Report

Project: 142609-6.4.3

1050 TAWADINA ROAD SERVICING BRIEF

Table of Contents

1	INTRO	ODUCTION	ON	4
	1.1	Guidel	lines and Standards	5
	1.2	Pre-Co	onsultation Meeting	5
	1.3	Enviro	onmental Issues	5
	1.4	Geote	chnical Concerns	5
2	WATE	R DIST	RIBUTION	6
	2.1	Existin	ng Conditions	6
	2.2	Desigr	n Criteria	6
		2.2.1	Water Demands	6
		2.2.2	System Pressures	6
		2.2.3	Fire Flow Rate	7
		2.2.4	Boundary Conditions	7
		2.2.5	Hydraulic Model	7
	2.3	Propos	sed Water Plan	7
	2.3.1	Summ	nary of Hydraulic Analysis Results	8
3	WAST	TEWATE	R	9
	3.1	Existin	ng Conditions	9
		3.1.1	Verification of Existing Sanitary Sewer Capacity	9
	3.2	Propos	sed Sewers	9
		3.2.1	Design Flow:	9
		3.2.2	Population Density:	9
4	SITE	STORM	WATER MANAGEMENT	10
	4.1	Object	tive	10
	4.2	Existin	ng Conditions	10
	4.3	Desigr	n Criteria	10
	4.4	Syster	m Concept	11
		4.4.1	Dual Drainage Design	11
		4.4.2	Proposed Minor System	11
	4.5	Storm	water Management	11
		4.5.1	Water Quality Control	11
		4.5.2	Water Quantity Control	12
		4.5.3	2 Year Ponding	13

ARCADIS/IBI GROUP

REPORT
1050 TAWADINA ROAD
SERVICING RRIEF

SERVICING BRIEF
Submitted to: WEST URBAN DEVELOPMENTS

	2	4.5.4 100 year + 20% Stress Test	. 13
5	LOW IM	PACT DEVELOPMENT	.14
5.1	Introduc	etion	.14
5.2	Backgro	ound Information	.14
5.2.1	Relevan	t Design Standards	.14
5.2.2	Subsurf	ace Conditions	.14
5.3	Infiltratio	on Facility Sizing	. 15
5.3.1		ater Management Design Targets	
		ed Hydrologic Conditions	
5.3.3	Infiltration	on Facility Summary	. 17
5.4	Operation	on and Maintenance Considerations	. 18
6	SEDIME	NT AND EROSION CONTROL PLAN	. 20
6		NT AND EROSION CONTROL PLAN	
6	6.1		. 20
6	6.1 G	General	. 20 . 20
6	6.1 G 6.2 T 6.3 E	General French Dewatering	. 20 . 20 . 20
6	6.1 6.2 7 6.3 E 6.4 S	General French Dewatering Bulkhead Barriers	. 20 . 20 . 20 . 20
7	6.1 (6.2 Table 1.2	General French Dewatering Bulkhead Barriers Seepage Barriers	. 20 . 20 . 20 . 20 . 20
	6.1 (6.2 17) 6.3 E 6.4 S 6.5 S	General French Dewatering Bulkhead Barriers Seepage Barriers Surface Structure Filters	. 20 . 20 . 20 . 20 . 20
	6.1 (6.2 7) 6.3 E 6.4 S 6.5 S APPROV 7.1 (6.2)	General French Dewatering Bulkhead Barriers Seepage Barriers Surface Structure Filters VALS AND PERMIT REQUIREMENTS	. 20 . 20 . 20 . 20 . 20 . 21
	6.1 (6.2 7) 6.2 6.3 E 6.4 8 6.5 8 APPROV 7.1 (6.7) 7.2 F	General French Dewatering Bulkhead Barriers Seepage Barriers Surface Structure Filters VALS AND PERMIT REQUIREMENTS City of Ottawa	. 20 . 20 . 20 . 20 . 20 . 21 . 21
	6.1 (6.2 17.4 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	General French Dewatering Bulkhead Barriers Seepage Barriers Surface Structure Filters VALS AND PERMIT REQUIREMENTS City of Ottawa Province of Ontario	. 20 . 20 . 20 . 20 . 21 . 21 . 21
	6.1 (6.2 17) 6.2 6.3 E 6.4 6.5 S APPROV 7.1 (7.2 F 7.3 (7.4 F	General French Dewatering Bulkhead Barriers Seepage Barriers Surface Structure Filters VALS AND PERMIT REQUIREMENTS City of Ottawa Province of Ontario Conservation Authority	. 20 . 20 . 20 . 20 . 21 . 21 . 21
7	6.1 (6.2 (7.4 (8.4 (8.4 (8.4 (8.4 (8.4 (8.4 (8.4 (8	General French Dewatering Bulkhead Barriers Seepage Barriers Surface Structure Filters VALS AND PERMIT REQUIREMENTS City of Ottawa Province of Ontario Conservation Authority. Federal Government	. 20 . 20 . 20 . 20 . 21 . 21 . 21 . 21

List of Appendices

APPENDIX A

AOV Part of Block 11 Registered Plan 4M-1651

Site Plan for 1050 Tawadina Road

142609-001 Site Servicing Plan

City of Ottawa Pre-Consultation Meeting Notes

Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing McIntosh Perry – Permeability Testing and Monitoring Well Installations –

1050 Tawadina Road, Ottawa City of Ottawa Servicing Checklist

APPENDIX B

Water Model Results
Water Demand Calculations
Fire flow Calculations
Architectural Building Areas

APPENDIX C

Sanitary Sewer Design Sheet

Wateridge Phase 2B Sanitary Design Sheet Wateridge Phase 2B Sanitary Drainage Area Plan Wateridge Ph. 1B Sanitary Design Sheet Update Wateridge Ph. 1A Sanitary Design Sheet Update

APPENDIX D

Storm Sewer Design Sheet

142609-500 Storm Drainage Area Plan

Wateridge Phase 2B Storm Design Sheet Wateridge Phase 2B Storm Drainage Area Plan Modified Rational Method on-site SWM calculations

On-site Underground Storage System

Minor system release rate (Wateridge Phase 2B) Architectural Drawing SPC.P01, Parkade Plan Architectural Drawing SPC.110, Roof Plan

Letter from Mechanical Engineer re City Comments

Correspondence from 1375 Hemlock Development re grading

APPENDIX E

142609-900 Site Erosion and Sediment Control Plan

142609-200 Site Grading Plan

April 2024

1 INTRODUCTION

In 2011, Canada Lands Company (CLC), bought and took ownership of about 125 ha of the former CFB Rockcliffe air base site. The acquisition of the decommissioned base by CLC offers the opportunity today to reconnect this site back into the urban fabric of the City and create a highly desirable mixed-use community for approximately 10,000 residents. CLC completed a Community Design Plan (CDP) in 2015. In support of the CDP, there were numerous supporting documents including the "Former CFB Rockcliffe Master Servicing Study" (MSS), August 2015, prepared by IBI Group. That report provided a plan for provision of major infrastructure needed to support the proposed development of the Wateridge Village.

CLC plans to develop the Wateridge Village property in several phases. Phases 1A, 1B and 2B have already been constructed, which cover about 45 ha. The Phase 2B registered 4M plan is provided in **Appendix A**. This phase covers about 10 ha and includes 12 blocks. Block 11 is located in the West portion of the Wateridge Village Phase 2B and has been severed into 2 parcels. The plan showing the severed parcels is included in **Appendix A**. ARCADIS/IBI Group Professional Services Inc. (ARCADIS/IBI Group) has been retained by West Urban Developments to provide professional engineering services for Block 11, Parcel 1. The subject site is approximately 0.72 ha and consists of two 9- storey residential buildings and an amenity building, with a total of 254 units. The site also consists of below grade parking facilities. Additionally, the 1050 Tawadina M-plan and Architectural Site Plan have also been provided in **Appendix A**.

Block 11, Parcel 1 is bounded by Tawadina Road to the North, Parcel 2 to the South, Bareille-Snow Street to the West and Michael Stoqua Street to the East. Its Civic Address is 1050 Tawadina Road. Refer to key plan on **Figure 1.1** for Site location.

Figure 1.1 Site Location

The proposed servicing design conforms to current City of Ottawa and MECP design criteria, and no pre-consultation meetings were requested from the Rideau Valley Conservation Authority (RVCA) or the Ontario Ministry of Environment, Conservation and Parks (MECP).

1.1 Guidelines and Standards

This evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), and the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01, the June 2018 Technical Bulletin ISTB-2018-04, October 2019 Technical Bulletin 2019-01, and the July Technical Bulletin 2019-02.

It also considers the City of Ottawa Water Distribution Design Guidelines (OWDDG), and the 2010 Technical Bulletin 2010-02, the 2014 Technical Bulletin 2014-02, the 2018 Technical Bulletin 2018-02 and the 2020 Technical Bulletin 2020-02.

All specifications are as per current City of Ottawa standards and specifications, and Province of Ontario (OPSS/D) standards, specifications and drawings.

1.2 Pre-Consultation Meeting

The City of Ottawa hosted a virtual pre-consultation meeting on August 15th, 2022. Notes of the meeting are provided in **Appendix A**. There were no major engineering concerns flagged in this meeting. The City of Ottawa Servicing Study Checklist has also been included in **Appendix A**.

1.3 Environmental Issues

There are no environmental issues related to this site, as all environmental concerns were dealt with as part of the CLC's Wateridge Phase 2B subdivision approval.

The Wateridge Phase 2B Development has previously cleared and pre-graded the subject lands. There are no existing watercourses or drainage features associated with this site.

1.4 Geotechnical Concerns

Englobe Corporation was retained to prepare a geotechnical investigation for the proposed mixed use development for the 1050 Tawadina Road. The objectives of the investigation were to prepare a report to:

- Determine the subsoil and groundwater conditions at the site by means of test pits and boreholes and;
- To provide geotechnical recommendations pertaining to design of the proposed development including construction considerations.

The geotechnical report 02203079.000 was prepared by Englobe Corporation in November 2022. The report contains recommendations which include but are not limited to the following:

- Site grading;
- Foundation Design;
- Pavement Structure;
- Sewer and Watermain Construction;
- Groundwater Control;
- Grade raises

In general the grading plan for 1050 Tawadina Road adheres to the grade raise constraints noted above. A copy of the grading plans is included in **Appendix E**. The site does not pose any significant grade raise; thus a grading plan review letter is not required for this development.

2 WATER DISTRIBUTION

2.1 Existing Conditions

Phase 2B of Wateridge Village at Rockcliffe will be serviced with potable water from the City of Ottawa's Montreal Road Pressure Zone (Zone MONT). An existing 400 mm diameter watermain on Montreal Road will supply Phase 2B with connections at Codd's Road and Burma Road. As part of the Phase 1 water plan, two 400 mm mains were extended northward along Codd's Road and Wanaki Road. A copy of the existing watermain plan for Phase 2B is included in **Appendix B.**

There is an existing 400mm watermain in Tawadina Road to the north of Block 11, an existing 200mm watermain in Bareille-Snow Street to the west of the site, and an existing 200mm watermain in Michael Stoqua Street to the east of the site. In order to provide a redundant water supply to the subject site, two watermain connections are propose, one from Tawadina Road and the second at Michael Stoqua Street. Refer to the General Plan of Services included in **Appendix A** for the detailed water distribution plan for the site.

2.2 Design Criteria

2.2.1 Water Demands

The proposed development consists of 254 apartment units: 146 one-bedroom units and 108 two-bedroom units. In order to calculate water demand rates, the per unit population density and consumption rates are taken from Tables 4.1 and 4.2 of the Ottawa Design Guidelines – Water Distribution were used and are summarized as follows:

Apartment
 1.4 person per 1-bedroom unit

2.1 person per 2-bedroom unit

Average Day Demand 280 I/cap/day
 Peak Daily Demand 700 I/cap/day
 Peak Hour Demand 1,540 I/cap/day

A water demand calculation sheet is included in **Appendix B** and the total water demands are summarized as follows:

Average Day
Maximum Day
Peak Hour
1.48 l/s
3.70 l/s
8.15 l/s

2.2.2 System Pressures

The 2010 City of Ottawa Water Distribution Guidelines states that the preferred practice for the design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

not be less than 276 kPa (40 psi).

Fire Flow During the period of maximum day demand, the system pressure shall

not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure

Maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code the maximum pressure should not exceed 552 kPa (80 psi) in occupied areas. Pressure reduction controls may be required for buildings when it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rate

The Fire Underwriters Survey was used to determine the fire flow for the site. The calculations result in a fire flow of 10,000 l/min; a copy of the FUS calculation is included in **Appendix B**.

