

Phase II – Environmental Site Assessment

1166 Bank Street Ottawa, Ontario

Prepared for Ambassador Realty Inc.

Report: PE5590-2 April 18, 2024

TABLE OF CONTENTS

			PAGE
EXE	CUTIV	E SUMMARY	iii
1.0	INTR	ODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	2
	1.3	Applicable Site Condition Standard	2
2.0	BAC	KGROUND INFORMATION	2
	2.1	Physical Setting	2
3.0	SCO	PE OF INVESTIGATION	3
	3.1	Overview of Site Investigations	
	3.2	Media Investigated	3
	3.3	Phase I ESA Conceptual Site Model	4
	3.4	Deviations from the Sampling and Analysis Plan	6
	3.5	Physical Impediments	6
4.0	INVE	STIGATION METHOD	7
	4.1	Subsurface Investigation	7
	4.2	Soil Sampling	7
	4.3	Field Screening Measurements	8
	4.4	Groundwater Monitoring Well Installation	8
	4.5	Field Measurement of Water Quality Parameters	9
	4.6	Groundwater Sampling	9
	4.7	Analytical Testing	9
	4.8	Residue Management	11
	4.9	Elevation Surveying	11
	4.10	Quality Assurance and Quality Control Measures	12
5.0	REV	IEW AND EVALUATION	13
	5.1	Geology	
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	13
	5.3	Fine/Coarse Soil Texture	14
	5.4	Field Screening	14
	5.5	Soil Quality	14
	5.6	Groundwater Quality	
	5.7	Quality Assurance and Quality Control Results	28
	5.8	Phase II Conceptual Site Model	30
6.0		CLUSIONS	
7.0	STA	TEMENT OF LIMITATIONS	40

List of Figures

Figure 1 – Key Plan

Drawing PE5590-1 - Site Plan

Drawing PE5590-2 – Surrounding Land Use Plan

Drawing PE5590-3 – Test Hole Location Plan

Drawing PE5590-4 – Analytical Testing Plan – Soil (VOCs, Metals, PAHs, Lead, EC, SAR, pH)

Drawing PE5590-4A – Cross Section A-A' – Soil (VOCs, Metals, PAHs, Lead, EC, SAR, pH)

Drawing PE5590-4B – Cross Section B-B' – Soil (VOCs, Metals, PAHs, Lead, EC, SAR, pH)

Drawing PE5590-5 – Analytical Testing Plan – Soil (PHCs)

Drawing PE5590-5A – Cross Section A-A' – Soil (PHCs)

Drawing PE5590-5B – Cross Section B-B' – Soil (PHCs)

Drawing PE5590-6 – Analytical Testing Plan – Groundwater (PHCs)

Drawing PE5590-6A – Cross Section A-A' – Groundwater (PHCs)

Drawing PE5590-6B – Cross Section B-B' – Groundwater (PHCs)

Drawing PE5590-7 – Analytical Testing Plan – Groundwater (VOCs)

Drawing PE5590-7A – Cross Section A-A' – Groundwater (VOCs)

Drawing PE5590-7B – Cross Section B-B' – Groundwater (VOCs)

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the property addressed 1166 Bank Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address the potentially contaminating activities (PCAs) that were identified during the Phase I ESA and were considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The subsurface investigation for this assessment was conducted on May 3, 2022, and consisted of drilling three boreholes (BH1-22 to BH3-22) throughout the Phase II Property, all three of which were equipped with monitoring wells to allow for the collection of groundwater samples. The boreholes were advanced to depths ranging from approximately 6.10 m to 7.62 m below the existing ground surface and terminated within an overburden layer of dense brown silty sand.

It should be noted that additional subsurface information, including historical soil and groundwater testing data, was obtained from a previous Phase II ESA conducted for the Phase II Property in March 2021 by Golder Associates Ltd. and utilized as part of this assessment.

In general, the subsurface soil profile encountered at the borehole locations consists of a surficial pavement structure (asphaltic concrete and granular sub-grade fill), underlain by fill material (brown silty sand with some clay, gravel, and cobbles) over top of multiple layers of compact to dense native brown sand with varying silt and clay contents, turning grey at deeper depths in line with the long-term water table. Bedrock was not encountered in any of the boreholes during the field drilling program, however, a dynamic cone penetration test was carried out at BH2-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface. The groundwater beneath the Phase II Property was encountered within an overburden layer of grey silty clay at depths ranging from approximately 5.14 m to 5.83 m below ground surface.

Between Golder's 2021 and Paterson's 2022 subsurface investigations, a total of ten soil samples were submitted for laboratory analysis of VOCs, PHCs (F₁-F₄), metals, PAHs, lead, EC, SAR, and pH parameters. Based on the analytical test results, the concentration of PHCs (F₁) in Sample MW21-04-07 was in excess of the MECP Table 3 Coarse-Grained Residential Soil Standards. It should be noted that this borehole is located in the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property.

Some elevated levels of EC and SAR were identified within the shallow fill material in BH1-22 as well as the deeper native soils in BH3-22. It should be noted that these EC and SAR exceedances are considered to be the result of a substance which has been applied to the site surface for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, which according to Section 49.1 of O. Reg. 153/04, the standards for these parameters are considered to have been met. As a result, these exceedances are not considered to represent a contaminant issue to the Phase II Property.

Groundwater samples were recovered from monitoring wells MW21-01 to MW21-04 on April 8, 2021 as part of Golder's 2021 subsurface investigation and submitted for laboratory analysis of VOCs and PHCs (F₁-F₄). Based on the analytical test results, the concentration of chloroform in Sample MW21-02, as well as the concentrations of chloroform, 1-2-Dichloroethane, and benzene in Sample MW21-04 were in excess of the MECP Table 3 Non-Potable Groundwater Standards.

The elevated concentrations of chloroform were suspected to be the result of the use of municipal water during the drilling process, and thus was not considered to present a contaminant issue to the property. The benzene exceedance was suspected to be the result of the historical presence of the former on-site retail fuel outlet. It should be noted that this benzene exceedance was identified in the monitoring well placed within the location of the former underground fuel storage tank nest in the southern portion of the site. The presence of 1-2-Dichloroethane, which is not typical of fuel related impacts, was suspected to be related to the historical use of solvents in an auto service garage which was formerly present on the property.

As part of this current assessment, groundwater samples were recovered from BH1-22, BH2-22, BH3-22, MW21-02, and MW21-04 on May 11, 2022 and March 19, 2024 and submitted for laboratory analysis of VOCs and PHC (F₁-F₄) parameters. Based on the analytical test results, all detected parameter concentrations in the groundwater samples analyzed are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards. It should be noted that no chloroform was detected in the samples analyzed as part of the 2022 and 2024 groundwater sampling program, confirming our theory that the initial concentrations identified in the 2021 sampling program were likely the result of the use of municipal water. The benzene concentration detected in MW21-04 during the 2022 and 2024 groundwater sampling program was also significantly lower than initially identified in the 2021 sampling program. It is possible that the initially identified elevated levels of benzene could be the result of suspended sediment collected in the water samples due to improperly established wells.

Recommendations

Soil

Based on the findings of this assessment, PHC impacted soil was identified in the southern portion of the Phase II Property, in the vicinity of the former on-site underground fuel storage tank nest.

It is our understanding that the Phase II Property is to be redeveloped in the future, thus it is recommended that this contaminated soil be remediated at the time of site redevelopment. This contaminated soil will require disposal at a licensed waste disposal facility.

Prior to off-site disposal of impacted soil at a licensed waste disposal facility, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

It is recommended that Paterson personnel be present on-site during remediation activities to direct the excavation and segregation of impacted soil, as well as to conduct confirmatory sampling as required.

Based on the soil test results, the majority of the on-site soils comply with the MECP Table 2.1 Excess Soil Quality Standards (Ontario Regulation 406/19), for off-site disposal. Additional excess soil testing may be required prior to future site excavation activities.

Monitoring Wells

If the groundwater monitoring wells installed on-site are not going to be used in the future, or will be destroyed during future construction activities, then they must be decommissioned according to Ontario Regulation 903 (Ontario Water Resources Act), however, we recommend that the wells be maintained for future sampling purposes, at least until the excavation for the foundation has commenced. The monitoring wells will be registered with the MECP under this regulation. Further information can be provided upon request in this regard.

1.0 INTRODUCTION

At the request of Ambassador Realty Inc., Paterson Group (Paterson) conducted a Phase II – Environmental Site Assessment (Phase II ESA) the property addressed 1166 Bank Street, in the City of Ottawa, Ontario (the Phase II Property).

The purpose of this Phase II ESA has been to address the areas of potential environmental concern (APECs) identified on the Phase II Property as a result the findings of the Phase I ESA.

1.1 Site Description

Address: 1166 Bank Street, Ottawa, Ontario.

Legal Description: Part of Lot L, Concession C (Rideau Front), Formerly

the Township of Nepean, in the City of Ottawa, Ontario.

Location: The Phase II Property is located on the northwest

corner of the intersection of Bank Street and Grove Avenue, in the City of Ottawa, Ontario. Refer to Figure

1 – Key Plan, appended to this report.

Latitude and Longitude: 45° 23′ 33″ N, 75° 40′ 57″ W.

Site Description:

Configuration: Rectangular.

Site Area: 1,020 m² (approximate).

Zoning: TM – Traditional Main Street Zone.

Current Uses: The Phase II Property is currently occupied with a one-

storey commercial retail building (Quickie Convenience

Store).

Services: The Phase II Property is located within a municipally

serviced area.

1.2 Property Ownership

The Phase II Property is currently owned by Ambassador Realty Inc. Paterson was retained to complete this Phase II ESA by Mr. Arthur Loeb of Ambassador Realty Inc., whose offices are located at 185 Somerset Street West, Ottawa, Ontario. Mr. Loeb can be contacted via telephone at 613-233-1104.

1.3 Applicable Site Condition Standard

The site condition standards for the subject property were obtained from Table 3 of the document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ministry of the Environment, Conservation and Parks (MECP), and dated April 15, 2011. The selected MECP standards are based on the following considerations:

J	Full depth soil conditions;
J	Coarse-grained soil conditions;
J	Non-potable groundwater conditions
J	Residential land use.

Grain size analysis was not conducted as part of this assessment, and as such, the coarse-grained soil standards were selected as a conservative approach.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is currently occupied with a one-storey commercial retail building, located in the western portion of the property. The remainder of the site is largely paved with an asphaltic concrete parking lot, though a small, landscaped area is present within the southeastern corner of the property.

The site topography appears to slope down towards the south, in the general direction of the Rideau River, which is consistent with the greater regional topography. The Phase II Property is considered to be at grade with respect to the adjacent streets and the neighbouring properties.

Water drainage on the Phase II Property occurs primarily via surface runoff towards catch basins located in the exterior parking lot or the adjacent streets. No ponded water, stressed vegetation, surficial staining, or any other indications of potential sub-surface contamination were observed on the Phase II Property at time of the site inspection.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigations

March 2021

A subsurface investigation, carried out by Golder Associates Ltd., was conducted for the Phase II Property on March 29 and March 30, 2021. At that time, four boreholes (MW21-01 to MW21-04) were advanced throughout the property and terminated within the overburden at depths ranging from approximately 6.6 to 7.6 m below ground surface. Upon completion, all boreholes were equipped with monitoring wells to allow for the collection of groundwater samples.

May 2022

The subsurface investigation for this assessment was conducted on May 3, 2022, and consisted of drilling three boreholes (BH1-22 to BH3-22) throughout the Phase II Property, all three of which were equipped with monitoring wells to allow for the collection of groundwater samples.

The boreholes were advanced to depths ranging from approximately 6.10 m to 7.62 m below the existing ground surface and terminated within an overburden layer of dense brown silty sand. It should be noted that a dynamic cone penetration test was carried out at BH1-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface.

3.2 Media Investigated

During the course of this subsurface investigation, soil and groundwater samples were obtained from the Phase II Property and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the contaminants of potential concern identified in the Phase I ESA.

The contaminants of potential concern for the soil and groundwater on the Phase II Property include the following:

Volatile Organic Compounds (VOCs);
Petroleum Hydrocarbons, fractions 1 – 4 (PHCs F ₁ -F ₄)
Polycyclic Aromatic Hydrocarbons (PAHs);
Metals (including Mercury and Hexavalent Chromium)
Electrical Conductivity (EC);
Sodium Adsorption Ratio (SAR).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase II Property.

3.3 Phase I ESA Conceptual Site Model

Geological and Hydrogeological Setting

Based on the available mapping information, the bedrock beneath the Phase II Property generally consists of shale of the Billings Formation, while the surficial geology consists largely of offshore marine sediments (erosional terraces) with an overburden ranging in thickness from approximately 5 m to 10 m.

Groundwater is anticipated to be encountered within the overburden and flow in a southerly direction towards the Ottawa River.

Water Bodies and Areas of Natural and Scientific Interest

No water bodies or areas of natural and scientific interest were identified within the Phase I Study Area.

The nearest named water body with respect to the Phase II Property is the Rideau River, located approximately 360 m to the south.

Drinking Water Wells

Based on the availability of municipal services, no drinking water wells are expected to be present within the Phase I Study Area.

Existing Buildings and Structures

The Phase II Property is currently occupied with a one-storey commercial retail building.

Current and Future Property Use

The Phase II Property is currently being used for commercial purposes.

It is our understanding that the Phase II Property is to be redeveloped with a sixstorey mixed-use building, with one level of underground parking.

Due to the change to a more sensitive land use (commercial to residential), this will require that a record of site condition (RSC) be filed with the MECP.

Neighbouring Land Use

The surrounding lands within the Phase I Study Area consist largely of residential properties, with the exception of commercial properties and some institutional land present along Bank Street.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

activities (PCAs), resulting in areas of potential environmental concern (APECs), were identified on the Phase II Property. These APECs include:
□ A former auto service garage, located in the northwestern portion of the Phase II Property.
□ A former underground fuel storage tank nest, located in the southern portion of the Phase II Property.
□ A former fuel pump island, located in the eastern portion of the Phase II Property.
☐ Fill material of unknown quality, located beneath the asphaltic concrete parking lot throughout the northern, eastern, and southern portions of the Phase II Property.
☐ The application of road salt during snow and/or ice conditions, located beneath the asphaltic concrete parking lot throughout the northern, eastern, and southern portions of the Phase II Property.
□ A former auto service garage and retail fuel outlet, located approximately m to the east of the Phase II Property (1159 Bank Street).
Other off-site PCAs were identified within the Phase I Study Area but were deemed not to be of any environmental concern to the Phase II Property based on their separation distances as well as their inferred down-gradient or cross-gradient orientation with respect to anticipated groundwater flow.
Contaminants of Potential Concern
The contaminants of potential concern (CPCs) associated with the aforementioned

APECs are considered to be:

Volatile Organic Compounds (VOCs);

Petroleum Hydrocarbons, fractions $1 - 4$ (PHCs F_1 - F_4);
Polycyclic Aromatic Hydrocarbons (PAHs);
Metals (including Mercury and Hexavalent Chromium);
Electrical Conductivity (EC);
Sodium Adsorption Ratio (SAR).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase II Property.

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I ESA is considered to be sufficient to conclude that there are PCAs and APECs associated with the Phase II Property.

The presence of any PCAs was confirmed by a variety of independent sources, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from the Sampling and Analysis Plan

No deviations from the Sampling and Analysis were made during the course of this Phase II ESA.

3.5 Physical Impediments

No physical impediments were encountered during the course of the field drilling program.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation for this assessment was conducted on May 3, 2022, and consisted of drilling three boreholes (BH1-22 to BH3-22) within the exterior parking lot of the Phase II Property.

The boreholes were advanced to depths ranging from approximately 6.10 m to 7.62 m below the existing ground surface and terminated within an overburden layer of dense brown silty sand. It should be noted that a dynamic cone penetration test was carried out at BH1-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface.

Upon completion, all three boreholes were instrumented with groundwater monitoring wells in order to access the groundwater table. During the field sampling program, the groundwater was measured at depths ranging from approximately 5.14 m to 5.83 m below the existing ground surface.

Under the full-time supervision of Paterson personnel, the boreholes were drilled using a low-clearance drill rig provided by George Downing Estate Drilling of Hawkesbury, Ontario. The locations of the boreholes are illustrated on "Drawing PE5590-3 – Test Hole Location Plan", appended to this report.

4.2 Soil Sampling

Soil sampling protocols were followed using the MECP document entitled, "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996.

The samples were recovered using a stainless-steel split spoon, while wearing protective gloves (changed after each sample), and immediately placed into plastic bags. If significant contamination was encountered, the samples were instead placed into glass jars. Sampling equipment was routinely washed in soapy water and rinsed with methylhydrate after each split spoon to prevent any cross contamination of the samples. The samples were also stored in coolers to reduce analyte volatilization during transportation.

A total of 31 soil samples were obtained from the boreholes by means of auger and split spoon sampling. The depths at which auger and split spoon samples were obtained from the boreholes are shown as "**AU**" and "**SS**", respectively, on the Soil Profile and Test Data Sheets, appended to this report.

4.3 Field Screening Measurements

All soil samples collected were subjected to a preliminary screening procedure, which included visual screening for colour and evidence of metals, as well as soil vapour screening with a Photo Ionization Detector.

The recovered soil samples were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey, ensuring consistency of readings between samples. To measure the soil vapours, the analyser probe was inserted into the nominal headspace above the sample. The sample was then agitated and manipulated gently by hand as the measurement was taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement. The parts per million (ppm) scale was used to measure concentrations of organic vapours.

The results of the vapour survey are presented on the Soil Profile and Test Data Sheets, appended to this report.

4.4 Groundwater Monitoring Well Installation

Three groundwater monitoring wells were installed on the Phase II Property as part of this assessment. These monitoring wells were constructed using 50 mm diameter Schedule 40 threaded PVC risers and screens. A sand pack consisting of silica sand was placed around the screen with a bentonite seal placed above to minimize cross-contamination. A summary of the monitoring well construction details are listed below in Table 1 as well as on the Soil Profile and Test Data Sheets provided in Appendix 1.

Upon completion, the groundwater monitoring wells were developed using a dedicated inertial lift pump, with a minimum of three well volumes being removed from the wells at the time of installation. The wells were developed until the appearance of the water was noted to have stabilized. In addition, the ground surface elevations of each borehole were subsequently surveyed with respect to a known geodetic elevation.

Table 1 Monitoring Well Construction Details									
Well ID	Ground Surface Elevation (m ASL)	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type			
BH1-22	62.80	7.62	4.62-7.62	5.79-7.62	0.31-5.79	Flushmount			
BH2-22	62.88	6.10	3.10-6.10	2.74-6.10	0.31-2.74	Flushmount			
BH3-22	62.33	6.86	3.86-6.86	3.35-6.86	0.31-3.35	Flushmount			

4.5 Field Measurement of Water Quality Parameters

Groundwater monitoring and sampling was conducted on-site on May 11, 2022 and March 19, 2024. Following their development and stabilization during the May 2022 field sampling event, select water quality parameters were measured at each monitoring well location using a multi-reader probe device. The stabilized field parameter values are summarized below in Table 2.

Table 2 Measurement of Water Quality Parameters							
Well ID	Temperature (°C)	Conductivity (μS)	pH (Units)				
BH1-22	13.6	2,258	7.29				
BH2-22	16.7	>3,999	6.44				
BH3-22	-	-	-				
MW21-02	13.6	2,565	7.26				
MW21-04	-	-	-				

Due to high amounts of suspended sediment in the recovered groundwater, no water quality parameters were measured at BH3-22 and MW21-04 during the May 2022 field sampling event.

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled, "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996.

Standing water was purged from each monitoring well prior to the recovery of the groundwater samples using dedicated sampling equipment. The samples were then stored in coolers to reduce possible analyte volatilization during their transportation. Further details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan, appended to this report.

4.7 Analytical Testing

The following soil and groundwater samples were submitted for laboratory analysis:

Page 10

Table 3 **Testing Parameters for Submitted Soil Samples**

		Parameters Analyzed									
Sample ID	Sample Depth & Stratigraphic Unit	vocs	PHCs (F ₁ -F ₄)	Metals	+BH	Crvi	PAHs	EC	SAR	Hd	Rationale
BH1-22- SS3/SS4A	1.52 – 2.44 m Fill Material	X	X					X	Х		To assess for potential impacts resulting from the presence of a former auto service garage and the use of road salt for de-icing purposes.
BH1-22-SS8	5.33 – 5.94 m Silty Sand	X	X							X	To assess for potential impacts resulting from the presence of a former on-site auto service garage.
BH2-22-SS4A	2.29 – 2.44 m Fill Material			Х	Х	Х					To assess for potential impacts resulting from the presence of fill material of unknown quality.
BH2-22-SS5	3.05 – 3.66 m Silty Sand	х	X	X ¹							To assess for potential impacts resulting from the presence of a former on-site fuel pump island and a former off-site auto service garage.
BH3-22-SS3	1.52 – 2.13 m Fill Material			x	Х	X	X	x	x	X	To assess for potential impacts resulting from the presence of fill material of unknown quality and the use of road salt for deicing purposes.
BH3-22-SS6	3.81 – 4.42 m Silty Sand	X	X	X¹							To assess for potential impacts resulting from the presence of a former on-site underground fuel storage tank nest.
DUP-1 ²	3.81 – 4.42 m Silty Sand	Х									For laboratory QA/QC purposes.

^{1 –} Lead content only 2 – Duplicate sample of BH3-22-SS6

Table 4								
Testing Parameters for Submitted Groundwater Samples								
		Parameter	s Analyzed					
Sample ID	Screened Interval & Stratigraphic Unit	VOCs		Rationale				
MW21-02- GW2	4.82 – 7.82 m Silty Sand	Х		To verify the initial results obtained during the previous 2021 Phase II ESA.				
MW21-04- GW2	3.10 – 6.10 m Silty Sand	Х	X	To assess for potential impacts resulting from the presence of a former on-site underground fuel storage tank nest.				
BH1-22- GW1	4.62 – 7.62 m Silty Sand	X	Х	To assess for potential impacts resulting from the presence of a former on-site auto service garage.				
BH2-22- GW1	3.10 – 6.10 m Silty Sand	х	х	To assess for potential impacts resulting from the presence of a former on-site fuel pump island and a former off-site auto service garage.				
BH3-22- GW1	3.86 – 6.86 m Silty Sand	Х	Х	To assess for potential impacts resulting from the presence of a former on-site underground fuel storage tank nest.				
DUP-1 ¹	3.86 – 6.86 m Silty Sand	Х		For laboratory QA/QC purposes.				
MW21-02- GW3	4.82 – 7.82 m Silty Sand	Х		To confirm the groundwater quality at this monitoring well location.				
MW21-04- GW3	3.10 – 6.10 m Silty Sand	Х		To confirm the groundwater quality at this monitoring well location.				
1 – Duplicate sar	mple of BH3-22-GW1							

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA) and is accredited and certified by the SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All soil cuttings were removed from the site following the field program, while all purge water and equipment cleaning fluids were retained on-site.

4.9 Elevation Surveying

The ground surface elevations at each borehole location were surveyed using a GPS device by Paterson personnel and referenced to a geodetic datum.

4.10 Quality Assurance and Quality Control Measures

A summary of the quality assurance and quality control (QA/QC) measures, undertaken as part of this assessment, is provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

In general, the subsurface soil profile encountered at the borehole locations consists of a surficial pavement structure (asphaltic concrete and granular subgrade fill), underlain by fill material (brown silty sand with some clay, gravel, and cobbles) over top of multiple layers of compact to dense native brown sand with varying silt and clay contents, turning grey at deeper depths in line with the long-term water table.

Bedrock was not encountered in any of the boreholes during the field drilling program, however, a dynamic cone penetration test was carried out at BH2-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface.

Site geology details are provided in the Soil Profile and Test Data Sheets in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels beneath the Phase II Property were most recently measured using an electronic water level meter on March 19, 2024. The groundwater levels are summarized below in Table 5.

Table 5 Groundwater Level Measurements								
Borehole Location	Ground Surface Elevation (m)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement				
BH1-22	62.80 m	5.65 m	57.15 m					
BH2-22	62.88 m	5.67 m	57.21 m					
BH3-22	62.33 m	5.14 m	57.19 m					
MW21-01	62.96 m	5.83 m	57.13 m	March 19, 2024				
MW21-02	62.95 m	5.79 m	57.16 m					
MW21-03	62.39 m	5.27 m	57.12 m					
MW21-04	62.41 m	5.26 m	57.15 m					

The groundwater at the Phase II Property was encountered within the overburden at depths ranging from approximately 5.14 m to 5.83 m below the existing ground surface.

No unusual visual observations were identified within the recovered groundwater samples, with the exception of the groundwater purged from MW21-04, which was noted to contain a slight petroleum hydrocarbon odour.

Using the groundwater elevations recorded during the sampling event, groundwater contour mapping was completed as part of this assessment. Due to the incongruity with the low variability in the measured groundwater levels, a flow direction and hydraulic gradient could not be accurately calculated as part of this assessment.

It should be noted that groundwater levels are expected to fluctuate throughout the year with seasonal variations.

5.3 Fine/Coarse Soil Texture

Grain size analysis was not completed as part of this investigation. As a result, the coarse-grained soil standards were chosen as a conservative approach.

5.4 Field Screening

Field screening of the soil samples collected during the drilling program resulted in organic vapour readings ranging from 0.3 ppm to 3.8 ppm, with one notable exception. In general, the organic vapour readings obtained from the field screening indicate that there is a negligible potential for the presence of volatile substances, however, the vapour measurement of one sample (BH2-22-SS5) returned an outlier reading of 92.4 ppm. Upon recovery, this sample was noted to contain a distinct fuel-like odour, though no unusual discolouration or visible fuel staining was observed.

This sample was obtained from the borehole placed within the footprint of a former fuel pump island, at a depth of approximately 3.05 to 3.66 m below ground surface. As a result of the high vapour reading, this sample was selected for further laboratory testing.

Field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

March 2021

As part of the previous 2021 Phase II ESA completed by Golder, four soil samples were submitted for laboratory analysis of VOCs, PHCs (F₁-F₄), and metal parameters. The results of the 2021 analytical testing are presented below in Tables 6 to 8, as well as on the laboratory certificates of analysis included in Appendix 1.

Table 6
Analytical Test Results – Soil (Golder Associates Phase II ESA)
Volatile Organic Compounds (VOCs)

			Soil Samp	oles (ug/g)		
		March 29,	MECP Table 3			
	MDL	2021	Coarse-Grained			
Parameter	(µg/g)	MW21-01-	MW21-02-	MW21-03-	MW21-04-	Residential
	(µg/g)	09	10	01 pth (m bgs)	07	Soil Standards
			(µg/g)			
		6.10 - 6.60	5.49 - 6.10	0.15 - 0.61	3.66 - 4.27	
Acetone	0.50	nd	nd	nd	nd	16
Benzene	0.02	nd	nd	nd	nd	0.21
Bromodichloromethane	0.05	nd	nd	nd	nd	13
Bromoform	0.05	nd	nd	nd	nd	0.27
Bromomethane	0.05	nd	nd	nd	nd	0.05
Carbon Tetrachloride	0.05	nd	nd	nd	nd	0.05
Chlorobenzene	0.05	nd	nd	nd	nd	2.4
Chloroform	0.05	nd	nd	nd	nd	0.05
Dibromochloromethane	0.05	nd	nd	nd	nd	9.4
Dichlorodifluoromethane	0.05	nd	nd	nd	nd	16
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	3.4
1,3-Dichlorobenzene	0.05	nd	nd	nd	nd	4.8
1,4-Dichlorobenzene	0.05	nd	nd	nd	nd	0.083
1,1-Dichloroethane	0.05	nd	nd	nd	nd	3.5
1,2-Dichloroethane	0.05	nd	nd	nd	nd	0.05
1,1-Dichloroethylene	0.05	nd	nd	nd	nd	0.05
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	3.4
trans-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	0.084
1,2-Dichloropropane	0.05	nd	nd	nd	nd	0.05
1,3-Dichloropropene	0.05	nd	nd	nd	nd	0.05
Ethylbenzene	0.05	nd	nd	nd	nd	2
Ethylene Dibromide	0.05	nd	nd	nd	nd	0.05
Hexane	0.05	nd	nd	nd	nd	2.8
Methyl Ethyl Ketone	0.50	nd	nd	nd	nd	16
Methyl Isobutyl Ketone	0.50	nd	nd	nd	nd	1.7
Methyl tert-butyl ether	0.05	nd	nd	nd	nd	0.75
Methylene Chloride	0.05	nd	nd	nd	nd	0.1
Styrene	0.05	nd	nd	nd	nd	0.7
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.058
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.05
Tetrachloroethylene	0.05	nd	nd	nd	nd	0.28
Toluene	0.05	nd	nd	nd	nd	2.3
1,1,1-Trichloroethane	0.05	nd	nd	nd	nd	0.38
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	0.05
Trichloroethylene	0.05	nd	nd	nd	nd	0.061
Trichlorofluoromethane	0.05	nd	nd	nd	nd	4
Vinyl Chloride	0.02	nd	nd	nd	nd	0.02
Xylenes	0.05	nd	nd	nd	nd	3.1

■ MDL – Method Detection Limit

nd – not detected above the MDL

☐ Bold and Underlined – value exceeds selected MECP standards

No VOC parameter were detected in the soil samples analyzed as part of the 2021 Phase II ESA. The results are considered to be in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

Table 7	
Analytical Test Results – So	I (Golder Associates Phase II ESA)
PHCs (F ₁ -F ₄)	

	MDL	March 29, 2021	Soil Samp	oil Samples (µg/g) March 30, 2021		MECP Table 3 Coarse-Grained
Parameter	(µg/g)	MW21-01-09	MW21-02-10	MW21-03-01	MW21-04-07	Residential Soil Standards
			Sample De	pth (m bgs)		(µg/g)
		6.10 - 6.60	5.49 - 6.10	0.15 - 0.61	3.66 - 4.27	(μ9/9)
PHCs F ₁	7	nd	nd	nd	<u>78.4</u>	55
PHCs F ₂	4	nd	nd	nd	nd	98
PHCs F ₃	8	nd	nd	nd	nd	300
PHCs F ₄	6	nd	nd	nd	nd	2,800

■ MDL – Method Detection Limit

☐ nd – not detected above the MDL

■ Bold and Underlined – value exceeds selected MECP standards

The concentration of PHCs F₁ detected in soil sample MW21-04-07 was in excess of the MECP Table 3 Coarse-Grained Residential Soil Standards. All other PHC parameters were non-detect in the remaining soil samples analyzed as part of the 2021 Phase II ESA.

Table 8			
Analytical Test Res	sults – Soil (Golder	Associates	Phase II ESA)
Metals			

			Soil Samp	oles (ug/g)		
		March 29,		March 30,		MECP Table 3
	MDL	2021		2021		Coarse-Grained
Parameter		MW21-01-	MW21-02-	MW21-03-	MW21-04-	Residential
	(µg/g)	09	10	01	07	Soil Standards
			Sample De	pth (m bgs)		(µg/g)
		6.10 - 6.60	5.49 - 6.10	0.15 - 0.61	3.66 - 4.27	
Antimony	1.0	nd	nd	nd	nd	7.5
Arsenic	1.0	1	1	3	1	18
Barium	1.0	18.4	15.8	151	44	390
Beryllium	0.5	nd	nd	nd	nd	4
Boron	5.0	nd	nd	5	nd	120
Cadmium	0.5	nd	nd	nd	nd	1.2
Chromium	5.0	6	5	15	8	160
Chromium VI	0.2	nt	nt	nt	nt	8
Cobalt	1.0	2.8	2.8	6.9	3.8	22
Copper	5.0	5.9	6.2	15.3	8.2	140
Lead	1.0	2	2	17	2	120
Mercury	0.1	nt	nt	nt	nt	0.27
Molybdenum	1.0	nd	nd	1.5	nd	6.9
Nickel	5.0	4	4	17	7	100
Selenium	1.0	nd	nd	nd	nd	2.4
Silver	0.3	nd	nd	nd	nd	20
Thallium	1.0	nd	nd	nd	nd	1
Uranium	1.0	0.58	nd	0.75	nd	23
Vanadium	10.0	12.8	11.1	21.2	18.8	86
Zinc	20.0	11	9	42	15	340

- ☐ MDL Method Detection Limit
- nd not detected above the MDL
- □ nt not tested for this parameter
- □ Bold and Underlined value exceeds selected MECP standards

All detected metal parameter concentrations in the soil samples analyzed as part of the 2021 Phase II ESA were in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

May 2022

As part of this current Phase II ESA, six soil samples were submitted for laboratory analysis of VOCs, PHCs (F₁-F₄), metals, PAHs, lead, EC, SAR, and pH parameters. The results of the analytical testing are presented below in Tables 9 to 13, as well as on the laboratory certificates of analysis included in Appendix 1.

