope of work completed to achieve the aforementioned purposes included:

- A desktop review of available geological and groundwater mapping, and statistical assessment of Ministry of the Environment, Conservation and Parks (MECP) well records;
- Aquifer performance testing to evaluate the hydraulic properties of two (2) drilled water supply wells at the Site (denoted as TW-2 and TW-3 (A395610) for this report) and hydraulic monitoring of to be abandoned Site drilled wells (M-1 and TW-1); and
- Groundwater sampling to characterize the water quality of the aquifer(s) tapped into by TW-2 and TW-3.

A septic assessment was completed concurrently with the hydrogeological assessment and the findings of the septic assessment are presented under separate cover.

This report is organized into the following sections:

Section 1.0 – Introduction: Outlines the purpose, scope of work, and presents the report organization.

Section 2.0 – Background: Provides a description of the existing Site conditions, background information and surrounding land uses, as well as an outline of the proposed development. The regional environmental setting, including the physiography, topography, surface water features in the vicinity and regional geology is presented.

Section 3.0 – Methodology: Describes the field activities and methodologies used to assess the groundwater quantity and quality.

Section 4.0 – Geology and Hydrogeology: Provides a detailed description of the Site geology, hydrogeology, and the hydraulic properties of the underlying stratigraphy and aquifer.

Section 5.0 – Water Usage Assessment: Provides details on the expected water usage of the proposed development.

Section 6.0 – Impact Assessment: Provides details on a predictive assessment for Industrial/Commercial development.

Section 7.0 – Summary and Conclusions: Provides a summary of the assessment findings.

Sections 8 and 9 provide the References and Statement of Limitations, respectively. The Figures and Appendices are provided following the text of this report, as indicated in the Table of Contents. Tabulated data is presented in tables within the text.

The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. This report should be read in conjunction with the Statement of Limitations appended to this report. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

2. Background

2.1 Site Description

The Site covers an area of approximately 14.3 ha and is located roughly 500 metres (m) north of the intersection of Victoria Street and 9th Line Road Street in Metcalfe, Ontario which is within the City of Ottawa limits. The parcel has the municipal address of 2545 9th Line Road and is currently developed with several buildings and warehouses, asphalt and gravel parking areas, private drilled water wells, private septic systems and agricultural fields as depicted in the **Well Locations Plan, Figure 2**. The Site is zoned Rural Countryside Zone as per the City of Ottawa Zoning By-Law No. 2008-250. Historically, the Site has been used for agricultural, commercial, and residential purposes since at least 1945. It is understood that ASB proposes to use the Site for storage and distribution of their garden products.

The surrounding area is supported by private services for water and septic, is zoned for Rural Use and generally consist of vacant / wooded land, agricultural land, and / or rural residential lots.

2.2 Regional Setting

The Site is relatively flat with local topography sloping radially outward from the central developed area. Mapping indicates topographic relief is on the order of 10 m across the Site. Regional topography is provided as **Figure 3**. Stormwater generated at the Site either infiltrates the ground surface or is directed by overland flow towards the Site boundaries and various drainage features at the Site.

The Site is situated within the physiographic region known as the Russell and Prescott Sand Plains. In the United Counties of Prescott and Russell, and the Regional Municipality of Ottawa-Carleton, there is a group of large sand plains separated by the clays of the lower Ottawa Valley. The plains cover an area of nearly 1500 square kilometers and a ground surface of about 85 metres above sea level (masl). The plains were originally a continuous delta that was built by the Ottawa River into the Champlain Sea. The plains are as thick as 6 to 10 m in some areas (Chapman and Putnam, 1984). The local physiography is illustrated on **Figure 4** showing the Site is within a limestone plain with a clay plain to the south.

Surficial geology mapping on **Figure 5** indicates the Site is a mix of Paleozoic bedrock, littoral-foreshore deposits and stone-poor, carbonate-derived silty to sandy till.

The Quaternary geology (**Figure 6**) indicates the Site is a mix of bedrock; undifferentiated carbonate and clastic sedimentary rock, exposed at surface or covered by a discontinuous, thin layer of drift and till; undifferentiated, predominantly sandy silt to silt matrix, commonly rich in clasts, often high in total matrix carbonate content. Bedrock outcrops were not observed on the Site.

The underlying bedrock is dolostone, sandstone of the Beekmantown group (**Figure 7**). Based upon water well records within 500 m of the Site, bedrock was found varying from surface to 4 metres below ground surface (mbgs).

2.3 Existing Local Water Supplies

Information regarding groundwater characteristics of the immediate area was obtained from a search of the publicly available inventory of existing MECP well records. A total of twenty (20) wells were identified within 500 m of the Site, with seven (7) detailing well decommissioning or monitoring well installations with limited information. Based on location data provided in the well records, ten (10) of the well records are depicted on the Site consisting of four (4) abandonment records and six (6) as water supply wells. The MECP well records do not yet include the recently drilled well identified as TW-3 (A395610) in this report. The MECP well records are provided in **Appendix A** with the data summarized in **Table 2.1**.

The well records indicate a mix of overburden materials (e.g., sand, clay, boulders) which overlays bedrock interpreted to be limestone and / or sandstone. Based upon the well records, bedrock was encountered at surface and up to

depths of approximately 4 m. All of the drilled water wells in this area tap into the limestone and sandstone aquifers, respectively. Eight (8) well records indicated wells that terminated within the underlying bedrock formation at depths ranging from about 14 m to 29 m. The remaining five (5) well records indicated wells that terminated within the underlying bedrock formation at depths ranging from about 76 m to 93 m.

The groundwater in the well records was generally described as "fresh". The bedrock wells encountered water at an average depth of 36.5 m with an average static depth of 5.7 m with one (1) flowing artesian well identified (Well ID # 1513409) located southwest of the Site (well drilled to a depth of 18.3 m into sandstone bedrock with fresh water being found at 16.8 m). Pumping rates from the well records reviewed averaged about 56 L/min.

For the well records depicted to be located on the Site, bedrock was reported at depths ranging from 1 m to 3 m. Three (3) of the wells were completed to depths ranging from 20m to 27m and the remaining three (3) were completed to depths of 76m to 93m. The Site wells are discussed further in section 3.3.

No dug / bored wells or drilled overburden wells were identified in our review of available records. **Table 2.1** summarizes the data reviewed in the well records within 500 m of the Site:

Well Use	Well Type/Unit	No. Wells	Well Depth Min – Max (Avg) (mbgs)	Water Encountered Depth Min – Max (Avg) (mbgs)	Static WL Min – Max (mbgs)	Yield Min – Max (Avg) (L/min)
Water Supply	Overburden – Dug/Bored	0 (0%)				
Water Supply	Overburden – Drilled	0 (0%)				
Water Supply	Bedrock	13 (100%)	14.0 – 93.0 (45.2)	8.5 – 90.5 (36.5)	0 – 10.7 (5.7)	7.6 – 151 (56.2)
Total		13				
Abandoned or Monitoring Wells	Drilled	7	NA	NA	NA	NA

Table 2.1 Summary of MECP Well Record Data

Notes: Data based on MECP well record information (refer to Appendix A for well information).

2.3.1 MECP Well Records On-Site

As previously indicated, ten (10) of the well records are depicted to be on the Site based upon a search of the publicly available MECP well records. The records consist of four (4) abandonment records and six (6) water supply wells. During the fieldwork of this hydrogeological assessment, GHD observed four (4) water supply wells on Site. These wells are denoted as TW-1, M-1, TW-2 and Donut Factory Well based upon the locations observed by GHD and graphically illustrated on the **Well Locations Plan, Figure 2**. A new well was installed recently at the Property adjacent to the office with the intent to replace TW-1 and M-1 as the supply well. The new well is identified as TW-3 (A395610) in this report and is included in **Appendix A**.

Well records were not provided to GHD for the onsite wells identified as TW-1, M-1, TW-2 and Donut Factory Well. GHD attempted to match the MECP database well records with the wells located on the Site. Without well tags on the wells on site, GHD was not able to exactly match the well records within the MECP database with the four (4) supply wells observed at the Site. It should be noted that coordinates provided for historical well records are typically not of survey grade quality, thus the locations shown on the well records may not always be accurate. **Table 2.2** summarizes the well records from the MECP database that are indicated to be on the Site.

T-11-00	
Table 2.2	Summary of On-Site MECP Well Record Data

	W/cll	Date		Deperted	Well		Casing	Well	Yield Min –	
Well ID	Well Tag	Completed (yyyy/mm/dd)	Status	Reported Use	Туре	Dia. (m)	Material	Depth (m)	Depth (m)	Max (Avg) (L/min)
7045997	A035017	2007/05/31	Abandoned	No Data	No Data	0.15	No Data			
7046030	A035018	2007/05/30	Abandoned	No Data	No Data	0.20	No Data			
1507664	No Data	1961/01/10	Water Supply	Domestic	Bedrock	0.15	No Data	4.3	22.9	11.3
1512297	No Data	1972/09/08	Water Supply	Irrigation	Bedrock	0.15	Steel	6.4	87.5	26.5
1512298	No Data	1972/09/12	Water Supply	Commercial	Bedrock	0.15	Steel	6.7	93.0	68.0
1514164	No Data	1974/05/27	Water Supply	Industrial	Bedrock	0.15	Steel	6.7	27.4	45.4
1514335	No Data	1974/10/07	Abandoned	Supply well	Bedrock	0.15	Steel	6.7	68.6	No Data
1514336	No Data	1974/10/09	Water Supply	Industrial	Bedrock	0.15	Steel	6.4	76.2	75.6
1516652	No Data	1978/08/04	Water Supply	Commercial	Bedrock	0.20	Steel	6.1	19.8	18.9
1535357	A012448	2004/10/28	Abandoned	No Data	No Data			No Data		

2.4 **Previous Investigations**

The draft report entitled "Terrain and Hydrogeological Assessment, Proposed Replacement Septic Sewage Disposal Systems, Continental Mushroom Corp" prepared by Golder Associates in May 1996 was reviewed as part of this investigation. The test pits documented in this report were utilized, where applicable, in this hydrogeological assessment.

3. Field Methodology

To achieve the purposes of this assessment, the following field activities were undertaken:

- Prepared and implemented a Health and Safety Plan for the field activities;
- Conducted a Site inspection of the Site water supply wells and conditions;
- Completed aquifer performance testing of two (2) water supply wells (denoted as TW-2 and TW-3 (A395610) in this report) and conducted water level monitoring of observation wells; and
- Collected groundwater samples for parameters prescribed in the City of Ottawa's document *Hydrogeological and Terrain Analysis Guidelines*, dated March 2021.

3.1 Health and Safety

For projects that incorporate field activities, GHD conducts Health and Safety planning. For this project, a site-specific Health and Safety Plan (HASP) was prepared and implemented during the field activities. The HASP presents the visually observed Site conditions to identify potential physical hazards to field personnel. Required personal protective equipment was also listed in the HASP. It is mandatory for GHD personnel involved in the field program, to read and have a copy of the HASP available at the Site.

3.2 Site Inspection

GHD observed the general surficial characteristics of the Site and neighbouring lands on October 14, 2022. The Site consisted of various structures, warehouses, asphalt and gravel parking areas while the surrounding area was observed to consist of forested areas, agricultural fields and few residential lots. Photographs are provided in **Appendix B**.

GHD observed four (4) drilled water supply wells on the Site during our site inspection. Two (2) drilled wells were located within well pits (TW-1, M-1, and Donut Factory Well) and one (1) was located above grade within a pump house (TW-2). New well TW-3 with well tag A395610 was installed on May 7, 2024 by Air Rock Drilling Co. Ltd

An unnamed tributary of the North Castor River is located along the eastern and northern portions of the Site. Five (5) surface water and compost wastewater lagoons are located in the central portion of the Site. Wetland areas, as indicated by the Canadian Wetland Inventory (CWI) database, are located on the northern portion of the Site and adjacent to the east of the Site. Visual observations at the time of the assessment noted that the wetlands indicated along the northern portion of the Site were not immediately apparent and may no longer exist as a result of local agricultural operations.

The nearest surface water body is the Middle Castor River located approximately 1.8 km southeast of the Site.

3.3 Aquifer Performance Testing

GHD conducted a pumping test of an existing well, denoted as TW-2 for this report, on October 27, 2022. A second pumping test was conducted on May 14, 2024, of a new drilled well installed at the Site on May 7, 2024, identified in this report as TW-3 (A395610). The following sections provide details regarding the aquifer performance testing.

3.3.1 Test Well Information

Two (2) drilled wells on the Site were utilized for assessment of the local aquifer via pumping tests (TW-2 and TW-3). A well record was not provided to GHD for TW-2. A well record was provided for TW-3 (A395610) (refer to **Appendix A**). There are MECP Well records for the Site plotted in general proximity of the observed well locations; however, some of the wells were installed prior to the requirement for a well identification tag to be affixed to the well casing. GHD was not able to definitively match the well record information to the measured data collected from the wells. Two (2) other wells were used as observation wells, labelled as M-1 and TW-1 for this assessment, with water level monitoring completed during the testing activities. Wells M-1 and TW-1, as well as Donut Factory well (not tested), are to be abandoned in accordance with Ontario Regulation 903¹ (O.Reg. 903). The locations of TW-2, TW-3 (A395610), M-1, TW-1, and Donut Factory well as identified in the field by GHD are illustrated on **Figure 2**.

Test well TW-2 was observed to be a drilled well extending above grade by 0.4 m and was located in a pump house. The measured well depth was 98.6 mbgs. An existing submersible pump was outfitted in the well and installed to an unknown depth. Inside the pump house was the plumbing and pressure tank for water distribution.

Test well TW-3 (A395610) was observed to be a drilled well extending above grade by 0.6 m. The measured well depth was 79.2 mbgs.

Observation well M-1 was observed to be a drilled well located with a concrete well pit that extended above grade by 0.2 m. The well depth was measured to be 47.7 mbgs.

Observation well TW-1 was observed to be a drilled well located with a concrete well pit that extended above grade by 0.2 m. The measured well depth was approximately 47.7 mbgs. An existing submersible pump was outfitted in the well and installed to an unknown depth. Adjacent to the well pit was a pump house that housed the plumbing and pressure tank for water distribution.

¹ Ontario Ministry of the Environment, 1990. Ontario Regulation 903: Wells (Ontario Water Resources Act, as amended).

As previously mentioned, well records were not provided to GHD for TW-1, TW-2, or M-1. With regards to construction details of the test wells and to assess compliance with O.Reg. 903, GHD was unable to reconcile the well records indicated to be on the Site with the actual test wells on Site. The well records indicate construction dates in the 1970s, prior to O.Reg. 903. Based upon the wells outlined in Table 2.2, the well records indicate that the wells installed and mapped to the Site were constructed with 0.15 m diameter steel casings that were installed to depths of 6 m or greater.

TW-1, M-1, and Donut Factory well will be abandoned by a licensed well contractor. A new drilled well (TW-3 A395610) was installed on the south side of the office building and is to be used as the potable water source for the office moving forward. The new well was constructed in accordance with O.Reg. 903 with consideration of the hydrogeological sensitivity of the Site. The casing was extended to 30m as a nearby study for the Village of Metcalfe completed by Golder Associates in 2003 for the City of Ottawa indicated that the preferred water source was to access the deeper aquifer and have 30m of casing to mitigate the potential interconnection of shallow sources of contamination with aquifers tapped by a well.

TW-2 is to be used solely for firewater and not as a potable water source for the Site and buildings.

O.Reg. 903 requires that the well owner must maintain the well at all times after the completion of the well's structural stage in a way that prevents surface water and other foreign materials from entering the well. Future changes or alternations to the wells will need to be completed in accordance with O.Reg. 903. Based on our observations, it is recommended that the wells constructed within pits be outfitted with pitless adaptors, the casings raised above the ground surface a minimum of 40 cm and fitted with vermin proof lids, and the ground surface graded away from the well. The well located within the pump house should have a new vermin proof well seal installed with any holes sealed or plugged. Wells that are not being used or maintained for future use as a well should be abandoned in accordance with O.Reg. 903.

3.3.2 Pumping Test Methodology

GHD completed a constant rate pumping test of well TW-2 on October 27, 2022, and TW-3 (A395610) on May 14, 2024. The pumping tests were conducted to assess aquifer conditions.

The pumping test for test well TW-2 was conducted for six (6) hours at a constant rate of 26.5 L/min (7 US gpm) which equates to a volume of 9,540 L of water pumped from the test well. The pumping test for TW-3 (A395610) was conducted for twelve (12) hours at a constant rate of 68.1 L/min (18 US gpm) which equates to a volume of 49,032 L of water pumped from the test well. Recovery measurements were collected after the pumping was completed.

Submersible pumps were used to conduct the testing. Water levels in the pumped water wells and observation wells were monitored throughout the aquifer performance testing. Measurements were collected manually and using data loggers to evaluate drawdown, recovery and the potential of mutual interference. The discharge water was directed away from the pumped wells a distance of about 30 m downgradient and away from wells used for observation monitoring. This practice safeguards against artificial recharge of the wells from occurring during the pumping tests.

The pumped water wells were chlorinated in advance of the pumping test. Non-detect chlorine levels were confirmed in the field prior to bacteria sampling conducted at the water wells.

Water samples were collected throughout the testing and submitted to ALS Limited (ALS) in Ottawa, a CALA accredited analytical laboratory for the testing. Water samples were collected after 1 hour and 6 hours of testing, as well as 12 hours of testing for test well TW-3 (A395610), for the following parameters:

- Polycyclic aromatic hydrocarbons (sampled after 6 hours of pumping);
- Volatile organic compounds (sampled after 6 hours of pumping);
- Petroleum hydrocarbons fractions F1 F4 (sampled after 6 hours of pumping);
- Organochlorine (OC) pesticides (sampled after 6 hours of pumping);
- Trace metals (filtered) (sampled after 1 and 6 hours of pumping);
- Bacteriological parameters including total coliform and E.coli (sampled after 6 hours of pumping); and

• General chemistry parameters (sampled after 6 hours of pumping).

Field measurements of methane, pH, temperature, free chlorine, turbidity, and conductivity were completed with a Horiba multiparameter meter, colorimeter and methane meter. Water levels were collected from the wells using audible water level meters and data loggers.

4. Geology and Hydrogeology

The following sections provide a detailed description of the geology and hydrogeology of the Site based on available information.

4.1 Site Geology

GHD did not conduct a subsurface soil investigation as part of this assessment. Based upon information reviewed from the water well records, the local geology generally consists of overburden comprised of clay with sand and boulders underlain by limestone and sandstone bedrock. Overburden thickness in the area appears to range from surface to about 4 mbgs.

A draft Terrain and Hydrogeological Assessment was previously completed at the Site by Golder Associates in 1996. The Terrain and Hydrogeological Assessment involved a subsurface investigation program that explored the subsurface soil conditions by advancing thirteen (13) test pits throughout the Site. Test pits were advanced to 0.9 to 1.4 mbgs near the main office/shipping building and 0.3 to 1.8 mbgs near the production house building at the back of the Site.

The test pits advanced near the main office/shipping building generally encountered topsoil at the surface, underlain by a silty sand till over bedrock. Groundwater was indicated to be encountered at 1 mbgs and was reported to flow towards the north.

The test pits advanced near the production house building at the back of the Site encountered either topsoil or fill at the surface, underlain by either a silty sand or a sand with gravel till over bedrock. Groundwater was reported to conform with the topography in this area which is towards the southeast.

Due to shallow soils over bedrock, the Site would be considered to be hydrogeologically sensitive resulting in an anticipated higher risk for shallow sources of contamination impacting the underlying water resources or downgradient receptors. The Site is within a highly vulnerable aquifer suggesting that contamination from surface sources may impact underlying groundwater due to a lack of sufficient soil above. The primary source of contamination for the development would be the septic system. Mitigative measures include extending the well casing, as discussed in Section 3.3.1, and installation of advanced treatment equipment to improve the quality of the septic effluent.

4.2 Site Hydrogeology

4.2.1 Hydrostratigraphic Units

The hydrostratigraphic units (i.e. aquifer/aquitard unit) underlying the Site include the following based on well records reviewed:

- Thin veneer of overburden generally consisting of topsoil, clay with sand and boulders (not expected to be water bearing).
- Limestone aquifer from about 14 m to 29 m.
- Sandstone aquifer from about 76 m to 93 m.

4.2.2 Groundwater Levels

Water levels were obtained from test well TW-2, and observation wells M-1 and TW-1 on October 26 and 27, 2022 prior to the commencement of the pumping test at TW-2. Water levels were obtained from test well TW-3 (A395610), and the observation wells on May 14, 2024, prior to the commencement of the pumping test. The data is summarized in **Table 4.1**. Based upon the potentiometric groundwater elevations computed from estimated ground elevations, the groundwater flow appears to be in a southeasterly direction. Shallow groundwater flow tapped by monitoring wells was not assessed (note: groundwater elevations are based upon regional topographic contours and are for the purposes of evaluation potentiometric elevations only).

		Ground	Depth	Wat	er Level (mi	Potentiometric	
Location	Description	Elevation* (m)	of Well (mbgs)	10/26/22	10/27/22	05/14/24	Elevation (masl)
TW-1	Drilled well to be abandoned	~91	47.7	8.30	9.05	7.93	~82 - 83
TW-2	Drilled fire water well	~95	98.6	9.69	9.74	7.37	~85 – 88
M-1	Drilled well to be abandoned	~90	47.7	8.83	9.08	8.04	~81 – 82
TW-3 (A395610)	Drilled water supply well	~91	81.1			4.55	~86

Table 4.1 Water Level Summary

Notes:

m = metres; masl = metres above sea level

*Elevations estimated from regional topographic contours provided on **Figure 3**. The elevations provided are for the purposes of evaluating potentiometric elevations and should not be relied upon as a legal survey or topographic elevation survey.

4.3 Aquifer Performance Assessment

The following sections discuss the pumping test results and coefficients, well interference and water quality.

4.3.1 Pumping Test – TW-2

The pumping test was commenced on October 27, 2022. The results of the constant rate pumping test including field testing data are graphically presented in **Appendix C, Figures C-1 to C-4**.

The water level during the pumping test at TW-2 is illustrated in **Figures C-1** and **C-2** showing water level versus time. The plot shows the water level drop and then recovery quickly within the first 10 minutes. This is the result of flow rate adjustments occurring at the wellhead to obtain a constant rate of 26.5 L/min. At 10 minutes, the rate was adjusted to 26.5 L/min which was maintained for the remaining 6 hours. After six (6) hours of constant pumping, the water level was about 10.7 mbtp (metres below top of pipe). The drawdown was about 0.5 m over the course of the testing with about 88.3 m of available drawdown remaining above the bottom of the well. Approximately 0.5% of the available drawdown was used during the pumping test. A total groundwater volume of about 9,540 L was pumped during the testing.

Recovery measurements were collected manually for 60 minutes after pumping ceased. The water level recovered about 76% in 1 hour and fully recovered 100% in 4 hours and 50 minutes. The estimated transmissivity for TW-2 was 83.9 m²/day (5633 gpd/ft) based on the drawdown and 186.5 m²/day (12517 gpd/ft) based on the recovery period and represents a high transmissivity. The specific capacity for this well is calculated to be 52.9 L/min/m based upon the pumping test completed.

The plotted data indicates the aquifer that this well is tapped into can safely provide long-term quantities of groundwater at a pumping rate of 26.5 L/min (7 US gpm) based upon the pumping test completed.

4.3.2 Pumping Test – TW-3 (A395610)

The water level during the pumping test at A395610 is illustrated in **Figures C-3** and **C-4** showing water level versus time. The plot shows a minimal drawdown of the water level over the course of the 12-hour test conducted at a constant rate of 68.1 L/min. After 12 hours of pumping the water level was 10.8 mbtp. The maximum drawdown was about 0.5 m over the course of the testing with about 70.1 m of available drawdown remaining above the well. Approximately 0.7% of the available drawdown was used during the pumping test. A total groundwater volume of about 49,000 L was pumped during the testing.

Recovery measurements were collected manually for 60 minutes after pumping ceased. The water level recovered about 90% in an hour and recovered to about 96% in 12 hours. The estimated transmissivity of the pumped water well was 43.2 m²/day (2,897 gpd/ft) based on the drawdown and 48.0 m²/day (3,219 gpd/ft) based on the recovery period and represents a relatively moderate to high transmissivity. The specific capacity for this well is calculated to be 12.0 L/min/m based upon the pumping test completed.

The plotted data indicates the aquifer that this well is tapped into can safely provide long-term quantities of groundwater at a pumping rate of 68.1 L/min (18 US gpm) based upon the pumping test completed.

4.3.3 Summary of Aquifer Performance

Table 4.2 summarizes the data and coefficients obtained from the pumping tests.

Well No.	Step No.	Yield		Test Type	lime		Maximum drawdown		Available Drawdown*		Specific Capacity		Estimated Transmissivity	
NO.	NO.	gpm	L/min		min	feet	metres	feet	metres	gpm/ft	L/min/m	gpd/ft	m²/day	
	1	0	0	Static	0	0	0	291.3	88.8					
TW-2	2	var	rious		10	10								
100-2	3	7	26.5	Const.	360	1.6	0.5	289.7	88.3	4.27	52.9	5633	84.0	
	4	0	0	Recvy.	360 1.6 0.5 289.7 88.3 4.27 52.9 76% recovery in 1 hour; 100% recovery in 4 hours 50 minutes	12517	186.5							
TW-3	1	0	0	Static	0	0	0	231.6	70.6					
(A395	2	18	68.1	Const.	360	1.6	0.5	230.0	70.1	0.97	12.0	2897	43	
610)	3	0	0	Recvy.			96% reco	overy afte	r 12 hours	\$		3219	48	

Table 4.2 Aquifer Performance Testing Summary

Notes:

gpm = US gallons per minute; gpd/ft = gallons per day per foot

"Recvy" refers to Recovery measurements; "Const" refers to the Constant Rate test conducted for 360 minutes.

*Available Drawdown refers to the height of water in the well above the bottom.

4.3.4 Water Quality

Groundwater samples from the pumped wells were obtained for laboratory testing during the course of the pumping test for the purpose of water quality analyses. TW-2 was sampled after one (1) hour and at six (6) hours at the end of the constant rate test on October 26 and 27, 2022. TW-3 (A395610) was sampled after one (1) hour, six (6) hours and at twelve (12) hours at the end of the constant rate test on May 14, 2024. The water samples were delivered to ALS in Ottawa. Certificates of chemical analyses are presented in **Appendix D**. The water quality data are summarized and compared with the Ontario Drinking Water Standards (ODWS)² in **Table 4.3**.

² Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines. June 2003, revised June 2006.

	-	Vater Well V-2	Р	umped Water We TW-3)	OĽ	WS
Parameter	1 hr (GW-003)	6 hr (GW-004)	1 hr (GW- 12586015- A365610-001)	6 hrs (GW- 12586015- A365610-002)	12 hrs (GW- 12586015- A365610-003	MAC / IMAC	AO/OG
Bacteriological (Colony	Forming Units)						
Total Coliform		<1			2	Not detectable	NS
E.coli		<1			<1	Not detectable	NS
Background		1			52	NS	NS
Heterotrophic Plate Count		1			34	NS	NS
Semi-Volatile Organic C	ompounds (µg/l	L)	1	1	<u> </u>		
Acenaphthene		<0.20			<0.010	NS	NS
Acenaphthylene		<0.20			0.016	NS	NS
Anthracene		<0.20			<0.010	NS	NS
Benzo(a)anthracene		<0.20			<0.010	NS	NS
Benzo(a)pyrene		<0.044			<0.0050	0.01	NS
Benzo(b+j)fluoranthene		<0.10			<0.010	NS	NS
Benzo(ghi)perylene		<0.20			<0.010	NS	NS
Benzo(k)fluoranthene		<0.10			<0.010	NS	NS
Chrysene		<0.10			<0.010	NS	NS
Dibenzo(a,h)anthracene		<0.20			<0.0050	NS	NS
Fluoranthene		<0.20			<0.010	NS	NS
Fluorene		<0.20			<0.010	NS	NS
Indeno(1,2,3-cd)pyrene		<0.20			<0.010	NS	NS
1-Methylnaphthalene		<0.40			0.082	NS	NS
2-Methylnaphthalene		<0.40			0.144	NS	NS
Naphthalene		<0.20			0.158	NS	NS
Phenanthrene		<0.20			<0.020	NS	NS
Pyrene		<0.20			<0.010	NS	NS
Volatile Organic Compo	unds (µg/L)	1	1	1		1	
Acetone		<20			<20	NS	NS
Bromomethane		<0.50			<0.50	NS	NS
Carbon tetrachloride		<0.20			<0.20	5	NS
Chlorobenzene		<0.50			<0.50	NS	NS
Chloroform		<0.50			<0.50	NS	NS
1,2-Dichlorobenzene		<0.50			<0.50	20	3
1,3-Dichlorobenzene		<0.50			<0.50	NS	NS
1,4-Dichlorobenzene		<0.50			<0.50	5	1
Dichlorofluoromethane		<0.50			<0.50	NS	NS

Table 4.3 Test Well Water Quality Summary – TW-2 and TW-3

	-	Vater Well V-2	Р	umped Water We TW-3	ell	O	ows
Parameter	1 hr (GW-003)	6 hr (GW-004)	1 hr (GW- 12586015- A365610-001)	6 hrs (GW- 12586015- A365610-002)	12 hrs (GW- 12586015- A365610-003	MAC / IMAC	AO/OG
1,1-Dichloroethane		<0.50			<0.50	NS	NS
1,2-Dichloroethane		<0.50			<0.50	5	NS
1,1-Dichloroethylene		<0.50			<0.50	NS	NS
trans-1,2- Dichloroethane		<0.50			<0.50	NS	NS
cis-1,2-Dichloroethane		<0.50			<0.50	NS	NS
1,2-Dichloropropane		<0.50			<0.50	NS	NS
Ethylene Dibromide		<0.20			<0.20	NS	NS
Hexane		<0.50			<0.50	NS	NS
Methyl Ethyl Ketone		<20			<20	NS	NS
Methyl Isobutyl Ketone		<20			<20	NS	NS
Methyl Tert-Butyl Ether		<0.50			<0.50	NS	NS
Methylene Chloride		<1.0			<1.0	NS	NS
Styrene		<0.50			<0.50	NS	NS
Tetrachloroethylene		<0.50			<0.50	30	NS
1,1,1,2- Tetrachloroethane		<0.50			<0.50	NS	NS
1,1,2,2- Tetrachloroethane		<0.50			<0.50	NS	NS
1,1,1-Trichloroethane		<0.50			<0.50	NS	NS
1,1,2-Trichloroethane		<0.50			<0.50	NS	NS
Trichloroethylene		<0.50			<0.50	5	NS
Trichlorofluoromethane		<0.50			<0.50	NS	NS
Vinyl Chloride		<0.50			<0.50	2	NS
Benzene		<0.50			<0.50	5	NS
Toluene		<0.50			<0.50	NS	24
Ethylbenzene		<0.50			<0.50	NS	2.4
Xylenes		<0.50			<0.50	NS	300
Bromodichloromethane		<0.50			<0.50	NS	NS
Bromoform		<0.50			<0.50	NS	NS
Dibromochloromethane		<0.50			<0.50	NS	NS
Petroleum Hydrocarbon	s						
PHC F1 (C ₆ – C ₁₀)		<25			<25	NS	NS
PHC F2 (C ₁₀ – C ₁₆)		<100			<100	NS	NS
PHC F3 (C ₁₆ – C ₃₄)		<250			<250	NS	NS
PHC F4 (C ₃₄ – C ₅₀)		<250			<250	NS	NS
Trace Metals (dissolved)) (mg/L)						
Aluminum	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	NS	0.1

		Vater Well V-2	Р	umped Water We TW-3	9 11	ODWS		
Parameter	1 hr (GW-003)	6 hr (GW-004)	1 hr (GW- 12586015- A365610-001)	6 hrs (GW- 12586015- A365610-002)	12 hrs (GW- 12586015- A365610-003	MAC / IMAC	AO/OG	
Arsenic	<0.0010	<0.0010	<0.00010	<0.00010	<0.00010	0.025	NS	
Boron	0.077	0.077	0.068	0.068	0.068	5	NS	
Barium	0.149	0.149	0.119	0.115	0.112	1	NS	
Beryllium	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	NS	NS	
Cobalt	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	NS	NS	
Calcium	97.5	96.9	89.0	85.7	85.1	NS	NS	
Cadmium	<0.0000050	<0.0000050	<0.000050	<0.000050	<0.000050	0.005	NS	
Copper	0.00115	0.00035	0.00042	<0.00020	0.00072	NS	1	
Chromium	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.05	NS	
Magnesium	35.5	36.1	33.4	33.2	33.5	NS	NS	
Manganese	0.0413	0.0420	0.0344	0.0330	0.0341	NS	0.05	
Molybdenum	0.00593	0.00604	0.00959	0.00965	0.00996	NS	NS	
Nickel	0.00063	<0.00050	<0.00050	<0.00050	<0.00050	NS	NS	
Sodium	28.0	28.8	21.5	21.5	21.4	NS	200 (20*)	
Lead	0.000103	<0.000050	<0.000050	<0.000050	<0.000050	0.01	NS	
Silver	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	NS	NS	
Strontium	2.06	2.05	1.72	1.81	1.84	NS	NS	
Thallium	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	NS	NS	
Antimony	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.006	NS	
Selenium	0.000110	0.000141	0.000180	0.000298	0.000127	0.01	NS	
Uranium	0.000249	0.000246	0.000290	0.000313	0.000360	0.02	NS	
Vanadium	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	NS	NS	
Zinc	0.0137	0.0066	0.0022	<0.0010	<0.0010	NS	5	
General Chemistry Para	ameters (units lis	sted per parame	ter)	1	1	1	1	
Tannin + Lignin (mg phenol/L)		0.86	0.86	0.82	0.83	NS	NS	
Alkalinity (mg/L as CaCO ₃)		269	276	269	270	NS	30 – 500	
рН		8.43	8.39	8.19	8.06	NS	6.5 - 8.5	
Conductivity (µS/cm)		790	746	793	786	NS	NS	
Total Dissolved Solids (mg/L)		495	427	452	418	NS	500	
Colour (TCU)		2.9	3.9	<2.0	<2.0	NS	5	
Turbidity (NTU)		0.10	0.94	0.14	1.69	NS	5	
Total Kjeldahl Nitrogen (mg/L)		0.194	0.207	0.205	0.187	NS	NS	
Ammonia + Ammonium (mg/L)		0.125	0.0945	0.0923	0.0917	NS	NS	
Nitrite (as N mg/L)		<0.020	<0.010	<0.010	<0.010	1	NS	

	-	Vater Well V-2	Р	umped Water We TW-3)	ODV	OWS
Parameter	1 hr (GW-003)	6 hr (GW-004)	1 hr (GW- 12586015- A365610-001)	6 hrs (GW- 12586015- A365610-002)	12 hrs (GW- 12586015- A365610-003	MAC / IMAC	AO/OG
Nitrate (as N mg/L)		<0.010	<0.020	<0.020	<0.020	10	NS
Chloride (mg/L)		67.0	50.6	50.0	49.7	NS	250
Hydrogen Sulphide		0.019	0.014	<0.011	<0.011	NS	0.05
Sulphide (mg/L)		0.018	0.013	<0.010	<0.010	NS	NS
Sulphate (mg/L)		62.5	57.6	57.2	57.0	NS	500
Dissolved Organic Carbon (mg/L)		1.98	2.54	31.1	2.13	NS	5
Hardness (mg/L as CaCO₃)		391	360	351	350	NS	80 – 100
Potassium		5.14	3.94	3.83	4.01	NS	NS
OC Pesticides				1			
Diazinon		<0.10			<0.0250	NS	NS

Notes:

"<" indicates concentrations are less than laboratory reporting limits

MAC = maximum acceptable concentration; IMAC - Interim MAC; AO / OG = aesthetic objective / operational guideline

NS = No Standard

Bold / shaded indicates the concentration exceeds the ODWS

*The aesthetic objective for sodium in drinking water is 200 mg/L. When the sodium concentration exceeds 20 mg/L, this information should be communicated to those on sodium restricted diets.

The laboratory analyses indicated that total coliform was reported in the TW-3 (12 hr) sample with a value of 2 colony forming units (CFU). Detectable CFUs below a value of 5 is generally not considered to be significant as it can be a result of incomplete disinfection of sampling equipment (in this case the temporary pump and line installed for testing purposes), sampling bottles or laboratory error. Based on the length of the casing of the well, the depth of the well and the lack of other indicators of surface water influence, total coliform presence in the aquifer is unlikely. Once the permanent pump and plumbing is attached, the system should be disinfected as per the MECP Water Supply Wells: Requirements and Best Practices. In our opinion, the laboratory results of 2 CFU for total coliforms is not a concern for this development.

No other notable health-related parameters were detected or in exceedance of the ODWS. In general, the test results indicate the majority of parameters meet the ODWS for TW-2 and TW-3 with the exception of the aesthetic objective for:

Hardness (TW-2 and TW-3).

Sample results for VOCs, PAHs, PHCs and OC Pesticides were reported below detection limits.

Overall, the analytical results indicate TW-2 and TW-3 have similar water quality with only hardness above its ODWS AO. Elevated hardness is a common trait of groundwater supplies in Southern Ontario and can be treated using commercially available treatment equipment such as a water softener. Although hardness in excess of 300 mg/L at TW-2 and TW-3 and is considered very hard, a maximum treatable value is not provided within the D-5-5 Guideline. However, the Ontario Drinking Water Objective states that water with hardness in excess of 500 mg/L (TW-1) is unacceptable for most domestic purposes.

To supplement the analytical data, field measurements were obtained throughout the pumping test by GHD as shown on **Figures C-3** and **C-7** and **Tables 4.4** and **4.5**.

Table 4.4Field Parameters TW-2

Parameter	Units	Reading at 1 hr	Reading at 6 hrs
рН	pH units	8.25	8.20
Temperature	°C	10.5	10.9
Conductivity	mS/cm	1.15	1.11
Turbidity	NTU	0.00	0.00
Free Chlorine	mg/L	0.00	0.00
Methane	% LEL	0	0

Table 4.5 Field Parameters TW-3

Parameter	Units	Reading at 1 hr	Reading at 6 hrs	Reading at 12 hrs
рН	pH units	6.93	7.50	7.53
Temperature	°C	11.9	13.0	12.5
Conductivity	mS/cm	0.697	0.690	0.699
Turbidity	NTU	0.00	0.00	0.00
Free Chlorine	mg/L	0.00	0.00	0.00
Methane	% LEL	0	0	0

4.3.5 Well Interference

In order to assess the potential for hydraulic connection between the pumped water supply wells and local area wells, monitoring was conducted of the drilled test wells and drilled observation well throughout the pumping tests. Data loggers were installed within TW-2, TW-3, and M-1. The data is provided in **Appendix E**.

The approximate linear distances between the pumped water wells and observation well are provided in **Table 4.6** based upon the locations plotted on **Figure 2**.

Table 4.6 Distance Between Pumping Well and Observation Wells

Location	Distances between Pumped Water Wells and Observation Wells (metres)						
Location	TW-3	TW-2	M-1				
Pumped Well – TW-2	162		157				
Pumped Well – TW-3		162	96				
Observation Well – M-1	96	157					

Notes:

Distances based upon locations identified on Well Locations Plan, Figure 2.

The following table provides the maximum water level drawdowns observed during the pumping tests.

Table 4.7 Maximum Drawdowns in Pumping and Observation Wells

Pumped Well Location		Drawdown (m)						
	TW-1	TW-2	M-1	TW-3				
TW-2	-0.03	-0.6*	0					
TW-3	0	-0.8	0	-5.7*				

Notes:

Negative drawdown (denoted by minus sign and shaded cell) indicates water level lowered during the testing. Asterisk (*) indicates drawdown during pump test.

4.3.5.1 Interference Assessment

There was minimal drawdown observed during the pumping tests conducted at the wells indicating there is little hydraulic connection between the wells within the bedrock aquifer.

As daily usage is expected to be well below the volumes pumped during the testing conducted, it is our opinion that there is sufficient water quantity below the Site for the planned development without significant interference risk to future and existing neighbouring wells.

5. Water Usage Assessment

It is understood by GHD that the current proposed usage will be a warehouse that will be utilized to store and distribute garden products, with no processing on the Site that would require greater water usage. The proponent has indicated that they do not use water in their production processes. The concrete and steel storage are storage bunkers used for bulk raw materials and no water usage. Additional storage buildings to the north of the bunkers will have no water usage. The green building, which is planned for use in production, will be incidental use only (i.e. power washer on rare occasion) and the Main office / Warehouse is where they will have offices and therefore needs water only for washrooms and employee facilities.

As per the City of Ottawa Zoning By-law No. 2008-250, the usage would be considered Rural General Industrial Zone designation with the Site being considered a warehouse. The water usage would be related to general cleaning, washroom or kitchen purposes. Staffing is proposed to consist of 2 to 5 staff to start with a potential growth of 10 to 15 staff. The proponent has indicated that this would be a maximum number of staff and that the planned processes, current and future, do not require water.

To assess the potential water usage reference is made to Section 8 of the Ontario Building Code, subsection 8.2.1.3. – Sewage System Design Flows. Water usage for a warehouse with 15 staff, three (3) loading bays and 260m² of office space water usage would be on the order of 2,550 litres per day. It is to be noted that designs flows are generally conservative in nature with actual daily usage typically 2 to 3 times less. **Table 5.1** provides the calculations that were utilized to estimate the maximum daily water usage of the proposed development.

Volume (L)	Establishment	Quantity	Water Usage (L)
75	Office Building: per each 9.3 m ² of floor space	260 m² / 9.3 m² ≈ 28	2,100
150	Warehouse: Per loading bay	3	450
		TOTAL:	2,550

Table 5.1 Water Usage

A newly drilled well referred to as TW-3 in this report has a well tag of (A395610). The pumping test for TW-3 (A395610) was conducted for twelve (12) hours at a constant rate of 68.1 L/min (18 US gpm) which equates to a volume of 49,032 L of water pumped from the test well. There is more than sufficient water for the current proposed use and reasonable capacity if needed in the future.

6. Impact Assessment

A Predictive Assessment for an Industrial / Commercial Development (Section 5.6.3 of the MOE D-5-4 Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment) was completed. This guideline only applies to industrial / commercial developments which have an average daily flow of less than 4,500 L/day/lot. The current system design indicates 2,550 L/day. The sewage assessed for the Site is to consist of domestic wastes only, no industrial / commercial cooling or process wastewater was considered.

For the purposes of calculating the potential impact of the proposed development, 2,550 L/day for the warehouse is considered to be the design septic effluent loading rate. Appendices 9.3.1 and 9.3.2 of the MOEE's "Manual of Policy, Procedures and Guidelines for On-Site Sewage Systems indicate daily sewage flow data for factory or plant workers per day or per shift with no showers or industrial waste at 75 litres. It is understood that there are to be 5 to 10 employees with one shift each, resulting in flow data of 375 to 750 litres per day. This is less than the design flow of 2,550 L/day. The maximum number of users based off 2,550 L/day and utilizing 75 litres per day would be 34.

While most constituents in septic effluent are usually removed within a short distance of movement within soil, mobile constituents such as chlorides and nitrates will require sustained dilution to meet the drinking water standards of 10 mg/L N for nitrate. The MECP normally considers sewage from a Class 4 waste disposal system will contain 40 mg/L of nitrate. For the purpose of assessing the impact of projected nitrate loading, the dilution requirement of 4:1 was utilized in the impact computations.

A summary of the applicable parameters that were considered in the waste disposal evaluation and the computation of the projected nitrate concentration are presented below. The detailed calculations can be reviewed in **Appendix F**. The calculations used a recharge rate of 171 mm/year, considered to be applicable for silty sand material based upon the soils encountered within the test pits advanced previously. The maximum allowable flow rate was calculated by dividing the recharge rate by a factor of three as per D-5-4. Pervious area of the Property was calculated to be 65% while 35% of the area was calculated to be impervious (gravel, asphalt, concrete, building area) and was removed from the infiltration calculations. Nitrate concentrations from the test wells were non-detect. Nitrate impacts to the water bearing aquifers from the development are not expected.

Using dilution only, the nitrate concentration generated from sewage at the Site is calculated to be 6 mg/L indicating that nitrate impacts from septic effluent will not be an issue. The proposed development meets the 10 mg/L drinking water standard for nitrate. The nitrate dilution calculations ignore losses to surface through shallow groundwater discharge, denitrification in the soil and any dilution within the water below the Site. The actual nitrate concentration is expected to be less than the projected nitrate concentration.

Based on review of Site conditions, the Site has a relatively shallow layer of overburden materials underlain by bedrock. Surface water is expected to infiltrate the soils and into the shallow weathered bedrock. Shallow groundwater flow is inferred to conform to topography with flows in the area of the subsurface septic bed towards the tributary to the north-northeast.

The Property is within a highly vulnerable aquifer area and would be considered to be a hydraulically sensitive site due to thin soil cover. No karst, areas of fractured bedrock at surface or highly permeable soils were identified at the Site. The proponent has retained a septic installer that reviewed the existing septic system and has proposed a replacement system. The proposed replacement system is an advanced septic treatment (Norweco HK 3020L-3M) and will utilize the existing septic bed. The advanced treatment system is capable of reducing the nitrates by 50% reducing the nitrate impact calculation to a projection of 3 mg/L. In addition to the nitrate reduction, the potable water well TW-3 was installed with a 30 m casing to protect the water source from potential shallow contamination.

The operation of the on-Site sewage system will not adversely impact the well to be used for potable water on the subject property or existing wells on surrounding properties. The sewage system is isolated from the TW-3 receiving aquifer.

7. Summary and Recommendations

Supporting data upon which our conclusions and recommendations are based have been presented in the foregoing sections of this report. The following conclusions and recommendations are governed by the physical properties of the subsurface materials that were encountered at the Site and assume that they are representative of the overall Site

conditions. It should be noted that these conclusions and recommendations are intended for use by the designers only. Contractors bidding on or undertaking any work at the Site should examine the factual results of the assessment, satisfy themselves as to the adequacy of the information for construction, and make their own interpretation of this factual data as it affects their proposed construction techniques, equipment capabilities, costs, sequencing, and the like. Comments, techniques, or recommendations pertaining to construction should not be construed as instructions to the contractor.

Each test well at the Site was visually inspected and observed to be secure and in good working order. As previously mentioned, well records were not provided to GHD for TW-1, TW-2 or M-1 and GHD was not able to definitively match any of the MECP database well records to the Site wells. With regards to construction details of the test wells and to assess compliance with the O.Reg. 903, the well records indicate construction dates in the 1970s, prior to O.Reg. 903. Based upon the wells outlined in Table 2.2, the well records indicate that the wells installed and mapped to the Site were constructed with 0.15 m diameter steel casings that were installed to depths of 6 m or greater. O.Reg. 903 requires that the well owner must maintain the well at all times after the completion of the well's structural stage in a way that prevents surface water and other foreign materials from entering the well. The Donut Shop Well, TW-1 and M-1 are to be abandoned. The newly installed well TW-3 (A395610) is to be used for the potable water source for the development. Elevated hardness was reported in the water chemistry for TW-3 and can lead to a buildup on plumbing fixtures. Hardness can be reduced through the use of a water softener if desired. Typically, a water softener uses a sodium media to reduce hardness which can result in increased sodium levels in the water and those on a sodium restricted diet should be made aware.

TW-2 is to be used for fire water replenishment only. TW-2 is located within the pump house should have a new vermin proof well seal installed with any holes sealed or plugged. Future changes or alternations to the wells will need to be completed in accordance with O.Reg. 903. Wells that are not being used or maintained for future use as a well should be abandoned in accordance with O.Reg. 903.