2.2.4 Boundary Conditions

According to the Master Servicing Study completed by IBI dated June 2020, Nodes N046 and N048 as shown in **Appendix B** — Water Distribution System: Hydraulic Modeling Results indicates the hydrant closest to the proposed connections for the site. The available fire flow for these two hydrants is also tabulated in the report. The available flow for nodes N046 and N048 at 20 psi is 26,690 L/min and 27,290 L/min as shown in Table 3-2, included in **Appendix B**, which is greater than the required domestic and fire demand of 10,000 L/min. Therefore, adequate water supply and pressure are available to serve the proposed development.

Additionally, the City of Ottawa has provided a hydraulic boundary condition at the proposed connection to the 200 mm main on Tawadina Road and 200 mm main connection on Michael-Stoqua Street. The boundary condition is based on the water demand and fire flow rates provided. A copy of the boundary conditions received November 8, 2023 is included in **Appendix B** and are summarized as follows:

BOUNDARY CONDITIONS			
SCENARIO	Connection 1 - HGL (m)	Connection 2 HGL (m)	
Minimum HGL	143.0	143.0	
Maximum HGL	143.0	143.0	
Max Day + Fire Flow (166.7 l/s)	140.5	137.2	
Max Day + Fire Flow (183.3 l/s)	141.7	137.9	

2.2.5 Hydraulic Model

A computer model for the 1050 Tawadina Road water distribution system has been developed using the InfoWater SA program. The model includes the boundary conditions provided by the City of Ottawa November 2023.

2.3 Proposed Water Plan

The proposed development consists of 146 one-bedroom units and 108 two-bedroom units, equating to an estimated occupancy of 432. Two new 200 mm diameter connections will be installed to service both buildings, one connecting to the existing 400 mm diameter watermain on Tawadina Road and another connecting to the existing 200 mm diameter watermain on Michael Stoqua Street.

The site is surrounded by four existing fire hydrants, one located on Bareille-Snow Street, two on Tawadina Road, and one on Michael Stoqua Street. The hydrants are spaced less than 90 m apart, meeting the requirement of Table 4.9 of the City of Ottawa - Design Guidelines – Water Distribution, July 2010.

Calculations for fire flows using the Fire Underwriters Survey (FUS) indicate a maximum required fire flow of approximately 183.3 L/s (11,000 L/min) for Building A and approximately 166.00 L/s (10,000 L/min) for Building B, based on a non- combustible construction with a

SERVICING BRIEF

Submitted to: WEST URBAN DEVELOPMENTS

sprinkler system designed to NFPA. Since the fire flow calculation for the Building A yields a higher demand, the required fire flow for Building A will be used in subsequent calculations. Refer to **Appendix B** for detailed water demand calculations.

As per Section 2.2.1, the water demand for the proposed development is determined by the greater of the maximum day demand plus fire flow or the peak hour demand. In this instance, the maximum day demand plus fire flow demand (3.70 L/s + 183.3 L/s = 187.00 L/s = 11,220 L/min) is the governing requirement. Refer to Section 2.2.1 for the summarized water demand requirement.

According to the Master Servicing Study completed by IBI dated June 2020, Nodes N046 and N048 as shown in **Appendix B** – Water Distribution System: Hydraulic Modeling Results indicate the hydrants closest to the proposed connections for the site. The available fire flow for these two hydrants is also tabulated in the report. The available flow for nodes N046 and N048 at 20 psi is 26,690 L/min and 27,290 L/min as shown in Table 3-2, are both greater than the required domestic and fire demand of 11,000 L/min. Therefore, adequate water supply and pressure are available to serve the proposed development.

Moreover, based on the Block 11 – Parcel 1 Site Plan Submission Technical Memorandum prepared by IBI group dated November 23, 2022, the basic day pressures range from 551.6 kPa to 555.0 kPa on Tawadina Road; the peak hour pressures range between 498.8 kPa and 508.1 kPa; and the fire flows available during maximum day demand range between 462.6 L/s and 850.5 L/s. A copy of the Block 11 – Parcel 1 Site Plan Submission Technical Memorandum is included in **Appendix A**. Since the peak hour pressure exceed 276 kPa as per City's criteria and the available fire flow exceeds the required fire flow rate of 320.17 L/s, the water distribution system surrounding the proposed development is adequate to support the proposed development.

2.3.1 Summary of Hydraulic Analysis Results

Results of the hydraulic analysis for 1050 Tawadina Road are summarized as follows:

SCENARIO	EXISTING
Basic Day Pressure (kPa)	488.01 - 493.40
Peak Hour Pressure (kPa)	477.44 - 491.02
Minimum Residual Pressure (kPa) @ 166l/s	560.72
Minimum Residual Pressure (kPa) @ 183l/s	564.22

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure All nodes have basic day pressure below 552 kPa for existing

conditions; therefore, pressure reducing control is not required for this

site.

Minimum Pressure All nodes exceed the minimum requirement of 276 kPa during peak

hour conditions.

Fire Flow The minimum design fire flow for Building A with a minimum residual

pressure of 140 kPa in the site is 564.22 l/s which exceeds the requirement of 183 l/s (11,000 l/min). The minimum design fire flow for Building B with a minimum residual pressure of 140 kPa in the site is 560.72 l/s which exceeds the requirement of 166 l/s (10,000

I/min).

3 WASTEWATER

3.1 Existing Conditions

Canada Lands Company completed a Community Design Plan (CDP) in 2015. To support that plan, a number of technical reports were prepared including the 'Former CFB Rockcliffe Master Servicing Study, August 2015 (MSS), which was subsequently updated in June 2020. That report recommended that the existing combined sewers on the subject site be abandoned in favour of dedicated sanitary and storm sewer systems.

In particular, the MSS recommended that future wastewater flow from Phase 2B be directed to the Codd's Road Shaft. Accordingly, wastewater flows from the subject site will be designed to outlet to that location. The previous Phase 1A design included the new connection to that shaft and the proposed Phase 2B sanitary sewers will connect to the Phase 1B system. The sanitary sewers in Phase 2B were oversized to provide capacity for Future Phase 2C and 2D connection. A copy of Phase 2B sanitary drainage area plan and design sheet are included in **Appendix C**.

3.1.1 Verification of Existing Sanitary Sewer Capacity

An analysis was completed by IBI Group to determine the ability of the existing sanitary sewer system to accommodate the proposed development. The results of the analysis are included in the Block 11 – Parcel 1 Site Plan Submission Technical Memorandum dated November 23, 2022. Due to an increase in wastewater flows for the subject site from concepts used in Phase 2B calculations and current site plan, the proposed wastewater outlet for 1050 Tawadina is now directed to Michael-Stoqua Street. Based on the analysis provided in **Appendix C**, the wastewater flows in the Michael-Stoqua Street sewer from MH311A to MH310A is 5.20 L/s, with a spare capacity of 67.15 L/s. The sewer downstream of the Michael-Stoqua Street sewer, along Hemlock Road, from MH205A to MH206A has a wastewater flow of 7.71 L/s, with a spare capacity of 23.31 L/s. As such, it is IBI Group's opinion that the existing sanitary sewers in Michael-Stoqua Street and Hemlock Road can accommodate the sanitary flow from the proposed development.

3.2 Proposed Sewers

All on-site sewers have been designed to City of Ottawa and MECP design criteria which include but are not limited to the below listed criteria. The detailed sanitary sewer design sheets which are included in **Appendix C** illustrate the population densities and sewers which provide the necessary outlets. The design wastewater criteria for this analysis area:

3.2.1 Design Flow:

Average Residential Flow - 280 I/cap/day

Peak Residential Factor - Modified Harmon Formula

Infiltration Allowance - 0.33 l/sec/Ha
Minimum Pipe Size - 200mm diameter

3.2.2 Population Density:

Apartment Units
 1.4 person per 1-bedroom unit

2.1 person per 2-bedroom unit

SITE STORMWATER MANAGEMENT

4.1 Objective

The purpose of this evaluation is to prepare the dual drainage design, including the minor and major system, for the 1050 Tawadina Road development. The design includes the assignment of inlet control devices, on-site storage, maximum depth of surface ponding and hydraulic grade line analysis. The evaluation takes into consideration the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), the February 2014 Technical Bulletin ISDTB-2014-01, the September 2016 Technical Bulletin PIEDTB-2016-01 and the June 2018 Technical Bulletin ISTB-2018-04.

4.2 **Existing Conditions**

CLC completed an update to the servicing report, "Former CFB Rockcliffe Master Servicing Study" in 2020. That report recommended a preferred Stormwater Management Plan for the Wateridge Village at Rockcliffe site. The report recommended construction of two stormwater ponds and related appurtenances to service the CLC property; the Western Stormwater Management Facility and the Eastern Stormwater Management Facility. The Eastern Pond is proposed to provide management of flows from most of Phase 1 and 2 of the CLC property, including the subject site. The Eastern pond was constructed and put into service in 2017.

The MSS Report also recommends a series of local and trunk storm sewers to collect runoff from Phases 1 and 2 and route those flows to the Eastern Facility. The Phase 1 design followed the recommendations of the MSS report, including construction of the large diameter sewers, which outlet to the Eastern Stormwater Management Facility; the Eastern Stormwater Management Facility and outlet to the Ottawa River. The Phase 2B storm sewers connect to the downstream Phase 1 sewer system. A copy of the storm drainage area plan and the storm sewer design sheet for Phase 2B are included in Appendix D.

4.3 Design Criteria

The stormwater system for the subdivision was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

•	Design Storm	1:2-year return (Ottawa)		
•	Rational Method Sewer Sizing			
•	Initial Time of Concentration	10 minutes		
•	Runoff Coefficients			
	- Landscaped Areas	C = 0.25		
	- Landscaped Area with Pathway/Roof	C = 0.50 - 0.65		
	- Building and Roof Area	C = 0.90		
	- Parking Area and Driveway	C = 0.90		
•	Pipe Velocities	0.80 m/s to 3.0 m/s		
•	Minimum Pipe Size	250 mm diameter (200 mm CB Leads)		

April 2024 10

4.4 System Concept

According to the Wateridge Phase 2B report prepared by IBI Group dated April 2019, the development of the adjacent downstream properties included the expected stormwater servicing needs of the subject property. The existing storm sewers constructed adjacent to the site were oversized to provide the needed capacity for minor storm runoff from the subject site. Minor storm runoff from the subject site is proposed to connect to the existing 525 mmØ sewer in Bareille-Snow Street.

4.4.1 Dual Drainage Design

The dual drainage system proposed for the subject site will accommodate both major and minor stormwater runoff. Minor flow from the subject site will be conveyed through the storm sewer network and discharge into the existing 525 mmØ sewer in Bareille-Snow Street.

The balance of the surface flow not captured by the minor system will be conveyed via the major system. Where possible, storage will be provided in surface sags or low points within the roadway. Once the maximum storage is utilized, the excess flow will cascade to the next downstream street sag. Major flow up to 100-year storm event will be restricted and detained on-site. Emergency overflow will be directed towards the south-west corner of the site at Bareille-Snow Street.

4.4.2 Proposed Minor System

Using the criteria identified in Section 4.3, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated storm sewer drainage area plan are included in **Appendix D**. The general plan of services, depicting all on-site storm sewers can be found in **Appendix A**.

4.5 Stormwater Management

Wateridge Phase 2B is part of the larger development referred to as the Former CFB Rockcliffe. The stormwater management strategy was outlined in the "Former CFB Rockcliffe Master Servicing Study" (MSS) (IBI Group, August 2020). Phase 2B is located between Hemlock Road and Tawadina Road (refer to Figure 1.1). As part of the Phase 2B development, the design of downstream Phase 2A has been completed.

The subject site is part of the drainage area that ultimately discharges to the Eastern SWM Facility. The trunk storm sewer to the pond and the pond itself were constructed as part of Wateridge Phase 1A.

4.5.1 Water Quality Control

The design takes into consideration the August 2020 MSS, the "Design Brief Wateridge Village at Rockcliffe Phase 1B" (IBI Group, June 2017), the "Design Brief Wateridge Village at Rockcliffe Phase 1A" (IBI Group, April 2016), the City of Ottawa Sewer Design Guidelines (OSDG) (October 2012), and the February 2014 Technical Bulletin ISDTB-2014-01.

Any runoff from the site, as with all future developments in Wateridge Village at Rockcliffe, will have end of pipe quality treatment. Any impacts to receiving watercourses will therefore be mitigated. There are no municipal drains in the vicinity of the subject development and there are no drainage catchment diversions proposed by the current development.