Table 9
Analytical Test Results – Soil
Volatile Organic Compounds (VOCs)

Volutile Organio e	<u> </u>	<u> </u>		oles (ug/g)					
		May 3, 2022 MECP Ta							
	MDL	BH1-22-	BH1-22-	BH2-22-	BH3-22-	Coarse-Grained			
Parameter	(µg/g)	SS3/SS4A	SS8	SS5	SS6	Residential Soil Standards			
			Sample De	pth (m bgs)	·	μg/g)			
		1.52 - 2.44	5.33 - 5.94	3.05 – 3.66	3.81 - 4.42	(49/9)			
Acetone	0.50	nd	nd	nd	nd	16			
Benzene	0.02	nd	nd	nd	nd	0.21			
Bromodichloromethane	0.05	nd	nd	nd	nd	13			
Bromoform	0.05	nd	nd	nd	nd	0.27			
Bromomethane	0.05	nd	nd	nd	nd	0.05			
Carbon Tetrachloride	0.05	nd	nd	nd	nd	0.05			
Chlorobenzene	0.05	nd	nd	nd	nd	2.4			
Chloroform	0.05	nd	nd	nd	nd	0.05			
Dibromochloromethane	0.05	nd	nd	nd	nd	9.4			
Dichlorodifluoromethane	0.05	nd	nd	nd	nd	16			
1,2-Dichlorobenzene	0.05	nd	nd	nd	nd	3.4			
1,3-Dichlorobenzene	0.05	nd	nd	nd	nd	4.8			
1,4-Dichlorobenzene	0.05	nd	nd	nd	nd	0.083			
1,1-Dichloroethane	0.05	nd	nd	nd	nd	3.5			
1,2-Dichloroethane	0.05	nd	nd	nd	nd	0.05			
1,1-Dichloroethylene	0.05	nd	nd	nd	nd	0.05			
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	3.4			
trans-1,2-Dichloroethylene	0.05	nd	nd	nd	nd	0.084			
1,2-Dichloropropane	0.05	nd	nd	nd	nd	0.05			
1,3-Dichloropropene	0.05	nd	nd	nd	nd	0.05			
Ethylbenzene	0.05	nd	nd	nd	nd	2			
Ethylene Dibromide	0.05	nd	nd	nd	nd	0.05			
Hexane	0.05	nd	nd	nd	nd	2.8			
Methyl Ethyl Ketone	0.50	nd	nd	nd	nd	16			
Methyl Isobutyl Ketone	0.50	nd	nd	nd	nd	1.7			
Methyl tert-butyl ether	0.05	nd	nd	nd	nd	0.75			
Methylene Chloride	0.05	nd	nd	nd	nd	0.1			
Styrene	0.05	nd	nd	nd	nd	0.7			
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.058			
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	0.05			
Tetrachloroethylene	0.05	nd	nd	nd	nd	0.28			
Toluene	0.05	nd	nd	nd	nd	2.3			
1,1,1-Trichloroethane	0.05	nd	nd	nd	nd	0.38			
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	0.05			
Trichloroethylene	0.05	nd	nd	nd	nd	0.061			
Trichlorofluoromethane	0.05	nd	nd	nd	nd	4			
Vinyl Chloride	0.02	nd	nd	nd	nd	0.02			
Xylenes	0.05	nd	nd	nd	nd	3.1			
Notes:									

☐ MDL – Method Detection Limit

☐ nd – not detected above the MDL

Bold and Underlined – value exceeds selected MECP standards

No VOC parameters were detected in any of the soil samples analyzed. The results are considered to be in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

Table 10
Analytical Test Results - Soil
PHCs (F ₁ -F ₄)

				oles (ug/g) s, 2022		MECP Table 3
Parameter	MDL (µg/g)	BH1-22- SS3/SS4A	BH1-22- SS8	BH2-22- SS5	BH3-22- SS6	Coarse-Grained Residential Soil Standards
			Sample De	pth (m bgs)		(μg/g)
		1.52 - 2.44	5.33 - 5.94	3.05 - 3.66	3.81 - 4.42	(F9·9/
PHCs F₁	7	nd	nd	nd	nd	55
PHCs F ₂	4	nd	nd	35	nd	98
PHCs F ₃	8	38	nd	10	nd	300
PHCs F₄	6	66	nd	nd	nd	2,800

☐ MDL – Method Detection Limit

nd – not detected above the MDL

Bold and Underlined - value exceeds selected MECP standards

All detected PHC parameter concentrations in the soil samples analyzed are in compliance are considered to be in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

Table 11
Analytical Test Results – Soil
Metals

			ples (ug/g)	MECP Table 3	
D	MDL		3, 2022	Coarse-Grained	
Parameter	(µg/g)	BH2-22-SS4A	BH3-22-SS3	Residential	
	(1-3-3)		epth (m bgs)	Soil Standards	
		2.29 – 2.44	1.52 – 2.13	(µg/g)	
Antimony	1.0	2.8	1.0	7.5	
Arsenic	1.0	3.0	4.8	18	
Barium	1.0	38.1	161	390	
Beryllium	0.5	nd	0.7	4	
Boron	5.0	7.2	9.0	120	
Cadmium	0.5	nd	nd	1.2	
Chromium VI	0.2	nd	nd	8	
Chromium	5.0	15.9	22.5	160	
Cobalt	1.0	5.6	8.3	22	
Copper	5.0	13.1	23.0	140	
Lead	1.0	48.0	26.2	120	
Mercury	0.1	nd	nd	0.27	
Molybdenum	1.0	nd	nd	6.9	
Nickel	5.0	14.7	18.7	100	
Selenium	1.0	nd	nd	2.4	
Silver	0.3	nd	nd	20	
Thallium	1.0	nd	nd	1	
Uranium	1.0	nd	nd	23	
Vanadium	10.0	26.6	36.0	86	
Zinc	20.0	37.1	59.9	340	

Notes:

☐ MDL – Method Detection Limit

☐ nd – not detected above the MDL

☐ Bold and Underlined – value exceeds selected MECP standards

All detected metal parameter concentrations in the soil samples analyzed are in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

Table 12
Analytical Test Results - Soil
PAHs

		Soil Samples (ug/g) May 3, 2022	MECP Table 3 Coarse-Grained
Parameter	MDL	BH3-22-SS3	Residential
	(µg/g)	Sample Depth (m bgs)	Soil Standards
		1.52 – 2.13	(µg/g)
Acenaphthene	0.02	nd	7.9
Acenaphthylene	0.02	0.04	0.15
Anthracene	0.02	0.02	0.67
Benzo[a]anthracene	0.02	0.06	0.5
Benzo[a]pyrene	0.02	0.08	0.3
Benzo[b]fluoranthene	0.02	0.10	0.78
Benzo[g,h,i]perylene	0.02	0.06	6.6
Benzo[k]fluoranthene	0.02	0.05	0.78
Chrysene	0.02	0.08	7
Dibenzo[a,h]anthracene	0.02	nd	0.1
Fluoranthene	0.02	0.15	0.69
Fluorene	0.02	nd	62
Indeno [1,2,3-cd] pyrene	0.02	0.05	0.38
1-Methylnaphthalene	0.02	nd	0.99
2-Methylnaphthalene	0.02	nd	0.99
Methylnaphthalene (1&2)	0.04	nd	0.99
Naphthalene	0.01	nd	0.6
Phenanthrene	0.02	0.08	6.2
Pyrene	0.02	0.14	78

Notes.

☐ MDL – Method Detection Limit

☐ nd – not detected above the MDL

☐ Bold and Underlined – value exceeds selected MECP standards

All detected PAH parameter concentrations in the soil samples analyzed are in compliance with the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

Table 13
Analytical Test Results - Soil
Inorganics

9							
			Soil	Samples (u	g/g)		
				May 3, 2022			MECP Table 3
Parameter	MDL	BH1-22-	BH1-22-	BH2-22-	BH3-22-	BH3-22-	Coarse-Grained
i di diliotoi	IIIDL	SS3/SS4A	SS8	SS5	SS3	SS6	Residential
			Sam	ole Depth (m	bgs)		Soil Standards
		1.52 - 2.44	5.33 - 5.94	3.05 - 3.66	1.52 - 2.13	3.81 - 4.42	
Lead	1.0 µg/g	nt	nt	5	26.2	2	120 μg/g
EC	5.0 µS/cm	<u>1,670</u>	nt	nt	2,760	nt	700 μS/cm
SAR	0.01	<u>13.5</u>	nt	nt	<u>14.1</u>	nt	5.00
pН	0.05 pH units	nt	7.49	nt	7.30	nt	5.00 – 11.00 pH units

- ☐ MDL Method Detection Limit
- ☐ nd not detected above the MDL
- □ nt not tested for this parameter
 - Bold and Underlined value exceeds selected MECP standards

The EC and SAR levels detected in Samples BH1-22-SS3/SS4A and BH3-22-SS6 are in excess of the selected MECP Table 3 Coarse-Grained Residential Soil Standards.

It should be noted that these EC and SAR exceedances are considered to be the result of a substance which has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, which according to Section 49.1 of O. Reg. 153/04, the standards for these parameters are considered to have been met. As a result, these exceedances are not considered to represent a contaminant issue to the Phase I Property.

Parameter	Maximum Concentration (μg/g)	Sample ID	Depth Interval (m BGS)
Antimony	2.8	BH2-22-SS4A	2.29 – 2.44
Arsenic	4.8	BH3-22-SS3	1.52 – 2.13
Barium	161	BH3-22-SS3	1.52 – 2.13
Beryllium	0.7	BH3-22-SS3	1.52 – 2.13
Boron	9.0	BH3-22-SS3	1.52 – 2.13
Chromium	15	MW21-03-01	0.15 - 0.61
Cobalt	8.3	BH3-22-SS3	1.52 – 2.13
Copper	23.0	BH3-22-SS3	1.52 – 2.13
Lead	48.0	BH2-22-SS4A	2.29 - 2.44
Molybdenum	1.5	MW21-03-01	0.15 - 0.61
Nickel	18.7	BH3-22-SS3	1.52 – 2.13
Uranium	0.75	MW21-03-01	0.15 - 0.61
Vanadium	36.0	BH3-22-SS3	1.52 – 2.13
Zinc	59.9	BH3-22-SS3	1.52 – 2.13

Table 14 (Continued) Maximum Concentrations – Soil					
Parameter	Maximum Concentration (μg/g)	Sample ID	Depth Interval (m BGS)		
PHCs F₁	<u>78.4</u>	MW21-04-07	3.66 - 4.27		
PHCs F ₂	35	BH2-22-SS5	3.05 – 3.66		
PHCs F ₃	38	BH1-22-SS3/SS4A	1.52 – 2.44		
PHCs F ₄	66	BH1-22-SS3/SS4A	1.52 – 2.44		
Acenaphthylene	0.04	BH3-22-SS3	1.52 – 2.13		
Anthracene	0.02	BH3-22-SS3	1.52 – 2.13		
Benzo[a]anthracene	0.06	BH3-22-SS3	1.52 – 2.13		
Benzo[a]pyrene	0.08	BH3-22-SS3	1.52 – 2.13		
Benzo[b]fluoranthene	0.10	BH3-22-SS3	1.52 – 2.13		
Benzo[g,h,i]perylene	0.06	BH3-22-SS3	1.52 – 2.13		
Benzo[k]fluoranthene	0.05	BH3-22-SS3	1.52 – 2.13		
Chrysene	0.08	BH3-22-SS3	1.52 – 2.13		
Fluoranthene	0.15	BH3-22-SS3	1.52 – 2.13		
Indeno [1,2,3-cd] pyrene	0.05	BH3-22-SS3	1.52 – 2.13		
Phenanthrene	0.08	BH3-22-SS3	1.52 – 2.13		
Pyrene	0.14	BH3-22-SS3	1.52 – 2.13		
EC	2,760	BH3-22-SS6	3.81 – 4.42		
SAR	14.1	BH3-22-SS6	3.81 – 4.42		
pН	7.49	BH1-22-SS8	5.33 - 5.94		
Notes: Bold and Underline	<u>d</u> – value exceeds selected N	MECP standards			

All other parameter concentrations analyzed were below the laboratory detection limits. The laboratory certificates of analysis are provided in Appendix 1.

5.6 Groundwater Quality

March 2021

As part of the previous 2021 Phase II ESA, four groundwater samples were submitted for laboratory analysis of VOCs and PHC (F₁-F₄) parameters. The results of the 2021 analytical testing are presented below in Tables 15 and 16, as well as on the laboratory certificates of analysis included in Appendix 1.

Table 15
Analytical Test Results – Groundwater (Golder Associates Phase II ESA)
Volatile Organic Compounds (VOCs)

			MECP Table 3			
	MDL		Non-Potable			
Parameter	(µg/L)	53-MW21-1	53-MW21-2	53-MW21-3	53-MW21-4	Groundwater
	(µg/L)		Standards			
		5.00 - 6.50	4.82 – 7.82	3.58 - 6.58	3.10 – 6.10	(μg/L)
Acetone	5.0	nd	nd	nd	nd	130,000
Benzene	0.5	0.46	0.25	nd	<u>70.7</u>	44
Bromodichloromethane	0.5	nd	nd	nd	nd	85,000
Bromoform	0.5	nd	nd	nd	nd	380
Bromomethane	0.5	nd	nd	nd	nd	5.6
Carbon Tetrachloride	0.2	nd	nd	nd	nd	0.79
Chlorobenzene	0.5	nd	nd	nd	nd	630
Chloroform	0.5	0.54	3.49	0.91	<u>4.61</u>	2.4
Dibromochloromethane	0.5	nd	nd	nd	nd	82,000
Dichlorodifluoromethane	1.0	nd	nd	nd	nd	4,400
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	4,600
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	9,600
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	8
1,1-Dichloroethane	0.5	nd	nd	nd	nd	320
1,2-Dichloroethane	0.5	nd	nd	nd	<u>5.31</u>	1.6
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	1.6
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6
1,2-Dichloropropane	0.5	nd	nd	nd	nd	16
1,3-Dichloropropene	0.5	nd	nd	nd	nd	5.2
Ethylbenzene	0.5	nd	nd	nd	108	2,300
Ethylene Dibromide	0.2	nd	nd	nd	nd	0.25
Hexane	1.0	nd	nd	nd	nd	51
Methyl Ethyl Ketone	5.0	nd	nd	nd	nd	470,000
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	140,000
Methyl tert-butyl ether	2.0	nd	nd	nd	nd	190
Methylene Chloride	5.0	nd	nd	nd	nd	610
Styrene	0.5	nd	nd	nd	nd	1,300
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	nd	3.3
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	nd	3.2
Tetrachloroethylene	0.5	nd	nd	nd	nd	1.6
Toluene	0.5	nd	nd	nd	10.9	18,000
1,1,1-Trichloroethane	0.5	nd	nd	nd	nd	640
1,1,2-Trichloroethane	0.5	nd	nd	nd	nd	4.7
Trichloroethylene	0.5	nd	nd	nd	nd	1.6
Trichlorofluoromethane	1.0	nd	nd	nd	nd	2,500
Vinyl Chloride	0.5	nd	nd	nd	nd	0.5
Xylenes	0.5	nd	nd	nd	55.1	4,200

☐ MDL – Method Detection Limit

nd – not detected above the MDL

■ Bold and Underlined – value exceeds selected MECP standards

The concentration of chloroform in Sample MW21-02, as well as the concentrations of chloroform, 1-2-Dichloroethane, and benzene in Sample MW21-04 were in excess of the MECP Table 3 Non-Potable Groundwater Standards.

The elevated concentrations of chloroform were suspected to be the result of the use of municipal water during the drilling process, and thus are not considered to present a contaminant issue to the property.

The benzene exceedance was suspected to be the result of the historical presence of the former on-site retail fuel outlet. It should be noted that this benzene exceedance was identified in the monitoring well placed within the location of the former underground fuel storage tank nest in the southern portion of the site.

The presence of 1-2-Dichloroethane, which is not typical of fuel related impacts, was suspected to be related to the historical use of solvents in an auto service garage which was formerly present on the property.

PHCs (F ₁ -F ₄)			Groundwater S	Samples (ug/L)	MECP Table 3
			April 8		,	Non-Potable
Parameter	MDL	53-MW21-1	53-MW21-2	53-MW21-3	53-MW21-4	Groundwater
	(µg/L)		•	Standards		
		5.00 - 6.50	4.82 – 7.82	3.58 - 6.58	3.10 - 6.10	(μg/L)
PHCs F₁	25	nd	nd	nd	528	750
PHCs F ₂	100	nd	nd	nd	nd	150
PHCs F ₃	100	nd	nd	nd	nd	500
PHCs F₄	100	nd	nd	nd	nd	500

All detected PHC parameter concentrations in the groundwater samples analyzed were in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards.

May 2022

As part of this current Phase II ESA, five groundwater samples were submitted for laboratory analysis of VOCs and PHC (F_1 - F_4) parameters. The results of the analytical testing are presented below in Tables 17 and 18, as well as on the laboratory certificates of analysis included in Appendix 1.

Table 17 Analytical Test Results – Groundwater Volatile Organic Compounds (VOCs)

			Groundy	vater Sampl	es (ug/L)		MEOD T 11 0
			MECP Table 3				
Parameter	MDL	BH1-22-	BH2-22-	BH3-22-	MW21-02-	MW21-04-	Non-Potable Groundwater
rarameter	(µg/L)	GW1	GW1	GW1	GW2	GW2	Standards
		Screening Interval (m bgs)				(µg/L)	
		4.62 – 7.62	3.10 – 6.10	3.86 – 6.86	4.82 – 7.82	3.10 – 6.10	
Acetone	5.0	nd	nd	nd	nd	nd	130,000
Benzene	0.5	nd	nd	nd	nd	5.0	44
Bromodichloromethane	0.5	nd	nd	nd	nd	nd	85,000
Bromoform	0.5	nd	nd	nd	nd	nd	380
Bromomethane	0.5	nd	nd	nd	nd	nd	5.6
Carbon Tetrachloride	0.2	nd	nd	nd	nd	nd	0.79
Chlorobenzene	0.5	nd	nd	nd	nd	nd	630
Chloroform	0.5	nd	nd	nd	nd	nd	2.4
Dibromochloromethane	0.5	nd	nd	nd	nd	nd	82,000
Dichlorodifluoromethane	1.0	nd	nd	nd	nd	nd	4,400
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	nd	4,600
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	nd	9,600
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	nd	8
1,1-Dichloroethane	0.5	nd	nd	nd	nd	nd	320
1,2-Dichloroethane	0.5	nd	nd	nd	nd	nd	1.6
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
1,2-Dichloropropane	0.5	nd	nd	nd	nd	nd	16
1,3-Dichloropropene	0.5	nd	nd	nd	nd	nd	5.2
Ethylbenzene	0.5	nd	nd	nd	nd	38.2	2,300
Ethylene Dibromide	0.2	nd	nd	nd	nd	nd	0.25
Hexane	1.0	nd	nd	nd	nd	nd	51
Methyl Ethyl Ketone	5.0	nd	nd	nd	nd	nd	470,000
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	nd	140,000
Methyl tert-butyl ether	2.0	nd	nd	nd	nd	nd	190
Methylene Chloride	5.0	nd	nd	nd	nd	nd	610
Styrene	0.5	nd	nd	nd	nd	nd	1,300
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	nd	nd	3.3
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	nd	nd	3.2
Tetrachloroethylene	0.5	nd	nd	nd	nd	nd	1.6
Toluene	0.5	nd	nd	nd	nd	1.1	18,000
1,1,1-Trichloroethane	0.5	nd	nd	nd	nd	nd	640
1,1,2-Trichloroethane	0.5	nd	nd	nd	nd	nd	4.7
Trichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
Trichlorofluoromethane	1.0	nd	nd	nd	nd	nd	2,500
Vinyl Chloride	0.5	nd	nd	nd	nd	nd	0.5
Xylenes	0.5	nd	nd	nd	nd	1.8	4,200

Notes:

☐ MDL – Method Detection Limit

nd – not detected above the MDL

Bold and Underlined – value exceeds selected MECP standards

All detected VOC parameter concentrations in the groundwater samples analyzed are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards.

Table 18
Analytical Test Results – Groundwater
PHCs (F ₁ -F ₄)

		Groundwater Samples (ug/L) May 11, 2022					MECP Table 3 Non-Potable
Parameter	MDL (µg/L)	BH1-22- GW1	BH2-22- GW1	BH3-22- GW1	MW21-02- GW2	MW21-04- GW2	Groundwater Standards
			Screeni	ng Interval	(m bgs)		βιαπαάτας (μg/L)
		4.62 – 7.62	3.10 - 6.10	3.86 - 6.86	4.82 – 7.82	3.10 - 6.10	(49,-)
PHCs F ₁	25	nd	nd	nd	nt	nd	750
PHCs F ₂	100	nd	nd	nd	nt	nd	150
PHCs F ₃	100	nd	nd	nd	nt	nd	500
PHCs F ₄	100	nd	nd	nd	nt	nd	500

Notes:

☐ MDL – Method Detection Limit

nd – not detected above the MDL

Bold and Underlined – value exceeds selected MECP standards

No PHC parameter concentrations were detected in the groundwater samples analyzed. The results are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards.

March 2024

A second round of groundwater testing was carried out on March 19, 2024 to confirm the groundwater quality at MW21-02 and MW21-04. Groundwater samples were recovered from the two wells and submitted for laboratory analysis of VOCs parameters. The results of the analytical testing are presented below in Table 19, as well as on the laboratory certificates of analysis included in Appendix 1.

Table 19
Analytical Test Results – Groundwater
Volatile Organic Compounds (VOCs)

	MDL		Samples (ug/L) 19, 2024	MECP Table 3 Non-Potable	
Parameter	(µg/L)	MW21-02-GW2	MW21-04-GW2	Groundwater	
	(µg/L)	Screening Interval (m bgs)		Standards	
		4.82 – 7.82	3.10 – 6.10	(µg/L)	
Acetone	5.0	nd	nd	130,000	
Benzene	0.5	nd	nd	44	
Bromodichloromethane	0.5	nd	nd	85,000	
Bromoform	0.5	nd	nd	380	
Bromomethane	0.5	nd	nd	5.6	
Carbon Tetrachloride	0.2	nd	nd	0.79	

Notes:

☐ MDL – Method Detection Limit

■ nd – not detected above the MDL

☐ Bold and Underlined – value exceeds selected MECP standards

Table 19 (Continued) Analytical Test Results – Groundwater Volatile Organic Compounds (VOCs)

		Groundwater	MECP Table 3		
	MDL		19, 2024	Non-Potable	
Parameter	(µg/L)	MW21-02-GW2	MW21-04-GW2	Groundwater Standards	
	"	Screening Interval (m bgs)		(μg/L)	
		4.82 – 7.82	3.10 – 6.10		
Chlorobenzene	0.5	nd	nd	630	
Chloroform	0.5	nd	nd	2.4	
Dibromochloromethane	0.5	nd	nd	82,000	
Dichlorodifluoromethane	1.0	nd	nd	4,400	
1,2-Dichlorobenzene	0.5	nd	nd	4,600	
1,3-Dichlorobenzene	0.5	nd	nd	9,600	
1,4-Dichlorobenzene	0.5	nd	nd	8	
1,1-Dichloroethane	0.5	nd	nd	320	
1,2-Dichloroethane	0.5	nd	nd	1.6	
1,1-Dichloroethylene	0.5	nd	nd	1.6	
cis-1,2-Dichloroethylene	0.5	nd	nd	1.6	
trans-1,2-Dichloroethylene	0.5	nd	nd	1.6	
1,2-Dichloropropane	0.5	nd	nd	16	
1,3-Dichloropropene	0.5	nd	nd	5.2	
Ethylbenzene	0.5	nd	nd	2,300	
Ethylene Dibromide	0.2	nd	nd	0.25	
Hexane	1.0	nd	nd	51	
Methyl Ethyl Ketone	5.0	nd	nd	470,000	
Methyl Isobutyl Ketone	5.0	nd	nd	140,000	
Methyl tert-butyl ether	2.0	nd	nd	190	
Methylene Chloride	5.0	nd	nd	610	
Styrene	0.5	nd	nd	1,300	
1,1,1,2-Tetrachloroethane	0.5	nd	nd	3.3	
1,1,2,2-Tetrachloroethane	0.5	nd	nd	3.2	
Tetrachloroethylene	0.5	nd	nd	1.6	
Toluene	0.5	nd	nd	18,000	
1,1,1-Trichloroethane	0.5	nd	nd	640	
1,1,2-Trichloroethane	0.5	nd	nd	4.7	
Trichloroethylene	0.5	nd	nd	1.6	
Trichlorofluoromethane	1.0	nd	nd	2,500	
Vinyl Chloride	0.5	nd	nd	0.5	
Xylenes	0.5	nd	nd	4,200	
Notes:			1	1 -,	

Notes:

■ MDL – Method Detection Limit

nd – not detected above the MDL

□ Bold and Underlined – value exceeds selected MECP standards

No VOC parameter concentrations were detected in the groundwater samples analyzed. The results are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of this Phase II ESA were handled in accordance with the analytical protocols with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O. Reg. 153/04, as amended by the Environmental Protection Act, the certificates of analysis have been received for each sample submitted for laboratory analysis and have been appended to this report.

As per the Sampling and Analysis Plan, a duplicate soil sample was obtained from sample BH3-22-SS6 and submitted for laboratory analysis of VOC parameters. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 20.

Table 19 QA/QC Calculation	s – Soil				
Parameter	MDL (µg/g)	BH3-22-SS6	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
Acetone	0.50	nd	nd	0	Meets Target
Benzene	0.02	nd	nd	0	Meets Target
Bromodichloromethane	0.05	nd	nd	0	Meets Target
Bromoform	0.05	nd	nd	0	Meets Target
Bromomethane	0.05	nd	nd	0	Meets Target
Carbon Tetrachloride	0.05	nd	nd	0	Meets Target
Chlorobenzene	0.05	nd	nd	0	Meets Target
Chloroform	0.05	nd	nd	0	Meets Target
Dibromochloromethane	0.05	nd	nd	0	Meets Target
Dichlorodifluoromethane	0.05	nd	nd	0	Meets Target
1,2-Dichlorobenzene	0.05	nd	nd	0	Meets Target
1,3-Dichlorobenzene	0.05	nd	nd	0	Meets Target
1,4-Dichlorobenzene	0.05	nd	nd	0	Meets Target
1,1-Dichloroethane	0.05	nd	nd	0	Meets Target
1,2-Dichloroethane	0.05	nd	nd	0	Meets Target
1,1-Dichloroethylene	0.05	nd	nd	0	Meets Target
cis-1,2-Dichloroethylene	0.05	nd	nd	0	Meets Target
trans-1,2-Dichloroethylene	0.05	nd	nd	0	Meets Target
1,2-Dichloropropane	0.05	nd	nd	0	Meets Target
1,3-Dichloropropene	0.05	nd	nd	0	Meets Target
Ethylbenzene	0.05	nd	nd	0	Meets Target
Ethylene Dibromide	0.05	nd	nd	0	Meets Target
Hexane	0.05	nd	nd	0	Meets Target
Methyl Ethyl Ketone	0.50	nd	nd	0	Meets Target
Methyl Isobutyl Ketone	0.50	nd	nd	0	Meets Target
Methyl tert-butyl ether	0.05	nd	nd	0	Meets Target
Methylene Chloride	0.05	nd	nd	0	Meets Target
Styrene	0.05	nd	nd	0	Meets Target

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- Bold and Underlined value exceeds selected MECP standards

Table 19 (Continued QA/QC Calculations					
Parameter	MDL (µg/g)	BH3-22-SS6	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
1,1,1,2-Tetrachloroethane	0.05	nd	nd	0	Meets Target
1,1,2,2-Tetrachloroethane	0.05	nd	nd	0	Meets Target
Tetrachloroethylene	0.05	nd	nd	0	Meets Target
Toluene	0.05	nd	nd	0	Meets Target
1,1,1-Trichloroethane	0.05	nd	nd	0	Meets Target
1,1,2-Trichloroethane	0.05	nd	nd	0	Meets Target
Trichloroethylene	0.05	nd	nd	0	Meets Target
Trichlorofluoromethane	0.05	nd	nd	0	Meets Target
Vinyl Chloride	0.02	nd	nd	0	Meets Target
Xylenes	0.05	nd	nd	0	Meets Target
Notes: MDL – Method Detection nd – not detected above Bold and Underlined –	the MDL	s selected MECP stand	ards		

No VOC parameters were detected above the laboratory method detection limits in both the original and the duplicate sample, and as such, the results are considered to meet the data quality objectives outlined in the Sampling and Analysis Plan, appended to this report.

Similarly, a duplicate groundwater sample was obtained from sample BH3-22-GW1 and submitted for laboratory analysis of VOC parameters. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 21.

Parameter	MDL (μg/L)	BH3-22-GW1	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
Acetone	5.0	nd	nd	0	Meets Target
Benzene	0.5	nd	nd	0	Meets Target
Bromodichloromethane	0.5	nd	nd	0	Meets Target
Bromoform	0.5	nd	nd	0	Meets Target
Bromomethane	0.5	nd	nd	0	Meets Target
Carbon Tetrachloride	0.2	nd	nd	0	Meets Target
Chlorobenzene	0.5	nd	nd	0	Meets Target
Chloroform	0.5	nd	nd	0	Meets Target
Dibromochloromethane	0.5	nd	nd	0	Meets Target
Dichlorodifluoromethane	1.0	nd	nd	0	Meets Target
1,2-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,3-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,4-Dichlorobenzene	0.5	nd	nd	0	Meets Target

Page 30

Table 21 (Continued) QA/QC Calculations – Groundwater					
Parameter	MDL (μg/L)	BH3-22-GW1	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
1,1-Dichloroethane	0.5	nd	nd	0	Meets Target
1,2-Dichloroethane	0.5	nd	nd	0	Meets Target
1,1-Dichloroethylene	0.5	nd	nd	0	Meets Target
cis-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
trans-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
1,2-Dichloropropane	0.5	nd	nd	0	Meets Target
1,3-Dichloropropene	0.5	nd	nd	0	Meets Target
Ethylbenzene	0.5	nd	0.6	N/A	Does Not Meet Target
Ethylene Dibromide	0.2	nd	nd	0	Meets Target
Hexane	1.0	nd	nd	0	Meets Target
Methyl Ethyl Ketone	5.0	nd	nd	0	Meets Target
Methyl Isobutyl Ketone	5.0	nd	nd	0	Meets Target
Methyl tert-butyl ether	2.0	nd	nd	0	Meets Target
Methylene Chloride	5.0	nd	nd	0	Meets Target
Styrene	0.5	nd	nd	0	Meets Target
1,1,1,2-Tetrachloroethane	0.5	nd	nd	0	Meets Target
1,1,2,2-Tetrachloroethane	0.5	nd	nd	0	Meets Target
Tetrachloroethylene	0.5	nd	nd	0	Meets Target
Toluene	0.5	nd	0.5	N/A	Does Not Meet Target
1,1,1-Trichloroethane	0.5	nd	nd	0	Meets Target
1,1,2-Trichloroethane	0.5	nd	nd	0	Meets Target
Trichloroethylene	0.5	nd	nd	0	Meets Target
Trichlorofluoromethane	1.0	nd	nd	0	Meets Target
Vinyl Chloride	0.5	nd	nd	0	Meets Target
Xylenes	0.5	nd	nd	0	Meets Target
Notes: MDL – Method Detection Limit nd – not detected above the MDL Bold and Underlined – value exceeds selected MECP standards					

The relative percent difference (RPD) calculated for the majority of the parameters fell within of the acceptable range of 20%, with two exceptions. Due to the low concentrations measured, which are marginally in excess of the laboratory method detection limits and comply with the site specific standards, the results are considered sufficient to meet the data quality objectives outlined in the Sampling and Analysis Plan, appended to this report.

Based on the results of the QA/QC analysis, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O. Reg. 153/04 amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

As described in Section 7.1 of the Phase I ESA report, as well as Section 2.2 of this report, the following PCAs, as defined by Table 2 of O. Reg. 153/04, are considered to result in APECs on the Phase II Property:

Table 22 Areas of Potential Environmental Concern					
Area of Potential Environmental Concern	Location of APEC on Phase I Property	Potentially Contaminating Activity (Table 2 – O. Reg. 153/04)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)
APEC #1 Former Auto Service Garage	Northwestern Portion of Phase I Property	"Item 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems"	On-Site	VOCs PHCs (F ₁ -F ₄)	Soil and/or Groundwater
APEC #2 Former Underground Fuel Storage Tank Nest	Southern Portion of Phase I Property	"Item 28: Gasoline and Associated Products Storage in Fixed Tanks"	On-Site	VOCs PHCs (F ₁ -F ₄)	Soil and/or Groundwater
APEC #3 Former Fuel Pump Island	Eastern Portion of Phase I Property	"Item 28: Gasoline and Associated Products Storage in Fixed Tanks"	On-Site	VOCs PHCs (F ₁ -F ₄)	Soil and/or Groundwater
APEC #4 Fill Material of Unknown Quality	Eastern and Southern Portions of Phase I Property	"Item 30: Importation of Fill Material of Unknown Quality"	On-Site	PAHs Metals	Soil
APEC #5 Application of Road Salt During Snow/Ice Conditions	Northern, Eastern, and Southern Portions of Phase I Property	"No Item Number: Application of Road Salt During Snow and Ice Conditions"	On-Site	EC SAR	Soil
APEC #6 Former Auto Service Garage	Eastern Portion of Phase I Property	"Item 28: Gasoline and Associated Products Storage in Fixed Tanks" "Item 52: Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems"	Off-Site (20 m East)	VOCs PHCs (F ₁ -F ₄)	Groundwater

Report: PE5590-2 Page 31

April 18, 2024

Contaminants of Potential Concern (CPCs)

The contaminants of potential concern (CPCs) associated with the aforementioned APECs are considered to be:

Volatile Organic Compounds (VOCs);
Petroleum Hydrocarbons, fractions 1 – 4 (PHCs F ₁ -F ₄);
Polycyclic Aromatic Hydrocarbons (PAHs);
Metals (including Mercury and Hexavalent Chromium);
Electrical Conductivity (EC);
Sodium Adsorption Ratio (SAR).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase II Property.

Subsurface Structures and Utilities

Underground service locates were completed prior to the subsurface investigation. Underground utilities on the Phase II Property included electrical cables, natural gas pipelines, as well as municipal water and wastewater services.

Physical Setting

Site Stratigraphy

The stratigraphy of the Phase II Property generally consists of:

	Pavement structure (asphaltic concrete over crushed stone and gravel) encountered at ground level and extending to a maximum depth of approximately 0.20 m below ground surface.
	Fill material (brown silty sand with some clay, and gravel); extending to depths ranging from approximately 2.44 m to 2.97 m below ground surface
	Compact reddish brown silty sand; extending to depths ranging from approximately 2.97 m to 4.34 m below ground surface.
0	Grey silty clay with some sand and gravel; extending to depths ranging from approximately 3.66 m to 5.18 m below ground surface (BH1-22 and BH3-22 only).
	Dense brown silty sand to sandy silt with some clay and gravel; extending to depths ranging from approximately 4.27 m to 4.50 m below ground surface (BH1-22 and BH2-22 only).

Report: PE5590-2 April 18, 2024

☐ Dense light brown silty sand; extending to depths ranging from approximately 6.10 m to 7.62 m below ground surface (bottom of boreholes)

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is provided in the Soil Profile and Test Data Sheets in Appendix 1.

Hydrogeological Characteristics

The groundwater at the Phase II Property was encountered within an overburden layer of grey silty sand at depths ranging from approximately 5.14 m to 5.83 m below the existing ground surface.

Approximate Depth to Bedrock

Bedrock was not confirmed in any of the boreholes during the field drilling program, however, a dynamic cone penetration test was carried out at BH2-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface.

Approximate Depth to Water Table

The depth to the water table is approximately 5.14 m to 5.83 m below the existing ground surface.

Sections 41 and 43.1 of Ontario Regulation 153/04

Section 41 of the Regulation does not apply to the Phase II Property, as there are no bodies of water or areas of natural significance located on or within 30 m of the Phase II Property. The Phase II Property is therefore not considered to be environmentally sensitive.

Section 43.1 of the Regulation does not apply to the Phase II Property, since the bedrock is situated at depths greater than 2 m below ground surface, and thus is not considered to be a shallow soil property.

Existing Buildings and Structures

The Phase II Property is currently occupied with a one-storey commercial retail building.

Environmental Condition

Areas Where Contaminants are Present

Based on the analytical test results of the 2021 Phase II ESA and this current assessment, petroleum hydrocarbon impacted soil was identified in MW21-04, which is located in the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property.

Some elevated levels of EC and SAR were identified within the shallow fill material in BH1-22 as well as the deeper native soils in BH3-22. It should be noted that these EC and SAR exceedances are considered to be the result of a substance which has been applied to the site surface for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, which according to Section 49.1 of O. Reg. 153/04, the standards for these parameters are considered to have been met. As a result, these exceedances are not considered to represent a contaminant issue to the Phase II Property.

Based on the analytical test results, the groundwater beneath the Phase II Property is not considered to be contaminated.

Types of Contaminants

The soil in MW21-04 contains a level of PHCs (F₁) in excess of the selected MECP Table 3 coarse-grained residential soil standards.

Elevated levels of EC and SAR were also identified within the shallow fill material in BH1-22 as well as the deeper native soils in BH3-22, however, these concentrations are considered to meet the site standards according to Section 49.1 of O. Reg. 153/04.

Based on the analytical test results, the groundwater beneath the Phase II Property is not considered to be contaminated.

Contaminated Media

Based on the findings of the 2021 Phase II ESA, the soil within the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property is contaminated with PHCs (F₁).

Based on the analytical test results, the groundwater beneath the Phase II Property is not considered to be contaminated.

What Is Known About Areas Where Contaminants Are Present

PHC impacted soil was identified in MW21-04, which is located in the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property. Based on the sample depth (3.66 to 4.27 m below ground surface), the source of this contaminant is suspected to have been the result of possible leaks or spillages from the former underground fuel storage tanks at this location.