Based on the proposed current and future development details provided to GHD, the maximum daily water usage of the proposed development is estimated to be 2,550 L/day that would include up to 15 staff. The client has indicated that there is no process water involved with the operations and has no current plans for water use beyond the office and up to 15 staff. The pumping test at TW-3 was conducted for twelve (12) hours at a constant rate of 68.1 L/min (18 US gpm), providing a total water volume of 49,032 L of water, which substantially exceeds the estimated maximum daily water usage.

It is our professional opinion that the hydrogeologic assessment completed at the Site supports the groundwater needs of ASB's proposed warehouse that will be utilized to store and distribute garden products.

We trust this report meets your immediate needs. Should any questions arise regarding any aspect of our report, please contact our office.

All of Which is Respectfully Submitted,

GHD

Steve Gagne, H.S.Bc. Associate, Project Director

Robert Neck, P.Geo. (Limited) Senior Geoscientist, Project Director

8. References

Chapman and Putnam, 1984. The Physiography of Southern Ontario, 3rd Edition. Ministry of Natural Resources.

City of Ottawa, March 2021. Hydrogeological and Terrain Analysis Guidelines.

Environmental Protection Act, R.S.O. 1990, and associated regulations.

Fetter, C.W., 1994. Applied Hydrogeology, 3rd Edition.

Freeze, R.A. and J.A. Cherry. 1979. Groundwater.

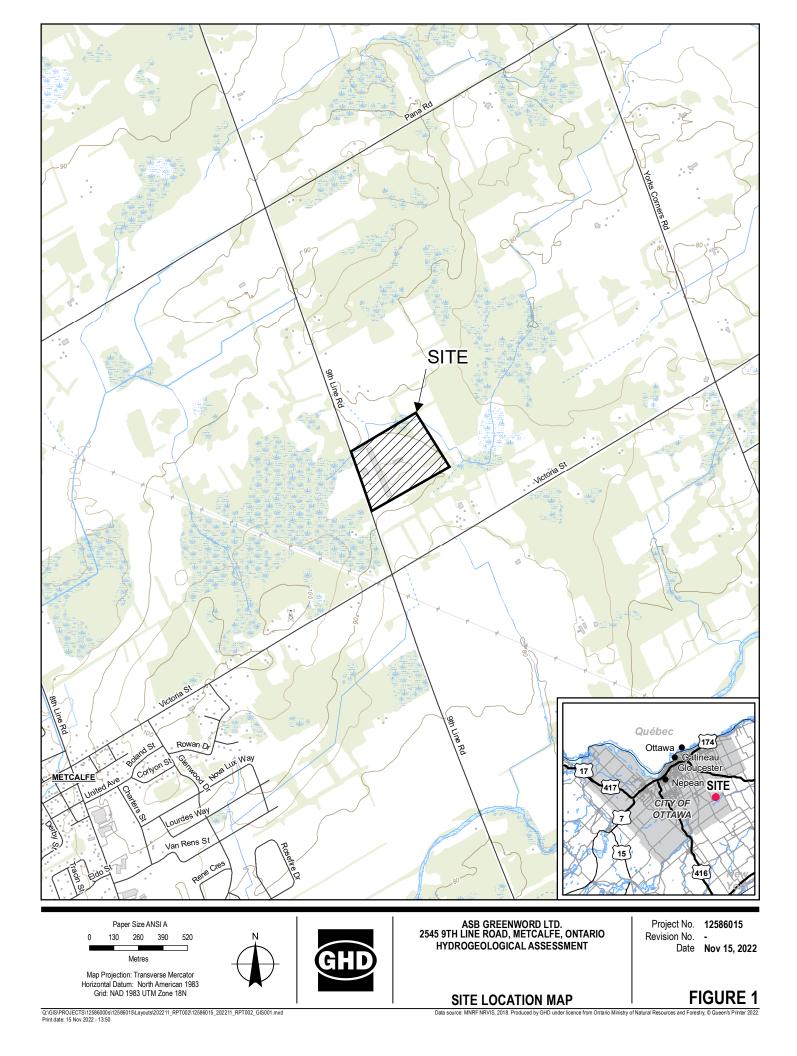
Golder Associates LTD., March 19, 2003, Final Report on Groundwater Assessment and Review of Alternative Servicing Solutions, Village of Metcalfe, City of Ottawa, Onario

Occupational Health and Safety Act, R.S.O. 1990, and associated regulations.

Ontario Geological Survey, 2003. Surficial Geology of Southern Ontario.

- Ontario Ministry of the Environment, 2011. Ontario Regulation 153/04: Records of Site Condition Part XV.1 of the Act (*Environmental Protection Act* 153/04, as amended).
- Ontario Ministry of the Environment. June 2003. Revised June 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines.
- Ontario Ministry of the Environment and Energy. August 1996. D-5-4 Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment.

Ontario Ministry of the Environment and Energy. August 1996. D-5-5 Private Wells: Water Supply Assessment.


9. Statement of Limitations

This report is intended solely for ASB Greenworld Limited in assessing the hydrogeological aspects of the Site (2545 9th Line Road, Metcalfe, Ontario) and is prohibited for use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. Client shall defend, indemnify and hold GHD harmless from any liability arising from or related to Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of hydrogeological engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a hydrogeological study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

Figures

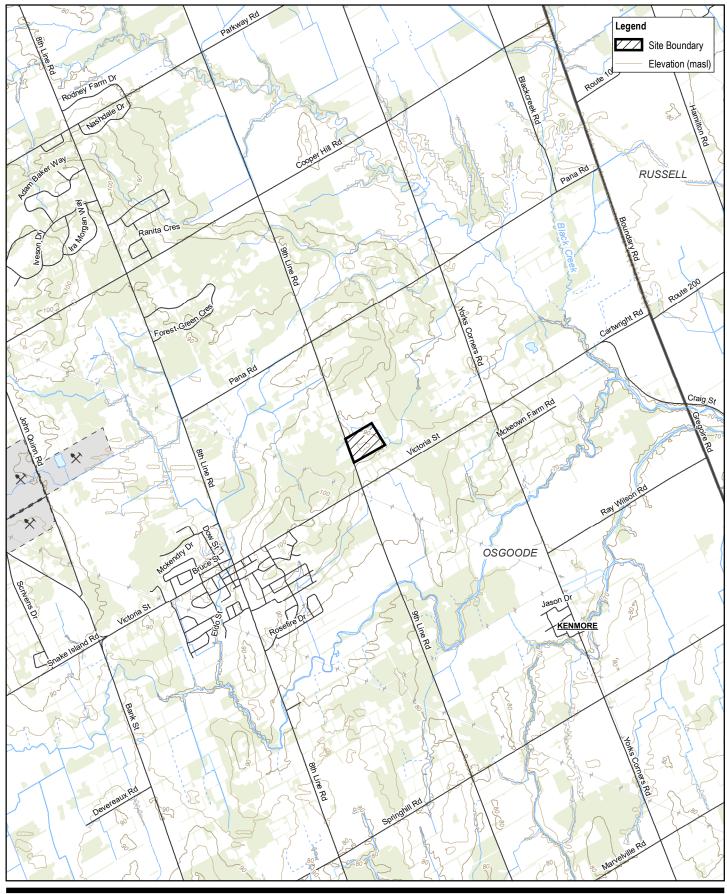
0:\GISIPROJECTSI12586000s\12586015\Layouts\202211_RPT002\12586015_202211_RPT002_GIS002_update.mxd Print date: 28 Jun 2024 - 14:02

Legend

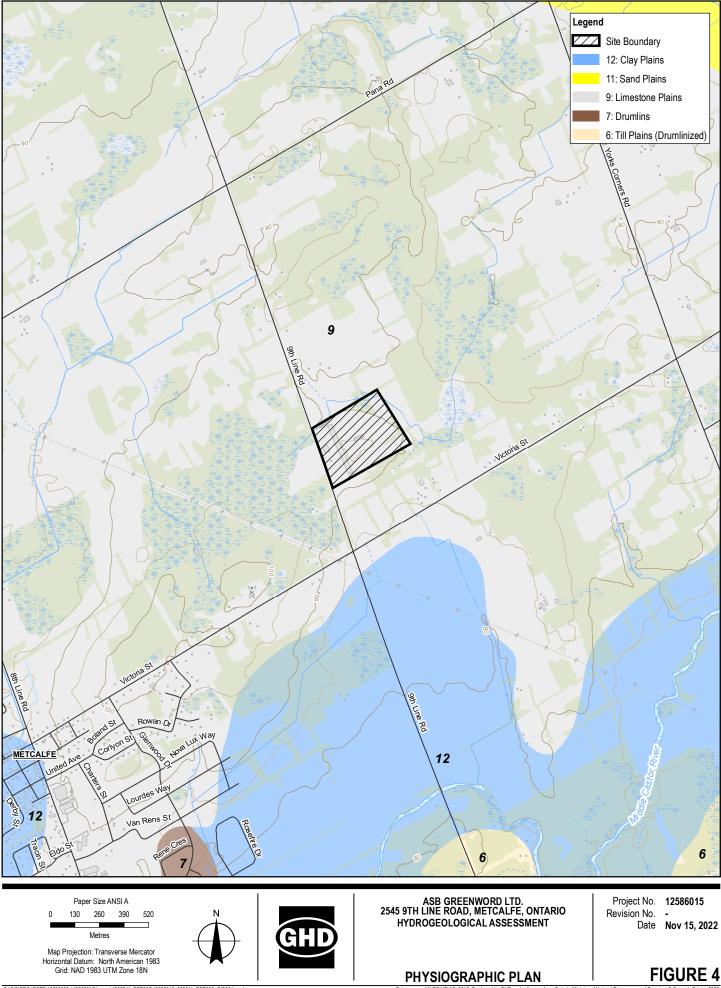
- O Well Location (to be abandoned)
- Septic System (to be replaced) Watercourse
 - Septic Bed
- Property Limit
 - Assessment Parcel

Wetland - Non-Evaluated or Other

ASB GREENWORLD LTD. 2545 9TH LINE ROAD, METCALFE, ONTARIO HYDROGEOLOGICAL ASSESSMENT


Project No. Revision No.

12586015 Date Jun 28, 2024


stry© King's Printer for Ontario, 2022.

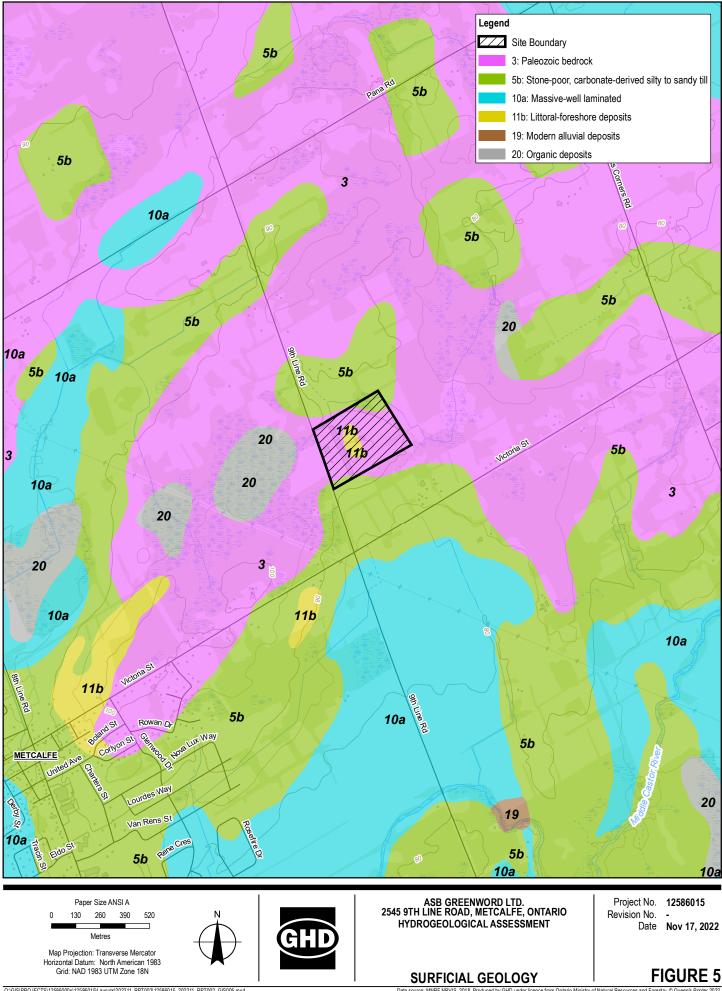
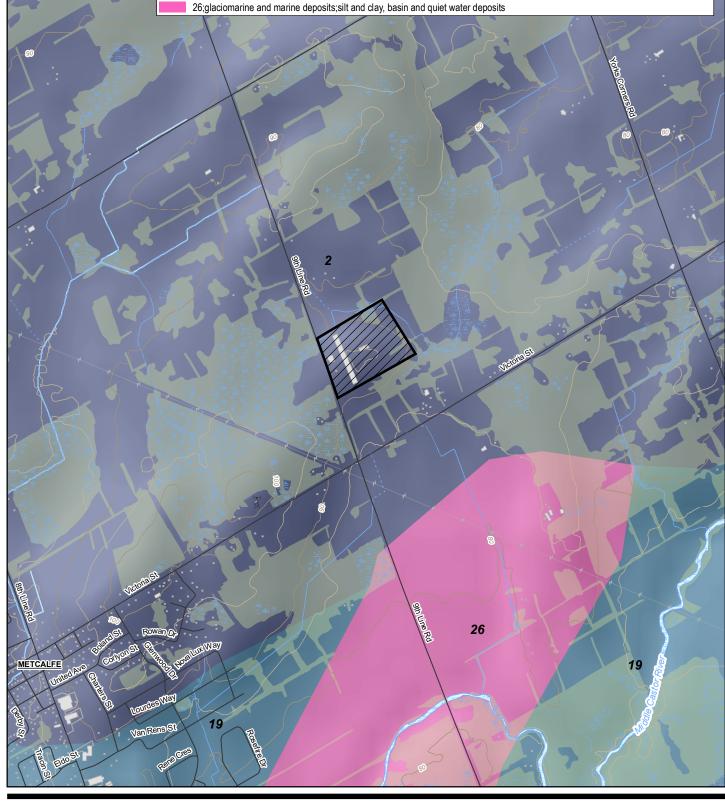
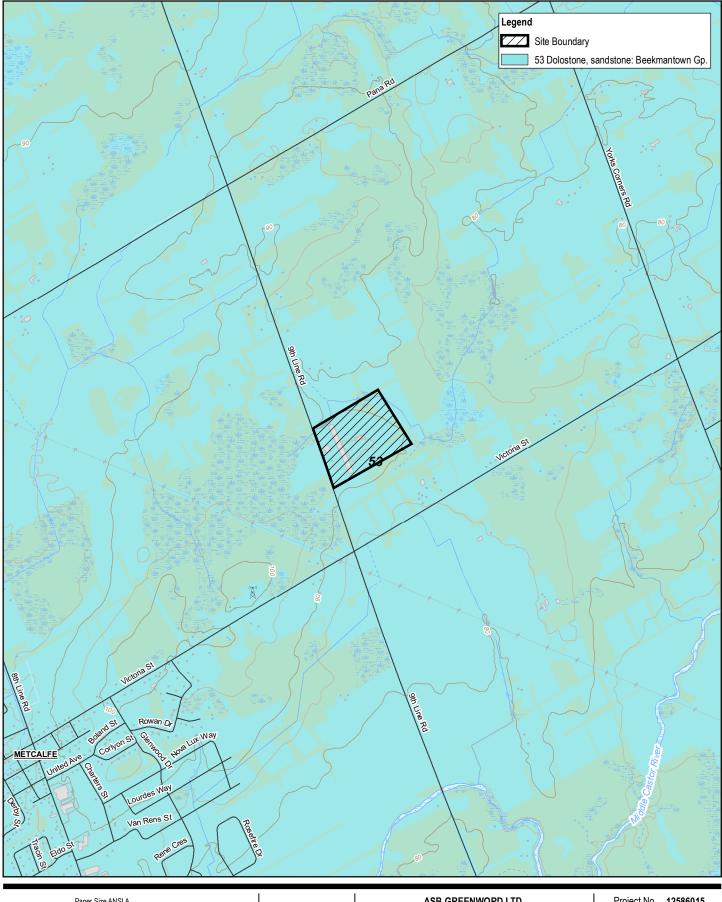

WELL LOCATIONS PLAN

FIGURE 2

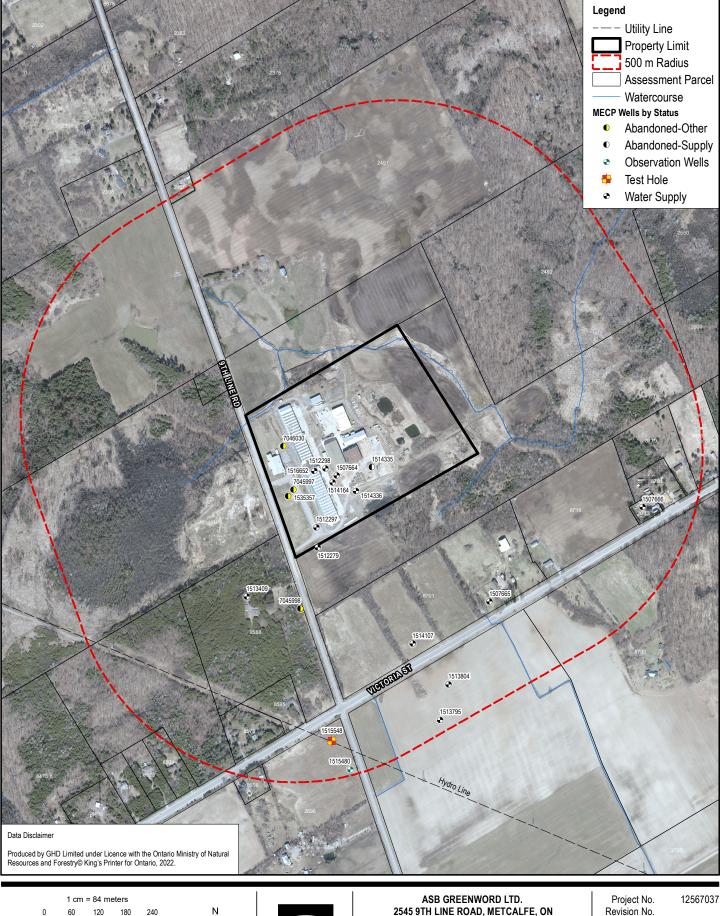

Q:\GIS\PROJECTS\12586000s\12586015\Layouts\202211_RPT002\12586015_202211_RPT002_GIS005.mxd Print date: 17 Nov 2022 - 12:31

Data source: MNRF NRVIS, 2018. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Pri



ZZZ Site Boundary

2;bedrock;undifferentiated carbonate and clastic sedimentary rock, exposed at surface or covered by a discontinuous, thin layer of drift 19;till;undifferentiated, predominantly sandy silt to silt matrix, commonly rich in clasts, often high in total matrix carbonate content



Appendices

Appendix A MECP Well Records

Ministry of the Environment, Well T: Tag#:A395610 Well Record Ontario 🕅 **Conservation and Parks** Regulation 903 Ontario Water Resources Act 95610 Measurements recorded in:
Metric
Minperial Page of Well Owner's Information E-mail Address U Well Constructed Last Name/Organization First TI EENWORLD by Well Owner 0 HS D Mailing Address (Street 332911 Well Location Mount-Postal Code Municip Province Telephone No. (inc. area code) netoad ONTENOTINO an Rin Concessio Address of Well Location (St reet Number/Name +20 Ð 2545 TH NE JAD Postal Code Province Citv/To n/Village Ontario TAWA 0 NETCALF D07-12 30 2169.4 5010 23-0011 NAD 83 Overburden and Bedrock Materials/Abandonment Sealing Record (see instructions on the back of this form Depth (mt) General Colour Most Common Material Other Materials General Description 01 10' Boulders Brown 201 d imesto 10'248' Ack & Giner 2 K In ish 248 D. W STOND **Results of Well Yield Testing** Annular Space Depth Set at (mA) From To Type of Sealant Used Volume Placed After test of well yield, water was: Draw Down Recovery (Material and Type) Clear and sand free Time Water Level Time Water Level 10.92 Other, specify (min) (m/ft) (min) (m/ft)00 Static 42,2" If pumping discontinued, give reason: Level 6-7 46.20 90 1256 1 Pump intake set at (fr/ft) 30.5 2 2 21.4 33.7 18.7 3 3 umping rate (I/min /PM) Method of Construction Well Use 20 Duration of pumping 41 4 Public Domestic Livestock Cable Tool Diamond Commercial Not used Dewatering Rotary (Conventional) Jetting Municipal 17.2 hrs + O min 5 5 Rotary (Reverse) Driving Test Hole Monitoring 2 Irrigation Cooling & Air Conditioning Final water level end of pumping (m/ft) Boring Digging 10 16.8 10 5 Air percussion Other, specify AD. 42'2" Industrial Other, specify flowing give rate (I/min/GPM) 15 16. 15 4 Status of Well Construction Record - Casing 20 20 70 6. Water Supply Inside Diameter (cmus) Open Hole OR Material Depth (matt) Wall mended pump depth (6/ft) Thickness (cmin) (Galvanized, Fibreglass, Concrete, Plastic, Steel) 00' 25 25 From To Test Hole 614 Recom ded pump rate 188" 30 1 Recharge Well 30 9 +2' SPM) 20 20 00 Dewatering Well 40 40 6" 266 Observation and/or Hote 00 Well production (I/ma/GPM) Monitoring Hole 50 4222 50 00 Alteration (Construction) cted Yes No 60 42 60 Abandoned, Insufficient Supply **Construction Record - Screen** Map of Well Location Abandoned, Poor Please provide a map below following instructions on the back Outside Water Quality Depth (m/ft) Materia Diamete (cm/in) Slot No (Plastic, Galvanized Abandoned, other, To specify 85R Other, specify SKM Hole Diameter Water Details Water found at Depth Kind of Water: Fresh Wintested Depth (matt) Diamete From 258(m Gas Other, specify 93/44 1 t 0 found at Depth Kind of Water: Fresh Untested 00 Ho (m Gas Other, specify 266' 6" found at Depth Kind of Water: Fresh Untested Street (m/ft) Gas Other, specify oria Well Contractor and Well Technician Information Well Contracto C7681 TD unicipa Comments shad ichnord DONKETO DOTO ss E-mail Address 0A220 Ministry Use Only Well ow nformatio Audit No. Z379001 Technician (Last Name, Eirst Name) (inc. area code) Name of Well Date Work Completed Xives Date Submitted 050 No 20240531 © Queen's Printe 0506E (2020/06) Ministry's Copy

Metres Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 18N

2545 9TH LINE ROAD, METCALFE, ON HYDROGEOLOGICAL ASSESSMENT

Revision No. Date Dec 2, 2022

MECP WELL LOCATION PLAN APPENDIX A

Q:(GIS)PROJECTS112586000s1/12586015iLayouts\202211_RPT002\12586015_202211_RPT002_GIS00A - MECP Well Location Plan.mxd Print date: 02 Dec 2022 - 05:56

ater Well Information System (WWIS). Ministry of the Environment, Conservation, and Parks. 2021., Image © City of Ottawa, 2021

MECP WELL RECORD LISTINGS Ministry of the Environment, Conservation & Parks (MECP)

© Water Well Information System (WWIS). Ministry of the Environment, Conservation, and Parks. 2021. Powered by Location Intelligence

DISCLAIMER: All effort has been taken to ensure the accuracy of the data is the same as the source. There are instances where the original PDF document is different and in those cases, the PDF should be used instead.

18 №	Easting: orthing: (masl):	464580.80 5010792.00 94.93	Latitude: Longitude:	45.249731 -75.45136		Well ID: 150	7664
Lot: Con: Municipa Townshi Street: City:	•	9 ITAWA-CARLETON SGOODE TOWNS	SHIP			Tag: Audit No: tractor License: ompletion Date: Received Date:	1802 01/09/1961 02/24/1961
Well Stat Prim. Use Sec. Use Boring M	n/: n/:	a			Depth	Well Depth (m): to Bedrock (m): Depth to Water: Water Kind:	22.86 10 ft FRESH
Test Meth Pump Se SWL (ft) Final Lev Pump Ra Recom. F	t (m): n/: 13 el: 57 te: 3	3 7 ft				Pipe ID: Pump Test ID Flowing: p Duration (hr): p Duration (m):	10578269 991507664 N 1 0
	er Value of " er Ca			ratified and or iamter Unit	Top Depth	Bottom Depth	

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom L	Jeptn							
1	930052076	6	inch	STEEL	n/a	14	ft							
2	930052077	6	inch	OPEN HOLE	n/a	75	ft							
	FORMATION DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered.													

2

930052079

4

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom De	pth
1	BOULDERS	CLAY	n/a	n/a	0	10	ft
2	ROCK	LIMESTONE	n/a	n/a	10	75	ft

End of Record

Eastin Northin Elev (mas	g: 5010512.00	Latitude: Longitude:			Well ID: 150	7665
Lot: Con: Municipality: Township: Street: City:	020 09 OTTAWA-CARLETON OSGOODE TOWN n/a	SHIP		Well Con	Tag: Audit No: Inctor License: Inpletion Date: eceived Date:	1526 12/30/1955 01/06/1956
Well Status: Prim. Use: Sec. Use: Boring Method	Water Supply n/a n/a : Cable Tool			Depth to	ell Depth (m): Bedrock (m): epth to Water: Water Kind:	14.0208 2 ft Not stated
Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:	CLEAR n/a 9 19 ft 2 GPM n/a GPM			Pump	Pipe ID: Pump Test ID Flowing: Duration (hr): Duration (m):	10578270 991507665 N 2 0
Layer Value Layer	of "0" denotes a Null va Case ID Casing 030052078		ratified and ord iamter Units inch	Top Depth n/a	Bottom Depth 7 ft	

OPEN HOLE

n/a

46 ft

Contains information licensed under the Open Government Licence - Ontario (2021).

inch

FORMATION DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom De	epth
1	TOPSOIL	n/a	n/a	n/a	0	2	ft
2	LIMESTONE	n/a	n/a	n/a	2	46	ft

End of Rec urd

							End	of Record
	East	ing: 465260.80	Latitude:	45.249134				7888
1	8 North	ing: 5010722.00	Longitude:	-75.44269			150	7666
	Elev (ma	asl): 88.22						
Z	Lot:	020					Tag:	
OCATION	Con: Municipality:	09 OTTAWA-CARLETC)N			Contra	Audit No: actor License:	3601
Š	Township:	OSGOODE TOW					npletion Date:	04/23/1963
ŏ	Street:					R	eceived Date:	05/21/1963
_	City:	n/a						
	Well Status:	Water Supply				w	/ell Depth (m):	15.5448
WELL	Prim. Use:	n/a				Depth to	Bedrock (m):	10
Š	Sec. Use:	n/a				D	epth to Water:	ft
	Boring Metho	d: Cable Tool					Water Kind:	FRESH
\vdash	Test Method:	CLEAR					Pipe ID:	10578271
TEST	Pump Set (m)					I	Pump Test ID	991507666
F	SWL (ft)	14				_	Flowing:	N
PUMP	Final Level: Pump Rate:	16 ft 6 GPM					Duration (hr): Duration (m):	1 0
Ы	Recom. Rate:					Fullip	Duration (iii).	0
		IG DETAILS ue of "0" denotes a Null	l value and cannot be s	tratified and order	red			
	Layer			iamter Units	Material	Top Depth	Bottom Depth	
	1	930052080	4	inch	STEEL	n/a	21 ft	
	2	930052081	4	inch	OPEN HOLE	n/a	51 ft	
	FORM		0					
		ATION DETAIL ue of "0" denotes a Null		tratified and order	red			
	Layer	Material	Material 2	Material 3		Top Depth	Bottom Depth	
	1	CLAY	TOPSOIL	n/a	n/a	0	10 ft	
	2	LIMESTONE	n/a	n/a	n/a	10	51 ft	
							End	of Record
	F eet	ina: 464538.80	L otitudou	45.248288			Well ID:	
1	8 East			43.246266 -75.451884			Weill ID: 151	2279
	Elev (ma	-						
Ν	Lot:	020		1			Tag:	
ō	Con:	09					Audit No:	
OCATION	Municipality:						actor License:	1836
S	Township: Street:	OSGOODE TOV	VNSHIP				npletion Date:	11/17/1972
2	City:	n/a				R	eceived Date:	01/10/1973
	,	n/a						
_	Well Status:	Water Supply					/ell Depth (m):	28.956
WEL	Prim. Use: Sec. Use:	n/a					Bedrock (m): epth to Water:	0
\geq		n/a od: Rotary (Air)					Water Kind:	ft FRESH
	g							TREOT
ST	Test Method:						Pipe ID:	10582841
μ̈́	Pump Set (m)					I	Pump Test ID	991512279
	SWL (ft) Final Level:	20 95 ft				Pumn	Flowing: Duration (hr):	N 1
PUMP	Pump Rate:	20 GPM				•	Duration (m):	0
Ъ	Recom. Rate:							
	CASIN	IG DETAILS						
		ue of "0" denotes a Null	value and cannot be s	tratified and order	ed.			
	Layer	Case ID Cas	ing Diamter D	iamter Units	Material	Top Depth	Bottom Depth	
	1	930060766	6	inch	STEEL	n/a	21 ft	
	FORM	ATION DETAIL	S					
		ue of "0" denotes a Null		tratified and order	ed.			
	Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth	

Page 2 of 10

Contains information licensed under the Open Government Licence – Ontario (2021).

End of Record

13 Easting: 64:553.80 (1970) Latitude: 45.248033 (1970) 13 Conjunct: Conjunct: 75.451325 14 Construct: Conjunct: 75.451325 15 Construct: Construct: Construct: 75.451325 1000 Construct: Construct: Construct: 76.777 1000 Construct: Well Setue: 76.777 77.777 1000 Setue: Construct: Pipe Into Name: 77.777 1000 Construct: Construct: Pipe Into Name: Pipe Into Name: Pipe Into Name: 11 930000792 6 Into Name: Into Name: Into Name: Into Name: 12 Latitu									
Of more marked by 10.77 Configuration (1.9.3.5.19.05) Of more marked by 10.77 Configuration (1.9.1.5.19.05) Of more marked by 10.77 Of more marked by 10.77 Configuration (1.9.1.5.19.15) Configuration (1.9.1.5.19.15) Configuration		Easting	g: 464535.80	Latitude:	45.248693			Well ID: 151	2297
NMICE Contraction Contraction <th< th=""><th>18</th><th></th><th>,,</th><th>Longitude:</th><th>-75.451925</th><th></th><th></th><th></th><th>LLJI</th></th<>	18		,,	Longitude:	-75.451925				LLJI
OPDO00 OPDO00<		Elev (mas): 91.17						
City: na PDF City: na Point Status: City: na Point Status: City: Pipe ID: Point Status: City: Pipe ID: Point Status: City: No Pump Status: City: No Pipe ID: City: No Pipe ID: City: No Pipe ID: City: No Pipe ID: <	Z	Lot:	020					Tag:	
City: na PDF City: na Point Status: City: na Point Status: City: Pipe ID: Point Status: City: Pipe ID: Point Status: City: No Pump Status: City: No Pipe ID: City: No Pipe ID: City: No Pipe ID: City: No Pipe ID: <	0								
City: na PDF City: na Point Status: City: na Point Status: City: Pipe ID: Point Status: City: Pipe ID: Point Status: City: No Pump Status: City: No Pipe ID: City: No Pipe ID: City: No Pipe ID: City: No Pipe ID: <	A	• •							
City: na PDF City: na Point Status: City: na Point Status: City: Pipe ID: Point Status: City: Pipe ID: Point Status: City: No Pump Status: City: No Pipe ID: City: No Pipe ID: City: No Pipe ID: City: No Pipe ID: <	Ö	•	OSGOODE TOW	NSHIP				-	
Weil Statis: Weil Subject Weil Subject Statistic Statis			n/o				ĸ	eceived Date:	02/07/1973
Dignet End if with the image of the image o		City.	Ti/d						
Dignet End if with the image of the image o		Well Status:	Water Supply				w	ell Depth (m):	87.4776
Borning Wethod: CLEAR Pipe ID Pipe ID Series Method: CLEAR Pipe ID Series Ser		Prim. Use:	n/a				Depth to	Bedrock (m):	3
Borning Wethod: CLEAR Pipe ID Pipe ID Series Method: CLEAR Pipe ID Series Ser	ž						De	•	
Big End Lowit: National State St		Boring Method:	Rotary (Air)					Water Kind:	FRESH
Big End Lowit: National State St	_	Test Mathed						Bine ID:	10500050
PDPD PUT (b) 18 Flowleg: N Pump Rate: 7 GPM Pump Rate: 7 GPM Pump Rate: 7 GPM CASING DETAILS Law value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Law value of 0° denotes a Null value and cannot be stratified and ordered. Low value of 0° denotes a Null value and cannot be stratified and ordered. Low value of 0° denotes a Null value and cannot be stratified and ordered. Municipality: 0° defotom Depth (m) Municipality: 0° defotom Depth (m)	S						F	•	
Prime Low: 1 20 ft Recom. Rate: 7 GPM Recom. Rate: 7 GPM CASING DETALIS	Ē	• • •						•	
<section-header> OPPOOD OPPOINT OPPO</section-header>	0_	• •					Pump	-	
<section-header> OPPOOD OPPOINT OPPO</section-header>	ξ	Pump Rate:	7 GPM						0
Idea to the statistication of the statistica	đ	Recom. Rate:	7 GPM						
Idea to the statistication of the statistica		CASING	DETAILS						
Layer Case ID				value and cannot be si	tratified and ordere	d.			
1300607926inchSTEELind2.1itDEMATION DETAILSJair Vances a Null value and canon be stratified and ordered.Image: Stratige of U denoises a Null value and canon be stratified and ordered.1TOP SOLLSoltom Deptit1TOP SOLLMaterial 2Material 2ColourTop DeptitBottom Deptit1TOP SOLLSANDindBROWN03it2LIMESTONESANDSTONEn/aBROWN03it1TOP SOLLSANDindBROWN03it1TOP SOLLSANDSTONEn/aBROWN03it1Top SollSandbartLatitude:45.249864MaterialMulti Mo:1Commenting:104000700Multi Me:75.45168Multi MiMulti Mo:1000000000000000000000000000000000000		Laver	Case ID Casii	ng Diamter D	iamter Units	Material	Top Depth	Bottom Depth	
Idea of the value and cannot be stratified and ordered Import the stratige of the value of the val		1 9	30060792	6	inch	STEEL	n/a	21 ft	
Idea of the value and cannot be stratified and ordered Import the stratige of the value of the val		EODMA		c					
Layer Material Material 2 Material 3 Colour Top Depth Bottom Depth 1 TOPSOIL SAND n/a BROWN 0 3 ft 2 LIMESTONE SANDSTONE n/a GREY 3 287 ft Easting: 464555.80 Northing: 5010807.00 Latitude: 45.249864 Vell0: 1551222938 Tag: Audit No: Ongtude: -75.45188 Tag: Contractor 149 Con: 09 Ontractor 140 Contractor License: 1505 Well Status: Wall Status: Wall Status: Well Completion Date: 09/12/1972 Received Date: 02/07/1973 Exet: 1 05600DE TOWNSHIP Street: 02/07/1973 City: n/a Not Pump Divation (icense: 1505 09/12/1972 Well Status: Waler Supply Well Completion Date: 09/12/1972 Received Date: 02/07/1973 Test Method: CLEAR Pump Divation FRESH Depth to Bedrock (m): 4 <t< td=""><td></td><td></td><td></td><td></td><td>tratified and ordere</td><td>4</td><td></td><td></td><td></td></t<>					tratified and ordere	4			
1 TOPSOIL SAND n/a BROWN 0 3 1 2 LIMESTONE SANDSTONE n/a GREY 3 287 ft End of Record Multicity and the second s		-					Top Dopth	Pottom Donth	
2 LMESTONE SANDSTONE n/a GREY 3 287 ft End of Record Image: Sandstone Contractor Contractor Contractor Contractor Contractor Contractor Letter Sandstone Contractor Letter									
<page-header> Image: Note: Set: Set: Set: Set: Set: Set: Set: S</page-header>				-					
Image: 18 Easting: 64555.80 Northing: 5010807.00 Elev (mast): 94.29 Latitude: 35.249864 Longitude: -75.45168 Image: 1505 Image: 19 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 1000 Image: 10000 Image: 10000 Image: 1000									
Elev (masl): 94.29 Lot: 019 Tag: Con: 09 Audit No: Municipality: OTTAWA-CARLETON Contractor License: 1505 Township: OSGOODE TOWNSHIP Well Completion Date: 09/12/1972 Street: Received Date: 02/07/1973 City: n/a Well Depth (m): 92.964 Prim. Use: n/a Well Depth (m): 92.964 Sec. Use: Industrial Depth to Bedrock (m): 4 Boring Method: Rotary (Air) Water Kind: FRESH Test Method: CLEAR Pipe ID: 10582860 Pump Set (m): n/a Pipe ID: 10582860 Pump Duration (hr): 20 Pipe ID: 10582860 Pump Set (m): n/a Pipe ID: 10582860 Pump Rate: 18 GPM Pump Duration (hr): 10 SWL(ft) 21 Final Level: 120 ft Pump Duration (m): 0 Pump Rate: 18 GPM Pump Duration (m):								End	of Record
Con: 09 Audit No: Municipality: OTTAWA-CARLETON Contractor License: 1505 Township: OSGOODE TOWNSHIP Well Completion Date: 09/12/1972 Street: Image: Contractor License: 09/12/1972 Received Date: 02/07/1973 City: n/a Well Status: Water Supply Well Depth (m): 92.964 Prim. Use: n/a Depth to Bedrock (m): 4 Sec. Use: Industrial Depth to Bedrock (m): 4 Boring Method: Rotary (Air) Water Kind: FRESH Pump Set (m): n/a Pipe ID: 10582860 Pump Rate: 18 GPM Pump Duration (hr): 10 Record. Rate: 18 GPM Pump Duration (m): 0 Record. Rate: 18 GPM Pump Duration (m): 0 Record. Rate: 18 GPM Street Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	18	Easting	,						
Con: 09 Audit No: Municipality: OTTAWA-CARLETON Contractor License: 1505 Township: OSGOODE TOWNSHIP Well Completion Date: 09/12/1972 Street: Image: Contractor License: 09/12/1972 Received Date: 02/07/1973 City: n/a Well Status: Water Supply Well Depth (m): 92.964 Prim. Use: n/a Depth to Bedrock (m): 4 Sec. Use: Industrial Depth to Bedrock (m): 4 Boring Method: Rotary (Air) Water Kind: FRESH Pump Set (m): n/a Pipe ID: 10582860 Pump Rate: 18 GPM Pump Duration (hr): 10 Record. Rate: 18 GPM Pump Duration (m): 0 Record. Rate: 18 GPM Pump Duration (m): 0 Record. Rate: 18 GPM Street Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	18	8 Northing	5010807.00						
Street: City: n/a Received Date: 02/07/1973 Well Status: Water Supply Well Depth (m): 92.964 Prim. Use: n/a Depth to Bedrock (m): 4 Sec. Use: Industrial Depth to Bedrock (m): 4 Boring Method: Rotary (Air) Water Kind: FRESH Test Method: CLEAR Pipe ID: 10582860 Pump Set (m): n/a 991512298 Flowing: N Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (hr): 10 Recown. Rate: 18 GPM Pump Duration (hr): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft		Northing Elev (masl	j: 5010807.00): 94.29					Well ID: 151	
Street: City: n/a Received Date: 02/07/1973 Well Status: Water Supply Well Depth (m): 92.964 Prim. Use: n/a Depth to Bedrock (m): 4 Sec. Use: Industrial Depth to Bedrock (m): 4 Boring Method: Rotary (Air) Water Kind: FRESH Test Method: CLEAR Pipe ID: 10582860 Pump Set (m): n/a 991512298 Flowing: N Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (hr): 10 Recown. Rate: 18 GPM Pump Duration (hr): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft		Northing Elev (masl	5010807.00 94.29 019					Well ID: 151 Tag:	
City: n/a Well Status: Water Supply Prim. Use: n/a Sec. Use: Industrial Boring Method: Rotary (Air) Test Method: CLEAR Pump Set (m): n/a SWL (ft) 21 Final Level: 120 ft Pump Rate: 18 GPM Recom. Rate: 18 GPM Recom. Rate: 18 GPM Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Layer Case ID Casing Diamter 1 930060793 6 inch STEEL n/a 22 ft		Northing Elev (masi Lot: Con: Municipality:	g: 5010807.00): 94.29 019 09	Longitude:			Contra	Well ID: 151 Tag: Audit No:	2298
Well Status:Water Supply Prim. Use:Well Depth (m):92.964 A Depth to Bedrock (m):92.964 A Borting Method:Boring Method:ColLEAR Rotary (Air)Pump I Pump Set (m):Nater Kind:FRESH Boring Method:Test Method:CLEAR Pump Set (m):Pipe ID:10582860 991512298 SWL (ft)9158280 991512298 100SWL (ft)21 Final Level:Pipe ID:10582860 991512298 100Even Rate:18 GPM Recom. Rate:Pump Duration (hr):10 Pump Duration (m):CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered.Material STEELTop Depth n/aBottom Depth 22MaterialTop DepthBottom Depth A 22Top Depth22.919300607936inchSTEELn/a22Test NetworkSteeln/a22th		Northing Elev (mash Lot: Con: Municipality: Township:	j: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETON	Longitude:			Well Con	Well ID: 151 Tag: Audit No: actor License: npletion Date:	2298 1505 09/12/1972
Prim. Use: n/a Depth to Bedrock (m): 4 Sec. Use: Industrial Depth to Water: ft Boring Method: Rotary (Air) Vater Kind: FRESH Test Method: CLEAR Pipe ID: 10582860 Pump Set (m): n/a Pump Test ID 991512298 SWL (ft) 21 Flowing: N Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (m): 0 Recom. Rate: 18 GPM Pump Duration (m): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. 1 930060793 6 inch STEEL n/a 22 ft	OCATION	Northing Elev (mash Lot: Con: Municipality: Township: Street:	j: 5010807.00 j: 94.29 019 09 0TTAWA-CARLETOI 0SGOODE TOW	Longitude:			Well Con	Well ID: 151 Tag: Audit No: actor License: npletion Date:	2298 1505 09/12/1972
Prim. Use: n/a Depth to Bedrock (m): 4 Sec. Use: Industrial Depth to Water: ft Boring Method: Rotary (Air) Vater Kind: FRESH Test Method: CLEAR Pipe ID: 10582860 Pump Set (m): n/a Pump Test ID 991512298 SWL (ft) 21 Flowing: N Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (m): 0 Recom. Rate: 18 GPM Pump Duration (m): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. 1 930060793 6 inch STEEL n/a 22 ft	OCATION	Northing Elev (mash Lot: Con: Municipality: Township: Street:	j: 5010807.00 j: 94.29 019 09 0TTAWA-CARLETOI 0SGOODE TOW	Longitude:			Well Con	Well ID: 151 Tag: Audit No: actor License: npletion Date:	2298 1505 09/12/1972
Sec. Use: Industrial Boring Method: Depth to Water: ft Boring Method: Rotary (Air) Pipe ID: 10582860 Pump Set (m): n/a Pipe ID: 10582860 Pump Set (m): 120 ft Pump Test ID 991512298 SWL (ft) 21 Flowing: N Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (m): 0 Recom. Rate: 18 GPM Pump Duration (m): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	OCATION	Northing Elev (mask Lot: Con: Municipality: Township: Street: City:	g: 5010807.00): 94.29 019 09 0TTAWA-CARLETO OSGOODE TOW n/a	Longitude:			Well Con R	Well ID: 151 Tag: Audit No: actor License: npletion Date: leceived Date:	1505 09/12/1972 02/07/1973
Boring Method: Rotary (Air) Water Kind: FRESH Test Method: CLEAR Pipe ID: 10582860 Pump Set (m): n/a 991512298 SWL (ft) 21 Flowing: N Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (m): 0 Recom. Rate: 18 GPM Pump Duration (m): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	LL LOCATION	Northing Elev (mask Lot: Con: Municipality: Township: Street: City: Well Status:	j: 5010807.00 j: 94.29 019 09 0TTAWA-CARLETON 0SGOODE TOW n/a Water Supply	Longitude:			Well Con R W	Well ID: 151 Tag: Audit No: actor License: npletion Date: leceived Date: /ell Depth (m):	2298 1505 09/12/1972 02/07/1973 92.964
Pump Set (m): n/a Pump Test ID 991512298 SWL (ft) 21 Flowing: N Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (m): 0 Recom. Rate: 18 GPM Pump Duration (m): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	VELL LOCATION	Northing Elev (masl Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use:	j: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial	Longitude:			Well Con R W Depth to	Well ID: 151 Tag: Audit No: actor License: npletion Date: leceived Date: fell Depth (m): 9 Bedrock (m):	2298 1505 09/12/1972 02/07/1973 92.964 4
Pump Set (m): n/a Pump Test ID 991512298 SWL (ft) 21 Flowing: N Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (m): 0 Recom. Rate: 18 GPM Pump Duration (m): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	VELL LOCATION	Northing Elev (masl Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use:	j: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial	Longitude:			Well Con R W Depth to	Well ID: 151 Tag: Audit No: actor License: npletion Date: leceived Date: Vell Depth (m): b Bedrock (m): epth to Water:	2298 1505 09/12/1972 02/07/1973 92.964 4 ft
SWL (ft) 21 Flowing: N Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (m): 0 Recom. Rate: 18 GPM Pump Duration (m): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Layer Case ID Casing Diamter Diamter Units Material Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	WELL LOCATION	Northing Elev (mask Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method:	g: 5010807.00): 94.29 019 07TAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air)	Longitude:			Well Con R W Depth to	Well ID: 151 Tag: Audit No: actor License: mpletion Date: deceived Date: dell Depth (m): b Bedrock (m): epth to Water: Water Kind:	1505 09/12/1972 02/07/1973 92.964 4 ft FRESH
Final Level: 120 ft Pump Duration (hr): 10 Pump Rate: 18 GPM Pump Duration (m): 0 Recom. Rate: 18 GPM Pump Duration (m): 0 CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	ST WELL LOCATION	Northing Elev (mask Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method:	g: 5010807.00): 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air) CLEAR	Longitude:			Well Con R W Depth to De	Well ID: Tag: Audit No: actor License: mpletion Date: deceived Date: Vell Depth (m): 9 Bedrock (m): epth to Water: Water Kind: Pipe ID:	2298 1505 09/12/1972 02/07/1973 92.964 4 ft FRESH 10582860
CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Layer Case ID Casing Diamter Diamter Units Material Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	EST WELL LOCATION	Northing Elev (masi Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m):	g: 5010807.00): 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air) CLEAR n/a	Longitude:			Well Con R W Depth to De	Well ID: Tag: Audit No: actor License: npletion Date: deceived Date: Vell Depth (m): o Bedrock (m): epth to Water: Water Kind: Pipe ID: Pump Test ID	22298 1505 09/12/1972 02/07/1973 92.964 4 ft FRESH 10582860 991512298
CASING DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Layer Case ID Casing Diamter Diamter Units Material Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	TEST WELL LOCATION	Northing Elev (mask Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m): SWL (ft)	j: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air) CLEAR n/a 21	Longitude:			Well Con R W Depth to De F	Well ID: Tag: Audit No: actor License: npletion Date: leceived Date: Mell Depth (m): Dedrock (m): epth to Water: Water Kind: Pipe ID: Pump Test ID Flowing:	1505 09/12/1972 02/07/1973 92.964 4 ft FRESH 10582860 991512298 N
Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Layer Case ID Casing Diamter Diamter Units Material Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	TEST WELL LOCATION	Northing Elev (mask Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Boring Method: Pump Set (m): SWL (ft) Final Level:	j: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air) CLEAR n/a 21 120 ft ft	Longitude:			Well Con R W Depth to De F Pump	Well ID: Tag: Audit No: actor License: npletion Date: leceived Date: /ell Depth (m): b Bedrock (m): epth to Water: Water Kind: Pipe ID: Pump Test ID Flowing: Duration (hr):	2298 1505 09/12/1972 02/07/1973 92.964 4 ft FRESH 10582860 991512298 N 10
Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Layer Case ID Casing Diamter Diamter Units Material Top Depth Bottom Depth 1 930060793 6 inch STEEL n/a 22 ft	UMP TEST WELL LOCATION	Northing Elev (masl Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate:	j: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air) CLEAR 21 120 ft 18 GPM	Longitude:			Well Con R W Depth to De F Pump	Well ID: Tag: Audit No: actor License: npletion Date: leceived Date: /ell Depth (m): b Bedrock (m): epth to Water: Water Kind: Pipe ID: Pump Test ID Flowing: Duration (hr):	2298 1505 09/12/1972 02/07/1973 92.964 4 ft FRESH 10582860 991512298 N 10
LayerCase IDCasing DiamterDiamter UnitsMaterialTop DepthBottom Depth19300607936inchSTEELn/a22ft	UMP TEST WELL LOCATION	Northing Elev (masl Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:	j: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air) CLEAR n/a 120 ft 18 GPM 18 GPM	Longitude:			Well Con R W Depth to De F Pump	Well ID: Tag: Audit No: actor License: npletion Date: leceived Date: /ell Depth (m): b Bedrock (m): epth to Water: Water Kind: Pipe ID: Pump Test ID Flowing: Duration (hr):	2298 1505 09/12/1972 02/07/1973 92.964 4 ft FRESH 10582860 991512298 N 10
1 930060793 6 inch STEEL n/a 22 ft	UMP TEST WELL LOCATION	Northing Elev (mast Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:	j: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air) CLEAR n/a 21 120 ft 18 GPM 18 GPM DETAILS	Longitude:	-75.45168		Well Con R W Depth to De F Pump	Well ID: Tag: Audit No: actor License: npletion Date: leceived Date: /ell Depth (m): b Bedrock (m): epth to Water: Water Kind: Pipe ID: Pump Test ID Flowing: Duration (hr):	2298 1505 09/12/1972 02/07/1973 92.964 4 ft FRESH 10582860 991512298 N 10
	UMP TEST WELL LOCATION	Northing Elev (masl Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value	g: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air) CLEAR n/a 21 120 ft 18 BCPM 18 OETAILS of "0" denotes a Null of "	Longitude:	-75.45168	1.	Well Con R Depth to De F Pump Pump	Well ID: Tag: Audit No: actor License: mpletion Date: deceived Date: dell Depth (m): beedrock (m): epth to Water: Water Kind: Pipe ID: Pump Test ID Flowing: Duration (hr): Duration (m):	22298 1505 09/12/1972 02/07/1973 92.964 4 ft FRESH 10582860 991512298 N 10
	UMP TEST WELL LOCATION	Northing Elev (masl Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer	g: 5010807.00 j: 94.29 019 09 OTTAWA-CARLETOI OSGOODE TOW n/a Water Supply n/a Industrial Rotary (Air) CLEAR 120 ft 18 GPM 18 GPM GPM OETAILS of "0" denotes a Null" Case ID Casi	Longitude:	-75.45168	d. Material	Well Con R W Depth to De F Pump Pump Pump	Well ID: Tag: Audit No: actor License: mpletion Date: deceived Date: dell Depth (m): epth to Water: Water Kind: Pipe ID: Pump Test ID Flowing: Duration (hr): Duration (m):	22298 1505 09/12/1972 02/07/1973 92.964 4 ft FRESH 10582860 991512298 N 10