SERVICING BRIEF

Submitted to: WEST URBAN DEVELOPMENTS

4.5.2 Water Quantity Control

The subject site will be limited to a maximum minor system release rate of 195 L/s according to Wateridge Phase 2B Design Brief dated April 2019. In the Phase 2B subdivision stormwater management system design, the development blocks are subjected to minor system inflow restriction with major flow cascading to a street segment. The restricted rates were provided in Table 2-2, taken from the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing, which is included in **Appendix A**. This will be achieved through a combination of inlet control devices (ICD's) at inlet locations, surface storage where possible and underground storage where required.

Surface flows in excess of the site's allowable release rate will be stored on site in a proposed cistern and gradually released into the minor system to respect the site's allowable release rate. The maximum surface retention depth located within the developed areas will be limited to 300mm during a 1:100 year event as show on the ponding plan located in **Appendix D** and grading plans located in **Appendix E**. Overland flow routes will be designed to permit emergency overland flow.

The majority of onsite stormwater is to be directed to a cistern in the underground parking garage. This cistern will be fitted with an ICD to restrict the flowrate offsite while providing sufficient volume to retain up to and including the 100 year storm event. Roof flows from Buildings A and B enter the infiltration gallery at 88.83. If infiltration is not able to keep up with the flow, the gallery outlets at 88.98 through the overflow pipe (which connects to the CB1 lead). The overflow enters the cistern at 88.23. The cistern outlets via gravity at 86.73. An ICD fitted to the cistern limits the outflow to city sewers.

Along the perimeter of the site, the opportunity to capture and store runoff is limited due to grading constraints and building geometry. These areas will discharge uncontrolled to Tawadina Road, Michael Stoqua Street and Bareille-Snow Street. These areas are located at the perimeter of the site where it is necessary to tie into public boulevards and adjacent properties or in areas where ponding stormwater is undesirable.

Based on the proposed site plan, the total uncontrolled area has been calculated to be (0.09+0.05) 0.14 ha. For the detailed storm drainage area plan for the site, refer to Drawing 500 in **Appendix D**.

Based on a 1:100 year event, the flow from the 0.14 ha uncontrolled area can be determined as:

Quncontrolled = $2.78 \times C \times i_{100yr} \times A$ where:

C = Average runoff coefficient = $0.58 \times 1.25 = 0.725$ (100 year C-value)

 i_{100yr} = Intensity of 100-year storm event (mm/hr)

= 1735.688 x $(T_c + 6.014)^{0.820}$ = 178.56 mm/hr; where T_c = 10 minutes

A = Uncontrolled Area = 0.14 Ha

Therefore, the uncontrolled release rate can be determined as:

 $Q_{uncontrolled} = 2.78 \times C \times i_{100yr} \times A$

 $= 2.78 \times 0.725 \times 178.56 \times 0.14$

= 50.38 L/s

The Maximum allowable release rate from the site can be determined by subtracting the Uncontrolled release rate from the minor system restricted flow rate.

 $Q_{max} = Q_{restricted} - Q_{uncontrolled}$

 $Q_{max} = 195 L/s - 50.38L/s$

 $Q_{max} = 144.62 L/s$

Surface flows in excess of the site's allowable release rate will be stored on site in the proposed underground cistern and gradually released into the minor system to respect the site's allowable release rate. There will be no surface retention located within the developed site plan. Overland flow routes will be detailed on the grading to permit emergency overland flow.

The modified rational method was used to evaluate the on-site stormwater management. There are two uncontrolled areas on this site. The flows are calculated above. Therefore, the total restricted flow rate through the minor system will be the design flow rate of **144.62** I/s. This will be achieved using an Inlet Control Device placed in the storm control manhole on-site. A summary of the ICD's, their corresponding storage requirements, storage availability, and associated drainage areas has been provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100 YEAR STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m³)
SC#3	144.00	140	0
TOTAL	144.00	140	0

4.5.3 2 Year Ponding

A review of the 2-year ponding has been completed using the modified rational method. A minimum Tc of 3min has been used. Where volumes are calculated as a negative value, 13.85m3 has been shown. A summary of each drainage area has been provided below.

DRAINAGE AREA	Total 2-Year Ponding Volume (m3)	Comment
SC#3	13.85	This area is controlled at CTRL MH1, and there is 140m3 of sub- surface storage provided in this area. The required ponding is provided underground. A 50% reduction to the release rate was considered for this area.

Based on the above, there will be no surface ponding in the 2-year event.

4.5.4 100 year + 20% Stress Test

A cursory review of the 100yr event + 20% has been performed using the modified rational method. The Peak flow from each area during a 100-year event has been increased by 20%. The calculations have been included in **Appendix D**.

A summary of the require storage volumes, and overflow balances is provided below.

DRAINAGE AREA	ICD RESTRICTED FLOW (L/s)	100yr20 STORAGE REQUIRED (m³)	SURFACE STORAGE PROVIDED (m³)	100yr20 OVERFLOW (m³)
SC#3	144.00	183.08	140	43.08
TOTAL	144			43.08

The stress test overflow from SC#3 will follow the intended overflow route as identified in the Phase 2B grading design drawings. The volume of overflow is 43.08m3. Based on the Tc of 19minutes, this volume can be reverse calculated to 37.79 L/s.

5 LOW IMPACT DEVELOPMENT

5.1 Introduction

Aquafor Beech was retained by Arcadis on behalf of WestUrban Developments Ltd. to complete the design of an infiltration-based Stormwater Management (SWM) facility in support of the development at 1050 Tawadina Road, Ottawa. The facility is to serve as an integral part of the site's ability to achieve erosion control, water balance, and water quality targets in accordance with the Stormwater Management Existing Conditions Report & LID Pilot Project Scoping (Aquafor Beech (2015).

The site is encompassed by Tawadina Road to the North, Michael Stoqua Street to the East, a future development and Hemlock Road to the South, and Rue Bareille-Snow Street to the West. Presently, the site is vacant and located on the former CFB Rockcliffe air base site. The surrounding roads and underground services for the site have been constructed. The site has been zoned for a Mid-Rise Mixed Use.

The proposed development block consists of two 9-storey residential buildings with one level of underground parkade. The buildings located northwest and southeast are labelled as Building A and Building B respectively. The site also features a central plaza area with a small amenity building, and a small surface parking lot with access from Rue Bareille-Snow Street.

5.2 Background Information

A review of both existing site conditions and relevant design standards was completed to support the development of the infiltration facility. The following subsections outline relevant information from both review exercises.

5.2.1 Relevant Design Standards

The following design standards were referenced in the design development process for the proposed infiltration facility:

- 1. City of Ottawa Sewer Design Guidelines (Second Edition, October 2012)
- 2. Stormwater Management Planning and Design Manual (Ministry of Environment, Conservation, and Parks, March 2003)
- 3. City of Ottawa Low Impact Development (LID) Technical Guidance Report: Implementation in Areas with Potential Hydrogeological Constraints (February, 2021)
- 4. Low Impact Development Stormwater Management Guidance Manual Draft for Consultation (Ministry of Environment, Conservation, and Parks, January 2022)
- Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide – Version 1.0 (Toronto Region Conservation Authority, 2016)

5.2.2 Subsurface Conditions

Two onsite investigations were completed within the 1050 Tawadina Road development block area:

- 1. Geotechnical Investigation: Proposed Two New Apartment Buildings 1050 Tawadina Road, Ottawa, ON (Englobe, November 2022); and,
- Permeability Testing and Monitoring Well Installations 1050 Tawadina Road, Ottawa (McIntosh Perry, August 2023)

The Geotechnical Investigation was completed in 2022 by Englobe, involving installation of three boreholes and one monitoring well across the site. These features were used to classify subsurface soil physical and chemical properties, groundwater depth, and bedrock conditions. With this information, a number of design recommendations were developed including but not limited to subgrade preparation, engineered shoring, temporary dewatering, and foundation design.

In-situ infiltration testing was completed at a number of test pits and holes to various depths across the site in the summer of 2023. Testing was completed using a Guelph permeameter. Each test consisted of a 5-15cm head test, based on the level of saturation and subsurface materials encountered at the test location. Changes in reservoir water levels were monitored and recorded over time until a steady state was reached between three consecutive readings.

The relevant findings from both investigations in regards to design of the infiltration facility are outlined below:

- 1. Infiltration Facility Setbacks
 - a. Infiltration and any other LID practices must be located on site such that a minimum horizontal setback of 2.0m is provided between the LID footprint and edge of building foundations.
- 2. Bedrock and Groundwater
 - a. Bedrock elevation in the approximate infiltration facility excavation area was observed at 87.7m per data collected at BH22-2, or a depth of approximately 2.1m below finished design grade. No groundwater was observed in the monitoring well adjacent to the excavation area (MW22-4) during the single reading on June 3rd, 2022, thus groundwater is not expected to restrict design depth of the facility.
- 3. Infiltration Rate
 - a. In-situ infiltration rates in test pits or cores dug to a 1m depth (TP1 and TP4), approximately the depth of the infiltration facility invert, averaged to 17.3mm/hr. The design infiltration rate adopts a safety factor in accordance with the LID Stormwater Management Guidance Manual, producing an average design infiltration rate of 4.96mm/hr.

5.3 Infiltration Facility Sizing

The following subsections outline the design development process used in sizing the infiltration facility.

5.3.1 Stormwater Management Design Targets

To aid in the development of the infiltration facility, several design targets were identified from the various guidance documents outlined in Section 5.2.2 above.

Table 1 below summarizes the design targets applied and source of information.

Table 1: Various Design Targets Applicable to the Infiltration Facility.

Design Target Category	Target Value or Range	Source
Clearance to bedrock or groundwater	Minimum 1.0m	City of Ottawa LID Technical Guidance Report: Implementation in Areas with Potential Hydrogeological Constraints
Erosion Control Storage	4mm rainfall depth across entire site impervious area	Wateridge Phase 2B LID Developer's Checklist
Water Balance Storage	4mm rainfall depth across entire site impervious area	Wateridge Phase 2B LID Developer's Checklist
Water Quality Storage	15mm rainfall depth across entire site impervious area	Wateridge Phase 2B LID Developer's Checklist
Drawdown Time	48-92 hours	City of Ottawa LID Technical Guidance Report: Implementation in Areas with Potential Hydrogeological Constraints
Average Release Rate from Site	Maximum 50% of the peak allowable rate (97.5 L/s)	City of Ottawa Pre-Application Consultation Meeting (July 21, 2022)

5.3.2 Proposed Hydrologic Conditions

Intensity-duration-frequency (IDF) data was referenced from the City of Ottawa Sewer Design Guidelines, adopting rainfall intensities for the 2-year to 100-year design storm event under a 10-minute time of concentration. Given that the infiltration facility has been designed to only accept inflows from rooftop areas, catchment area was delineated based upon total combined rooftop area from Building 'A' and Building 'B', with a standard impervious surface runoff coefficient of 0.9 adopted for the hydrological analysis. Additionally, the Draft LID SWM Guidance Manual was referenced to identify the recommended Runoff Volume Control Target for achieving Level 1 or 80% annual total suspended sediment (TSS) removal. Table 2 through Table 4 below summarizes the catchment characteristics, peak design storm flows, and required runoff storage volumes relevant to the design.

Table 2: Site Runoff Coefficient Calculation.

Site Runoff Coefficient			
Site Area (h	0.72		
	Area (ha)		
Pavement/Concrete	0.9	0.17	
Building	0.9	0.34	
Landscaping	0.25	0.16	
Pavers	0.9	0.05	
Total	0.76	0.72	

Table 3: Design Storm Peak Flows from Building Rooftops.

Return Period	Rainfall Intensity	Flow (m ³ /s)	
	(mm/hr)	Building A	Building B
2-year	77.1	0.04	0.03
5-year	104.4	0.05	0.04
10-year	122.5	0.061	0.044
25-year	145.3	0.08	0.06
50-year	162.2	0.10	0.07
100-year	179	0.11	0.08

Table 4: Runoff Volume Storage Requirements for Site.

SWM Category	Target Value	Required Volume (m³)
Erosion Control	4mm rainfall depth across entire site impervious area	22m³
Water Balance Storage	4mm rainfall depth across entire site impervious area	22m³
Water Quality Storage	15mm rainfall depth across entire site impervious area	83m³

To achieve all three stormwater management category targets, the infiltration facility was thus designed to ensure 83m³ of storage is provided.

5.3.3 Infiltration Facility Summary

With design targets and site constraints established, a design for the infiltration facility was developed. The facility consists of a plastic chamber system complete with inlet debris settling rows, inspection ports, inlet and outlet connections, and an open bottom stone base for infiltration of stored water below the outlet invert. A summary of key design information for the infiltration facility is provided in Table 5 below.