The exceedances of EC and SAR, though not posing a contaminant issue to the Phase II Property, is considered to be a result of the use of a substance for safety purposes during conditions of snow or ice or both, and thus is deemed to meet the site standards.

Based on the analytical test results, the groundwater beneath the Phase II Property is not considered to be contaminated.

Distribution and Migration of Contaminants

As previously noted, PHC impacted soil was identified in the vicinity of MW21-04, located within the southern portion of the Phase II Property. Based on the clean groundwater test results, this contamination is anticipated to be limited to the soil within this location.

Discharge of Contaminants

The PHC impacted soil identified in the vicinity of MW21-04 is suspected to have been the result of possible leaks or spillages from the former underground fuel storage tanks at this location.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants via the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

The downward migration of PHC contaminants in the vicinity of MW21-04 is not suspected to have occurred, due to the clean groundwater test results.

Potential for Vapour Intrusion

During redevelopment of the Phase II Property, all soils exceeding the selected MECP Table 3 coarse-grained residential soil standards will be removed and disposed of off-site. As such, there is no anticipated potential for future vapour intrusion at the Phase II Property.

Report: PE5590-2 Page 36

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the property addressed 1166 Bank Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address the potentially contaminating activities (PCAs) that were identified during the Phase I ESA and were considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The subsurface investigation for this assessment was conducted on May 3, 2022, and consisted of drilling three boreholes (BH1-22 to BH3-22) throughout the Phase II Property, all three of which were equipped with monitoring wells to allow for the collection of groundwater samples. The boreholes were advanced to depths ranging from approximately 6.10 m to 7.62 m below the existing ground surface and terminated within an overburden layer of dense brown silty sand.

It should be noted that additional subsurface information, including historical soil and groundwater testing data, was obtained from a previous Phase II ESA conducted for the Phase II Property in March 2021 by Golder Associates Ltd. and utilized as part of this assessment.

In general, the subsurface soil profile encountered at the borehole locations consists of a surficial pavement structure (asphaltic concrete and granular subgrade fill), underlain by fill material (brown silty sand with some clay, gravel, and cobbles) over top of multiple layers of compact to dense native brown sand with varying silt and clay contents, turning grey at deeper depths in line with the long-term water table. Bedrock was not encountered in any of the boreholes during the field drilling program, however, a dynamic cone penetration test was carried out at BH2-22, which was terminated on practical refusal on inferred bedrock at a depth of approximately 9.25 m below ground surface. The groundwater beneath the Phase II Property was encountered within an overburden layer of grey silty clay at depths ranging from approximately 5.14 m to 5.83 m below ground surface.

Between Golder's 2021 and Paterson's 2022 subsurface investigations, a total of ten soil samples were submitted for laboratory analysis of VOCs, PHCs (F₁-F₄), metals, PAHs, lead, EC, SAR, and pH parameters. Based on the analytical test results, the concentration of PHCs (F₁) in Sample MW21-04-07 was in excess of the MECP Table 3 Coarse-Grained Residential Soil Standards. It should be noted that this borehole is located in the vicinity of the former underground fuel storage tank nest in the southern portion of the Phase II Property.

Some elevated levels of EC and SAR were identified within the shallow fill material in BH1-22 as well as the deeper native soils in BH3-22. It should be noted that these EC and SAR exceedances are considered to be the result of a substance which has been applied to the site surface for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both, which according to Section 49.1 of O. Reg. 153/04, the standards for these parameters are considered to have been met. As a result, these exceedances are not considered to represent a contaminant issue to the Phase II Property.

Groundwater samples were recovered from monitoring wells MW21-01 to MW21-04 on April 8, 2021 as part of Golder's 2021 subsurface investigation and submitted for laboratory analysis of VOCs and PHCs (F₁-F₄). Based on the analytical test results, the concentration of chloroform in Sample MW21-02, as well as the concentrations of chloroform, 1-2-Dichloroethane, and benzene in Sample MW21-04 were in excess of the MECP Table 3 Non-Potable Groundwater Standards.

The elevated concentrations of chloroform were suspected to be the result of the use of municipal water during the drilling process, and thus was not considered to present a contaminant issue to the property. The benzene exceedance was suspected to be the result of the historical presence of the former on-site retail fuel outlet. It should be noted that this benzene exceedance was identified in the monitoring well placed within the location of the former underground fuel storage tank nest in the southern portion of the site. The presence of 1-2-Dichloroethane, which is not typical of fuel related impacts, was suspected to be related to the historical use of solvents in an auto service garage which was formerly present on the property.

As part of this current assessment, groundwater samples were recovered from BH1-22, BH2-22, BH3-22, MW21-02, and MW21-04 on May 11, 2022 and March 19, 2024 and submitted for laboratory analysis of VOCs and PHC (F₁-F₄) parameters. Based on the analytical test results, all detected parameter concentrations in the groundwater samples analyzed are in compliance with the selected MECP Table 3 Non-Potable Groundwater Standards. It should be noted that no chloroform was detected in the samples analyzed as part of the 2022 and 2024 groundwater sampling program, confirming our theory that the initial concentrations identified in the 2021 sampling program were likely the result of the use of municipal water. The benzene concentration detected in MW21-04 during the 2022 and 2024 groundwater sampling program was also significantly lower than initially identified in the 2021 sampling program. It is possible that the initially identified elevated levels of benzene could be the result of suspended sediment collected in the water samples due to improperly established wells.

Report: PE5590-2 Page 38

Recommendations

Soil

Based on the findings of this assessment, PHC impacted soil was identified in the southern portion of the Phase II Property, in the vicinity of the former on-site underground fuel storage tank nest.

It is our understanding that the Phase II Property is to be redeveloped in the future, thus it is recommended that this contaminated soil be remediated at the time of site redevelopment. This contaminated soil will require disposal at a licensed waste disposal facility.

Prior to off-site disposal of impacted soil at a licensed waste disposal facility, a leachate analysis of a representative sample of contaminated soil must be conducted in accordance with Ontario Regulation 347/558.

It is recommended that Paterson personnel be present on-site during remediation activities to direct the excavation and segregation of impacted soil, as well as to conduct confirmatory sampling as required.

Based on the soil test results, the majority of the on-site soils comply with the MECP Table 2.1 Excess Soil Quality Standards (Ontario Regulation 406/19), for off-site disposal. Additional excess soil testing may be required prior to future site excavation activities.

Monitoring Wells

If the groundwater monitoring wells installed on-site are not going to be used in the future, or will be destroyed during future construction activities, then they must be decommissioned according to Ontario Regulation 903 (Ontario Water Resources Act), however, we recommend that the wells be maintained for future sampling purposes, at least until the excavation for the foundation has commenced. The monitoring wells will be registered with the MECP under this regulation. Further information can be provided upon request in this regard.

7.0 STATEMENT OF LIMITATIONS

This Phase II – Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04, as amended, and CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the Phase II Property and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Ambassador Realty Inc. Permission and notification from Ambassador Realty Inc. and Paterson Group will be required prior to the release of this report to any other party.

Paterson Group Inc.

N. Sullin

Nick Sullivan, B.Sc.

Mark D'Arcy, P.Eng., QPesa

April 18, 2024 April 18, 2024 M.S. D'ARCY 90377839

Report Distribution:

- Ambassador Realty Inc.
- Paterson Group Inc.

FIGURES

FIGURE 1 – KEY PLAN

DRAWING PE5590-1 - SITE PLAN

DRAWING PE5590-2 - SURROUNDING LAND USE PLAN

DRAWING PE5590-3 – TEST HOLE LOCATION PLAN

DRAWING PE5590-4 – ANALYTICAL TESTING PLAN – SOIL (VOCs, METALS, PAHs, LEAD, EC, SAR, pH)

DRAWING PE5590-4A – CROSS SECTION A-A' – SOIL (VOCs, METALS, PAHs, LEAD, EC, SAR, pH)

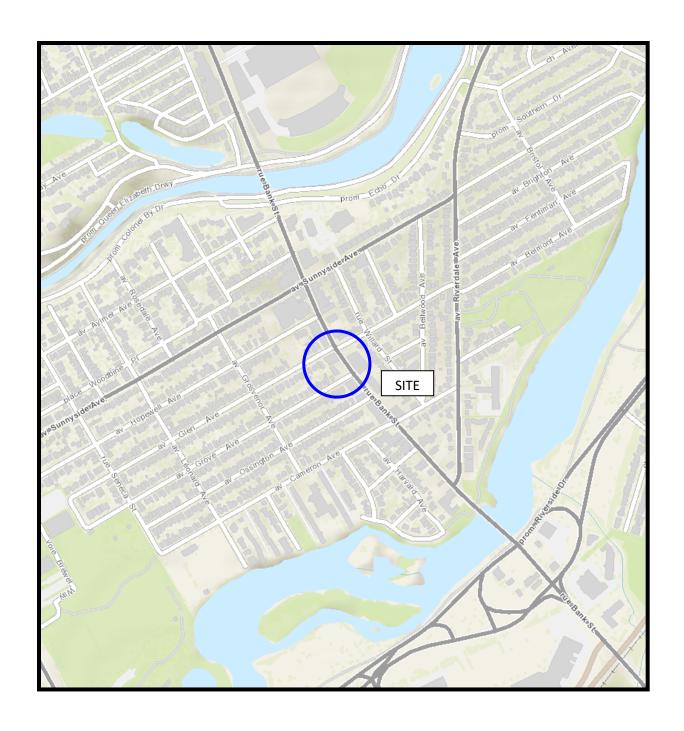
DRAWING PE5590-4B – CROSS SECTION B-B' – SOIL (VOCs, METALS, PAHs, LEAD, EC, SAR, pH)

DRAWING PE5590-5 - ANALYTICAL TESTING PLAN - SOIL (PHCs)

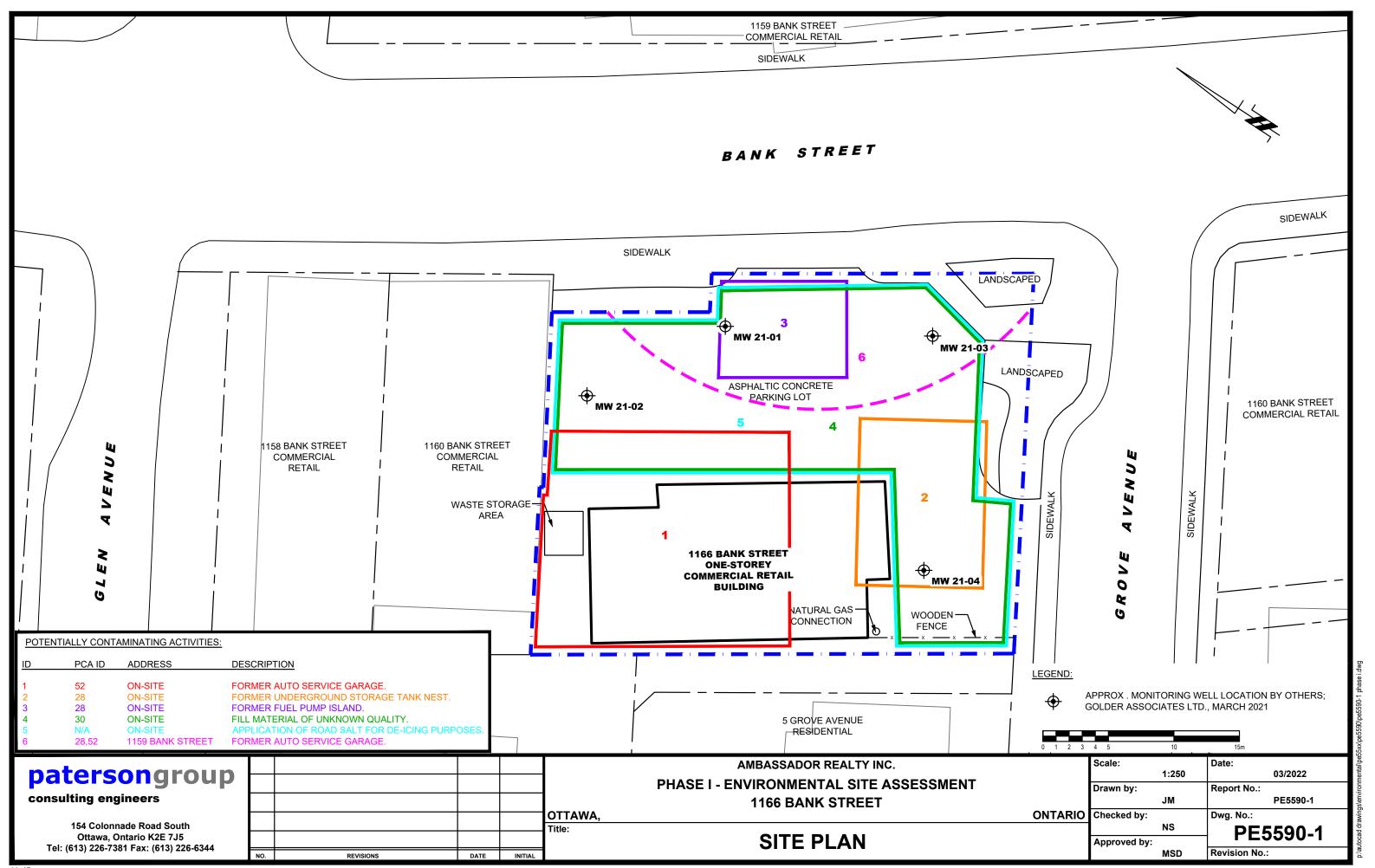
DRAWING PE5590-5A - CROSS SECTION A-A' - SOIL (PHCs)

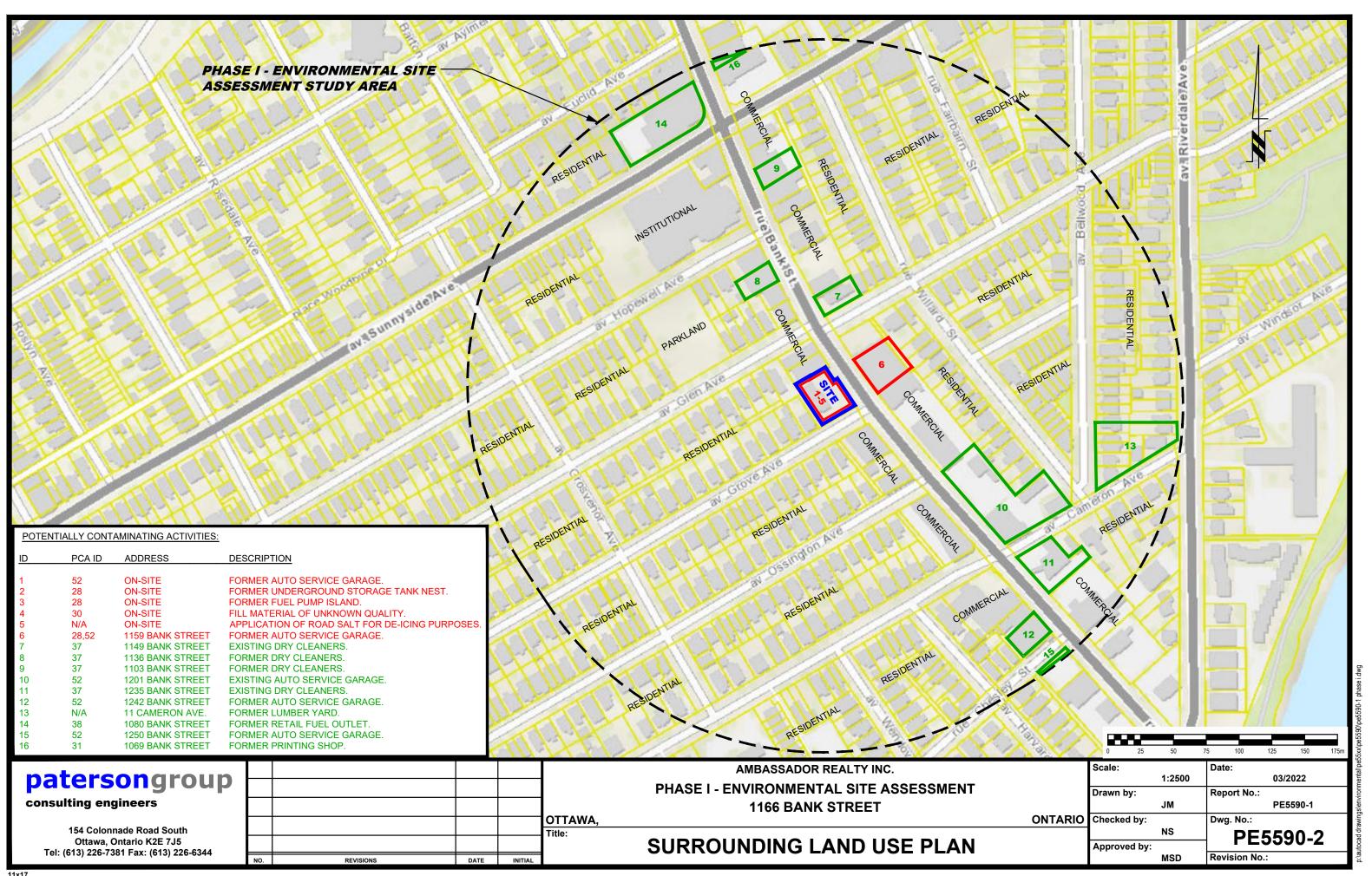
DRAWING PE5590-5B - CROSS SECTION B-B' - SOIL (PHCs)

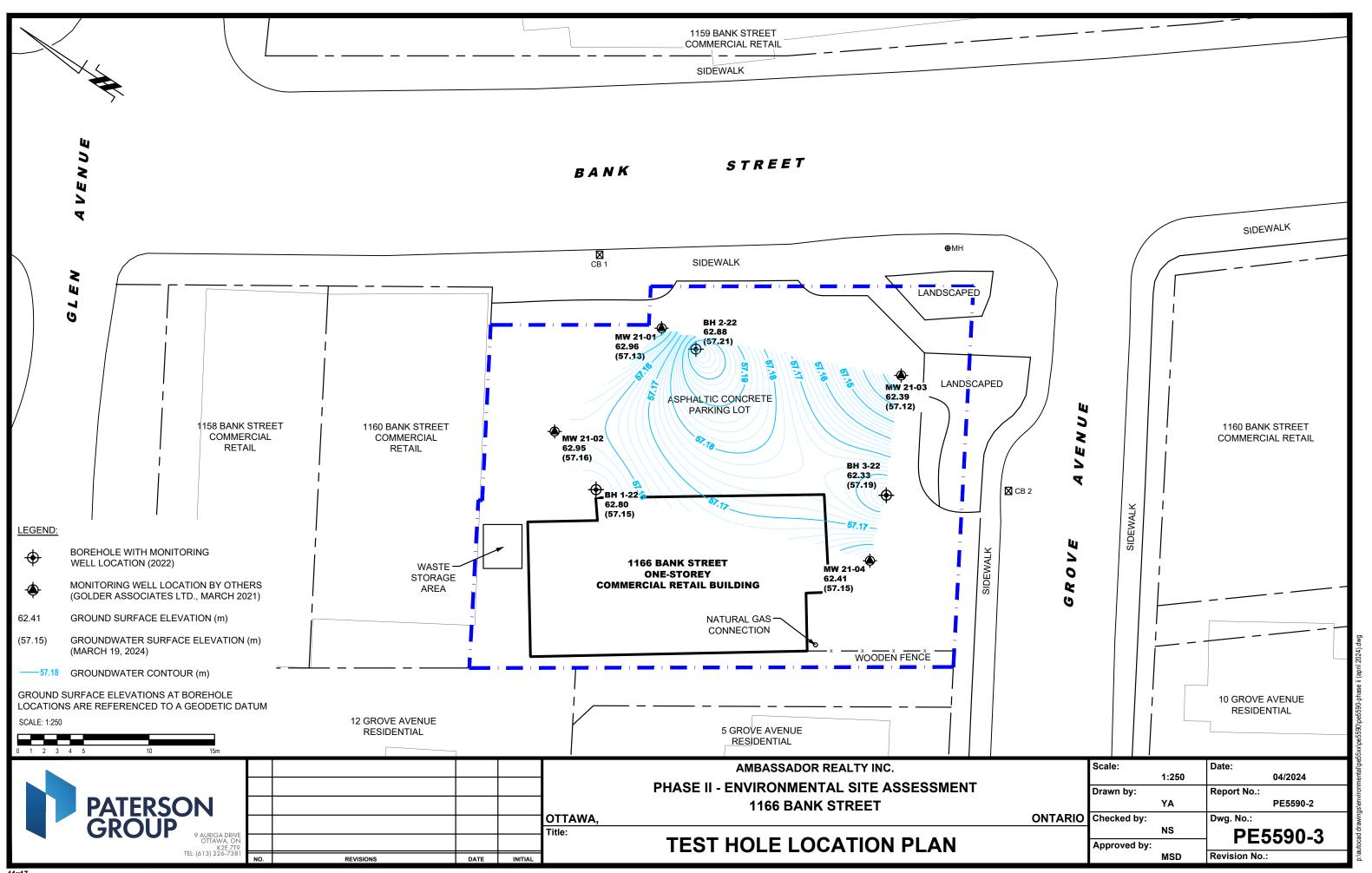
DRAWING PE5590-6 – ANALYTICAL TESTING PLAN – GROUNDWATER (PHCs)

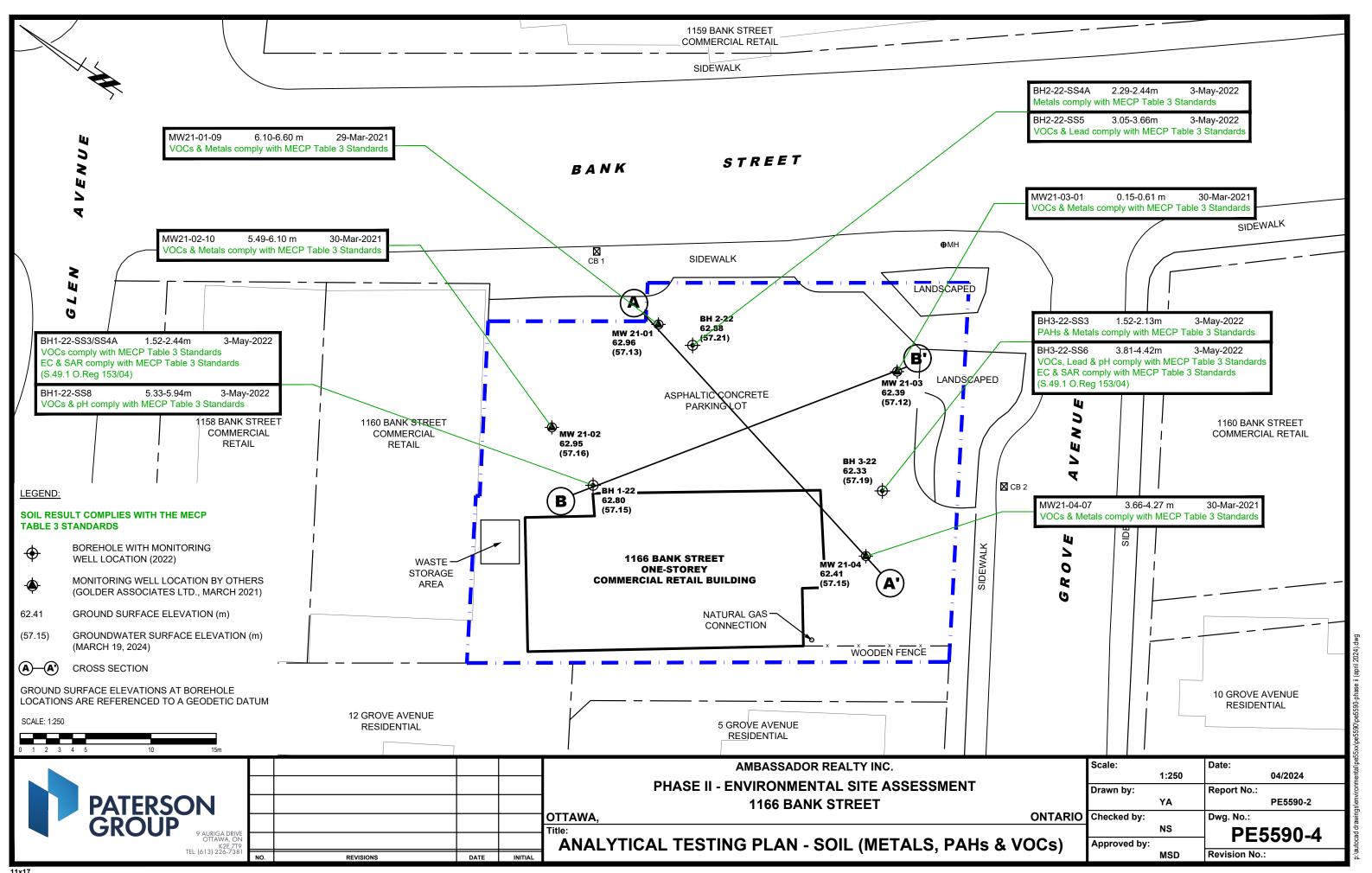

DRAWING PE5590-6A - CROSS SECTION A-A' - GROUNDWATER (PHCs)

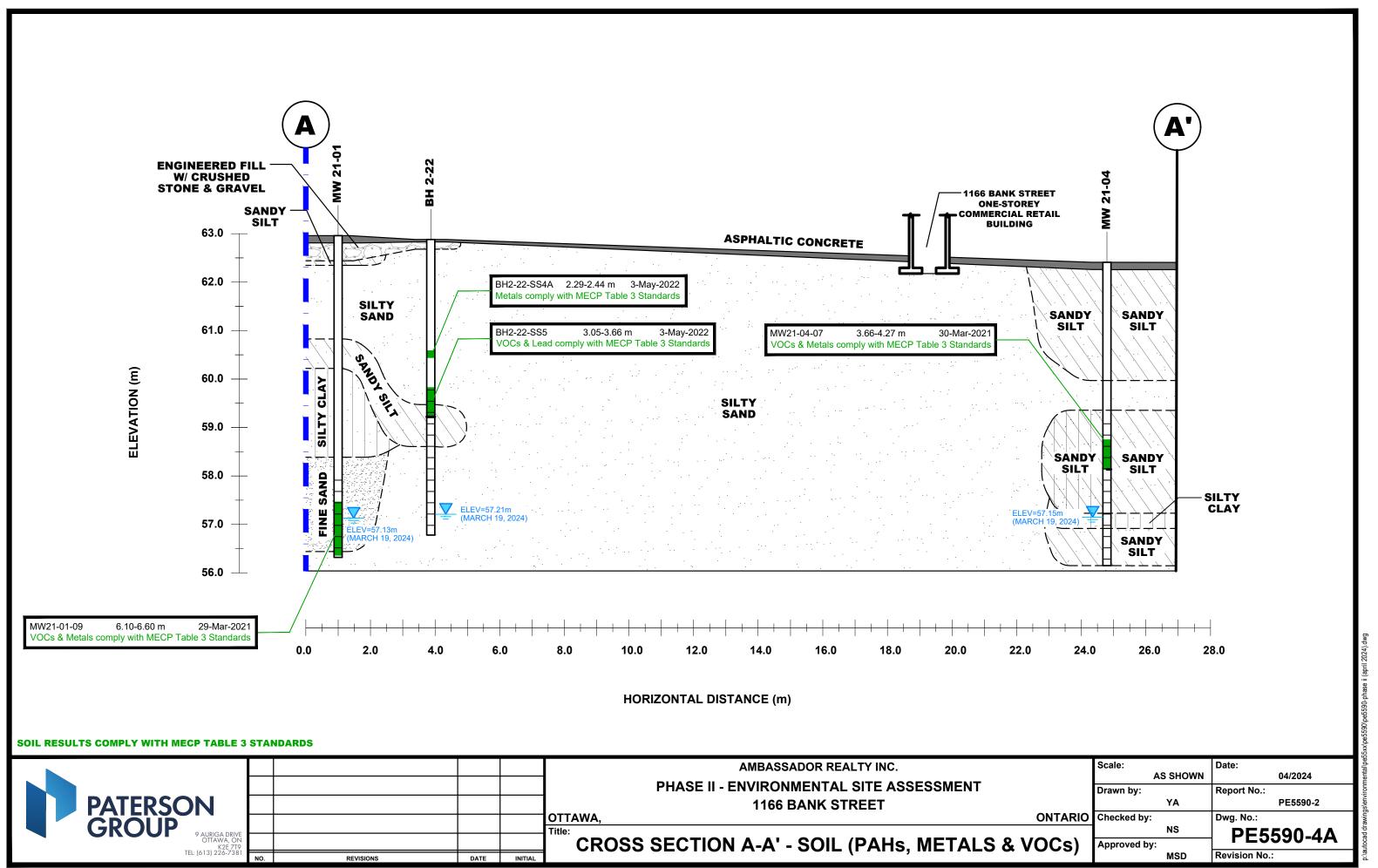
DRAWING PE5590-6B - CROSS SECTION B-B' - GROUNDWATER (PHCs)

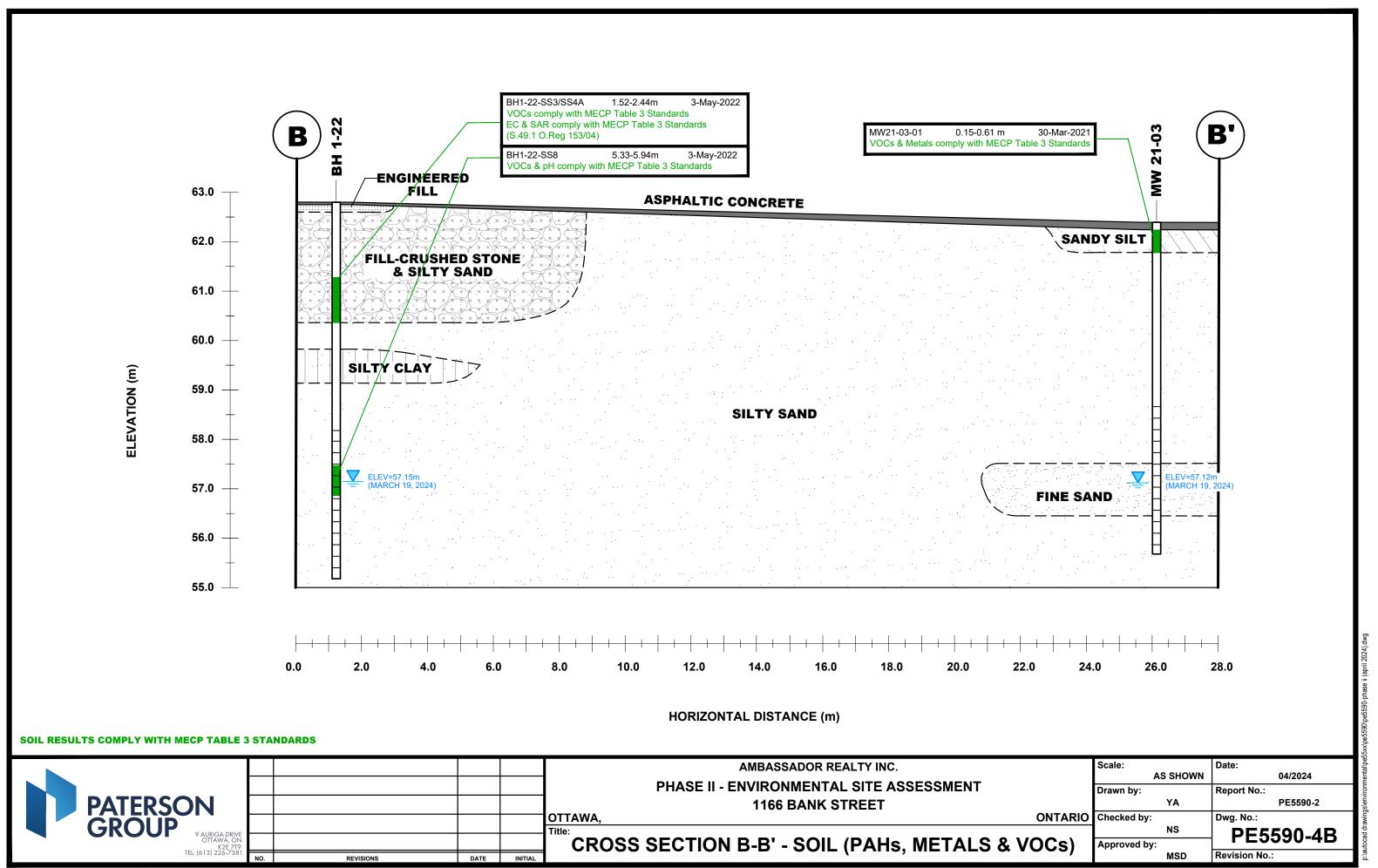

DRAWING PE5590-7 - ANALYTICAL TESTING PLAN - GROUNDWATER (VOCs)

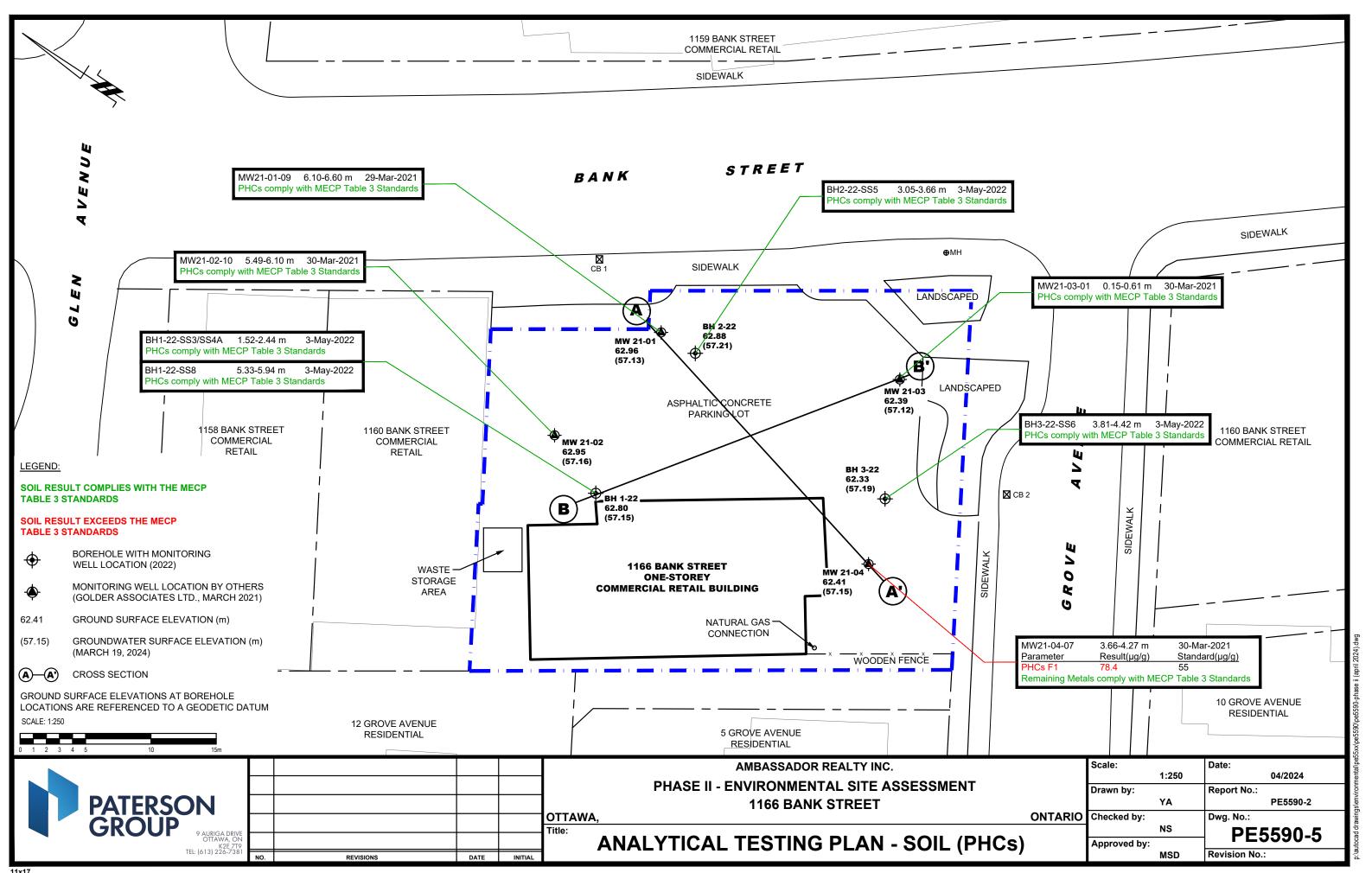

DRAWING PE5590-7A - CROSS SECTION A-A' - GROUNDWATER (VOCs)