FORMATION DETAILS Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom D	epth
1	TOPSOIL	SAND	n/a	BROWN	0	4	ft
2	LIMESTONE	SANDSTONE	n/a	GREY	4	305	ft
			Page 3 of 1	0			

Well ID: 1513100

18	Easting Northing Elev (mas	5010523.00		45.247299 -75.453889			Well ID: 151	3409
ZL	ot:	020					Tag:	
	on: Iunicipality:	08 OTTAWA-CARLETC	N			Cont	Audit No: ractor License:	1517
'≾ τ	ownship:	OSGOODE TOW					mpletion Date:	08/15/1973
ŏs	street:					I	Received Date:	09/10/1973
- C	ity:	n/a						
	Vell Status:	Water Supply				١	Vell Depth (m):	18.288
- P	rim. Use:	n/a					o Bedrock (m):	4
	ec. Use:	n/a					Depth to Water:	ft
В	oring Method:	Cable Tool					Water Kind:	FRESH
L T	est Method:	CLOUDY					Pipe ID:	10583965
шР	ump Set (m):	n/a					Pump Test ID	991513409
⊢ s	WL (ft)	-20				_	Flowing:	Y
E F	inal Level:	35 ft					Duration (hr):	1
	ump Rate: ecom. Rate:	10 GPM 5 GPM				Pum	p Duration (m):	10
		of "0" denotes a Null	value and cannot be	stratified and orde	red.			
	-			Diamter Units	Material	Top Depth	Bottom Depth	
		30062677	5	inch	STEEL	n/a	11 ft	
	FORMA	TION DETAIL	S					
			value and cannot be	stratified and orde	red.			
	Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth	
	1	SAND	n/a	n/a	YELLOW	0	4 ft	
	2	SANDSTONE	n/a	n/a	BLACK	4	60 ft	
18	Easting Northing Elev (mas	5010249.00		45.244855 -75.448391			Well ID: 151	3795
	ot:						Tam	
	ion:	021 09					Tag: Audit No:	
ĔŇ	lunicipality:	OTTAWA-CARLETC	DN			Cont	ractor License:	3658
_	ownship:	OSGOODE TOW	VNSHIP				mpletion Date:	07/27/1973
ō S	itreet: ity:	n/a				I	Received Date:	02/11/1974
	Vell Status:	Water Supply				١	Vell Depth (m):	82.296
P	rim. Use:	n/a					o Bedrock (m):	3
	ec. Use:	n/a				C	Depth to Water:	ft
В	oring Method:	Air Percussion					Water Kind:	FRESH
ь т	est Method:	n/a					Pipe ID:	10584347
0 -	ump Set (m):	n/a					Pump Test ID	991513795
	WL (ft)	22					Flowing:	Ν
∐ E	inal Level:	50 ft					Duration (hr):	2
	ump Rate: ecom. Rate:	40 GPM 5 GPM				Pum	p Duration (m):	0
Indus .		5 OI W						
	A . A	DETANO						
		OETAILS	value and cannot be	stratified and orde	red.			
	Layer Value	of "0" denotes a Null	value and cannot be		^{red.} Material	Top Depth	Bottom Depth	
	Layer Value Layer	of "0" denotes a Null		stratified and orde Diamter Units inch		Top Depth n/a	Bottom Depth 19 ft	
	Layer Value Layer 1 9	of "0" denotes a Null Case ID Case	ing Diamter	Diamter Units	Material			
	Layer Value Layer 1 9 2 9 FORMA	of "0" denotes a Null Case ID Casi 30063266 30063267 TION DETAIL	ing Diamter 6 6	Diamter Units inch inch	Material STEEL OPEN HOLE	n/a	19 ft	
	Layer Value Layer 1 9 2 9 FORMA	of "0" denotes a Null Case ID Casi 30063266 30063267 TION DETAIL	ing Diamter 6 6 S	Diamter Units inch inch	Material STEEL OPEN HOLE red.	n/a	19 ft	

1 CLAY TOPSOIL n/a BROWN 0 3 ft 2 LIMESTONE GREY 3 n/a n/a 260 ft 3 SANDSTONE n/a n/a GREY 260 270 ft

Page 4 of 10

of Record								
380	151	Well ID:			45.245567 -75 448154	Latitude: Longitude:	464829.80 5010328.00	Easting: 8 Northing:
					70.440104	Longitude.	83.40	Elev (masl):
	Tag:	т					1	Lot:
		Audit					9	
36		tractor Licen					TAWA-CARLETON	• •
06/10/19 02/11/19		ompletion Da Received Da	Well C			HIP	GOODE TOWN	Township: (Street:
02/11/19	ale.	Received Da					a	
86.56		Well Depth (to Bedrock (ater Supply a	
	ter:	Depth to Wa	Deptil				3	
FRES		Water Ki						Boring Method:
105843	D:	Pipe					EAR	Test Method:
9915138		Pump Test						Pump Set (m):
	ing:	Flowi						SWL (ft)
		p Duration (ft	
	(m):	np Duration (Pum				GPM GPM	Pump Rate:
							-	CASING
				d.	ratified and ordere		0" denotes a Null va	Layer Value o
		Bottom D	Top Depth	Material	iamter Units		se ID Casing	
	ft	21	n/a	STEEL	inch		63282	
	ft	284	n/a	OPEN HOLE	inch		63283	2 93
							ON DETAILS	
	Depth	Bottom D	Top Depth	Colour	Material 3	Material 2	0" denotes a Null va Material	Layer Value o
				BROWN	SAND	GRAVEL	CLAY	1
	ft	3	0	DIVOMIN				•
	ft ft	3 262	0 3	GREY	n/a	n/a	IMESTONE	2
	ft ft				n/a n/a	n/a n/a	ANDSTONE	
	ft ft End c	262 284	3	GREY		n/a		3 Easting:
of Record	ft ft End c	262 284	3	GREY	n/a 45.246373	n/a	ANDSTONE	3
	ft ft End c	262 284 Well ID:	3	GREY	n/a 45.246373	n/a Latitude:	464749.80 5010418.00 85.60 0	3 B Easting: Northing: Elev (masl): Lot:
410	ft ft End c 151 Fag: No:	262 284 Well ID: T Audit	3 262	GREY	n/a 45.246373	n/a Latitude:	464749.80 5010418.00 85.60 0	3 Easting: Northing: Elev (masi): Lot: Con:
410	ft ft End c 151	262 284 Well ID: T Audit tractor Licen	3 262 Con	GREY	n/a 45.246373	n/a Latitude: Longitude:	464749.80 5010418.00 85.60 0 9 TAWA-CARLETON	3 Easting: Northing: Elev (masi): Lot: (Con: Municipality: ()
410 23 06/20/19	ft ft End c ISSI	262 284 Well ID: T Audit tractor Licen ompletion Da	3 262 Con	GREY	n/a 45.246373	n/a Latitude: Longitude:	464749.80 5010418.00 85.60 0	3 B Easting: Northing: Elev (masi): Lot: (Con: Municipality: (Township: (
410 23 06/20/19	ft ft End c ISSI	262 284 Well ID: T Audit tractor Licen	3 262 Con	GREY	n/a 45.246373	n/a Latitude: Longitude:	464749.80 5010418.00 85.60 0 9 TAWA-CARLETON	3 Easting: Northing: Elev (masi): Lot: (Con: Municipality: (Township: (Street:
23 06/20/19 07/02/19	ft ft End c 151 151 152 153 153 154 155	262 284 Well ID: T Audit tractor Licen ompletion Da Received Da	3 262 Con Well C	GREY	n/a 45.246373	n/a Latitude: Longitude:	464749.80 5010418.00 85.60 0 7AWA-CARLETON 6GOODE TOWNS	3 Easting: Northing: Elev (masl): Lot: Con: Municipality: Township: City:
23 06/20/19 07/02/19	ft ft End c I 51 I 51 I 51 I 51 I 51 I 51 I 51 I 51	262 284 Well ID: T Audit tractor Licen ompletion Da	3 262 Con Well C	GREY	n/a 45.246373	n/a Latitude: Longitude:	464749.80 5010418.00 85.60 0 5 TAWA-CARLETON SGOODE TOWNS	3 Easting: Northing: Elev (masl): Lot: (Con: Municipality: (Township: (Street: City: 1 Well Status: ()
23 06/20/19 07/02/19 15	ft ft End c 151 151 151 151 151 151 151 151 151 151 151 151 151	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa	3 262 Con Well C	GREY	n/a 45.246373	n/a Latitude: Longitude:	ANDSTONE 464749.80 5010418.00 85.60 0 TAWA-CARLETON SGOODE TOWNS a ater Supply	3 Easting: Northing: Elev (masl): Lot: Con: Municipality: City: City: Well Status: Prim. Use: Sec. Use:
23 06/20/19 07/02/19 15	ft ft End c 151 151 151 151 151 151 151 151 151 151 151 151 151	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (3 262 Con Well C	GREY	n/a 45.246373	n/a Latitude: Longitude:	ANDSTONE 464749.80 5010418.00 85.60 0 TAWA-CARLETON SGOODE TOWNS a ater Supply	3 B Easting: Northing: Elev (masl): Lot: (Con: Municipality: (Township: (Street: City: 1 Well Status: () Prim. Use: 1
23 06/20/19 07/02/19 15 FRES	ft ft End c 151 Fag: No: nse: ate: ate: ate: ate: ind:	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa	3 262 Con Well C	GREY	n/a 45.246373	n/a Latitude: Longitude:	ANDSTONE 464749.80 5010418.00 85.60 0 0 TAWA-CARLETON SGOODE TOWNS a ater Supply a a ble Tool	3 B Easting: Northing: Elev (mas): Lot: (Con: Municipality: (Township: (Street: City: 1 Well Status: 1 Prim. Use: 1 Sec. Use: 1 Boring Method: (
23 06/20/19 07/02/19 15 FRES 105846	ft ft End c I 51 Fag: No: nse: ate: ate: ate: ate: ind: ind: E ID:	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki	3 262 Con Well C	GREY	n/a 45.246373	n/a Latitude: Longitude:	ANDSTONE 464749.80 5010418.00 85.60 0 TAWA-CARLETON SGOODE TOWNS a ater Supply	3 B Easting: Elev (mas): Lot: (Con: Municipality: (Township: (Street: City: (Well Status: (Prim. Use: (Boring Method: (Test Method: ()
410 23 06/20/19 07/02/19 15 FRES 105846	ft ft End c 151 151 152 153 153 154 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155155	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi	3 262 Con Well C	GREY	n/a 45.246373	n/a Latitude: Longitude:	ANDSTONE 464749.80 5010418.00 85.60 0 7AWA-CARLETON GGOODE TOWNS a ater Supply a a ble Tool EAR a	3 B Easting: Northing: Elev (masl): Lot: (Con: Municipality: (Con: Township: (Con: Street: City: (Con: Well Status: (Con: Prim. Use: (Con: Boring Method: (Con: Pump Set (m): (Con: SWL (ft) (Con: Northing:
410 23 06/20/19 07/02/19 15 FRES 105846	ft ft End c I 51 I 51 I 51 I 51 I 51 I 51 I 51 I 51	262 284 Well ID: T Audit I tractor Licem ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi p Duration ()	3 262 Con Well C Depth	GREY	n/a 45.246373	n/a Latitude: Longitude:	ANDSTONE 464749.80 5010418.00 85.60 0 0 TAWA-CARLETON GOODE TOWNS a ater Supply a a ble Tool EAR a ft	3 Easting: Northing: Elev (masl): Lot: Con: Municipality: City: City: Vell Status: Prim. Use: Boring Method: City: Test Method: City: SwL (ft) Final Level: City:
410 23 06/20/19 07/02/19 15 FRES 105846	ft ft End c I 51 I 51 I 51 I 51 I 51 I 51 I 51 I 51	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi	3 262 Con Well C Depth	GREY	n/a 45.246373	n/a Latitude: Longitude:	ANDSTONE 464749.80 5010418.00 85.60 0 7AWA-CARLETON GGOODE TOWNS a ater Supply a a ble Tool EAR a	3 Easting: Northing: Elev (masl): Lot: Con: Municipality: City: City: Vell Status: Prim. Use: Boring Method: City: Test Method: City: SwL (ft) Final Level: City:
23 06/20/19 07/02/19 15 FRES 105846	ft ft End c I 51 I 51 I 51 I 51 I 51 I 51 I 51 I 51	262 284 Well ID: T Audit I tractor Licem ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi p Duration ()	3 262 Con Well C Depth	GREY	n/a 45.246373	n/a Latitude: Longitude:	ANDSTONE 464749.80 5010418.00 85.60 0 TAWA-CARLETON GOODE TOWNS a ater Supply a a ble Tool EAR a ft GPM GPM	3 Easting: Northing: Elev (masl): Lot: (Con: Municipality: (Township: (Street: City: Well Status: (Prim. Use: (Boring Method: (Test Method: (Pump Set (m): (SWL (ft) (Final Level: (Pump Rate: ()
23 06/20/19 07/02/19 15 FRES 105846	ft ft End c 151 Fag: No: nse: ate: ate: ate: ate: ind: !D: !D: !D: !D: !D: !D: !D: !D: !D: !D	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi op Duration ()	3 262 Con Well C Depth Pum Pum	GREY GREY	n/a 45.246373 -75.44918	n/a Latitude: Longitude: HIP	ANDSTONE 464749.80 5010418.00 85.60 0 TAWA-CARLETON GOODE TOWNS a ater Supply a able Tool EAR a ft GPM GPM ETAILS 7' denotes a Null va	3 8 Easting: Northing: Elev (mas): Lot: 0 Con: 0 Municipality: 0 Township: 0 Street: 0 City: 1 Well Status: 0 Prim. Use: 1 Sec. Use: 1 Boring Method: 0 YWL (ft) 1 Final Level: 2 Pump Rate: 2 Recom. Rate: 2 CASING 2 Layer Value of 1
23 06/20/19 07/02/19 15 FRES 105846	ft ft ft End c 151 Fag: No: nse: ate: ate: ate: ate: ate: ind: !D ing: (hr): (m): (m):	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi np Duration (np Duration (3 262 Con Well C Depth Pum Pum	GREY GREY	n/a 45.246373 -75.44918 ratified and ordere iamter Units	n/a Latitude: Longitude: HIP HIP	464749.80 5010418.00 85.60 0 TAWA-CARLETON SGOODE TOWNS a ater Supply a the Tool EAR a ft GPM GPM ETAILS 0" denotes a Null va se ID Casing	3 8 Easting: Northing: Elev (mas): Lot: 0 Con: 0 Municipality: 0 Township: 0 Street: 0 City: 1 Prim. Use: 1 Sec. Use: 1 Boring Method: 0 Test Method: 0 Final Level: 2 Recom. Rate: 2 CASING Layer Value or
23 06/20/19 07/02/19 15 FRES 105846	ft ft End c 151 Fag: No: nse: ate: ate: ate: ate: ind: !D: !D: !D: !D: !D: !D: !D: !D: !D: !D	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi op Duration ()	3 262 Con Well C Depth Pum Pum	GREY GREY	n/a 45.246373 -75.44918	n/a Latitude: Longitude: HIP HIP	464749.80 5010418.00 85.60 0 TAWA-CARLETON SGOODE TOWNS a ater Supply a the Tool EAR a ft GPM GPM ETAILS 0" denotes a Null va se ID Casing	3 Easting: Northing: Elev (masl): Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m): SWL (ft) Final Level: Recom. Rate: CASING Layer Value o Layer Caling 1 93
410 23 06/20/19 07/02/19 15 FRES 105846	ft ft ft End c 151 Fag: No: nse: ate: ate: ate: ate: ate: ate: ate: at	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi np Duration (np Duration (19	3 262 Con Well C Depth Pum Pum Pum Pum	GREY GREY d. Material STEEL OPEN HOLE	n/a 45.246373 -75.44918 ratified and ordere iamter Units inch inch	n/a Latitude: Longitude: HIP	ANDSTONE 464749.80 5010418.00 85.60 0 TAWA-CARLETON GOODE TOWNS a ater Supply a a the Tool EAR a ft GPM GPM ETAILS 0" denotes a Null va Se ID Casing 063750 063751	3 8 Easting: Northing: Elev (mas): Elev (mas): Elev (mas): Elev (mas): Elev (mas): Street: City: 0 Township: 0 Street: City: 1 Well Status: 1 Prim. Use: 1 SwL (ft) 1 Final Level: 2 Pump Rate: 2 2 93 FORMAT
410 23 06/20/19 07/02/19 15 FRES 105846	ft ft ft End c 151 fag: No: nse: ate: ate: ate: (m): (m): ind: ind: ind: ing: (hr): (m): (m): ft ft	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi np Duration (np Duration (19 50	3 262 Con Well C Depth Pur Pur Pur Pur Pur Pur	d. Material STEEL OPEN HOLE	n/a 45.246373 -75.44918 ratified and ordere iamter Units inch inch	n/a Latitude: Longitude: HIP	ANDSTONE 464749.80 5010418.00 85.60 0 TAWA-CARLETON GOODE TOWNS a ater Supply a able Tool EAR a ft GPM GPM ETAILS 0" denotes a Null va 663750 063751 CN DETAILS 0" denotes a Null va	3 Easting: Northing: Elev (masi): Elev (m
23 06/20/19 07/02/19 15. FRES 105846	ft ft ft End c I 51	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi p Duration (p Duration (19 50 Bottom I	3 262 Con Well C Depth Pum Pum Top Depth n/a n/a	GREY GREY d. Material STEEL OPEN HOLE d. Colour	n/a 45.246373 -75.44918 ratified and ordere iamter Units inch inch ratified and ordere Material 3	n/a Latitude: Longitude: HIP	ANDSTONE 464749.80 5010418.00 85.60 0 TAWA-CARLETON GOODE TOWNS a ater Supply a a ater Supply a a the Tool EAR a ft GPM GPM ETAILS 0" denotes a Null va G3750 063751 CN DETAILS 0" denotes a Null va Material	3 8 Easting: Northing: Elev (mas): Elev (mas): Elev (mas): Con: Municipality: Con: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: SWL (ft) Final Level: Recom. Rate: Pump Rate: Recom. Rate: CASING Layer Value of 1 93 2 93 CASING Layer Value of Layer Value of Layer
	ft ft ft End c 151 fag: No: nse: ate: ate: ate: (m): (m): ind: ind: ind: ing: (hr): (m): (m): ft ft	262 284 Well ID: T Audit I tractor Licen ompletion Da Received Da Received Da Well Depth (to Bedrock (Depth to Wa Water Ki Pipe Pump Test Flowi np Duration (np Duration (19 50	3 262 Con Well C Depth Pur Pur Pur Pur Pur Pur	d. Material STEEL OPEN HOLE	n/a 45.246373 -75.44918 ratified and ordere iamter Units inch inch	n/a Latitude: Longitude: HIP	ANDSTONE 464749.80 5010418.00 85.60 0 TAWA-CARLETON GOODE TOWNS a ater Supply a able Tool EAR a ft GPM GPM ETAILS 0" denotes a Null va 663750 063751 CN DETAILS 0" denotes a Null va	3 Easting: Northing: Elev (masi): Elev (m

Page 5 of 10

1	Eastin Northin Elev (mas	ig: 5010777.00	Latitude: Longitude:	45.249595 -75.451474	1		Well ID: 151	4164
LOCATION	Lot: Con: Municipality: Township: Street: City:	019 09 OTTAWA-CARLETON OSGOODE TOWN n/a				Well Co	Tag: Audit No: tractor License: ompletion Date: Received Date:	1836 05/27/1974 08/01/1974
WELL	Well Status: Prim. Use: Sec. Use: Boring Method	Water Supply n/a n/a : Rotary (Air)				Depth	Well Depth (m): to Bedrock (m): Depth to Water: Water Kind:	27.432 3 ft FRESH
PUMP TEST	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:	CLEAR n/a 35 85 ft 15 GPM 12 GPM					Pipe ID: Pump Test ID Flowing: p Duration (hr): p Duration (m):	10584711 991514164 N 1 0
		G DETAILS	alue and cannot be si	tratified and or	dered.			
	Layer	Case ID Casin	g Diamter D	iamter Unit	s Material	Top Depth	Bottom Depth	
		930063848 930063849	6 6	inch inch	STEEL OPEN HOLE	n/a n/a	22 ft 90 ft	
	_			men		11/a	ฮป แ	
		TION DETAILS of "0" denotes a Null v		tratified and or	dered.			
	Layer	Material	Material 2	Materia		Top Depth	Bottom Depth	
	1 2	BOULDERS	n/a n/a	n/a n/a	n/a n/a	0 3	3 ft 90 ft	
							End	of Record
CATION	B Eastin Northin Elev (mas Lot: Con: Municipality:	ig: 5010811.00	Longitude:	45.249906 -75.450355	5	Cont	Well ID: 151 Tag: Audit No: tractor License:	4335 1836
LOCA	Township: Street: City:	OSGOODE TOWN	NSHIP				ompletion Date: Received Date:	10/07/1974 10/23/1974
WELL	Well Status: Prim. Use: Sec. Use: Boring Method	Abandoned-Supply n/a n/a : Rotary (Air)	y			Depth	Well Depth (m): to Bedrock (m): Depth to Water: Water Kind:	68.58 0
PUMP TEST	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:						Pipe ID: Pump Test ID Flowing: p Duration (hr): p Duration (m):	
	CASING	G DETAILS						
	Layer Value Layer	e of "0" denotes a Null v. Case ID Casin		tratified and or Namter Unit		Top Depth	Bottom Depth	
		930064168	6	inch	STEEL	n/a	22 ft	
		TION DETAILS						
	Layer Value Layer	e of "0" denotes a Null v Material	alue and cannot be si Material 2	tratified and or Materia		Top Depth	Bottom Depth	
	1	LIMESTONE	n/a	n/a	n/a	0	225 ft	
							End	of Record
1	Eastin Northin Fley (mas	ig: 5010757.00	Latitude: Longitude:		6 of 10		Well ID: 151	4336

						94.06	
	Tag:					019	Lot:
	Audit No:					09	Con:
1836	License:					OTTAWA-CARLETON	Municipality: Township:
10/09/1974 10/23/1974	tion Date: ved Date:				SHIP	OSGOODE TOWN	Street:
10/23/1974	veu Dale.	ĸ				n/a	City:
76.0	onth (m):	10				Water Supply	Well Status:
76.2 4	epth (m): Irock (m):					Water Supply n/a	Prim. Use:
4 ft	to Water:					n/a	Sec. Use:
FRESH	ater Kind:						Boring Method:
10584881	Pipe ID:	-				CLEAR	Test Method:
991514336	o Test ID Flowing:	r				n/a 22	Pump Set (m): SWL (ft)
N 1	ation (hr):	Pump				230 ft	Final Level:
0	ation (m):					25 GPM	Pump Rate:
		-				20 GPM	Recom. Rate:
				(DETAILS	
1	ttom Depth	Top Depth	Material	iamter Units		of "0" denotes a Null v Case ID Casin	-
	21 ft	n/a	STEEL	inch	6	30064169	
	250 ft	n/a	OPEN HOLE	inch	6	30064170	
				tratified and ordered		FION DETAILS of "0" denotes a Null v	
	ttom Depth	Top Depth	Colour	Material 3	Material 2	Material	Layer
	4 ft	0	n/a	n/a	n/a	GRAVEL	1
	220 ft	4	n/a	n/a	n/a	LIMESTONE	2
	250 ft	220	n/a	n/a	n/a	SANDSTONE	3
of Record					7		
of Record				45.243854 -75.450919	-		Easting 8 Northing
					-	: 5010139.00	8 Easting Northing Elev (masi
					-	: 5010139.00	8 Northing
	▣ 151				-	: 5010139.00 : 83.14	8 Northing Elev (masi
15480	D: 151 Tag: Audit No: License:				Longitude:	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON	8 Northing Elev (mast) Lot: Con: Municipality:
15480 1505 06/16/1976	Tag: Tag: Audit No: License: tion Date:	Well Con			Longitude:	5010139.00 83.14 021 08	8 Northing Elev (masi) Lot: Con: Municipality: Township:
1 5480 1505 06/16/1976	D: 151 Tag: Audit No: License:	Well Con			Longitude:	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street:
15480 1505 06/16/1976 07/28/1976	Tag: Tag: Audit No: License: tion Date: ved Date:	Well Con R			Longitude:	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON OSGOODE TOWN n/a	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City:
15480 1505 06/16/1976 07/28/1976 19.812	Tag: Tag: Audit No: License: Lion Date: ved Date: Pepth (m):	Well Con R W			Longitude:	: 5010139.00 : 83.14 021 03 0TTAWA-CARLETON OSGOODE TOWN n/a Observation Wells	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status:
15480 1505 06/16/1976 07/28/1976 19.812	Tag: Tag: Audit No: License: Lion Date: ved Date: Pepth (m): Irock (m):	Well Con R W Depth to			Longitude:	: 5010139.00 : 83.14 021 03 0TTAWA-CARLETON OSGOODE TOWN n/a Observation Wells n/a	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use:
15480 1505 06/16/1976 07/28/1976 19.812	Tag: Tag: Audit No: License: Lion Date: ved Date: Pepth (m):	Well Con R W Depth to			Longitude:	: 5010139.00 : 83.14 021 08 OTTAWA-CARLETON OSGOODE TOWN n/a Observation Wells n/a n/a	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use:
1505 06/16/1976 07/28/1976 19.812 13	Tag: Audit No: License: tion Date: ved Date: pepth (m): lrock (m): to Water: ater Kind:	Well Con R W Depth to			Longitude:	: 5010139.00 : 83.14 021 08 OTTAWA-CARLETON OSGOODE TOWN n/a Observation Wells n/a n/a Rotary (Air)	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method:
15480 1505 06/16/1976 07/28/1976 19.812 13 10585996	Tag: Audit No: License: tion Date: ved Date: Pepth (m): to Water: ater Kind: Pipe ID:	Well Con R W Depth to De			Longitude:	: 5010139.00 : 83.14 021 08 OTTAWA-CARLETON OSGOODE TOWN n/a Na Na Rotary (Air) n/a	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method:
15480 1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480	Tag: Audit No: License: Licon Date: ved Date: Pepth (m): Irock (m): to Water: ater Kind: Pipe ID: o Test ID	Well Con R W Depth to De			Longitude:	: 5010139.00 : 83.14 021 08 OTTAWA-CARLETON OSGOODE TOWN n/a N/a Rotary (Air) n/a n/a n/a	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m):
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N	Tag: Audit No: License: tion Date: ved Date: Pepth (m): trock (m): to Water: ater Kind: Pipe ID: D Test ID Flowing:	Well Con R W Depth to De F			Longitude:	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON OSGOODE TOWN n/a N/a Rotary (Air) n/a n/a 7	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m): SWL (ft)
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a	Tag: Audit No: License: Licon Date: ved Date: Pepth (m): Irock (m): to Water: ater Kind: Pipe ID: o Test ID	Well Con R W Depth to De F F Pump			Longitude:	: 5010139.00 : 83.14 021 08 OTTAWA-CARLETON OSGOODE TOWN n/a N/a Rotary (Air) n/a n/a n/a	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m):
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a	Tag: Audit No: License: tion Date: ved Date: Pepth (m): trock (m): to Water: ater Kind: Pipe ID: p Test ID Flowing: ation (hr):	Well Con R W Depth to De F F Pump			Longitude:	: 5010139.00 :: 83.14 021 08 0TTAWA-CARLETON 0SGOODE TOWN 0SGOODE TOWN 0SGOODE TOWN n/a Rotary (Air) n/a 7 n/a ft 1	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m): SWL (ft) Final Level:
15480 1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N	Tag: Audit No: License: tion Date: ved Date: Pepth (m): trock (m): to Water: ater Kind: Pipe ID: p Test ID Flowing: ation (hr):	Well Con R W Depth to De F F Pump			Longitude:	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON OSGOODE TOWN 0SGOODE TOWN N/a N/a Rotary (Air) n/a 7 n/a ft n/a GPM	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a	Tag: Audit No: License: tion Date: ved Date: Pepth (m): trock (m): to Water: ater Kind: Pipe ID: p Test ID Flowing: ation (hr):	Well Con R W Depth to De F F Pump		-75.450919	SHIP	: 5010139.00 : 83.14 021 08 OTTAWA-CARLETON OSGOODE TOWN n/a Na Na Na Na Na Na Na Na Na N	8 Northing Elev (mas) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: Pepth (m): to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (m):	Well Con R W Depth to De F Pump Pump Pump	Material	-75.450919	Longitude:	: 5010139.00 : 83.14 021 08 OTTAWA-CARLETON OSGOODE TOWN n/a Rotary (Air) n/a Rotary (Air) n/a r/a n/a GPM n/a GPM DETAILS of "0" denotes a Null v	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value
15480 155480 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: Pepth (m): to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (m):	Well Con R W Depth to De F F Pump Pump	<u>Material</u> STEEL	-75.450919	Longitude:	: 5010139.00 : 83.14 021 08 OTTAWA-CARLETON OSGOODE TOWN n/a Rotary (Air) n/a Rotary (Air) n/a r/a n/a GPM DETAILS of "0" denotes a Null v	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer
15480 155480 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: Pepth (m): to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (m):	Well Con R W Depth to De F Pump Pump Pump		-75.450919	Longitude: SHIP alue and cannot be s g Diamter D 6	: 5010139.00 : 83.14 021 08 OTTAWA-CARLETON OSGOODE TOWN n/a Rotary (Air) n/a 7 n/a GPM DETAILS of "o" denotes a Null v. Case ID Casin	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value 1 93
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: ved Date: to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (m):	Well Con R W Depth to De F Pump Pump Pump		-75.450919 tratified and ordered biamter Units inch	Longitude: SHIP alue and cannot be s g Diamter D 6	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON OSGOODE TOWN 0/a 005servation Wells n/a N/a Rotary (Air) n/a n/a ft n/a GPM n/a GPM DETAILS of "0" denotes a Null vecase ID Casin 30066030 Casin	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value 1 93 FORMAT
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: ved Date: to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (m):	Well Con R W Depth to De F Pump Pump Pump		-75.450919 tratified and ordered biamter Units inch	Longitude: SHIP SHIP alue and cannot be s g Diamter D 6 alue and cannot be s Material 2	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON OSGOODE TOWN 0/a 005servation Wells n/a N/a Rotary (Air) n/a n/a ft n/a ft n/a GPM DETAILS of "0" denotes a Null version Gase ID Casin G0066030 FION DETAILS	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value 1 93 FORMAT
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: pepth (m): trock (m): to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (m): ttom Depth 13 ft	Well Con R Depth to De F Pump Pump Pump Top Depth n/a	STEEL	-75.450919 tratified and ordered biamter Units inch	Longitude: SHIP alue and cannot be s g Diamter D 6 alue and cannot be s	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON OSGOODE TOWN 0/a 005 servation Wells n/a N/a n/a Rotary (Air) n/a ft n/a ft n/a GPM DETAILS of "0" denotes a Null vectors a Source of "0" denotes a Null vectors a Null vectors a Source of "0" denotes a Null vectors a Null vectors a Null vectors a Source of "0" denotes a Null vectors a Nu	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value 1 93 FORMA Layer Value
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: pepth (m): to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (m): ttom Depth 13 ft	Well Con R W Depth to De F Pump Pump Pump Pump Top Depth n/a	STEEL Colour	-75.450919 tratified and ordered biamter Units inch tratified and ordered Material 3	Longitude: SHIP SHIP alue and cannot be s g Diamter D 6 alue and cannot be s Material 2	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON OSGOODE TOWN 0/a 005servation Wells n/a N/a Rotary (Air) n/a n/a Rotary (Air) n/a ft n/a GPM DETAILS of "0" denotes a Null ve Case ID Casin 30066030 FION DETAILS of "0" denotes a Null ve Material	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value of Case of the second Layer Value of Layer Value of Layer Value of the second Layer Value of the second
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: wed Date: wed Date: pepth (m): to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (m): ttom Depth 13 ft	Well Con R Depth to De F Pump Pump Pump Top Depth n/a Top Depth 0	STEEL Colour BROWN	-75.450919 tratified and ordered biamter Units inch tratified and ordered Material 3 HARDPAN	Longitude: SHIP SHIP alue and cannot be s g Diamter D 6 alue and cannot be s Material 2 GRAVEL	Solution of the second se	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value Layer Layer Value Layer 1
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: wed Date: wed Date: pepth (m): to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (m): ttom Depth 13 ft 4 ft	Well Con R Depth to De F Pump Pump Pump Top Depth n/a Top Depth 0 3	STEEL Colour BROWN GREY	-75.450919 tratified and ordered biamter Units inch tratified and ordered Material 3 HARDPAN n/a	Longitude: SHIP SHIP alue and cannot be s g Diamter D 6 alue and cannot be s Material 2 GRAVEL n/a	Solution	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value Layer 1 93 FORMAT Layer 1 2
1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: ved Date: to Water: ater Kind: Pipe ID: D Flowing: ation (hr): ation (hr): ation (m): ttom Depth 13 ft 4 ft 13 ft 65 ft	Well Con R W Depth to De F Pump Pump Pump Pump Pump Pump S Ump Pump S S S S S S S S S S S S S S S S S S S	STEEL Colour BROWN GREY BROWN	-75.450919 tratified and ordered biamter Units inch tratified and ordered Material 3 HARDPAN n/a HARDPAN	Longitude: SHIP SHIP alue and cannot be s g Diamter D 6 alue and cannot be s Material 2 GRAVEL n/a GRAVEL	Solution	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: Recom. Rate: CASING Layer Value 1 SWL (t) FORMAT Layer Value 1 2 3
15480 155480 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: ved Date: pepth (m): to Water: ater Kind: Pipe ID: o Test ID Flowing: ation (hr): ation (hr): ation (m): ttom Depth 13 ft 4 ft 13 ft 65 ft End (Well Con R W Depth to De F Pump Pump Pump Pump Pump Pump S Ump Pump S S S S S S S S S S S S S S S S S S S	STEEL Colour BROWN GREY BROWN	-75.450919 tratified and ordered biamter Units inch tratified and ordered Material 3 HARDPAN n/a HARDPAN n/a	Longitude: SHIP SHIP alue and cannot be s g Diamter D 6 alue and cannot be s Material 2 GRAVEL n/a GRAVEL n/a	Solution	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: CASING Layer Value of Layer Value of Layer Value of
15480 1505 06/16/1976 07/28/1976 19.812 13 10585996 991515480 N n/a n/a	Tag: Audit No: License: tion Date: ved Date: ved Date: ved Date: to Water: ater Kind: Pipe ID: D Flowing: ation (hr): ation (hr): ation (m): ttom Depth 13 ft 4 ft 13 ft 65 ft	Well Con R W Depth to De F Pump Pump Pump Pump Pump Pump S Ump Pump S S S S S S S S S S S S S S S S S S S	STEEL Colour BROWN GREY BROWN	-75.450919 tratified and ordered biamter Units inch tratified and ordered Material 3 HARDPAN n/a HARDPAN	Longitude: SHIP	: 5010139.00 : 83.14 021 08 0TTAWA-CARLETON OSGOODE TOWN 0/3 OSGOODE TOWN n/a Noservation Wells n/a Rotary (Air) n/a Rotary (Air) n/a f n/a GPM DETAILS Case ID of "0" denotes a Null version Case ID Casin 30066030 Casin FION DETAILS SAND BOULDERS SAND LIMESTONE : 464570.80 :	8 Northing Elev (masl) Lot: Con: Municipality: Township: Street: City: Well Status: Prim. Use: Sec. Use: Boring Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate: Recom. Rate: CASING Layer Value 1 SWL (t) FORMAT Layer Value 1 2 3

Page 7 of 10

	Bilev (mas	-		-75.452718 Page 8 o	f 10			
	8 Eastin			45.249311				of Record 5357
	4	LIMESTONE	HARD	n/a	BLACK	50	65 ft	of Deserved
	3	LIMESTONE	VERY	HARD	GREY	20	50 ft	
	1 2	LIMESTONE	n/a	n/a	GREY	9	9 π 20 ft	
	Layer 1	Material CLAY	Material 2 SAND	Material 3 BOULDERS	Colour BROWN	Top Depth 0	Bottom Depth 9 ft	
	Layer Value	of "0" denotes a Null v	alue and cannot be s					
						1/4	00 H	
		930067730 930067731	8 8	inch inch	STEEL OPEN HOLE	n/a n/a	20 ft 65 ft	
				iamter Units	Material	Top Depth	Bottom Depth	
	Layer Value	of "0" denotes a Null v						
		B DETAILS						
PU	Pump Rate: Recom. Rate:	30 GPM 5 GPM				Pump	Duration (m):	0
PUMP	Final Level:	30 ft					Duration (hr):	1
Ĕ	SWL (ft)	n/a 30					Flowing:	991516652 N
ST	Test Method: Pump Set (m):	CLOUDY n/a					Pipe ID: Pump Test ID	10587128 991516652
-	Boring Method						Water Kind:	FRESH
ΝE	Sec. Use:	n/a				•	epth to Water:	ft
4	Well Status: Prim. Use:	Water Supply n/a					Vell Depth (m): o Bedrock (m):	19.812 9
	-							
Ď	Street: City:	n/a				I	Received Date:	09/08/1978
CA	Township:	OSGOODE TOWN				Well Co	mpletion Date:	08/04/1978
CATION	Con: Municipality:	09 OTTAWA-CARLETON	1			Contr	Audit No: actor License:	1558
Z	Lot:	019					Tag:	
	Elev (mas	•						
1	8 Eastin			45.249818 -75.451998			Well ID: 151	6652
		404500.00		45.040040				of Record
	Ŭ			104	JIL I	10		
	4 5	GRAVEL LIMESTONE	SAND n/a	n/a	BROWN GREY	13 16	16 ft 144 ft	
	3 4	SAND	GRAVEL	TILL TILL	BROWN	4 13	13 ft 16 ft	
	2	LIMESTONE	BOULDERS	n/a	GREY	3	4 ft	
	Layer 1	SAND	GRAVEL	TILL	BROWN	0	3 ft	
	Layer Value Layer	of "0" denotes a Null v Material	value and cannot be s Material 2	tratified and ordere Material 3	d. Colour	Top Depth	Bottom Depth	
				tratifical				
	1 9	30066146	6	inch	STEEL	n/a	19 ft	
	Layer	Case ID Casir	ng Diamter D	iamter Units	Material	Top Depth	Bottom Depth	
		B DETAILS of "0" denotes a Null v	alue and cannot be s	tratified and ordere	d.			
Ľ								
PUMP	Pump Rate: Recom. Rate:	n/a GPM n/a GPM				Pump	Duration (m):	n/a
	Final Level:	n/a ft					Duration (hr):	n/a
μ̈́	Pump Set (m): SWL (ft)	n/a n/a					Pump Test ID Flowing:	991515548 N
ST	Test Method:	n/a					Pipe ID:	10586064
	Boring Method	: Rotary (Air)					Water Kind:	SULPHUR
WELL	Sec. Use:	n/a				•	epth to Water:	ft
_	Well Status: Prim. Use:	Test Hole n/a					Vell Depth (m): o Bedrock (m):	43.8912 3
	-							
ĽÕ	Street: City:	n/a				F	Received Date:	08/19/1976
OCATION	Municipality: Township:	OTTAWA-CARLETON OSGOODE TOWN					actor License: mpletion Date:	1505 06/16/1976
0	Con: Municipality		I			•	Audit No:	4505
7	Lot:			I			Tag:	

LOCATION	Lot: Con: Municipality: Township: Street: City:	n/a n/a OTTAWA-CARLETON OSGOODE TOWNSHIP 9TH LINE METCALF	Tag: Audit No: Contractor License: Well Completion Date: Received Date:	A012448 Z12517 1517 10/28/2004 01/14/2005
WELL	Well Status: Prim. Use: Sec. Use: Boring Method	Abandoned-Other n/a n/a : n/a	Well Depth (m): Depth to Bedrock (m): Depth to Water: Water Kind:	0 n/a
PUMP TEST	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:		Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):	
		B DETAILS of "0" denotes a Null value and cannot be stratified and Case ID Casing Diamter Diamter Un		
	Layer Value	TION DETAILS of "0" denotes a Null value and cannot be stratified and		
	Layer	Material Material 2 Mater		of Record

1	8	Easting Northing Elev (masi)	: 5010761.00		45.249447 -75.452579		Well ID: 704	5997
LOCATION		n: nicipality: /nship: eet:	019 09 OTTAWA-CARLETO OSGOODE TOW 2545 9TH LINE METCALF	NSHIP			Tag: Audit No: Contractor License: Well Completion Date: Received Date:	A035017 Z38810 1517 05/31/2007 07/03/2007
WELL	Prin Sec	n. Use:	Abandoned-Othe n/a n/a	r			Well Depth (m): Depth to Bedrock (m): Depth to Water: Water Kind:	0 n/a
PUMP TEST	Pun SWI Fina Pun	t Method: np Set (m): L (ft) al Level: np Rate: om. Rate:					Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):	
		Layer Value		value and cannot be s	stratified and ord Diamter Units		Top Depth Bottom Depth	
			FION DETAIL	S value and cannot be s	stratified and ord	ered.		
		Layer	Material	Material 2	Material	3 Colour	Top Depth Bottom Depth	

End of Record

Latitude: 45.247062 Longitude: -75.452356 Easting:464501.00Northing:5010496.00 18 Elev (masl): 89.57

Page 9 of 10

OCATION	Lot: Con: Municipality: Township: Street: City:	OTTAWA-CARLETON OSGOODE TOWNSHIP 9TH LINE 2540 METCALF	Tag: Audit No: Contractor License: Well Completion Date: Received Date:	A035019 Z38812 1517 05/01/2007 07/03/2007
NELL	Well Status: Prim. Use: Sec. Use: Boring Method:	Abandoned-Other n/a n/a	Well Depth (m): Depth to Bedrock (m): Depth to Water: Water Kind:	0 n/a
UMP TES	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:		Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):	
	Layer Value	DETAILS of "0" denotes a Null value and cannot be stratified and o Case ID Casing Diamter Diamter Un		1
	FORMA	TION DETAILS of "0" denotes a Null value and cannot be stratified and o		I
	Layer	Material Material 2 Materi		of Record
18	Elev (mas	c: 5010857.00 Longitude: -75.45286	56 Well ID: 704	46030
OCATION	Lot: Con: Municipality: Township: Street: City:	019 09 OTTAWA-CARLETON OSGOODE TOWNSHIP 9TH LINE ROAD 2545 METCALF	Tag: Audit No: Contractor License: Well Completion Date: Received Date:	A035018 Z38811 1517 05/31/2007 07/03/2007
VELL	Well Status: Prim. Use: Sec. Use: Boring Method:	Abandoned-Other n/a n/a	Well Depth (m): Depth to Bedrock (m): Depth to Water: Water Kind:	0 n/a
UMP TES	Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:		Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):	
		DETAILS of "0" denotes a Null value and cannot be stratified and o	ordered.	
	FORMA	Case ID Casing Diamter Diamter Un TION DETAILS of "0" denotes a Null value and cannot be stratified and o	ordered.	

Layer Material Material 2 Material 3 Colour Top Depth Bottom Depth

End of Record

Page 10 of 10

Appendix B Photographs

Photo 1 - View of drilled water well TW-1 and pump shed/building.

Photo 2 - Interior view of well pit of drilled water well TW-1.

Site Photographs

GHD | Hydrogeological Assessment | 12586015 | Page 1

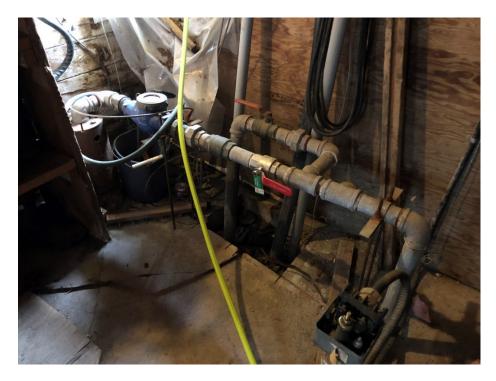
Photo 3 - Location of drilled well M-1 used as an observation well.