Table 5: Key Design Parameters of Proposed Infiltration Facility.

Design Parameter	Value
Maximum Storage Volume (m³)	83m ³
Excavation Footprint Area (m²)	165m ²
Total Facility Depth (m)	0.81m
Minimum Cover (m)	0.6m
Minimum Clearance to Bedrock (m)	1.0m
Drawdown Time (hrs)	61hrs*
Inlet Pipe Diameter(s) (mm)	250mm – x2
Outlet Pipe Diameter (mm)	150mm
Structural Loading Capacity	HS-25 Rated

^{*}Note: drawdown time based off water level reduction from outlet pipe invert to bottom of levelling course 19mm stone.

REPORT 1050 TAWADINA ROAD SERVICING BRIEF

Submitted to: WEST URBAN DEVELOPMENTS

In addition to the design information in the above table, various other design aspects were incorporated to enhance the function of the system and allow for greater ease of operation and maintenance. These additional design aspects are outlined and described below:

1. Overflow bypass system

a. Two standard OPSD 705.010 catchbasins are proposed to be installed along the inlet pipes from each building such that in major storm events when the infiltration facility has reached maximum capacity, overflow can exit the system and drain to CB1 or overland through the site entrance onto Rue Bareille-Snow Street. Additionally, the catchbasins allow for bypass should the infiltration facility inlets or outlet become blocked.

2. Inlet Debris Rows

a. Inlet debris rows are included at each inlet location as part of the Aquabox Cube infiltration chamber design such that sediment and other fine debris has the opportunity to settle in a small forebay area before runoff spills over the internal weir wall and into the main chamber area. The debris rows concentrate sediments entering the system to a small area for ease of maintenance.

3. Inspection Ports

a. Three inspection ports are provided in the design featuring 375mm diameter riser pipes. These ports can be used for visual inspection inside the chamber or cleanout of sediments via vac truck.

5.4 Operation and Maintenance Considerations

A number of operation and maintenance (O&M) practices should be considered by the site owner to ensure the infiltration facility can maintain its as-designed function in future years. The following considerations are summarized from previous industry experience of Aquafor Beech and the TRCAs' Low Impact Development Stormwater Management Practice Inspection and Maintenance Guide.

SERVICING BRIEF
Submitted to: WEST URBAN DEVELOPMENTS

Design	O S M Dosevintion	Evaculanav
Component	O & M Description	Frequency
Contributing Catchment	Inspect Contributing rooftop area and paved surfaces near inlet CB2 and CB2 to ensure no significant leaf litter, sediment, leaking contaminated substances, or other garbage debris may enter the system and cause partial or full blockage of the inlet system.	Biannual visual inspections.
Inlet Conveyance System	Inlets should remain unobstructed to ensure runoff enters infiltration facility unimpeded. Visual inspection of inlet catchbasins CB2 and CB3 should be completed. CCTV and flushing of pipe segments should occur when pipe segments are or suspected to be clogged.	Visual Inspection – biannual Flushing & CCTV – when clogging/damage suspected.
Debris Row/ Pretreatment	For effective debris row function, these areas should be inspected visually via the inspection ports for sediment or other debris accumulation limiting storage capacity or conveyance of inlet flows into the main chamber area. Inlet flushing and vac truck cleanout of the debris row shall be adopted to remove debris and sediment when required.	Biannual visual inspections. Flushing & Vac Truck – when sediment accumulation reaches half the height of the debris row geotextile wall.
Main Filter Bed Area	Visual inspection in dry weather to quantify sediment accumulation and inspections following storm events to monitor draw down time. Should facility draw down exceed 92 hours or sediment accumulation limit inlet/outlet function of facility, flushing and vac truck sediment removal shall be adopted.	Annual visual inspections. Flushing & Vac Truck – when drawdown exceeds 92hrs OR sediment accumulation impeding inlet/outlet function.
Outlet Conveyance System	Outlet should remain unobstructed to ensure discharged water enters underground cistern unimpeded. Visual inspection of outlet catchbasins CB1 and monitoring of Cistern water levels can help identify any conveyance problems in the outlet system. Where clogging is suspected, CCTV and flushing of pipe sediments should occur.	Visual Inspection – biannual Flushing & CCTV – when clogging/damage suspected.
Emergency Overflow Outlets	Grate openings of CB2 and CB3 along inlet pipes should remain unobstructed and free of debris such that surcharge of excess runoff to the surface in major storm events can occur.	Biannual visual inspections.
Inspection Ports	As a vital component to maintenance access, inspection of the inspection ports to ensure proper function and access is maintained via the surface grates.	Biannual access function inspections.

April 2024 19

6 SEDIMENT AND EROSION CONTROL PLAN

6.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches; and
- silt sacks will remain on open surface structure such as manholes and catchbasins until these structures are commissioned and put into use.

6.2 Trench Dewatering

During construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

6.3 Bulkhead Barriers

At the first manhole constructed immediately upstream of an existing sewer, a $\frac{1}{2}$ diameter bulkhead will be constructed over the lower half of the outletting sewer. This bulkhead will trap any sediment carrying flows, thus preventing any construction –related contamination of existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

6.4 Seepage Barriers

These barriers will consist of both the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110 and will be installed in accordance with the sediment and erosion control drawing. The barriers are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

6.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed these structures will be covered to prevent sediment from entering the minor storm sewer system. Until rear yards are sodded or until streets are asphalted and curbed, all catchbasins and manholes will be equipped with geotextile filter socks. These will stay in place and be maintained during construction and build until it is appropriate to remove them.

7 APPROVALS AND PERMIT REQUIREMENTS

7.1 City of Ottawa

The City of Ottawa reviews all development documents including this report and working drawings. Upon completion, the City will approve the local watermains, submit the sewer ECA application to the province, and eventually issue a Commence Work Notification.

7.2 Province of Ontario

The Ministry of Environment, Conservation and Parks (MECP) Environmental Compliance Approval is not required for the subject development. A Permit To Take Water for the subject site has been provided by the MECP. The permit, number 0565-A5AMP8, expires on December 31, 2025.

7.3 Conservation Authority

Since no watercourses are impacted by the proposed development, no permits will be required from the local Conservation Authority (Rideau Valley Conservation Authority).

7.4 Federal Government

There are no federal permits, authorizations or approvals needed for this development.

8 CONCLUSIONS & RECOMMENDATIONS

8.1 Conclusions

This report and the accompanying working drawings clearly indicate that the proposed development meets the requirements of the stakeholder regulators, including the City of Ottawa, provincial MECP and SNC. The proposed development is also in general conformance with the Master Servicing Study completed by IBI dated June 2020.

Downstream sanitary and storm sewers were designed with the proposed development area included. There is a reliable water supply available adjacent to the proposed development.