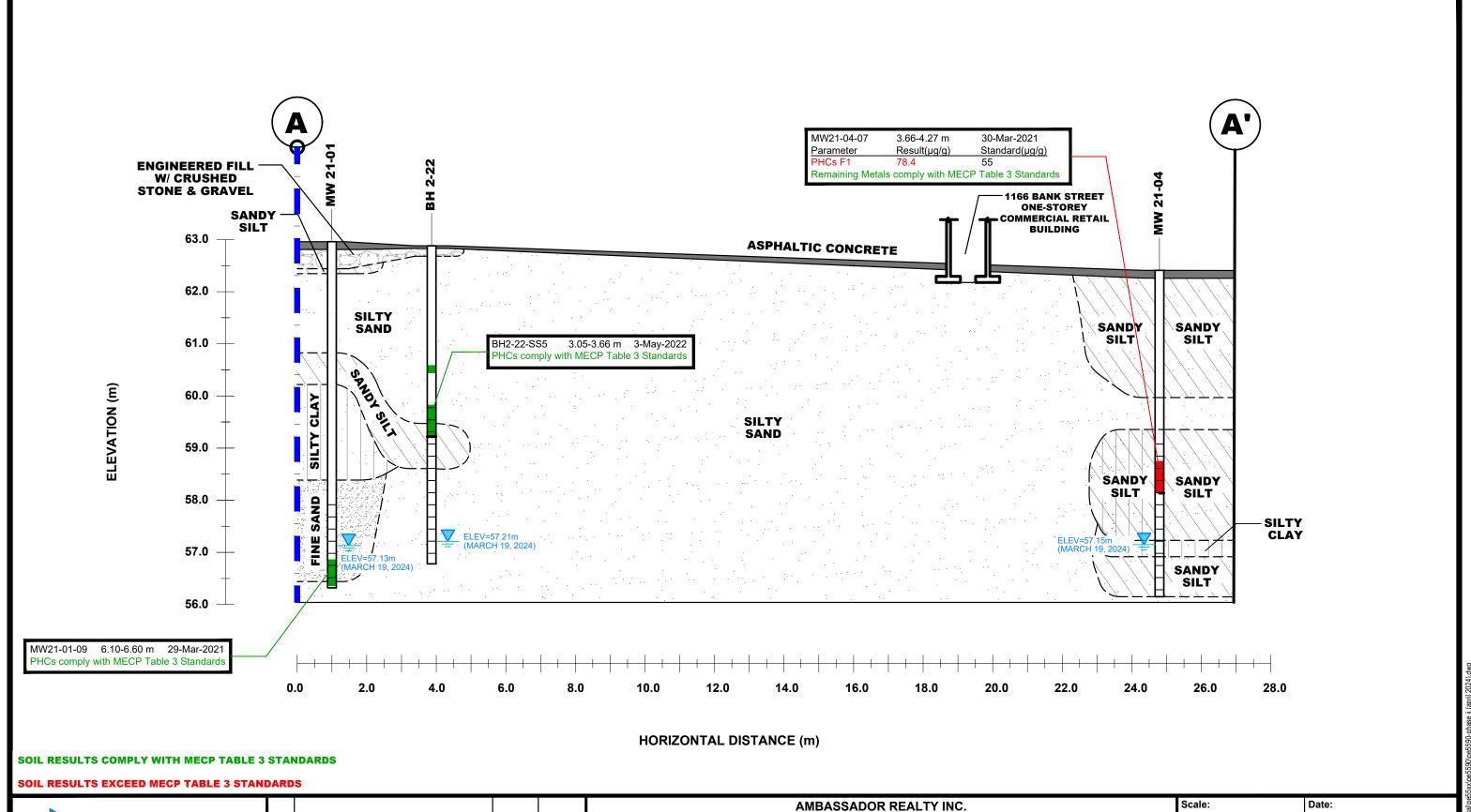

DRAWING PE5590-7B - CROSS SECTION B-B' - GROUNDWATER (VOCs)

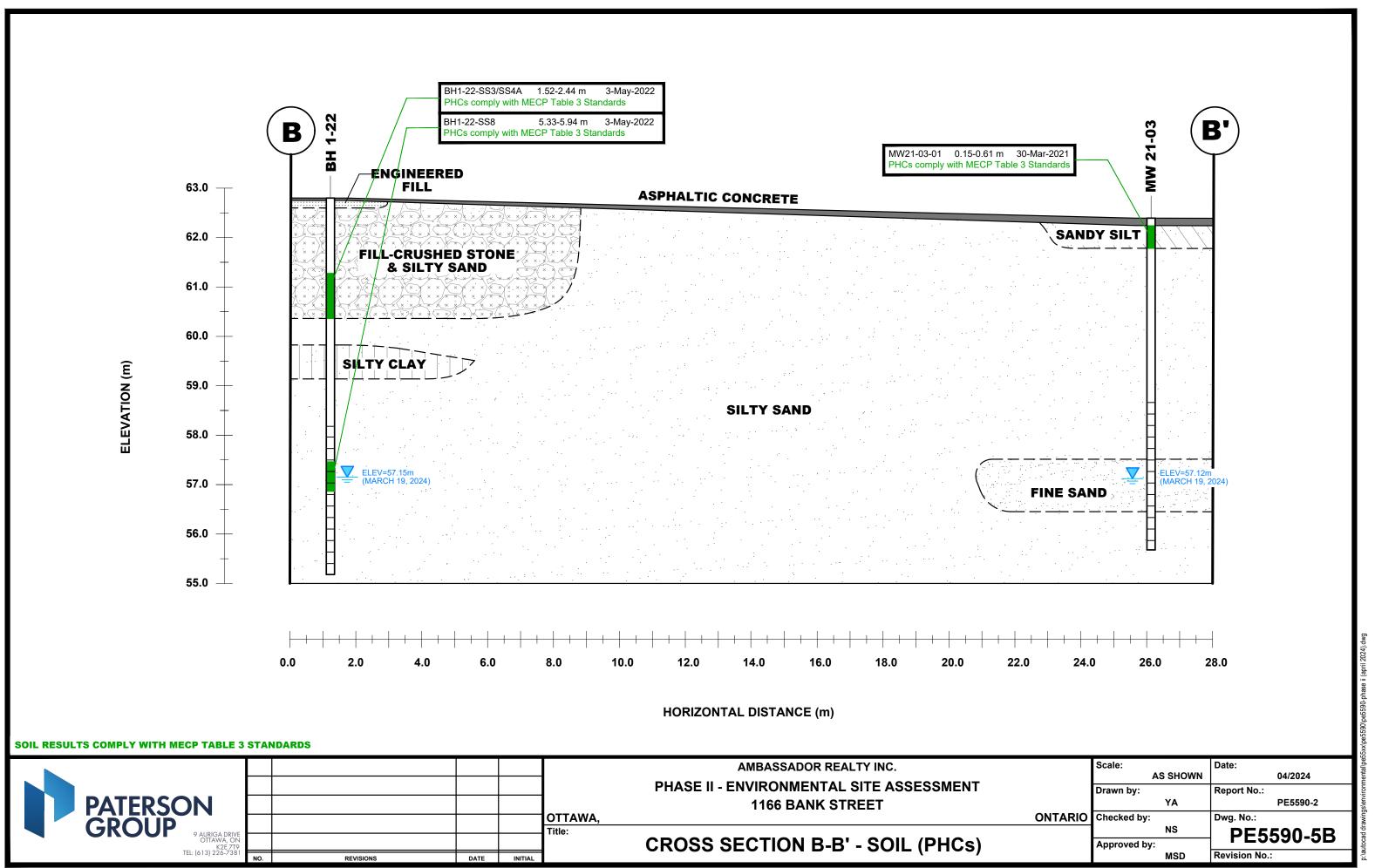


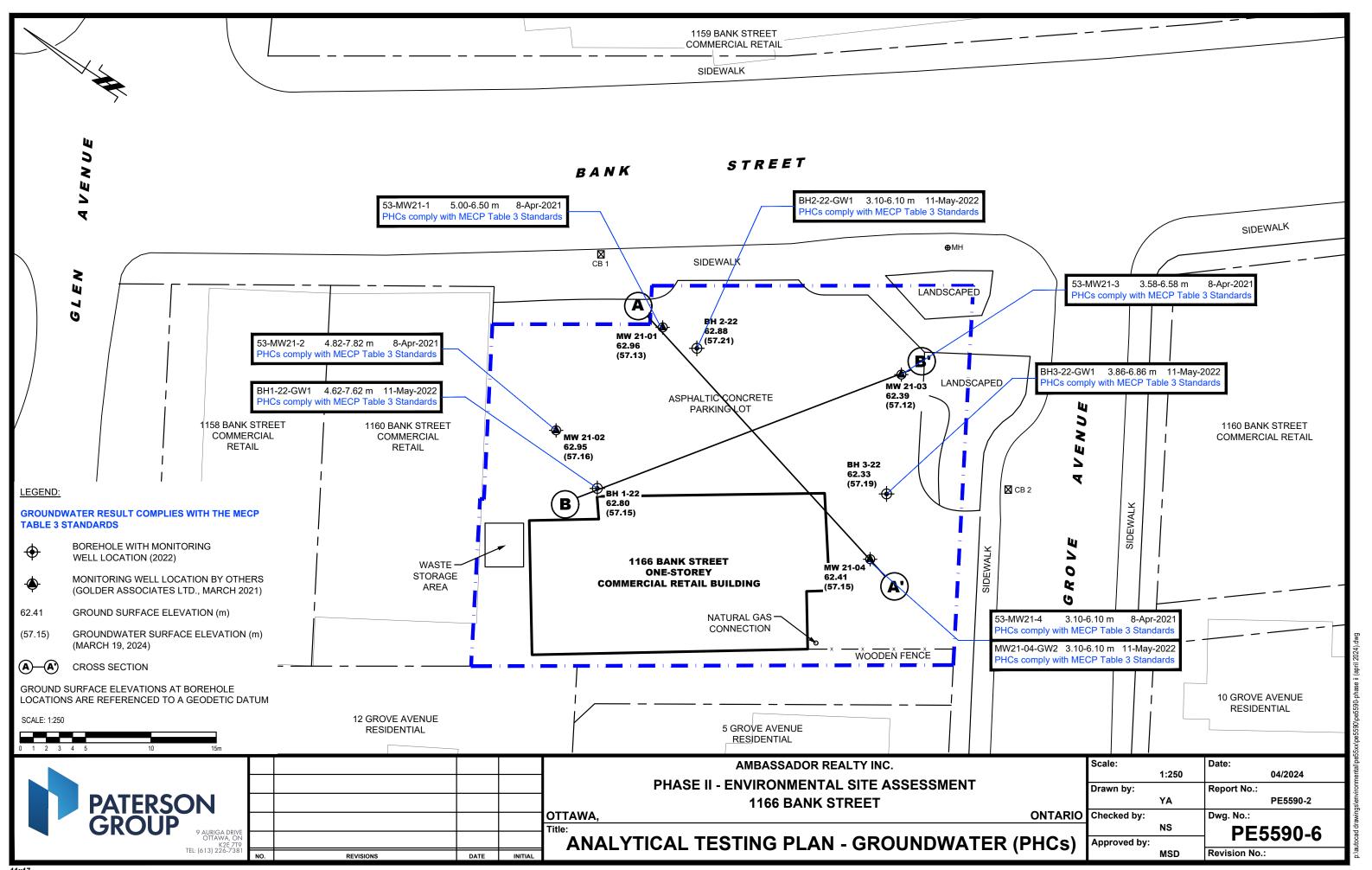

FIGURE 1 KEY PLAN

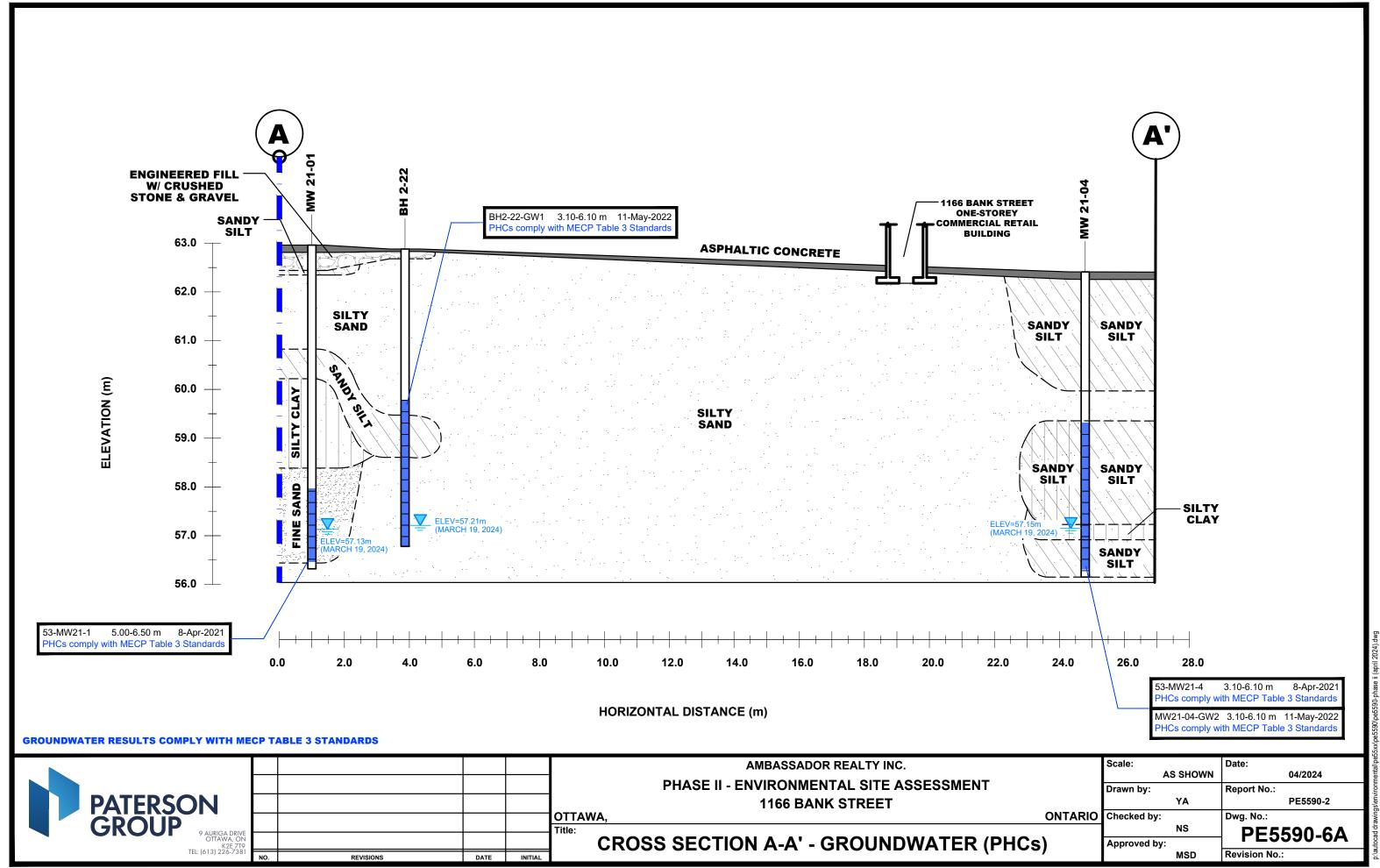


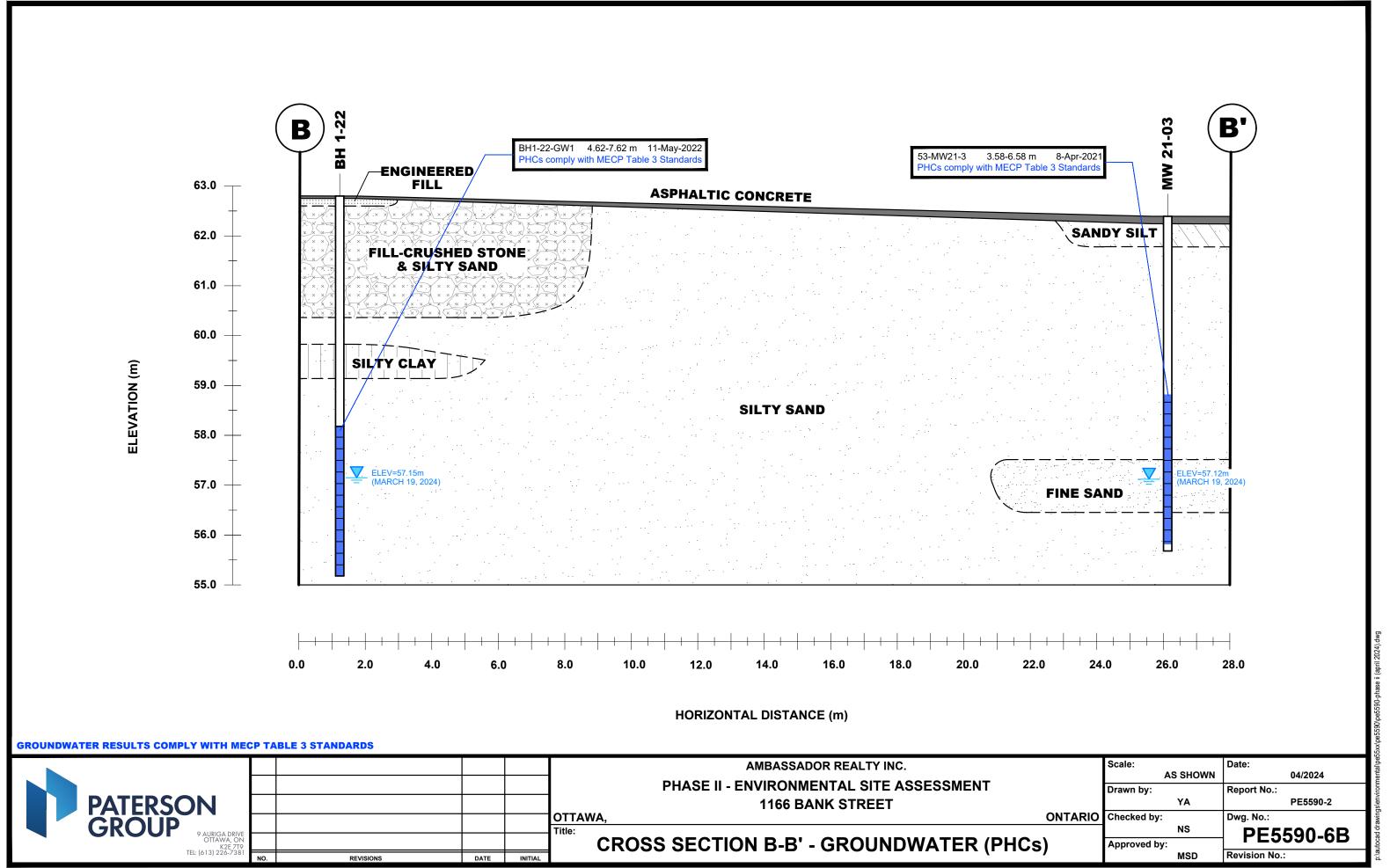


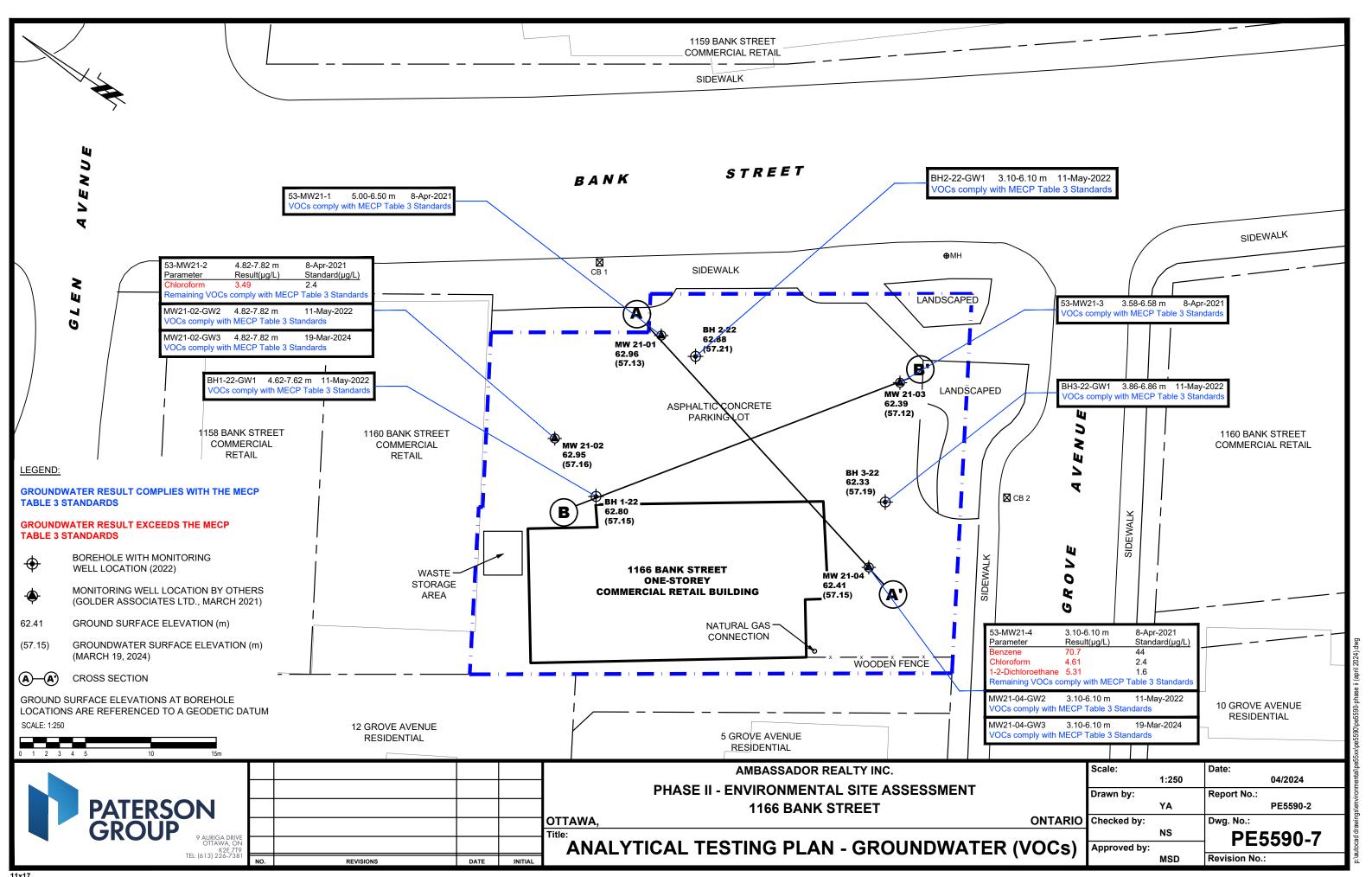


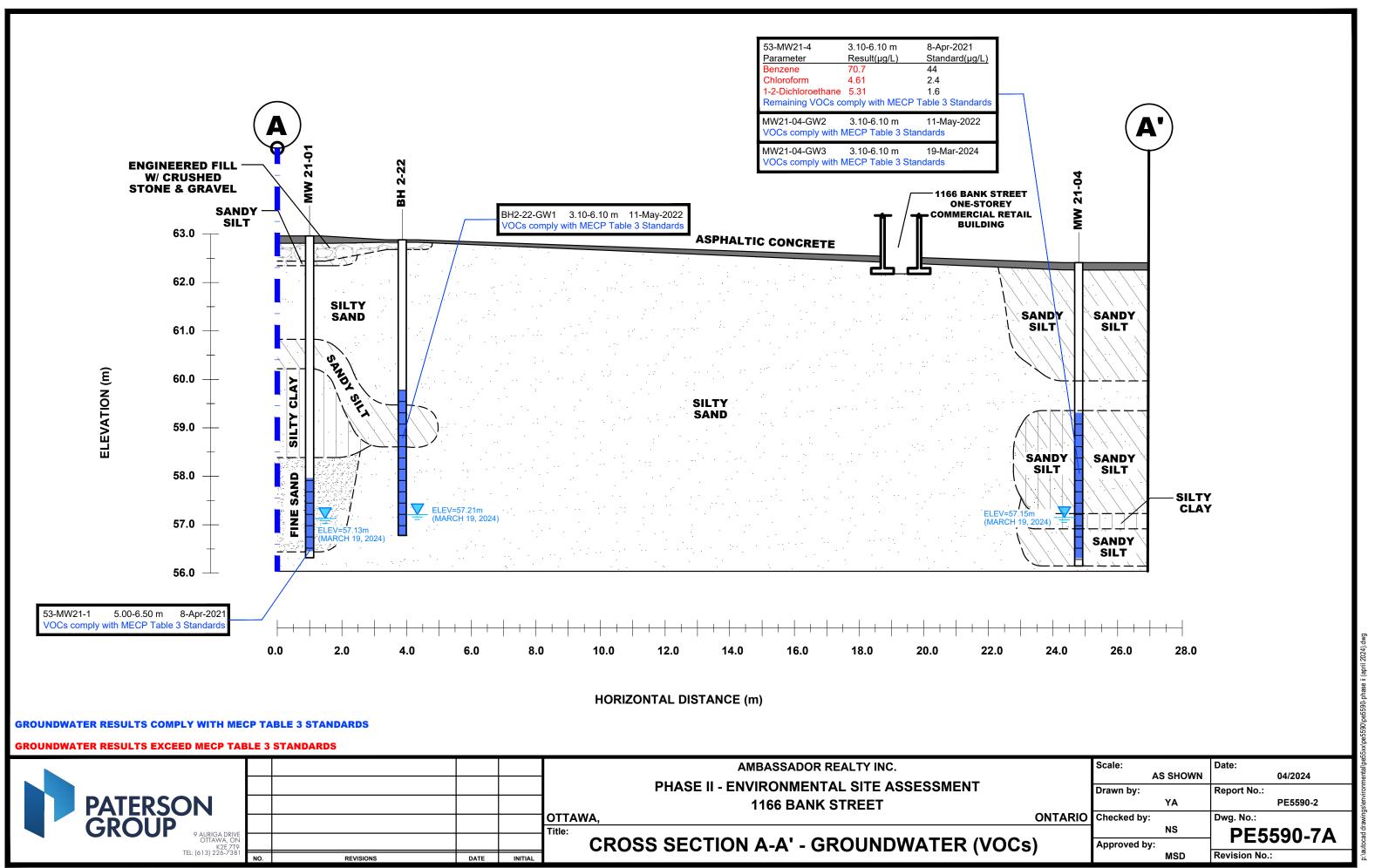


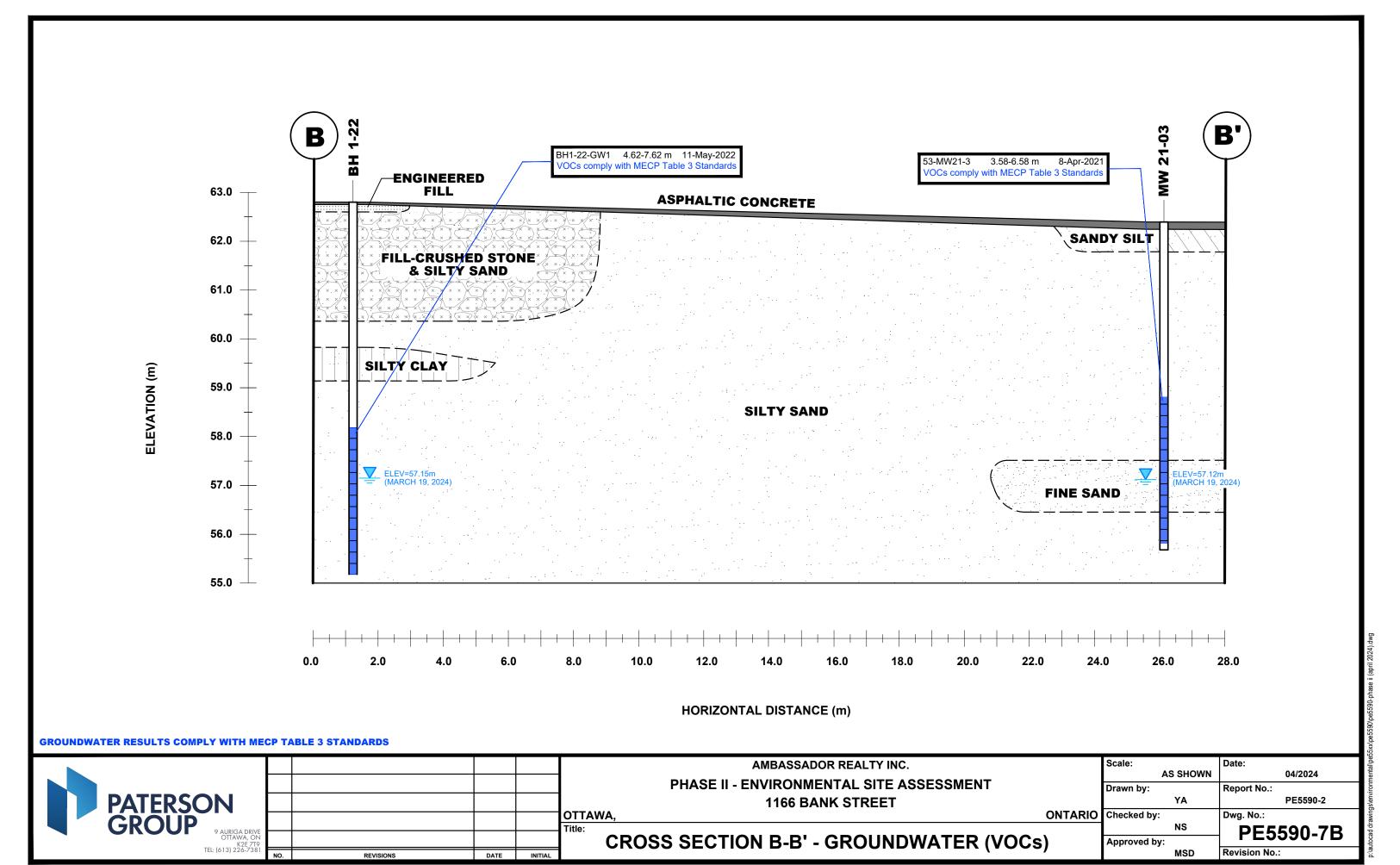












APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

patersongroup

Sampling & Analysis Plan

Phase II – Environmental Site Assessment 1166 Bank Street Ottawa, Ontario

Prepared For

Ambassador Realty Inc.

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca May 1, 2022

Report: PE5590-SAP

TABLE OF CONTENTS

1.0	SAMPLING PROGRAM	1
	ANALYTICAL TESTING PROGRAM	
	STANDARD OPERATING PROCEDURES	
	3.1 Environmental Drilling Procedure	
	3.2 Monitoring Well Installation Procedure	
	3.3 Monitoring Well Sampling Procedure	
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	
	DATA QUALITY OBJECTIVES	
	PHYSICAL IMPEDIMENTS	

Ottawa, Ontario

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Ambassador Realty Inc., to conduct a Phase II – Environmental Site Assessment (Phase II ESA) for the property addressed 1166 Bank Street, in the City of Ottawa, Ontario.

Based on the findings of the Phase I ESA, the following subsurface investigation program was developed.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH1-22	Northwestern portion of the subject site; to assess for potential impacts resulting from the presence of a former auto service garage and the use of road salt for de-icing purposes.	5-8 m; for geotechnical purposes and to intercept the groundwater table for the purpose of installing a groundwater monitoring well.
BH2-22	Northeastern portion of the subject site; to assess for potential impacts resulting from the presence of fill material of unknown quality, a former on-site fuel pump island, and a former off-site auto service garage.	5-8 m; for geotechnical purposes and to intercept the groundwater table for the purpose of installing a groundwater monitoring well.
BH3-22	Southern portion of the subject site; to assess for potential impacts resulting from the presence of fill material of unknown quality, the use of road salt for de-icing purposes, and a former on-site underground fuel storage tank nest.	5-8 m; for geotechnical purposes and to intercept the groundwater table for the purpose of installing a groundwater monitoring well.

Borehole locations are shown on "Drawing PE5590-3 – Test Hole Location Plan", appended to the main report.

At each borehole, split-spoon samples of the overburden soils will be obtained at 0.76 m (2'6") intervals. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following the borehole drilling, groundwater monitoring wells will be installed in all three boreholes to allow for the collection of groundwater samples.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the Phase I Property is based on the following general considerations: At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site. ☐ At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site. In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP site condition standards. ☐ In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward. ☐ Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA. The analytical testing program for soil at the Phase I Property is based on the following general considerations: ☐ Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained). Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs. ☐ At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water-bearing. Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

Report: PE5590-SAP

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

J	Glass soil sample jars
	two buckets
J	cleaning brush (toilet brush works well)
J	dish detergent
	methyl hydrate
J	water (if not available on site - water jugs available in trailer)
J	latex or nitrile gloves (depending on suspected contaminant)
J	RKI Eagle organic vapour meter or MiniRae photoionization detector
	(depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a geodetic benchmark, if one is available, or a temporary site benchmark which can be tied in at a later date if necessary.

Ottawa, Ontario

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows: Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required. ☐ Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen. ☐ If sampling for VOCs, BTEX, or PHCs F₁, a soil core from each soil sample, which may be analyzed, must be taken and placed in the laboratory-provided methanol vial. Note all and any odours or discolouration of samples. Split spoon samplers must be washed between samples. ☐ If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated. As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss). If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination. **Spoon Washing Procedure** All sampling equipment (spilt spoons, etc.) must be washed between samples in order to prevent cross contamination of soil samples. ☐ Obtain two buckets of water (preferably hot if available) Add a small amount of dish soap to one bucket Scrub spoons with brush in soapy water, inside and out, including tip ☐ Rinse in clean water Apply a small amount of methyl hydrate to the inside of the spoon. (A spray) bottle or water bottle with a small hole in the cap works well) ☐ Allow to dry (takes seconds) Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

	Samples should be brought to room temperature; this is specifically important
	in colder weather. Soil must not be frozen.
	Turn instrument on and allow to come to zero - calibrate if necessary
	If using RKI Eagle, ensure instrument is in methane elimination mode unless
	otherwise directed.
	Ensure measurement units are ppm (parts per million) initially. RKI Eagle will
	automatically switch to %LEL (lower explosive limit) if higher concentrations
	are encountered.
	Break up large lumps of soil in the sample bag, taking care not to puncture bag.
	Insert probe into soil bag, creating a seal with your hand around the opening.
	Gently manipulate soil in bag while observing instrument readings.
	Record the highest value obtained in the first 15 to 25 seconds
	Make sure to indicate scale (ppm or LEL); also note which instrument was used
	(RKI Eagle 1 or 2, or MiniRae).
П	Jar samples and refrigerate as per Sampling and Analysis Plan.