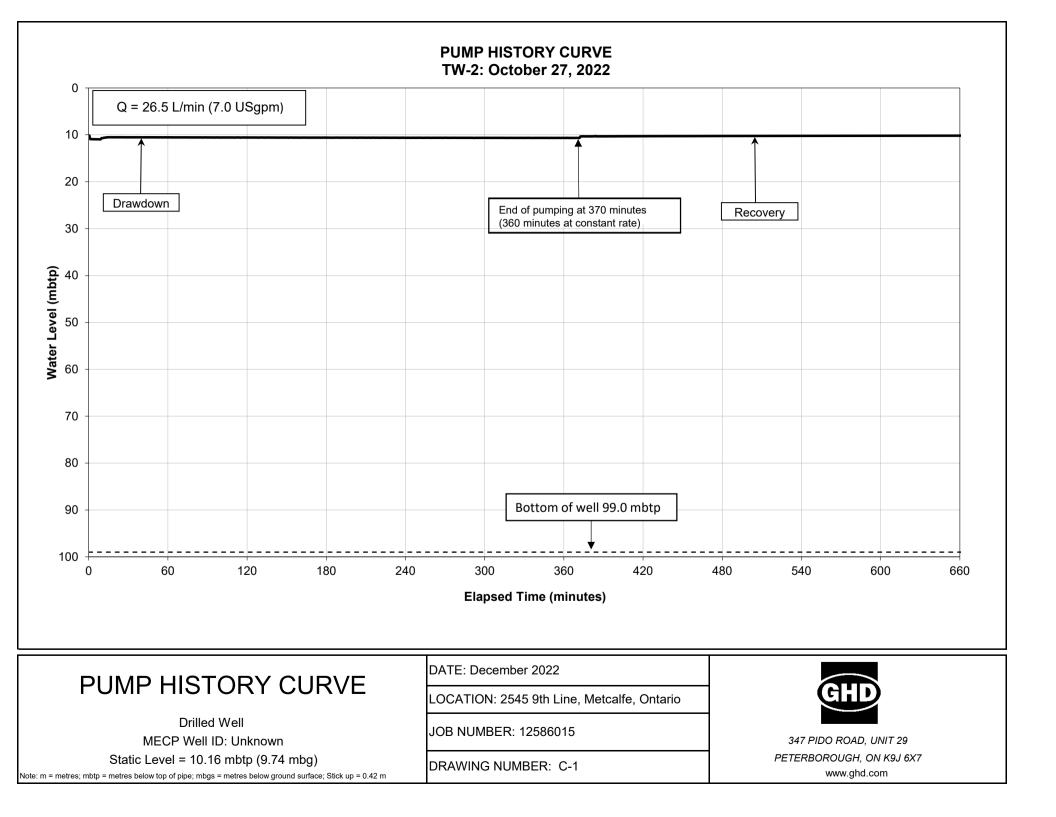
Photo 4 - Interior view of well pit of drilled water well M-1.

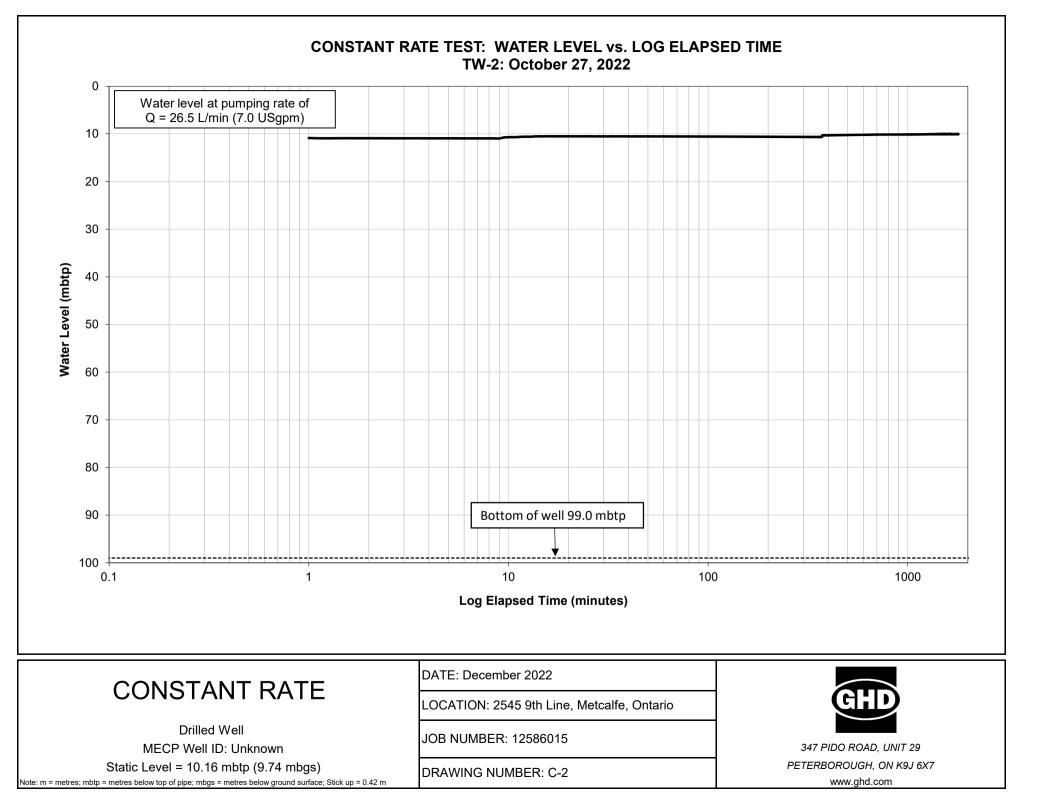
Site Photographs

GHD | Hydrogeological Assessment | 12586015 | Page 2

Photo 5 - View of building that houses drilled water well TW-2.



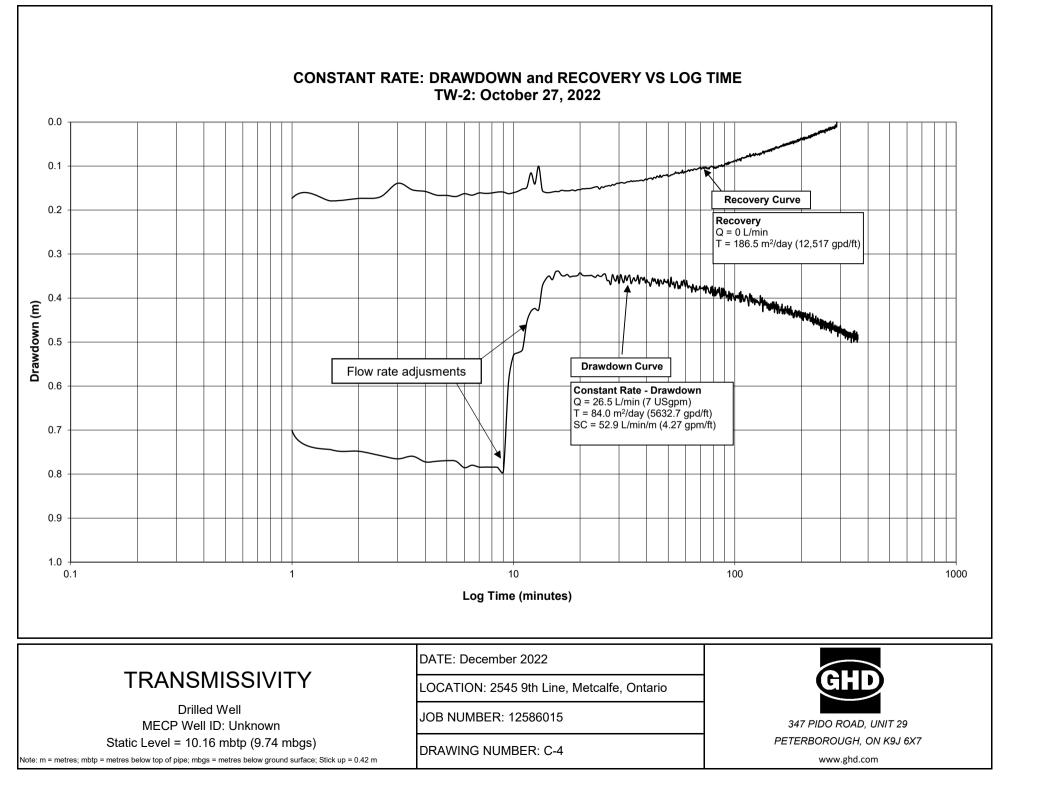

Photo 6 – Drilled water well TW-2 located inside pump house.

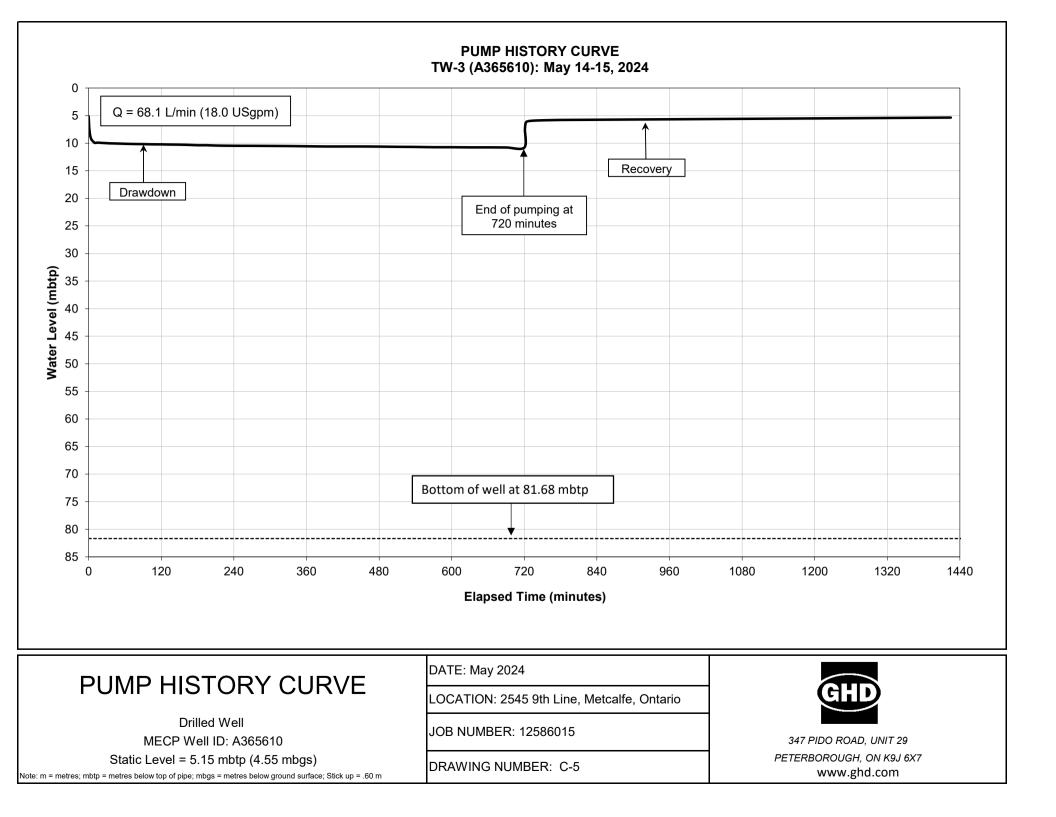


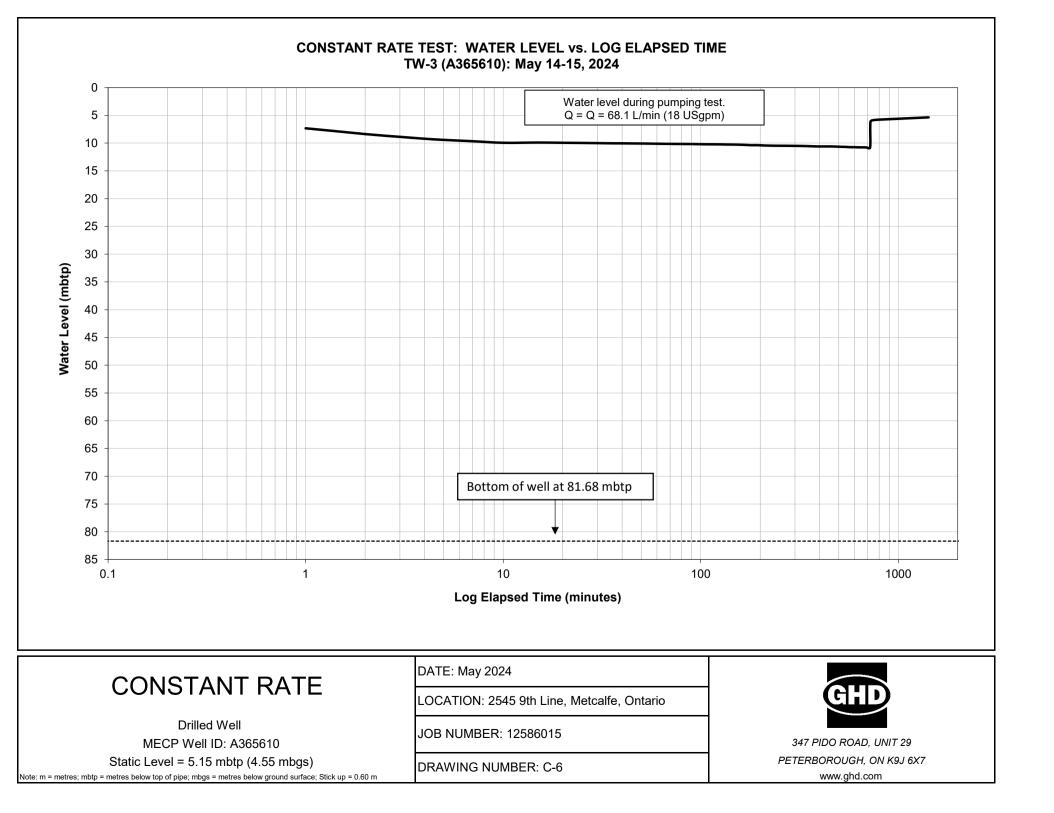
Site Photographs

GHD | Hydrogeological Assessment | 12586015 | Page 3

Appendix C Aquifer Performance Testing




-1 4 76% recovery in 60 minutes 1 Hour Test 6 Hour Test 9 100% recovery in 290 minutes pH = 8.25 pH = 8.20Temperature - 10.5 °C Temperature - 10.9 °C 14 Conductivity = 1.15 mS/cm Conductivity = 1.11 mS/cm 19 Turbidity = 0.00 NTU Turbidity = 0.00 NTU 24 Free Chlorine Residual = 0.00 mg/L Free Chlorine Residual = 0.00 mg/L Methane = 0% LEL Methane = 0% LEL 29 34 Drawdown (m) 39 44 49 54 59 64 69 Available drawdown 88.8 m 74 above base of well 79 84 89 60 120 180 240 300 360 420 480 540 600 660 0 Elapsed Time (minutes) DATE: December 2022 CONSTANT RATE DRAWDOWN LOCATION: 2545 9th Line, Metcalfe, Ontario Drilled Well JOB NUMBER: 12586015 347 PIDO ROAD, UNIT 29 MECP Well ID: Unknown PETERBOROUGH, ON K9J 6X7 Static Level = 10.16 mbtp (9.74 mbgs) DRAWING NUMBER: C-3


CONSTANT RATE DRAWDOWN, RECOVERY AND TESTING DETAILS TW-2: October 27, 2022

Note: m = metres; mbtp = metres below top of pipe; mbgs = metres below ground surface; Stick up = 0.42 m

www.ghd.com

0 5 96% Recovery after 12 hours 10 1 Hour Test 6 Hour Test 12 Hour Test pH = 6.93 pH = 7.50pH = 7.5315 Temperature = 11.9 °C Temperature = $13.0 \, {}^{\circ}\text{C}$ Temperature = 12.5 °C Conductivity = 0.697 mS/cm Conductivity = 0.690 mS/cm Conductivity = 0.699 mS/cm 20 Turbidity = 0.00 NTU Turbidity = 0.00 NTU Turbidity = 0.00 NTU Free Chlorine Residual = 0.00 mg/L Free Chlorine Residual = 0.00 mg/L Free Chlorine Residual = 0.00 mg/L Methane = 0% LEL 25 Methane = 0% I FI Methane = 0% LEL 30 Drawdown (m) 35 40 45 50 55 60 Available drawdown of 76.5 m 65 above base of well 70 75 80 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 Elapsed Time (minutes)

CONSTANT RATE DRAWDOWN, RECOVERY AND TESTING DETAILS TW-3 (A365610): May 14-15, 2024

CONSTANT RATE DRAWDOWN

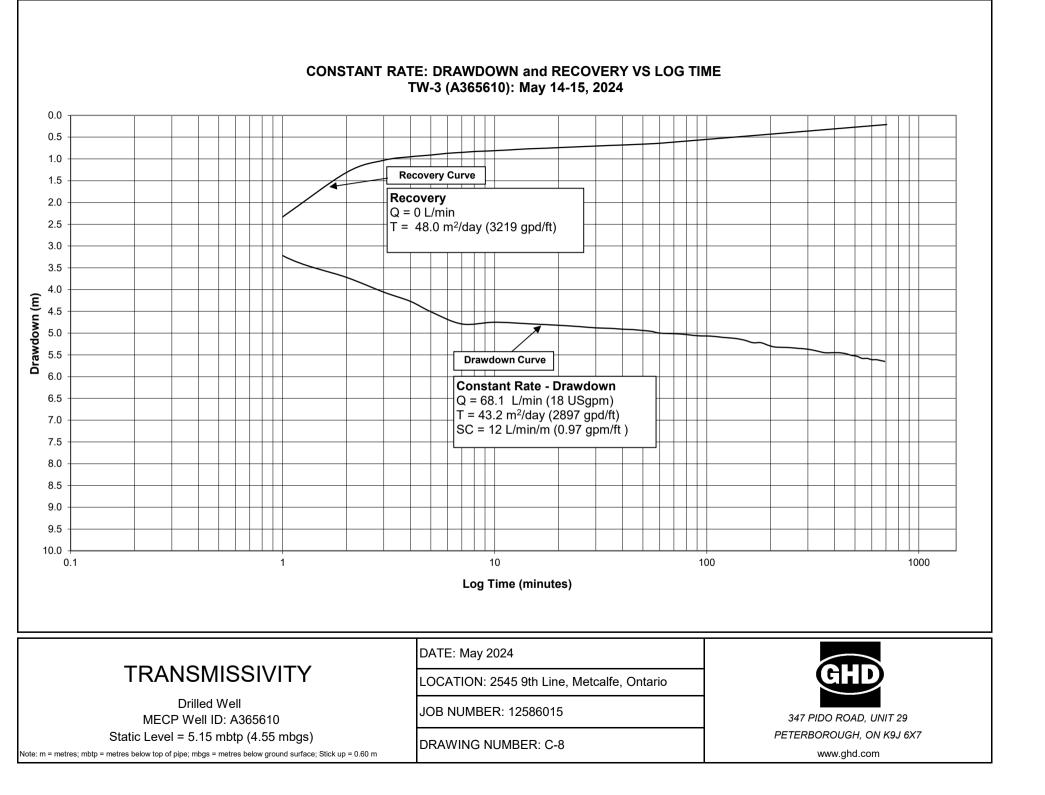
DATE: May 2024

LOCATION: 2545 9th Line, Metcalfe, Ontario

JOB NUMBER: 12586015

DRAWING NUMBER: C-7

GHD


347 PIDO ROAD, UNIT 29 PETERBOROUGH, ON K9J 6X7

Static Level = 5.15 mbtp (4.55 mbgs) Note: m = metres; mbtp = metres below top of pipe; mbgs = metres below ground surface; Stick up = 0.60 m

Drilled Well

MECP Well ID: A365610

www.ghd.com

Appendix D Water Well Certificates of Analyses

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order	: WT2220058	Page	÷ 1 of 8
Client	: GHD Limited	Laboratory	: Waterloo - Environmental
Contact	: Pascal Renella	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo ON Canada N2V 2B8
Telephone	: 519 725 3313	Telephone	: +1 519 886 6910
Project	: 12586015-03.004	Date Samples Received	: 28-Oct-2022 07:40
PO	: 735-003748-1	Date Analysis	: 29-Oct-2022
		Commenced	
C-O-C number	:	Issue Date	: 09-Nov-2022 10:59
Sampler			
Site			
Quote number	12586015-SSOW-735-003748-1		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Danielle Gravel	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Metals, Waterloo, Ontario
Kelsey Hesch	Analyst	Organics, Waterloo, Ontario
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Ruby Sujeepan		Microbiology, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
µg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
CFU/100mL	colony forming units per 100 mL
CFU/1mL	colony forming units per 1 mL
CU	colour units (1 CU = 1 mg/L Pt)
meq/L	milliequivalents per litre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

>: greater than.

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

RRR - Detection limit raised due to suspected laboratory contamination.

Sample Comments

Sample	Client Id	Comment
WT2220058-001	GW-12586015-GW-004	RRR:Detection limit raised due to instrument sensitivity.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
RRR	Refer to report comments for issues regarding this analysis.

WT2220058-001

Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-GW-004 Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
							Date	
Physical Tests								
colour, true		2.9	2.0	CU	E329-L	01-Nov-2022	04-Nov-2022	724671
conductivity		790	2.0	μS/cm	E100	03-Nov-2022	06-Nov-2022	729186
hardness (as CaCO3), dissolved		391	0.50	mg/L	EC100	-	02-Nov-2022	-
рН		8.43	0.10	pH units	E108	03-Nov-2022	06-Nov-2022	729184
solids, total dissolved [TDS]		495 DLDS,	20	mg/L	E162	-	02-Nov-2022	726629
turbidity		0.10	0.10	NTU	E121	-	04-Nov-2022	730340
alkalinity, total (as CaCO3)		269	2.0	mg/L	E290	03-Nov-2022	06-Nov-2022	729185
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.125	0.0050	mg/L	E298	02-Nov-2022	04-Nov-2022	726698
chloride	16887-00-6	67.0	0.50	mg/L	E235.CI	03-Nov-2022	04-Nov-2022	729182
fluoride	16984-48-8	0.192	0.020	mg/L	E235.F	03-Nov-2022	04-Nov-2022	729179
Kjeldahl nitrogen, total [TKN]		0.194	0.050	mg/L	E318	02-Nov-2022	03-Nov-2022	726029
nitrate (as N)	14797-55-8	<0.020	0.020	mg/L	E235.NO3	03-Nov-2022	04-Nov-2022	729180
nitrite (as N)	14797-65-0	<0.010	0.010	mg/L	E235.NO2	03-Nov-2022	04-Nov-2022	729181
sulfate (as SO4)	14808-79-8	62.5	0.30	mg/L	E235.SO4	03-Nov-2022	04-Nov-2022	729183
Organic / Inorganic Carbon						1		
carbon, dissolved organic [DOC]		1.98	0.50	mg/L	E358-L	31-Oct-2022	01-Nov-2022	723488
Total Sulfides						1		
sulfide, total (as H2S)	7783-06-4	0.019	0.011	mg/L	E395-H	-	02-Nov-2022	727164
sulfide, total (as S)	18496-25-8	0.018	0.010	mg/L	E395-H	-	02-Nov-2022	727164
Microbiological Tests						1		
coliforms, total		Not Detected	1	CFU/100mL	E012.TC	-	29-Oct-2022	721574
heterotrophic plate count [HPC]		1	1	CFU/1mL	E012.HPC	-	29-Oct-2022	721573
coliforms, total background		1	1	CFU/100mL	E012.BG.TC	-	29-Oct-2022	721575
coliforms, Escherichia coli [E. coli]		Not Detected	1	CFU/100mL	E012A.EC	-	29-Oct-2022	721578
Ion Balance						1		
anion sum		8.58	0.10	meq/L	EC101	-	09-Nov-2022	_
cation sum		9.20	0.10	meq/L	EC101	-	09-Nov-2022	-
ion balance (APHA)		3.49	0.01	%	EC101	-	09-Nov-2022	-
Dissolved Metals						1		
aluminum, dissolved	7429-90-5	<0.0010	0.0010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
antimony, dissolved	7440-36-0	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
arsenic, dissolved	7440-38-2	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
barium, dissolved	7440-39-3	0.149	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
boron, dissolved	7440-42-8	0.077	0.010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
cadmium, dissolved	7440-43-9	<0.000050	0.0000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
calcium, dissolved	7440-70-2	96.9	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
chromium, dissolved	7440-47-3	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
cobalt, dissolved	7440-48-4	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
copper, dissolved	7440-50-8	0.00035	0.00020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
lead, dissolved	7439-92-1	<0.000050	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
magnesium, dissolved	7439-92-1	36.1	0.0050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
manganese, dissolved	7439-95-4	0.0420	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
molybdenum, dissolved	7439-90-3	0.00604	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022 01-Nov-2022	724874
nickel, dissolved	7439-96-7 7440-02-0	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022 01-Nov-2022	724874
	1440-02-0	0.00000	0.00000		L (2)	311101-2022	01-1100-2022	124014

WT2220058-001 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-GW-004 Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Dissolved Metals								
potassium, dissolved	7440-09-7	5.14	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
selenium, dissolved	7782-49-2	0.000141	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
sodium, dissolved	7440-23-5	28.8	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
strontium, dissolved	7440-24-6	2.05	0.00020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
uranium, dissolved	7440-61-1	0.000246	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
vanadium, dissolved	7440-62-2	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
zinc, dissolved	7440-66-6	0.0066	0.0010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
dissolved metals filtration location		Field	-	-	EP421	-	01-Nov-2022	724874
Aggregate Organics								
tannin + lignin (as tannic acid)		0.86	0.10	mg/L	E563	-	31-Oct-2022	722654
Volatile Organic Compounds								
Acetone	67-64-1	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
benzene	71-43-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	03-Nov-2022		
dichloroethane, 1,2-		<0.50	0.50		E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethylene, 1,1-	107-06-2	<0.50	0.50	μg/L μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethylene, cis-1,2-	75-35-4	<0.50	0.50		E611D	03-Nov-2022	03-Nov-2022	728063
	156-59-2	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethylene, trans-1,2- dichloromethane	156-60-5	<0.50 <1.0	1.0	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
	75-09-2		0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloropropane, 1,2-	78-87-5	<0.50 <0.50	0.50	µg/L	E611D	03-Nov-2022 03-Nov-2022	03-Nov-2022	728063
dichloropropylene, cis+trans-1,3-	542-75-6			µg/L			03-Nov-2022	728063
dichloropropylene, cis-1,3- dichloropropylene, trans-1,3-	10061-01-5	<0.30	0.30	µg/L	E611D	03-Nov-2022 03-Nov-2022	03-Nov-2022	728063
	10061-02-6	< 0.30	0.30	µg/L	E611D		03-Nov-2022	728063
ethylbenzene	100-41-4	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
hexane, n-	110-54-3	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
methyl ethyl ketone [MEK]	78-93-3	<20	20	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
methyl-tert-butyl ether [MTBE]	1634-04-4	< 0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
styrene	100-42-5	< 0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
tetrachloroethane, 1,1,1,2-	630-20-6	< 0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
tetrachloroethylene	127-18-4	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063

WT2220058-001 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-GW-004 Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Volatile Organic Compounds							Date	
toluene	108-88-3	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethylene	79-01-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichlorofluoromethane	75-69-4	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
vinyl chloride	75-01-4	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylene, m+p-	179601-23-1	<0.40	0.40	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylene, o-	95-47-6	<0.30	0.30	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylenes, total	1330-20-7	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
BTEX, total		<1.0	1.0	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
Hydrocarbons								
F1 (C6-C10)		<25	25	µg/L	E581.F1-L	03-Nov-2022	03-Nov-2022	728064
F2 (C10-C16)		<100	100	µg/L	E601.SG	02-Nov-2022	08-Nov-2022	725961
F2-naphthalene		<100	100	µg/L	EC600SG	-	03-Nov-2022	-
F3 (C16-C34)		<250	250	μg/L	E601.SG	02-Nov-2022	08-Nov-2022	725961
F3-PAH	n/a	<250	250	µg/L	EC600SG	-	03-Nov-2022	-
F4 (C34-C50)		<250	250	µg/L	E601.SG	02-Nov-2022	08-Nov-2022	725961
F1-BTEX		<25	25	µg/L	EC580	-	04-Nov-2022	-
hydrocarbons, total (C6-C50)		<370	370	µg/L	EC581SG	-	04-Nov-2022	-
chromatogram to baseline at nC50	n/a	YES	-	-	E601.SG	02-Nov-2022	08-Nov-2022	725961
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	77.6	1.0	%	E601.SG	02-Nov-2022	08-Nov-2022	725961
dichlorotoluene, 3,4-	97-75-0	107	1.0	%	E581.F1-L	03-Nov-2022	03-Nov-2022	728064
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	109	1.0	%	E611D	03-Nov-2022	03-Nov-2022	728063
difluorobenzene, 1,4-	540-36-3	99.6	1.0	%	E611D	03-Nov-2022	03-Nov-2022	728063
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
acenaphthylene	208-96-8	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
anthracene	120-12-7	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benz(a)anthracene	56-55-3	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(a)pyrene	50-32-8	<0.044 ^{RRR.}	0.044	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(b+j)fluoranthene	n/a	<0.10	0.10	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(g,h,i)perylene	191-24-2	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(k)fluoranthene	207-08-9	<0.10	0.10	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
chrysene	218-01-9	<0.10	0.10	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dibenz(a,h)anthracene	53-70-3	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
fluoranthene	206-44-0	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
fluorene	86-73-7	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
indeno(1,2,3-c,d)pyrene	193-39-5	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
methylnaphthalene, 1-	90-12-0	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
methylnaphthalene, 1+2-		<0.60	0.6	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
methylnaphthalene, 2-	91-57-6	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
naphthalene	91-20-3	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
phenanthrene	85-01-8	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
pyrene	129-00-0	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805

WT2220058-001 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-GW-004 Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Phthalate Esters								
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	<2.0	2.0	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
diethyl phthalate	84-66-2	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dimethyl phthalate	131-11-3	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Semi-Volatile Organics								
biphenyl	92-52-4	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
bis(2-chloroethyl) ether	111-44-4	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
bis(2-chloroisopropyl) ether	39638-32-9	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
chloroaniline, 4-	106-47-8	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dichlorobenzidine, 3,3'-	91-94-1	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrotoluene, 2,4-	121-14-2	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrotoluene, 2,4 + 2,6-	n/a	<0.60	0.6	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrotoluene, 2,6-	606-20-2	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
trichlorobenzene, 1,2,4-	120-82-1	<0.40	0.40	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Semi-Volatile Organics Surrogates								
fluorobiphenyl, 2-	321-60-8	87.2	1.0	%	E655A	01-Nov-2022	02-Nov-2022	724805
nitrobenzene-d5	4165-60-0	95.0	1.0	%	E655A	01-Nov-2022	02-Nov-2022	724805
terphenyl-d14, p-	1718-51-0	96.2	1.0	%	E655A	01-Nov-2022	02-Nov-2022	724805
Chlorinated Phenolics								
chlorophenol, 2-	95-57-8	<0.30	0.30	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dichlorophenol, 2,4-	120-83-2	<0.30	0.30	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
pentachlorophenol [PCP]	87-86-5	<0.50	0.50	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
tetrachlorophenol, 2,3,4,6-	58-90-2	<0.50	0.50	µg/L	E651D	01-Nov-2022	02-Nov-2022	724808
trichlorophenol, 2,4,5-	95-95-4	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
trichlorophenol, 2,4,6-	88-06-2	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Non-Chlorinated Phenolics								
dimethylphenol, 2,4-	105-67-9	<0.50	0.50	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrophenol, 2,4-	51-28-5	<1.0	1.0	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
phenol	108-95-2	<0.50	0.50	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Phenolics Surrogates								
tribromophenol, 2,4,6-	118-79-6	101	1.0	%	E651D	01-Nov-2022	02-Nov-2022	724808
tribromophenol, 2,4,6-	118-79-6	101	0.22	%	E655A	01-Nov-2022	02-Nov-2022	724805
Pesticides								
diazinon	333-41-5	<0.10	0.10	µg/L	E660E-H	01-Nov-2022	04-Nov-2022	724791
Pesticides Surrogates								
fluorobiphenyl, 2-	321-60-8	100	0.10	%	E660E-H	01-Nov-2022	04-Nov-2022	724791
terphenyl-d14, p-	1718-51-0	111	0.10	%	E660E-H	01-Nov-2022	04-Nov-2022	724791

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2220058-002 Sub-Matrix:Water (Matrix: Water)			'	12586015-GW ime: 27-Oct-20					
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot	

Page	:	7 of 8
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

WT2220058-002 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-GW-003 -Client sampling date / time: 27-Oct-2022 09:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Dissolved Metals								
aluminum, dissolved	7429-90-5	<0.0010	0.0010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
antimony, dissolved	7440-36-0	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
arsenic, dissolved	7440-38-2	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
barium, dissolved	7440-39-3	0.149	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
boron, dissolved	7440-42-8	0.077	0.010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
cadmium, dissolved	7440-43-9	<0.000050	0.0000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
calcium, dissolved	7440-70-2	97.5	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
chromium, dissolved	7440-47-3	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
cobalt, dissolved	7440-48-4	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
copper, dissolved	7440-50-8	0.00115	0.00020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
lead, dissolved	7439-92-1	0.000103	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
magnesium, dissolved	7439-95-4	35.5	0.0050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
manganese, dissolved	7439-96-5	0.0413	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
molybdenum, dissolved	7439-98-7	0.00593	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
nickel, dissolved	7440-02-0	0.00063	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
potassium, dissolved	7440-09-7	5.09	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
selenium, dissolved	7782-49-2	0.000110	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
sodium, dissolved	7440-23-5	28.0	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
strontium, dissolved	7440-24-6	2.06	0.00020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
uranium, dissolved	7440-61-1	0.000249	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
vanadium, dissolved	7440-62-2	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
zinc, dissolved	7440-66-6	0.0137	0.0010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
dissolved metals filtration location		Field	-	-	EP421	-	01-Nov-2022	724874

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2220058-003

Sub-Matrix:Water (Matrix: Water)

Client sample ID: Trip Blank Client sampling date / time: 27-Oct-2022 14:30

Result LOR Unit Method Prep Date QCLot Analyte CAS Number Analysis Date Volatile Organic Compounds E611D 03-Nov-2022 Acetone 67-64-1 <20 20 µg/L 03-Nov-2022 728063 E611D 03-Nov-2022 benzene <0.50 0.50 µg/L 03-Nov-2022 728063 71-43-2 E611D 03-Nov-2022 bromodichloromethane 75-27-4 <0.50 0.50 µg/L 03-Nov-2022 728063 <0.50 0.50 E611D 03-Nov-2022 bromoform 75-25-2 µg/L 03-Nov-2022 728063 <0.50 0.50 E611D 03-Nov-2022 bromomethane 74-83-9 µg/L 03-Nov-2022 728063 <0.20 0.20 E611D 03-Nov-2022 carbon tetrachloride µg/L 03-Nov-2022 56-23-5 728063 <0.50 0.50 E611D 03-Nov-2022 chlorobenzene 108-90-7 µg/L 03-Nov-2022 728063 <0.50 0.50 E611D 03-Nov-2022 chloroform 67-66-3 µg/L 03-Nov-2022 728063 <0.50 0.50 E611D 03-Nov-2022 dibromochloromethane 124-48-1 µg/L 03-Nov-2022 728063

WT2220058-003 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: Trip Blank Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Volatile Organic Compounds							Date	
dibromoethane, 1,2-	106-93-4	<0.20	0.20	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022 03-Nov-2022	728063
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022 03-Nov-2022	728063
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloromethane	75-09-2	<1.3 ^{RRR,}	1.3	μg/L	E611D	03-Nov-2022	03-Nov-2022 04-Nov-2022	728063
dichloropropane, 1,2-	78-87-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloropropylene, cis+trans-1,3-	542-75-6	< 0.50	0.5	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloropropylene, cis-1,3-	10061-01-5	< 0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloropropylene, trans-1,3-	10061-02-6	< 0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
styrene	100-42-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
tetrachloroethylene	127-18-4	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
toluene	108-88-3	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethylene	79-01-6	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichlorofluoromethane	75-69-4	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
vinyl chloride	75-01-4	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylene, m+p-	179601-23-1	<0.40	0.40	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylene, o-	95-47-6	<0.30	0.30	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylenes, total	1330-20-7	<0.50	0.50	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
BTEX, total		<1.0	1.0	µg/L	E611D	03-Nov-2022	03-Nov-2022	728063
Hydrocarbons								
F1 (C6-C10)		<25	25	µg/L	E581.F1-L	03-Nov-2022	03-Nov-2022	728064
F1-BTEX		<25	25	µg/L	EC580	-	04-Nov-2022	-
Hydrocarbons Surrogates								
dichlorotoluene, 3,4-	97-75-0	92.3	1.0	%	E581.F1-L	03-Nov-2022	03-Nov-2022	728064
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	105	1.0	%	E611D	03-Nov-2022	03-Nov-2022	728063
difluorobenzene, 1,4-	540-36-3	101	1.0	%	E611D	03-Nov-2022	03-Nov-2022	728063

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WT2220058	Page	: 1 of 16
Client	GHD Limited	Laboratory	: Waterloo - Environmental
Contact	:Pascal Renella	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo, Ontario Canada N2V 2B8
Telephone	: 519 725 3313	Telephone	: +1 519 886 6910
Project	: 12586015-03.004	Date Samples Received	: 28-Oct-2022 07:40
PO	: 735-003748-1	Issue Date	: 09-Nov-2022 10:59
C-O-C number	:		
Sampler	:		
Site	:		
Quote number	: 12586015-SSOW-735-003748-1		
No. of samples received	:3		
No. of samples analysed	:3		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Duplicate outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- Matrix Spike outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Page Work Order	:	3 of 16 WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Outliers : Quality Control Samples Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Physical Tests	QC-MRG2-7291850		alkalinity, total (as CaCO3)		E290	2.6 mg/L	2 mg/L	Blank result exceeds
	01							permitted value
Polycyclic Aromatic Hydrocarbons	QC-MRG4-7248020		benzo(a)pyrene	50-32-8	E655A	<0.040 RRQC	0.02 µg/L	Blank result exceeds
	01					µg/L		permitted value

Result Qualifiers

Qualifier	Description
RRQC	Refer to report comments for information regarding this QC result.

Laboratory Control Sample (LCS) Recoveries										
Semi-Volatile Organics	QC-MRG4-7248020		dichlorobenzidine, 3,3'-	91-94-1	E655A	25.6 % RRQC	30.0-130%	Recovery less than lower		
	02							control limit		
Chlorinated Phenolics	QC-MRG4-7248020		pentachlorophenol [PCP]	87-86-5	E655A	148 % ^{LCS-H}	50.0-140%	Recovery greater than		
	02							upper control limit		
Non-Chlorinated Phenolics	QC-MRG4-7248020		dinitrophenol, 2,4-	51-28-5	E655A	174 % ^{LCS-H}	50.0-140%	Recovery greater than		
	02							upper control limit		

Result Qualifiers

Qualifier	Description
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered
	reliable. Other results, if reported, have been qualified.
RRQC	Refer to report comments for information regarding this QC result.

Matrix Spike (MS) Recoveries								
Dissolved Metals	WT2220058-002	GW-12586015-GW-0	silver, dissolved	7440-22-4	E421	56.1 % ^{MS-Ag}	70.0-130%	Recovery less than lower
		03						data quality objective
Result Qualifiers								
Qualifier	Description							
MS-Ag	MS-Ag: Matrix Spike recovery for silver was marginally below DQO (40 to <60%) due to its instability in the sample matrix. Silver was not detected. Reported result (< LOR) is reliable							

Page	:	4 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Εv	aluation: × =	Holding time exce	edance ; •	🗸 = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Tannin & Lignin in Water										
HDPE [ON MECP]										
GW-12586015-GW-004	E563	27-Oct-2022					31-Oct-2022	28 days	4 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
GW-12586015-GW-004	E298	27-Oct-2022	02-Nov-2022				03-Nov-2022	28 days	7 days	1
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										
GW-12586015-GW-004	E235.CI	27-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	8 days	1
Anions and Nutrients : Fluoride in Water by IC				-						
HDPE [ON MECP]	5005 F	07.0.1.0000	00 N				04 No. 0000	00.1	0.1	,
GW-12586015-GW-004	E235.F	27-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	8 days	1
Anions and Nutrients : Nitrate in Water by IC				1					1 1	
HDPE [ON MECP] GW-12586015-GW-004	E235.NO3	27-Oct-2022	03-Nov-2022				04-Nov-2022	7 days	8 days	*
GW-12300013-GW-004	E235.NO3	27-001-2022	03-1100-2022				04-1100-2022	7 uays	o uays	EHT
										EIII
Anions and Nutrients : Nitrite in Water by IC										
HDPE [ON MECP] GW-12586015-GW-004	E235.NO2	27-Oct-2022	03-Nov-2022				04-Nov-2022	7 days	8 days	×
0112300013-011-004	2200.1102	21-001-2022	001107-2022				04-1007-2022	/ duys	0 days	EHT
Anions and Nutrients : Sulfate in Water by IC HDPE [ON MECP]										
GW-12586015-GW-004	E235.SO4	27-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	8 days	1
	2200.004	21 000 2022	00 1107 2022				011101 2022	20 00 90	5 44,5	-

Page	:	5 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project		12586015-03.004

Aatrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
GW-12586015-GW-004	E318	27-Oct-2022	02-Nov-2022				03-Nov-2022	28 days	7 days	✓
Chlorinated Phenolics : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022				02-Nov-2022			
Chlorinated Phenolics : Phenolics (Ontario Chlorophenols List) by GC-MS										
Amber glass/Teflon lined cap										
GW-12586015-GW-004	E651D	27-Oct-2022	01-Nov-2022	7 days	5 days	1	02-Nov-2022	40 days	1 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
GW-12586015-GW-003	E421	27-Oct-2022	01-Nov-2022				01-Nov-2022	180	5 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
GW-12586015-GW-004	E421	27-Oct-2022	01-Nov-2022				01-Nov-2022	180	5 days	✓
								days		
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)										
GW-12586015-GW-004	E581.F1-L	27-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	7 days	✓
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)										
Trip Blank	E581.F1-L	27-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	7 days	✓
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E601.SG	27-Oct-2022	02-Nov-2022	14	6 days	✓	08-Nov-2022	40 days	6 days	✓
				days						
Microbiological Tests : E. coli (MF-mFC-BCIG)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-GW-004	E012A.EC	27-Oct-2022					29-Oct-2022	48 hrs	47 hrs	1

Page	:	6 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project		12586015-03.004

Matrix: Water					E	valuation: × =	Holding time exce	edance ; •	🗸 = Within	Holding Tir
Analyte Group	Method	Sampling Date	e Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	lysis Date Holding		Eval
			Date	Rec	Actual			Rec	Actual	
Microbiological Tests : Heterotrophic Plate Count by MF (MF-mHPC)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-GW-004	E012.HPC	27-Oct-2022					29-Oct-2022	48 hrs	47 hrs	1
Microbiological Tests : Total Coliforms (MF-mEndo)				1						
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-GW-004	E012.TC	27-Oct-2022					29-Oct-2022	48 hrs	47 hrs	✓
Microbiological Tests : Total Coliforms Background (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-GW-004	E012.BG.TC	27-Oct-2022					29-Oct-2022	48 hrs	47 hrs	1
Non-Chlorinated Phenolics : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022				02-Nov-2022			
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low L	_evel)			_						
Amber glass dissolved (sulfuric acid)										
GW-12586015-GW-004	E358-L	27-Oct-2022	31-Oct-2022				01-Nov-2022	28 days	5 days	1
Pesticides : Miscellaneous Pesticides by GC-MS				_						
Amber glass/Teflon lined cap										
GW-12586015-GW-004	E660E-H	27-Oct-2022	01-Nov-2022	14	5 days	1	04-Nov-2022	40 days	3 days	1
				days						
Phthalate Esters : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022				02-Nov-2022			
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP]	E290	27-Oct-2022	03-Nov-2022				06-Nov-2022	14 dovro	10 days	1
GW-12586015-GW-004	E290	21-UCI-2022	03-1907-2022				00-1100-2022	14 days	to days	*
Physical Tests : Colour (True) by Spectrometer (2 CU) HDPE [ON MECP]										
GW-12586015-GW-004	E329-L	27-Oct-2022	01-Nov-2022				04-Nov-2022	48 hrs	123 hrs	x
			C LULL				5			EHT

Page	:	7 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project		12586015-03.004

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Physical Tests : Conductivity in Water										
HDPE [ON MECP]										
GW-12586015-GW-004	E100	27-Oct-2022	03-Nov-2022				06-Nov-2022	28 days	10 days	~
Physical Tests : pH by Meter				1				1		
HDPE [ON MECP]										
GW-12586015-GW-004	E108	27-Oct-2022	03-Nov-2022				06-Nov-2022	14 days	10 days	✓
Physical Tests : TDS by Gravimetry								1		
HDPE [ON MECP]										
GW-12586015-GW-004	E162	27-Oct-2022					02-Nov-2022	7 days	6 days	1
Physical Tests : Turbidity by Nephelometry										
HDPE [ON MECP]										
GW-12586015-GW-004	E121	27-Oct-2022					04-Nov-2022	3 days	8 days	¥ EHT
Polycyclic Aromatic Hydrocarbons : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate) GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022				02-Nov-2022			
Semi-Volatile Organics : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022	14 days	5 days	1	02-Nov-2022	40 days	1 days	1
Total Sulfides : Total Sulfide by Colourimetry (Automated Flow)										
HDPE total (zinc acetate+sodium hydroxide) GW-12586015-GW-004	E395-H	27-Oct-2022					02-Nov-2022	7 days	6 days	✓
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS				I					1	
Glass vial (sodium bisulfate) GW-12586015-GW-004	E611D	27-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	7 days	✓
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS Glass vial (sodium bisulfate)										
Trip Blank	E611D	27-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	7 days	✓

Legend & Qualifier Definitions

Page	:	8 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page	:	9 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			on: × = QC freque	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	729185	1	14	7.1	5.0	1
Ammonia by Fluorescence	E298	726698	1	20	5.0	5.0	
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	728064	1	13	7.6	5.0	- -
Chloride in Water by IC	E235.Cl	729182	1	18	5.5	5.0	1
Colour (True) by Spectrometer (2 CU)	E329-L	724671	1	12	8.3	5.0	✓
Conductivity in Water	E100	729186	1	12	8.3	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	724874	1	19	5.2	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723488	1	20	5.0	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	721578	1	10	10.0	5.0	1
Fluoride in Water by IC	E235.F	729179	1	4	25.0	5.0	
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC	721573	1	5	20.0	5.0	✓
Nitrate in Water by IC	E235.NO3	729180	1	14	7.1	5.0	✓
Nitrite in Water by IC	E235.NO2	729181	1	4	25.0	5.0	✓
oH by Meter	E108	729184	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	729183	1	7	14.2	5.0	✓
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	~
TDS by Gravimetry	E162	726629	1	20	5.0	5.0	~
Total Coliforms (MF-mEndo)	E012.TC	721574	1	9	11.1	5.0	✓
Total Coliforms Background (MF-mEndo)	E012.BG.TC	721575	1	3	33.3	5.0	~
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	726029	1	20	5.0	5.0	~
Total Sulfide by Colourimetry (Automated Flow)	E395-H	727164	1	20	5.0	5.0	~
Turbidity by Nephelometry	E121	730340	1	20	5.0	5.0	1
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	728063	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)						· · · · ·	
Alkalinity Species by Titration	E290	729185	1	14	7.1	5.0	✓
Ammonia by Fluorescence	E298	726698	1	20	5.0	5.0	✓
BNA (ON 625-511 list) by GC-MS	E655A	724805	1	2	50.0	5.0	✓
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	728064	1	13	7.6	5.0	~
Chloride in Water by IC	E235.Cl	729182	1	18	5.5	5.0	✓
Colour (True) by Spectrometer (2 CU)	E329-L	724671	1	12	8.3	5.0	~
Conductivity in Water	E100	729186	1	12	8.3	5.0	~
Dissolved Metals in Water by CRC ICPMS	E421	724874	1	19	5.2	5.0	~
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723488	1	20	5.0	5.0	~
Fluoride in Water by IC	E235.F	729179	1	4	25.0	5.0	✓
Miscellaneous Pesticides by GC-MS	E660E-H	724791	1	4	25.0	5.0	~
Nitrate in Water by IC	E235.NO3	729180	1	14	7.1	5.0	1

Page	:	10 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Quality Control Sample Type			Co	bunt		,	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
aboratory Control Samples (LCS) - Continued							
litrite in Water by IC	E235.NO2	729181	1	4	25.0	5.0	1
H by Meter	E108	729184	1	17	5.8	5.0	- -
Phenolics (Ontario Chlorophenols List) by GC-MS	E651D	724808	1	2	50.0	5.0	1
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	725961	1	11	9.0	5.0	1
Sulfate in Water by IC	E235.SO4	729183	1	7	14.2	5.0	~
Fannin & Lignin in Water	E563	722654	1	11	9.0	5.0	1
IDS by Gravimetry	E162	726629	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	726029	1	20	5.0	5.0	1
Total Sulfide by Colourimetry (Automated Flow)	E395-H	727164	1	20	5.0	5.0	1
Furbidity by Nephelometry	E121	730340	1	20	5.0	5.0	1
/OCs (Eastern Canada List) by Headspace GC-MS	E611D	728063	1	20	5.0	5.0	1
/lethod Blanks (MB)						<u> </u>	
Alkalinity Species by Titration	E290	729185	1	14	7.1	5.0	1
Ammonia by Fluorescence	E298	726698	1	20	5.0	5.0	
BNA (ON 625-511 list) by GC-MS	E655A	724805	1	2	50.0	5.0	
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	728064	1	13	7.6	5.0	
Chloride in Water by IC	E235.Cl	729182	1	18	5.5	5.0	
Colour (True) by Spectrometer (2 CU)	E329-L	724671	1	12	8.3	5.0	
Conductivity in Water	E100	729186	1	12	8.3	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	724874	1	19	5.2	5.0	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723488	1	20	5.0	5.0	
E. coli (MF-mFC-BCIG)	E012A.EC	721578	1	10	10.0	5.0	
Fluoride in Water by IC	E235.F	729179	1	4	25.0	5.0	
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC	721573	1	5	20.0	5.0	
Aiscellaneous Pesticides by GC-MS	E660E-H	724791	1	4	25.0	5.0	- -
Nitrate in Water by IC	E235.NO3	729180	1	14	7.1	5.0	
Vitrite in Water by IC	E235.NO2	729181	1	4	25.0	5.0	
Phenolics (Ontario Chlorophenols List) by GC-MS	E651D	724808	1	2	50.0	5.0	
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	725961	1	11	9.0	5.0	
Sulfate in Water by IC	E235.SO4	729183	1	7	14.2	5.0	
Fannin & Lignin in Water	E563	722654	1	11	9.0	5.0	· ·
TDS by Gravimetry	E162	726629	1	20	5.0	5.0	
otal Coliforms (MF-mEndo)	E012.TC	721574	1	9	11.1	5.0	
otal Coliforms Background (MF-mEndo)	E012.BG.TC	721575	1	3	33.3	5.0	
otal Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	726029	1	20	5.0	5.0	
otal Sulfide by Colourimetry (Automated Flow)	E395-H	727164	1	20	5.0	5.0	
urbidity by Nephelometry	E121	730340	1	20	5.0	5.0	
/OCs (Eastern Canada List) by Headspace GC-MS	E611D	728063	1	20	5.0	5.0	

Page	:	11 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Matrix: Water		Evaluati	on: × = QC frequ	ency outside sp	ecification; ✓ =	QC frequency wit	hin specificatio
Quality Control Sample Type					Frequency (%)		
Analytical Methods	Method QC Lot #			Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Ammonia by Fluorescence	E298	726698	1	20	5.0	5.0	1
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	728064	1	13	7.6	5.0	✓
Chloride in Water by IC	E235.CI	729182	1	18	5.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	724874	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723488	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	729179	1	4	25.0	5.0	✓
Nitrate in Water by IC	E235.NO3	729180	1	14	7.1	5.0	✓
Nitrite in Water by IC	E235.NO2	729181	1	4	25.0	5.0	✓
Sulfate in Water by IC	E235.SO4	729183	1	7	14.2	5.0	✓
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	726029	1	20	5.0	5.0	~
Total Sulfide by Colourimetry (Automated Flow)	E395-H	727164	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	728063	1	20	5.0	5.0	~

Page :	12 of 16
Work Order :	WT2220058
Client :	GHD Limited
Project :	12586015-03.004

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms Background (MF-mEndo)	E012.BG.TC	Water	APHA 9222B (mod)	Noncoliform bacteria observed on Total Coliform plates are enumerated.
	Waterloo -			
	Environmental	NA / - 1	014 00455	
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC	Water	SM 9215D	Following filtration (0.45 μ m), and incubation at 35.0 \pm 0.5 °C for 48 hours, the observed
	Waterloo -			colonies are enumerated.
	Environmental			
Total Coliforms (MF-mEndo)	E012.TC	Water	APHA 9222B (mod)	Following filtration (0.45 µm), and incubation at 35.0 ±0.5°C for 24 hours, colonies
				exhibiting characteristic morphology of the target organism are enumerated and
	Waterloo -			confirmed.
	Environmental			
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 $\mu m),$ and incubation at 44.5 $\pm 0.2^\circ C$ for 24 hours, colonies
				exhibiting characteristic morphology of the target organism are enumerated.
	Waterloo -			
	Environmental	NA / - 1		
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
	Waterloo -			measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
	Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	Waterloo -			pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
				scatter under defined conditions.
	Waterloo -			
TDC hu Crevingeter	Environmental	Water		
TDS by Gravimetry	E162	vvater	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	Waterloo -			filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight, with gravimetric measurement of the residue.
	Environmental			with gravimetric measurement of the residue.
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
			. ,	detection.
	Waterloo -			
	Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			

Page	:	13 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Waterloo -			alkalinity values.
	Environmental			
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021)
	Environmental			
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Environmental			
Colour (True) by Spectrometer (2 CU)	E329-L	Water	APHA 2120 C (mod)	Colour (True Colour) is determined by filtering a sample through a 0.45 micron membrane filter followed by analysis of the filtrate using the platinum-cobalt colourimetric
	Waterloo -			method. Colour measurements can be highly pH dependent, and apply to the pH of the
	Environmental			sample as received (at time of testing), without pH adjustment.
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Waterloo -			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion
	Environmental			with infrared detection of CO2. NPOC does not include volatile organic species that are
				purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Sulfide by Colourimetry (Automated	E395-H	Water	APHA 4500 -S	Sulfide is determined using the gas dialysis automated methlyene blue colourimetric
Flow)			E-Auto-Colorimetry	method. Results expressed "as H2S" if reported represent the maximum possible H2S
	Vancouver -			concentration based on the total sulfide concentration in the sample. The H2S
	Environmental			calculation converts Total Sulphide as (S2-) and reports it as Total Sulphide as (H2S)
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	Waterloo -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.