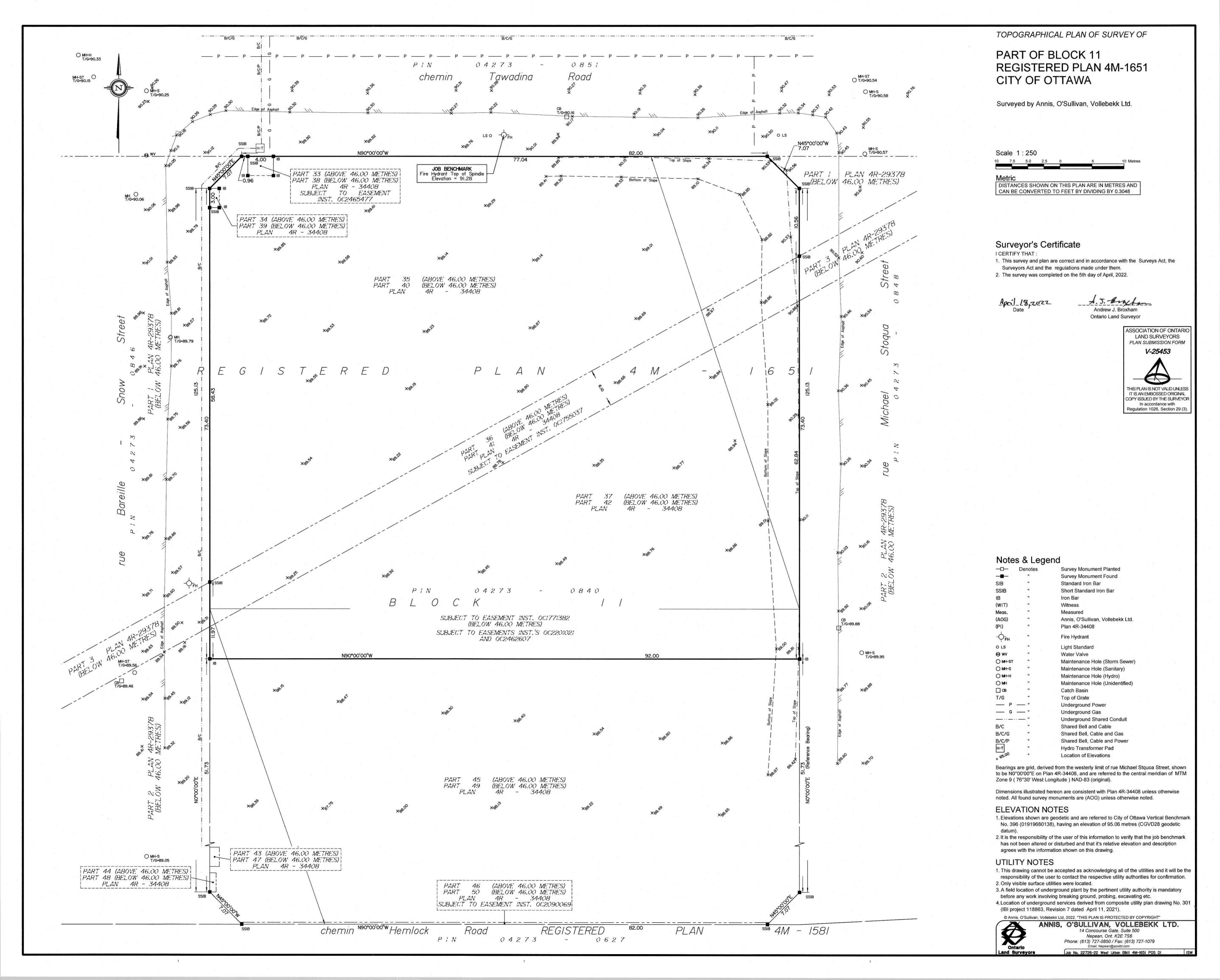
8.2 Recommendations

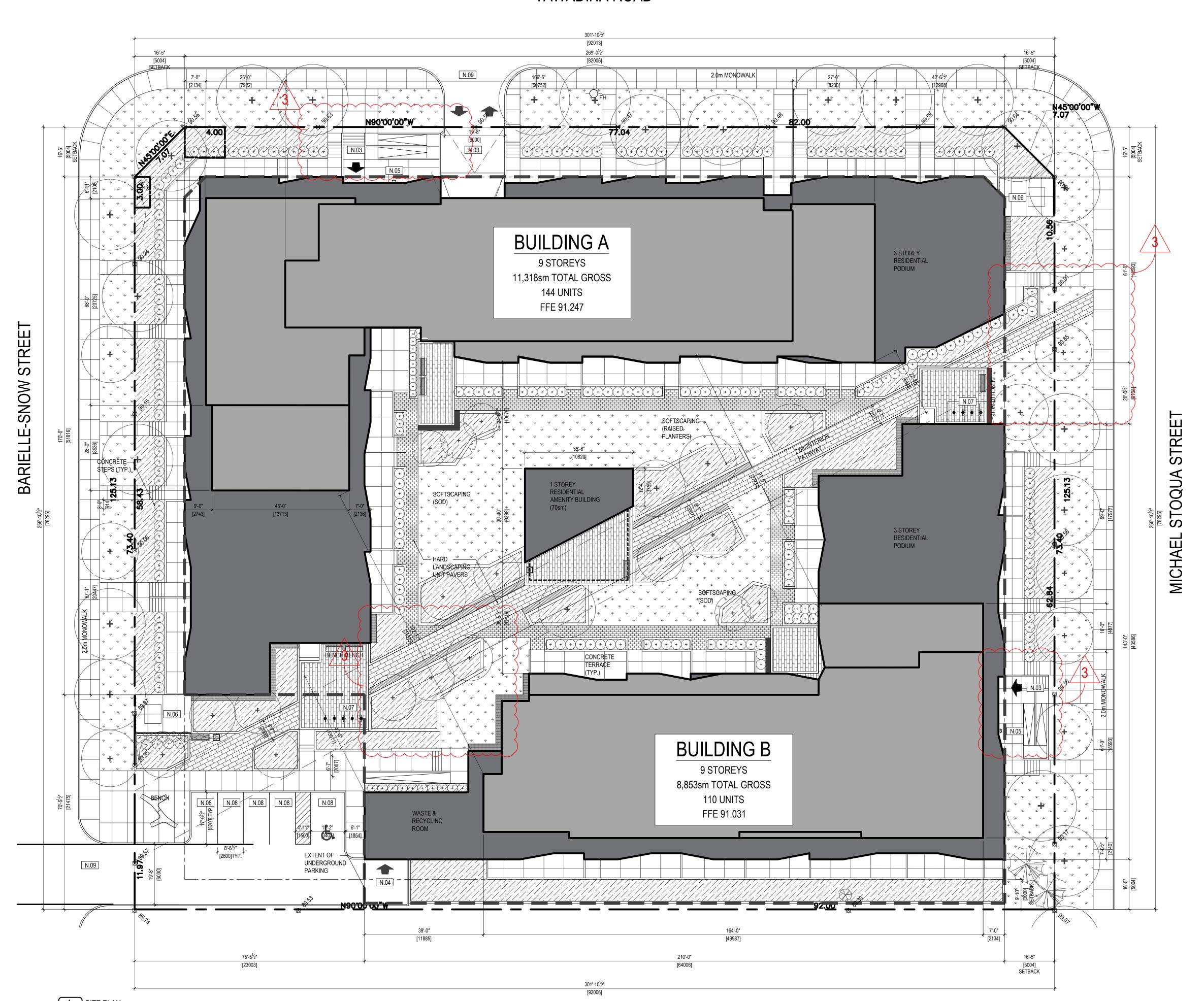
It is recommended that the regulators review this submission with an aim of providing the requisite approvals to permit the owners to proceed to the construction stage of the subject site.

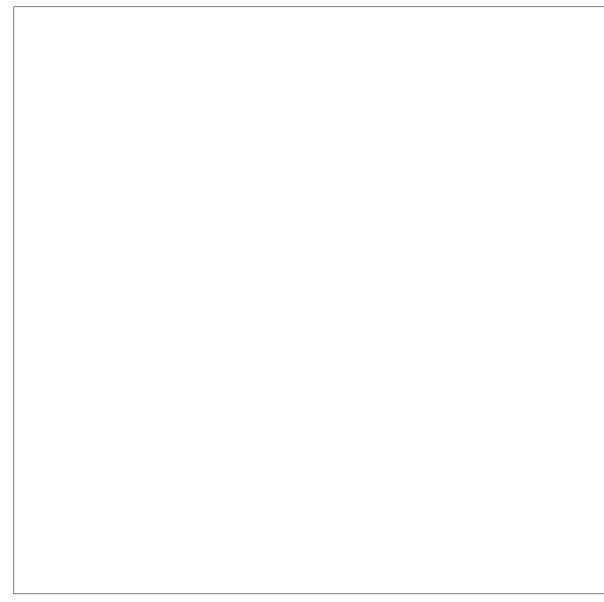
ARCADIS/IBI GROUP

REPORT 1050 TAWADINA ROAD SERVICING BRIEF Submitted to: WEST URBAN DEVELOPMENTS

Report revised by:


ARCADIS/IBI GROUP


Samantha E. Labadie, P. Eng. Civil Engineer


APPENDIX A

AOV Part of Block 11 Registered Plan 4M-1651 Site Plan for 1050 Tawadina Road 142609-001 – Site Servicing Plan City of Ottawa Pre-Consultation Meeting Notes Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing McIntosh Perry – Permeability Testing and Monitoring Well Installations – 1050 Tawadina Road, Ottawa Development Servicing Study Checklist

TAWADINA ROAD

SHEET NOTES

N.08

92m 78.3m

20,171sm

254 UNITS

PROPOSED ELECTRICAL TRANSFORMER

GARBAGE AND RECYCLING ACCESS

FIRE DEPARTMENT CONNECTION

LOCATION.

PARKADE ENTRY RAMP.

MAIN BUILDING ENTRY

TRANSFORMER

BIKE PARKING STALLS

DEPRESSED CURB

VISITOR PARKING STALLS

677sm-742sm

A. ALL EXISTING STRUCTURES, RETAINING WALLS AND LANDSCAPING TO BE REMOVED WITHIN COMBINED DEVELOPMENT PARCELS.

GENERAL NOTES

LOCATION PLAN

B. REFER TO LANDSCAPE PLANS FOR ALL PLANTING AND GROUND COVER INFORMATION & DETAILS.

REFER TO WATERIDGE VILLAGE AT ROCKCLIFFE PHASE 2B ISSUED FOR CONSTRUCTION DRAWINGS AS PREPARED BY IBI GROUP 2019.09.10 FOR ALL DESIGN GEODETIC ELEVATIONS ADJACENT TO DEVELOPMENT PERIMETER.

D. ALL EXISTING SITE INFORMATION AS PER TOPOGRAPHICAL SURVEY PLAN DATED APRIL 5th, 2022 PREPARED BY ANNIS, O'SULLIVAN, VOLLEBEKK E. ALL SITE REHABILITATION OF SIDEWALKS, BUS ZONE APRONS, AND PAVED LANES ARE TO BE COMPLETED

AT THE OWNER'S EXPENSE ANY SNOW ACCUMULATED IN SURFACE PARKING

G. WASTE & RECYCLING BINS TO BE ROLLED OUT TO BAREILLE-SNOW STREET FOR CURBSIDE COLLECTION

AREAS IS TO BE TRUCKED OFF SITE.

ZONING NOTES

CURRENT ZONING: GM31 H(30)

TOTAL DEVELOPMENT STATS LOT OF AREA LOT WIDTH LOT DEPTH

TOTAL BUILDING AREA

SETBACK ALONG TAWADINA ROAD (SIDEYARD) SETBACK ALONG MICHAEL STOQUA STREET (CORNER/FRONT) SETBACK ALONG BARIELLE-SNOW STREET (CORNER/FRONT)
INTERIOR SIDEYARD SETBACK (GM31 H(30))

MAXIMUM HEIGHT** MINIMUM NUMBER OF STOREYS **At least half of the total land area of each block will have a maximum building height of 20m (as per Wateridge Village Guide)

MAXIMUM FLOOR PLATE AREA ABOVE 20m

TOTAL UNITS **BUILDING A - DEVELOPMENT STATS** BUILDING B - DEVELOPMENT STATS NUMBER OF STOREYS 9 NUMBER OF STOREYS 9

TOTAL UNITS TOTAL UNITS FLOOR MAIN 2 FLR 3 FLR 4 FLR 5 FLR **GROSS AREA** FLOOR MAIN 2 FLR 3 FLR 1,922sm 1,423sm 1,977sm 1,331sm 1,331sm 4 FLR 5 FLR 6 FLR 7 FLR 8 FLR 9 FLR 900sm 900sm 6 FLR 742sm 7 FLR 742sm 742sm 677sm 8 FLR 9 FLR TOTAL 677sm 742sm 677sm TOTAL 8,853sm

VEHICULAR PARKING MIN. 0.5 RESIDENTIAL STALLS/ RESIDENCE UNIT - FIRST 12 SPACES/ BUILDING

=115 REQUIRED (254 -(2*12))*0.5 MAX. 40% COMPACT = 76 PROPOSED MAX. 5% MOTORCYCLE = 5 PROPOSED = 85 PROPOSED STANDARD TOTAL RESIDENTIAL STALLS* = 166 PROPOSED*

=25 REQUIRED

*Located in underground parking garage MIN. 0.1 VISITOR STALLS/ RESIDENCE UNIT -FIRST 12 SPACES/LOT (254-12)*0.1

=25 PROPOSED** ** 5 Stall provided at-grade and 20 in underground parking garage TOTAL PARKING PROVIDED = 191 STALLS

=156 SPACES

* Note 5 of the 195 stalls are proposed as barrier free

BICYCLE PARKING

TOTAL

=127 SPACES MIN. 0.5 STALLS/ RESIDENCE UNIT PROPOSED: =138 SPACES UNDERGROUND **EXTERIOR** =18 SPACES

AMENITY SPACE REQUIREMENTS: REQUIRED AMENITY SPACE = 6sm/ RESIDENCE UNIT 254 UNITS x 6sm = 1524sm TOTAL AMENITY REQUIRED MIN. 50% REQUIRED TO BE COMMUNAL = 762sm PROVIDED COMMUNAL AMENITY SPACE = 1830sm PROVIDED PRIVATE AMENITY = 654sm

TOTAL PROVIDED AMENITY SPACE = 2484sm

DEMETRIUS YANNOULOPOULOS 613.447.0504 LANDSCAPE ARCHITECT CSW LANDSCAPE ARCHITECTS LTD. JERRY CORUSH 613.866.1608

FORMED ALLIANCE ARCHITECTURE STUDIO

TRANSPORTATION IBI GROUP BEN PASCOLO-NEVEU 613.225.1311 ext.64074 ENVIRONMENTAL ENGLOBE ANDREW NAOUM 613.294.2280

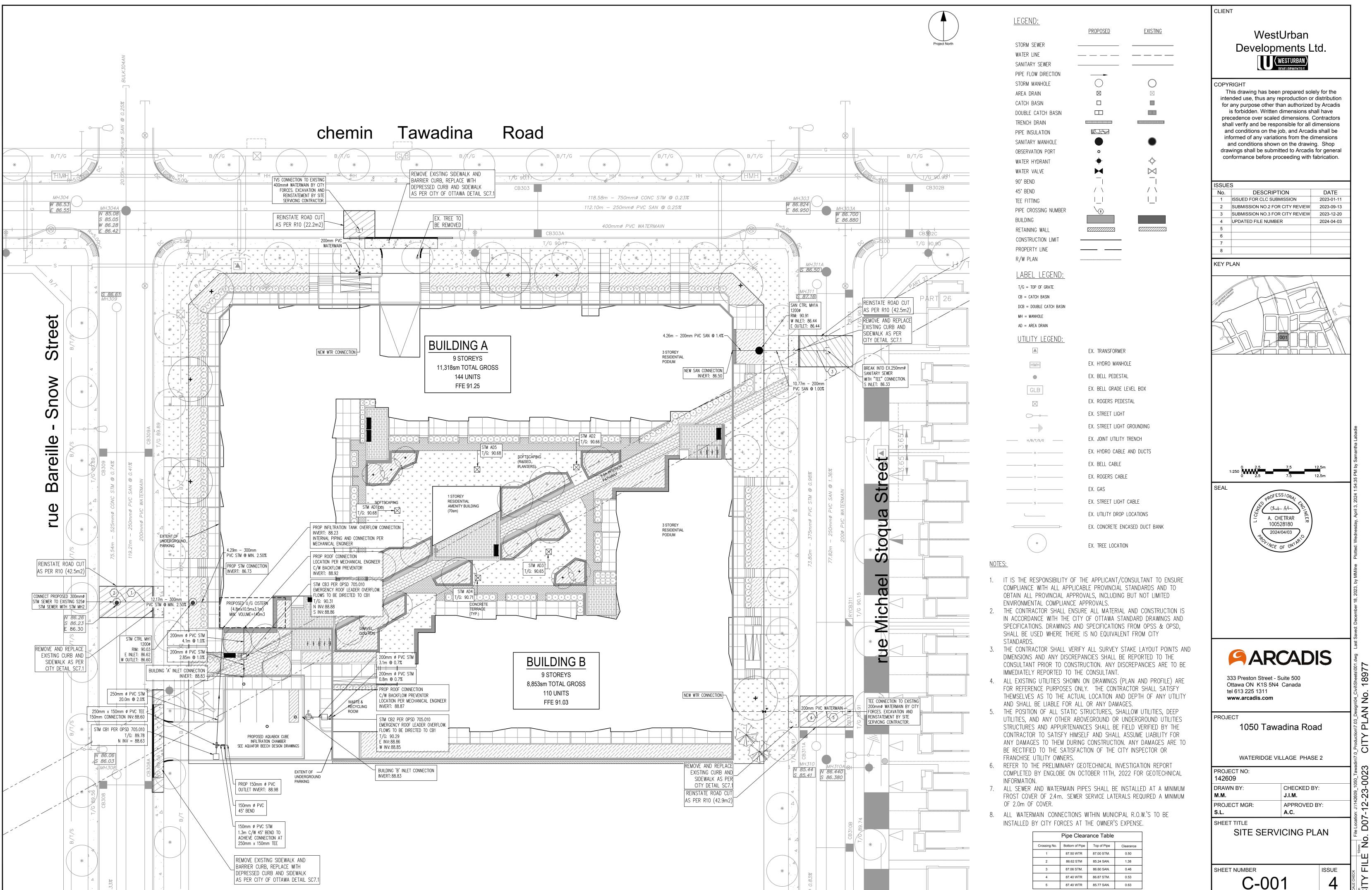
RELEASES

NO. DESCRIPTION DATE 02 ISSUED FOR SPC 01 ISSUED FOR CLC PROJECT NAME 1050 TAWADINA RD

WATERIDGE

1050 TAWADINA RD

PART OF BLOCK 11 REGISTERED PLAN 4M-1651 CITY OF OTTAWA ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 2022


22.01.W.U.