3.2 Monitoring Well Installation Procedure

Eq	uipment
	5' x 2" threaded sections of Schedule 40 PVC slotted well screen (5' x 1 $\frac{1}{4}$ " if installing in cored hole in bedrock)
	5' x 2" threaded sections of Schedule 40 PVC riser pipe (5' x 1 1/4" if installing in cored hole in bedrock)
	Threaded end-cap
	Slip-cap or J-plug
	Asphalt cold patch or concrete
	Silica Sand
	Bentonite chips (Holeplug) Steel flushmount casing
_	oteer hashinount casing
Pr	ocedure
	Drill borehole to required depth, using drilling and sampling procedures
	described above.
	If borehole is deeper than required monitoring well, backfill with bentonite chips
	to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
П	Only one monitoring well should be installed per borehole.
	Monitoring wells should not be screened across more than one stratigraphic
	unit to prevent potential migration of contaminants between units.
	Where LNAPLs are the suspected contaminants of concern, monitoring wells
	should be screened straddling the water table in order to capture any free
_	product floating on top of the water table.
П	Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto agreen. I ower into be required don't
	if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
	As drillers remove augers, backfill borehole annulus with silica sand until the
	level of sand is approximately 0.3 m above the top of the screen.
	Backfill with holeplug until at least 0.3 m of holeplug is present above the top
	of the silica sand.
	Backfill remainder of borehole with holeplug or with auger cuttings (if
_	contamination is not suspected).
	Install flushmount casing. Seal space between flushmount and borehole

surface.

May 1, 2022 Page 6

annulus with concrete, cold patch, or holeplug to match surrounding ground

3.3 Monitoring Well Sampling Procedure

Eq	uipment
	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe Peristaltic pump Polyethylene tubing for peristaltic pump Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements pH/Temperature/Conductivity combo pen Laboratory-supplied sample bottles
Sa	mpling Procedure
	Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap. Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site,
	measure the thickness of free product. Measure total depth of well.
	Clean water level tape or interface probe using methanol and water. Change gloves between wells. Calculate volume of standing water within well and record. Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
	Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
	Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
	Replace well cap and flushmount casing cap.

Report: PE5590-SAP

May 1, 2022 Page 7

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:
 All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
 All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
 Where groundwater samples are to be analyzed for VOCs, one laboratory-provided trip blank will be submitted for analysis with every laboratory submission.
 Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
 Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

May 1, 2022 Page 8

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

May 1, 2022 Page 9

6.0 PHYSICAL IMPEDIMENTS

body of the Phase II ESA report.

Ph	ysical impediments to the Sampling and Analysis plan may include:
	The location of underground utilities
	Poor recovery of split-spoon soil samples
	Insufficient groundwater volume for groundwater samples
	Breakage of sampling containers following sampling or while in transit to the
	laboratory
	Elevated detection limits due to matrix interference (generally related to soil
	colour or presence of organic material)
	Elevated detection limits due to high concentrations of certain parameters,
	necessitating dilution of samples in laboratory
	Drill rig breakdowns
	Winter conditions
	Other site-specific impediments
Sit	e-specific impediments to the Sampling and Analysis plan are discussed in the

patersongroup Consulting Engineers

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 1166 Bank Street Ottawa, Ontario

ELEVATION: 62.80 **EASTING:** NORTHING: FILE NO. PE5590 DATUM: Geodetic

REMARKS: HOLE NO.

BORINGS BY: CME-55 Low Clearance	Drill				DATE:	May 3	, 2022		BH 1-22	
SAMPLE DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	1	zation Detector ganic Rdg. (ppm)	G WELL CTION
GROUND SURFACE	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Lower Ex	xplosive Limit %	MONITORING WELL CONSTRUCTION
Asphaltic concrete 0.05 FILL: Crushed stone 0.20		AU	1			0-	-62.80	•		
FILL: Brown silty sand with gravel, some crushed stone		ss	2	17	14	1-	-61.80	•		
- some clay by 1.4m depth		ss	3	42	7	2-	-60.80			<u>։ «բներնի իրիներներներն արևաններն երներներն հերևան իրներներին արևաններն անդիրերն արևանին։ «</u>
Compact, brown SILTY SAND 2.97		SS	4	50	14	3 -	-59.80			
Dark grey SILTY CLAY with sand and gravel, occasional cobbles	5	SS	5	83	24		(•		
Dense, brown SILTY SAND to SANDY SILT with gravel, occasional cobbles, trace clay4.50)	ss	6	100	50	4-	-58.80	•		
		ss	7	75	45	5-	-57.80	•		
Dense to very dense, light brown to brown SILTY SAND		ss	8	50	45	6-	-56.80	•		X
- with gravel by 6.7m depth		ss	9	82	50+		•			
7.62		ss	10	67	63	7-	-55.80	•		
End of Borehole										
(GWL @ 5.49m - May 11, 2022) (GWL @ 5.65m - March 19, 2024)										
									0 300 400 50 le Rdg. (ppm) esp. △ Methane Elim.	00

patersongroup Consulting Engineers

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 1166 Bank Street Ottawa, Ontario

EASTING: NORTHING: ELEVATION: 62.88 FILE NO. PE5590

REMARKS: HOLE NO.

REMARKS: BORINGS BY: CME-55 Low Clearance [Orill				DATE:	May 3	. 2022	HOLE NO. BH 2-22
SAMPLE DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Photo Ionization Detector Volatile Organic Rdg. (ppm)
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,	Photo Ionization Detector Volatile Organic Rdg. (ppm) Characteristics of the control of the co
GROUND SURFACE	S S			~		0-	-62.88	20 40 60 80
Asphaltic concrete 0.05 FILL: Crushed stone with gravel 0.20		√̄. AU	1				02.00	
FILL: Brown silty sand with gravel		ss	2	8	7	1-	-61.88	
- some clay by 0.8m depth								
2.44		SS	3	8	8	2-	-60.88	
Compact, reddish brown SILTY SAND 2.97		ss	4	58	12		-59.88	
Compact, dark brown to brown SILTY SAND to SANDY SILT,		ss	5	75	17	3-	-59.66	
SILTY SAND to SANDY SILT, some gravel, trace clay 4.27		∑ ss	6	100	50+	4-	-58.88	•
Very dense, light brown to brown		ss	7	75	62	_	F7 00	•
SILTY SAND "		∐ √ss	8	83	52	5-	-57.88	
6.10 End of Borehole		<u> </u>						
(GWL @ 5.48m - May 11, 2022) (GWL @ 5.67m - March 19, 2024)								
								100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

patersongroup Consulting Engineers

9 Auriga Drive, Ottawa, Ontario K2E 7T9

SOIL PROFILE AND TEST DATA

200

RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

300

400

500

Phase II - Environmental Site Assessment 1166 Bank Street Ottawa, Ontario

EASTING: NORTHING: ELEVATION: 62.33 FILE NO. PE5590

REMARKS: HOLE NO.

BORINGS BY: CME-55 Low Clearance Drill **BH 3-22** May 3, 2022 DATE: MONITORING WELL CONSTRUCTION STRATA PLOT **SAMPLE Photo Ionization Detector** DEPTH ELEV. **SAMPLE DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+62.33Asphaltic concrete 0.05 FILL: Crushed stone with gravel 0.20 1 1+61.33SS 2 75 13 FILL: Brown silty sand with gravel, trace clay, occasional cobbles SS 3 67 10 2+60.33SS 4 27 2.97 3+59.33SS 5 100 22 Compact, brown SILTY SAND with gravel, occasional cobbles 4+58.33SS 6 58 29 4.34 **Y** Hard, dark grey SILTY CLAY with sand and gravel SS 7 92 32 5+57.33 5.18 SS 8 83 58 6+56.33Very dense, brown SILTY SAND SS 50+ 9 100 with gravel, occasional cobbles and boulders SS 10 50+ 7+55.3336

End of Borehole

(GWL @ 4.93m - May 11, 2022) (GWL @ 5.14m - March 19, 2024)

7.47

PROJECT: 21458827

RECORD OF MONITORING WELL:

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: March 29, 2021

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm HEADSPACE COMBUSTIBLE
VAPOUR CONCENTRATIONS [PPM]
ND = Not Detected
20 40 60 80 **SOIL PROFILE** SAMPLES HYDRAULIC CONDUCTIVITY, BORING METHOD ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.30m 10⁴ OR 104 TYPE BEV. **STANDPIPE** HEADSPACE ORGANIC VAPOUR CONCENTRATIONS (PPM) ND = Not Detected WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -0W. (m) GROUND SURFACE 100.56 0.00 Flush Mount Cearing ASPHALTIC CONCRETE FINANCE 0.15 GRAVEL, medium to coarse ND 0.52 0.61 Sandy SILT, trace gravel, fine; light SILTY SAND; brown, contains cobbles; 2 53 ND SILTY SAND, trace gravel; brown; moist, - p 88 Sandy SILT, fine; light brown; moist, very SILTY CLAY; brown; moist, soft to firm 5 88 SILTY CLAY; brown with orange mottling; moist, firm SS SAND, medium; light brown; moist to wet, loose 0 32 mm Diam. PVC #10 Slot Screen ⊕ ND BEDROCK OTTAWA.GPJ GAL-MIS.GDT 1166 GOLDER DEPTH SCALE LOGGED: BD CHECKED:

PROJECT: 21458827 LOCATION: See Site Plan

RECORD OF MONITORING WELL: 21-02

SHEET 1 OF 1

BORING DATE: March 30, 2021

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

\prod	면O된		SOIL PROFILE	I I-		S/	MPL		VAPOU	HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ K, cm/s ND = Not Described 20 40 60 80 10 ⁴ 10 ⁵				DUCTIVITY,			PIFZOMETÉR OR			
MEINES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	HEADS	PACE C	DRGANIC	VAPOL	R _		ATER C	ONTENT	F PERC	10° ENT -I WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
_	8			STR	(m)	Ž		100	ND = No			0 8	0			_	60	80		
0	Т	4	GROUND SURFACE ASPHALTIC CONCRETE		100.43 0.00	-	-	-	\vdash						_	\vdash	\vdash	+-	-	Flush Mount Casing
			SAND, some slit, trace gravel, fine; light brown; moist, loose		0.15 99.82	1		- 1	ED €	1			1							Flush Mount Casing
1		Ī	No Recovery		0.61			-							:					
			Sandy SILT, trace gravel, fine; brown; moist, soft		99.21			- 1	□ •											
2			SiLTY SAND, trace gravel, fine; light brown; moist, loose		98.60									/						
Ì						_			ND					<						Bertonite Seal
3	rger.	ollow Stam)			97.36	5		.	Þ ⊕			/	//							
	Power Auger	nm Diam. (H.	Sandy SiLT, trace gravel, fine; brown; moist, soft	[]		6			ND (\	\nearrow	K						
		200 m	SAND, some slit; brown; moist, loose		96.77 3.66 96.53	7	1	>50	<u> </u>	⊕					1					
4			No Recovery		3.90	8				<	7	7								Silica Sand
												K								
5						9		30	5	2										
			SAND, some slit; brown; moist, loose	2.5	94.94 5.49		<	35	X											4 4
6				77.				NE		\								:		32 mm Diam. PVC #10 Slot Screen
			No Recovery	(64				ND											
7	Rotary Drill	NQ Core					~	/					:							
		Ц		\perp	92.8° 7.62															W. In Screen of
8										i										WL in Screen at Elev. 94.70 m in April, 2021
9																				
10																				
			CALE				<	Í	3	GC	LI	DΕ	R		-					OGGED: BD
1:	50																		CI	ECKED:

PROJECT: 21458827

RECORD OF MONITORING WELL:

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: March 29, 2021

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm HEADSPACE COMBUSTIBLE
VAPOUR CONCENTRATIONS (PPM) @
ND = Not Detected
20 40 60 80 SOIL PROFILE HYDRAULIC CONDUCTIVITY, **SORING METHOD** SAMPLES DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER BLOWS.0.30m 100 10* 104 OR TYPE STANDPIPE HEADSPACE ORGANIC VAPOUR CONCENTRATIONS (PPM) ND = Not Detected WATER CONTENT PERCENT DESCRIPTION **INSTALLATION** DEPTH -eW Wo I--I WI (m) GROUND SURFACE 100.00 ASPHALTIC CONCRETE Flush Mount Casing TO SERVICE Sandy SILT, trace gravel, coarse; brown; 88 8 ND SILTY SAND, trace gravel, fine; brown; moist, loose SS ⊕ ΝD 88 ND SILTY SAND; brown, contains cobblee; 16世 No Recovery SS ND the the table that a SILTY SAND; brown, contains cobbles; 6 SS 61 ND No Recovery SILTY SAND; brown; moist, compact 32 mm Dlam. PVC 2 1910 Stot Soreen 86 ND SAND, medium; brown; molet, loose ND SAND, medium; brown; wet, loose 189` ND SILTY SAND; brown; wet, soft 11 42 100 End of Borehole 4-28-21 JEM 1188 BANK OTTAWA.GPJ GAL-MIS.GDT 10 GOLDER **DEPTH SCALE** LOGGED: BD 1:50 CHECKED:

PROJECT: 21458827

RECORD OF MONITORING WELL: 21-04

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: March 30, 2021

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

" l	00H	} }	SOIL PROFILE	Ŀ		S/	AMPI.	_	VAPOI ND = N	SPACE C UR CONI lot Detect 10	CENTRA				k, cm/s	ONDUC		en3	ING ING	PIEZOMETER
MEINES	BORING METHOD		DESCRIPTION		ELEV.	NUMBER	TYPE	BLOWS/0.30m	1 -	ï .	i 1		1	10 W		ONTEN	T PERCI	10 ³ ENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
*	BORIN		tor materials all 1 stures	STRATA PLOT	DEPTH (m)	ğ	۲	SLOW			RGANIC IONS [PF			Wp 2			60	WI 80	23	
0	_	7	GROUND SURFACE	<i>v,</i>	100.01		上				اًاً						Ï	Ĩ		
٦	П	П	ASPHALTIC CONCRETE Sandy SILT, trace gravel, fine to coarse;	동비원	0.00															Flush Mount Casing
1			brown; moist, loose			2	SS	:	# #											Plush Mount Casing
2			Lost		98.16 1.83		88	16	III ee ND					/	/2					Bentonite Seel
1						4	88	11						4						
		flow Stam)	SILTY SAND, trace gravel, fine; brown; molst, loose	A. W		5	SS	5	DĐ NĐ				/>)			Sliica Sand
3		200 mm Diam. (Ho	Sandy SLT; brown; moist, soft		3.05	6	88	9	EDGE N/D				\langle	K						W. W. W.
4		ম	Sandy Sil.T; grey with black stairing; moist to wet, soft		96.25 3.76		ss	20			7	-10								
						8	SS	15							:				}	32 mm Diam. PVC #10 Slot Screen
5			SILTY CLAY; brown; moist, soft Sandy SiLT, trace gravel, fine; brown;		94.83 5.18 94.53 5.48		88			2	7									Ā
6			moist, soft		g <u>a</u> 70	10	SS	27	e 15	\triangleright										West States
7		1	End of Borehole	4	(1)		\ \ \ \							:						Wil, in Screen at Eley, 94.80 m in April, 2021
8					:	ł.									:					
9						:			i											
10																				
DE	РТ	TH S	CALE				ĺ			ĢC	LI	DΕ	R							LOGGED: BD HECKED:

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

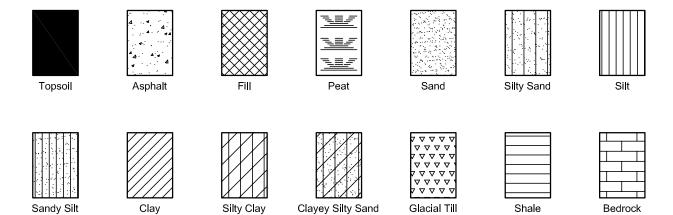
p'₀ - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

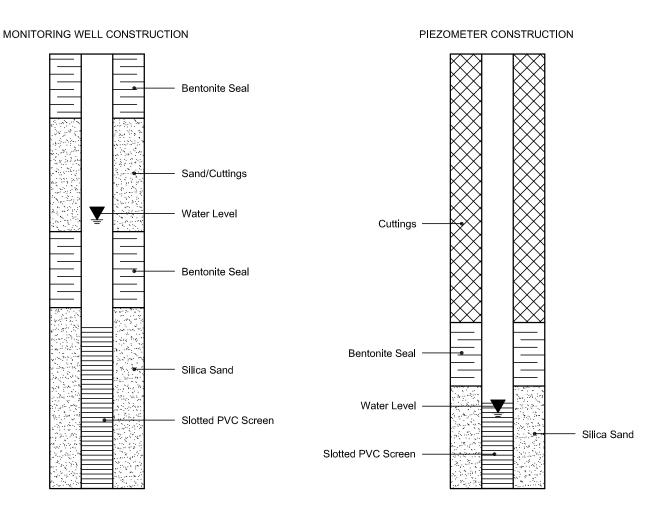
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: James Doyle

PROJECT: 21458827

AGAT WORK ORDER: 21Z730619

SOIL ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Apr 16, 2021

PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 17

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canade (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21Z730619 PROJECT: 21458827

CANADA L4Z 172 TEL (805)712-5100 FAX (805)712-5122 MISSISSAUGA, ONTARIO http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: James Doyle SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

			>	1001 .BOV	II) - INIGIAI	C. reg. 100(011) - metals & morganics (0011)	(100) 501			
DATE RECEIVED: 2021-04-07								J	DATE REPORTED: 2021-04-16	
		SAMPLE DESCRIPTION:	SCRIPTION:	MW21-01-09	DUP A	MW21-02-10	MW21-03-01	MW21-04-07	DUP	
		SAM	SAMPLE TYPE:	Soil	Soil	Soil	Soll	Soll	Soil	
		DATE	DATE SAMPLED:	2021-03-29	2021-03-29	2021-03-30	2021-03-29	2021-03-30	2021-03-30	_
Parameter	Unit	6/8	RDL	2322004	2322005	2322006	2322007	2322008	2322009	
Antimony	6/6п		8.0	<0.8	<0.8	<0.8	<0.8	<0.8	8.0>	
Arsenic	6/6rl		-	-	-	-	ო	-	8	
Barlum	8/61		2.0	18.4	17.6	15.8	151	0.44	63.9	
Beryllum	B/Brl		4.0	4.0	4.0	4·0>	40.4	<0.4	40.4	
Boron	B/Bri		ιĠ	9	\$	\$	in	Ŝ.	\$	
Boron (Hot Water Soluble)	6/6 rl		0.10	<0.10 40.10	<0.10	<0.10	0.22	<0.10	<0.10	
Cadmium	Б/БП		0.5	40.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	6/6rl		Ŋ	9	9	co.	15	ဆ	13	
Cobalt	₿/6rl		0.5	2.8	2.8	2.8	6.9	3.8	4.8	
Copper	B/Brl		1.0	5.9	6.1	6.2	15.3	8.2	10.7	
Lead	b/8rl		-	7	7	7	17	2	4	
Molybdenum	fight		0.5	€.0	<0.5	<0.5	7.5	<0.5	1.0	
Nickel	6/61		-	4	4	4	17	7	10	
Selenium	6/6rl		9.0	60.8	8.0	<0.8	<0.8	<0.8	<0.8	
Silver	6/6rl		9.0	<0.5	€0.5	<0.5	<0.5	<0.5	<0.5	
Thaillum	B/6rl		9.0	<0.5	40.5	<0.5	<0,5	<0.5	<0.5	
Uramium	6/8rl		0.50	0.58	0.50	<0.50	0.75	<0.50	0.56	
Vanadium	6/6rl		0.4	12.8	13.6	11.1	212	18.8	22.1	
Zinc	6/6H		ιΩ	11	10	6	24	15	21	
Chromium, Hexavalent	B/Brl		0.2	<0.2	40.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	B/Brl		0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	ng/g		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm		0.005	0.283	0.294	0.168	1.16	0.227	0.297	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A		N/A	2.68	2.74	1.70	20.5	3.88	4.83	
pH, 2:1 CaCl2 Extraction	pH Units		A	7.76	7.83	7.85	7.84	7.83	7.80	

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

2322004-2322009 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). PH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by ")

Certified By:

Results relate only to the literus tested. Results apply to samples as received.

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

Certificate of Analysis

5885 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122

http://www.agadabs.com

AGAT WORK ORDER: 21Z730619 PROJECT: 21458827

ATTENTION TO: James Doyle

SAMPLED BY:

				O. Reg. 558 Metals and Inorganics	nics
DATE RECEIVED: 2021-04-07					DATE REPORTED: 2021-04-16
	SA	SAMPLE DESCRIPTION:	CRIPTION:	TCLP	
		SAMF	SAMPLE TYPE:	Soll	
		DATES	DATE SAMPLED:	2021-03-30	
Parameter	Unit	8/9	RDL	2322010	
Arsenic Leachate	mg/L	2.5	0.010	<0.010	
Barium Leachate	mg/L	100	0.010	1.11	
Boron Leachate	mg/L	200	0.050	<0.050	
Cadmium Leachate	mg/L	0.5	0.010	<0.010	
Chromium Leachate	mg/L	ъ	0.050	<0.050	
Lead Leachate	mg/L	9	0.010	<0.010	
Mercury Leachate	mg/L	0.1	0.01	<0.01	
Selenium Leachate	mg/L	4-	0.010	<0.010	
Silver Leachate	mg/L	.LO	0.010	<0.010	
Uranium Leachate	mg/L	10	0.050	<0.050	
Fluoride Leachate	mg/L	150	0.05	0.16	
Cyanide Leachate	mg/L	70	0.05	<0.05	
(Nitrate + Nitrite) as N Leachate	mg/L	1000	0.70	<0.70	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criterla Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

(CERTIFICATE OF ANALYSIS (V1)

Certificate of Analysis

AGAT WORK ORDER: 21Z730619

PROJECT: 21458827

TEL (905)712-5100 FAX (905)712-5122 MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 http://www.agetlabs.com

5835 COOPERS AVENUE

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: James Doyle

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2021-04-07								a	DATE REPORTED: 2021-04-16
		SAMPLE DESCRIPTION:	:NOLLA!	MW21-01-09	DUP A	MW21-02-10	MW21-03-01	MW21-04-07	DUP
		SAMPL	SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil
		DATE SAMPLED:	MPLED:	2021-03-29	2021-03-29	2021-03-30	2021-03-29	2021-03-30	2021-03-30
Parameter	Unit	6/8	RDL	2322004	2322005	2322006	2322007	2322008	2322009
F1 (C6 - C10)	6/6rl		5	\$	₽	<5	\$	78.4	55.9
F1 (C6 to C10) minus BTEX	6,61		ю	8	\	\$	∀	78	56
F2 (C10 to C16)	6/6ri		10	در ٥	<10	×10	×10	×10	<10
F3 (C16 to C34)	6/61		20	<50	200	<50	05 05	220	<50
F4 (C34 to C50)	p/gu		20	~ 50	99	<50	<50	V 20	<50
Gravimetric Heavy Hydrocarbons	B/Brl		20	Š	¥	¥.	¥	Ž	NA
Moisture Content	%		0.1	14.0	9.5	16.1	11.2	12.6	12.7
Surrogate	Unit	Acceptable Limits	Limits						
Toluene-d8	% Recovery	50-140		108	105	91	87	98	82
Terzhenvi	%	60-140	_	76	78	60	92	78	02

G/S-Guldeline/Standard RDL - Reported Detection Limit; Comments:

Results are based on sample dry weight. 2322004-2322009

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample. Fractions of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

言句句T Laboratories

Certificate of Analysis

AGAT WORK ORDER: 21Z730619 PROJECT: 21458827

ATTENTION TO: James Doyle

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 172
TEL (905)712-5122
http://www.agaflabs.com

SAMPLED BY:

				:					
			O. Reg	153(511)	O. Reg. 153(511) - VOCs (Soil)	(٠		
DATE RECEIVED: 2021-04-07								DATE REPORTED: 2021-04-16	
		SAMPLE DESCRIPTION:	MW21-01-09	DUP A	MW21-02-10	MW21-03-01	MW21-04-07	DUP	
		SAMPLE TYPE:	Soil	Soil	Soli	Soll	Soil	Soil	
		DATE SAMPLED:	2021-03-29	2021-03-29	2021-03-30	2021-03-29	2021-03-30	2021-03-30	
Parameter	Ë	G/S RDL	2322004	2322005	2322006	2322007	2322008	2322009	
Dichiorodifluoramethane	6/6rl	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Vinyi Chloride	6/6n	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Bromomethane	6/6n	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trichlorofluoromethane	6/6n	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acetone	ō/Bn	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	6/6n	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methylene Chloride	6/6n	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trans- 1,2-Dichloraethyiene	g/gn	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ng/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	g/gn	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Methyl Ethyl Ketone	6/6n	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	B/Sn	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Chloroform	6/6n	0.04	40.04	\$0.0	\$0.0 4	0 .04	40.04	<0.04	
1,2-Dichloroethane	6/6n	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
1,1,1-Trichloroethane	6/6n	90'0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	B/Bn	0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzene	6/6n	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	6/6n	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
Trichloroethylene	6/6n	0.03	€0.03	<0.03	<0.03	<0.03	<0.03	<0.03	
Bromodichloromethane	5/ 5 n	0.05	≪0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	B/Bn	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	B/Bn	0.04	\$0.0 4	<0.04	*0.04	40.0¢	40.04	<0.0>	
Toluene	6/6n	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	8.8	
Dibromochioromethane	6/6n	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylene Dibromide	6/6n	0.04	\$0.0 \$	<0.04	<0.04	40.04	40.0 4	<0.04 40.04	
Tetrachloroethylene	6/6n	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	6/6n	0.04	40.0	<0.04	\$0.0	40.0 4	40.0v	<0.04	
Chlorobenzene	6/6n	90.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbanzene	g/gn	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
т & p-Хуlene	ng/g	0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 21Z730619

PROJECT: 21458827

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agetlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:

ATTENTION TO: James Doyle SAMPLED BY:

O. Reg. 153(511) - VOCs (Soil)

					,		,			
DATE RECEIVED: 2021-04-07								<u></u>	DATE REPORTED: 2021-04-16	
		SAMPLE DESCRIPTION:	SCR!PTION:	MW21-01-09	DUP A	MW21-02-10	MW21-03-01	MW21-04-07	DUP	
		SAN	SAMPLE TYPE:	Soll	Soll	Soil	Soil	Soil	Soil	
		DATE	DATE SAMPLED:	2021-03-29	2021-03-29	2021-03-30	2021-03-29	2021-03-30	2021-03-30	
Parameter	Unit	S/S	RDL	2322004	2322005	2322006	2322007	2322008	2322009	
Bromoform	B/Sn		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Styrene	B/Sn		0.05	<0.05	€0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachioroethane	6/6n		0.05	\$0.05	40.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	6 /Bn		0.05	<0.05	€0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichlorobenzene	6/8n		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,4-Dichlorobenzene	B/Bn		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,2-Dichlorobenzene	6/6n		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Xylenes (Total)	6/6n		0.05	<0.05	20.02	<0.05	<0.05	<0.05	<0.05	
1,3-Dichloropropene (Cis + Trans)	B∕Brl		0.04	×0.04	A).04	40.0 4	40.0 4	<0.04	40.0v	
n-Hexane	6/6rl		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Moisture Content	%		0.1	14.0	<0.1	16.1	11.2	12.64	12.7	
Surrogate	Unit	Accepta	Acceptable Limits							
Toluene-d8	% Recovery		50-140	96	96	96	100	36	100	
4-Bromofluorobenzene	% Recovery		50-140	86	98	86	8	24	96	
										_

RDL - Reported Detection Limit, G / S - Guideline / Standard Comments:

The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanot extract was diluted in water and the purge & trap GCMS analysis was performed. Results are based on the dry weight of the soil. 2322004-2322009

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameters are non-eccredited. The parameters that are components of the calculatedn are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 21Z730619

MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

PROJECT: 21458827

ATTENTION TO: James Doyle SAMPLED BY:

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE:

DATE REPORTED: 2021-04-16 O. Reg. 558 - VOCs 2021-03-30 2322010 <0.030 <0.090 <0.020 <0.050 <0.010 <0.030 <0.020 <0.020 <0.020 0.020 <0.020 <0.010 <0.010 TCL P 8 8 SAMPLE TYPE: DATE SAMPLED: SAMPLE DESCRIPTION 0.030 0.020 0.030 0.000 0.020 0.020 0.020 0.020 0.020 0.050 0.010 0.010 0.010 Acceptable Limits 집 50-140 50-140 10.0 5.0 0.5 0.5 5.0 4 0.5 % Recovery Пg/L A A mg/L mg/L mg/L щg/L mg/L mg/ mg/ mg/L mg/L DATE RECEIVED: 2021-04-07 Carbon Tetrachloride Leachate I,2-Dichlorobenzene Leachate ,4-Dichlorobenzene Leachate Methyl Ethyl Ketone Leachate ,2-Dichloroethane Leachats 1,1 Dichloroethene Leachate Tetrachloroethene Leachate Dichloromethane Leachate Trichloroethene Leachate Chlorobenzene Leachate Surrogate Parameter Vinyl Chloride Leachate -Bromofluorobenzene Chloroform Leachate Benzene Leachate Coluene-d8

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O. Reg. 558 - Schedule IV Leachate Quality Criteria Guideline sare for guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Comments:

Sample was prepared using Regulation 558 protocol and a zero headspace extractor.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Dage 7 of 17

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO **CANADA LAZ 1Y2** TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE:

AGAT WORK ORDER: 21Z730619 **ATTENTION TO: James Doyle**

SAMPLED BY:

				Soi	l Ana	alysis	3								
RPT Date: Apr 16, 2021				DUPLICATI	Ε	<u> </u>	RÉFERE	VCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Semple Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		aptable mits	Recovery	Acce	eptable mits	Recovery	Acce	eptable mits
						<u>L</u>		Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - Metals & Inoi	rganics (Soil)														
Antimony	2324942		<0.8	<0.8	NA	< 0.8	126%	70%	130%	101%	80%	120%	77%	70%	130
Arsenic	2324942		5	5	0.0%	< 1	114%	70%	130%	100%	80%	120%	100%	70%	130
Barlum	2324942		69.1	67.3	2.6%	< 2.0	102%	70%	130%	100%	80%	120%	92%	70%	130
Beryllium	2324942		0.6	0.5	NA	< 0.4	85%	70%	130%	114%	80%	120%	82%	70%	130
Boron	2324942		5	6	NA	< 5	74%	70%	130%	101%	80%	120%	72%	70%	130
Boron (Hot Water Soluble)	2322004 2	322004	<0.10	<0.10	NA	< 0.10	79%	60%	140%	94%	70%	130%	92%	200	440
Cadmium	2324942		<0.5	<0.5	NA.	< 0.5	109%	70%	130%	101%				60%	140
Chromlum	2324942		20	21	NA	< 5	88%	70%	130%	97%	80%	120%	103%	70%	1301
Cobalt	2324942		8.8	8.8	0.0%	< 0.5	93%	70%			80%	120%	91%	70%	1301
Copper	2324942		20.7	20.4	1.5%	< 1.0	93 % 87%	70%	130% 130%	100% 103%	80% 80%	120%	93%	70%	130
				2017	1.070	1.0	0170	10%	130 /0	103%	00%	120%	87%	70%	1309
Lead	2324942		10	10	0.0%	< 1	100%	70%	130%	97%	80%	120%	87%	70%	130
Molybdenum	2324942		<0.5	<0.5	NA	< 0.5	110%	70%	130%	101%	80%	120%	101%	70%	130
Nickel	2324942		17	17	0.0%	< 1	92%	70%	130%	102%	80%	120%	91%	70%	130
Selenium	2324942		<0.8	<0.8	NA	< 0.8	125%	70%	130%	105%	80%	120%	104%	70%	130
3llver	2324942		<0.5	<0.5	NA	< 0.5	102%	70%	130%	105%	80%	120%	95%	70%	130
Thallium	2324942		<0.5	<0.5	NA	< 0.5	91%	70%	130%	102%	80%	4000/	000/	700	400
Uranium	2324942		0.55	0.54	NA	< 0.50	99%	70%	130%	102%		120%	96%	70%	130
Vanadium	2324942		32.9	33.6	2.1%	< 0.4	92%	70%	130%	96%	80% 80%	120%	99%	70%	130
Zinc	2324942		51	51	0.0%	< 5	99%	70%	130%	104%		120%	96%	70%	130
Chromium, Hexavalent	2324734		<0.2	<0.2	NA	< 0.2	102%	70%	130%	84%	80% 80%	120% 120%	98% 74%	70% 70%	130
Cympide Erro	0000470									0.70	0070	12070	1.47	1070	100
Cyanide, Free	2320472		<0.040	<0.040	NA	< 0.040	106%	70%	130%	102%	80%	120%	77%	70%	130
Mercury	2324942		<0.10	<0.10	NA	< 0.10	108%	70%	130%	102%	80%	120%	102%	70%	130
Electrical Conductivity (2:1)	2322004 2		0.283	0.276	2.5%	< 0.005	97%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	2322004 2	322004	2.68	2.57	4.2%	NA									
pH, 2:1 CaCl2 Extraction	2326707		7.33	7.43	1.4%	NA	100%	80%	120%						
Comments: NA signifies Not Applic pH duplicates QA acceptance crite Duplicate NA: results are under 5X	ria was met rei	ative as si vill not be	tated in Te	ible 5-15 of l.	Analytica	al Protocol	document								
O. Reg. 558 Metals and Inorgan	lcs														
Arsenic Leachate	2322099		<0.010	<0.010	NA	< 0.010	102%	70%	130%	108%	80%	120%	123%	70%	130
Barium Leachate	2322099		1.14	1.25	9.2%	< 0.010	100%	70%	130%	104%	80%	120%	120%	70%	130
Boron Leachate	2322099		0.052	0.056	NA	< 0.050	95%	70%	130%	98%	80%	120%	89%	70%	130
Cadmium Leachate	2322099		<0.010	<0.010	NA	< 0.010	99%	70%	130%	100%	80%	120%	102%	70%	130
Chromium Leachate	2322099		<0.050	<0.050	NA	< 0.050	103%	70%	130%	109%	80%	120%	112%	70%	130
Lead Leachate	2222000		n 040	-0.040	A14	40045									
Mercury Leachate	2322099		<0.010	<0.010	NA	< 0.010	99%	70%	130%	96%	80%	120%	90%	70%	130
	2322099		<0.01	<0.01	NA	< 0.01	101%	70%	130%	100%	80%	120%	106%	70%	130
Selenium Leachate	2322099		<0.010	<0.010	NA	< 0.010	105%	70%	130%	113%	80%	120%	124%	70%	130
Silver Leachate	2322099		<0.010	<0.010	NA	< 0.010	102%	70%	130%	102%	80%	120%	94%	70%	130