Page :	14 of 16
Work Order :	WT2220058
Client :	GHD Limited
Project :	12586015-03.004

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Tannin & Lignin in Water	E563	Water	APHA 5550	This analysis is carried out using procedures adapted from APHA Method 5550 B.
			B-Colorimetry	"Tannin & Lignin ". Both lignin and tannin contain aromatic hydroxyl groups that react
	Waterloo -			with Folin phenol reagent (tungstophosphoric and molybdophosphoric acids) to form a
	Environmental			blue color suitable for the estimation of tannin and lignin concentrations. However, the
				reaction is not specific for lignin or tannin, nor for compounds containing aromatic
				hydroxyl groups, in as much as many other reducing materials, both organic and
				inorganic, respond similarly.
CCME PHC - F1 by Headspace GC-FID (Low	E581.F1-L	Water	CCME PHC in Soil - Tier	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in
Level)			1	headspace vials and are heated and agitated on the headspace autosampler, causing
	Waterloo -			VOCs to partition between the aqueous phase and the headspace in accordance with
	Environmental			Henry's law.
Silica Gel Treated CCME PHCs - F2-F4sg by	E601.SG	Water	CCME PHC in Soil - Tier	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID
GC-FID			1	for CCME hydrocarbon fractions (F2-F4).
	Waterloo -			
	Environmental			
VOCs (Eastern Canada List) by Headspace	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
GC-MS				Samples are prepared in headspace vials and are heated and agitated on the
	Waterloo -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Environmental			the headspace in accordance with Henry's law.
Phenolics (Ontario Chlorophenols List) by	E651D	Water	EPA 8270E (mod)	Phenolics are analyzed by GC-MS.
GC-MS				
	Waterloo -			
	Environmental			
BNA (ON 625-511 list) by GC-MS	E655A	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
	Waterloo -			
Miscellaneous Pesticides by GC-MS	Environmental	Water	EPA 8270E (mod)	Pesticides are analyzed by GC-MS.
Miscellarieous resticides by GC-MS	E660E-H	Water	EFA 0270E (IIIOU)	resublices are analyzed by GC-IVIS.
	Waterloo -			
	Environmental			
Dissolved Hardness (Calculated)	EC100	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
Dissolved Hardness (Odiodiated)	ECTOU	Water	/ 1// 20400	Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Waterloo -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
	Environmentar			property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA
	LOIVI	, ator		Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are
	Waterloo -			used where available. Minor ions are included where data is present.
	Environmental			lon Balance cannot be calculated accurately for waters with very low electrical
				conductivity (EC).

Page	:	15 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
			1	ethylbenzene and xylenes (BTEX).
	Waterloo -			
	Environmental			
SUM F1 to F4 where F2-F4 is SG treated	EC581SG	Water	CCME PHC in Soil - Tier	Hydrocarbons, total (C6-C50) is the sum of CCME Fraction F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50), where F2-F4 have been treated with silica gel. F4G-sg
	Waterloo -		1	is not used within this calculation due to overlap with other fractions.
	Environmental			
F2-F4 (sq) minus PAH	EC600SG	Water	CCME PHC in Soil - Tier	F2-F4 (sq) minus PAH is calculated as follows: F2-F4 minus PAH = Sum of CCME
	2000000		1	Fraction 2 (C10-C16), CCME Fraction 3 (C16-C34), and CCME Fraction 4 (C34-C50),
	Waterloo -			minus select Polycyclic Aromatic Hydrocarbons (PAH).
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	LI 200			
	Waterloo -			
	Environmental			
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
			(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the
	Waterloo -			analytical method as TKN. This method is unsuitable for samples containing high levels
	Environmental			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
				biased low.
Preparation for Dissolved Organic Carbon for	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion				
	Waterloo -			
Dissolved Metals Water Filtration	Environmental EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	EP421	Water	AFTIA 3030D	water samples are intered (0.45 uni), and preserved with rindos.
	Waterloo -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
PHCs and PAHs Hexane Extraction	Environmental EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
FILLS and FALIS HEAdric Extraction	EPOUT	Water	LFA 3311 (mod)	extracted using a hexane liquid-liquid extraction.
	Waterloo -			באו מטובע עשווע א וובאמוזש ווענוע-ווענוע שאנו מטווטוו.
	Environmental			
Phenolics Extraction	EP651	Water	EPA 3511 (mod)	Phenolics are extracted from acidic aqueous sample using DCM liquid-liquid extraction.
	2.001			
	Waterloo -			
	Environmental			

Page	:	16 of 16
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
Pesticides & Toxaphene Extraction by DCM	EP660D	Water	EPA 1699 (mod)	Samples are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order	WT2220058	Page	: 1 of 19
Client	: GHD Limited	Laboratory	: Waterloo - Environmental
Contact	: Pascal Renella	Account Manager	Rick Hawthorne
Address	: 455 Phillip Street Waterloo ON Canada N2L 3X2	Address	∶60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone		Telephone	:+1 519 886 6910
Project	: 12586015-03.004	Date Samples Received	: 28-Oct-2022 07:40
PO	: 735-003748-1	Date Analysis Commenced	: 29-Oct-2022
C-O-C number		Issue Date	:09-Nov-2022 10:59
Sampler	519 725 3313		
Site			
Quote number	: 12586015-SSOW-735-003748-1		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario
Danielle Gravel	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Metals, Waterloo, Ontario
Kelsey Hesch	Analyst	Waterloo Organics, Waterloo, Ontario
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Ruby Sujeepan		Waterloo Microbiology, Waterloo, Ontario

Page	:	2 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page	:	3 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (Q	C Lot: 724671)										
WT2219921-001	Anonymous	colour, true		E329-L	2.0	CU	2.4	3.5	1.1	Diff <2x LOR	
Physical Tests (Q	C Lot: 726629)										
WT2219765-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	327	313	4.53%	20%	
Physical Tests (Q	C Lot: 729184)										
WT2220058-001	GW-12586015-GW-004	pH		E108	0.10	pH units	8.43	8.43	0.00%	4%	
Physical Tests (Q	C Lot: 729185)										
WT2220058-001	GW-12586015-GW-004	alkalinity, total (as CaCO3)		E290	2.0	mg/L	269	276	2.61%	20%	
Physical Tests (Q	C Lot: 72918 <u>6)</u>										
WT2220058-001	GW-12586015-GW-004	conductivity		E100	2.0	µS/cm	790	806	2.00%	10%	
Physical Tests (Q	C Lot: 730340)									<u> </u>	
WT2220018-010	Anonymous	turbidity		E121	0.10	NTU	26.2	25.4	3.10%	15%	
Anions and Nutrie	nts (QC Lot: 726029)										
WT2219431-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.250	mg/L	7.85	8.30	5.56%	20%	
Anions and Nutrie	nts (QC Lot: 726698)									<u> </u>	·
WT2219521-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 729179)										-
WT2220058-001	GW-12586015-GW-004	fluoride	16984-48-8	E235.F	0.020	mg/L	0.192	0.196	0.004	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 729180)									<u> </u>	·
WT2220058-001	GW-12586015-GW-004	nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 729181)									<u> </u>	·
WT2220058-001	GW-12586015-GW-004	nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
Anions and Nutrie	nts (QC Lot: 729182)									<u> </u>	·
WT2220058-001	GW-12586015-GW-004	chloride	16887-00-6	E235.Cl	0.50	mg/L	67.0	65.2	2.80%	20%	
Anions and Nutrie	nts (QC Lot: 729183)									<u> </u>	
WT2220058-001	GW-12586015-GW-004	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	62.5	61.5	1.52%	20%	
Organic / Inorganio	c Carbon (QC Lot: 72348	38)								<u> </u>	
WT2219719-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	6.34	6.73	5.97%	20%	
Total Sulfides (QC	Lot: 727164)										

Page	:	4 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Sub-Matrix: Water					Labora	tory Duplicate (D	UP) Report				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Microbiological Tes	ts (QC Lot: 721573) - co	ontinued									
WT2220018-013	Anonymous	heterotrophic plate count [HPC]		E012.HPC	1	CFU/1mL	>200	>200	0.00%	65%	
Microbiological Tes	ts (QC Lot: 721574)										
WT2220058-001	GW-12586015-GW-004	coliforms, total		E012.TC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	
Microbiological Tes	ts (QC Lot: 721575)										
WT2220058-001	GW-12586015-GW-004	coliforms, total background		E012.BG.TC	1	CFU/100mL	1	<1	0	Diff <2x LOR	
Microbiological Tes	ts (QC Lot: 721578)										
WT2220058-001	GW-12586015-GW-004	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 724874)										
WT2220058-001	GW-12586015-GW-004	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.149	0.149	0.0191%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.077	0.077	0.00005	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	96.9	96.3	0.654%	20%	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00035	0.00034	0.000005	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	36.1	35.4	1.93%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0420	0.0415	1.02%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00604	0.00602	0.410%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	5.14	5.04	1.88%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000141	0.000174	0.000033	Diff <2x LOR	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	28.8	28.1	2.42%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	2.05	2.04	0.441%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000246	0.000246	0.162%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0066	0.0069	0.0002	Diff <2x LOR	

Page	:	5 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Aggregate Organics	(QC Lot: 722654) -	continued									
VA22C5934-004	Anonymous	tannin + lignin (as tannic acid)		E563	0.10	mg/L	3.42	3.44	0.737%	20%	
Volatile Organic Co	mpounds (QC Lot: 7	28063)									
TY2203475-001	Anonymous	Acetone	67-64-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromodichloromethane	75-27-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromoform	75-25-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromomethane	74-83-9	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		carbon tetrachloride	56-23-5	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
		chlorobenzene	108-90-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		chloroform	67-66-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dibromochloromethane	124-48-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dibromoethane, 1,2-	106-93-4	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,3-	541-73-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorodifluoromethane	75-71-8	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethane, 1,1-	75-34-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethane, 1,2-	107-06-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, 1,1-	75-35-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloromethane	75-09-2	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 1,2-	78-87-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		hexane, n-	110-54-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		styrene	100-42-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethylene	127-18-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	

Page	:	6 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 7	28063) - continued									
TY2203475-001	Anonymous	toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethane, 1,1,1-	71-55-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethane, 1,1,2-	79-00-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichlorofluoromethane	75-69-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		vinyl chloride	75-01-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 728064)						1	1			
TY2203475-001	Anonymous	F1 (C6-C10)		E581.F1-L	25	μg/L	<25	<25	0	Diff <2x LOR	

Page	:	7 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

nalyte	CAS Number Method	LOR	Unit	Result	Qualifier
hysical Tests (QCLot: 724671)					
colour, true	E329-L	2	CU	<2.0	
hysical Tests (QCLot: 726629)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
hysical Tests (QCLot: 729185)					
alkalinity, total (as CaCO3)	E290	1	mg/L	# 2.6	
hysical Tests (QCLot: 729186)					
conductivity	E100	1	μS/cm	<1.0	
hysical Tests (QCLot: 730340)					
turbidity	E121	0.1	NTU	<0.10	
nions and Nutrients (QCLot: 726029)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
nions and Nutrients (QCLot: 726698)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 729179)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 729180)					
nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 729181)					
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
nions and Nutrients (QCLot: 729182)					
chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
nions and Nutrients (QCLot: 729183)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Organic / Inorganic Carbon (QCLot: 7234	88)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
otal Sulfides (QCLot: 727164)					
sulfide, total (as S)	18496-25-8 E395-H	0.01	mg/L	<0.010	
licrobiological Tests (QCLot: 721573)					
heterotrophic plate count [HPC]	E012.HPC	1	CFU/1mL	<1	
licrobiological Tests (QCLot: 721574)					
coliforms, total	E012.TC	1	CFU/100mL	<1	

Page	:	8 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Analyte CAS Number	Method	LOR	Unit	Result	Qualifier
Microbiological Tests (QCLot: 721575) - continued					
coliforms, total background	E012.BG.TC	1	CFU/100mL	<1	
Microbiological Tests (QCLot: 721578)					
coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/100mL	<1	
Dissolved Metals (QCLot: 724874)					
aluminum, dissolved 7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved 7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved 7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved 7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved 7440-41-7	E421	0.00002	mg/L	<0.000020	
boron, dissolved 7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved 7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved 7440-70-2	E421	0.05	mg/L	<0.050	
chromium, dissolved 7440-47-3	E421	0.0005	mg/L	<0.00050	
cobalt, dissolved 7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved 7440-50-8	E421	0.0002	mg/L	<0.00020	
lead, dissolved 7439-92-1	E421	0.00005	mg/L	<0.000050	
magnesium, dissolved 7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved 7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved 7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved 7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved 7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved 7782-49-2	E421	0.00005	mg/L	<0.000050	
silver, dissolved 7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved 7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved 7440-24-6	E421	0.0002	mg/L	<0.00020	
thallium, dissolved 7440-28-0	E421	0.00001	mg/L	<0.000010	
uranium, dissolved 7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved 7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved 7440-66-6	E421	0.001	mg/L	<0.0010	
Aggregate Organics (QCLot: 722654)					
tannin + lignin (as tannic acid)	E563	0.1	mg/L	<0.10	
Volatile Organic Compounds (QCLot: 728063)					
Acetone 67-64-1	E611D	20	µg/L	<20	
benzene 71-43-2	E611D	0.5	µg/L	<0.50	
bromodichloromethane 75-27-4	E611D	0.5	µg/L	<0.50	

Page	:	9 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLo	ot: 728063) - continued					
bromoform	75-25-2	E611D	0.5	µg/L	<0.50	
bromomethane	74-83-9	E611D	0.5	µg/L	<0.50	
carbon tetrachloride	56-23-5	E611D	0.2	µg/L	<0.20	
chlorobenzene	108-90-7	E611D	0.5	µg/L	<0.50	
chloroform	67-66-3	E611D	0.5	µg/L	<0.50	
dibromochloromethane	124-48-1	E611D	0.5	µg/L	<0.50	
dibromoethane, 1,2-	106-93-4	E611D	0.2	µg/L	<0.20	
dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	<0.50	
dichlorobenzene, 1,3-	541-73-1	E611D	0.5	µg/L	<0.50	
dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	<0.50	
dichlorodifluoromethane	75-71-8	E611D	0.5	µg/L	<0.50	
dichloroethane, 1,1-	75-34-3	E611D	0.5	µg/L	<0.50	
dichloroethane, 1,2-	107-06-2	E611D	0.5	µg/L	<0.50	
dichloroethylene, 1,1-	75-35-4	E611D	0.5	µg/L	<0.50	
dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	<0.50	
dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	µg/L	<0.50	
dichloromethane	75-09-2	E611D	1	µg/L	<1.0	
dichloropropane, 1,2-	78-87-5	E611D	0.5	µg/L	<0.50	
dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	µg/L	<0.30	
dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	<0.30	
ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	
hexane, n-	110-54-3	E611D	0.5	µg/L	<0.50	
methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	
methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	<20	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	µg/L	<0.50	
styrene	100-42-5	E611D	0.5	µg/L	<0.50	
tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	µg/L	<0.50	
tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	<0.50	
tetrachloroethylene	127-18-4	E611D	0.5	µg/L	<0.50	
toluene	108-88-3	E611D	0.5	µg/L	<0.50	
trichloroethane, 1,1,1-	71-55-6	E611D	0.5	µg/L	<0.50	
trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	<0.50	
trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	
trichlorofluoromethane	75-69-4	E611D	0.5	µg/L	<0.50	
vinyl chloride	75-01-4	E611D	0.5	µg/L	<0.50	

Page	:	10 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Analyte	CAS Number	Method	L	OR	Unit	Result	Qualifier
Volatile Organic Compounds (QC							
xylene, m+p-	179601-23-1	E611D	0).4	µg/L	<0.40	
xylene, o-	95-47-6	E611D	C).3	µg/L	<0.30	
Hydrocarbons (QCLot: 725961)							
F2 (C10-C16)		E601.SG	1	00	µg/L	<100	
F3 (C16-C34)		E601.SG	2	250	µg/L	<250	
F4 (C34-C50)		E601.SG	2	250	µg/L	<250	
Hydrocarbons (QCLot: 728064)							
F1 (C6-C10)		E581.F1-L	2	25	μg/L	<25	
Polycyclic Aromatic Hydrocarbon	s (QCLot: 724805)						
acenaphthene	83-32-9	E655A	C).2	µg/L	<0.20	
acenaphthylene	208-96-8	E655A	O).2	μg/L	<0.20	
anthracene	120-12-7	E655A	0).2	µg/L	<0.20	
benz(a)anthracene	56-55-3	E655A	0).2	μg/L	<0.20	
benzo(a)pyrene	50-32-8	E655A	0.	.02	µg/L	# <0.040	RRQC
benzo(b+j)fluoranthene	n/a	E655A	C	0.1	μg/L	<0.10	
benzo(g,h,i)perylene	191-24-2	E655A	C).2	μg/L	<0.20	
benzo(k)fluoranthene	207-08-9	E655A	C).1	μg/L	<0.10	
chrysene	218-01-9	E655A	C).1	µg/L	<0.10	
dibenz(a,h)anthracene	53-70-3	E655A	C).2	µg/L	<0.20	
fluoranthene	206-44-0	E655A	C).2	μg/L	<0.20	
fluorene	86-73-7	E655A	C).2	μg/L	<0.20	
indeno(1,2,3-c,d)pyrene	193-39-5	E655A	O).2	μg/L	<0.20	
methylnaphthalene, 1-	90-12-0	E655A	C).4	μg/L	<0.40	
methylnaphthalene, 2-	91-57-6	E655A	0).4	μg/L	<0.40	
naphthalene	91-20-3	E655A	C).2	µg/L	<0.20	
phenanthrene	85-01-8	E655A	C).2	µg/L	<0.20	
pyrene	129-00-0	E655A	0).2	μg/L	<0.20	
Phthalate Esters (QCLot: 724805)							
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655A		2	µg/L	<2.0	
diethyl phthalate	84-66-2	E655A	O).2	µg/L	<0.20	
dimethyl phthalate	131-11-3	E655A	C).2	µg/L	<0.20	
Semi-Volatile Organics (QCLot: 7	24805)						
biphenyl	92-52-4	E655A	0).4	µg/L	<0.40	
bis(2-chloroethyl) ether	111-44-4	E655A	C).4	μg/L	<0.40	
bis(2-chloroisopropyl) ether	39638-32-9		0).4	μg/L	<0.40	

Page	:	11 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Semi-Volatile Organics (QCLot: 724	4805) - continued					
chloroaniline, 4-	106-47-8	E655A	0.4	µg/L	<0.40	
dichlorobenzidine, 3,3'-	91-94-1	E655A	0.4	µg/L	<0.40	
dinitrotoluene, 2,4-	121-14-2	E655A	0.4	µg/L	<0.40	
dinitrotoluene, 2,6-	606-20-2	E655A	0.4	µg/L	<0.40	
trichlorobenzene, 1,2,4-	120-82-1	E655A	0.4	µg/L	<0.40	
Chlorinated Phenolics (QCLot: 724	805)					
chlorophenol, 2-	95-57-8	E655A	0.3	µg/L	<0.30	
dichlorophenol, 2,4-	120-83-2	E655A	0.3	µg/L	<0.30	
pentachlorophenol [PCP]	87-86-5	E655A	0.5	µg/L	<0.50	
trichlorophenol, 2,4,5-	95-95-4	E655A	0.2	µg/L	<0.20	
trichlorophenol, 2,4,6-	88-06-2	E655A	0.2	µg/L	<0.20	
Chlorinated Phenolics (QCLot: 724	808)					
tetrachlorophenol, 2,3,4,6-	58-90-2	E651D	0.5	µg/L	<0.50	
Non-Chlorinated Phenolics (QCLot	: 724805)					
dimethylphenol, 2,4-	105-67-9	E655A	0.5	µg/L	<0.50	
dinitrophenol, 2,4-	51-28-5	E655A	1	µg/L	<1.0	
phenol	108-95-2	E655A	0.5	µg/L	<0.50	
Pesticides (QCLot: 724791)						
diazinon	333-41-5	E660E-H	0.1	µg/L	<0.10	

Page	:	12 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 724671)									
colour, true		E329-L	2	CU	25 CU	97.6	85.0	115	
Physical Tests (QCLot: 726629)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	103	85.0	115	
Physical Tests (QCLot: 729184)									
рН		E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 729185)									
alkalinity, total (as CaCO3)		E290	1	mg/L	150 mg/L	113	85.0	115	
Physical Tests (QCLot: 729186)		E100		u C/am	1100 01	00.0	00.0	110	
conductivity		E100	1	µS/cm	1409 µS/cm	99.8	90.0	110	
Physical Tests (QCLot: 730340) turbidity		E121	0.1	NTU	200 NTU	90.9	85.0	115	
landialty			0.1	NIO	200 NTO	90.9	05.0	115	
Anions and Nutrients (QCLot: 726029)						1			1
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	96.1	75.0	125	
Anions and Nutrients (QCLot: 726698)									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	97.9	85.0	115	
Anions and Nutrients (QCLot: 729179)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 729180)	14797-55-8	E025 NO2	0.02		0.5 //	100.0	90.0	110	
nitrate (as N)	14797-55-6	E235.NO3	0.02	mg/L	2.5 mg/L	100.0	90.0	110	
Anions and Nutrients (QCLot: 729181)	14797-65-0	E235 NO2	0.01	mg/L	0.5 mg/L	99.4	90.0	110	
	14101 00 0		0.01	iiig/2	0.5 mg/L	33.4	00.0	110	
Anions and Nutrients (QCLot: 729182)	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	101	90.0	110	
				3	100 mg/2				
Anions and Nutrients (QCLot: 729183) sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
					Ť				
Organic / Inorganic Carbon (QCLot: 723488)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	105	80.0	120	
Total Sulfides (QCLot: 727164)									
sulfide, total (as H2S)	7783-06-4	E395-H		mg/L	0.085 mg/L	106	80.0	120	

Page	:	13 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
				Spike	Recovery (%)	Recovery	Limits (%)	(%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Sulfides (QCLot: 727164) - continued									
sulfide, total (as S)	18496-25-8	E395-H	0.01	mg/L	0.08 mg/L	106	80.0	120	
Dissolved Metals (QCLot: 724874)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	0.1 mg/L	103	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	0.05 mg/L	104	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	0.05 mg/L	104	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.0125 mg/L	106	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.005 mg/L	102	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	0.05 mg/L	98.5	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.005 mg/L	105	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	2.5 mg/L	104	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.0125 mg/L	103	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.0125 mg/L	103	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.0125 mg/L	101	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.025 mg/L	104	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	2.5 mg/L	106	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.0125 mg/L	105	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.0125 mg/L	104	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.025 mg/L	105	80.0	120	
potassium, dissolved		E421	0.05	mg/L	2.5 mg/L	107	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	0.05 mg/L	105	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.005 mg/L	108	80.0	120	
sodium, dissolved	7440-23-5		0.05	mg/L	2.5 mg/L	108	80.0	120	
strontium, dissolved	7440-24-6		0.0002	mg/L	0.0125 mg/L	106	80.0	120	
thallium, dissolved	7440-28-0		0.00001	mg/L	0.05 mg/L	103	80.0	120	
uranium, dissolved		E421	0.00001	mg/L	0.00025 mg/L	104	80.0	120	
vanadium, dissolved		E421	0.0005	mg/L	0.025 mg/L	104	80.0	120	
zinc, dissolved	7440-66-6		0.001	mg/L	0.025 mg/L	110	80.0	120	
			0.001	iiig/E	0.023 Hig/L	110	00.0	120	
Aggregate Organics (QCLot: 722654)								1	1
tannin + lignin (as tannic acid)		E563	0.1	mg/L	5 mg/L	103	85.0	115	
Volatile Organic Compounds (QCLot: 728063)									
Acetone		E611D	20	µg/L	100 µg/L	127	70.0	130	
benzene	71-43-2		0.5	µg/L	100 µg/L	98.2	70.0	130	
bromodichloromethane	75-27-4	E611D	0.5	µg/L	100 µg/L	98.7	70.0	130	

Page	:	14 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

aub-Matrix: Water					Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	/ Limits (%)			
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Volatile Organic Compounds (QCLot										
bromoform	75-25-2 E611D	0.5	µg/L	100 µg/L	104	70.0	130			
bromomethane	74-83-9 E611D	0.5	µg/L	100 µg/L	99.5	60.0	140			
carbon tetrachloride	56-23-5 E611D	0.2	µg/L	100 µg/L	88.6	70.0	130			
chlorobenzene	108-90-7 E611D	0.5	µg/L	100 µg/L	91.6	70.0	130			
chloroform	67-66-3 E611D	0.5	µg/L	100 µg/L	98.9	70.0	130			
dibromochloromethane	124-48-1 E611D	0.5	µg/L	100 µg/L	104	70.0	130			
dibromoethane, 1,2-	106-93-4 E611D	0.2	µg/L	100 µg/L	96.7	70.0	130			
dichlorobenzene, 1,2-	95-50-1 E611D	0.5	µg/L	100 µg/L	94.3	70.0	130			
dichlorobenzene, 1,3-	541-73-1 E611D	0.5	µg/L	100 µg/L	90.0	70.0	130			
dichlorobenzene, 1,4-	106-46-7 E611D	0.5	µg/L	100 µg/L	91.7	70.0	130			
dichlorodifluoromethane	75-71-8 E611D	0.5	µg/L	100 µg/L	79.6	60.0	140			
dichloroethane, 1,1-	75-34-3 E611D	0.5	μg/L	100 µg/L	106	70.0	130			
dichloroethane, 1,2-	107-06-2 E611D	0.5	μg/L	100 µg/L	112	70.0	130			
dichloroethylene, 1,1-	75-35-4 E611D	0.5	μg/L	100 µg/L	95.7	70.0	130			
dichloroethylene, cis-1,2-	156-59-2 E611D	0.5	μg/L	100 µg/L	101	70.0	130			
dichloroethylene, trans-1,2-	156-60-5 E611D	0.5	μg/L	100 µg/L	101	70.0	130			
dichloromethane	75-09-2 E611D	1	μg/L	100 µg/L	111	70.0	130			
dichloropropane, 1,2-	78-87-5 E611D	0.5	µg/L	100 µg/L	98.1	70.0	130			
dichloropropylene, cis-1,3-	10061-01-5 E611D	0.3	µg/L	100 µg/L	94.8	70.0	130			
dichloropropylene, trans-1,3-	10061-02-6 E611D	0.3	µg/L	100 µg/L	105	70.0	130			
ethylbenzene	100-41-4 E611D	0.5	µg/L	100 µg/L	92.7	70.0	130			
hexane, n-	110-54-3 E611D	0.5	µg/L	100 µg/L	91.4	70.0	130			
methyl ethyl ketone [MEK]	78-93-3 E611D	20	µg/L	100 µg/L	103	70.0	130			
methyl isobutyl ketone [MIBK]	108-10-1 E611D	20	µg/L	100 µg/L	116	70.0	130			
methyl-tert-butyl ether [MTBE]	1634-04-4 E611D	0.5	µg/L	100 µg/L	91.4	70.0	130			
styrene	100-42-5 E611D	0.5	µg/L	100 µg/L	93.7	70.0	130			
tetrachloroethane, 1,1,1,2-	630-20-6 E611D	0.5	µg/L	100 µg/L	97.0	70.0	130			
tetrachloroethane, 1,1,2,2-	79-34-5 E611D	0.5	µg/L	100 µg/L	110	70.0	130			
tetrachloroethylene	127-18-4 E611D	0.5	µg/L	100 µg/L	93.2	70.0	130			
toluene	108-88-3 E611D	0.5	µg/L	100 µg/L	97.1	70.0	130			
trichloroethane, 1,1,1-	71-55-6 E611D	0.5	µg/L	100 µg/L	96.3	70.0	130			
trichloroethane, 1,1,2-	79-00-5 E611D	0.5	µg/L	100 µg/L	112	70.0	130			
trichloroethylene	79-01-6 E611D	0.5	µg/L	100 µg/L	91.2	70.0	130			
trichlorofluoromethane	75-69-4 E611D	0.5	µg/L	100 µg/L	94.8	60.0	140			
vinyl chloride	75-01-4 E611D	0.5	μg/L	100 µg/L	80.1	60.0	140			
xylene, m+p-	179601-23-1 E611D	0.4	μg/L	200 µg/L	94.8	70.0	130			

Page	:	15 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie	
Volatile Organic Compounds (QCLo	t: 728063) - continued									
xylene, o-	95-47-6	E611D	0.3	µg/L	100 µg/L	97.8	70.0	130		
Hydrocarbons (QCLot: 725961)										
F2 (C10-C16)		E601.SG	100	µg/L	5190.11 μg/L	98.0	70.0	130		
F3 (C16-C34)		E601.SG	250	µg/L	6225.68 µg/L	99.1	70.0	130		
F4 (C34-C50)		E601.SG	250	µg/L	6014.63 µg/L	87.8	70.0	130		
Hydrocarbons (QCLot: 728064)										
F1 (C6-C10)		E581.F1-L	25	µg/L	2000 µg/L	108	80.0	120		
Polycyclic Aromatic Hydrocarbons (QCLot: 724805)									
acenaphthene	83-32-9	E655A	0.2	µg/L	1.6 µg/L	94.8	50.0	140		
acenaphthylene	208-96-8	E655A	0.2	µg/L	1.6 µg/L	97.1	50.0	140		
anthracene	120-12-7	E655A	0.2	µg/L	1.6 μg/L	105	50.0	140		
benz(a)anthracene	56-55-3	E655A	0.2	µg/L	1.6 μg/L	119	50.0	140		
benzo(a)pyrene	50-32-8	E655A	0.02	µg/L	1.6 μg/L	109	50.0	140		
benzo(b+j)fluoranthene	n/a	E655A	0.1	µg/L	1.6 μg/L	74.0	50.0	140		
benzo(g,h,i)perylene	191-24-2	E655A	0.2	µg/L	1.6 µg/L	67.9	50.0	140		
benzo(k)fluoranthene	207-08-9	E655A	0.1	μg/L	1.6 µg/L	105	50.0	140		
chrysene	218-01-9	E655A	0.1	μg/L	1.6 µg/L	95.1	50.0	140		
dibenz(a,h)anthracene	53-70-3	E655A	0.2	μg/L	1.6 µg/L	73.3	50.0	140		
fluoranthene	206-44-0	E655A	0.2	μg/L	1.6 µg/L	90.1	50.0	140		
fluorene	86-73-7	E655A	0.2	μg/L	1.6 µg/L	89.8	50.0	140		
indeno(1,2,3-c,d)pyrene	193-39-5	E655A	0.2	μg/L	1.6 μg/L	66.4	50.0	140		
methylnaphthalene, 1-	90-12-0	E655A	0.4	μg/L	1.6 μg/L	97.7	50.0	140		
methylnaphthalene, 2-	91-57-6	E655A	0.4	μg/L	1.6 µg/L	86.6	50.0	140		
naphthalene	91-20-3	E655A	0.2	μg/L	1.6 µg/L	87.4	50.0	140		
phenanthrene	85-01-8	E655A	0.2	μg/L	1.6 μg/L	93.6	50.0	140		
pyrene	129-00-0		0.2	μg/L	1.6 μg/L	86.4	50.0	140		
				10						
Phthalate Esters (QCLot: 724805)								1		
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655A	2	μg/L	6.4 µg/L	116	50.0	140		
diethyl phthalate	84-66-2	E655A	0.2	μg/L	6.4 µg/L	100	50.0	140		
dimethyl phthalate	131-11-3	E655A	0.2	μg/L	6.4 µg/L	107	50.0	140		
					- 10	-				
Semi-Volatile Organics (QCLot: 7248	305)							1		
biphenyl	92-52-4	E655A	0.4	μg/L	1.6 µg/L	97.1	50.0	140		

Page	:	16 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Sub-Matrix: Water	bub-Matrix: Water						ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	v Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Semi-Volatile Organics (QCLo	ot: 724805) - continued								
bis(2-chloroethyl) ether	111-44-4	E655A	0.4	µg/L	1.6 µg/L	85.5	50.0	140	
bis(2-chloroisopropyl) ether	39638-32-9	E655A	0.4	µg/L	1.6 µg/L	89.4	50.0	140	
chloroaniline, 4-	106-47-8	E655A	0.4	µg/L	1.6 µg/L	61.4	30.0	130	
dichlorobenzidine, 3,3'-	91-94-1	E655A	0.4	µg/L	1.6 µg/L	# 25.6	30.0	130	RRQC
dinitrotoluene, 2,4-	121-14-2	E655A	0.4	µg/L	1.6 µg/L	121	50.0	140	
dinitrotoluene, 2,6-	606-20-2	E655A	0.4	µg/L	1.6 µg/L	118	50.0	140	
trichlorobenzene, 1,2,4-	120-82-1	E655A	0.4	µg/L	1.6 µg/L	72.0	50.0	140	
Chlorinated Phenolics (QCLot	t: 724805)								1
chlorophenol, 2-	95-57-8	E655A	0.3	µg/L	4.8 μg/L	87.6	50.0	140	
dichlorophenol, 2,4-	120-83-2	E655A	0.3	µg/L	4.8 µg/L	106	50.0	140	
pentachlorophenol [PCP]	87-86-5	E655A	0.5	µg/L	4.8 µg/L	# 148	50.0	140	LCS-H
trichlorophenol, 2,4,5-	95-95-4	E655A	0.2	µg/L	4.8 μg/L	115	50.0	140	
trichlorophenol, 2,4,6-	88-06-2	E655A	0.2	µg/L	4.8 µg/L	114	50.0	140	
Chlorinated Phenolics (QCLot	t: 724808)								1
tetrachlorophenol, 2,3,4,6-	58-90-2	E651D	0.5	µg/L	4.8 μg/L	115	50.0	140	
Non-Chlorinated Phenolics (Q	CLot: 724805)								
dimethylphenol, 2,4-	105-67-9	E655A	0.5	µg/L	4.8 μg/L	98.8	30.0	130	
dinitrophenol, 2,4-	51-28-5	E655A	1	µg/L	4.8 µg/L	# 174	50.0	140	LCS-H
phenol	108-95-2	E655A	0.5	μg/L	4.8 µg/L	114	50.0	140	
Pesticides (QCLot: 724791)									
diazinon	333-41-5	E660E-H	0.1	µg/L	0.2 µg/L	94.8	60.0	130	
Qualifiers									
Qualifier	Description								
LCS-H	Lab Control Sample recov	ery was above Al	S DQO. Non-detected	sample results a	re considered reliable. C	Other results, if repo	rted, have been q	ualified.	
RRQC	Refer to report comments	for information re	garding this QC result.						