24.01.19 AS NOTED

SITE PLAN

SPC.100

THIS DRAWING AND DESIGN ARE AT ALL TIMES TO REMAIN THE EXCLUSIVE PROPERTY OF THE ARCHITECT AND MAY NOT BE USED OR REPRODUCED WITHOUT PRIOR WRITTEN CONSENT.

Pre-Application Consultation Meeting Notes

1050 Tawadina Road

File Number: D07-01-22-0178 Thursday July 21, 2022, Microsoft Teams

Attendees:

City of Ottawa:

Jean-Charles Renaud, File Lead Joyce Tshiyoyo, Student Planner Reza Bakhit, Project Manager Selma Hassan, Urban Design

Applicant Team:

Cameron Salisbury, WestUrban Developments Ltd. (Owner)
Christine McGuaig, Q9 Planning + Design
James Andalis, FAAS Architect
Dorothy Poon, Design Works Engineering
Courtney Clarke
Matthew Fitzgerald
Robert Pringle

Community Association Representatives:

Jane Thompson Roxanne Field

Regret(s):

Neetie Paudel, Transportation (City)

Subject: 1050 Tawadina Road

Meeting Notes:

Opening & attendee introduction

• Introduction of meeting attendees

Proposal Overview

- Maintain a strong at grade development for the public
- Giving access to the public courtyard
- Balconies added to provide privacy and a sense of connection to the courtyard space
- This is intended to be a rental development
- Working with the team to design this

Questions:

- JC: Is there any particular reason why this development is strictly residential?
 - Cameron: We did consider but looking at the area, which is already mixed-use, we decided to stick to residential
 - o Christine: Yes, and the CDP allows for residential only, so this is no problem
- JC: What is the front yard setback?
 - o Christine: We will add address component if needed
 - JC: This would be a corner lot rear yard setback

Preliminary Comments from Related Discipline:

Planning (JC)

- Southern property line
 - Build too close to the southern property line at just 0 metres. If that is to remain, that could be problematic with adjacency to the proposal of the other lot on the southern side.
 - You have units facing south and how they would interact with each other which might be problematic interaction.
- GM31 zone includes floorplate max for buildings over seven storeys
- Two building above four storeys need to be at least 23 metres apart (including to buildings on other properties. Will need to accommodate for half that distance on your property)
- Surface parking spaces are in a prominent location. Why is so much surface parking needed
 when parking minimum is exceeded by 60 spaces? Area could be better used as soft
 landscaping.
 - Response (Christine): We would like to make it easier and still have some spaces
 - JC: it would still be good to maybe decrease some spaces. Maybe add only surface parking spaces for accessibility and drop off but move the rest underground
- Trees: Must allow sufficient soil volumes, particularly those on top of the parking structure at least a metre of soil depth
- A surface access easement would be required for the pedestrian connection.
- Please consider designing the site to allow a shared entrance with the future development to the south.
- When a site plan is filed, the applicant should show that their plan aligns with the CLC approved subdivision plan for street treatment. Please show this information on the site/landscape plans greyed out. Ensure adequate space for street trees.

Urban Design (Selma)

UDRP, Design Brief and CDP Design Guidelines

- The site is a mixed use block in the Core Area and is required to go before the City's Urban Design Review Panel. The following link should take the applicant to the information page on the UDRP <u>Urban Design Review Panel | City of Ottawa</u>. If they have any questions, they can contact the UDRP co-ordinator Sole Carvajal <u>sole.carvajal@ottawa.ca</u>
- A Design Brief is required with the application submission. The Terms of Reference for the Design Brief is attached. All items highlighted in yellow must be clearly addressed in written and / or graphic format as appropriate.

- The CDP includes a number of guidelines that are relevant to this site. There are at least four around the theme of maximum length of straight, continuous, building frontages (40m) and variations in setbacks to break up long facades. As presented, at eye level a pedestrian would be looking at very long, straight, solid brick facades. This does not meet the direction of the guidelines or contribute to animation of the street. The applicant is asked to reconsider this edge treatment.
- The CDP includes a guideline stating "Although the maximum building height in mid-rise mixeduse sections of the Core (blocks 31-33, 35-37) is 30 metres, at least half of the total land area of each of these blocks will have a maximum building height of 20 metres". As presented, the proposal meets this guideline.

Zoning

- Please provide drawings that dimension:
 - The setbacks from all property lines
 - The 23m separation distance after the 4th floor
 - The width of landscaped area / landscape buffers as noted in zoning
 - The depths of all projections into the ROW
- Please show and label the footprint of the underground parking garage
- For buildings over 20 storeys in height, zoning requires the maximum building area of each floor plate over 20 metres to be 750 square metres of gross floor area. On building A, the gross floor area of the 8th and 9th floor appear to be 1212.6m² and 839.6m², respectively. The applicant is asked to re-examine their building design to address this zoning requirement.

Landscape

 I will reserve the landscape comments until a landscape plan is provided. However, street tree planting is important, as is general planting on site. The landscape drawings need to show and detail that trees planted above the parking garage will have the soil volumes and growing conditions necessary to achieve optimal growth.

Built Form

- It is suggested that the applicant simplify the overall architectural expression, in particular on the upper floors.
- As noted in point #3, the proposal presents a solid wall to the street on all facades, at eye level. This is not an acceptable interface to the public realm. The building needs to be closer to grade to reduce the expanse of this wall. The patio guard railing should be transparent or translucent and not a solid brick material.
- If the southern property line is considered in interior side yard, then the required setback is 3m. Given the 7 storey building height and the potential for the abutting site to build to 30m in height also with a 3m setback, then the 3m setback is not adequate despite what is permitted by the zoning. An optimal configuration for both sites would be a U-shaped development, so that the two sites together create a perimeter block development. It is suggested that the applicant remove the 'southern wing' of the building as shown.

Transportation (Neetie)

- Reduced scope of TIA is accepted. Design review component should be included (already discussed with the transportation consultant). Additionally, Module 4.5- Transportation Demand Management should also be included.
- Post-Development Monitoring Plan (monitoring cut-through, transit shares and network constraints) was prepared as part of the TIA for Wateridge Phase 2A/2. The study shall commence one year after 80% occupancy of each phase of subdivision.
- Turning templates will be required for all accesses showing the largest vehicle to access the
 site(loading trucks, garbage etc.); required for internal movements and at all access (entering
 and exiting and going in both directions). Ensure they are no conflicts with the loading zone and
 surface parking.
- Internal walkways should be a minimum of 1.5m.
- Ensure the access is 3m away from the property line (measured at the highway line and at the curb line or edge of the roadway).
- Site triangles at the following locations on the final plan will be required:
 - Local Road to Local Road: 3 metre x 3 metres
- As the site proposed is residential, AODA legislation applies for all areas accessible to the public (i.e. **outdoor pathways**, parking, etc.).
 - Please consider using the City's Accessibility Design Standards, which provide a summary of AODA requirements. https://ottawa.ca/en/city-hall/creating-equal-inclusive-and-diverse-city/accessibility-services/accessibility-design-standards

Civil Engineer (Reza)

General:

- It is the sole responsibility of the consultant to investigate the location of existing underground utilities in the proposed servicing area and submit a request for locates to avoid conflict(s). The location of existing utilities and services shall be documented on an **Existing Conditions Plan**.
- Reference documents for information purposes:
 - Ottawa Sewer Design Guidelines (October 2012)
 - o Technical Bulletin PIEDTB-2016-01

- Technical Bulletins ISTB-2018-01, ISTB-2018-02 and ISTB-2018-03.
- Ottawa Design Guidelines Water Distribution (2010)
- Technical Bulletin ISTB-2021-03
- Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
- City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
- o City of Ottawa Environmental Noise Control Guidelines (January 2016)
- City of Ottawa Accessibility Design Standards (2012) (City recommends development be in accordance with these standards on private property)
- Ottawa Standard Tender Documents (latest version)
- Ontario Provincial Standards for Roads & Public Works (2013)
- Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at InformationCentre@ottawa.ca or by phone at (613) 580-424 x.44455).

Stormwater Management Criteria and Information:

- The subject site located in the new Water ridge development. Therefore, the designer need to follow the requirements of the master plan and control to the storm sewer level of serving using the design runoff coefficient for the site.
- The designer should make sure that the entrance to the parking garage is higher than the major system overflow. This should be discussed in the SWM report and reflect on the site grading plan.
- Underground Storage: Please note that the Modified Rational Method for storage computation in the Sewer Design Guidelines was originally intended to be used for above ground storage (i.e. parking lot) where the change in head over the orifice varied from 1.5 m to 1.2 m (assuming a 1.2 m deep CB and a max ponding depth of 0.3 m). This change in head was small and hence the release rate fluctuated little, therefore there was no need to use an average release rate.

When underground storage is used, the release rate fluctuates from a maximum peak flow based on maximum head down to a release rate of zero. This difference is large and has a significant impact on storage requirements. We therefore require that an average release rate equal to 50% of the peak allowable rate shall be applied to estimate the required volume. Alternatively, the consultant may choose to use a submersible pump in the design to ensure a constant release rate.

In the event that there is a disagreement from the designer regarding the required storage, The City will require that the designer demonstrate their rationale utilizing dynamic modelling, that will then be reviewed by City modellers in the Water Resources Group.

Please provide information on UG storage pipe. Provide required cover over pipe and details, chart of storage values, capacity etc. How will this pipe be cleaned of sediment and debris? Provide information on type of underground storage system including product name and model, number of chambers, chamber configuration, confirm invert of chamber system, top of chamber system, required cover over system and details, interior bottom slope (for self-cleansing), chart of storage values, length, width and height, capacity, entry ports (maintenance) etc.

Provide a cross section of underground chamber system showing invert and obvert/top, major and minor HWLs, top of ground, system volume provided during major and minor events. UG storage to provide actual 2- and 100-year event storage requirements.

In regard to all proposed UG storage, ground water levels (and in particular HGW levels) will need to be reviewed to ensure that the proposed system does not become surcharged and thereby ineffective.

Modeling can be provided to ensure capacity for both storm and sanitary sewers for the proposed development by City's Water Distribution Dept. - Modeling Group, through PM and upon request.

 Please note that the minimum orifice dia. for a plug style ICD is 83mm and the minimum flow rate from a vortex ICD is 6 L/s in order to reduce the likelihood of plugging.

Storm Sewer:

- A 525mm dia. CONC storm sewer (2020) is available within Bareille Snow street.
- A 750mm dia CONC storm sewer (2020) is available within Tawadina road
- A 375mm dia CONC storm sewer (2020) is available within Michael Stoqua Street.
- A 1200mm dia. CONC Storm sewer (2018) is available within Hemlock road.

Sanitary Sewer:

- A 250mm dia. PVC SAN sewer (2020) is available within Bareille Snow street.
- A 250mm dia PVC SAN sewer (2020) is available within Tawadina road
- A 250mm dia PVC SAN sewer (2020) is available within Michael Stoqua Street.
- A 250mm dia. PVC SAN sewer (2018) is available within Hemlock road

Note: A 2400mm dia CONC SAN trunk sewer (1964) runs through the subject property. The City AMB will be circulated on all the submissions for their comments. A protection plans may be required to be submitted for the review. Please make sure to include building footprint plan in the submission and confirm all the proposed structures are outside the easement. The proposal should be satisfactory to the AMB and the maintenance team as well as the development review.

- Please provide the new Sanitary sewer discharge and we confirm if sanitary sewer main has the capacity. An analysis and demonstration that there is sufficient/adequate residual capacity to accommodate any increase in wastewater flows in the receiving and downstream wastewater system is required to be provided. Needs to be demonstrated that there is adequate capacity to support any increase in wastewater flow.
- Please apply the wastewater design flow parameters in Technical Bulletin PIEDTB-2018-01.
- Sanitary sewer monitoring maintenance hole is required to be installed at the property line (on the private side of the property) as per City of Ottawa Sewer-Use By-Law 2003-514 (14) Monitoring Devices.
- A backwater valve is required on the sanitary service for protection.