COUNTY ASSURANCE REPORT (V1)

Page 8 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation inc. (CALA) end/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississeuga) is also accredited by the Canadian Association for Laboratory Accreditation inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.acc.cs. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

AGAT WORK ORDER: 21Z730619 **ATTENTION TO: James Doyle**

SAMPLING SITE:			_				5	SAMPL	ED B	Y:		_			
			Soil	Analy	ysis	(Conf	tinue	d)							
RPT Date: Apr 16, 2021				DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	l ite	ptable nits	Recovery	1.16	ptable nits
ANAMETER	0000	ld	0.00				Value	Lower	Upper		Lower	Upper		Lower	Upper
Uranium Leachate	2322099		<0.050	<0.050	NA	< 0.050	102%	70%	130%	102%	80%	120%	101%	70%	130%
Fluoride Leachate	2322099		0.18	0.18	NA	< 0.05	104%	90%	110%	103%	90%	110%	103%	70%	
Cyanide Leachate (Nitrate + Nitrite) as N Leachate	2322099 2322099		<0.05 <0.70	<0.05 <0.70	NA NA	< 0.05 < 0.70	106% 98%	70% 80%	130% 120%	102% 95%	80% 80%	120% 120%	98% 96%	70% 70%	130% 130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Iris Verastegui

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agaftlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE: AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle

SAMPLED BY:

SAMPLING SITE.								SAMP	LED B	Y:					
			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Apr 16, 2021				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1.00	ptable nits	Recovery		ptable mits
							VEIGE	Lower	Upper		Lower	Upper	_	Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F4	(-BTEX) (So	oll)													_
F1 (C6 - C10)	2321501	-	<5	<5	NA	< 5	91%	60%	140%	99%	60%	140%	93%	60%	140%
F2 (C10 to C16)	2322009	232009	< 10	< 10	NA	< 10	101%	60%	140%	78%	60%	140%	84%	60%	1409
F3 (C16 to C34)	2322009	232009	< 50	< 50	NA	< 50	91%	60%	140%	80%	60%	140%	69%	60%	1409
F4 (C34 to C50)	2322009	232009	< 50	< 50	NA	< 50	90%	60%	140%	85%	60%	140%	81%	60%	1409
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	2322009	2322009	<0.05	< 0.05	NA	< 0.05	93%	50%	140%	106%	50%	140%	87%	50%	140%
Vinyl Chloride	2322009	2322009	<0.02	<0.02	NA	< 0.02	93%	50%	140%	71%	50%	140%	82%	50%	140%
Bromomethane	2322009	2322009	<0.05	<0.05	NA	< 0.05	80%	50%	140%	72%	50%	140%	74%	50%	140%
Trichloroffuoromethane	2322009	2322009	<0.05	< 0.05	NA	< 0.05	94%	50%	140%	72%	50%	140%	71%	50%	140%
Acetone	2322009	2322009	<0.50	<0.50	NA	< 0.50	81%	50%	140%	97%	50%	140%	86%	50%	140%
1,1-Dichloroethylene	2322009	2322009	<0.05	<0.05	NA	< 0.05	90%	50%	140%	84%	60%	130%	73%	508/	4400
Methylene Chloride	2322009		<0.05	<0.05	NA	< 0.05	95%	50%	140%	80%	60%	130%		50%	140%
Trans- 1,2-Dichloroethylene	2322009		<0.05	<0.05	NA	< 0.05	89%	50%	140%	90%	60%		114%	50%	140%
Methyl tert-butyl Ether	2322009		<0.05	<0.05	NA	< 0.05	91%	50%	140%	85%		130% 130%	73% 88%	50%	140%
1,1-Dichloroethane	2322009		<0.02	<0.02	NA	< 0.02	97%	50%	140%	76%	60% 60%	130%	97%	50% 50%	140%
Methyl Ethyl Ketone	2322009	2322000	<0.50	<0.50	NA	< 0.50	76%	EON/	4400/	670/	500/	4.400/			
Cis- 1,2-Dichloroethylene	2322009		<0.02	<0.02	NA	< 0.02	82%	50%	140%	97%	50%	140%	80%	50%	140%
Chloroform	2322009		<0.02	<0.02	NA NA	< 0.02	100%	50% 50%	140%	73%	60%	130%	95%	50%	140%
1,2-Dichloroethane	2322009		<0.03	<0.03	NA	< 0.03	99%	50%	140% 140%	92% 110%	60%	130%	106%	50%	140%
1,1,1-Trichloroethane	2322009		<0.05	<0.05	NA	< 0.05	92%	50%	140%	83%	60% 60%	130% 130%	84% 80%	50% 50%	140% 140%
Carbon Tetrachloride	2322009	2322000	<0.05	<0.05	NA	40.0E	708/	E08/	4.4001	040/	2001	40007			
Benzene	2322009		<0.02	<0.03	NA NA	< 0.05 < 0.02	78% 88%	50%	140%	91%	60%	130%	71%	50%	140%
1,2-Dichloropropane	2322009		<0.02	<0.03	NA	< 0.02	81%	50%	140%	73%	60%	130%	109%	50%	140%
Trichloroethylene	2322009		<0.03	<0.03	NA	< 0.03	96%	50% 50%	140% 140%	76%	60%	130%	89%	50%	140%
Bromodichloromethane	2322009		<0.05	<0.05	NA	< 0.05	78%	50%	140%	84% 76%	60% 60%	130% 130%	112% 82%	50% 50%	140%
Methyl Isobutyl Ketone	2322009	2222000	<0.50	~0 E0	NIA	- 0.50	77.407								
1,1,2-Trichioroethane	2322009		<0.04	<0.50 <0.04	NA	< 0.50	74%	50%	140%	96%	50%	140%	99%	50%	140%
Toluene	2322009		<0.05	<0.04	NA	< 0.04	104%	50%	140%	113%	60%	130%	93%	50%	140%
Dibromochloromethane	2322009		<0.05	<0.05	NA NA	< 0.05	115%	50%	140%	94%	60%	130%	83%	50%	140%
Ethylene Dibromide	2322009		<0.03	<0.03	NA NA	< 0.05 < 0.04	84% 101%	50% 50%	140% 140%	79% 109%	60% 60%	130% 130%	80% 86%	50% 50%	140%
Tetrachloroethylene	2322009	2222000	40.0E	40.05		40.05									
1,1,1,2-Tetrachloroethane	2322009		<0.05	<0.05	NA	< 0.05	102%	50%	140%	104%	60%	130%	74%	50%	140%
Chlorobenzene	2322009		<0.04 <0.05	<0.04	NA	< 0.04	94%	50%	140%	84%	60%	130%	100%	50%	140%
Ethylbenzene	2322009		<0.05	<0.05	NA NA	< 0.05	99%	50%	140%	105%	60%	130%	77%	50%	140%
m & p-Xylene	2322009		<0.05	<0.05 <0.05	NA NA	< 0.05 < 0.05	108% 104%	50% 50%	140% 140%	88% 96%	60% 60%	130% 130%	85% 81%	50% 50%	140%
Bromoform	2222000	2222000													
Styrene	2322009		<0.05	<0.05	NA	< 0.05	74%		140%	72%	60%	130%	72%	50%	140%
1,1,2,2-Tetrachioroethane	2322009		<0.05	<0.05	NA	< 0.05	103%		140%	86%	60%	130%	83%	50%	140%
o-Xylene	2322009		<0.05	<0.05	NA	< 0.05	111%		140%	81%	60%	130%	95%	50%	140%
O-VA10110	2322009	Z3ZZUU9	<0.05	<0.05	NA	< 0.05	95%	50%	140%	103%	60%	130%	90%	50%	140%

COGIT QUALITY ASSURANCE REPORT (V1)

Page 10 of 17

AGAT Leboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississeuge) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.acc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

AGAT WORK ORDER: 21Z730619 **ATTENTION TO: James Doyle**

SAMPLING SITE:								SAMPL	ED B	Y:					
		Ггасе	Org	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Apr 16, 2021				UPLICAT	E	Γ	REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.10	ptable nits	Recovery	1.16	ptable nits
I AIVAMETER		ld				l	Value	Lower	Upper		Lower	Upper		Lower	Upper
1,3-Dichlorobenzene	2322009	2322009	<0.05	<0.05	NA	< 0.05	96%	50%	140%	107%	60%	130%	86%	50%	140%
1,4-Dichlorobenzene	2322009	2322009	<0.05	<0.05	NA	< 0.05	107%	50%	140%	90%	60%	130%	99%	50%	140%
1,2-Dichlorobenzene n-Hexane	2322009 2 2322009 2		<0.05 <0.05	<0.05 <0.05	NA NA	< 0.05 < 0.05	101% 78%	50% 50%	140% 140%	91% 110%	60% 60%	130% 130%	100% 82%	50% 50%	140% 140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be Indicated as Not Applicable (NA).

Certified By:

NPopurkolo

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (906)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE: AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	4000-011-1, 0-001	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Arsenic Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS
Barium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS
Boron Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS
Cadmium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS
Chromium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020B	ICP-MS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 21Z730619

ATTENTION TO: James Doyle

OAIVIF LING OFFE.		Critin LLD D 1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Lead Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Mercury Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Selenium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Silver Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Uranium Leachate	MET-93-6103	EPA 1311 & modified from EPA 6020	B ICP-MS
Fluoride Leachate	INOR-93-6018	EPA 1311 & modified from SM4500-F-C	ION SELECTIVE ELECTRODE
Cyanide Leachate	INOR-93-6052	EPA 1311 modified from MOE 3015 SM 4500 CN-I,G387	TECHNICON AUTO ANALYZER
(Nitrate + Nitrite) as N Leachate	INOR-93-6053	EPA SW 846-1311 & modified from SM 4500 - NO3- I	LACHAT FIA

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatilabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE: AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		<u> </u>	
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	ORG-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methylene Chioride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
		modified from EPA 5035C and EPA	

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VQL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,1 Dichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Dichloromethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chloroform Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Benzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agattabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:

AGAT WORK ORDER: 21Z730619 ATTENTION TO: James Doyle

		OAMITEED B1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trichloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Tetrachloroethene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Chlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene Leachate	VOL-91-5001	EPA 1311, modified from EPA 5030C & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Furblator REGINEDATION REGINEDATION REGINEDATION Sample Reception Sample Reception Sample Reception Sample Reception Sample Reception AGAT Laboratories AGAT Laboratories AGAT Laboratories Sample Reception AGAT Laboratories AGAT Laboratories AGAT Laboratories Sample Reception AGAT Laboratories AGAT Laboratories Sample Reception Sample Reception AGAT Laboratories AGAT Laboratories AGAT Laboratories Sample Reception Sa

Fold the Bill of Lading on the dotted line and insert into the adhesive pouch. Attach a Bill of Lading to each package.

Veuillez plier ce connaissement sur la ligne pointitiée et l'insérer dans la pochette adhèsive. Veuillez loindre un connaissement à chaque colls

No Declared Value Entered By Sender / Aucune valeur déclarée entrée pai

CONDITIONS OF CARRIAGE

IMPORTANT - PLEASE READ: The consignor agrees that the act of tendering the shipment to the carrier for transportation shall be sufficient to constitute signature of this bill of lading by the consignor and shall bind the consignor to the conditions of carriage stated below.

RECEIPT Carrier acknowledges receiving from the shipper, all the point of origin and on the date specified, the athernet describedt, the farming the specified of the specified or the and confidence of confining and confidence of confining and confidence of confining and confidence of confining the destination of shipment of all switch disperse the shipment, to the section rail ship destination set out in this bill of safety, subject to payment of all switch disperse to Subject to payment of all switch disperses. "Carrier refers to Purolston inc. and any correcting ander successive acretic investment of all switch disperses and subject to payment of all switch disperses." Carrier to Purolston inc. and any correcting ander successive acretic investment of the shipment herein described, including any of their especialis subsidiantes.

ILMITATION ON LABILITY Carrier's flability in respect of the shipment described in this bill of lading (including for any computed on the total weight of the shipment, unless a higher value is declared in the specially marked Purolston computed on the total weight of the shipment, unless a higher value is declared in the specially marked Purolston or online Shipphoty bear entity fleet, "Describered Value for his successful agreement to the contrary, carrier is not liable under any circumstances for the nature or value of the goods carried or any special agreement to the contrary, carrier is not liable under any circumstances for the caused.

velue of this goods carried or any special agreement to the contrary, carrier is not liable under any circumstances for the consequences of delay, or for any indicate or consequential demagas (including lost profils) howeverer caused.

NOTICE OF CLAIM Carrier is not liable for any loss, danage or delay to any goods carried under this bill of leding unless notices of the claim sealing out particulars of the origin, destination and date of shipment of the goods and the estimated amount claimed in respect of such loss, damage or delay is given in writing to the carrier within stock (60) and promote any controlling statutory profesions, the final statement of the gibb in the delay delay statutory perfetsors, the final statement of the gibm the district parties are supplicated until all transportation charges the convention applies, other notice periods may govern. No daim will be enfetched until all transportation charges clue in connection with this bill of leding have been pald in full. All bisims are subject to proof of amount of loss.

TERMS INCORPORATED BY REFERENCE Every service to be performed under this bill of lading is subject to the conditions of carriage contained in this bill of facing, including the items and conditions contained in Purolator Inc.'s published thems and conditions of carriage and the terms and conditions prescribed by the law of the jurisdiction where the goods originate (including the uniform conditions of carriage thereunder, if any). If the carriage involves an utilimate destination or a stop in a country offer than the country of departure, the Convention (as defined below) may apply and familiar leability of the carrier in respect of loss of, demangs to or delety of cargo. "Convention" means the Convention for the Unification of Certain Rules is selling to the harmstonal Certain Quite at Wersaw, Poland, 12 Coclober, 1829, or the Convention for the Unification of Contain Rules for International Certain Rules the Conventions are amended or supplemented as may be applicable to the carriage hearted.

MISCELLANEOUS Unless otherwise indicated, the consignor's name and address is the sender's name and address in indicated on this bill of lading, and the latter is the place of execution and the place of destinger to a name and address indicated on this bill of lading, and the latter is the place of destination, and the date indicated on this bill of lading is the date of execution. There are no specific stopping places of destination, and the date indicated on this bill of lading is the date of execution. There are no specific stopping places which are agreed to, and the carrier reserves the right to select the route and the mode of transportation that the carrier destination and the carrier transportation in accordance with the carrier's ordinary care in handling. Unless otherwise indicated on this bill of lading and on any accompanying documentation, and that the shipment is properly described on this bill of lading and on many addressed and packed to ensure safe transportation in accordance with the carrier's ordinary care in handling. Unless otherwise indicated on this bill of lading in consignor walves its general or dimensions of the stipment, and to indicate same on this bill of lading a customs broken.

ENTIRE AGREEMENT The terms and conditions contained in this bill of leding, including those incorporated herein by reference, constitute the entire agreement relating to the carriage of the sulpment described in this bill of leding, and no agent, servant or representative of the carrier or consignor has the authority to after, waive or otherwise modify any provision of this agreement. In tendening the shipment described herein for carriage, the consignor agrees to three teams and conditions on his own behalf and on behalf of the consignee and any other party delaring an interest in this shipment.

Purolator's published terms and conditions of service apply - see www.purolator.com. Las Modalités et conditions de service publiées de Purolator s'alphiquent - voir www.purolator.com.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD 1931 ROBERTSON ROAD OTTAWA, ON K2H5B7 (613) 592-9600

ATTENTION TO: James Doyle

PROJECT: 21458827

AGAT WORK ORDER: 21Z732096

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Apr 19, 2021

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

"NOTES	
Disclaimer:	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's ilability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable Information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 13

Member of: Association of Professional Engineers and Geoscientists of Alberta

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests fisted on the acope of accreditation. AGAT Laboratories (Mississaupa) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Messurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 21Z732096 PROJECT: 21458827

ATTENTION TO: James Doyle

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Bank #53

SAMPLED BY:S. Olthof

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

			5		() () () () () () () () () ()		/	
DATE RECEIVED: 2021-04-09								DATE REPORTED: 2021-04-19
		SAMPLE DESCRIPTION:	RIPTION:	53-MW21-1	53-MW21-2	53-MW21-3	53-MW21-4	
		SAMPI	SAMPLE TYPE:	Water	Water	Water	Water	
		DATE S/	DATE SAMPLED:	2021-04-08 11:30	2021-04-08 12:15	2021-04-08 10:15	2021-04-08 11:00	
Parameter	Ş	8/9	짇	2330088	2330108	2330109	2330113	
F1 (C6 - C10)	ng/L		55	<25	<25	<25	528	
F1 (C6 to C10) minus BTEX	ug/L		52	<25	<25	\$3	283	
E2 (C10 to C16)	I/O/L		100	<100	<100	<100	<100	
E3 (C16 to C34)	ua/L		100	<100	<100	<100	<100	
E4 (C34 to C50)	na/L		100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	ng/L		200	Ą	Ą	¥	NA	
Sediment				Yes	Yes	Yes	Yes	
Surrogate	Unit	Acceptable Limits	- Limits					
Toluene-d8	% Recovery	7 50-140	요	118	106	98.8	98.2	
Terphenyl	%	60-140	2	71	92	69	99	

RDL - Reported Detection Limit; G / S - Guldeline / Standard Comments: The C6-C10 fraction is calculated using Toluene response factor. 2330088-2330113

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the everage response factor for n-C10, n-C16, and nC34.
Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons Indicated that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C8-C50 results are corrected for BTEX contribution. This method compiles with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Tolluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Unearity is within 15%.

Extraction and holding times were met for this sample.
Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

(CERTIFICATE OF ANALYSIS (V1)

Certificate of Analysis

AGAT WORK ORDER: 21Z732096 PROJECT: 21458827

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (805)712-5100 FAX (805)712-5122 http://www.sgstiabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD SAMPLING SITE: Bank #53

ATTENTION TO: James Doyle

SAMPLED BY:S. Olthof

				C. Keg	J. 153(511) -	O. Reg. 153(511) - VOCs (Water)	er)	
DATE RECEIVED: 2021-04-09							:	DATE REPORTED: 2021-04-19
		SAMPLE DESCRIPTION:	SCRIPTION:	53-MW21-1	53-MW21-2	53-MW21-3	53-MW21-4	
		SAM	SAMPLE TYPE:	Water	Water	Water	Water	
		DATE	DATE SAMPLED:	2021-04-08	2021-04-08	2021-04-08	2021-04-08	
Parameter	Chit	8/9	RDL	2330088	2330108	2330109	2330113	
Dichlorodifluoromethane	hg/L		0.20	<0.20	40.20	<0.20	<0.20	
Vinyl Chloride	hg/L		0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	µg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	hg/L		0.40	<0.40	0.40	<0.40	<0.40	
Acetone	µ8√L		1.0	<1.0	o.r>	0.1.0	<1.0	
,1-Dichlaroethylene	hg/L		0:30	<0.30	<0.30	<0.30	<0.30	
Methylene Chlaride	hg/L		0.30	<0.30	<0.30	<0.30	<0.30	
trans- 1,2-Dichloroethylene	hg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	hg/L		0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	hg/L		0.30	<0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	hg∕L		1.0	o.r.>	o.1>	o.1.o	<1.0	
cls-1,2-Dichlamethylene	µg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	hg/L		0.20	0.54	3.49	0.91	4.61	
1,2-Dichloroethane	hg/L		0.20	<0.20	<0.20	<0.20	5.31	
I,1,1-Trichioroethane	Fig/		0.30	<0.30	40 .30	<0.30	<0.30	
Carbon Tetrachloride	hg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	HOVE		0.20	0.48	0.25	<0.20	70.7	
1,2-Dichloropropane	Pg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	Mg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	J/6r/		0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	hg/L		1.0	<1.0	o.r>	<1.0	<1.0	
1,1,2-Trichloroethane	hg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	J/Grl		0.20	<0.20	<0.20	<0.20	10.9	
Dibromochioromethane	hg/L		0.10	<0.10	0.10	<0.10	<0.10	
Ethylene Dibromide	hg/L		0.10	0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	µg/L		0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	hg/L		0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	hg/L		0.10	<0.10	Ф.10	<0.10	<0.10	
Elthylbenzene	hg/L		0.10	0.10	<0.10	<0.10	108	

Certified By:

Results relate only to the items tested. Results apply to samples as received.

SAMPLING SITE: Bank #53

Certificate of Analysis

AGAT WORK ORDER: 21Z732096

PROJECT: 21458827

TEL (905)712-5100 FAX (905)712-5122 MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: GOLDER ASSOCIATES LTD

ATTENTION TO: James Doyle

SAMPLED BY:S. Olthof

				O. Reg.	153(511) -	O. Reg. 153(511) - VOCs (Water)) (Je	
DATE RECEIVED: 2021-04-09								DATE REPORTED: 2021-04-19
		SAMPLE DESCRIPTION:	CRIPTION:	53-MW21-1	53-MW21-2	53-MW21-3	53-MW21-4	
		SAM	SAMPLE TYPE:	Water	Water	Water	Water	
		DATE	DATE SAMPLED:	2021-04-08	2021-04-08	2021-04-08	2021-04-08	
	:	ò	i	11:30	12:15	10:15	11:00	
Parameter	č	G/S	RDL	2330088	2330100	2330102	20000	
m & D-Xylene	hg/L		0.20	<0.20	<0.20	<0.20	53.2	
Bromoform	hg/L		0.10	<0.10	<0.10	<0.10	<0.10	
Skrene	ng/L		0.10	<0.10	<0.10	<0.10	<0.10	
1.1.2.2-Tetrachloroethane	µg/L		0.10	<0.10	<0.10	<0.10	0.10	
o-Xvlene	ug/L		0.10	0.10	<0.10	<0.10	1.88	
1.3-Dichlorobenzene	J/bd/		0.10	<0.10	<0.10	<0.10	<0.10	
1.4-Dichlorobenzene	UQ/L		0.10	<0.10	<0.10	<0.10	<0.10	
1.2-Dichlorobenzene	J/BII		0.10	<0.10	<0.10	<0.10	<0.10	
1.3-Dichloropropene	na/L		0.30	<0.30	<0.30	<0.30	<0.30	
(Xvienes (Total)	ng/L		0.20	<0.20	<0.20	<0.20	55.1	
n-Hexane	pg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Chit	Acceptat	Acceptable Limits		·			
Toluene-d8	% Recovery		50-140	02	73	77	80	
4-Bromofluorobenzene	% Recovery		50-140	92	102	111	103	

RDL - Reported Detection Limit; G / S - Guldeline / Standard Comments:

2330088-2330113 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.
1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.
The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Results relate only to the Items ter

AGAT WORK ORDER: 21Z732096

PROJECT: 21458827

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA LAZ 172
TEL (905)712-5100
FAX (805)772-5122
http://www.agetiebs.com

CLIENT NAME: GOLDER ASSOCIATES LTD

SAMPLING SITE:Bank #53

ATTENTION TO: James Doyle SAMPLED BY:S. Oithof O. Reg. 153(511) - Metals (Including Hydrides) (Water)

)			· · · · · · · · · · · · · · · · · · ·	/	
DATE RECEIVED: 2021-04-09								DATE REPORTED: 2021-04-19
		SAMPLE DESCRIPTION:	SCRIPTION:	53-MW21-1	53-MW21-2	53-MW21-3	53-MW21-4	
		SAN	SAMPLE TYPE:	Water	Water	Wafer	Water	
		DATE	DATE SAMPLED:	2021-04-08 11:30	2021-04-08 12:15	2021-04-08 10:15	2021-04-08 11:00	
Parameter	Unit	S/S	RDL	2330088	2330108	2330109	2330113	
Dissolved Antimony	hgvL		1.0	0.1>	c1.0	41.0	41.0	
Dissolved Arsenic	PQ.		1.0	0.1.0	c1.0	0.1.0	<1.0	
Dissolved Barlum	LQ/L		2.0	165	185	90.7	216	
Dissolved Beryllum	ng/L		0.50	<0.50	<0.50	<0.50	<0.50	
Dissolved Boron	hg/L		10.0	43.2	35.4	35.3	53.1	
Dissolved Cadmium	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Chromium	J/B/L		2.0	2 .0	<2.0	<2.0	<2.0	
Dissolved Cobalt	J/Br/		0.50	2.94	4.20	1.22	3.46	
Dissolved Copper	µg√L		1.0	1.6	11.5	1.5	1.0	
Dissolved Lead	µg/L		0.50	<0.50	1.58	<0.50	<0.50	
Dissolved Motybdenum	hg/L		0.50	2.70	2.24	0.90	2.75	
Dissolved Nickel	hg√L		3.0	4.5	16.3	<3.0	<3.0	
Dissolved Selanium	hg√L		1.0	4.1	1.7	<1.0	<1.0	
Dissolved Silver	ng/L		0.20	<0.20	0.58	0.34	<0.20	
Dissolved Thallium	hg/L		0.30	0:30	40.30	<0.30	<0.30	
Dissolved Uranium	hg/L		0.50	1.80	1.36	1.28	5.34	
Dissolved Vanadium	Hg/L		0.40	<0.40	1.03	<0.40	0.88	
Dissolved Zinc	₽Ø√L		2.0	<5.0	14.5	<5.0	<5.0	

RDL - Reported Detection Limit, G / S - Guideline / Standard

2330086-2330113 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by ")

Très Verastegii

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:Bank #53

AGAT WORK ORDER: 21Z732096 ATTENTION TO: James Doyle SAMPLED BY:S. Olthof

SAMPLING SITE: Bank #93	· · · · · · ·														
			Irac	e Or	gani	cs Ar	nalysi	S							
RPT Date: Apr 19, 2021				DUPLICAT	E		REFEREN			METHOD			MAT	RIX SPII	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits Upper	Recovery	1 1 10	ptable nits Upper	Recovery	Lower	ptable nits Uppe
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	2334169		<0.20	<0.20	NA	< 0.20	83%	50%	140%	91%	50%	140%	99%	50%	1409
Vinyl Chloride	2334169		<0.17	<0.17	NA	< 0.17	103%	50%	140%	93%	50%	140%	106%	50%	140
Bromomethane	2334169		<0.20	<0.20	NA	< 0.20	106%	50%	140%	115%	50%	140%	90%	50%	140
Trichlorofluoromethane	2334169		<0.40	<0.40	NA	< 0.40	109%	50%	140%	108%	50%	140%	103%	50%	140
Acetone	2334169		<1.0	<1.0	NA	< 1.0	103%	50%	140%	113%	50%	140%	117%	50%	140
1,1-Dichloroethylene	2334169		<0.30	<0.30	NA	< 0.30	96%	50%	140%	90%	60%	130%	118%	50%	140
Methylene Chloride	2334169		< 0.30	<0.30	NA	< 0.30	107%	50%	140%	105%	60%	130%	109%	50%	140
trans- 1,2-Dichloroethylene	2334169		<0.20	<0.20	NA	< 0.20	95%	50%	140%	89%	60%	130%	95%	50%	140
Methyl tert-butyl ether	2334169		<0.20	<0.20	NA	< 0.20	103%	50%	140%	107%	60%	130%	91%	50%	140
1,1-Dichloroethane	2334169		<0.30	<0.30	NA	< 0.30	109%	50%	140%	100%	60%	130%	102%	50%	140
Methyl Ethyl Ketone	2334169		<1.0	<1.0	NA	< 1.0	105%	50%	140%	99%	50%	140%	99%	50%	140
cis- 1,2-Dichloroethylene	2334169		<0.20	<0.20	NA	< 0.20	93%	50%	140%	102%	60%	130%	107%	50%	140
Chloroform	2334169		<0.20	<0.20	NA	< 0.20	100%	50%	140%	89%	60%	130%	105%	50%	140
1,2-Dichloroethane	2334169		<0.20	<0.20	NA	< 0.20	103%	50%	140%	96%	60%	130%	88%	50%	140
1,1,1-Trichloroethane	2334169		< 0.30	<0.30	NA	< 0.30	79%	50%	140%	83%	60%	130%	89%	50%	140
Carbon Tetrachloride	2334169		<0.20	<0.20	NA	< 0.20	96%	50%	140%	94%	60%	130%	109%	50%	140
Benzene	2334169		<0.20	<0.20	NA	< 0.20	99%	50%	140%	100%	60%	130%	78%	50%	140
1,2-Dichloropropane	2334169		<0.20	<0.20	NA	< 0.20		50%	140%	107%	60%	130%	102%	50%	140
Trichloroethylene	2334169		<0.20	<0.20	NA	< 0.20	110%	50%	140%	90%	60%	130%	96%	50%	140
Bromodichloromethane	2334169		<0.20	<0.20	NA	< 0.20	115%	50%	140%	96%	60%	130%	110%	50%	140
Methyl Isobutyl Ketone	2334169		<1.0	<1.0	NA	< 1.0	84%	50%	140%	81%	50%	140%	81%	50%	140
1,1,2-Trichloroethane	2334169		<0.20	<0.20	NA.	< 0.20		50%	140%		60%	130%		50%	140
Toluene	2334169		<0.20	<0.20	NA	< 0.20		50%	140%		60%	130%		50%	140
Dibromochloromethane	2334169		<0.10	<0.10	NA	< 0.10		50%	140%		60%			50%	140
Ethylene Dibromide	2334169		<0.10	<0.10	NA	< 0.10		50%	140%		60%	130%	101%	50%	140
Tetrachloroethylene	2334169		<0.20	<0.20	NA	< 0.20	95%	50%	140%	100%	60%	130%	109%	50%	140
1,1,1,2-Tetrachloroethane	2334169		<0.10	<0.10	NA	< 0.10		50%	140%	77%	60%	130%	92%	50%	140
Chlorobenzene	2334169		<0.10	<0.10	NA	< 0.10		50%	140%	96%	60%	130%	117%	50%	140
Ethylbenzene	2334169		<0.10	<0.10	NA	< 0.10		50%	140%	78%	60%	130%	97%	50%	140
m & p-Xylene	2334169		<0.20	<0.20	NA	< 0.20	94%	50%	140%	107%	60%	130%	105%	50%	140
Bromoform	2334169		<0.10	<0.10	NA	< 0.10	100%	50%	140%	101%	60%	130%	97%	50%	140
Styrene	2334169		<0.10	<0.10		< 0.10		50%			60%			50%	
1,1,2,2-Tetrachloroethane	2334169		<0.10	<0.10		< 0.10					60%			50%	
o-Xylene	2334169		<0.10	<0.10		< 0.10		50%			60%			50%	
1,3-Dichlorobenzene	2334169		<0.10	<0.10		< 0.10		50%			60%			50%	
1.4 Dichlorohanzene	2224400		<0.10	<0.10	NA	< 0.10	98%	50%	140%	112%	60%	130%	4 108%	50%	140
1,4-Dichlorobenzene	2334169 2334169		<0.10	<0.10		< 0.10		50%			60%			50%	
1,2-Dichlorobenzene						< 0.10			140%			130%		50%	
n-Hexane	2334169		<0.20	<0.20	NA	≺ U.ZI	, 83%	JU76	14070	, 1076	JU 70	1307	10170	JU 70	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO **CANADA L4Z 1Y2** TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE:Bank #53 AGAT WORK ORDER: 21Z732096 **ATTENTION TO: James Dovle**

CAMI LING SITE BAIK #50	<u> </u>						8	SAMPI	LED B	Y:S. Olt	hof				
	٦	Trace	Org	anics	Ana	alysis	(Cor	ntin	ued	l)					
RPT Date: Apr 19, 2021				DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	KE
PARAMETER	Batch	Sample Id	Dup#1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1.1-	ptable nits	Recovery	10.00	ptable mits
							value	Lower	Upper		Lower	Upper	, , ,		Upper
O. Reg. 153(511) - PHCs F1 - I	⁵ 4 (-BTEX) (Wa	ter)													
F1 (C6 - C10)	2330212		<25	<25	NA	< 25	101%	60%	140%	101%	60%	140%	103%	60%	140%
F2 (C10 to C16)	2337275		< 100	< 100	NA	< 100	101%	60%	140%	78%	60%	140%	76%	60%	140%
F3 (C16 to C34)	2337275		< 100	< 100	NA	< 100	91%	60%	140%	62%	60%	140%	60%	60%	140%
F4 (C34 to C50)	2337275		< 100	< 100	NA	< 100	90%	60%	140%	71%	60%	140%	60%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NP opnuko

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:Bank #53

AGAT WORK ORDER: 21Z732096 **ATTENTION TO: James Doyle**

SAMPLED BY:S. Olthof

				Wate	er Ar	alys	s								
RPT Date: Apr 19, 2021	<u></u>			UPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.00	ptable nits	Recovery		ptable nits
TAICHE LEIS		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (inc	luding Hydrides) (Water))												
Dissolved Antimony	2328681		<1.0	<1.0	NA	< 1.0	102%	70%	130%	106%	80%	120%	106%	70%	130%
Dissolved Arsenic	2328681		<1.0	1.9	NA	< 1.0	96%	70%	130%	101%	80%	120%	108%	70%	130%
Dissolved Barium	2328681		96.1	92.4	3.9%	< 2.0	99%	70%	130%	100%	80%	120%	105%	70%	130%
Dissolved Beryllium	2328681		<0.50	<0.50	NA	< 0.50	103%	70%	130%	103%	80%	120%	120%	70%	130%
Dissolved Boron	2328681		35.4	37.3	NA	< 10.0	100%	70%	130%	101%	80%	120%	113%	70%	130%
Dissolved Cadmlum	2328681		<0.20	<0.20	NA	< 0.20	102%	70%	130%	105%	80%	120%	100%	70%	130%
Dissolved Chromium	2328681		<2.0	<2.0	NA	< 2.0	91%	70%	130%	96%	80%	120%	99%	70%	130%
Dissolved Cobalt	2328681		2.00	1.90	NA	< 0.50	96%	70%	130%	103%	80%	120%	106%	70%	130%
Dissolved Copper	2328681		<1.0	1.6	NA	< 1.0	91%	70%	130%	99%	80%	120%	94%	70%	130%
Dissolved Lead	2328681		<0.50	<0.50	NA	< 0.50	98%	70%	130%	103%	80%	120%	98%	70%	130%
Dissolved Molybdenum	2328681		<0.50	<0.50	NA	< 0.50	99%	70%	130%	98%	80%	120%	104%	70%	130%
Dissolved Nickel	2328681		<3.0	<3.0	NA	< 3.0	88%	70%	130%	96%	80%	120%	94%	70%	130%
Dissolved Selenium	2328681		<1.0	<1.0	NA	< 1.0	106%	70%	130%	113%	80%	120%	109%	70%	130%
Dissolved Silver	2328681		<0.20	0.24	NA	< 0.20	97%	70%	130%	105%	80%	120%	103%	70%	130%
Dissolved Thallium	2328681		<0.30	<0.30	NA	< 0.30	104%	70%	130%	103%	80%	120%	102%	70%	130%
Dissolved Uranlum	2328681		0.52	<0.50	NA	< 0.50	107%	70%	130%	110%	80%	120%	113%	70%	130%
Dissolved Vanadium	2328681		<0.40	<0.40	NA	< 0.40	89%	70%	130%	93%	80%	120%	97%	70%	130%
Dissolved Zinc	2328681		<5.0	<5.0	NA	< 5.0	93%	70%	130%	98%	80%	120%	94%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Tris Verastegui

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlebs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE:Bank #53 AGAT WORK ORDER: 21Z732096 ATTENTION TO: James Doyle SAMPLED BY:S. Olthof

		SAMPLED BY:S. (Jithol
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F1 (C6 - C10)	VOL-91- 5010	modified from MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5009	modified from MOE PHC E3421	GC/FID
Sediment			
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
	VOL-91-5001	OLOOD	(P&T)GC/MS
	VOL-91-5001	0200D	(P&T)GC/MS
	VOL-91-5001	02000	(P&T)GC/MS
	VOL-91-5001	OLOOD	(P&T)GC/MS
1,1,2-Trichioroethane	VOL -91-500 1	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827

SAMPLING SITE:Bank #53

AGAT WORK ORDER: 21Z732096 ATTENTION TO: James Doyle SAMPLED BY:S. Olthof

SAMPLING SITE:Bank #53		SAMPLED B1.5.	Oltifor
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA LAZ 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD

PROJECT: 21458827 SAMPLING SITE:Bank #53 AGAT WORK ORDER: 21Z732096 ATTENTION TO: James Doyle SAMPLED BY:S. Olthof

CALLED BUILT WOS		SAMPLED BY:S.	Olthof
PARAMETER PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS

Next Business Day DN/A For 'Same Day' analysis, please contact your AGAT CPIM *TAT is exclusive of weekends and statutory holidays Laboratory Use Only
Work Order #: 2122096 OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT ō X 5 to 7 Business Days **Turnaround Time (TAT) Required:** ☐ 2 Business ☐ Days Sewer Use CCLP: 🗌 M&L 🔲 VOCs 🔲 ABNs 🔲 B(a)P 🗇PCBs RUSH TAT (Rush Surcharges Apply) Organochlonne Pesticides Arrival Temperatures: ocBs; □ Total □ Aroclors Custody Seal Intact: 3 Business
Days Cooler Quantity: Regular TAT SMBA ₹ SHC2 ET - Et 10/3 Car Volatiles: X VOC X BTEX THM □ No Regulatory Requirement Mississauga, Ontario L4Z 1Y2 5835 Coopers Avenue Ph: 905.712,5100 Fax: 905.712,5122 webearth.agatlabs.com Regulation/Custom Metals 8 0 Prov. Water Quality Objectives (PWQO) Certificate of Analysis Report Guideilne on Regulation 558 Full Metals Scan Indicate One If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans) RAZ | Hq | DCM DEC DFOC CHE CCME Other OBPS: DE-HWS DCI DON Yes izabirby (a.c.) zistam szt 🗆 zistam ila 🗖 Sale De la VICINA DE DE DE SALES DE DE SALES DE DE SALES Field Filtered - Metals, Hg, CrVI Sewer Use Indicate One Sanltary □ Storm MISA Regulatory Requirements: Is this submission for a Record of Site Condition? Special Instructions 2 Sample Matrix Legend N Regulation 153/04 Surface Water Soil Texture (check One) Table Indicate one
Indicom
Res/Park
Agriculture **Ground Water** Sediment Se ↓ Oil Paint Coarse Sof [可[]] Laboratories Fine She B & SW 0 a. Sample Matrix 6.12 ž Containers Yes Please note: If quotation number is not provided, client will be billed full price for analysis # o' ð তা double @golder.com 0 Bill To Same; 1215 1130 Sampled 2101 100 APR 08 Date Sampled õ Doyle 21458827 **Chain of Custody Record** 6 3-293-0765 Oltho GAL Simony james Sample Identification Report Information: Invoice Information: Project Information: 53- Marz1-4 53-MW21-3 53-MW21-1 53-Marz1ples Retropping Programme Reports to be sent to: SAMO.