Page	:	17 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water			-				Matrix Spik	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	/ Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	ents (QCLot: 726029)									
WT2219431-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	ND mg/L	2.5 mg/L	ND	70.0	130	
Anions and Nutri	ents (QCLot: 726698)									
WT2219521-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.103 mg/L	0.1 mg/L	103	75.0	125	
Anions and Nutri	ents (QCLot: 729179)									
WT2220058-001	GW-12586015-GW-004	fluoride	16984-48-8	E235.F	0.983 mg/L	1 mg/L	98.3	75.0	125	
Anions and Nutri	ents (QCLot: 729180)									
WT2220058-001	GW-12586015-GW-004	nitrate (as N)	14797-55-8	E235.NO3	2.32 mg/L	2.5 mg/L	92.7	75.0	125	
Anions and Nutri	ents (QCLot: 729181)									
WT2220058-001	GW-12586015-GW-004	nitrite (as N)	14797-65-0	E235.NO2	0.485 mg/L	0.5 mg/L	97.0	75.0	125	
Anions and Nutri	ents (QCLot: 729182)									
WT2220058-001	GW-12586015-GW-004	chloride	16887-00-6	E235.Cl	94.4 mg/L	100 mg/L	94.4	75.0	125	
Anions and Nutri	ents (QCLot: 729183)									
WT2220058-001	GW-12586015-GW-004	sulfate (as SO4)	14808-79-8	E235.SO4	96.5 mg/L	100 mg/L	96.5	75.0	125	
Organic / Inorgar	nic Carbon (QCLot: 723	488)					<u> </u>			1
WT2219719-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
Total Sulfides (C	CLot: 727164)						1			1
WT2219982-003	Anonymous	sulfide, total (as S)	18496-25-8	E395-H	0.904 mg/L	1 mg/L	90.4	75.0	125	
Dissolved Metals	(QCLot: 724874)						<u> </u>			
WT2220058-002	GW-12586015-GW-003	aluminum, dissolved	7429-90-5	E421	0.108 mg/L	0.1 mg/L	108	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0552 mg/L	0.05 mg/L	110	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0608 mg/L	0.05 mg/L	122	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.0125 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.00562 mg/L	0.005 mg/L	112	70.0	130	
		boron, dissolved	7440-42-8	E421	ND mg/L	0.05 mg/L	ND	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00535 mg/L	0.005 mg/L	107	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	2.5 mg/L	ND	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0133 mg/L	0.0125 mg/L	106	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0127 mg/L	0.0125 mg/L	102	70.0	130	
	1	copper, dissolved	7440-50-8	E421	0.0122 mg/L	0.0125 mg/L	97.4	70.0	130	

Page	:	18 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

ub-Matrix: Water					Matrix Spike (MS) Report									
					Sp	ike	Recovery (%)	Recovery	Limits (%)					
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
	s (QCLot: 724874) - co	ontinued					I I							
NT2220058-002	GW-12586015-GW-003	lead, dissolved	7439-92-1	E421	0.0253 mg/L	0.025 mg/L	101	70.0	130					
		magnesium, dissolved	7439-95-4	E421	ND mg/L	2.5 mg/L	ND	70.0	130					
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.0125 mg/L	ND	70.0	130					
		molybdenum, dissolved	7439-98-7	E421	0.0137 mg/L	0.0125 mg/L	110	70.0	130					
		nickel, dissolved	7440-02-0	E421	0.0250 mg/L	0.025 mg/L	99.9	70.0	130					
		potassium, dissolved	7440-09-7	E421	ND mg/L	2.5 mg/L	ND	70.0	130					
		selenium, dissolved	7782-49-2	E421	0.0614 mg/L	0.05 mg/L	123	70.0	130					
		silver, dissolved	7440-22-4	E421	0.00281 mg/L	0.005 mg/L	56.1	70.0	130	MS-A				
		sodium, dissolved	7440-23-5	E421	ND mg/L	2.5 mg/L	ND	70.0	130					
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.0125 mg/L	ND	70.0	130					
		thallium, dissolved	7440-28-0	E421	0.0505 mg/L	0.05 mg/L	101	70.0	130					
		uranium, dissolved	7440-61-1	E421	0.000253 mg/L	0.00025 mg/L	101	70.0	130					
		vanadium, dissolved	7440-62-2	E421	0.0276 mg/L	0.025 mg/L	110	70.0	130					
		zinc, dissolved	7440-66-6	E421	0.0260 mg/L	0.025 mg/L	104	70.0	130					
ggregate Orga	nics (QCLot: 722654)													
/A22C5934-004	Anonymous	tannin + lignin (as tannic acid)		E563	ND mg/L	1.96 mg/L	ND	70.0	130					
olatile Organic	Compounds (QCLot:	728063)												
Y2203475-001	Anonymous	Acetone	67-64-1	E611D	131 µg/L	100 µg/L	131	60.0	140					
		benzene	71-43-2	E611D	97.1 μg/L	100 µg/L	97.1	60.0	140					
		bromodichloromethane	75-27-4	E611D	99.3 µg/L	100 µg/L	99.3	60.0	140					
		bromoform	75-25-2	E611D	107 µg/L	100 µg/L	107	60.0	140					
		bromomethane	74-83-9	E611D	97.8 µg/L	100 µg/L	97.8	60.0	140					
		carbon tetrachloride	56-23-5	E611D	87.4 μg/L	100 µg/L	87.4	60.0	140					
		chlorobenzene	108-90-7	E611D	91.2 µg/L	100 µg/L	91.2	60.0	140					
		chloroform	67-66-3	E611D	98.8 µg/L	100 µg/L	98.8	60.0	140					
		dibromochloromethane	124-48-1	E611D	105 µg/L	100 µg/L	105	60.0	140					
		dibromoethane, 1,2-	106-93-4	E611D	96.2 µg/L	100 µg/L	96.2	60.0	140					
		dichlorobenzene, 1,2-	95-50-1	E611D	94.3 µg/L	100 µg/L	94.3	60.0	140					
		dichlorobenzene, 1,3-	541-73-1	E611D	88.3 µg/L	100 µg/L	88.3	60.0	140					
		dichlorobenzene, 1,4-	106-46-7	E611D	89.9 µg/L	100 µg/L	89.9	60.0	140					
		dichlorodifluoromethane	75-71-8	E611D	74.5 µg/L	100 µg/L	74.5	60.0	140					
		dichloroethane, 1,1-	75-34-3	E611D	106 µg/L	100 µg/L	106	60.0	140					
		dichloroethane, 1,2-	107-06-2	E611D	111 µg/L	100 µg/L	111	60.0	140					
		dichloroethylene, 1,1-	75-35-4	E611D	93.6 µg/L	100 µg/L	93.6	60.0	140					
		dichloroethylene, cis-1,2-	156-59-2	E611D	99.7 µg/L	100 µg/L	99.7	60.0	140	1				

Page	:	19 of 19
Work Order	:	WT2220058
Client	:	GHD Limited
Project	:	12586015-03.004

Analyte QCLot: 728063) - continued dichloroethylene, trans-1,2- dichloroprophene, trans-1,2- dichloropropylene, cis-1,3- dichloropropylene, trans-1,3- ethylbenzene hexane, n-	CAS Number 156-60-5 75-09-2 78-87-5 10061-01-5 10061-02-6	Method E611D E611D E611D	<u>Spi</u> Сопсенtration 99.8 µg/L 110 µg/L	ke Target 100 µg/L 100 µg/L	Recovery (%) MS 99.8	Recovery Low 60.0	Limits (%) High 140	Qualifier
QCLot: 728063) - continued dichloroethylene, trans-1,2- dichloromethane dichloropropane, 1,2- dichloropropylene, cis-1,3- dichloropropylene, trans-1,3- ethylbenzene	156-60-5 75-09-2 78-87-5 10061-01-5	E611D E611D E611D	99.8 µg/L 110 µg/L	100 µg/L	99.8			
dichloroethylene, trans-1,2- dichloromethane dichloropropane, 1,2- dichloropropylene, cis-1,3- dichloropropylene, trans-1,3- ethylbenzene	75-09-2 78-87-5 10061-01-5	E611D E611D	110 µg/L			60.0	140	
dichloromethane dichloropropane, 1,2- dichloropropylene, cis-1,3- dichloropropylene, trans-1,3- ethylbenzene	75-09-2 78-87-5 10061-01-5	E611D E611D	110 µg/L			60.0	140	
dichloropropane, 1,2- dichloropropylene, cis-1,3- dichloropropylene, trans-1,3- ethylbenzene	78-87-5 10061-01-5	E611D		100 µg/L	110			
dichloropropylene, cis-1,3- dichloropropylene, trans-1,3- ethylbenzene	10061-01-5				110	60.0	140	
dichloropropylene, trans-1,3- ethylbenzene			98.1 µg/L	100 µg/L	98.1	60.0	140	
ethylbenzene	10061-02-6	E611D	95.5 μg/L	100 µg/L	95.5	60.0	140	
	10001 02 0	E611D	107 µg/L	100 µg/L	107	60.0	140	
hexane, n-	100-41-4	E611D	92.1 µg/L	100 µg/L	92.1	60.0	140	
	110-54-3	E611D	87.6 μg/L	100 µg/L	87.6	60.0	140	
methyl ethyl ketone [MEK]	78-93-3	E611D	104 µg/L	100 µg/L	104	60.0	140	
methyl isobutyl ketone [MIBK]	108-10-1	E611D	121 µg/L	100 µg/L	121	60.0	140	
methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	91.6 µg/L	100 µg/L	91.6	60.0	140	
styrene	100-42-5	E611D	92.8 µg/L	100 µg/L	92.8	60.0	140	
tetrachloroethane, 1,1,1,2-	630-20-6	E611D	97.9 µg/L	100 µg/L	97.9	60.0	140	
tetrachloroethane, 1,1,2,2-	79-34-5	E611D	115 µg/L	100 µg/L	115	60.0	140	
tetrachloroethylene	127-18-4	E611D	92.0 µg/L	100 µg/L	92.0	60.0	140	
toluene	108-88-3	E611D	96.0 µg/L	100 µg/L	96.0	60.0	140	
trichloroethane, 1,1,1-	71-55-6	E611D	95.1 μg/L	100 µg/L	95.1	60.0	140	
trichloroethane, 1,1,2-	79-00-5	E611D	112 µg/L	100 µg/L	112	60.0	140	
trichloroethylene	79-01-6	E611D	90.3 µg/L	100 µg/L	90.3	60.0	140	
trichlorofluoromethane	75-69-4	E611D	91.7 μg/L	100 µg/L	91.7	60.0	140	
vinyl chloride	75-01-4	E611D	77.0 μg/L	100 µg/L	77.0	60.0	140	
xylene, m+p-	179601-23-1	E611D	188 µg/L	200 µg/L	93.8	60.0	140	
xylene, o-	95-47-6	E611D	98.1 μg/L	100 µg/L	98.1	60.0	140	
F1 (C6-C10)		E581.F1-L	1920 µg/L	2000 µg/L	96.2	60.0	140	
)	vinyl chloride xylene, m+p- xylene, o-	vinyl chloride 75-01-4 xylene, m+p- 179601-23-1 xylene, o- 95-47-6	vinyl chloride 75-01-4 E611D xylene, m+p- 179601-23-1 E611D xylene, o- 95-47-6 E611D	vinyl chloride 75-01-4 E611D 77.0 µg/L xylene, m+p- 179601-23-1 E611D 188 µg/L xylene, o- 95-47-6 E611D 98.1 µg/L	vinyl chloride 75-01-4 E611D 77.0 μg/L 100 μg/L xylene, m+p- 179601-23-1 E611D 188 μg/L 200 μg/L xylene, o- 95-47-6 E611D 98.1 μg/L 100 μg/L	vinyl chloride 75-01-4 E611D 77.0 µg/L 100 µg/L 77.0 xylene, m+p- 179601-23-1 E611D 188 µg/L 200 µg/L 93.8 xylene, o- 95-47-6 E611D 98.1 µg/L 100 µg/L 98.1	vinyl chloride 75-01-4 E611D 77.0 μg/L 100 μg/L 77.0 60.0 xylene, m+p- 179601-23-1 E611D 188 μg/L 200 μg/L 93.8 60.0 xylene, o- 95-47-6 E611D 98.1 μg/L 100 μg/L 98.1 60.0	vinyl chloride 75-01-4 E611D 77.0 µg/L 100 µg/L 77.0 60.0 140 xylene, m+p- 179601-23-1 E611D 188 µg/L 200 µg/L 93.8 60.0 140 xylene, o- 95-47-6 E611D 98.1 µg/L 100 µg/L 98.1 60.0 140

MS-Ag

MS-Ag: Matrix Spike recovery for silver was marginally below DQO (40 to <60%) due to its instability in the sample matrix. Silver was not detected. Reported result (< LOR) is reliable

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 -

Canada Toll Free: 1 800 668 9878

Page j of l

Report To	Contact and company name below will appear on the final r	eport	Reports / I	Recipients		1		Turna	aroun	d Tim	e (TAT) Req	uested						enta	Div	/ision	
Company:	GHD Ltd. (GHDL100)		ormat: 🗹 PDF	EXCEL 2 E	EDD (DIGITAL)	Rou	tine [R] if	receive	ed by 3	Bpm M	F- no	surcha	rges app	oly			aterle		or D	oforo	0.00	
Contact:	Pascal Renella	Merge QC/QCI	Reports with COA			4 d	ay [P4] if	receive	d by 3p	pm M-I	- 209	rush :	surcharg	e miñ	lime	- 1	Work				058	C
Phone:	519-884-0510	Compare Result	s to Criteria on Report				ay [P3] if										٧V	12	20	20	000	כ
	Company address below will appear on the final report	Select Distributio	on: 🗹 EMAIL	MAIL 🗌	FAX		ay [P2] if ay [E] if r									7						
Street:	455 Phillip St.	Email 1 or Fax	pascal.renella@g	hd.com		San	e day [E may app] if red	ceived I	by 10a	m M-S	- 2009	% rush s	urchar	rge.	2		ШZ	.0753	100		
City/Province:	Waterloo, ON		See SSOW/PO				ine tests	ly cond	Sillesu	10303 01	T WEEKE	1457 50	acutory	Tonda	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Η.,	10, 1	10		
Postal Code:	N2L 3X2	Email 3				0	ate and	ime R	equire	d for a	I E&P	TATs:			_			ΠY.	26			
Invoice To	Same as Report To YES NO		Invoice R	lecipients				Fo	r tests t	that can	not be	perform	ned acco	rding t	to th			$M_{\rm e}$	11.	1		
-	Copy of Invoice with Report YES INO	Select Invoice D	istribution: 🔽 E	MAIL 🗌 MAIL	FAX								Analy	sis F	Req				510.00	R 801	2	
Company:	GHD Ltd. (GHDL100)	Email 1 or Fax	Invoicing-Canada	@ghd.com	190	SS		Indi	cate Fi	iltered (F), Pre	served	(P) or F	iltered	d and	lele	ephone	: +1	519.86	0 0910		
Contact:		Email 2				CONTAINERS							-		1-	-				_	≡	1 2
	Project Information	Oil	and Gas Require	ed Fields (client	t use)	AIN	0			Is)								1				(see no
ALS Account #	# / Quote #: WT2022GHDL1000126	AFE/Cost Center:		PO#		E	utine	EC		CPs, PAHs)										-		s) (s
Job #:	12586015	Major/Minor Code:		Routing Code:		ō	s Ro	Colour,		CPs	lter)				-	НОГР					F B	ARI
PO / AFE:	and the second s	Requisitioner:	and a second							ols (eld fi			1	S	iou l					ON NOT	AZ
LSD:		Location:	1			Ы	aram	S, Alk,	0	her	s (fie	CHN	ity	4	ignir	Diar	(c)	~	(Ja		S	; HO
ALS Lab Wo	rk Order # (lab use only):	ALS Contact:	Rick H	Sampler:		NUMBER	water Pa	: Anions,	TC,EC,TCB,HPC	Semi vols (incl Phenols		H2S,	, Turbidity	VOCS/PHC F1-F4	Tannins/Lignins	OP Pesticides (Diazinon)	Ion Balance (calc)	Hardness (Calc)	DOC (Field Filter)	V.	SAMPLES ON HOLD	SUSPECTED HAZARD
ALS Sample # (lab use only)	Sample Identification and/or Coo (This description will appear on the	dis.	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	MUM	Groundwater	includes:	LC,EC,	Semi vo	Dissolve	Sulphide/H2S,	TKN,pH,	VOCS/F	TDS, T	OF res	on Bala	Hardne	DOC (F	Voc	SAM	SUSP
(ins use shift			(22,000,000,000,000,000,000,000,000,000,		WATER	-	R	2	R	PI	5.	D	R	R	R	2	9	R	2			
	(200)				WATER	-	R	-	-	-	0	-	12	-	-	-	1		1.5.4	+		
	GW-12586015- GW-003			-		-			-	-	K	-	-	-	-	+	-	-	-	0		-
	GW-12586015- TRUP BLANK				WATER	-	-R=	1	_	-		-		-		+	_	\rightarrow	-	12		-
	GW-12586015-				WATER		R				_			_	_	_	_			_		
	GW-12586015-		and the second		WATER		R												1	_		
	1																					1
1																						
					-	-		-	-		-	-		-		-		-	-	-		
1 CALLER OF						-		-		-	-		_	-		+			-	-	+	-
					1.	-		-			_	_		-		-	_	_	-	\rightarrow		-
1				198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198																_		-
	Note	es / Specify Limits for result e		ting from drop-do	own below						2 APRIL 10		-	and a bandward of	TAILS	-			10.		-	
Drinking	g Water (DW) Samples ¹ (client use)	(E)	cel COC only)			/ 10000 10000	ng Met		_				E ICE			FRO	Cost in the				INITIATE	D
	ken from a Regulated DW System?					Subr	nission	Comn	nents	identi								U Y				
	YES VO	Χ.				Cool	er Custo	Carlos Carlos Carlos	Carl Server Real P	A STREET STREET		CONTRACTOR AND	the second second second	A S	Sample						YES [N/A
Are samples for	r human consumption/ use?						1	TAL CO	DOLER	RTEMP	PERATI	RES *	C	-	10	Fil	NAL CC	JOLER	TEMP	1	0	
	YES MO					4	2							ŀ	6	5	-	6	5	10	.5	-
	SHIPMENT RELEASE (client use)		INITIAL SHIPME	T RECEPTION	(lab use only)	Time		-	and he		FI	NAL S	SHIPM	ENT	RECE	PTIC	DN (la	b use	only		Time:	
Released by:	BOLIN Oct. 27/22	Time: Received by:	N	Date:	28/22	Time T.	40	Receiv	1	y N	AA		3	Date:	023)-1	0-	20	1		Time:	00
REFER TO BAC Failure to complete 1. If any water san	K PAGE FOR ALS LOCATIONS AND SAMPLING INFORMAT e all portions of this form may delay analysis. Please fill in this form Linples are taken from a Regulated Drinking Water (DW) System, ple	EGIBLY. By the use of this form the ease submit using an Authorized D		HITE - LABORATC						of the t	white - 1	eport o	copy.	25	N~ .	3(68	0	p-A-	-પડ	-8	

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order	· WT2412245	Page	: 1 of 7
Client	: GHD Limited	Laboratory	: ALS Environmental - Waterloo
Contact	: Pascal Renella	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo ON Canada N2V 2B8
Telephone	: 519 725 3313	Telephone	: +1 519 886 6910
Project	: 12586015	Date Samples Received	: 15-May-2024 08:25
PO	: 735-010356	Date Analysis	: 16-May-2024
		Commenced	
C-O-C number	:	Issue Date	: 23-May-2024 16:44
Sampler	: CLIENT		
Site	:		
Quote number	12586015-10-2-2024-735-010356		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jon Fisher	Production Manager, Environmental	Inorganics, Waterloo, Ontario
Kelly Fischer	Technical Specialist	Inorganics, Waterloo, Ontario
Nik Perkio	Senior Analyst	Inorganics, Waterloo, Ontario
Nik Perkio	Senior Analyst	Metals, Waterloo, Ontario
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Measurement Uncertainty: The reported uncertainties in this report are expanded uncertainties calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%.

Surrogate: An analyte that is similar in behavior to target analyte (s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Unit	Description					
-	no units					
%	percent					
μS/cm	microsiemens per centimetre					
CU	colour units (1 cu = 1 mg/l pt)					
meq/L	milliequivalents per litre					
mg/L	milligrams per litre					
NTU	nephelometric turbidity units					
pH units	pH units					

>: greater than.

<: less than.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
SRU	Sample Received Unpreserved. Results may be biased low for indicated parameter(s).

WT2412245-001

Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-A365610-001 Client sampling date / time: 14-May-2024 09:10

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis	QCLot
Division Tests							Date	
Physical Tests				011		40.14 0004		
Colour, true		3.9	2.0	CU	E329-L/WT	16-May-2024	17-May-2024	1446082
Conductivity		746	2.0	µS/cm	E100/WT	16-May-2024	16-May-2024	1445937
Hardness (as CaCO3), dissolved		360	0.50	mg/L	EC100/WT	-	21-May-2024	-
pH		8.39	0.10	pH units	E108/WT	16-May-2024	16-May-2024	1445938
Solids, total dissolved [TDS]		427 DLDS	20	mg/L	E162/WT	-	17-May-2024	1447855
Turbidity		0.94	0.10	NTU	E121/WT	-	16-May-2024	1446254
Alkalinity, total (as CaCO3)		276	2.0	mg/L	E290/WT	16-May-2024	16-May-2024	1445936
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	0.0945	0.0050	mg/L	E298/WT	16-May-2024	17-May-2024	1445744
Chloride	16887-00-6	50.6	0.50	mg/L	E235.CI/WT	16-May-2024	16-May-2024	1445942
Fluoride	16984-48-8	0.176	0.020	mg/L	E235.F/WT	16-May-2024	16-May-2024	1445939
Kjeldahl nitrogen, total [TKN]		0.207	0.050	mg/L	E318/WT	22-May-2024	22-May-2024	1445741
Nitrate (as N)	14797-55-8	<0.020	0.020	mg/L	E235.NO3/WT	16-May-2024	16-May-2024	1445940
Nitrite (as N)	14797-65-0	<0.010	0.010	mg/L	E235.NO2/WT	16-May-2024	16-May-2024	1445941
Sulfate (as SO4)	14808-79-8	57.6	0.30	mg/L	E235.SO4/WT	16-May-2024	16-May-2024	1445943
Organic / Inorganic Carbon								
Carbon, dissolved organic [DOC]		2.54	0.50	mg/L	E358-L/WT	17-May-2024	22-May-2024	1447802
Total Sulfides								
Sulfide, total (as H2S)	7783-06-4	0.014	0.011	mg/L	E395-H/VA	-	21-May-2024	1450341
Sulfide, total (as S)	18496-25-8	0.013	0.010	mg/L	E395-H/VA	-	21-May-2024	1450341
lon Balance								
Anion sum		8.15	0.10	meq/L	EC101/WT	-	23-May-2024	-
Cation sum		8.23	0.10	meq/L	EC101/WT	-	23-May-2024	-
Ion balance (APHA)		0.49	0.01	%	EC101/WT	-	23-May-2024	-
Dissolved Metals								
Aluminum, dissolved	7429-90-5	<0.0010	0.0010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Antimony, dissolved	7440-36-0	<0.00010	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Arsenic, dissolved	7440-38-2	<0.00010	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Barium, dissolved	7440-39-3	0.119	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Boron, dissolved	7440-42-8	0.068	0.010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Cadmium, dissolved	7440-43-9	<0.0000050	0.0000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Calcium, dissolved	7440-70-2	89.0	0.050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Chromium, dissolved	7440-47-3	< 0.00050	0.00050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Cobalt, dissolved	7440-48-4	< 0.00010	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Copper, dissolved	7440-50-8	0.00042	0.00020	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Lead, dissolved	7439-92-1	<0.000050	0.000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Magnesium, dissolved	7439-95-4	33.4	0.0050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Manganese, dissolved	7439-96-5	0.0344	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Molybdenum, dissolved	7439-98-7	0.00959	0.000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Nickel, dissolved	7440-02-0	<0.00050	0.00050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Potassium, dissolved	7440-09-7	3.94	0.050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Selenium, dissolved	7782-49-2	0.000180	0.000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Silver, dissolved	7440.00.4	~0.00010	0.000010		E421/WT	17 May 2024	47 14	1117500
Silver, dissolved	7440-22-4	<0.000010 21.5	0.000010 0.050	mg/L	E421/WT	17-May-2024 17-May-2024	17-May-2024	1447520

WT2412245-001 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-A365610-001 Client sampling date / time: 14-May-2024 09:10

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis	QCLot
							Date	
Dissolved Metals								
Strontium, dissolved	7440-24-6	1.72	0.00020	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Uranium, dissolved	7440-61-1	0.000290	0.000010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Vanadium, dissolved	7440-62-2	<0.00050	0.00050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Zinc, dissolved	7440-66-6	0.0022	0.0010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Dissolved metals filtration location		Field	-	-	EP421/WT	-	17-May-2024	1447520
Aggregate Organics								
Tannin + Lignin (as Tannic acid)		0.86	0.10	mg/L	E563/WT	-	17-May-2024	1448313

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Analytical Results

WT2412245-002

Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-A365610-002 Client sampling date / time: 14-May-2024 14:10

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Physical Tests								
Colour, true		<2.0	2.0	CU	E329-L/WT	16-May-2024	17-May-2024	1446428
Conductivity		793	2.0	μS/cm	E100/WT	16-May-2024	17-May-2024	1446420
Hardness (as CaCO3), dissolved		351	0.50	mg/L	EC100/WT	-	21-May-2024	-
рН		8.19	0.10	pH units	E108/WT	16-May-2024	17-May-2024	1446421
Solids, total dissolved [TDS]		452	^{DLDS,} 20	mg/L	E162/WT	-	17-May-2024	1447871
Turbidity		0.14	0.10	NTU	E121/WT	-	16-May-2024	1446254
Alkalinity, total (as CaCO3)		269	2.0	mg/L	E290/WT	16-May-2024	17-May-2024	1446422
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	0.0923	0.0050	mg/L	E298/WT	19-May-2024	21-May-2024	1450120
Chloride	16887-00-6	50.0	0.50	mg/L	E235.CI/WT	16-May-2024	21-May-2024	1446423
Fluoride	16984-48-8	0.169	0.020	mg/L	E235.F/WT	16-May-2024	21-May-2024	1446424
Kjeldahl nitrogen, total [TKN]		0.205	0.050	mg/L	E318/WT	22-May-2024	22-May-2024	1450119
Nitrate (as N)	14797-55-8	<0.020	0.020	mg/L	E235.NO3/WT	16-May-2024	21-May-2024	1446426
Nitrite (as N)	14797-65-0	<0.010	0.010	mg/L	E235.NO2/WT	16-May-2024	21-May-2024	1446427
Sulfate (as SO4)	14808-79-8	57.2	0.30	mg/L	E235.SO4/WT	16-May-2024	21-May-2024	1446425
Organic / Inorganic Carbon								
Carbon, dissolved organic [DOC]		31.1	0.50	mg/L	E358-L/WT	17-May-2024	22-May-2024	1447802
Total Sulfides								
Sulfide, total (as H2S)	7783-06-4	<0.011	0.011	mg/L	E395-H/VA	-	19-May-2024	1450341
Sulfide, total (as S)	18496-25-8	<0.010	^{SRU,} 0.010	mg/L	E395-H/VA	-	19-May-2024	1450341
Ion Balance								
Anion sum		7.98	0.10	meq/L	EC101/WT	-	23-May-2024	-
Cation sum		8.05	0.10	meq/L	EC101/WT	-	23-May-2024	-
Ion balance (APHA)		0.44	0.01	%	EC101/WT	-	23-May-2024	-
Dissolved Metals								
Aluminum, dissolved	7429-90-5	<0.0010	0.0010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520

Page	1	5 of 7
Work Order	1	WT2412245
Client	:	GHD Limited
Project	:	12586015

WT2412245-002 Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12586015-A365610-002 *Client sampling date / time:* 14-May-2024 14:10

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Dissolved Metals								
Antimony, dissolved	7440-36-0	<0.00010	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Arsenic, dissolved	7440-38-2	<0.00010	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Barium, dissolved	7440-39-3	0.115	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Boron, dissolved	7440-42-8	0.068	0.010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Cadmium, dissolved	7440-43-9	<0.0000050	0.0000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Calcium, dissolved	7440-70-2	85.7	0.050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Chromium, dissolved	7440-47-3	<0.00050	0.00050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Cobalt, dissolved	7440-48-4	<0.00010	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Copper, dissolved	7440-50-8	<0.00020	0.00020	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Lead, dissolved	7439-92-1	<0.000050	0.000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Magnesium, dissolved	7439-95-4	33.2	0.0050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Manganese, dissolved	7439-96-5	0.0330	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Molybdenum, dissolved	7439-98-7	0.00965	0.000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Nickel, dissolved	7440-02-0	<0.00050	0.00050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Potassium, dissolved	7440-09-7	3.83	0.050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Selenium, dissolved	7782-49-2	0.000298	0.000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Sodium, dissolved	7440-23-5	21.5	0.050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Strontium, dissolved	7440-24-6	1.81	0.00020	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Uranium, dissolved	7440-61-1	0.000313	0.000010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Vanadium, dissolved	7440-62-2	<0.00050	0.00050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Zinc, dissolved	7440-66-6	<0.0010	0.0010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Dissolved metals filtration location		Field	-	-	EP421/WT	-	17-May-2024	1447520
Aggregate Organics								
Tannin + Lignin (as Tannic acid)		0.82	0.10	mg/L	E563/WT	-	17-May-2024	1448313

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Analytical Results

WT2412245-003 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-A365610-003 Client sampling date / time: 14-May-2024 20:10

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis	QCLot
Physical Tests							Date	
Colour, true		<2.0	2.0	CU	E329-L/WT	16-May-2024	17-May-2024	1446428
Conductivity		786	2.0	µS/cm	E100/WT	16-May-2024	17-May-2024	1446420
Hardness (as CaCO3), dissolved		350	0.50	mg/L	EC100/WT	-	21-May-2024	-
рН		8.06	0.10	pH units	E108/WT	16-May-2024	17-May-2024	1446421
Solids, total dissolved [TDS]		418 DLDS,	20	mg/L	E162/WT	-	17-May-2024	1447871
Turbidity		1.69	0.10	NTU	E121/WT	-	16-May-2024	1446254
Alkalinity, total (as CaCO3)		270	2.0	mg/L	E290/WT	16-May-2024	17-May-2024	1446422

alsglobal.com

WT2412245-003

Sub-Matrix:Water (Matrix: Water)

Client sample ID: GW-12586015-A365610-003 Client sampling date / time: 14-May-2024 20:10

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Anions and Nutrients							Date	
Ammonia, total (as N)	7664-41-7	0.0917	0.0050	mg/L	E298/WT	19-May-2024	21-May-2024	1450120
Chloride	16887-00-6	49.7	0.50	mg/L	E235.CI/WT	16-May-2024	21-May-2024	1446423
Fluoride	16984-48-8	0.182	0.020	mg/L	E235.F/WT	16-May-2024	21-May-2024	1446424
Kjeldahl nitrogen, total [TKN]		0.187	0.050	mg/L	E318/WT	22-May-2024	22-May-2024	1450119
Nitrate (as N)	14797-55-8	<0.020	0.020	mg/L	E235.NO3/WT	16-May-2024	21-May-2024	1446426
Nitrite (as N)	14797-65-0	<0.010	0.010	mg/L	E235.NO2/WT	16-May-2024	21-May-2024	1446427
Sulfate (as SO4)	14808-79-8	57.0	0.30	mg/L	E235.SO4/WT	16-May-2024	21-May-2024	1446425
Organic / Inorganic Carbon						-		
Carbon, dissolved organic [DOC]		2.13	0.50	mg/L	E358-L/WT	17-May-2024	22-May-2024	1447802
Total Sulfides								
Sulfide, total (as H2S)	7783-06-4	<0.011	0.011	mg/L	E395-H/VA	-	19-May-2024	1450341
Sulfide, total (as S)	18496-25-8	<0.010	0.010	mg/L	E395-H/VA	-	19-May-2024	1450341
Ion Balance								
Anion sum		7.99	0.10	meq/L	EC101/WT	-	23-May-2024	-
Cation sum		8.04	0.10	meq/L	EC101/WT	-	23-May-2024	-
Ion balance (APHA)		0.31	0.01	%	EC101/WT	-	23-May-2024	-
Dissolved Metals								
Aluminum, dissolved	7429-90-5	0.0012	0.0010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Antimony, dissolved	7440-36-0	<0.00010	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Arsenic, dissolved	7440-38-2	<0.00010	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Barium, dissolved	7440-39-3	0.112	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Boron, dissolved	7440-42-8	0.068	0.010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Cadmium, dissolved	7440-43-9	<0.000050	0.0000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Calcium, dissolved	7440-70-2	85.1	0.050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Chromium, dissolved	7440-47-3	<0.00050	0.00050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Cobalt, dissolved	7440-48-4	<0.00010	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Copper, dissolved	7440-50-8	0.00072	0.00020	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Lead, dissolved	7439-92-1	<0.000050	0.000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Magnesium, dissolved	7439-95-4	33.5	0.0050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Manganese, dissolved	7439-96-5	0.0341	0.00010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Molybdenum, dissolved	7439-98-7	0.00996	0.000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Nickel, dissolved	7440-02-0	<0.00050	0.00050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Potassium, dissolved	7440-02-0	4.01	0.050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Selenium, dissolved	7782-49-2	0.000127	0.000050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Silver, dissolved	7440-22-4	<0.000012	0.000010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Sodium, dissolved	7440-23-5	21.4	0.050	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Strontium, dissolved	7440-23-5	1.84	0.00020	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Thallium, dissolved	7440-24-0	<0.000010	0.000010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Uranium, dissolved	7440-28-0	0.000360	0.000010	mg/L	E421/WT	17-May-2024	17-May-2024	1447520
Vanadium, dissolved	7440-61-1	< 0.00050	0.00050	mg/L	E421/WT	17-May-2024	17-May-2024 17-May-2024	1447520 1447520
Zinc, dissolved	7440-62-2	<0.00000	0.00000	mg/L	E421/WT	17-May-2024	-	
Dissolved metals filtration location	1440-00-0	Field	-		EP421/WT		17-May-2024	1447520
			-	-		-	17-May-2024	1447520
Aggregate Organics		0.83	0.10	ma/l	E563/WT		17 May 0004	1440040
Tannin + Lignin (as Tannic acid)		0.83	0.10	mg/L	E003/VV 1	-	17-May-2024	1448313

Page Work Order	:	7 of 7 WT2412245
Client Project	:	GHD Limited 12586015

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WT2412245	Page	: 1 of 13	
Client	GHD Limited	Laboratory	: ALS Environmental - Waterloo	
Contact	: Pascal Renella	Account Manager	: Rick Hawthorne	
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1	
	Waterloo ON Canada N2L 3X2		Waterloo, Ontario Canada N2V 2B8	
Telephone	: 519 725 3313	Telephone	: +1 519 886 6910	
Project	: 12586015	Date Samples Received	: 15-May-2024 08:25	
PO	: 735-010356	Issue Date	: 23-May-2024 16:44	
C-O-C number	:			
Sampler	: CLIENT			
Site	:			
Quote number	: 12586015-10-2-2024-735-010356			
No. of samples received	:3			
No. of samples analysed	:3			

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Page Work Order	:	3 of 13 WT2412245
Client	:	GHD Limited
Project	:	12586015

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	valuation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Tannin & Lignin in Water										
HDPE [ON MECP]										
GW-12586015-A365610-001	E563	14-May-2024					17-May-2024	28 days	3 days	✓
Aggregate Organics : Tannin & Lignin in Water										
HDPE [ON MECP]										
GW-12586015-A365610-002	E563	14-May-2024					17-May-2024	28 days	3 days	1
Aggregate Organics : Tannin & Lignin in Water										
HDPE [ON MECP]										
GW-12586015-A365610-003	E563	14-May-2024					17-May-2024	28 days	3 days	1
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) [ON MECP]										
GW-12586015-A365610-001	E298	14-May-2024	16-May-2024	28	2 days	1	17-May-2024	28 days	3 days	✓
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) [ON MECP]										
GW-12586015-A365610-002	E298	14-May-2024	19-May-2024	28	5 days	1	21-May-2024	28 days	7 days	1
				days						
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) [ON MECP]										
GW-12586015-A365610-003	E298	14-May-2024	19-May-2024	28	5 days	1	21-May-2024	28 days	7 days	✓
				days						
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										
GW-12586015-A365610-001	E235.Cl	14-May-2024	16-May-2024	28	2 days	1	16-May-2024	28 days	2 days	1
				days						

Page	:	4 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
	:	12586015

Analyte Group : Analytical Method	Method	Method Sampling Date Extraction / Preparation						Holding time exceedance ; ✓ = Within H Analysis			
Container / Client Sample ID(s)	Wethod	Sampling Date	Preparation Date		g Times Actual	Eval	Analysis Date		g Times Actual	Eval	
Anions and Nutrients : Chloride in Water by IC											
HDPE [ON MECP] GW-12586015-A365610-002	E235.CI	14-May-2024	16-May-2024	28 days	2 days	√	21-May-2024	28 days	7 days	1	
Anions and Nutrients : Chloride in Water by IC								1	11		
HDPE [ON MECP] GW-12586015-A365610-003	E235.Cl	14-May-2024	16-May-2024	28 days	2 days	4	21-May-2024	28 days	7 days	1	
Anions and Nutrients : Fluoride in Water by IC											
HDPE [ON MECP] GW-12586015-A365610-001	E235.F	14-May-2024	16-May-2024	28 days	2 days	~	16-May-2024	28 days	2 days	1	
Anions and Nutrients : Fluoride in Water by IC											
HDPE [ON MECP] GW-12586015-A365610-002	E235.F	14-May-2024	16-May-2024	28 days	2 days	√	21-May-2024	28 days	7 days	1	
Anions and Nutrients : Fluoride in Water by IC									<u> </u>		
HDPE [ON MECP] GW-12586015-A365610-003	E235.F	14-May-2024	16-May-2024	28 days	2 days	4	21-May-2024	28 days	7 days	*	
Anions and Nutrients : Nitrate in Water by IC									11		
HDPE [ON MECP] GW-12586015-A365610-001	E235.NO3	14-May-2024	16-May-2024	7 days	2 days	1	16-May-2024	7 days	2 days	1	
Anions and Nutrients : Nitrate in Water by IC					II				II		
HDPE [ON MECP] GW-12586015-A365610-002	E235.NO3	14-May-2024	16-May-2024	7 days	2 days	4	21-May-2024	7 days	7 days	4	
Anions and Nutrients : Nitrate in Water by IC					1				1 1		
HDPE [ON MECP] GW-12586015-A365610-003	E235.NO3	14-May-2024	16-May-2024	7 days	2 days	4	21-May-2024	7 days	7 days	4	
Anions and Nutrients : Nitrite in Water by IC				I			1				
HDPE [ON MECP] GW-12586015-A365610-001	E235.NO2	14-May-2024	16-May-2024	7 days	2 days	1	16-May-2024	7 days	2 days	1	

Page	:	5 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Aatrix: Water Analyte Group : Analytical Method	Method	Sompling Data	Ev	traction / Pr		Evaluation: × = Holding time exceedance Date Extraction / Preparation Anai						
Container / Client Sample ID(s)	Metrioa	Sampling Date	Preparation Date		g Times Actual	Eval	Analysis Date	· · · ·	g Times Actual	Eval		
Anions and Nutrients : Nitrite in Water by IC												
HDPE [ON MECP] GW-12586015-A365610-002	E235.NO2	14-May-2024	16-May-2024	7 days	2 days	4	21-May-2024	7 days	7 days	1		
Anions and Nutrients : Nitrite in Water by IC												
HDPE [ON MECP]												
GW-12586015-A365610-003	E235.NO2	14-May-2024	16-May-2024	7 days	2 days	√	21-May-2024	7 days	7 days	1		
Anions and Nutrients : Sulfate in Water by IC									I <u>I</u> I			
HDPE [ON MECP] GW-12586015-A365610-001	E235.SO4	14-May-2024	16-May-2024	28 days	2 days	4	16-May-2024	28 days	2 days	1		
Anions and Nutrients : Sulfate in Water by IC												
HDPE [ON MECP] GW-12586015-A365610-002	E235.SO4	14-May-2024	16-May-2024	28 days	2 days	~	21-May-2024	28 days	7 days	~		
Anions and Nutrients : Sulfate in Water by IC									<u> </u>			
HDPE [ON MECP] GW-12586015-A365610-003	E235.SO4	14-May-2024	16-May-2024	28 days	2 days	√	21-May-2024	28 days	7 days	4		
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)												
Amber glass total (sulfuric acid) [ON MECP] GW-12586015-A365610-003	E318	14-May-2024	22-May-2024	28 days	7 days	~	22-May-2024	28 days	8 days	1		
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)									· · · ·			
Amber glass total (sulfuric acid) [ON MECP] GW-12586015-A365610-001	E318	14-May-2024	22-May-2024	28 days	8 days	~	22-May-2024	28 days	8 days	1		
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)									· · · · ·			
Amber glass total (sulfuric acid) [ON MECP] GW-12586015-A365610-002	E318	14-May-2024	22-May-2024	28 days	8 days	~	22-May-2024	28 days	8 days	4		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS												
HDPE dissolved (nitric acid) GW-12586015-A365610-001	E421	14-May-2024	17-May-2024	180 days	3 days	1	17-May-2024	180 days	3 days	~		

Page :	6 of 13
Work Order :	WT2412245
Client :	GHD Limited
Project :	12586015

										Holding T
nalyte Group : Analytical Method	Method	Sampling Date	Exi	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
GW-12586015-A365610-002	E421	14-May-2024	17-May-2024	180	3 days	1	17-May-2024	180	3 days	1
				days				days		
issolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
GW-12586015-A365610-003	E421	14-May-2024	17-May-2024	180	3 days	1	17-May-2024	180	3 days	✓
				days				days		
Prganic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low L	evel)									
Amber glass dissolved (sulfuric acid) [ON MECP]										
GW-12586015-A365610-001	E358-L	14-May-2024	17-May-2024	28	3 days	1	22-May-2024	28 days	8 days	✓
			-	days	-					
				aayo						
organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low L Amber glass dissolved (sulfuric acid) [ON MECP]	evel)									
GW-12586015-A365610-002	E358-L	14-May-2024	17-May-2024	00	3 days	1	22-May-2024	28 days	8 days	1
GVV-12560015-A365610-002	L330-L	14-101ay-2024	17-111ay-2024	28	5 uays	•	22-11/14y-2024	20 uays	ouays	•
				days						
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low L	evel)									
Amber glass dissolved (sulfuric acid) [ON MECP]										
GW-12586015-A365610-003	E358-L	14-May-2024	17-May-2024	28	3 days	1	22-May-2024	28 days	8 days	~
				days						
hysical Tests : Alkalinity Species by Titration										
HDPE [ON MECP]										
GW-12586015-A365610-001	E290	14-May-2024	16-May-2024	14	2 days	1	16-May-2024	14 days	2 days	✓
				days						
hysical Tests : Alkalinity Species by Titration										
HDPE [ON MECP]										
GW-12586015-A365610-002	E290	14-May-2024	16-May-2024	14	2 days	1	17-May-2024	14 days	3 days	1
			, i i i i i i i i i i i i i i i i i i i	days	,					
hysical Tests : Alkalinity Species by Titration										
HDPE [ON MECP]							1	1		
GW-12586015-A365610-003	E290	14-May-2024	16-May-2024	14	2 days	1	17-May-2024	14 days	3 days	1
	L230	1-1-101ay-2024	10-may-202+		2 days		17-Way-2024	17 days	0 days	•
				days						
hysical Tests : Colour (True) by Spectrometer (2 CU)										
HDPE [ON MECP]	Facel									
GW-12586015-A365610-002	E329-L	14-May-2024	16-May-2024	53 hrs	53 hrs	1	17-May-2024	53 hrs	72 hrs	×
										EHT

Page	:	7 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
	:	12586015

Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	r Times Actual	Eval
Physical Tests : Colour (True) by Spectrometer (2 CU)										
HDPE [ON MECP] GW-12586015-A365610-001	E329-L	14-May-2024	16-May-2024	58 hrs	54 hrs	1	17-May-2024	58 hrs	77 hrs	×
										EHT
Physical Tests : Colour (True) by Spectrometer (2 CU)										
HDPE [ON MECP] GW-12586015-A365610-003	E329-L	14-May-2024	16-May-2024	71 hrs	47 hrs	1	17-May-2024	71 hrs	66 hrs	~
Physical Tests : Conductivity in Water										
HDPE [ON MECP] GW-12586015-A365610-001	E100	14-May-2024	16-May-2024	28 days	2 days	V	16-May-2024	28 days	2 days	~
Physical Tests : Conductivity in Water										
HDPE [ON MECP] GW-12586015-A365610-002	E100	14-May-2024	16-May-2024	28 days	2 days	1	17-May-2024	28 days	3 days	1
Physical Tests : Conductivity in Water								1		
HDPE [ON MECP] GW-12586015-A365610-003	E100	14-May-2024	16-May-2024	28 days	2 days	4	17-May-2024	28 days	3 days	~
Physical Tests : pH by Meter								-		
HDPE [ON MECP] GW-12586015-A365610-001	E108	14-May-2024	16-May-2024	14 days	2 days	1	16-May-2024	14 days	2 days	1
Physical Tests : pH by Meter										
HDPE [ON MECP] GW-12586015-A365610-002	E108	14-May-2024	16-May-2024	14 days	2 days	~	17-May-2024	14 days	3 days	1
Physical Tests : pH by Meter								1		
HDPE [ON MECP] GW-12586015-A365610-003	E108	14-May-2024	16-May-2024	14 days	2 days	4	17-May-2024	14 days	3 days	~
Physical Tests : TDS by Gravimetry								L		
HDPE [ON MECP]										
GW-12586015-A365610-001	E162	14-May-2024					17-May-2024	7 days	3 days	1

Page	:	8 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	÷	12586015

atrix: Water							Holding time excee			
Analyte Group : Analytical Method	Method	Sampling Date	Ext	traction / Pr				Analys		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP]										
GW-12586015-A365610-002	E162	14-May-2024					17-May-2024	7 days	3 days	1
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP]										
GW-12586015-A365610-003	E162	14-May-2024					17-May-2024	7 days	3 days	1
Physical Tests : Turbidity by Nephelometry										
HDPE [ON MECP]										
GW-12586015-A365610-003	E121	14-May-2024					16-May-2024	48 hrs	43 hrs	1
Physical Tests : Turbidity by Nephelometry										
HDPE [ON MECP]										
GW-12586015-A365610-002	E121	14-May-2024					16-May-2024	48 hrs	49 hrs	*
										EHT
Physical Tests : Turbidity by Nephelometry										
HDPE [ON MECP]										
GW-12586015-A365610-001	E121	14-May-2024					16-May-2024	48 hrs	54 hrs	*
										EHT
Total Sulfides : Total Sulfide by Colourimetry (Automated Flow)										
HDPE total (zinc acetate+sodium hydroxide)										
GW-12586015-A365610-001	E395-H	14-May-2024					19-May-2024	7 days	5 days	1
Total Sulfides : Total Sulfide by Colourimetry (Automated Flow)										
HDPE total (zinc acetate+sodium hydroxide)										
GW-12586015-A365610-002	E395-H	14-May-2024					19-May-2024	7 days	5 days	1
otal Sulfides : Total Sulfide by Colourimetry (Automated Flow)										
HDPE total (zinc acetate+sodium hydroxide)										
GW-12586015-A365610-003	E395-H	14-May-2024					19-May-2024	7 days	5 days	1
										1

Legend & Qualifier Definitions

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page	:	9 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type					ecification; ✓ =		
Analytical Methods	Method	QC Lot #	QC	ount Regular	Actual	Frequency (%)	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	1445936	2	33	6.0	5.0	1
Ammonia by Fluorescence	E298	1445744	2	40	5.0	5.0	
Chloride in Water by IC	E235.Cl	1445942	2	38	5.2	5.0	
Colour (True) by Spectrometer (2 CU)	E329-L	1446082	2	25	8.0	5.0	
Conductivity in Water	E100	1445937	2	38	5.2	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	1447520	1	19	5.2	5.0	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1447802	1	20	5.0	5.0	
Fluoride in Water by IC	E235.F	1445939	2	34	5.8	5.0	
Nitrate in Water by IC	E235.NO3	1445940	2	34	5.8	5.0	
Nitrite in Water by IC	E235.NO2	1445941	2	33	6.0	5.0	
pH by Meter	E108	1445938	2	40	5.0	5.0	
Sulfate in Water by IC	E235.SO4	1445943	2	34	5.8	5.0	
Tannin & Lignin in Water	E563	1448313	1	20	5.0	5.0	
TDS by Gravimetry	E162	1447855	2	40	5.0	5.0	· · ·
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1445741	2	39	5.1	5.0	
Total Sulfide by Colourimetry (Automated Flow)	E395-H	1450341	1	17	5.8	5.0	
Turbidity by Nephelometry	E121	1446254	1	3	33.3	5.0	<u> </u>
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	1445936	2	33	6.0	5.0	1
Ammonia by Fluorescence	E298	1445744	2	40	5.0	5.0	
Chloride in Water by IC	E235.Cl	1445942	2	38	5.2	5.0	
Colour (True) by Spectrometer (2 CU)	E329-L	1446082	2	25	8.0	5.0	· · ·
Conductivity in Water	E100	1445937	2	38	5.2	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	1447520	1	19	5.2	5.0	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1447802	1	20	5.0	5.0	· ·
Fluoride in Water by IC	E235.F	1445939	2	34	5.8	5.0	
Nitrate in Water by IC	E235.NO3	1445940	2	34	5.8	5.0	· · ·
Nitrite in Water by IC	E235.NO2	1445941	2	33	6.0	5.0	<u> </u>
pH by Meter	E108	1445938	2	40	5.0	5.0	· · ·
Sulfate in Water by IC	E235.SO4	1445943	2	34	5.8	5.0	
Tannin & Lignin in Water	E563	1448313	1	20	5.0	5.0	
TDS by Gravimetry	E162	1447855	2	40	5.0	5.0	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1445741	2	39	5.1	5.0	
Total Sulfide by Colourimetry (Automated Flow)	E395-H	1450341	1	17	5.8	5.0	
Turbidity by Nephelometry	E121	1446254	1	3	33.3	5.0	

Page	:	10 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Matrix: Water		Evaluati	ion: × = QC freque		ecification; $\checkmark = 0$	C frequency will Frequency (%	
uality Control Sample Type				ount			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB)							
Alkalinity Species by Titration	E290	1445936	2	33	6.0	5.0	1
Ammonia by Fluorescence	E298	1445744	2	40	5.0	5.0	✓
Chloride in Water by IC	E235.Cl	1445942	2	38	5.2	5.0	✓
Colour (True) by Spectrometer (2 CU)	E329-L	1446082	2	25	8.0	5.0	✓
Conductivity in Water	E100	1445937	2	38	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1447520	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1447802	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	1445939	2	34	5.8	5.0	✓
Nitrate in Water by IC	E235.NO3	1445940	2	34	5.8	5.0	✓
Nitrite in Water by IC	E235.NO2	1445941	2	33	6.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1445943	2	34	5.8	5.0	✓
Tannin & Lignin in Water	E563	1448313	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	1447855	2	40	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1445741	2	39	5.1	5.0	✓
Total Sulfide by Colourimetry (Automated Flow)	E395-H	1450341	1	17	5.8	5.0	1
Turbidity by Nephelometry	E121	1446254	1	3	33.3	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	1445744	2	40	5.0	5.0	✓
Chloride in Water by IC	E235.Cl	1445942	2	38	5.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	1447520	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1447802	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	1445939	2	34	5.8	5.0	✓
Nitrate in Water by IC	E235.NO3	1445940	2	34	5.8	5.0	✓
Nitrite in Water by IC	E235.NO2	1445941	2	33	6.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1445943	2	34	5.8	5.0	✓
Tannin & Lignin in Water	E563	1448313	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	1445741	2	39	5.1	5.0	✓
Total Sulfide by Colourimetry (Automated Flow)	E395-H	1450341	1	17	5.8	5.0	✓

Page	:	11 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental - Waterloo			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	ALS Environmental - Waterloo			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	ALS Environmental - Waterloo			
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}C$ for 16 hours or to constant weight,
	ALS Environmental - Waterloo			with gravimetric measurement of the residue.
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental - Waterloo			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental - Waterloo			
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental - Waterloo			
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental - Waterloo			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental - Waterloo			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	ALS Environmental -			alkalinity values.
	Waterloo			

Page	:	12 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Ammonia by Fluorescence	E298 ALS Environmental - Waterloo	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 ALS Environmental - Waterloo	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Colour (True) by Spectrometer (2 CU)	E329-L ALS Environmental - Waterloo	Water	APHA 2120 C (mod)	Colour (True Colour) is determined by filtering a sample through a 0.45 micron membrane filter followed by analysis of the filtrate using the platinum-cobalt colourimetric method. Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment.
Dissolved Organic Carbon by Combustion (Low Level)	E358-L ALS Environmental - Waterloo	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Sulfide by Colourimetry (Automated Flow)	E395-H ALS Environmental - Vancouver	Water	APHA 4500 -S E-Auto-Colorimetry	Sulfide is determined using the gas dialysis automated methlyene blue colourimetric method. Results expressed "as H2S" if reported represent the maximum possible H2S concentration based on the total sulfide concentration in the sample. The H2S calculation converts Total Sulphide as (S2-) and reports it as Total Sulphide as (H2S)
Dissolved Metals in Water by CRC ICPMS	E421 ALS Environmental - Waterloo	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Tannin & Lignin in Water	E563 ALS Environmental - Waterloo	Water	APHA 5550 B-Colorimetry	This analysis is carried out using procedures adapted from APHA Method 5550 B. "Tannin & Lignin ". Both lignin and tannin contain aromatic hydroxyl groups that react with Folin phenol reagent (tungstophosphoric and molybdophosphoric acids) to form a blue color suitable for the estimation of tannin and lignin concentrations. However, the reaction is not specific for lignin or tannin, nor for compounds containing aromatic hydroxyl groups, in as much as many other reducing materials, both organic and inorganic, respond similarly.
Dissolved Hardness (Calculated)	EC100 ALS Environmental - Waterloo	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.