- A 203mm dia. PVC watermain (2021) is available within Bareille Snow street.
- A 406mm dia PVC watermain (2021) is available within Tawadina road
- A 203mm dia PVC watermain (2021) is available within Michael Stoqua Street.
- A 305mm dia. PVC watermain (2018) is available within Hemlock road
- Existing residential service to be blanked at the main.
- Water Supply Redundancy: Residential buildings with a basic day demand greater than 50m³/day (0.57 L/s) are required to be connected to a minimum of two water services separated by an isolation valve to avoid a vulnerable service area as per the Ottawa Design Guidelines Water Distribution, WDG001, July 2010 Clause 4.3.1 Configuration.
- Please **review Technical Bulletin ISTB-2018-0**, maximum fire flow hydrant capacity is provided in Section 3 Table 1 of Appendix I. A **hydrant coverage figure** shall be provided and **demonstrate there is adequate fire protection for the proposal**. Two or more public hydrants are anticipated to be required to handle fire flow.
- Boundary conditions are required to confirm that the require fire flows can be achieved as well as availability of the domestic water pressure on the City street in front of the development. Use Table 3-3 of the MOE Design Guidelines for Drinking-Water System to determine Maximum Day and Maximum Hour peaking factors for 0 to 500 persons and use Table 4.2 of the Ottawa Design Guidelines, Water Distribution for 501 to 3,000 persons. Please provide the following information to the City of Ottawa via email to request water distribution network boundary conditions for the subject site. Please note that once this information has been provided to the City of Ottawa it takes approximately 5-10 business days to receive boundary conditions.
 - Type of Development and Units
 - Site Address
 - A plan showing the proposed water service connection location.
 - Average Daily Demand (L/s)
 - Maximum Daily Demand (L/s)
 - Peak Hour Demand (L/s)
 - Fire Flow (L/min)

[Fire flow demand requirements shall be based on **Fire Underwriters Survey (FUS)** Water Supply for Public Fire Protection 1999]

[Fire flow demand requirements shall be based on ISTB-2021-03]

Note: The OBC method can be used if the fire demand for the private property is less than 9,000 L/min. If the OBC fire demand reaches 9000 L/min, then the FUS method is to be used. Exposure separation distances shall be defined on a figure to support the FUS calculation and required fore flow (RFF).

Hydrant capacity shall be assessed to demonstrate the RFF can be achieved.
 Please identify which hydrants are being considered to meet the RFF on a fire hydrant coverage plan as part of the boundary conditions request.

Snow Storage:

 Any portion of the subject property which is intended to be used for permanent or temporary snow storage shall be as shown on the approved site plan and grading plan. Snow storage shall not interfere with approved grading and drainage patters or servicing. Snow storage areas shall be setback from the property lines, foundations, fencing or landscaping a minimum of 1.5m. Snow storage areas shall not occupy driveways, aisles, required parking spaces or any portion of a road allowance. If snow is to be removed from the site please indicate this on the plan(s).

Gas pressure regulating station:

A gas pressure regulating station may be required depending on HVAC needs (typically for 12+ units). Be sure to include this on the Grading, Site Servicing, SWM and Landscape plans. This is to ensure that there are no barriers for overland flow routes (SWM) or conflicts with any proposed grading or landscape features with installed structures and has nothing to do with supply and demand of any product.

Regarding Quantity Estimates:

Please note that external Garbage and/or bicycle storage structures are to be added to QE under Landscaping as it is subject to securities. In addition, sump pumps for Sanitary and Storm laterals and/or cisterns are to be added to QE under Hard items as it is subject to securities, even though it is internal and is spoken to under SWM and Site Servicing Report and Plan.

CCTV sewer inspection

CCTV sewer inspection required for pre and post construction conditions to ensure no damage to City Assets surrounding site.

site. Conditions for Pre-Construction/ Pre-Blast Survey & Use of Explosives will be applied to agreements. Refer to City's Standard S.P. No. F-1201 entitled Use of Explosives, as amended.

Required Engineering Plans and Studies:

PLANS:

- Existing Conditions and Removals Plan
- Site Servicing Plan
- Grade Control and Drainage Plan
- Erosion and Sediment Control Plan
- Roof Drainage Plan (If roof utilized for the SWM)
- Topographical survey

REPORTS:

- Site Servicing and Stormwater Management Report
- Geotechnical Study/Investigation
- Slope Stability Assessment Reports (if required, please see requirements below)
- Noise Control Study
- Phase I ESA 4)
- Phase II ESA (Depending on recommendations of Phase I ESA)

- Wind analysis
- Shadow Study

Please refer to the City of Ottawa Guide to Preparing Studies and Plans [Engineering]:

Specific information has been incorporated into both the <u>Guide to Preparing Studies and Plans</u> for a site plan. The guide outlines the requirement for a statement to be provided on the plan about where the property boundaries have been derived from.

Added to the general information for servicing and grading plans is a note that an **O.L.S.** should be engaged when reporting on or relating information to property boundaries or existing conditions. The importance of engaging an **O.L.S.** for development projects is emphasized.

Phase One Environmental Site Assessment:

- A Phase I ESA is required to be completed in accordance with Ontario Regulation 153/04 in support of this development proposal to determine the potential for site contamination.
 Depending on the Phase I recommendations a Phase II ESA may be required.
- The Phase I ESA shall provide all the required Environmental Source Information as required by O. Reg. 153/04. ERIS records are available to public at a reasonable cost and need to be included in the ESA report to comply with O.Reg. 153/04 and the Official Plan. The City will not be in a position to approve the Phase I ESA without the inclusion of the ERIS reports.
- Official Plan Section 4.8.4:
- https://ottawa.ca/en/city-hall/planning-and-development/official-plan-and-master-plans/official-plan/volume-1-official-plan/section-4-review-development-applications#4-8-protection-health-and-safety

Geotechnical Investigation:

- A Geotechnical Study/Investigation shall be prepared in support of this development proposal.
- Reducing the groundwater level in this area can lead to potential damages to surrounding structures due to excessive differential settlements of the ground. The impact of groundwater lowering on adjacent properties needs to be discussed and investigated to ensure there will be no short term and long term damages associated with lowering the groundwater in this area.
- Geotechnical Study shall be consistent with the Geotechnical Investigation and Reporting Guidelines for Development Applications.

https://documents.ottawa.ca/sites/documents/files/geotech_report_en.pdf

Slope Stability Assessment Reports

- A report addressing the stability of slopes, prepared by a qualified geotechnical engineer licensed in the Province of Ontario, should be provided wherever a site has slopes (existing or proposed) steeper than 5 horizontal to 1 vertical (i.e., 11 degree inclination from horizontal) and/or more than 2 metres in height.
- A report is also required for sites having retaining walls greater than 1 metre high, that addresses the global stability of the proposed retaining walls.
- https://documents.ottawa.ca/en/document/slope-stability-guidelines-development-applications

Noise Study:

- A Transportation Noise Assessment is required as the subject development is located within 100m proximity of an Arterial Road
- A Stationary Noise Assessment is required in order to assess the noise impact of the proposed sources of stationary noise (mechanical HVAC system/equipment) of the development onto the surrounding residential area to ensure the noise levels do not exceed allowable limits specified in the City Environmental Noise Control Guidelines.

https://documents.ottawa.ca/sites/default/files/documents/enviro noise guide en.pdf

Wind analysis:

When greater than 8-storey in height Wind Study for all buildings/dwellings.

- A wind analysis must be prepared, signed and stamped by an engineer who specializes in pedestrian level wind evaluation. Where a wind analysis is prepared by a company which do not have extensive experience in pedestrian level wind evaluation, an independent peer review may be required at the expense of the proponent.
- Terms of Reference: Wind Analysis (ottawa.ca)

Shadow Study

When greater than 8-storey in height, a Shadow Study required for all buildings/dwellings.

Exterior Site Lighting:

• Any proposed light fixtures (both pole-mounted and wall mounted) must be part of the approved Site Plan. All external light fixtures must meet the criteria for Full Cut-off Classification as recognized by the Illuminating Engineering Society of North America (IESNA or IES), and must result in minimal light spillage onto adjacent properties (as a guideline, 0.5 fc is normally the maximum allowable spillage). In order to satisfy these criteria, the please provide the City with a Certification (Statement) Letter from an acceptable professional engineer stating that the design is compliant.

Fourth (4th) Review Charge:

Please be advised that additional charges for each review, after the 3rd review, will be applicable to each file. There will be no exceptions.

Construction approach – Please contact the Right-of-Ways Permit Office TMconstruction@ottawa.ca early in the Site Plan process to determine the ability to construct site and copy File Lead on this request.

Please note that these comments are considered preliminary based on the information available to date and therefore maybe amended as additional details become available and presented to the City. It is the responsibility of the applicant to verify the above information. The applicant may contact me for follow-up questions related to engineering/infrastructure prior to submission of an application if necessary.

If you have any questions or require any clarification, please let me know.

Community Association Comments:

Roxanne

It was good having a comprehensive package

Jane Thompson

- We like the general approach to the development especially the underground and a storage is
 - o It fits the goals of the centre of the community
- The biggest issue: has to do with transportation and transit
 - Very far from transit stops and not on the main bus line
 - o it is a very car-centric community and there needs to be more transit
 - Even though there is parking offered, there is still more demand on parking than the surplus or what is provided
 - Advocating more transport Afraid to be limited in space with the development coming in
 - They feel isolated from other modes of transport so parking needs to be more sufficient
 - Would not be comfortable with less than the minimum requirement for visitor parking
 - o Happy to see the bicycle parking as there are bicycle lanes near the area
 - TIA screening needed to see how many units is being provided
- Multi-use
 - The community is encouraging commercial uses to accommodate mores services and it would please the residents
 - Something like adding little shops and offices
 - More transparency and connection to the streets especially from the corridors
- Parking entry adjacent to the neighboring site
 - Discussing how they would get along and if both sides are comfortable with that
- Because of rental and high density need to consider the effects of the drop off
 - May cause issues for the winter
 - Also adding space for garbage and space for collection
 - o It's a dense development but be careful as more people means more cars
 - Need for more amenity space
- Colours
 - Predominance of dull colours in the neighborhood but some liveliness and fun colours added would be great for the area

Next Steps:

- Follow up email that will include meeting notes and the plans and studies list required for SPC submission
- Book some time to approach community association to discuss proposal, as well as with the ward Councillor

Memorandum

To/Attention John Bernier, City of Ottawa **Date** April 26, 2022

Shawn Wessel, City of Ottawa

From Meghan Black Project No 118863-5.3.1.5

Jim Moffatt

cc Mary Jarvis, Canada Lands

Company

Subject Assessment of Revised Block 11 and 12 Storm and Sanitary

Servicing

1. Background

Blocks 11 and 12 are located within Phase 2B of the Wateridge development and are indicated in **Figure 1**. The municipal servicing of the two blocks was addressed in, "Design Brief, Wateridge Village at Rockcliffe Phase 2B," prepared by IBI Group in April 2019. Subsequent to the approval of the Phase 2B detailed design, Canada Lands Company has sub-divided the subject blocks into five parcels for development. The parcels, identified as Parcels 1-5, are being considered for purchase by various parties. IBI has been engaged to assess the impact of this change on adjacent existing storm and sanitary sewers. Enclosed **Figure 1** depicts Blocks 11 and 12 and the respective five parcels.

2. Stormwater Management

2.1 Objective

The objective of the evaluation is to assess the impact on the dual drainage system of discretizing Blocks 11 and 12 into Parcels 1-5 and the associated impacts to the storm servicing. The detailed design of Parcels 1-5 will be carried out by others.

2.2 Dual Drainage Design

Per the Phase 2B design brief, minor storm runoff from Block 11 (identified as drainage area B309) drains to Bareille-Snow Street, with major flow tipping to Bareille-Snow Street at Hemlock Road. Minor flow from Block 12 (identified as drainage area B340) drains to Codd's Road with major flow draining to Hemlock Road. The minor system restriction for the two development blocks corresponds to between the 5 and 100 year storm event, and no on-site storage was proposed. The storm drainage area plan (Drawing 750) from the Phase 2B submission is enclosed in **Appendix A** for reference. With the proposed adjustments to the storm servicing for the subdivided or discretized parcels, minor system capture and on-site storage has been re-assessed.