AGAT Quote #:

Company:

Contact: Address:

Email:

Site Location: Sampled By:

1, Email:

Contact: Address: 2. Email:

Pink Copy - Client 1 Yellow Copy - AGAT | White Copy- AGAT A 20.

79630

mples Relinquished By (Print Nam

ä

	Laberatories	
A STATE OF THE PARTY OF THE PAR		

Sample Temperature Log

ler #;	sions:	Arrival Temperatures - Laboratory					/:	<i>l.</i> /							Fime: AM / PM
COC# or Work Order #:	# of Submissions:	Α	rdia (coolen#1:	(Ece parts) cooler#2:	J Te Coolen#3:	Cooler#4	(Cooler#5:	cooler#6:	K (ce) Cooler#7:	Cooler	Cooler	Coolerano	IR Gun ID:	Taken By:	Date (ww/mm/dd):
Ottawa Branch	7 69	Arrival Temperatures - Branch/Driver	Cooler#1: 72 / 7.8 / 8.3 (bagge	Cooler#2: 6.5 / 7.1 / 7.0 (Reg	Cooler#3: 7.3 / 7.6 / 7.7 Craya	Cooler #4: 5.9 / 6.4 / 5.5 (Page	Cooler#5: 4. [17.5 / 2.7 (Bagged	Cooler#6: 3.8 / 3-5 / 4. 6 (Melted	Cooler #7: 5-8 15-6 15-4 (bayed)	Cooler#8 / / /	Capler #9;	Cooler #10: / /			Time: AM / PM
Client:	# of Coolers:												IR Gun ID:	Taken By:	Date lyyyy/mm/dd/:

Instructions for use of this form: 1) complete all fields of info including total # of coolers and # of submissions rec'el, 2) photocopy and place in each

Document ID: SR-78-9511.003 Date Issued: 2017-2-23

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5

Attn: Nick Sullivan

Client PO: 54500 Project: PE5590 Custody: 64385

Report Date: 12-May-2022 Order Date: 5-May-2022

Order #: 2219554

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2219554-01	BH1-22-SS3/SS4A
2219554-02	BH1-22-SS8
2219554-03	BH2-22-SS4A
2219554-04	BH2-22-SS5
2219554-05	BH3-22-SS3
2219554-06	BH3-22-SS6
2219554-07	DUP-1

Approved By:

Dale Robertson, BSc Laboratory Director

Order #: 2219554

Report Date: 12-May-2022 Order Date: 5-May-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 5-May-2022

 Client PO:
 54500
 Project Description: PE5590

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	6-May-22	9-May-22
Conductivity	MOE E3138 - probe @25 °C, water ext	9-May-22	9-May-22
Mercury by CVAA	EPA 7471B - CVAA, digestion	10-May-22	10-May-22
Metals, ICP-MS	EPA 6020 - Digestion - ICP-MS	12-May-22	12-May-22
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	10-May-22	10-May-22
PHC F1	CWS Tier 1 - P&T GC-FID	6-May-22	7-May-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	6-May-22	8-May-22
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	9-May-22	9-May-22
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	6-May-22	8-May-22
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	6-May-22	7-May-22
SAR	Calculated	9-May-22	9-May-22
Solids, %	Gravimetric, calculation	6-May-22	9-May-22

Report Date: 12-May-2022

Order Date: 5-May-2022

Certificate of Analysis

Chlorobenzene

Client: Paterson Group Consulting Engineers

Client PO: 54500 Project Description: PE5590

BH1-22-SS8 Client ID: BH1-22-SS3/SS4A BH2-22-SS4A BH2-22-SS5 Sample Date: 03-May-22 09:00 03-May-22 09:00 03-May-22 09:00 03-May-22 09:00 2219554-01 2219554-02 2219554-03 2219554-04 Sample ID: MDL/Units Soil Soil Soil Soil **Physical Characteristics** 0.1 % by Wt. % Solids 84.0 83.2 78.3 88.4 **General Inorganics** 0.01 N/A SAR 13.5 5 uS/cm Conductivity 1670 0.05 pH Units рΗ 7.49 Metals 1.0 ug/g dry Antimony 2.8 1.0 ug/g dry Arsenic 3.0 1.0 ug/g dry Barium 38.1 _ _ Beryllium 0.5 ug/g dry <0.5 5.0 ug/g dry Boron 7.2 0.5 ug/g dry Cadmium < 0.5 5.0 ug/g dry Chromium 15.9 0.2 ug/g dry Chromium (VI) <0.2 Cobalt 1.0 ug/g dry 5.6 5.0 ug/g dry Copper 13.1 1 ug/g dry Lead 5 1.0 ug/g dry Lead 48.0 0.1 ug/g dry Mercury < 0.1 1.0 ug/g dry Molybdenum <1.0 5.0 ug/g dry Nickel 14.7 1.0 ug/g dry Selenium <1.0 0.3 ug/g dry Silver < 0.3 1.0 ug/g dry Thallium <1.0 Uranium 1.0 ug/g dry <1.0 Vanadium 10.0 ug/g dry 26.6 20.0 ug/g dry Zinc 37.1 Volatiles 0.50 ug/g dry Acetone < 0.50 < 0.50 < 0.50 0.02 ug/g dry Benzene < 0.02 < 0.02 < 0.02 0.05 ug/g dry Bromodichloromethane < 0.05 < 0.05 < 0.05 0.05 ug/g dry Bromoform < 0.05 < 0.05 < 0.05 0.05 ug/g dry Bromomethane < 0.05 < 0.05 < 0.05 _ Carbon Tetrachloride 0.05 ug/g dry < 0.05 < 0.05 < 0.05

< 0.05

< 0.05

0.05 ug/g dry

< 0.05

Order #: 2219554

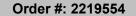
Report Date: 12-May-2022

Order Date: 5-May-2022

Client: Paterson Group Consulting Engineers Client PO: 54500 **Project Description: PE5590**

	Client ID: Sample Date: Sample ID:	BH1-22-SS3/SS4A 03-May-22 09:00 221954-01	BH1-22-SS8 03-May-22 09:00 2219554-02	BH2-22-SS4A 03-May-22 09:00 2219554-03	BH2-22-SS5 03-May-22 09:00 2219554-04
	MDL/Units 0.05 ug/g dry	Soil	Soil	Soil	Soil
Chloroform		<0.05	<0.05	-	<0.05
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Ethylene dibromide (dibromoethane, 1,2-)	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Hexane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Styrene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	<0.05
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	<0.02
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	_	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	_	<0.05
4-Bromofluorobenzene	Surrogate	123%	122%	-	112%

Report Date: 12-May-2022

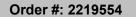

Order Date: 5-May-2022

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 54500 Project Description: PE5590

-				
Client ID:	BH1-22-SS3/SS4A	BH1-22-SS8	BH2-22-SS4A	BH2-22-SS5
Sample Date:	03-May-22 09:00	03-May-22 09:00	03-May-22 09:00	03-May-22 09:00
Sample ID:	2219554-01	2219554-02	2219554-03	2219554-04
MDL/Units	Soil	Soil	Soil	Soil
Surrogate	97.9%	101%	-	105%
Surrogate	95.3%	96.9%	-	84.6%
7 ug/g dry	<7	<7	-	<7
4 ug/g dry	<4	<4	-	35
8 ug/g dry	38	<8	-	10
6 ug/g dry	66	<6	-	<6
	Sample Date: Sample ID: MDL/Units Surrogate Surrogate 7 ug/g dry 4 ug/g dry 8 ug/g dry	Sample Date: 03-May-22 09:00 Sample ID: 2219554-01 MDL/Units Soil Surrogate 97.9% Surrogate 95.3% 7 ug/g dry <7	Sample Date: 03-May-22 09:00 03-May-22 09:00 Sample ID: 2219554-01 2219554-02 MDL/Units Soil Soil Surrogate 97.9% 101% Surrogate 95.3% 96.9% 7 ug/g dry <7	Sample Date: 03-May-22 09:00 03-May-22 09:00 03-May-22 09:00 03-May-22 09:00 03-May-22 09:00 2219554-03 Soil Soil Soil Soil Surrogate 97.9% 101% - - Surrogate 95.3% 96.9% - 7 ug/g dry <7


Client: Paterson Group Consulting Engineers

--- ------

Report Date: 12-May-2022 Order Date: 5-May-2022

Client PO: 54500 Project Description: PE5590

	Client ID: Sample Date: Sample ID: MDL/Units	BH3-22-SS3 03-May-22 12:00 2219554-05 Soil	BH3-22-SS6 03-May-22 12:00 2219554-06 Soil	DUP-1 03-May-22 12:00 2219554-07 Soil	- - - -
Physical Characteristics	WIDE/OIIItS		1	0011	
% Solids	0.1 % by Wt.	83.1	88.0	88.2	-
General Inorganics	<u> </u>				
SAR	0.01 N/A	14.1	-	-	-
Conductivity	5 uS/cm	2760	-	-	-
рН	0.05 pH Units	7.30	-	-	-
Metals					
Antimony	1.0 ug/g dry	1.0	-	-	-
Arsenic	1.0 ug/g dry	4.8	-	-	-
Barium	1.0 ug/g dry	161	-	-	-
Beryllium	0.5 ug/g dry	0.7	-	-	-
Boron	5.0 ug/g dry	9.0	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	22.5	-	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	8.3	-	-	-
Copper	5.0 ug/g dry	23.0	-	-	-
Lead	1 ug/g dry	-	2	-	-
Lead	1.0 ug/g dry	26.2	-	-	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	<1.0	-	-	-
Nickel	5.0 ug/g dry	18.7	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	36.0	-	-	-
Zinc	20.0 ug/g dry	59.9	-	-	-
Volatiles					
Acetone	0.50 ug/g dry	-	<0.50	<0.50	-
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	-	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	-	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	-	<0.05	<0.05	-
Chlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-

Client: Paterson Group Consulting Engineers

Onem. 1 aterson Group Gonsulting Engineers

Order Date: 5-May-2022

Report Date: 12-May-2022

Client PO: 54500 Project Description: PE5590

	Client ID: Sample Date:	BH3-22-SS3 03-May-22 12:00 2219554-05	BH3-22-SS6 03-May-22 12:00 2219554-06	DUP-1 03-May-22 12:00 2219554-07	- -
	Sample ID: MDL/Units	2219554-05 Soil	22 19554-06 Soil	2219554-07 Soil	-
Chloroform	0.05 ug/g dry	-	<0.05	<0.05	-
Dibromochloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	-	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylene dibromide (dibromoethane, 1	0.05 ug/g dry	-	<0.05	<0.05	-
Hexane	0.05 ug/g dry	-	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	-	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	-	<0.05	<0.05	-
Styrene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	-	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	-	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	-	<0.05	<0.05	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 54500

Report Date: 12-May-2022 Order Date: 5-May-2022

Project Description: PE5590

	Client ID: Sample Date: Sample ID: MDL/Units	BH3-22-SS3 03-May-22 12:00 2219554-05 Soil	BH3-22-SS6 03-May-22 12:00 2219554-06 Soil	DUP-1 03-May-22 12:00 2219554-07 Soil	- - -
4-Bromofluorobenzene	Surrogate	-	117%	123%	-
Dibromofluoromethane	Surrogate	-	98.8%	112%	-
Toluene-d8	Surrogate	-	90.8%	93.7%	-
Hydrocarbons			-	!	<u> </u>
F1 PHCs (C6-C10)	7 ug/g dry	-	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	-	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	-	<8	-	-
F4 PHCs (C34-C50)	6 ug/g dry	-	<6	-	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	<0.02	-	-	-
Acenaphthylene	0.02 ug/g dry	0.04	-	-	-
Anthracene	0.02 ug/g dry	0.02	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	0.06	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	0.08	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.10	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.06	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.05	-	-	-
Chrysene	0.02 ug/g dry	0.08	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	-	-
Fluoranthene	0.02 ug/g dry	0.15	-	-	-
Fluorene	0.02 ug/g dry	<0.02	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.05	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	-	-	-
Naphthalene	0.01 ug/g dry	<0.01	-	-	-
Phenanthrene	0.02 ug/g dry	0.08	-	-	-
Pyrene	0.02 ug/g dry	0.14	-	-	-
2-Fluorobiphenyl	Surrogate	96.7%	-	-	-
Terphenyl-d14	Surrogate	108%	-	-	-

Report Date: 12-May-2022

Order Date: 5-May-2022
Project Description: PE5590

Certificate of Analysis

Client: Paterson Group Consulting Engineers
Client PO: 54500

Analyte	Result	Reporting Limit	Llaita	Source	0/ DEC	%REC Limit	RPD	RPD Limit	Notes
	Nesuit	Limit	Units	Result	%REC	LIMIL	RPD	Limit	Notes
eneral Inorganics									
Conductivity	ND	5	uS/cm						
lydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
letals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium Chromium (VI)	ND ND	0.5 0.2	ug/g						
Chromium	ND ND	5.0	ug/g ug/g						
Cobalt	ND	1.0	ug/g ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium Vanadium	ND ND	1.0 10.0	ug/g						
Zinc	ND ND	20.0	ug/g ug/g						
Semi-Volatiles	ND	20.0	ug/g						
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene Fluorene	ND ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND ND	0.02 0.02	ug/g						
1-Methylnaphthalene	ND ND	0.02	ug/g ug/g						
2-Methylnaphthalene	ND ND	0.02	ug/g ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.58		ug/g		119	50-140			
Surrogate: Terphenyl-d14	1.85		ug/g		139	50-140			
olatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						

Order #: 2219554

Report Date: 12-May-2022 Order Date: 5-May-2022

Project Description: PE5590

Client: Paterson Group Consulting Engineers

Client PO: 54500

Method Quality Control: Blank

Method Quality Control. Blank											
Analyta	D"	Reporting	Source			%REC		RPD			
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes		
Chlorobenzene	ND	0.05	ug/g								
Chloroform	ND	0.05	ug/g								
Dibromochloromethane	ND	0.05	ug/g								
Dichlorodifluoromethane	ND	0.05	ug/g								
1,2-Dichlorobenzene	ND	0.05	ug/g								
1,3-Dichlorobenzene	ND	0.05	ug/g								
1,4-Dichlorobenzene	ND	0.05	ug/g								
1,1-Dichloroethane	ND	0.05	ug/g								
1,2-Dichloroethane	ND	0.05	ug/g								
1,1-Dichloroethylene	ND	0.05	ug/g								
cis-1,2-Dichloroethylene	ND	0.05	ug/g								
trans-1,2-Dichloroethylene	ND	0.05	ug/g								
1,2-Dichloropropane	ND	0.05	ug/g								
cis-1,3-Dichloropropylene	ND	0.05	ug/g								
trans-1,3-Dichloropropylene	ND	0.05	ug/g								
1,3-Dichloropropene, total	ND	0.05	ug/g								
Ethylbenzene	ND	0.05	ug/g								
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g ug/g								
Hexane	ND	0.05	ug/g								
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g								
Methyl Isobutyl Ketone	ND	0.50	ug/g ug/g								
Methyl tert-butyl ether	ND	0.05	ug/g ug/g								
Methylene Chloride	ND	0.05	ug/g ug/g								
Styrene	ND	0.05	ug/g ug/g								
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g ug/g								
1,1,2.7-Tetrachioroethane	ND	0.05	ug/g ug/g								
Tetrachloroethylene	ND	0.05	ug/g ug/g								
Toluene	ND	0.05	ug/g ug/g								
1,1,1-Trichloroethane	ND ND	0.05									
1,1,2-Trichloroethane	ND	0.05	ug/g								
Trichloroethylene	ND ND	0.05	ug/g								
Trichlorofluoromethane	ND ND	0.05	ug/g								
			ug/g								
Vinyl chloride	ND	0.02	ug/g								
m,p-Xylenes	ND	0.05	ug/g								
o-Xylene	ND	0.05	ug/g								
Xylenes, total	ND	0.05	ug/g		440	50.446					
Surrogate: 4-Bromofluorobenzene	3.78		ug/g		118	50-140					
Surrogate: Dibromofluoromethane	2.63		ug/g		82.1	50-140					
Surrogate: Toluene-d8	2.65		ug/g		82.8	50-140					

Order #: 2219554

Report Date: 12-May-2022 Order Date: 5-May-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 5-May-2022

 Client PO:
 54500
 Project Description: PE5590

Method Quality Control: Duplicate

Analysis		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
eneral Inorganics									
SAR	0.10	0.01	N/A	0.10			0.0	30	
Conductivity	407	5	uS/cm	405			0.5	5	
pH	7.25	0.05	pH Units	7.31			0.8	2.3	
lydrocarbons	7.20	2.00	F				0.0		
•		-		NE			NIC	40	
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC 16.0	40	
F2 PHCs (C16 C24)	7	4	ug/g	6			16.0	30	
F3 PHCs (C16-C34)	17	8	ug/g	14 ND			17.0	30 30	
F4 PHCs (C34-C50)	6	6	ug/g	ND			NC	30	
Metals									
Antimony	2.3	1.0	ug/g	ND			NC	30	
Arsenic	8.1	1.0	ug/g	7.4			8.8	30	
Barium	86.9	1.0	ug/g	79.2			9.4	30	
Beryllium	ND	0.5	ug/g	ND			NC	30	
Boron	7.0	5.0	ug/g	6.8			2.6	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	10.7	5.0	ug/g	9.3			13.6	30	
Cobalt	9.4	1.0	ug/g	8.7			7.7	30	
Copper	7.7	5.0	ug/g	12.1			NC	30	
Lead	21.3	1	ug/g	19.0			11.5	30	
Lead	271	1.0	ug/g	246			9.9	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	4.2	1.0	ug/g	3.7			11.9	30	
Nickel	18.7	5.0	ug/g	17.1			9.0	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND ND	0.3	ug/g	ND			NC NC	30 30	
Thallium	ND ND	1.0	ug/g	ND			NC	30	
Uranium Vanadium	ND 17.8	1.0	ug/g	ND 17.3			NC	30 30	
Vanadium Zinc	17.8 33.0	10.0 20.0	ug/g	17.3 27.2			3.0 19.3	30 30	
Zinc	33.0	20.0	ug/g	27.2			19.3	SU	
Physical Characteristics		_		_				_	
% Solids	80.5	0.1	% by Wt.	78.8			2.1	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g	ND			NC	40	
Acenaphthylene	ND	0.02	ug/g	ND			NC	40	
Anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] anthracene	ND	0.02	ug/g	ND			NC	40	
Benzo [a] pyrene	ND	0.02	ug/g	ND			NC	40	
Benzo [b] fluoranthene	0.026	0.02	ug/g	0.027			3.7	40	
Benzo [g,h,i] perylene	ND	0.02	ug/g	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	ug/g	ND			NC	40	
Chrysene	ND	0.02	ug/g	ND			NC	40	
Dibenzo [a,h] anthracene	ND ND	0.02	ug/g	ND			NC	40 40	
Fluoranthene Fluorene	ND ND	0.02	ug/g	0.024			NC	40 40	
	ND ND	0.02	ug/g	ND			NC	40 40	
Indeno [1,2,3-cd] pyrene 1-Methylnaphthalene	ND ND	0.02 0.02	ug/g	ND ND			NC NC	40 40	
•		0.02	ug/g				NC NC		
2-Methylnaphthalene Naphthalene	ND ND	0.02	ug/g	ND ND			NC NC	40 40	
Naphthalene Phenanthrene	ND ND	0.01 0.02	ug/g	ND ND			NC NC	40 40	
Pnenanthrene Pyrene	ND ND	0.02	ug/g	ND 0.022			NC NC	40 40	
Pyrene Surrogate: 2-Fluorobiphenyl	ND 1.46	0.02	ug/g	0.022	88.6	50-140	INC	40	
	1.46 1.67		ug/g		88.6 101	50-140 50-140			
Surrogate: Terphenyl-d14	1.07		ug/g		101	JU-14U			
olatiles									
Acetone	ND	0.50	ug/g	ND			NC	50	

Order #: 2219554

Report Date: 12-May-2022 Order Date: 5-May-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 5-May-2022

 Client PO:
 54500
 Project Description: PE5590

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
			Oillo		701 NEO	Little			
Benzene	ND	0.02	ug/g	ND			NC	50	
Bromodichloromethane	ND	0.05	ug/g	ND			NC	50	
Bromoform	ND	0.05	ug/g	ND			NC	50	
Bromomethane	ND	0.05	ug/g	ND			NC	50	
Carbon Tetrachloride	ND	0.05	ug/g	ND			NC	50	
Chlorobenzene	ND	0.05	ug/g	ND			NC	50	
Chloroform	ND	0.05	ug/g	ND			NC	50	
Dibromochloromethane	ND	0.05	ug/g	ND			NC	50	
Dichlorodifluoromethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,3-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,4-Dichlorobenzene	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g	ND			NC	50	
1,2-Dichloropropane	ND	0.05	ug/g	ND			NC	50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Ethylene dibromide (dibromoethane, 1,2	ND	0.05	ug/g	ND			NC	50	
Hexane	ND	0.05	ug/g	ND			NC	50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g	ND			NC	50	
Methyl Isobutyl Ketone	ND	0.50	ug/g	ND			NC	50	
Methyl tert-butyl ether	ND	0.05	ug/g	ND			NC	50	
Methylene Chloride	ND	0.05	ug/g	ND			NC	50	
Styrene	ND	0.05	ug/g	ND			NC	50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND			NC	50	
Tetrachloroethylene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
1,1,1-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
1,1,2-Trichloroethane	ND	0.05	ug/g	ND			NC	50	
Trichloroethylene	ND	0.05	ug/g	ND			NC	50	
Trichlorofluoromethane	ND	0.05	ug/g	ND			NC	50	
Vinyl chloride	ND	0.02	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: 4-Bromofluorobenzene	5.06		ug/g		128	50-140			
Surrogate: Dibromofluoromethane	5.20		ug/g		131	50-140			
Surrogate: Toluene-d8	3.73		ug/g		94.4	50-140			

Client: Paterson Group Consulting Engineers

Order Date: 5-May-2022 Client PO: 54500 **Project Description: PE5590**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	204	7	ug/g	ND	102	80-120			
F2 PHCs (C10-C16)	88	4	ug/g	6	82.0	60-140			
F3 PHCs (C16-C34)	280	8	ug/g	14	109	60-140			
F4 PHCs (C34-C50)	182	6	ug/g	ND	118	60-140			
Netals									
Antimony	44.8	1.0	ug/g	ND	89.2	70-130			
Arsenic	58.2	1.0	ug/g	3.0	110	70-130			
Barium	87.0	1.0	ug/g	31.7	111	70-130			
Beryllium	52.7	0.5	ug/g	ND	105	70-130			
Boron	54.2	5.0	ug/g	ND	103	70-130			
Cadmium	48.4	0.5	ug/g	ND	96.6	70-130			
Chromium (VI)	2.5	0.2	ug/g	ND	41.5	70-130		(QM-05
Chromium	58.1	5.0	ug/g	ND	109	70-130			
Cobalt	55.7	1.0	ug/g	3.5	104	70-130			
Copper	51.9	5.0	ug/g	ND	94.1	70-130			
Lead	61.7	1	ug/g	7.6	108	70-130			
Lead	153	1.0	ug/g	98.2	109	70-130			
Mercury	1.23	0.1	ug/g	ND	82.1	70-130			
Molybdenum	53.2	1.0	ug/g	1.5	103	70-130			
Nickel	58.0	5.0	ug/g	6.8	102	70-130			
Selenium	49.4	1.0	ug/g	ND	98.7	70-130			
Silver	47.4	0.3	ug/g	ND	94.6	70-130			
Thallium	50.9	1.0	ug/g	ND	102	70-130			
Uranium	54.3	1.0	ug/g	ND	108	70-130			
Vanadium	63.2	10.0	ug/g	ND	113	70-130			
Zinc	56.9	20.0	ug/g	ND	92.1	70-130			
Semi-Volatiles									
Acenaphthene	0.167	0.02	ug/g	ND	81.3	50-140			
Acenaphthylene	0.144	0.02	ug/g	ND	69.9	50-140			
Anthracene	0.141	0.02	ug/g	ND	68.3	50-140			
Benzo [a] anthracene	0.144	0.02	ug/g ug/g	ND	69.7	50-140			
Benzo [a] pyrene	0.151	0.02	ug/g	ND	73.4	50-140			
Benzo [b] fluoranthene	0.228	0.02	ug/g ug/g	0.027	97.7	50-140			
Benzo [g,h,i] perylene	0.155	0.02	ug/g	ND	75.0	50-140			
Benzo [k] fluoranthene	0.184	0.02	ug/g	ND	89.4	50-140			
Chrysene	0.169	0.02	ug/g	ND	82.1	50-140			
Dibenzo [a,h] anthracene	0.157	0.02	ug/g	ND	76.0	50-140			
Fluoranthene	0.160	0.02	ug/g	0.024	66.0	50-140			
Fluorene	0.158	0.02	ug/g	ND	76.6	50-140			
Indeno [1,2,3-cd] pyrene	0.161	0.02	ug/g	ND	78.1	50-140			
1-Methylnaphthalene	0.176	0.02	ug/g	ND	85.5	50-140			
2-Methylnaphthalene	0.185	0.02	ug/g	ND	89.7	50-140			
Naphthalene	0.150	0.01	ug/g	ND	72.9	50-140			
Phenanthrene	0.153	0.02	ug/g	ND	74.2	50-140			
Pyrene	0.161	0.02	ug/g ug/g	0.022	67.1	50-140			
Surrogate: 2-Fluorobiphenyl	1.36	-	ug/g		82.4	50-140			
Surrogate: Terphenyl-d14	1.58		ug/g		95.9	50-140			
/olatiles			. 5. 5			· · -			

Report Date: 12-May-2022

Report Date: 12-May-2022 Order Date: 5-May-2022

Project Description: PE5590

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 54500

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Acetone	8.97	0.50	ug/g	ND	89.7	50-140			
Benzene	3.19	0.02	ug/g	ND	79.7	60-130			
Bromodichloromethane	4.35	0.05	ug/g	ND	109	60-130			
Bromoform	2.68	0.05	ug/g	ND	66.9	60-130			
Bromomethane	4.10	0.05	ug/g	ND	102	50-140			
Carbon Tetrachloride	3.57	0.05	ug/g	ND	89.2	60-130			
Chlorobenzene	2.86	0.05	ug/g	ND	71.5	60-130			
Chloroform	4.35	0.05	ug/g	ND	109	60-130			
Dibromochloromethane	4.19	0.05	ug/g	ND	105	60-130			
Dichlorodifluoromethane	4.34	0.05	ug/g	ND	108	50-140			
1,2-Dichlorobenzene	2.64	0.05	ug/g	ND	66.0	60-130			
1,3-Dichlorobenzene	3.27	0.05	ug/g	ND	81.8	60-130			
1,4-Dichlorobenzene	3.88	0.05	ug/g	ND	97.0	60-130			
1,1-Dichloroethane	3.79	0.05	ug/g	ND	94.7	60-130			
1,2-Dichloroethane	3.45	0.05	ug/g	ND	86.2	60-130			
1,1-Dichloroethylene	4.08	0.05	ug/g	ND	102	60-130			
cis-1,2-Dichloroethylene	4.94	0.05	ug/g	ND	124	60-130			
trans-1,2-Dichloroethylene	3.94	0.05	ug/g	ND	98.5	60-130			
1,2-Dichloropropane	3.00	0.05	ug/g	ND	75.0	60-130			
cis-1,3-Dichloropropylene	2.90	0.05	ug/g	ND	72.6	60-130			
trans-1,3-Dichloropropylene	2.68	0.05	ug/g	ND	66.9	60-130			
Ethylbenzene	3.83	0.05	ug/g	ND	95.8	60-130			
Ethylene dibromide (dibromoethane, 1,2	3.71	0.05	ug/g	ND	92.8	60-130			
Hexane	3.30	0.05	ug/g	ND	82.4	60-130			
Methyl Ethyl Ketone (2-Butanone)	12.5	0.50	ug/g	ND	125	50-140			
Methyl Isobutyl Ketone	10.5	0.50	ug/g	ND	105	50-140			
Methyl tert-butyl ether	10.4	0.05	ug/g	ND	104	50-140			
Methylene Chloride	3.46	0.05	ug/g	ND	86.5	60-130			
Styrene	2.65	0.05	ug/g	ND	66.1	60-130			
1,1,1,2-Tetrachloroethane	2.83	0.05	ug/g	ND	70.6	60-130			
1,1,2,2-Tetrachloroethane	3.40	0.05	ug/g	ND	85.1	60-130			
Tetrachloroethylene	2.68	0.05	ug/g	ND	67.1	60-130			
Toluene	2.74	0.05	ug/g	ND	68.4	60-130			
1,1,1-Trichloroethane	3.88	0.05	ug/g	ND	97.0	60-130			
1,1,2-Trichloroethane	3.20	0.05	ug/g	ND	80.1	60-130			
Trichloroethylene	3.67	0.05	ug/g	ND	91.9	60-130			
Trichlorofluoromethane	4.65	0.05	ug/g	ND	116	50-140			
Vinyl chloride	4.59	0.02	ug/g	ND	115	50-140			
m,p-Xylenes	7.23	0.05	ug/g	ND	90.4	60-130			
o-Xylene	3.82	0.05	ug/g	ND	95.4	60-130			
Surrogate: 4-Bromofluorobenzene	3.25		ug/g		102	50-140			
Surrogate: Dibromofluoromethane	3.28		ug/g		103	50-140			
Surrogate: Toluene-d8	3.00		ug/g		93.9	50-140			

Report Date: 12-May-2022 Order Date: 5-May-2022

Client: Paterson Group Consulting Engineers **Project Description: PE5590**

Qualifier Notes:

Client PO: 54500

Sample Qualifiers:

Certificate of Analysis

1: Complete separation of paint from substrate not possible for this sample and a small amount of substrate has been included in the paint digestion.