Page Work Order	:	13 of 13 WT2412245
Client	:	GHD Limited
Project	1	12586015

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Ion Balance using Dissolved Metals	EC101 ALS Environmental - Waterloo	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	ALS Environmental - Waterloo			
Digestion for TKN in water	EP318 ALS Environmental -	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels
	Waterloo			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Dissolved Organic Carbon for Combustion	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
	ALS Environmental -			
	Waterloo			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	ALS Environmental -			
	Waterloo			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page : 1 of 13 WT2412245 Client : GHD Limited Laboratory : ALS Environmental - Waterloo : Pascal Renella Account Manager : Rick Hawthorne Contact Address Address :455 Phillip Street : 60 Northland Road, Unit 1 Waterloo ON Canada N2L 3X2 Waterloo, Ontario Canada N2V 2B8 Telephone :519 725 3313 Telephone :+1 519 886 6910 Project :12586015 Date Samples Received :15-May-2024 08:25 PO :735-010356 Date Analysis Commenced :16-May-2024 C-O-C number Issue Date : -----:23-May-2024 16:44 Sampler : CLIENT Site :----Quote number :12586015-10-2-2024-735-010356 No. of samples received : 3 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jon Fisher	Production Manager, Environmental	Waterloo Inorganics, Waterloo, Ontario
Kelly Fischer	Technical Specialist	Waterloo Inorganics, Waterloo, Ontario
Nik Perkio	Senior Analyst	Waterloo Inorganics, Waterloo, Ontario
Nik Perkio	Senior Analyst	Waterloo Metals, Waterloo, Ontario
Tracy Harley	Supervisor - Water Quality Instrumentation	Vancouver Inorganics, Burnaby, British Columbia

Page :	2 of 13
Work Order :	WT2412245
Client :	GHD Limited
Project :	12586015

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page	:	3 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1445936)										
WT2412245-001	GW-12586015-A365610-00 1	Alkalinity, total (as CaCO3)		E290	2.0	mg/L	276	275	0.232%	20%	
Physical Tests (QC	Lot: 1445937)										
WT2412245-001	GW-12586015-A365610-00 1	Conductivity		E100	2.0	µS/cm	746	747	0.134%	10%	
Physical Tests (QC	Lot: 1445938)										
WT2412245-001	GW-12586015-A365610-00 1	pH		E108	0.10	pH units	8.39	8.38	0.119%	4%	
Physical Tests (QC	Lot: 1446082)										
HA2401032-001	Anonymous	Colour, true		E329-L	2.0	CU	48.7	52.8	8.09%	20%	
Physical Tests (QC	Lot: 1446254)										
WT2412245-001	GW-12586015-A365610-00 1	Turbidity		E121	0.10	NTU	0.94	1.03	0.09	Diff <2x LOR	
Physical Tests (QC	Lot: 1446420)										
WT2412245-002	GW-12586015-A365610-00 2	Conductivity		E100	2.0	μS/cm	793	791	0.252%	10%	
Physical Tests (QC	Lot: 1446421)										
WT2412245-002	GW-12586015-A365610-00 2	pH		E108	0.10	pH units	8.19	8.14	0.612%	4%	
Physical Tests (QC	Lot: 1446422)										
WT2412245-002	GW-12586015-A365610-00 2	Alkalinity, total (as CaCO3)		E290	2.0	mg/L	269	268	0.342%	20%	
Physical Tests (QC	Lot: 1446428)										
WT2412245-002	GW-12586015-A365610-00 2	Colour, true		E329-L	2.0	CU	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 1447855)										
WT2412245-001	GW-12586015-A365610-00 1	Solids, total dissolved [TDS]		E162	20	mg/L	427	412	3.58%	20%	
Physical Tests (QC	Lot: 1447871)										
WT2412164-007	Anonymous	Solids, total dissolved [TDS]		E162	20	mg/L	268	274	2.03%	20%	
Anions an <u>d Nutrien</u>	ts (QC Lot: 1445741)										
HA2401029-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.225	0.304	0.079	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1445744)										
HA2401011-002	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0100	mg/L	0.491	0.491	0.00%	20%	
Anions and Nutrien	ts (QC Lot: 1445939)										

Page	:	4 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Anions and Nutrient	ts (QC Lot: 1445939) - c	continued									
HA2401036-018	Anonymous	Fluoride	16984-48-8	E235.F	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1445940)										
HA2401036-018	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1445941)										•
HA2401036-018	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1445942)										
HA2401036-018	Anonymous	Chloride	16887-00-6	E235.Cl	2.50	mg/L	376	376	0.00629%	20%	
Anions and Nutrient	ts (QC Lot: 1445943)										
HA2401036-018	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	11.3	11.3	0.01	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1446423)										
WT2412245-002	GW-12586015-A365610-00	Chloride	16887-00-6	E235.CI	0.50	mg/L	50.0	50.0	0.00295%	20%	
	2										
	ts (QC Lot: 1446424)										
WT2412245-002	GW-12586015-A365610-00	Fluoride	16984-48-8	E235.F	0.020	mg/L	0.169	0.168	0.0007	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1446425)										
WT2412245-002	GW-12586015-A365610-00	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	57.2	57.2	0.0158%	20%	
	2										
	ts (QC Lot: 1446426)		44707 55 0	Eggs NO2	0.000		10,000	10,000	0	Diff 40:1 OD	
WT2412245-002	GW-12586015-A365610-00	Nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 1446427)										
WT2412245-002	GW-12586015-A365610-00	Nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
	2										
Anions and Nutrient HA2401051-001	ts (QC Lot: 1450119) Anonymous			E318	0.050		0.266	0.260	0.006		
		Kjeldahl nitrogen, total [TKN]		E310	0.050	mg/L	0.200	0.200	0.006	Diff <2x LOR	
	ts (QC Lot: 1450120)		7004 44 7	5000	0.0050	"	0.0000	0.0070	0.0014	D''' -0 -1 OD	
HA2401051-002	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0090	0.0079	0.0011	Diff <2x LOR	
	Carbon (QC Lot: 14478)										
TY2404465-001	Anonymous	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	6.98	7.01	0.416%	20%	
Total Sulfides (QC											
VA24B0816-001	Anonymous	Sulfide, total (as S)	18496-25-8	E395-H	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 1447520)										
WT2412245-001	GW-12586015-A365610-00	Aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
	1	Antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
	1	2 / T		1		5			1		

Page	:	5 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

ub-Matrix: Water			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals(QC Lot: 1447520) - conti	nued									
WT2412245-001	GW-12586015-A365610-00	Barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.119	0.115	3.31%	20%	
	1	Beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		Boron, dissolved	7440-42-8	E421	0.010	mg/L	0.068	0.067	0.0008	Diff <2x LOR	
		Cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		Calcium, dissolved	7440-70-2	E421	0.050	mg/L	89.0	86.4	2.92%	20%	
		Chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00042	0.00044	0.00001	Diff <2x LOR	
		Lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		Magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	33.4	33.0	1.25%	20%	
		Manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0344	0.0341	0.680%	20%	
		Molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00959	0.0101	4.90%	20%	
		Nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Potassium, dissolved	7440-09-7	E421	0.050	mg/L	3.94	3.91	0.729%	20%	
		Selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000180	0.000167	0.000013	Diff <2x LOR	
		Silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Sodium, dissolved	7440-23-5	E421	0.050	mg/L	21.5	21.9	1.51%	20%	
		Strontium, dissolved	7440-24-6	E421	0.00020	mg/L	1.72	1.80	4.81%	20%	
		Thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000290	0.000298	3.03%	20%	
		Vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		Zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0022	0.0022	0.000009	Diff <2x LOR	
	s (QC Lot: 1448313)										
GP2400846-011	Anonymous	Tannin + Lignin (as Tannic acid)		E563	0.10	mg/L	4.99	5.02	0.656%	20%	

Page	:	6 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	1	12586015

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1445936)					
Alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 1445937)					
Conductivity	E100	1	µS/cm	1.1	
Physical Tests (QCLot: 1446082)					
Colour, true	E329-L	2	CU	<2.0	
Physical Tests (QCLot: 1446254)					
Turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 1446420)					
Conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 1446422)					
Alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 1446428)					
Colour, true	E329-L	2	CU	<2.0	
Physical Tests (QCLot: 1447855)				1 1	
Solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 1447871)				1 1	
Solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 1445741)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 1445744)				1 1	
Ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 1445939)				1 1	
Fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 1445940)					
Nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 1445941)					
Nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
nions and Nutrients (QCLot: 1445942)				1 1	
Chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 1445943)				1 1	
Sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 1446423)		I	1		

Page	:	7 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Sub-Matrix: Water

Analyte	CAS Number Met	hod	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 144642						
Chloride	16887-00-6 E23	5.Cl	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 144642	4)					
Fluoride	16984-48-8 E23	5.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 144642	:5)					
Sulfate (as SO4)	14808-79-8 E23	5.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 144642	6)					
Nitrate (as N)	14797-55-8 E23	5.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 144642	7)					
Nitrite (as N)	14797-65-0 E23	5.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 145011	9)					
Kjeldahl nitrogen, total [TKN]	E31	8	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 145012						
Ammonia, total (as N)	7664-41-7 E29	8	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot: 1						
Carbon, dissolved organic [DOC]	E35	i8-L	0.5	mg/L	<0.50	
Total Sulfides (QCLot: 1450341)						
Sulfide, total (as S)	18496-25-8 E39	5-H	0.01	mg/L	<0.010	
Dissolved Metals (QCLot: 1447520)						
Aluminum, dissolved	7429-90-5 E42	1	0.001	mg/L	<0.0010	
Antimony, dissolved	7440-36-0 E42	1	0.0001	mg/L	<0.00010	
Arsenic, dissolved	7440-38-2 E42	1	0.0001	mg/L	<0.00010	
Barium, dissolved	7440-39-3 E42	1	0.0001	mg/L	<0.00010	
Beryllium, dissolved	7440-41-7 E42	1	0.00002	mg/L	<0.000020	
Boron, dissolved	7440-42-8 E42	1	0.01	mg/L	<0.010	
Cadmium, dissolved	7440-43-9 E42	1	0.000005	mg/L	<0.000050	
Calcium, dissolved	7440-70-2 E42	1	0.05	mg/L	<0.050	
Chromium, dissolved	7440-47-3 E42	1	0.0005	mg/L	<0.00050	
Cobalt, dissolved	7440-48-4 E42	1	0.0001	mg/L	<0.00010	
Copper, dissolved	7440-50-8 E42	1	0.0002	mg/L	<0.00020	
Lead, dissolved	7439-92-1 E42	1	0.00005	mg/L	<0.000050	
Magnesium, dissolved	7439-95-4 E42	1	0.005	mg/L	<0.0050	
Manganese, dissolved	7439-96-5 E42	1	0.0001	mg/L	<0.00010	
Molybdenum, dissolved	7439-98-7 E42	1	0.00005	mg/L	<0.000050	
Nickel, dissolved	7440-02-0 E42	1	0.0005	mg/L	<0.00050	
Potassium, dissolved	7440-09-7 E42	1	0.05	mg/L	<0.050	

Page	:	8 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals(QCLot: 1447520)- c	continued				
Selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
Silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
Sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
Strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
Thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
Uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
Vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
Zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Aggregate Organics (QCLot: 1448313)					
Tannin + Lignin (as Tannic acid)	E563	0.1	mg/L	<0.10	

Page	:	9 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	:	12586015

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Number	r Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 1445936)								
Alkalinity, total (as CaCO3)	- E290	1	mg/L	150 mg/L	102	85.0	115	
Physical Tests (QCLot: 1445937)	17.000							
Conductivity	- E100	1	µS/cm	1410 µS/cm	99.5	90.0	110	
Physical Tests (QCLot: 1445938)	- E108		pH units	7 pH units	100	98.0	102	
	2100		pri dilito		100	00.0	102	
Physical Tests (QCLot: 1446082) Colour, true	- E329-L	2	CU	25 CU	106	85.0	115	
Physical Tests (QCLot: 1446254)								
Turbidity	- E121	0.1	NTU	200 NTU	98.0	85.0	115	
Physical Tests (QCLot: 1446420)								
Conductivity	- E100	1	µS/cm	1410 µS/cm	105	90.0	110	
Physical Tests (QCLot: 1446421)								
рН	- E108		pH units	7 pH units	101	98.0	102	
Physical Tests (QCLot: 1446422)	-			100 1	100			
Alkalinity, total (as CaCO3)	- E290	1	mg/L	150 mg/L	106	85.0	115	
Physical Tests (QCLot: 1446428) Colour, true	- E329-L	2	CU	25 CU	106	85.0	115	
	- L323-L	2	00	23 00	100	05.0	115	
Physical Tests (QCLot: 1447855) Solids, total dissolved [TDS]	- E162	10	mg/L	1000 mg/L	85.6	85.0	115	
Physical Tests (QCLot: 1447871)			0					
	- E162	10	mg/L	1000 mg/L	90.0	85.0	115	
Anions and Nutrients (QCLot: 1445741)								
Kjeldahl nitrogen, total [TKN]	- E318	0.05	mg/L	4 mg/L	104	75.0	125	
Anions and Nutrients (QCLot: 1445744)								
Ammonia, total (as N) 7664-41-	7 E298	0.005	mg/L	0.2 mg/L	104	85.0	115	
Anions and Nutrients (QCLot: 1445939)	5005 F	0.00		4	00.0	00.0	110	
Fluoride 16984-48-	8 E235.F	0.02	mg/L	1 mg/L	96.8	90.0	110	
Anions and Nutrients (QCLot: 1445940) Nitrate (as N) 14797-55-	8 E235.NO3	0.02	mg/L	2.5 mg/L	99.3	90.0	110	
		0.02	ing/L	2.0 mg/L	55.5	55.0	110	
Anions and Nutrients (QCLot: 1445941) Nitrite (as N) 14797-65-	0 E235.NO2	0.01	mg/L	0.5 mg/L	96.6	90.0	110	
		0.01		0.0 mg,2	00.0	00.0		

Page :	10 of 13
Work Order :	WT2412245
Client :	GHD Limited
Project :	12586015

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report									
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier			
Anions and Nutrients (QCLot: 1445942)												
Chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	99.6	90.0	110				
Anions and Nutrients (QCLot: 1445943)												
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	99.6	90.0	110				
Anions and Nutrients (QCLot: 1446423)												
Chloride	16887-00-6	E235.Cl	0.5	mg/L	100 mg/L	99.8	90.0	110				
Anions and Nutrients (QCLot: 1446424)												
Fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	102	90.0	110				
Anions and Nutrients (QCLot: 1446425)												
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	99.9	90.0	110				
Anions and Nutrients (QCLot: 1446426)												
Nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	99.0	90.0	110				
Anions and Nutrients (QCLot: 1446427)												
Nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	97.2	90.0	110				
Anions and Nutrients (QCLot: 1450119)												
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	104	75.0	125				
Anions and Nutrients (QCLot: 1450120)												
Ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	103	85.0	115				
Organic / Inorganic Carbon (QCLot: 1447802)		5050 1	0.5		0.57 //	100	00.0	100				
Carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	106	80.0	120				
Total Sulfides (QCLot: 1450341) Sulfide, total (as H2S)	7783-06-4	E395-H		mg/L	0.085 mg/L	103	80.0	120				
Sulfide, total (as S)	18496-25-8		0.01	mg/L	0.08 mg/L	103	80.0	120				
Dissolved Metals (QCLot: 1447520)									1			
Aluminum, dissolved	7429-90-5	E421	0.001	mg/L	0.1 mg/L	104	80.0	120				
Antimony, dissolved	7440-36-0	E421	0.0001	mg/L	0.05 mg/L	100	80.0	120				
Arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	0.05 mg/L	104	80.0	120				
Barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.012 mg/L	102	80.0	120				
Beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.005 mg/L	107	80.0	120				
Boron, dissolved	7440-42-8	E421	0.01	mg/L	0.05 mg/L	96.6	80.0	120				
Cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.005 mg/L	99.7	80.0	120				
Calcium, dissolved	7440-70-2	E421	0.05	mg/L	2.5 mg/L	100	80.0	120				
Chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.012 mg/L	99.6	80.0	120				
Cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.012 mg/L	98.7	80.0	120				

Page	:	11 of 13
Work Order	:	WT2412245
Client	:	GHD Limited
Project	1	12586015

Sub-Matrix: Water	b-Matrix: Water						Laboratory Control Sample (LCS) Report									
					Spike	Recovery (%)	Recovery	v Limits (%)								
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier							
Dissolved Metals (QCLot: 1447520) -	continued															
Copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.012 mg/L	98.0	80.0	120								
Lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.025 mg/L	103	80.0	120								
Magnesium, dissolved	7439-95-4	E421	0.005	mg/L	2.5 mg/L	110	80.0	120								
Manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.012 mg/L	99.5	80.0	120								
Molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.012 mg/L	100	80.0	120								
Nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.025 mg/L	97.4	80.0	120								
Potassium, dissolved	7440-09-7	E421	0.05	mg/L	2.5 mg/L	99.8	80.0	120								
Selenium, dissolved	7782-49-2	E421	0.00005	mg/L	0.05 mg/L	97.7	80.0	120								
Silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.005 mg/L	96.4	80.0	120								
Sodium, dissolved	7440-23-5	E421	0.05	mg/L	2.5 mg/L	107	80.0	120								
Strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.012 mg/L	102	80.0	120								
Thallium, dissolved	7440-28-0	E421	0.00001	mg/L	0.05 mg/L	101	80.0	120								
Uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0 mg/L	101	80.0	120								
Vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.025 mg/L	101	80.0	120								
Zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.025 mg/L	98.1	80.0	120								
Aggregate Organics (QCLot: 1448313)																
Tannin + Lignin (as Tannic acid)		E563	0.1	mg/L	5 mg/L	108	85.0	115								

Page :	12 of 13
Work Order :	WT2412245
Client :	GHD Limited
Project :	12586015

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample l	D Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
nions and Nut	rients (QCLot: 1445741)									
HA2401029-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.92 mg/L	2.5 mg/L	117	70.0	130	
Anions and Nut	rients (QCLot: 1445744)									
HA2401011-002	Anonymous	Ammonia, total (as N)	7664-41-7	E298	ND mg/L		ND	75.0	125	
nions and Nut	rients (QCLot: 1445939)									
HA2401036-018	Anonymous	Fluoride	16984-48-8	E235.F	5.01 mg/L	5 mg/L	100	75.0	125	
Anions and Nut	rients (QCLot: 1445940)									
HA2401036-018	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3	12.4 mg/L	12.5 mg/L	99.2	75.0	125	
nions and Nut	rients (QCLot: 1445941)									
HA2401036-018	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2	2.39 mg/L	2.5 mg/L	95.6	75.0	125	
Anions and Nut	rients (QCLot: 1445942)									
HA2401036-018	Anonymous	Chloride	16887-00-6	E235.Cl	502 mg/L	500 mg/L	100	75.0	125	
nions and Nut	rients (QCLot: 1445943)									
HA2401036-018	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	491 mg/L	500 mg/L	98.3	75.0	125	
nions and Nut	rients (QCLot: 1446423)									
WT2412245-002	GW-12586015-A365610-002	Chloride	16887-00-6	E235.Cl	98.8 mg/L	100 mg/L	98.8	75.0	125	
nions and Nut	rients (QCLot: 1446424)									
WT2412245-002	GW-12586015-A365610-002	Fluoride	16984-48-8	E235.F	1.01 mg/L	1 mg/L	101	75.0	125	
Anions and Nut	rients (QCLot: 1446425)									
WT2412245-002	GW-12586015-A365610-002	Sulfate (as SO4)	14808-79-8	E235.SO4	96.5 mg/L	100 mg/L	96.5	75.0	125	
nions and Nut	rients (QCLot: 1446426)									
WT2412245-002	GW-12586015-A365610-002	Nitrate (as N)	14797-55-8	E235.NO3	2.42 mg/L	2.5 mg/L	96.6	75.0	125	
Anions and Nut	rients (QCLot: 1446427)									
WT2412245-002	GW-12586015-A365610-002	Nitrite (as N)	14797-65-0	E235.NO2	0.480 mg/L	0.5 mg/L	96.0	75.0	125	
nions and Nut	rients (QCLot: 1450119)									
HA2401051-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.88 mg/L	2.5 mg/L	115	70.0	130	
nions and Nut	rients (QCLot: 1450120)									
HA2401051-002	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.0953 mg/L	0.1 mg/L	95.3	75.0	125	
Drganic / Inorga	nic Carbon (QCLot: 144	7802)								
TY2404465-001	Anonymous	Carbon, dissolved organic [DOC]		E358-L	ND mg/L		ND	70.0	130	

Page :	13 of 13
Work Order :	WT2412245
Client :	GHD Limited
Project :	12586015

Aggregate Organics (QCLot: 1448313)

Anonymous

Tannin + Lignin (as Tannic acid)

GP2400846-011

Matrix Spike (MS) Report Sub-Matrix: Water Spike Recovery (%) Recovery Limits (%) Laboratory sample ID Client sample ID Analyte **CAS Number** Method Concentration Target MS Low High Qualifier Total Sulfides (QCLot: 1450341) - continued WT2412240-001 Sulfide, total (as S) Anonymous 18496-25-8 E395-H 1.08 mg/L 1 mg/L 108 75.0 125 Dissolved Metals (QCLot: 1447520) WT2412245-002 GW-12586015-A365610-002 7429-90-5 E421 0.1 mg/L Aluminum, dissolved 0.1000 mg/L 100.0 70.0 130 Antimony, dissolved 7440-36-0 E421 0.0532 mg/L 0.05 mg/L 106 70.0 130 Arsenic, dissolved 7440-38-2 E421 0.0568 mg/L 0.05 mg/L 114 70.0 130 Barium, dissolved 7440-39-3 E421 ND mg/L ND 70.0 130 ----Beryllium, dissolved 7440-41-7 E421 0.00528 mg/L 0.005 mg/L 106 70.0 130 7440-42-8 E421 ND 70.0 130 Boron, dissolved ND mg/L ----Cadmium, dissolved 7440-43-9 E421 0.00510 mg/L 0.005 mg/L 102 70.0 130 E421 ND mg/L Calcium, dissolved 7440-70-2 -----ND 70.0 130 Chromium, dissolved 7440-47-3 E421 0.0126 mg/L 0.012 mg/L 101 70.0 130 Cobalt, dissolved 7440-48-4 E421 0.0121 mg/L 0.012 mg/L 96.9 70.0 130 Copper, dissolved 7440-50-8 E421 0.0118 mg/L 0.012 mg/L 94.3 70.0 130 Lead, dissolved 7439-92-1 E421 0.0251 mg/L 0.025 mg/L 100 70.0 130 E421 Magnesium, dissolved 7439-95-4 ND mg/L -----ND 70.0 130 Manganese, dissolved 7439-96-5 E421 ND mg/L ND 70.0 130 ----Molybdenum, dissolved 7439-98-7 E421 0.0135 mg/L 0.012 mg/L 108 70.0 130 Nickel, dissolved 7440-02-0 E421 0.0235 mg/L 0.025 mg/L 93.9 70.0 130 E421 Potassium, dissolved 7440-09-7 70.0 130 ND mg/L ND 7782-49-2 E421 130 Selenium, dissolved 0.0579 mg/L 0.05 mg/L 116 70.0 E421 0.005 mg/L Silver, dissolved 7440-22-4 0.00357 mg/L 71.4 70.0 130 Sodium, dissolved 7440-23-5 E421 ND mg/L ND 70.0 130 -----Strontium, dissolved 7440-24-6 E421 ND mg/L -----ND 70.0 130 E421 Thallium, dissolved 7440-28-0 0.0486 mg/L 0.05 mg/L 97.2 70.0 130 7440-61-1 E421 ND 70.0 130 Uranium, dissolved ND mg/L ----7440-62-2 E421 0.0262 mg/L 0.025 mg/L 105 130 Vanadium, dissolved 70.0 Zinc, dissolved 7440-66-6 E421 0.0249 mg/L 0.025 mg/L 99.8 70.0 130

E563

ND mg/L

ND

70.0

130

Chain of Custody (COC) / Analytical Request Form

COC Number: 2

Turnaround Time (TAT) Requested

Pag

Environmental Division Waterloo Work Order Reference

Contact and company name below will appear on the final report

Report To

Canada Toll Free: 1 800 668 9878

Reports / Recipients

WT2412245

AUG 2020 FROM

	Consect and company name below will appe	·						iumaround Time (TAT) Requested								_							
Company:	GHD Ltd. (Acct GHDL100)		Select Report F	ormat: 🗹 PDF	I EXCEL I EC	DD (DIGITAL)	Routine [R] if received by 3pm M-F - no surcharges apply									wa i	i i		1				
Contact:	Pascal Renella		Merge QC/QC	Reports with COA		D 🗌 N/A	🗌 4 di	ay (P4) if re	ceived b	y 3pm I	M-F-2	:0% rusi	h surch	arge mli	1			∦°1∦	ωľ	ac I			Ar dage
hone:	519-884-0510		Compare Resu	ilts to Criteria on Report			checked 3 day [P3] if received by 3pm M-F - 25% rush surcharge										₩₩	đβ	251			ĺ	ļ
	Company address below will appear on the fina	al report	Select Distribut		MAIL	FAX	🗌 1 da	y[E] if rec	eived by	3pm №	I-F - 10)0% rus	h surch	iarge m			111 12	1 - C	I I	12		ĺ	ang serie and
treet:	455 Phillip St.		Email 1 or Fax	pascal.renella@gh	nd.com		Same day [E2] if received by 10am M-S - 200% rush surch:											-					
ity/Province:	Waterloo, ON		Email 2	See SSOW/PO			routine tests Telephone : +1 519 886 6910																
ostal Code:	N2L 3X2		Email 3				Date and Time Required for all E&P TATs:																
ivoice To	Same as Report To 🛛 YES	NO	Invoice Recipients					For tests that can not be performed according to the TAT requested, you will be contacted.															
	Copy of Invoice with Report YES	NO	Select Invoice [Distribution: 🔽 EM	AAIL 门 MAIL 🗌	FAX																	
ompany:	GHD Ltd. (GHDL100)		Email 1 or Fax	accountspayableC	DN@ghd.com		1 2		Indicate	Filtere	d (F), P	reserve	d (P) oi	r Filterec	d and F	Preserve	d (F/P)) below			1	0	(v
ontact:			Email 2] 🖳 [\square			REQUIRED	, te
	Project Information		Oil	and Gas Require	and the second	use)	121			Ŧ				T		T	T	_ T	T		<u>_ </u> ;	ğ	a a
LS Account #	· · · · · · · · · · · · · · · · · · ·	0075	AFE/Cost Center:		PO#		CONTAINERS			S04)								NH3				2	S.
ob #:	12586015		Major/Minor Code:		Routing Code:		10		θu	J3N,								Jeu'			로 '	5	22
D / AFE:	· · · · · · · · · · · · · · · · · · ·		Requisitioner:						lcudi	F, NO2N, NO3N,	ţ.						955	litrog				STORAGE	474
5D:			Location:				5		lui 6	02N	lotiv			Lignins			Hardness	z	Ę,			Š	Ĩ
ALS Lab Woi	k Order # (lab use only): ALS Contact: Rick H Sampler:			BER		vater Pk		 Conductivity 		(en	and Lig		n Sulfid	nce, Ha	nmonia-	, Turbio	l			ECTER			
ALS Sample # lab use only)	Sample Identification (This description will a		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	NUMBER		Groundwater Pkg inlcuding	Anions (Cl,	∆łkalinity,	DOC	Calor (True)	Tannins and	Metals	Hydrogen Sulfide	on Balance	TKN, Ammonia-N, Nitrogen,	pH, TDS, Turbidity		SAMPLES	EXTENDED	SUSPECTED HAZARD (see notes)	
	GW-12586015-A36	5610 -001		14-05-24	9:10 ==	Water			R	R	R	R	R	R	R		R	R	R	1	T		Γ
	34	~00Z		1.	2:10 pm	Water			R	R	R	R	R	R	R	R	R	R	R		+	-	[
	31	- 003		**	8:10 pm	Water			R	R	R	R	R	R	R	R	R	R	R				
					10 10 pm	Water			1	1									-+	-	-	-	Γ
						Water			-					-	\rightarrow		-+		\rightarrow			-	
						Water				1				t			+	+			+		
						Water	+							†							+		
						Water				1									-+	-+	-		
						Water			+									-	\neg	-+	-	-	F
				1		Water			+	<u> </u>						 	-+	+		-+	+		
ree j				1		Water				+								-+	-+	-+			\vdash
	20 70 70			1	1	Water								t				+	-+		-		\vdash
		Notes / Specify I	imits for result	evaluation by selecti	ing from drop-dov						SAM	PLE F	RECEI	PTDE	ETAIL	S (lab	use	only)	138	<u>358</u>	<u> -</u>		
-	g Water (DW) Samples ¹ (client use)			xcel COC only)	-		Cooli	ng Metho	d:] NON	e 7	[1Œ	. 🗆 I	CE:PACY	ks : [] FRO	ZEN .	XX [്റ്	OLING	INITIA	TED	
-	ken from a Regulated DW System?						Subn	nission Co	ommer	its ide	Sector Sector Sector	1. S.	Strategy 23.0	Provide set and	S Cr. Cr. C. A. S. P.	1990 B. 18 . 19 . 1. 19	- 1999 C 1997 C 1	⊢ 🗆 Y	St. M. Corr. Cor.	N	3		
	YES 🔁 NO						Coole	er Custod	AVE COLOR. MA					N/A	Samp	ole Cus					∕[Yes		N/A
-	r human consumption/ use?						287434) (1997)		I COOL	ER TEN	VPERA	TURES	PC				NAL CO	POLER	TEMP	PERATU	RES %		
<u>کې</u>	YES 🗌 NO						5.					1.00			120-5,490.0	. Դ			E.S.	<u> S</u>			
	SHIPMENT RELEASE (client use	·		INITIAL SHIPMEN	and the second se		() () ()				8. n.)) (FINAL	SHIP			EPTIO)N (la	b use	<u>e only</u>			<u></u>	
teleased by:	BOCIN Date: MAY 14	124 John	Received by:	ДÇ	Date: 15/0	5/24	Time	25 ^{Re}	ceiveo		ക			Date:		416	ান	A .			rime: Qi∫	Sei	
	K PAGE FOR ALS LOCATIONS AND SAMPLIN												at state		<u>KX</u>	<u> </u>		M	S. Carlos	112.20	<u>- 10</u>	<u>jer</u> t	

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. MM-597 6C-945 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form. N-819

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order	: WT2412247	Page	: 1 of 5
Client	: GHD Limited	Laboratory	: ALS Environmental - Waterloo
Contact	: Pascal Renella	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo ON Canada N2V 2B8
Telephone	: 519 725 3313	Telephone	: +1 519 886 6910
Project	: 12586015	Date Samples Received	: 15-May-2024 08:25
PO	: 735-010356	Date Analysis	: 16-May-2024
		Commenced	
C-O-C number	:	Issue Date	: 23-May-2024 17:17
Sampler	: CLIENT		
Site	:		
Quote number	12586015-10-2-2024-735-010356		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results
 - Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario	
Kaitlyn Lammers	Lab Assistant	Microbiology, Waterloo, Ontario	
Ruby Sujeepan	Analyst	Microbiology, Waterloo, Ontario	
Sanja Risticevic	Department Manager - LCMS	LCMS, Waterloo, Ontario	
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario	

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

- Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
 - LOR: Limit of Reporting (detection limit).
 - Measurement Uncertainty: The reported uncertainties in this report are expanded uncertainties calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%.
 - Surrogate: An analyte that is similar in behavior to target analyte (s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Unit	Description
-	no units
µg/L	micrograms per litre
CFU/100mL	colony forming units per hundred millilitres
CFU/mL	colony forming units per millilitre

- >: greater than.
- <: less than.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
WT2412247-001	GW-12586015-A365610-003	RRR; The reporting limit has been raised due to instability at the detection limit.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
RRR	Refer to report comments for issues regarding this analysis.

Analytical Results

WT2412247-001

Sub-Matrix:Water (Matrix: Water) Client sample ID: GW-12586015-A365610-003 Client sampling date / time: 14-May-2024 20:10

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis	QCLot
Microbiological Tests							Date	
Coliforms, Escherichia coli [E. coli]		Not Detected	1	CFU/100m	E012A.EC/WT	-	16-May-2024	1446209
				L				
Coliforms, total		2 ^{DLM,}	2		E012.TC/WT	-	16-May-2024	1446210
coliforms, total background		52 DLM,	2	L CFU/100m	E012.BG.TC/WT	-	16-May-2024	1446211
Heterotrophic plate count [HPC]		34	1	L CFU/mL	E012.HPC/WT	-	16-May-2024	1446207
Volatile Organic Compounds								
Acetone	67-64-1	<20	20	μg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Benzene	71-43-2	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Bromoform	75-25-2	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Bromomethane	74-83-9	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Carbon tetrachloride	56-23-5	<0.20	0.20	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Chlorobenzene	108-90-7	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Chloroform	67-66-3	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dibromochloromethane	124-48-1	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dibromoethane, 1,2-	106-93-4	<0.20	0.20	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichlorodifluoromethane	75-71-8	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichloroethane, 1,1-	75-34-3	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichloroethane, 1,2-	107-06-2	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichloroethylene, 1,1-	75-35-4	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichloromethane	75-09-2	<1.0	1.0	µg/L	E611D/WT	18-May-2024	21-May-2024	1449774
Dichloropropane, 1,2-	78-87-5	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Dichloropropylene, trans-1,3-	10061-02-6	<0.30	0.30	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Ethylbenzene	100-41-4	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Hexane, n-	110-54-3	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Methyl ethyl ketone [MEK]	78-93-3	<20	20	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Methyl isobutyl ketone [MIBK]	108-10-1	<20	20	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Styrene	100-42-5	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Tetrachloroethylene	127-18-4	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Toluene	108-88-3	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Trichloroethylene	79-01-6	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Trichlorofluoromethane	75-69-4	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774

Analytical Results

WT2412247-001 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-A365610-003 Client sampling date / time: 14-May-2024 20:10

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis	QCLot
Volatile Organic Compounds							Date	
Vinyl chloride	75-01-4	<0.50	0.50	µg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Xylene, o-	95-47-6	<0.30	0.30	μg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D/WT	18-May-2024	18-May-2024	1449774
BTEX, total		<1.0	1.0	μg/L	E611D/WT	18-May-2024	18-May-2024	1449774
Hydrocarbons				10		,		
F1 (C6-C10)		<25	25	µg/L	E581.F1-L/WT	18-May-2024	18-May-2024	1449775
F2 (C10-C16)		<100	100	µg/L	E601.SG/WT	16-May-2024	17-May-2024	1446278
F2-Naphthalene		<100	100	µg/L	EC600SG/WT	_	21-May-2024	-
F3 (C16-C34)		<250	250	μg/L	E601.SG/WT	16-May-2024	17-May-2024	1446278
F3-PAH	n/a	<250	250	μg/L	EC600SG/WT	-	21-May-2024	-
F4 (C34-C50)		<250	250	μg/L	E601.SG/WT	16-May-2024	17-May-2024	1446278
F1-BTEX		<25	25	µg/L	EC580/WT	-	22-May-2024	-
Hydrocarbons, total (C6-C50)	n/a	<370	370	μg/L	EC581SG/WT	-	21-May-2024	-
Chromatogram to baseline at nC50	n/a	YES	-	-	E601.SG/WT	16-May-2024	17-May-2024	1446278
Hydrocarbons Surrogates	1.74							
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6	88.3	1.0	%	E601.SG/WT	16-May-2024	17-May-2024	1446278
Dichlorotoluene, 3,4-	95-75-0	110	1.0	%	E581.F1-L/WT	18-May-2024	18-May-2024	1449775
Volatile Organic Compounds Surrogates							10 110 2021	
Bromofluorobenzene, 4-	460-00-4	101	1.0	%	E611D/WT	18-May-2024	18-May-2024	1449774
Difluorobenzene, 1,4-	540-36-3	97.1	1.0	%	E611D/WT	18-May-2024	18-May-2024	1449774
Polycyclic Aromatic Hydrocarbons							10 110 2021	
Acenaphthene	83-32-9	<0.010	0.010	µg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Acenaphthylene	208-96-8	0.016	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Anthracene	120-12-7	<0.010	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Benz(a)anthracene	56-55-3	<0.010	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Benzo(a)pyrene	50-32-8	<0.0050	0.0050	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Benzo(b+j)fluoranthene	n/a	<0.010	0.010	µg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Benzo(g,h,i)perylene	191-24-2	<0.010	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Benzo(k)fluoranthene	207-08-9	<0.010	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Chrysene	218-01-9	<0.010	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Dibenz(a,h)anthracene	53-70-3	<0.0050	0.0050	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Fluoranthene	206-44-0	<0.010	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Fluorene	86-73-7	<0.010	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Indeno(1,2,3-c,d)pyrene	193-39-5	<0.010	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Methylnaphthalene, 1-	90-12-0	0.082	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Methylnaphthalene, 1+2-		0.226	0.015	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Methylnaphthalene, 2-	91-57-6	0.144	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Naphthalene	91-20-3	0.158	0.050	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Phenanthrene	85-01-8	<0.020	0.020	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Pyrene	129-00-0	<0.010	0.010	μg/L	E641A/WT	16-May-2024	17-May-2024	1446279
Polycyclic Aromatic Hydrocarbons Surrogates	120-00-0			13-		,		1110219
Chrysene-d12	1719-03-5	114	0.1	%	E641A/WT	16-May-2024	17-May-2024	1446279
Naphthalene-d8	1146-65-2	106	0.1	%	E641A/WT	16-May-2024	17-May-2024	1446279
Phenanthrene-d10	1517-22-2	120	0.1	%	E641A/WT	16-May-2024	17-May-2024 17-May-2024	1446279
i nonantinono-u iv	1017-22-2	120		/0		10 1110/2024	17-1viay-2024	1440219

Analytical Results

WT2412247-001 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-A365610-003 Client sampling date / time: 14-May-2024 20:10

Analyte	CAS Number	Result	LOR	Unit	Method/Lab	Prep Date	Analysis Date	QCLot
Phthalate Esters							Duic	
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7	<0.60	0.60	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Diethyl phthalate	84-66-2	<0.20	0.20	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Dimethyl phthalate	131-11-3	<0.20	0.20	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Semi-Volatile Organics								
Biphenyl	92-52-4	<0.20	0.20	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
bis(2-Chloro-1-methylethyl) ether	108-60-1	<0.40	0.40	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
bis(2-Chloroethyl) ether	111-44-4	<0.40	0.40	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Chloroaniline, 4-	106-47-8	<0.40	0.40	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Dichlorobenzidine, 3,3'-	91-94-1	<0.40	0.40	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Dinitrotoluene, 2,4-	121-14-2	<0.40	0.40	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Dinitrotoluene, 2,4 + 2,6-	n/a	<0.60	0.6	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Dinitrotoluene, 2,6-	606-20-2	<0.40	0.40	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Trichlorobenzene, 1,2,4-	120-82-1	<0.40	0.40	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Semi-Volatile Organics Surrogates								
Fluorobiphenyl, 2-	321-60-8	90.6	1.0	%	E625/WT	22-May-2024	22-May-2024	1452636
Fluorobiphenyl, 2-	321-60-8	90.6	1.0	%	E625A/WT	22-May-2024	22-May-2024	1452635
Nitrobenzene-d5	4165-60-0	92.4	1.0	%	E625/WT	22-May-2024	22-May-2024	1452636
Nitrobenzene-d5	4165-60-0	92.4	1.0	%	E625A/WT	22-May-2024	22-May-2024	1452635
Terphenyl-d14, p-	1718-51-0	97.4	1.0	%	E625/WT	22-May-2024	22-May-2024	1452636
Terphenyl-d14, p-	1718-51-0	97.4	1.0	%	E625A/WT	22-May-2024	22-May-2024	1452635
Chlorinated Phenolics								
Chlorophenol, 2-	95-57-8	<0.30	0.30	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Dichlorophenol, 2,4-	120-83-2	<0.20	0.20	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Pentachlorophenol [PCP]	87-86-5	0.54	0.50	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Tetrachlorophenol, 2,3,4,5-	4901-51-3	<0.50	0.50	µg/L	E625/WT	22-May-2024	22-May-2024	1452636
Trichlorophenol, 2,4,5-	95-95-4	<0.20	0.20	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Trichlorophenol, 2,4,6-	88-06-2	<0.20	0.20	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Non-Chlorinated Phenolics								
Dimethylphenol, 2,4-	105-67-9	<0.50	0.50	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Dinitrophenol, 2,4-	51-28-5	<1.1 ^{RRI}	^v 1.1	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Phenol	108-95-2	<0.50	0.50	µg/L	E625A/WT	22-May-2024	22-May-2024	1452635
Phenolics Surrogates								
Tribromophenol, 2,4,6-	118-79-6	81.0	0.50	%	E625/WT	22-May-2024	22-May-2024	1452636
Tribromophenol, 2,4,6-	118-79-6	81.0	0.50	%	E625A/WT	22-May-2024	22-May-2024	1452635
Insecticides								
Diazinon	333-41-5	<0.0250	0.0250	µg/L	E755/WT	21-May-2024	22-May-2024	1450964
			1			1		

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WT2412247	Page	: 1 of 8
Client	GHD Limited	Laboratory	: ALS Environmental - Waterloo
Contact	: Pascal Renella	Account Manager	: Rick Hawthorne
Address	: 455 Phillip Street	Address	: 60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo, Ontario Canada N2V 2B8
Telephone	: 519 725 3313	Telephone	: +1 519 886 6910
Project	: 12586015	Date Samples Received	: 15-May-2024 08:25
PO	: 735-010356	Issue Date	: 23-May-2024 17:18
C-O-C number			
Sampler	CLIENT		
Site			
Quote number	: 12586015-10-2-2024-735-010356		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

• No Method Blank value outliers occur.

- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) • • No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Page	:	3 of 8
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Outliers : Quality Control Samples Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment	
aboratory Control Sample (LCS) Recoveries									
Volatile Organic Compounds QC-1449774-002 Dichloropropylene, trans-1,3- 10061-02-6 E611D 64.6 % MES 70.0-130% Recovery less than lower control limit									
Result Qualifiers	Result Qualifiers								
Qualifier Description									
MES Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a									

Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page	:	4 of 8
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

fatrix: Water					E٧	valuation: × =	Holding time exce	edance ; 🔹	<pre>< = Within</pre>	Holding Tir
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	reparation		Analysis		is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Chlorinated Phenolics : BNA (Extended List) by GC-MS/MS										
Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]										
GW-12586015-A365610-003	E625	14-May-2024	22-May-2024	14	8 days	1	22-May-2024	40 days	0 days	1
				days						
Chlorinated Phenolics : BNA (Routine List) by GC-MS/MS										
Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]										
GW-12586015-A365610-003	E625A	14-May-2024	22-May-2024	14	8 days	1	22-May-2024	40 days	0 days	~
				days						
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)										
GW-12586015-A365610-003	E581.F1-L	14-May-2024	18-May-2024	14	4 days	1	18-May-2024	14 days	4 days	1
				days						
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-A365610-003	E601.SG	14-May-2024	16-May-2024	14	2 days	1	17-May-2024	40 days	1 days	1
				days						
nsecticides : Pesticides in Water by LC-MS-MS (Routine Level)										
Amber glass/Teflon lined cap (sodium thiosulfate) - LCMS										
GW-12586015-A365610-003	E755	14-May-2024	21-May-2024	7 days	7 days	1	22-May-2024	7 days	8 days	1
Nicrobiological Tests : E. coli (MF-mFC-BCIG)				T				1		
Sterile HDPE (Sodium thiosulphate) [ON MECP]								10.1	101	,
GW-12586015-A365610-003	E012A.EC	14-May-2024					16-May-2024	48 hrs	42 hrs	~
Microbiological Tests : Heterotrophic Plate Count by MF (MF-mHPC)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										,
GW-12586015-A365610-003	E012.HPC	14-May-2024					16-May-2024	48 hrs	42 hrs	1

Page :	5 of 8
Work Order	WT2412247
Client :	GHD Limited
Project :	12586015

latrix: Water							Holding time exce			noluling 1
Analyte Group : Analytical Method	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date			Eval
			Date	Rec	Actual			Rec	Actual	
Microbiological Tests : Total Coliforms (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-A365610-003	E012.TC	14-May-2024					16-May-2024	48 hrs	42 hrs	1
Microbiological Tests : Total Coliforms Background (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-A365610-003	E012.BG.TC	14-May-2024					16-May-2024	48 hrs	42 hrs	✓
		-								
Non-Chlorinated Phenolics : BNA (Routine List) by GC-MS/MS										
Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]										
GW-12586015-A365610-003	E625A	14-May-2024	22-May-2024	14	8 days	1	22-May-2024	40 days	0 days	1
				days						
Phthalate Esters : BNA (Routine List) by GC-MS/MS										
Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]										
GW-12586015-A365610-003	E625A	14-May-2024	22-May-2024	14	8 days	1	22-May-2024	40 days	0 days	1
				days						
Polycyclic Aromatic Hydrocarbons : PAHs in Water by Hexane LVI GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-A365610-003	E641A	14-May-2024	16-May-2024	14	2 days	1	17-May-2024	40 days	1 days	1
				days						
Semi-Volatile Organics : BNA (Routine List) by GC-MS/MS										
Amber glass/Teflon lined septa cap - SVOCs (sodium thiosulfate) [ON MECP]										
GW-12586015-A365610-003	E625A	14-May-2024	22-May-2024	14	8 days	1	22-May-2024	40 days	0 days	1
				days						
/olatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
GW-12586015-A365610-003	E611D	14-May-2024	18-May-2024	14	4 days	✓	18-May-2024	14 days	4 days	~
				days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page	:	6 of 8
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluati	on: × = QC frequ	ency outside sp	ecification; ✓ = 0	QC frequency wi	thin specificatio
Quality Control Sample Type)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1449775	1	10	10.0	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	1446209	1	14	7.1	5.0	✓
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC	1446207	1	2	50.0	5.0	✓
Pesticides in Water by LC-MS-MS (Routine Level)	E755	1450964	1	5	20.0	5.0	√
Total Coliforms (MF-mEndo)	E012.TC	1446210	0	12	0.0	5.0	x
Total Coliforms Background (MF-mEndo)	E012.BG.TC	1446211	0	12	0.0	5.0	×
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1449774	2	17	11.7	5.0	√
Laboratory Control Samples (LCS)							
BNA (Extended List) by GC-MS/MS	E625	1452636	1	1	100.0	5.0	1
BNA (Routine List) by GC-MS/MS	E625A	1452635	1	20	5.0	5.0	1
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1449775	1	10	10.0	5.0	✓
PAHs in Water by Hexane LVI GC-MS	E641A	1446279	1	7	14.2	5.0	1
Pesticides in Water by LC-MS-MS (Routine Level)	E755	1450964	1	5	20.0	5.0	✓
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	1446278	1	18	5.5	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1449774	1	17	5.8	5.0	✓
Method Blanks (MB)							
BNA (Extended List) by GC-MS/MS	E625	1452636	1	1	100.0	5.0	✓
BNA (Routine List) by GC-MS/MS	E625A	1452635	1	20	5.0	5.0	✓
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1449775	1	10	10.0	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	1446209	1	14	7.1	5.0	1
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC	1446207	1	2	50.0	5.0	✓
PAHs in Water by Hexane LVI GC-MS	E641A	1446279	1	7	14.2	5.0	1
Pesticides in Water by LC-MS-MS (Routine Level)	E755	1450964	1	5	20.0	5.0	~
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	1446278	1	18	5.5	5.0	✓
Total Coliforms (MF-mEndo)	E012.TC	1446210	1	12	8.3	5.0	~
Total Coliforms Background (MF-mEndo)	E012.BG.TC	1446211	1	12	8.3	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1449774	1	17	5.8	5.0	✓
Matrix Spikes (MS)							
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1449775	1	10	10.0	5.0	1
Pesticides in Water by LC-MS-MS (Routine Level)	E755	1450964	1	5	20.0	5.0	√
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1449774	1	17	5.8	5.0	1

Page	:	7 of 8
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms Background (MF-mEndo)	E012.BG.TC	Water	APHA 9222B (mod)	Noncoliform bacteria observed on Total Coliform plates are enumerated.
	ALS Environmental - Waterloo			
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC ALS Environmental -	Water	SM 9215D	Following filtration (0.45 μm), and incubation at 35.0 $\pm 0.5^\circ C$ for 48 hours, the observed colonies are enumerated.
	Waterloo			
Total Coliforms (MF-mEndo)	E012.TC	Water	APHA 9222B (mod)	Following filtration (0.45 μm), and incubation at 35.0 $\pm 0.5^\circ C$ for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated and
	ALS Environmental - Waterloo			confirmed.
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 μ m), and incubation at 44.5 \pm 0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
	ALS Environmental - Waterloo			
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	Water	CCME PHC in Soil - Tier 1 (mod)	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing
	ALS Environmental - Waterloo			VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law. Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	Water	CCME PHC in Soil - Tier 1 (mod)	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME hydrocarbon fractions (F2-F4).
GC-FID	ALS Environmental -		r (mod)	IOI COME Hydrocarbon fractions (F2-F4).
	Waterloo			Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
VOCs (Eastern Canada List) by Headspace	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
GC-MS				Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental - Waterloo			headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
BNA (Extended List) by GC-MS/MS	E625	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS/MS.
	ALS Environmental -			
	Waterloo			

Page	:	8 of 8
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
BNA (Routine List) by GC-MS/MS	E625A	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS/MS.
	ALS Environmental -			
	Waterloo	Water		
PAHs in Water by Hexane LVI GC-MS	E641A	vvater	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI) GC-MS.
	ALS Environmental -			
	Waterloo			
Pesticides in Water by LC-MS-MS (Routine Level)	E755	Water	MECP E3553	Pesticides are determined in Water Samples by Direct Aqueous Injection coupled to LC-MS/MS
	ALS Environmental -			
	Waterloo			
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier 1	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene, ethylbenzene and xylenes (BTEX).
	ALS Environmental -			
	Waterloo			
SUM F1 to F4 where F2-F4 is SG treated	EC581SG	Water	CCME PHC in Soil - Tier 1	Hydrocarbons, total (C6-C50) is the sum of CCME Fraction F1(C6-C10), F2(C10-C16), F3(C16-C34), and F4(C34-C50), where F2-F4 have been treated with silica gel. F4G-sg
	ALS Environmental -			is not used within this calculation due to overlap with other fractions.
	Waterloo			
F2-F4 (sg) minus PAH	EC600SG	Water	CCME PHC in Soil - Tier 1	F2-F4 (sg) minus PAH is calculated as follows: F2-F4 minus PAH = Sum of CCME Fraction 2 (C10-C16), CCME Fraction 3 (C16-C34), and CCME Fraction 4 (C34-C50),
	ALS Environmental -			minus select Polycyclic Aromatic Hydrocarbons (PAH).
	Waterloo			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	ALS Environmental -			GC/MS-FID system.
	Waterloo			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	ALS Environmental -			
	Waterloo			
BNA Extraction	EP625	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	ALS Environmental -			
	Waterloo			
Preparation of Pesticides for Direct Injection in Water by LC-MS-MS	EP755	Water	MECP E3553	Pesticides are determined in Water Samples by Direct Aqueous Injection coupled to LC-MS/MS
, , ,				
	ALS Environmental -			

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page : 1 of 13 WT2412247 Client : GHD Limited Laboratory : ALS Environmental - Waterloo : Pascal Renella Account Manager : Rick Hawthorne Contact Address Address :455 Phillip Street :60 Northland Road, Unit 1 Waterloo ON Canada N2L 3X2 Waterloo, Ontario Canada N2V 2B8 Telephone :519 725 3313 Telephone :+1 519 886 6910 Project :12586015 Date Samples Received :15-May-2024 08:25 PO :735-010356 Date Analysis Commenced :16-May-2024 C-O-C number Issue Date : -----:23-May-2024 17:17 Sampler : CLIENT Site :----Quote number :12586015-10-2-2024-735-010356 No. of samples received :1 No. of samples analysed :1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Kaitlyn Lammers	Lab Assistant	Waterloo Microbiology, Waterloo, Ontario
Ruby Sujeepan	Analyst	Waterloo Microbiology, Waterloo, Ontario
Sanja Risticevic	Department Manager - LCMS	Waterloo LCMS, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario

Page :	2 of 13
Work Order :	WT2412247
Client :	GHD Limited
Project :	12586015

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page	:	3 of 13
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	ts (QC Lot: 1446207)										
WT2412313-001	Anonymous	Heterotrophic plate count [HPC]		E012.HPC	1	CFU/mL	3	2	1	Diff <2x LOR	
Microbiological Tes	ts (QC Lot: 1446209)										
WT2412308-001	Anonymous	Coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	>200000	>200000	0.00%	65%	
/olatile Organic Co	mpounds (QC Lot: 14	449774)									
NT2412287-004	Anonymous	Dichloromethane	75-09-2	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
NT2412287-004	Anonymous	Acetone	67-64-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		Benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromodichloromethane	75-27-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromoform	75-25-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Bromomethane	74-83-9	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Carbon tetrachloride	56-23-5	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
	Chlorobenzene	108-90-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
	Chloroform	67-66-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
	Dibromochloromethane	124-48-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		Dibromoethane, 1,2-	106-93-4	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
		Dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,3-	541-73-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichlorodifluoromethane	75-71-8	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethane, 1,1-	75-34-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethane, 1,2-	107-06-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, 1,1-	75-35-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloropropane, 1,2-	78-87-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Hexane, n-	110-54-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	<20	<20	0	Diff <2x LOR	

Page	:	4 of 13
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 14	19774) - continued									
WT2412287-004	Anonymous	Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Styrene	100-42-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethane, 1,1,1-	71-55-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethane, 1,1,2-	79-00-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Trichlorofluoromethane	75-69-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Vinyl chloride	75-01-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 1449775)										
WT2412287-004	Anonymous	F1 (C6-C10)		E581.F1-L	25	µg/L	<25	<25	0	Diff <2x LOR	
nsecticides (QC Lo	ot: 1450964)										
RG2400683-002	Anonymous	Diazinon	333-41-5	E755	0.0250	µg/L	<0.0250	<0.0250	0	Diff <2x LOR	

Page	:	5 of 13
Work Order	:	WT2412247
Client	:	GHD Limited
Project	1	12586015

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Microbiological Tests (QCLot: 14462	07)					
Heterotrophic plate count [HPC]		E012.HPC	1	CFU/mL	<1	
Microbiological Tests (QCLot: 14462	09)					
Coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	
Microbiological Tests (QCLot: 14462	10)					
Coliforms, total		E012.TC	1	CFU/100mL	<1	
Microbiological Tests (QCLot: 14462	11)					
coliforms, total background		E012.BG.TC	1	CFU/100mL	<1	
/olatile Organic Compounds (QCLot	: 1449774)					
Acetone	67-64-1	E611D	20	µg/L	<20	
Benzene	71-43-2	E611D	0.5	µg/L	<0.50	
Bromodichloromethane	75-27-4	E611D	0.5	µg/L	<0.50	
Bromoform	75-25-2	E611D	0.5	µg/L	<0.50	
Bromomethane	74-83-9	E611D	0.5	µg/L	<0.50	
Carbon tetrachloride	56-23-5	E611D	0.2	µg/L	<0.20	
Chlorobenzene	108-90-7	E611D	0.5	µg/L	<0.50	
Chloroform	67-66-3	E611D	0.5	µg/L	<0.50	
Dibromochloromethane	124-48-1	E611D	0.5	µg/L	<0.50	
Dibromoethane, 1,2-	106-93-4	E611D	0.2	µg/L	<0.20	
Dichlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,3-	541-73-1	E611D	0.5	µg/L	<0.50	
Dichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	<0.50	
Dichlorodifluoromethane	75-71-8	E611D	0.5	µg/L	<0.50	
Dichloroethane, 1,1-	75-34-3	E611D	0.5	µg/L	<0.50	
Dichloroethane, 1,2-	107-06-2	E611D	0.5	µg/L	<0.50	
Dichloroethylene, 1,1-	75-35-4	E611D	0.5	µg/L	<0.50	
Dichloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	<0.50	
Dichloroethylene, trans-1,2-	156-60-5	E611D	0.5	µg/L	<0.50	
Dichloromethane	75-09-2	E611D	1	µg/L	<1.0	
Dichloropropane, 1,2-	78-87-5	E611D	0.5	µg/L	<0.50	
Dichloropropylene, cis-1,3-	10061-01-5	E611D	0.3	µg/L	<0.30	
Dichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	<0.30	
Ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	

Page :	6 of 13
Work Order :	WT2412247
Client :	GHD Limited
Project :	12586015

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLot:	1449774) - continued					
Hexane, n-	110-54-3	E611D	0.5	µg/L	<0.50	
Methyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	<20	
Methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	<20	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	μg/L	<0.50	
Styrene	100-42-5	E611D	0.5	μg/L	<0.50	
Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	µg/L	<0.50	
Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	<0.50	
Tetrachloroethylene	127-18-4	E611D	0.5	µg/L	<0.50	
Toluene	108-88-3	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	<0.50	
Trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	
Trichlorofluoromethane	75-69-4	E611D	0.5	µg/L	<0.50	
Vinyl chloride	75-01-4	E611D	0.5	µg/L	<0.50	
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	<0.40	
Xylene, o-	95-47-6	E611D	0.3	µg/L	<0.30	
Hydrocarbons (QCLot: 1446278)						
F2 (C10-C16)		E601.SG	100	µg/L	<100	
F3 (C16-C34)		E601.SG	250	µg/L	<250	
F4 (C34-C50)		E601.SG	250	µg/L	<250	
Hydrocarbons (QCLot: 1449775)						
F1 (C6-C10)		E581.F1-L	25	µg/L	<25	
Polycyclic Aromatic Hydrocarbons (C	QCLot: 1446279)					
Acenaphthene	83-32-9	E641A	0.01	µg/L	<0.010	
Acenaphthylene	208-96-8	E641A	0.01	µg/L	<0.010	
Anthracene	120-12-7	E641A	0.01	µg/L	<0.010	
Benz(a)anthracene	56-55-3	E641A	0.01	µg/L	<0.010	
Benzo(a)pyrene	50-32-8	E641A	0.005	µg/L	<0.0050	
Benzo(b+j)fluoranthene	n/a	E641A	0.01	µg/L	<0.010	
Benzo(g,h,i)perylene	191-24-2	E641A	0.01	µg/L	<0.010	
Benzo(k)fluoranthene	207-08-9	E641A	0.01	µg/L	<0.010	
Chrysene	218-01-9	E641A	0.01	µg/L	<0.010	
Dibenz(a,h)anthracene	53-70-3	E641A	0.005	µg/L	<0.0050	
Fluoranthene	206-44-0	E641A	0.01	μg/L	<0.010	
Fluorene	86-73-7	E641A	0.01	µg/L	<0.010	

Page	:	7 of 13
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons (C	CLot: 1446279) - continued				
Indeno(1,2,3-c,d)pyrene	193-39-5 E641A	0.01	µg/L	<0.010	
Methylnaphthalene, 1-	90-12-0 E641A	0.01	µg/L	<0.010	
Methylnaphthalene, 2-	91-57-6 E641A	0.01	µg/L	<0.010	
Naphthalene	91-20-3 E641A	0.05	µg/L	<0.050	
Phenanthrene	85-01-8 E641A	0.02	µg/L	<0.020	
Pyrene	129-00-0 E641A	0.01	µg/L	<0.010	
Phthalate Esters (QCLot: 1452635)					
bis(2-Ethylhexyl) phthalate [DEHP]	117-81-7 E625A	0.6	µg/L	<0.60	
Diethyl phthalate	84-66-2 E625A	0.2	µg/L	<0.20	
Dimethyl phthalate	131-11-3 E625A	0.2	µg/L	<0.20	
Semi-Volatile Organics (QCLot: 14526	35)				
Biphenyl	92-52-4 E625A	0.2	µg/L	<0.20	
bis(2-Chloro-1-methylethyl) ether	108-60-1 E625A	0.4	µg/L	<0.40	
bis(2-Chloroethyl) ether	111-44-4 E625A	0.4	µg/L	<0.40	
Chloroaniline, 4-	106-47-8 E625A	0.4	µg/L	<0.40	
Dichlorobenzidine, 3,3'-	91-94-1 E625A	0.4	µg/L	<0.40	
Dinitrotoluene, 2,4-	121-14-2 E625A	0.4	µg/L	<0.40	
Dinitrotoluene, 2,6-	606-20-2 E625A	0.4	µg/L	<0.40	
Trichlorobenzene, 1,2,4-	120-82-1 E625A	0.4	µg/L	<0.40	
Chlorinated Phenolics (QCLot: 14526	35)				
Chlorophenol, 2-	95-57-8 E625A	0.3	µg/L	<0.30	
Dichlorophenol, 2,4-	120-83-2 E625A	0.2	µg/L	<0.20	
Pentachlorophenol [PCP]	87-86-5 E625A	0.5	µg/L	<0.50	
Trichlorophenol, 2,4,5-	95-95-4 E625A	0.2	µg/L	<0.20	
Trichlorophenol, 2,4,6-	88-06-2 E625A	0.2	µg/L	<0.20	
Chlorinated Phenolics (QCLot: 14526	36)				
Tetrachlorophenol, 2,3,4,5-	4901-51-3 E625	0.5	µg/L	<0.50	
Non-Chlorinated Phenolics (QCLot: 1	452635)				
Dimethylphenol, 2,4-	105-67-9 E625A	0.5	µg/L	<0.50	
Dinitrophenol, 2,4-	51-28-5 E625A	1	µg/L	<1.0	
Phenol	108-95-2 E625A	0.5	µg/L	<0.50	
Insecticides (QCLot: 1450964)					
Diazinon	333-41-5 E755	0.025	µg/L	<0.0250	

Page	:	8 of 13
Work Order	r :	WT2412247
Client	:	GHD Limited
Project	:	12586015

Page	:	9 of 13
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Me	thod	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot:	1449774)								
Acetone	67-64-1 E6	11D	20	µg/L	100 µg/L	118	70.0	130	
Benzene	71-43-2 E61	11D	0.5	µg/L	100 µg/L	96.2	70.0	130	
Bromodichloromethane	75-27-4 E61	11D	0.5	µg/L	100 µg/L	106	70.0	130	
Bromoform	75-25-2 E6	11D	0.5	µg/L	100 µg/L	75.2	70.0	130	
Bromomethane	74-83-9 E6 ⁴	11D	0.5	µg/L	100 µg/L	103	60.0	140	
Carbon tetrachloride	56-23-5 E61	11D	0.2	µg/L	100 µg/L	96.8	70.0	130	
Chlorobenzene	108-90-7 E6 ⁴	11D	0.5	µg/L	100 µg/L	97.1	70.0	130	
Chloroform	67-66-3 E6 ⁴	11D	0.5	µg/L	100 µg/L	108	70.0	130	
Dibromochloromethane	124-48-1 E6 ⁴	11D	0.5	µg/L	100 µg/L	88.8	70.0	130	
Dibromoethane, 1,2-	106-93-4 E6 ⁴	11D	0.2	µg/L	100 µg/L	102	70.0	130	
Dichlorobenzene, 1,2-	95-50-1 E6 ⁴	11D	0.5	µg/L	100 µg/L	96.5	70.0	130	
Dichlorobenzene, 1,3-	541-73-1 E6 ⁴	11D	0.5	µg/L	100 µg/L	96.7	70.0	130	
Dichlorobenzene, 1,4-	106-46-7 E6 ⁻	11D	0.5	µg/L	100 µg/L	96.8	70.0	130	
Dichlorodifluoromethane	75-71-8 E6 ⁻	11D	0.5	µg/L	100 µg/L	93.5	60.0	140	
Dichloroethane, 1,1-	75-34-3 E6 ⁻	11D	0.5	µg/L	100 µg/L	90.2	70.0	130	
Dichloroethane, 1,2-	107-06-2 E6 ⁻	11D	0.5	µg/L	100 µg/L	110 70.0		130	
Dichloroethylene, 1,1-	75-35-4 E6 ⁻	11D	0.5	µg/L	100 µg/L	105	70.0	130	
Dichloroethylene, cis-1,2-	156-59-2 E6 ⁻	11D	0.5	µg/L	100 µg/L	107	70.0	130	
Dichloroethylene, trans-1,2-	156-60-5 E6 ⁻	11D	0.5	µg/L	100 µg/L	107	70.0	130	
Dichloromethane	75-09-2 E6 ⁻	11D	1	µg/L	100 µg/L	113	70.0	130	
Dichloropropane, 1,2-	78-87-5 E6 ⁻	11D	0.5	µg/L	100 µg/L	103	70.0	130	
Dichloropropylene, cis-1,3-	10061-01-5 E6 ⁴	11D	0.3	µg/L	100 µg/L	95.6	70.0	130	
Dichloropropylene, trans-1,3-	10061-02-6 E6 ⁻	11D	0.3	µg/L	100 µg/L	# 64.6	70.0	130	MES
Ethylbenzene	100-41-4 E6 ⁻	11D	0.5	µg/L	100 µg/L	90.6	70.0	130	
Hexane, n-	110-54-3 E6 ⁻	11D	0.5	µg/L	100 µg/L	81.9	70.0	130	
Methyl ethyl ketone [MEK]	78-93-3 E6 ⁻	11D	20	µg/L	100 µg/L	103	70.0	130	
Methyl isobutyl ketone [MIBK]	108-10-1 E6 ⁻	11D	20	µg/L	100 µg/L	107	70.0	130	
Methyl-tert-butyl ether [MTBE]	1634-04-4 E6 ⁻	11D	0.5	µg/L	100 µg/L	99.2	70.0	130	
Styrene	100-42-5 E6 ⁻	11D	0.5	µg/L	100 µg/L	89.9	70.0	130	
Tetrachloroethane, 1,1,1,2-	630-20-6 E6 ⁻	11D	0.5	µg/L	100 µg/L	93.0	70.0	130	
Tetrachloroethane, 1,1,2,2-	79-34-5 E6 ⁻	11D	0.5	µg/L	100 µg/L	111	70.0	130	
Tetrachloroethylene	127-18-4 E6 ⁻	11D	0.5	µg/L	100 µg/L	86.7	70.0	130	
Toluene	108-88-3 E6 ⁻	11D	0.5	µg/L	100 µg/L	90.6	70.0	130	

Page :	10 of 13
Work Order :	WT2412247
Client :	GHD Limited
Project :	12586015

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier			
Volatile Organic Compounds (QCLot	: 1449774) - continued											
Trichloroethane, 1,1,1-	71-55-6	E611D	0.5	µg/L	100 µg/L	100	70.0	130				
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	100 µg/L	106	70.0	130				
Trichloroethylene	79-01-6	E611D	0.5	µg/L	100 µg/L	96.9	70.0	130				
Trichlorofluoromethane	75-69-4	E611D	0.5	µg/L	100 µg/L	98.0	60.0	140				
Vinyl chloride	75-01-4	E611D	0.5	µg/L	100 µg/L	99.9	60.0	140				
Xylene, m+p-	179601-23-1	E611D	0.4	µg/L	200 µg/L	92.4	70.0	130				
Xylene, o-	95-47-6	E611D	0.3	µg/L	100 µg/L	91.2	70.0	130				
Hydrocarbons (QCLot: 1446278)												
F2 (C10-C16)		E601.SG	100	µg/L	4010 µg/L	101	70.0	130				
F3 (C16-C34)		E601.SG	250	µg/L	8300 µg/L	103	70.0	130				
F4 (C34-C50)		E601.SG	250	µg/L	4360 µg/L	114	70.0	130				
Hydrocarbons (QCLot: 1449775)												
F1 (C6-C10)		E581.F1-L	25	µg/L	2000 µg/L	106	80.0	120				
Polycyclic Aromatic Hydrocarbons (QCLot: 1446279)											
Acenaphthene	83-32-9	E641A	0.01	µg/L	0.526 µg/L	104	50.0	140				
Acenaphthylene	208-96-8	E641A	0.01	µg/L	0.526 µg/L	99.3	50.0	140				
Anthracene	120-12-7	E641A	0.01	µg/L	0.526 µg/L	90.7	50.0	140				
Benz(a)anthracene	56-55-3	E641A	0.01	µg/L	0.526 µg/L	113	50.0	140				
Benzo(a)pyrene	50-32-8	E641A	0.005	µg/L	0.526 µg/L	97.2	50.0	140				
Benzo(b+j)fluoranthene	n/a	E641A	0.01	µg/L	0.526 µg/L	99.5	50.0	140				
Benzo(g,h,i)perylene	191-24-2	E641A	0.01	µg/L	0.526 µg/L	105	50.0	140				
Benzo(k)fluoranthene	207-08-9	E641A	0.01	µg/L	0.526 µg/L	109	50.0	140				
Chrysene	218-01-9	E641A	0.01	µg/L	0.526 µg/L	118	50.0	140				
Dibenz(a,h)anthracene	53-70-3	E641A	0.005	µg/L	0.526 µg/L	96.4	50.0	140				
Fluoranthene	206-44-0	E641A	0.01	µg/L	0.526 µg/L	109	50.0	140				
Fluorene	86-73-7	E641A	0.01	µg/L	0.526 µg/L	103	50.0	140				
Indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.01	µg/L	0.526 µg/L	116	50.0	140				
Methylnaphthalene, 1-	90-12-0	E641A	0.01	µg/L	0.526 µg/L	99.1	50.0	140				
Methylnaphthalene, 2-	91-57-6	E641A	0.01	µg/L	0.526 µg/L	96.9	50.0	140				
Naphthalene	91-20-3	E641A	0.05	µg/L	0.526 µg/L	98.1	50.0	140				
Phenanthrene	85-01-8	E641A	0.02	µg/L	0.526 µg/L	110	50.0	140				
Pyrene	129-00-0	E641A	0.01	µg/L	0.526 µg/L	107	50.0	140				

Page	:	11 of 13
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

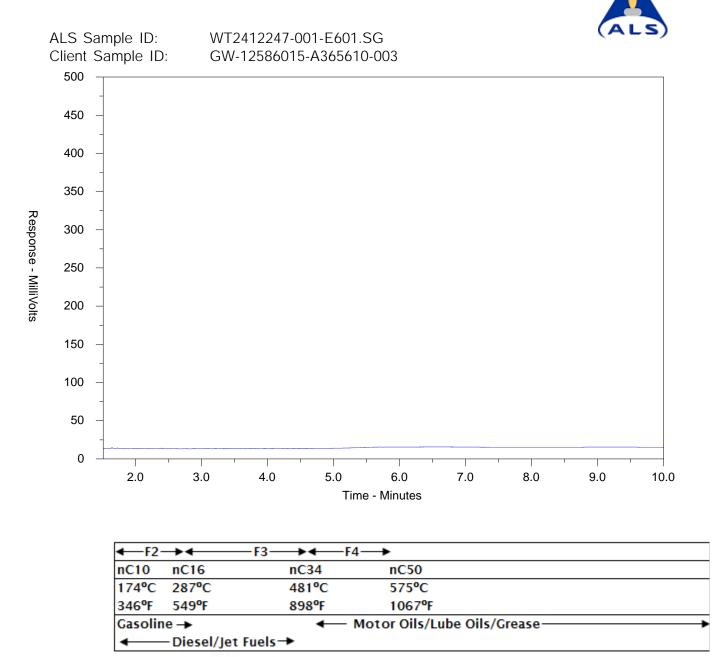
ub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	' Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifi
hthalate Esters (QCLot: 1452635) - contin	ued								
is(2-Ethylhexyl) phthalate [DEHP]	117-81-7	E625A	0.6	µg/L	33.7 µg/L	114	50.0	140	
iethyl phthalate	84-66-2	E625A	0.2	µg/L	33.7 µg/L	96.2	50.0	140	
imethyl phthalate	131-11-3	E625A	0.2	µg/L	33.7 μg/L	95.5	50.0	140	
emi-Volatile Organics (QCLot: 1452635)									
iphenyl	92-52-4	E625A	0.2	µg/L	8.42 µg/L	83.9	50.0	140	
is(2-Chloro-1-methylethyl) ether	108-60-1	E625A	0.4	µg/L	8.42 µg/L	87.9	50.0	140	
is(2-Chloroethyl) ether	111-44-4	E625A	0.4	µg/L	8.42 µg/L	81.6	50.0	140	
hloroaniline, 4-	106-47-8	E625A	0.4	µg/L	8.42 µg/L	95.3	30.0	140	
ichlorobenzidine, 3,3'-	91-94-1	E625A	0.4	µg/L	8.42 µg/L	71.9	50.0	140	
initrotoluene, 2,4-	121-14-2	E625A	0.4	µg/L	8.42 µg/L	92.2	50.0	140	
initrotoluene, 2,6-	606-20-2	E625A	0.4	µg/L	8.42 µg/L	84.5	50.0	140	
richlorobenzene, 1,2,4-	120-82-1	E625A	0.4	μg/L	8.42 µg/L	70.0	50.0	130	
Chlorinated Phenolics (QCLot: 1452635)									
hlorophenol, 2-	95-57-8	E625A	0.3	µg/L	25.3 μg/L	76.2	65.0	130	
ichlorophenol, 2,4-	120-83-2	E625A	0.2	µg/L	25.3 µg/L	87.2	65.0	130	
entachlorophenol [PCP]	87-86-5	E625A	0.5	µg/L	25.3 µg/L	68.7	65.0	130	
richlorophenol, 2,4,5-	95-95-4	E625A	0.2	µg/L	25.3 µg/L	93.0	65.0	130	
richlorophenol, 2,4,6-	88-06-2	E625A	0.2	µg/L	25.3 μg/L	92.7	65.0	130	
Chlorinated Phenolics (QCLot: 1452636)									
etrachlorophenol, 2,3,4,5-	4901-51-3	E625	0.5	µg/L	25.3 µg/L	90.0	50.0	130	
Ion-Chlorinated Phenolics (QCLot: 145263	5)								
imethylphenol, 2,4-	105-67-9	E625A	0.5	µg/L	25.3 µg/L	87.8	30.0	130	
initrophenol, 2,4-	51-28-5	E625A	1	μg/L	25.3 µg/L	67.4	40.0	140	
henol	108-95-2	E625A	0.5	μg/L	25.3 μg/L	103	30.0	130	
nsecticides (QCLot: 1450964)								1	1
iazinon	333-41-5	E755	0.025	µg/L	1.25 µg/L	89.6	60.0	140	

Quanners	
Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page :	12 of 13
Work Order :	WT2412247
Client :	GHD Limited
Project :	12586015

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.


Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spil	ke	Recovery (%)	Recovery	/ Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
/olatile Organic C	Compounds (QCLo	t: 1449774)										
WT2412287-004	Anonymous	Acetone	67-64-1	E611D	119 µg/L	100 µg/L	119	60.0	140			
		Benzene	71-43-2	E611D	94.0 μg/L	100 µg/L	94.0	60.0	140			
		Bromodichloromethane	75-27-4	E611D	106 µg/L	100 µg/L	106	60.0	140			
		Bromoform	75-25-2	E611D	73.9 µg/L	100 µg/L	73.9	60.0	140			
		Bromomethane	74-83-9	E611D	97.7 μg/L	100 µg/L	97.7	60.0	140			
		Carbon tetrachloride	56-23-5	E611D	91.9 µg/L	100 µg/L	91.9	60.0	140			
		Chlorobenzene	108-90-7	E611D	94.5 µg/L	100 µg/L	94.5	60.0	140			
		Chloroform	67-66-3	E611D	107 µg/L	100 µg/L	107	60.0	140			
		Dibromochloromethane	124-48-1	E611D	88.1 µg/L	100 µg/L	88.1	60.0	140			
		Dibromoethane, 1,2-	106-93-4	E611D	101 µg/L	100 µg/L	101	60.0	140			
		Dichlorobenzene, 1,2-	95-50-1	E611D	94.0 µg/L	100 µg/L	94.0	60.0	140			
		Dichlorobenzene, 1,3-	541-73-1	E611D	92.0 μg/L	100 µg/L	92.0	60.0	140			
		Dichlorobenzene, 1,4-	106-46-7	E611D	92.3 µg/L	100 µg/L	92.3	60.0	140			
		Dichlorodifluoromethane	75-71-8	E611D	84.5 μg/L	100 µg/L	84.5	60.0	140			
		Dichloroethane, 1,1-	75-34-3	E611D	102 µg/L	100 µg/L	102	60.0	140			
		Dichloroethane, 1,2-	107-06-2	E611D	110 µg/L	100 µg/L	110	60.0	140			
		Dichloroethylene, 1,1-	75-35-4	E611D	102 µg/L	100 µg/L	102	60.0	140			
		Dichloroethylene, cis-1,2-	156-59-2	E611D	106 µg/L	100 µg/L	106	60.0	140			
		Dichloroethylene, trans-1,2-	156-60-5	E611D	117 μg/L	100 µg/L	117	60.0	140			
		Dichloropropane, 1,2-	78-87-5	E611D	104 µg/L	100 µg/L	104	60.0	140			
		Dichloropropylene, cis-1,3-	10061-01-5	E611D	92.9 µg/L	100 µg/L	92.9	60.0	140			
		Dichloropropylene, trans-1,3-	10061-02-6	E611D	72.7 μg/L	100 µg/L	72.7	60.0	140			
		Ethylbenzene	100-41-4	E611D	88.0 µg/L	100 µg/L	88.0	60.0	140			
		Hexane, n-	110-54-3	E611D	90.7 μg/L	100 µg/L	90.7	60.0	140			
		Methyl ethyl ketone [MEK]	78-93-3	E611D	100 µg/L	100 µg/L	100	60.0	140			
		Methyl isobutyl ketone [MIBK]	108-10-1	E611D	111 µg/L	100 µg/L	111	60.0	140			
		Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	97.0 µg/L	100 µg/L	97.0	60.0	140			
		Styrene	100-42-5	E611D	87.1 μg/L	100 µg/L	87.1	60.0	140			
		Tetrachloroethane, 1,1,1,2-	630-20-6	E611D	90.4 µg/L	100 µg/L	90.4	60.0	140			
		Tetrachloroethane, 1,1,2,2-	79-34-5	E611D	114 µg/L	100 µg/L	114	60.0	140			
		Tetrachloroethylene	127-18-4	E611D	80.9 µg/L	100 µg/L	80.9	60.0	140			
		Toluene	108-88-3	E611D	87.7 μg/L	100 µg/L	87.7	60.0	140			
		Trichloroethane, 1,1,1-	71-55-6	E611D	96.4 µg/L	100 µg/L	96.4	60.0	140			
		Trichloroethane, 1,1,2-	79-00-5	E611D	106 µg/L	100 µg/L	106	60.0	140			
		Trichloroethylene	79-01-6	E611D	92.1 µg/L	100 µg/L	92.1	60.0	140			
		Trichlorofluoromethane	75-69-4	E611D	93.2 µg/L	100 µg/L	93.2	60.0	140			
		Vinyl chloride	75-01-4	E611D	96.2 µg/L	100 µg/L	96.2	60.0	140			
		Xylene, m+p-	179601-23-1	E611D	179 µg/L	200 µg/L	89.4	60.0	140			
		Xylene, o-	95-47-6	E611D	88.7 µg/L	100 µg/L	88.7	60.0	140			

Page	:	13 of 13
Work Order	:	WT2412247
Client	:	GHD Limited
Project	:	12586015

Sub-Matrix: Water	ub-Matrix: Water						Matrix Spike (MS) Report									
					Sp	ike	Recovery (%)	Recovery	Limits (%)							
Laboratory sample I	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier						
Hydrocarbons (QCLot: 1449775)															
WT2412287-004	Anonymous	F1 (C6-C10)		E581.F1-L	1760 µg/L	2000 µg/L	88.0	60.0	140							
Insecticides (QC	CLot: 1450964)															
RG2400683-002	Anonymous	Diazinon	333-41-5	E755	1.14 µg/L	1.25 µg/L	91.3	60.0	140							

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizin hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of commo petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary betwee samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, th sample dilution factor and the scale at the left.

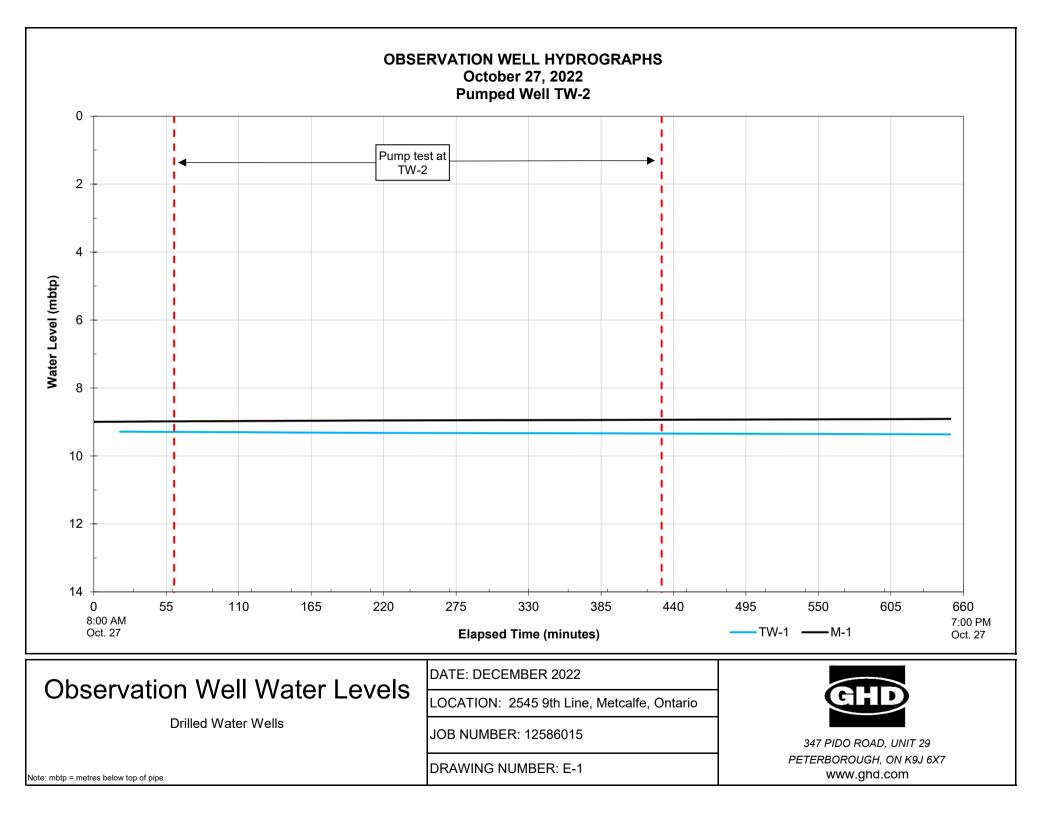
Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR Library can be found at <u>www.alsglobal.com</u>.

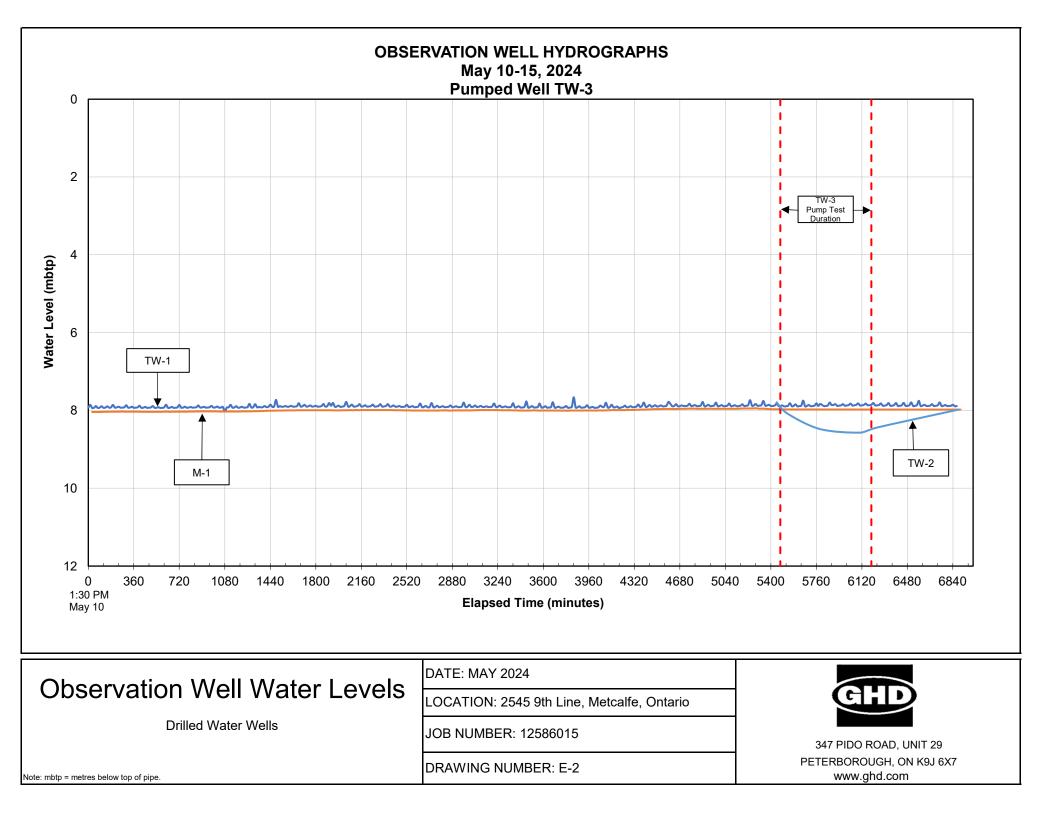
COC Number:

Pag

Canada Toll Free: 1 800 668 9878

Environmental Division Waterloo Work Order Beference


Work Order Reference WT2412247


Report To	Contact and company name below will app	ear on the final report	T	Reports / F	Pecipiente		T		Tu		und Ti	ma /TA	T) Requ	<u>p</u>		1			w.a. i			
Company:	GHD Ltd. (Acct GHDL100)		Select Report F	ormat: 🔽 PDF			7.	ution fC	_				surchar									
Contact:	Pascal Renella	*******	-	Reports with COA									% rush s					ι,		X; I		apavidi S
Phone:	519-884-0510			uits to Criteria on Report		<u> </u>			-		•		% rush					011		17		2000-0000
	Company address below will appear on the fin	al report	Select Distribut						-				% rush :					i Чл	ur - A	") 6		1.000 M
Street:	455 Phillip St.		Email 1 or Fax	Email 1 or Fax pascal renella@ghd.com				me day	[E2] if	receive	d by 10	am M-S	% rush 9	rush su	rcha	Teiej	ohone :	: +1 51	9 886 6	3910		10 M 10
City/Province:	Waterloo, ON		Email 2					fees may apply to rush resuests on weekends, statutory holida routine tests						sbik								
Postal Code:	N2L 3X2		Email 3	Email 3				Date and Time Required for all E&P TATs:					<u> </u>	dd	-45516)-yy hi	h:mm a	របស់សភា		<u>kononer 2 m</u>		
Invoice To	Same as Report To	NO		Invoice Re	ecipients		1			For tes	ts that c	an not be	perform	d accord	ling to the	e TAT rec	uested,	you will	be conta	cted.		
	Copy of Invoice with Report 🛛 YES 🖸	NO	Select Invoice	Distribution: 🔽 EM	IAIL 🗌 MAIL 🗍	FAX							i	Analys	is Req	uest						
Company:	GHD Ltd. (GHDL100)		Email 1 or Fax	accountspayableC	DN@ghd.com		100	\$	· h	ndicate	Filtered	l (F), Pre	served (P) or Fill	ered and	l Preser	ved (F/F) below	1	Т	l 🔒	ŝ
Contact:			Email 2				CONTAINERS	3	•												STORAGE REQUIRED	ofe te
	Project Information		Ol	I and Gas Require	d Fields (client i	use)	A	5 2										ĺ			l 🖁	l e
ALS Account #		0075	AFE/Cost Center:		PO#		1È	ที่		101											2	(s)
Job #:	12586015		Major/Minor Code;		Routing Code:		Įõ	a v												ЮН	20	
PO / AFE:			Requisitioner:					1 ~		-										NO	Ř	N N
LSD:			Location:				16	PHCs		E.coli											, Es	1 I
ALS Lab Wor	k Order # (lab use only):		ALS Contact:	Rick H	Sampler:		NUMBER	PAHs, VOCs, P.	c	Total Coliform, I										SAMPLES	EXTENDED	SUSPECTED HAZARD (see notes)
ALS Sample #	Sample Identification	and/or Coordinates	•	Date	Time	Carrie Torre	Ξ	;< <	Diazanon	Co To						1				Z	恒	P H
(lab use only)	(This description will a			(dd-mmm-yy)	(hh:mm)	Sample Type	Ĩź	PAF	Diaz	Tota										0	5 ŭ	SU
	GW-12586015- A	1365610 -	663	14.05-24	8:10 pm	Water		R	R	R												Τ
						Water										1						
						Water																1
						Water		<u>†</u>							+							+
						Water	1															+
					· · · · · · · · · · · · · · · · · · ·	Water			┼───	+												+
														+	_				-+	+		+
			•••••			Water		-	<u> </u>													+
de provincia. Altra de la composición de la composici					-	Water									_	_						
	·	·				Water		<u> </u>		ļ	ļ				_	ļ						
						Water																
$\sim c^{-2} \leq 1.5$						Water					1]			
						Water					1											Τ
Drinking	Water (DW) Samples ¹ (client use)	Notes / Specify		evaluation by selecti	ng from drop-dov	vn below				975 (S)		SAMP	LE RE	CEIPT	DETA	LS (la	b use	only)				98383
			(E	xcel COC only)			Coo	ling M	ethod:		NON	1	ICE	ICE F	ACKS	 FF	OZEN] ထ	aling in	UTIATEL	>
	en from a Regulated DW System?						Sub	missio	in Cor	nmen	ts ider	tified c	n Sam	ple Re	ceipt N	otificat	ion:		YES		9227 9 8.29	
	YES A NO						Cool	ler Cu	1.0010. 102.00.20	Second a second	of the relative	strating of the state of the		distantion in the	San	and second sheet and	ed. Same Section		37.26 M 12 12		YES [] N/A :
	human consumption/ use?							A PARTY AND	NIITIAL.	COOL	ER TEN		URES	teleşi. Teleşinde		Ne Color	Cint Soft	COOLER 1		ERATUR	<u>es•c</u>	
	SHIPMENT RELEASE (client use				TOFOTO		5	9			1 8				5 6 6 6 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	$\underline{2}$	144 S 11 S 14 S 1 S 19					
Released by:	Date:	Time:	Received by:	INITIAL SHIPMEN	the second s	and the second se	Tim	.	Ren	eived	hv	r (s. F i	NAL S	_	NT RE	CEPT		an use	e oniy)		me:	
aux	Bour May 14	124 10a		LR.	Date: 15/05	129	Time	25	1.20	wizcu	~ A	B		Section Content	nnic	1 -11	ŋ۵			6	!₩v	inn
REFER TO BACI	K PAGE FOR ALS LOCATIONS AND SAMPLIN			WH	ITE - LABORATOR	10 C	LLOW	ha dan Babbber	NT CO	PY	ene mit je	ant have still	No. 1996		<u>mac</u> M -	1 44		orige GARES	erci (Agita) de la	THE REAL PROPERTY.	AUC	3 2020 FROM

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy. VM = 1716 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

OR-123 L-371

Appendix E Observation Well Hydrographs

Appendix F Nitrate Impact Assessment Calculations

Appendix F.1 Recharge Calculations for Nitrate Assessment

Recharge Calculations

Total Area Considered14.30 haAvailable infiltration divided by 3*57 mm/yrAverage recharge volume22331.5 L/dayNote: Test pits were completed prevolusly and encountered topsoil underlain by silty sand till
over bedrock.

Nitrate Assessment Calculations

Background nitrate	0.05 mg/L	From analytical testing of piezometer and existing well
Nitrate	40 mg/L	Constant
Effluent	2550 L/day	Constant - design rate for the development
Pervious Area	65 %	35% of the area is impervious area (gravel, asphalt, concrete, building area)
Onsite dilution _{Sandy Silt}	14515.5 L/day	Daily recharge volume
Nitrate in precipitation recharge	0.0 mg/L	
Projected Nitrate Level =	Where: Sewage	wage Nitrate+Dilution Nitrate)/(Onsite Dilution+Effluent) = Nitrate * Effluent Nitrate = Onsite Dilution * Nitrate in precipitation recharge (assumed to be zero)
Projected Nitrate Level _{Sandy Silt} =	6.03 mg/L	

Background nitrate sample:	[Nitrate]
TW-1	<0.1
TW-2	<0.1
TW-3	<0.1

Appendix F.2 Water Budget Pre-Development

Catchment Designation	Existing Site		Total	
	Rooftop	Granular Surface	Naturalized Areas / Grass	
Area (m²)	15270	34852	92878	143000
Pervious Area (m ²)	0	0	92878	92878
% Pervious (m ²) of development	0%	0%	64.9%	64.9%
Impervious Area (m ²)	15270	34852	0	50122
% Impervious (m ²) of development	10.7%	24.4%	0%	35.1%
		ION FACTORS	078	55.170
Topography Infiltration Factor		0.25	0.25	
Soil Infiltration Factor	0	0.25	0.23	
Land Cover Infiltration Factor	0	0	0.15	
MECP Infiltration Factor	0	0.25	0.6	1
Actual Infiltration Factor	0.25	0.25	0.6	
Runoff Coefficient	0.25	1	0.0	
Runoff from Impervious Surfaces*	0.70	0.8	0	
		ER UNIT AREA)		l
Precipitation (mm/yr)	981	981	981	981
Run On (mm/yr)	0	0	0	0
Other Inputs (mm/yr)	0	0	0	0
Total Inputs (mm/yr)	981	981	981	981
· • • • • • • • • • • • • • • • • • • •		PER UNIT AREA)		
Precipitation Surplus (mm/yr)	785	785	385	525
Net Surplus (mm/yr)	785	785	385	525
Evaportranspiration (mm/yr)	196	196	596	456
Infiltration (mm/yr)	196	0	231	171
Rooftop Infiltration (mm/yr)	0	0	0	0
Total Infiltration (mm/yr)	196	0	231	171
Runoff Pervious Areas	0	0	154	100
Runoff Impervious Areas	589	785	0	254
Total Runoff (mm/yr)	589	785	154	354
Total Outputs (mm/yr)	981	981	981	981
Difference (Inputs - Outputs)	0	0	0	0
	INPUTS	(VOLUMES)		
Precipitation (m ³ /yr)	14980	34190	91113	140283
Run On (m ³ /yr)	0	0	0	0
Other Inputs (m ³ /yr)	0	0	0	0
Total Inputs (m ³ /yr)	14980	34190	91113	140283
		(VOLUMES)	01110	110200
Precipitation Surplus (m ³ /yr)	11984	27352	35777	75112
Net Surplus (m ³ /yr)	11984	27352	35777	75112
Evaportranspiration (m ³ /yr)	2996	6838	55337	1
Evaportranspiration (m /yr) Infiltration (m ³ /yr)				65171
	2996	0	21466	24462
Rooftop Infiltration (m ³ /yr)	0	0	0	0
Total Infiltration (m ³ /yr)	2996	0	21466	24462
Runoff Pervious Areas (m³/yr)	0	0	14311	14311
Runoff Impervious Areas (m ³ /yr)	8988	27352	0	36340
Total Runoff (m³/yr)	8988	27352	14311	50650
Total Outputs (m³/yr)	14980	34190	91113	140283
Difference (Inputs - Outputs)	0	0	0	0

Notes: Areas estimated from Google Earth

ghd.com

→ The Power of Commitment