QC Qualifiers:

QM-05: The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 2219554

Paracel Order Number (Lab Use Only)

Chain Of Custody (Lab Use Only)

Nº 64385

Comments: Substitute Color Colo	Clear Manual														,	,,,,	
Address:	Client Name: Paterson		Projec	t Ref:	PE 5590	1 /		1		1		1	Ĭ	Pa	ge 1	of	5 1
Table Date	Nick Sullivan		Quote	#:		1 44		V.		1		NAME OF THE PARTY					
Compared to the content of the con			PO #:	54	500	8 7	1	iq V	Š.	☐ 1 day			1	□ 3 day			
Table 1 Mexipure Mediffine REG 5555 PWOD Table 2 Indicator Muscripure SU-Storm Surface Water SU-Storm SU-Storm SU-Storm SU-Storm SU-Storm SU-Storm SU	Offaur, ON		E-mail	:		and the same of	□ 2 day							. /			
Table 1	Telephone: 613 - 226 - 7381		1	(sull: van @	Paterso	Date Required							, neguiai			
Table 2 Indicorn Coarse			iv		\$1.50 TAX	P 7	T	10)5	1,191	Ja Vi			i i i i		120 V.S. 7	200	
Table 2 Indicate Come	☐ Table 1 Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO						Required Analysis										
Table																	4/3
For RSC: Yes No		m		5			۲.۷	L.	halo			1		11 1		4	1.
Sample ID/Location Name			ne	taine	Sample	Taken		L.	Z	1	Ş	H	ن	2	_		
1 BHI-22-SS3/SSUA 2 BHI-22-SS8 1 2 May 3/22 AM X X X X X X X X X X X X X X X X X X		Li,	Volur	Con			>			1		1	山	SA	a	.	
2 BH 1 - 22 - 558 3 BH 2 - 22 - 554 A 1		Σ	Ą		Date	Time	4	A	Ή	1	9	-			1		3
2 BH 1 - 22 - SS 8 3 BH 2 - 22 - SS HA 4 BH 2 - 22 - SS 5 5 BH 3 - 22 - SS 6 7 DUP - 1 8 9 10 10 Received By Driver/Depot:	1 BH1-22-553/554A	5		2	May 3/22	AM	X	Χ					X	V) Y	- 11	81
3 BH2-22-55HA 4 BH2-22-555 5 BH3-22-553 1 PM X X X X X X X X X X X X X X X X X X	2 BH1-22-558	33	ulaca y	2	Barrier 1	800 K S	X	X	rvi	30 T J	N. V	40	9000	,	V		Spl.
4 BH2-ZZ-SS5 5 BH3-ZZ-SS3 1 PM X X X X X X X X X X X X X X X X X X	3 BH2-22-554A			4	TI- 13	1230		^	Χ	X	V				^		+
5 BH3-22-553 6 BH3-22-556 7 DUP-1 8 9 10 Comments: Method of Delivery: Prop Box Received By Driver/Depot: Received By Driver/Depot: Received By Driver/Depot: Received By Univer Depot: Received By Univer	4 BH2-22-555	tilet i s	N = 1 (2)	2	are to appropriate	Para No.	v.	V		4.	·	100			ole of	100	
6 BH3 - ZZ - SS6 7 DUP - 1 8 9 10 Comments: Method of Delivery: Prap Box Received By Driver/Depot: Received By Driver/Depot: Weighbard By (Sign)	⁵ Внз-22- 5 53	11		T		PM		^	V		_	_	_		V	- 1	-
7 DUP - 1 8 9 10 Comments: Method of Delivery: Prop Box Received By Driver/Depot: Reference by (Sign): Weified By: W	6 BH3-ZZ-556			2			V	_	^	^		^			^	+	
9 10 Method of Delivery: Prop Box Received By Driver/Depot: Refered at Lab: Werlinguished By (Rigation of Delivery): Werlinguished By (Rigation of Deli	_ 3	V		1	V		Î,	$\overline{}$							_	1-1	
Comments: Method of Delivery: Prop Box Received By Driver/Depot: Received at Lab: Weifinguished By (Received By Driver/Depot: Received By Driver/Depot	8						 		- 1				_	_	\dashv	+	-
Received By Driver/Depot: Received By Driver/De	9						\vdash		1			_			\dashv	-	
Relinquished By (Sign): Received By Driver/Depot: Refered at Lab: Yerified By Verified By Received By Driver/Depot:	10			-		1 7	\vdash		+		_					-	
Received By Driver/Depot: Received By Driver/Depot: Referved at Lab: Verified By Verified By Received By Driver/Depot:	Comments:										Math	d of D	Bura			1551	
Received By Driver/Depot: Referred at Lab: Werified By Polymous bad By (Rejert) Referred By (Rejert)											0	rd O	iivery:	200			
	Received By	Driver/De	pot:		S. Kara	Received at Lab:		(1			-	X	VX			
V.CK JULYAN 1007 1651 1000 1 1 212 75	Relinquished By (Print): // Date/Time:			: 10 S S (10	17 50 70 70 70 70 70 70 70 70 70 70 70 70 70		OTTO SERVICE			_	_	4)	-	0		-
	Date/Time:	e:	<u> </u>			esta Maria	2 3 3 5 7			01	/	10	7	60	00	7	57
hain of Custody (Blank) xlsx Revision 4.0 Temperature of Imperature of			<u>, </u>		Charles C.	7.8	<u> </u>		-C		pH Ver	rified: l		Ву:			

@PARACEL	T I
LABORATORIES LTD	, n

Paracel ID: 2219554

Paracel Order Number (Lab Use Only) Chain Of Custody (Lab Use Only)

Contect Name: Poterson Group Page of Turnaround Time Contect Name: Nick Sullivan Date	••••						20	119	55	54							
Address: 154 Colonnade Rd. 5. Otherwise Iday Id	Client Name: Paterson Group		Proje	ct Ref:	PE5590		-		_	_	_	Service	9.7	Pag	ze l	of 1	
Table A Recylark Anedrine REG 558 PWOD	Wick Sullivan		Quote	e#:									_			_	
Compression Compression Constitution Consti	Address:		PO#:	5L	1500							١,			ounu		2 4
Table 1 A Resport Matrix Type: S(SoulGed.) GW (Ground Water) SW (Surface Water) \$\$ (SoulGed.) GW (Ground Water) SW (Surface Water) \$\$ (Sourge Water) \$\$ (SoulGed.) GW (Ground Water) SW (Surface Water) \$\$ (Surface Water) \$\$ (SoulGed.) GW (Ground Water) Sw (Surface Water) \$\$ (S	OHawa, ON		E-mai	l:								1					
Table 1 Ale Area (Park Mediffere Reg 558 PWOO Table 2 IndiComm Course Required Analysis Swiftsare Water) SS (Storm/Sanitary Sever) P (Paint) A (Air) O (Other) Ale Area (Mediffere Reg 558 PWOO Table 2 IndiComm Course SW (Surface Water) SS (Storm/Sanitary Sever) P (Paint) A (Air) O (Other) Ale Area (Mediffere Required Analysis Sample Taken Ale Area (Mediffere Required Analysis Ale Area (Mediffere	Telephone:			(nsullivan @	Paterson;	Srov	p. c	~				,			X	Regular
Table 1 A Respert Mediffine REG 558 PMOO Table 2 Indifficent Coarse Come Missa Surface Nates Sistem/Sanitary Sever) P (Paint) A (Air) O (Other) Table 3 Agri/Other Surface Nates Sistem/Sanitary Sever) P (Paint) A (Air) O (Other) Table 5 No Cother: Sample Taken Sample Taken Sample Taken Sample ID/Location Name Surface Nates	REG 153/04/ REG 406/19 Other Regulation	4	_					257	7,50	7.77	77,	Date	nequ	ireu.			
Table 2 Indifferent Course COME MISA P(Paint) A(Air) O (Other) Table Su-Stani Su-Storm Su-Storm Mun: Su-Storm Sample ID/Location Name Su-Storm Sample ID/Location Name Su-Storm Sample ID/Location Name Su-Storm Su-Sto	D Va		Matrix 1 SW (Su	Type: Irface V	S (Soil/Sed.) GW (G Nater) SS (Storm/Sa	round Water)					Re	quire	d Ana	lysis			
Sample ID/Location Name Sample ID/Location Name Sample ID/Locatio	□ Table 2 □ Ind/Comm 🛛 Coarse □ CCME □ MISA		(**				×			6						Acres (
Sample ID/Location Name Sample ID/Location Name	_ = = = = = = = = = = = = = = = = = = =	m	Τ	<u>پ</u>			BTE										
Sample ID/Location Name Sample ID/Location Name	☐ Table Mun:		l e	aine	Sample	Taken	F4+			ICP				_0			
Sample ID/Location Name I	For RSC: Yes No Other:	- ×	olum	Cont						s by			(8)	Ìά			
1 May 3/22 2		Matr	Air V	of	Date	Time	Į Ž	,00C	AHs	fetal	Б	Ş	Ę				
3 This is the mission 4 Soil far Which Should 5 have gare with the 6 initial which order 7 8 9 10 Competis: Please and this to Work order # 22/9554 Received by (Sign): Received by (Print) Print Wide Culture Received by (Print) Print Wide Culture Pate/Time: Plant 127 300 Date/Times Lance Pate/Times Lance Pate/Times Lance Pate/Times Lance Received by (Print) Print Wide Culture Pate/Times Lance Pate/Pate/Pate/Pate/Pate/Pate/Pate/Pate/	1 ME DUP - 1	5		1	M., 3/22		+-	_	а.	2	I	0	a	V/	+	+	+
4 Soi jar which should 5 have gone with the 6 initial which order 7 8 9 10 Correpents: Coc #64385 Method of Delivery: Received By [Sign]: Received By Driver/Depot: Received By [Print]: Part Please add this by Date Please Date Date Please Date Please Date Please Date Please Date Please Date Dat				Ė	1404 5/22		+							A	\dashv	+	+
5 have gone with the 6 initial work order 7 8 9 10 Comments: At Please and this to Work order # 22/9554 Received by Diver/Depot: Received by (Sign): Received by (Print: White Culture) Date/Time: 0/6/05/77 30/ Date/Time: 0/6/05/77 Date/Time: 0/6/05/77 Date/Time: 0/6/0	3 / This is the asis	+					-							\vdash	\dashv	+	\perp
5 have gove with the 6 initial which order 7 8 9 10 Comments: At Please add this to Work order # 22/9554 Received by [Sign]: Received by [Sign]: Received by [Sign]: Received by [Print]: Receive	4 11		-							,				\sqcup	_	\perp	\perp
10 Compents: A Please add this to Work Order # 2219554 Received By Driver/Depot: Received By Dr	5 De Whill Showing	+									_			\vdash	\dashv	+	+
8 9 10 Comments: All Please add this to Work Order # 22/9554 Received By Driver/Depot: Received By D	6	\downarrow									_			\vdash	+	+	٠.
10 Comments: A Please add this to Work Order # 22/9554 Received By Driver/Depot: Received By (Sign): Received By (Print): With Substantial Date/Time: Pelinquished By (Print): With Substantial Date/Time: Date/Time: Office 5/27 3/2/ Date/Time: Print Date/T		+						_		\dashv				\vdash	+	+	\perp
Comments: A Please add this to Work order # 2219554 Received By Driver/Depot: Received By (Frint): Wicke Sulvan Date/Time: 06105177 300 Date/Time: Coc # 64385 Method of Delivery: Werfied By: Date/Time: 06105177 300 Date/Time: Coc # 64385	8	1								-				\vdash	+	+	\perp
Comments: A Please and this to Work order # 2219554 Received By Driver/Depot: Received By Print: Werlfied By: Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/	9	\top								\dashv				\vdash	+	+	+
Relinquished By (Frint): Wicks Sulvey Date/Time: 0/6/105/177 30/ Date/Time:	10	+							_		_			\vdash	+	+	+
Received By Oriver/Depot: Received By Oriver/Depot: Received at Lab: Werified By: Date/Time: Date/Date/Date/D	V V Olar 11 14 1	nck	00	100	- # 221	9554	(oc#	643	85 V)	9	Metho		_			1	
Date/Time: Old 105/77 30/ Date/Time: Old 105	Received By (Sign): Received By	Driver/D	epot:	Ta	WE .	Received at Lab:	DON	N	SI A	AMA.	Verifie	1	1	The state of the s	1	LUM	CIE
Date/Time: 11	Wiche Sullvan	06	10.	5/2		Date/Tivytan	209	9	OL	_	ate/T	ime:	the	7	200	N	() (
Date/Time: May 6, 2022 Temperature: °C Temperature: 14.5 C pH Verified: By:	164 6, 6022	t:			°C 74/	Temperature:	114	,50	,		pH Ver	rified: [V /	1 (0	1,00	(0,40

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Nick Sullivan

Client PO: 54648 Project: PE5590 Custody: 136598

Report Date: 19-May-2022 Order Date: 12-May-2022

Order #: 2220555

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2220555-01	BH1-22-GW1
2220555-02	MW21-02-GW2
2220555-03	BH2-22-GW1
2220555-04	BH3-22-GW1
2220555-05	MW21-04-GW2
2220555-06	Dun-1

2220555-06 Dup-

Approved By:

Dale Robertson, BSc Laboratory Director

Client PO: 54648

Order #: 2220555

Report Date: 19-May-2022

Order Date: 12-May-2022
Project Description: PE5590

Analysis Summary Table

Client: Paterson Group Consulting Engineers

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	16-May-22	17-May-22
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	18-May-22	18-May-22
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	16-May-22	17-May-22

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 54648 **Project Description: PE5590**

Γ	Client ID: Sample Date: Sample ID: MDL/Units	BH1-22-GW1 11-May-22 09:00 2220555-01 Water	MW21-02-GW2 11-May-22 09:00 2220555-02 Water	BH2-22-GW1 11-May-22 09:00 2220555-03 Water	BH3-22-GW1 11-May-22 09:00 2220555-04 Water
Volatiles			!	!	
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethane, 1,2-)	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

Report Date: 19-May-2022

Order Date: 12-May-2022

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 12-May-2022

Report Date: 19-May-2022

Client PO: 54648

Project Description: PE5590

	Client ID: Sample Date: Sample ID:	BH1-22-GW1 11-May-22 09:00 2220555-01	MW21-02-GW2 11-May-22 09:00 2220555-02	BH2-22-GW1 11-May-22 09:00 2220555-03	BH3-22-GW1 11-May-22 09:00 2220555-04
	MDL/Units	Water	Water	Water	Water
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	111%	114%	110%	112%
Dibromofluoromethane	Surrogate	86.3%	83.7%	86.8%	83.1%
Toluene-d8	Surrogate	103%	104%	105%	104%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	-	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	-	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	-	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	-	<100	<100

Report Date: 19-May-2022

Order Date: 12-May-2022 **Project Description: PE5590**

Client: Paterson Group Consulting Engineers

Client PO: 54648

Certificate of Analysis

Dup-1 Client ID: MW21-04-GW2 Sample Date: 11-May-22 09:00 11-May-22 09:00 2220555-05 2220555-06 Sample ID: Water Water MDL/Units Volatiles 5.0 ug/L Acetone <5.0 <5.0 0.5 ug/L 5.0 <0.5 Benzene 0.5 ug/L <0.5 Bromodichloromethane <0.5 0.5 ug/L <0.5 Bromoform <0.5 0.5 ug/L <0.5 Bromomethane < 0.5 0.2 ug/L < 0.2 < 0.2 Carbon Tetrachloride 0.5 ug/L < 0.5 Chlorobenzene < 0.5 0.5 ug/L <0.5 Chloroform <0.5 0.5 ug/L <0.5 Dibromochloromethane < 0.5 1.0 ug/L <1.0 Dichlorodifluoromethane <1.0 0.5 ug/L 1,2-Dichlorobenzene < 0.5 < 0.5 1,3-Dichlorobenzene 0.5 ug/L < 0.5 < 0.5 0.5 ug/L <0.5 < 0.5 1.4-Dichlorobenzene 0.5 ug/L 1.1-Dichloroethane < 0.5 < 0.5 0.5 ug/L <0.5 1,2-Dichloroethane < 0.5 0.5 ug/L 1,1-Dichloroethylene < 0.5 < 0.5 0.5 ug/L cis-1,2-Dichloroethylene < 0.5 <0.5 0.5 ug/L <0.5 trans-1,2-Dichloroethylene < 0.5 0.5 ug/L 1,2-Dichloropropane < 0.5 < 0.5 cis-1,3-Dichloropropylene 0.5 ug/L < 0.5 < 0.5 0.5 ug/L trans-1,3-Dichloropropylene < 0.5 < 0.5 0.5 ug/L 1,3-Dichloropropene, total <0.5 < 0.5 0.5 ug/L 38.2 0.6 Ethylbenzene 0.2 ug/L Ethylene dibromide (dibromoethane, <0.2 <0.2 1.0 ug/L <1.0 <1.0 5.0 ug/L Methyl Ethyl Ketone (2-Butanone) <5.0 <5.0 5.0 ug/L Methyl Isobutyl Ketone <5.0 < 5.0 2.0 ug/L Methyl tert-butyl ether < 2.0 <2.0 5.0 ug/L <5.0 Methylene Chloride < 5.0 0.5 ug/L < 0.5 Styrene < 0.5 0.5 ug/L 1,1,1,2-Tetrachloroethane < 0.5 < 0.5 0.5 ug/L < 0.5 1,1,2,2-Tetrachloroethane < 0.5 0.5 ug/L < 0.5 < 0.5 Tetrachloroethylene 0.5 ug/L 0.5 Toluene 1.1

Report Date: 19-May-2022

Order Date: 12-May-2022

Project Description: PE5590

Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 54648

	Client ID:	MW21-04-GW2	Dup-1	-	-
	Sample Date:	11-May-22 09:00	11-May-22 09:00	-	-
	Sample ID:	2220555-05	2220555-06	-	-
	MDL/Units	Water	Water	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	1.8	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	1.8	<0.5	-	-
4-Bromofluorobenzene	Surrogate	112%	111%	-	-
Dibromofluoromethane	Surrogate	83.9%	83.3%	-	-
Toluene-d8	Surrogate	104%	104%	-	-
Hydrocarbons			•		
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Report Date: 19-May-2022 Order Date: 12-May-2022

Project Description: PE5590

Certificate of Analysis

Client: Paterson Group Consulting Engineers
Client PO: 54648

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	85.8		ug/L		107	50-140			
Surrogate: Dibromofluoromethane	67.1		ug/L		83.8	50-140			
Surrogate: Toluene-d8	82.6		ug/L		103	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 19-May-2022

Order Date: 12-May-2022

Client PO: 54648 Project Description: PE5590

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
 			J.1110	rtodat	75.120				
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND			NC	30	
F2 PHCs (C10-C16)	1230	100	ug/L	1880			41.9	30	QR-04
F3 PHCs (C16-C34)	1110	100	ug/L	1760			45.8	30	QR-04
F4 PHCs (C34-C50)	ND	100	ug/L	ND			NC	30	
Volatiles			_						
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1.1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	•	ND ND			NC	30	
•	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane			ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	89.2		ug/L		112	50-140			
<u> </u>	66.6		ug/L ug/L		83.2	50-140			
Surrogate: Dibromofluoromethane									

Report Date: 19-May-2022 Order Date: 12-May-2022

Project Description: PE5590

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 54648

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1930	25	ug/L	ND	112	68-117			
F2 PHCs (C10-C16)	1640	100	ug/L	ND	103	60-140			
F3 PHCs (C16-C34)	3610	100	ug/L	ND	92.1	60-140			
F4 PHCs (C34-C50)	2460	100	ug/L	ND	99.2	60-140			
Volatiles			Ü						
Acetone	63.3	5.0	ug/L	ND	63.3	50-140			
Benzene	29.0	0.5	ug/L ug/L	ND	72.5	60-130			
Bromodichloromethane	34.6	0.5	ug/L ug/L	ND	86.6	60-130			
Bromoform	39.9	0.5	ug/L ug/L	ND	99.8	60-130			
Bromomethane	39.6	0.5	ug/L ug/L	ND	99.0	50-130			
Carbon Tetrachloride	30.5	0.2	ug/L ug/L	ND	76.3	60-130			
Chlorobenzene	38.5	0.5	ug/L ug/L	ND	96.3	60-130			
Chloroform	34.8	0.5		ND	87.1	60-130			
Dibromochloromethane	34.6 35.4	0.5	ug/L ug/L	ND	88.4	60-130			
Dichlorodifluoromethane	32.7	1.0	ug/L ug/L	ND	81.8	50-130			
1,2-Dichlorobenzene	38.4	0.5	ug/L ug/L	ND	96.0	60-130			
1,3-Dichlorobenzene	39.3	0.5	ug/L ug/L	ND	98.2	60-130			
1,4-Dichlorobenzene	39.4	0.5	ug/L ug/L	ND	98.5	60-130			
1,1-Dichloroethane	35.6	0.5	ug/L ug/L	ND	89.0	60-130			
1,2-Dichloroethane	41.9	0.5	_	ND	105	60-130			
1,1-Dichloroethylene	35.2	0.5	ug/L ug/L	ND	88.1	60-130			
-	33.2	0.5		ND	83.0	60-130			
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	33.2	0.5	ug/L ug/L	ND	84.8	60-130			
1,2-Dichloropropane	33.6	0.5	_	ND	83.9	60-130			
cis-1,3-Dichloropropylene	31.1	0.5	ug/L ug/L	ND	77.8	60-130			
trans-1,3-Dichloropropylene	39.5	0.5	_	ND	98.8	60-130			
Ethylbenzene	38.5	0.5	ug/L ug/L	ND	96.3	60-130			
Ethylene dibromide (dibromoethane, 1,2	31.1	0.2	_	ND	90.3 77.7	60-130			
Hexane	31.1 42.4	1.0	ug/L ug/L	ND	106	60-130			
Methyl Ethyl Ketone (2-Butanone)	42.4 80.8	5.0	ug/L ug/L	ND	80.8	50-130			
	72.6	5.0	_	ND	72.6	50-140			
Methyl Isobutyl Ketone Methyl tert-butyl ether	73.4	2.0	ug/L	ND	73.4	50-140			
Methylene Chloride	73. 4 31.2	5.0	ug/L ug/L	ND	73.4 78.1	60-130			
Styrene	31.2 41.5	0.5	_	ND	104	60-130			
1,1,1,2-Tetrachloroethane	38.6	0.5	ug/L ug/L	ND	96.4	60-130			
1,1,2,1-tetrachioroethane	32.3	0.5	_	ND	80.8	60-130			
Tetrachloroethylene	32.3 41.2	0.5	ug/L	ND	103	60-130			
Toluene	40.0	0.5	ug/L ug/L	ND	99.9	60-130			
1,1,1-Trichloroethane	37.7	0.5	ug/L ug/L	ND	94.2	60-130			
1,1,2-Trichloroethane	40.3	0.5	ug/L ug/L	ND	94.2 101	60-130			
	40.3 42.1	0.5	ug/L ug/L	ND	101	60-130			
Trichloroethylene	42.1 37.0	1.0	ug/L ug/L	ND ND	92.4	60-130			
	37.0	1.0	ug/L	ממ	92.4	00-130			
Trichlorofluoromethane	22.4	0.5	/1	ND	00.0	EO 140			
Vinyl chloride m,p-Xylenes	32.1 75.5	0.5 0.5	ug/L ug/L	ND ND	80.2 94.4	50-140 60-130			

Certificate of Analysis Report Date: 19-May-2022

Client: Paterson Group Consulting Engineers Order Date: 12-May-2022

Client PO: 54648 Project Description: PE5590

Qualifier Notes:

QC Qualifiers:

QR-04: Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Chain of Custody (Env) xlsx

Chain Of Custody

(Lab Use Only)

Nº 136598

Client Name: Paterson		Project Ref: PE 5590										Page of				
Contact Name: Nick Sullivan		Quote	#:	FICARE .			York		No.	1	176	Т	urnarou	nd Tim	e	
Address: 154 Colonnade Road S				t648 Ullivan@pater	son group, co	9) (5)	<i>y</i>	4					□ 3 day ☑ Regular	
Telephone: 613 226 7381	,	- 1	B)	ee @ paterson gro	oup. La		1.0	I H	ij	, (Date	Requir	ed:			
REG 153/04 REG 406/19 Other Regulation	l N	latrix T	vpe:	S (Soil/Sed.) GW (Gro	ound Water)					Rec	ouired	Turnaround 1 day 2 day ate Required: red Analysis (SMH) B f Delivery: Y: CALL 13 2-4				
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO			Surface Water) SS (Storm/Sanitary Sewer)								Equil Cu Allalysis					
☐ Table 2 ☐ Ind/Comm ☐ Coarse ☐ CCME ☐ MISA			P (F	Paint) A (Air) O (Other	er)	Ä						,n				
☐ Table 3 ☐ Agri/Other ☐ SU-Sani ☐ SU-Storm ☐ Mun:		0.	Containers	Sample 1	Taken	-F4+BTEX		,	Metals by ICP							
For RSC: Yes No Other:	×	Air Volume	Conta	Jampie	,	Ĭ.	· ·	ø	als by			WS)				
Sample ID/Location Name	Matrix	Air Vo	# of 0	Date	Time	PHCs	VOCs	PAHs	Met	Đ.	CrV					
1 BH1-22-GW1	GW			11-May-2022	-	Х	Χ	,							<u> </u>	
2 MW21-02-GW2	GW	y 2 -	sten	100	, ,,	n _a .	χ. Χ				, ,	. , ,,		. ()	1	
3 BH2-22-9W1	Ī			e 1 1 1	10-14	X	γ							1	3	
4 BH3 - 22-GW 1	4.19			A	g 32 - 1	X	Χ		9.				, ·.			
5	, .							de la								
6 MW21-04-GW2	4			-		X	X									
7 DUP-1	V			V			X									
8							,	,							1	
9																
10																
Comments:										Metho	d of De	livery:		1		
										/	AL	14	2 4	LOUR	TEC	
Relinquished By (Sign): Blle Received By D	river/D	pot:	12	PUSE	Received at Lab:	e/O/	M	lok	200	Verifie	d By:	80	27	_	,	
Relinquished By (Print): Bryce Lee Date/Time:	2	10:	5/2	005 E 02 Z 54 0 PH	Date Vigny 1	2 90	99		.5		Ta	H	13/5	22	10:36	
Date/Time: 12 - 14y - 2022 Temperature:	1	1	/	°C PH.	Temperature:	13	°C				rified: (By:	IA		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers (Ottawa)

9 Auriga Drive

Ottawa, ON K2E 7T9

Attn: Nick Sullivan

Client PO: 59693

Project: PE5590

Custody:

Approved By:

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Order #: 2412150

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel	ID	Client ID
---------	----	-----------

2412150-01 MW21-04-GW3 2412150-02 MW21-02-GW3

2412150-03 DUP

Dos

Dale Robertson, BSc

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	20-Mar-24	21-Mar-24

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693 Project Description: PE5590

	Client ID:	MW21-04-GW3	MW21-02-GW3	DUP	-		
	Sample Date:	19-Mar-24 09:00	19-Mar-24 09:00	19-Mar-24 09:00	-	-	-
	Sample ID:	2412150-01	2412150-02	2412150-03	-		
	Matrix:	Ground Water	Ground Water	Ground Water	-		
	MDL/Units						
Volatiles			•				
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Ethylene dibromide (dibromoethane,	0.2 ug/L	<0.2	<0.2	<0.2	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-	-	-

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693 Project Description: PE5590

	Client ID:	MW21-04-GW3	MW21-02-GW3	DUP	-		
	Sample Date:	19-Mar-24 09:00	19-Mar-24 09:00	19-Mar-24 09:00	-	-	-
	Sample ID:	2412150-01	2412150-02	2412150-03	-		
	Matrix:	Ground Water	Ground Water	Ground Water	-		
	MDL/Units						
Volatiles	•				•		•
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Toluene-d8	Surrogate	108%	107%	108%	-	-	
Dibromofluoromethane	Surrogate	111%	107%	110%	-	-	-
4-Bromofluorobenzene	Surrogate	99.9%	98.4%	99.3%	-	-	-

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles								
Acetone	ND	5.0	ug/L					
Benzene	ND	0.5	ug/L					
Bromodichloromethane	ND	0.5	ug/L					
Bromoform	ND	0.5	ug/L					
Bromomethane	ND	0.5	ug/L					
Carbon Tetrachloride	ND	0.2	ug/L					
Chlorobenzene	ND	0.5	ug/L					
Chloroform	ND	0.5	ug/L					
Dibromochloromethane	ND	0.5	ug/L					
Dichlorodifluoromethane	ND	1.0	ug/L					
1,2-Dichlorobenzene	ND	0.5	ug/L					
1,3-Dichlorobenzene	ND	0.5	ug/L					
1,4-Dichlorobenzene	ND	0.5	ug/L					
1,1-Dichloroethane	ND	0.5	ug/L					
1,2-Dichloroethane	ND	0.5	ug/L					
1,1-Dichloroethylene	ND	0.5	ug/L					
cis-1,2-Dichloroethylene	ND	0.5	ug/L					
trans-1,2-Dichloroethylene	ND	0.5	ug/L					
1,2-Dichloropropane	ND	0.5	ug/L					
cis-1,3-Dichloropropylene	ND	0.5	ug/L					
trans-1,3-Dichloropropylene	ND	0.5	ug/L					
1,3-Dichloropropene, total	ND	0.5	ug/L					
Ethylbenzene	ND	0.5	ug/L					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L					
Hexane	ND	1.0	ug/L					
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L					
Methyl Isobutyl Ketone	ND	5.0	ug/L					
Methyl tert-butyl ether	ND	2.0	ug/L					
Methylene Chloride	ND	5.0	ug/L					
Styrene	ND	0.5	ug/L					
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L					
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L					

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Report Date: 22-Mar-2024 Order Date: 19-Mar-2024

Project Description: PE5590

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Tetrachloroethylene	ND	0.5	ug/L					
Toluene	ND	0.5	ug/L					
1,1,1-Trichloroethane	ND	0.5	ug/L					
1,1,2-Trichloroethane	ND	0.5	ug/L					
Trichloroethylene	ND	0.5	ug/L					
Trichlorofluoromethane	ND	1.0	ug/L					
Vinyl chloride	ND	0.5	ug/L					
m,p-Xylenes	ND	0.5	ug/L					
o-Xylene	ND	0.5	ug/L					
Xylenes, total	ND	0.5	ug/L					
Surrogate: 4-Bromofluorobenzene	79.7		%	99.7	50-140			
Surrogate: Dibromofluoromethane	79.3		%	99.1	50-140			
Surrogate: Toluene-d8	86.5		%	108	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	3.46	0.5	ug/L	3.93			12.7	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroform	5.31	0.5	ug/L	6.14			14.5	30	
Dibromochloromethane	1.64	0.5	ug/L	2.56			43.8	30	QR-07
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.2	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	78.7		%		98.4	50-140			
Surrogate: Dibromofluoromethane	86.7		%		108	50-140			
Surrogate: Toluene-d8	86.3		%		108	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	91.2	5.0	ug/L	ND	91.2	50-140			
Benzene	44.4	0.5	ug/L	ND	111	60-130			
Bromodichloromethane	39.5	0.5	ug/L	ND	98.8	60-130			
Bromoform	31.2	0.5	ug/L	ND	78.1	60-130			
Bromomethane	47.7	0.5	ug/L	ND	119	50-140			
Carbon Tetrachloride	34.0	0.2	ug/L	ND	85.1	60-130			
Chlorobenzene	42.7	0.5	ug/L	ND	107	60-130			
Chloroform	44.4	0.5	ug/L	ND	111	60-130			
Dibromochloromethane	33.3	0.5	ug/L	ND	83.3	60-130			
Dichlorodifluoromethane	44.8	1.0	ug/L	ND	112	50-140			
1,2-Dichlorobenzene	38.4	0.5	ug/L	ND	96.0	60-130			
1,3-Dichlorobenzene	37.8	0.5	ug/L	ND	94.6	60-130			
1,4-Dichlorobenzene	37.2	0.5	ug/L	ND	93.0	60-130			
1,1-Dichloroethane	45.7	0.5	ug/L	ND	114	60-130			
1,2-Dichloroethane	48.3	0.5	ug/L	ND	121	60-130			
1,1-Dichloroethylene	39.8	0.5	ug/L	ND	99.4	60-130			
cis-1,2-Dichloroethylene	41.6	0.5	ug/L	ND	104	60-130			
trans-1,2-Dichloroethylene	34.7	0.5	ug/L	ND	86.7	60-130			
1,2-Dichloropropane	45.0	0.5	ug/L	ND	112	60-130			
cis-1,3-Dichloropropylene	36.8	0.5	ug/L	ND	92.1	60-130			
trans-1,3-Dichloropropylene	36.6	0.5	ug/L	ND	91.6	60-130			
Ethylbenzene	43.2	0.5	ug/L	ND	108	60-130			
Ethylene dibromide (dibromoethane, 1,2-)	32.5	0.2	ug/L	ND	81.2	60-130			
Hexane	39.4	1.0	ug/L	ND	98.6	60-130			
Methyl Ethyl Ketone (2-Butanone)	93.3	5.0	ug/L	ND	93.3	50-140			
Methyl Isobutyl Ketone	99.0	5.0	ug/L	ND	99.0	50-140			
Methyl tert-butyl ether	73.7	2.0	ug/L	ND	73.7	50-140			
Methylene Chloride	41.8	5.0	ug/L	ND	105	60-130			
Styrene	40.8	0.5	ug/L	ND	102	60-130			
1,1,1,2-Tetrachloroethane	36.2	0.5	ug/L	ND	90.4	60-130			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Project Description: PE5590

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,2,2-Tetrachloroethane	38.8	0.5	ug/L	ND	97.0	60-130			
Tetrachloroethylene	34.6	0.5	ug/L	ND	86.6	60-130			
Toluene	44.6	0.5	ug/L	ND	111	60-130			
1,1,1-Trichloroethane	36.8	0.5	ug/L	ND	92.0	60-130			
1,1,2-Trichloroethane	44.6	0.5	ug/L	ND	111	60-130			
Trichloroethylene	37.4	0.5	ug/L	ND	93.5	60-130			
Trichlorofluoromethane	36.4	1.0	ug/L	ND	91.1	60-130			
Vinyl chloride	33.4	0.5	ug/L	ND	83.6	50-140			
m,p-Xylenes	81.1	0.5	ug/L	ND	101	60-130			
o-Xylene	42.4	0.5	ug/L	ND	106	60-130			
Surrogate: 4-Bromofluorobenzene	82.4		%		103	50-140			
Surrogate: Dibromofluoromethane	89.9		%		112	50-140			
Surrogate: Toluene-d8	83.9		%		105	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 59693

Qualifier Notes:

QC Qualifiers:

QR-07 Duplicate result exceeds RPD limits due to non-homogeneity between multiple sample vials. Remainder of QA/QC is acceptable.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 22-Mar-2024

Order Date: 19-Mar-2024

Paracel Order Number

Chain Of Custody

1								bs.com m		(Lab 0)	5 <i>0</i>				Lab Use	Only)		
	Name: Perterson				Project	Ref:	PE 559	O					1.5 3 10 1		Page	of		
Contac	t Name: Nick Su	llivan			Quote									Tu	narour			
Addres	5 9 Aurige Dr	ive at	tere		PO#:	5	9693						_ n	day			□ 3 day	
	,	, , ,			E-mail:	Ns	ultivane	puters.	nga	υup.	Ca		П	day		₩ Regular		
Teleph	one: 613-226-7	381				kp	anch!	w porters	مراهمه م	·φ.,	29			Require	d:	va negular		
	EG 153/04 REG 406/19	7	egulation		E-mail: Nsultivan@ putersongroup.ca kpanch (a) patersongroup.ca Matrix Type: S(Soil/Sed.) GW (Ground Water)										840 1000	1541		
□ Та	ble 1 Res/Park	☐ REG 558	☐ PWQ0				/ater) SS (Storm/S		3.3			Rec	quired.	Analys	is			
□ та	ble 2 Ind/Comm Coarse	e 3 Agri/Other SU-Sani SU					aint) A (Air) O (O	ther)			T			T	T			
Га	ble 3 Agri/Other	☐ SU - Sani	☐ SU - Storm			2			1									
□та	ble	Mun:			e e	taine	Sampl	e Taken	V									
	For RSC: Yes No	Other:		ě	Air Volume	# of Containers			0									
η,			Matrix	Air	# of	Date	Time	C										
1	MW21-04-G		GW		2	03/19		1					\top		\Box	\top		
2	MW21-02-G	w3		1		2	1							\top	\top	\Box	\top	
				4		2	V		1					\top	\top	\Box	\neg	
4														\top	+	\vdash	\top	
5									+				\vdash	+	+	+	\rightarrow	
6				\vdash					+		_	\vdash	\vdash	+	+	+	+	
7									+		\neg	\vdash		\dashv	+	+	-	
8	[+					+	+	\forall	_	
9									+			\vdash		\top	+	\Box	+	
10									\dagger				\Box	\top	+	\forall	\top	
Comm						_						Metho	od of Deli	ivery:	61	1		
Reling	t Name: Nick Sullivan s: 9 Auris Drive, offana one: 613 - 226 - 7381 seg 153/04			pot:				Received a Lab:			· Section	Verifie	d By:	Hi	. 1			
Reling	uished By (Print): Ky Jeep	Date/Time:		Ŋ.			Date/fime:	9 2	lu	6 22	Date/1	Time:			21	116:1		
Date/	Time: 03/19/2024	Temperature:				°C	Temperature	1	1	-10/	pH Ve	rified: [1 140	By:	, -4	11011		

Chain of Custody (Blank).xlsx