2.3 Hydrological Analysis

Hydrological analysis of the dual drainage system of the subject site has been conducted using DDSWMM, consistent with the simulations completed for the Phase 2B design brief.

2.3.1 Storm and Design Parameters

The following storms and design parameters have been used in the evaluation. The main hydrological parameters are summarized in **Table 2.1**, with a comparison of what was included in the Phase 2B evaluation.

- **Design Storms:** The subject site has been evaluated with the following storms, consistent with the Phase 2B evaluation:
 - 5 and 100 year 3 hour Chicago storm events, and associated stress test; applied for the evaluation of the trunk storm sewers;
 - 100 year 24 hour SCS Type II storm event, applied for the evaluation of the trunk storm sewers:
 - July 1979, August 1988, August 1996 historical storms per the OSDG.
- Area and Imperviousness: Block 11 (identified as drainage area B309) and Block 12 (identified as drainage area B340) have been discretized into Parcels 1 through 5. An imperviousness value of 86% has been applied to the parcels, consistent with the values applied for B309 and B340 in the Phase 2B design brief.
- **Infiltration:** Infiltration losses were selected to be consistent with the OSDG. The Horton values are as follows: $f_0 = 76.2 \text{ mm/h}$, $f_c = 13.2 \text{ mm/h}$, $k = 0.00115 \text{ s}^{-1}$.
- Subcatchment Width: The catchment width for the parcels was based on 225 m/ha.
- **Slope:** The ground slope was based upon the average slope for both impervious and pervious area. Generally, the slope is approximately 2% (0.02 m/m). This assumes a slope of approximately 1% for impervious or road surfaces and 3% for pervious surfaces (lot grading).
- Initial Abstraction (Detention Storage): Detention storage depths of 1.5 mm and 4.67 mm were used for impervious and pervious areas, respectively. These values are consistent with the OSDG.
- **Manning's roughness:** Manning's roughness coefficients of 0.013 and 0.25 were used for impervious and pervious areas, respectively.
- Baseflow: No baseflow components were assumed for any of the areas contributing runoff to the minor system within the DDSWMM model.
- **Minor System Capture:** The minor system capture for the parcels ranges from the 5 year to the 100 year, with three parcels capturing between the 5 and 100 year simulated flow.
- Major System Storage and Routing: In order to continue to satisfy City design guidelines, on-site storage has been introduced on four of the parcels, as noted below.

A summary of parameters and minor system and on-site storage is presented in the following tables. A summary from the Phase 2B detailed design is included to facilitate review. Refer to

Figure 2 for the overall storm sewer network and to **Figure 3** for a depiction of the minor and major system connectivity for the five parcels.

Table 2.1 Hydrological Parameters

			Phas	se 2B Desig	n Brief						Currer	nt Evaluation			
Block	Drainage Area ID	Area (ha)	Major System: D/S Segment ID	Minor System: MH ID	IMP Ratio	Segment Length (m)	Sub- catchment Width (m)	Parcel	Drainage Area ID	Area (ha)	Major System: D/S Segment ID	Minor System: MH ID	IMP Ratio	Segment Length (m)	Sub- catchment Width (m)
11	B309	1.24	S308A on	MH309 on	0.86	135.1	270.2	1	B309_1	0.72	S308 on Bareille- Snow	MH309 on Bareille- Snow	0.86	81	162
11	B309	1.24	Bareille- Snow	Bareille- Snow	0.80	133.1	210.2	2	B309_2	0.52	S308A on Bareille- Snow	MH310 on Michael Stoqua	0.86	58.5	117
				MUZOE				3	B340_3	0.34	S308A on Bareille- Snow	MH308 on Bareille- Snow	0.86	38.25	76.5
12 B3	B340	1.24	S207 on Hemlock	MH305 on Codd's Road	0.86	173.1	346.3	4	B340_4	0.53	S308 on Bareille- Snow	MH309 on Bareille- Snow	0.86	59.63	119.25
				Noau				5	B340_5	0.37	S340 on Codd's	MH305 on Codd's Road	0.86	41.63	83.25

Table 2.2 Minor System Restriction and On-site Storage

		Phase 2	2B Design Brief					Current Evaluation		
		Minor Sy	ystem Capture	Required On-			Minor	System Capture	Major	System
Block	Drainage Area ID	Simulated Flow (I/s)	Corresponding Design Storm	Site Storage (cu-m)	Parcel	Drainage Area ID	Simulated Flow (I/s)	Corresponding Design Storm	Required On- Site Storage (cu-m)	Comment
11	B309	370	Between 5 and	None	1	B309_1	195	Between 5 and 100 year	43	Control up to the 100 year event
	B309	370	100	None	2	B309_2	105	5 year	64	Control up to the 100 year event
					3	B340_3	95	Between 5 and 100 year	18	Control up to the 100 year event
12	B340	366	Between 5 and 100	None	4	B340_4	150	Between 5 and 100 year	21	Control up to the 100 year event
					5	B340_5	139	100 year	None	N/A

2.4 Results of Hydrological Modeling

2.4.1 Minor System

The minor system hydrographs generated by the hydrological model were exported to the hydraulic model for analysis, discussed in **Section 2.5**.

2.4.2 Major System

Due to the adjustment in major system connectivity, the major system has been reassessed. Refer to drainage areas on Drawing 750 from the Phase 2B submission in **Appendix A**.

2.4.2.1 Street Segment Storage

The available and utilized street sag storage is summarized in the below table for street segments in affected by the revised storm servicing of Parcels 1-5.

Table 2.3 Summary of On-site Street Storage (Available and Utilized) During Target Minor System Design Storm in Vicinity of Parcels 1-5

Street	Drainage Area ID	Minor System Design Storm	Available Static Storage (cu-m)	Total Storage Utilized During Minor System Design Storm (cu-m)	Overflow During Minor System Design Storm (I/s)
Michael Stocqua	S310A	5	61.39	0	0
Bareille-Snow	S308A	5	40.38	0	0
Hemlock	S176C	5	1.14	0	0

The results indicate that there is no ponding on the street segments during the minor system design storm.

2.4.2.2 Velocity x Depth

According to the City of Ottawa Sewer Design Guidelines (October 2012), the maximum depth of flow should not exceed 350 mm and the product of velocity and depth on all the street segments should not exceed $0.6~\text{m}^2/\text{s}$ during the 100 year storm event.

The cascading overflow is the flow exiting a drainage area when maximum minor system inflow and maximum available ponding has been utilized. To determine velocity of the cascading overflow, a SWMHYMO file was created (118863VD.dat).

To determine velocity of the cascading overflow at critical locations, SWMHYMO was used. The ROW sections were entered into the model with the appropriate longitudinal slopes to obtain the maximum velocity of flow using the Route Channel routine. The overflow is obtained from the respective DDSWMM output file and is noted in the footnotes of the below tables.

To determine depth of the cascading overflow, the *Calculation Sheet: Overflow From Typical Road Ponding Area* provided at the February 2014 Technical Bulletin ISDTB-2014-01 was used. The

exception to this is where the road is on grade in which case the depths were obtained from the SWMHYMO model.

The results are presented in Table 2.4 and Table 2.5 and the supporting calculations are included in **Appendix A**.

Table 2.4 Summary of Cascading Flow during the 100 year 3 hour Chicago storm

Street	Drainage Area ID	Dummy Segment ID	Overflow (I/s) ¹	Velocity (m/s)²	Max. Static Ponding Depth (m)	Depth of Dynamic Flow (m) ³	Max. Depth (Static + Dynamic) (m)	Velocity x Depth (m²/s)
Michael Stoqua	S311A	N/A	49	0.73	N/A	0.04	0.04	0.03
Michael Stoqua	S310A	D14	0	0	0.29	0	0.29	0
Bareille-Snow	S309	N/A	43	0.50	N/A	0.05	0.05	0.03
Bareille-Snow	S308	N/A	65	0.84	N/A	0.05	0.05	0.04
Bareille-Snow	S308A	D18	26	0.47	0.26	0.05	0.31	0.03
Codd's	S340	N/A	50	0.88	N/A	0.04	0.04	0.04
Codd's	S231	N/A	100	0.62	N/A	0.07	0.07	0.04
Hemlock	S205C	N/A	37	0.48	N/A	0.05	0.05	0.02
Hemlock	S207	N/A	61	0.55	N/A	0.06	0.06	0.03

⁽¹⁾ Overflow from DDSWMM output 118863-3CHI100.out (2) Velocity from SWMHYMO output 118863VD.out

Table 2.5 Summary of Cascading Flow during the 100 year 3 hour Chicago storm + 20%

Street	Drainage Area ID	Dummy Segment ID	Overflow (I/s) ¹	Velocity (m/s)²	Max. Static Ponding Depth (m)	Depth of Dynamic Flow (m) ³	Max. Depth (Static + Dynamic) (m)	Velocity x Depth (m²/s)
Michael Stoqua	S311A	N/A	66	0.79	N/A	0.05	0.05	0.04
Michael Stoqua	S310A	D14	33	0.61	0.29	0.06	0.35	0.04
Bareille-Snow	S309	N/A	71	0.57	N/A	0.06	0.06	0.03
Bareille-Snow	S308	N/A	216	1.15	N/A	0.08	0.08	0.09
Bareille-Snow	S308A	D18	268	1.29	0.26	0.13	0.39	0.17
Codd's	S340	N/A	98	1.04	N/A	0.05	0.05	0.06
Codd's	S231	N/A	165	0.71	N/A	0.08	0.08	0.06
Hemlock	S205C	N/A	46	0.51	N/A	0.05	0.05	0.03

⁽³⁾ Depth of the cascading overflow was determined from the Calculation Sheet: Overflow From Typical Road Ponding Area provided in the February 2014 Technical Bulletin ISDTB-2014-01. For those areas which have a continuous road grade (or no dummy segment), the depth was taken from SWMHYMO VxD simulation.

Street	Drainage Area ID	Dummy Segment ID	Overflow (I/s) ¹	Velocity (m/s) ²	Max. Static Ponding Depth (m)	Depth of Dynamic Flow (m) ³	Max. Depth (Static + Dynamic) (m)	Velocity x Depth (m²/s)
Hemlock	S207	N/A	89	0.60	N/A	0.07	0.07	0.04

⁽¹⁾ Overflow from DDSWMM output 118863-3CHI120.out

During the 100 year 3 hour Chicago storm, the summation of depth of ponding and depth of cascading flow for all street segments is less than the City guideline of 0.35 m. The product of depth and velocity is also less than the City guideline of 0.6 m²/s.

During the sensitivity analysis applying the 100 year 3 hour Chicago storm increased by 20%, the summation of depth of ponding and depth of cascading flow for all street segments is less than the City guideline of 0.35 m, with the exception of S308A, noted in the above table in bold red type. At all locations, the product of depth and velocity is less than the City guideline of 0.6 m²/s.

These results are consistent with those of the Phase 2B detailed design. It should be noted that major flow from the above-noted affected areas is at or below that accounted for in the Phase 2B model.

The area at which total depth of ponding and cascading flow exceeds 0.35 m during the stress test is noted in the below table with the critical adjacent property elevation.

Table 2.6 Critical Ponding Locations during the Stress Test and Adjacent Property Elevations

Drainage Area ID	Low Point Elevation (m)	Max. Depth (Static + Dynamic) (m)	(1) Corresponding Elevation (m)	(2) Adjacent Property Line (m)	Difference (2) – (1)
S308A	88.74	0.39	89.13	89.01	-0.12

The corresponding stress test ponding elevation is greater than the adjacent block grading at the boulevard. At the detailed design stage of the blocks, house openings must be greater than the ponding elevation.

2.5 Storm Hydraulic Grade Line Analysis

The hydraulic grade line (HGL) was evaluated using the XPSWMM hydraulic model. The existing overall model for the Wateridge site, most recently revised as part of the Phase 4 submission (December 2021), was revised to include the revised servicing of Parcels 1-5.

XPSWMM simulations were conducted for the 100 year 3 hour Chicago storm to ensure that the HGL is at least 0.3 m below the underside of footing elevations. A sensitivity analysis was also performed using the 100 year Chicago storm with a 20% increase in intensity to ensure that there is no severe flooding to properties. Hydraulic grade line elevations along the existing downstream Phase 1A trunk storm sewer and relevant Phase 2B storm sewers are presented in the below table for these storms, along with a comparison of underside of footing (USF) elevations. Results

⁽²⁾ Velocity from SWMHYMO output 118863VD.out

⁽³⁾ Depth of the cascading overflow was determined from the Calculation Sheet: Overflow From Typical Road Ponding Area provided in the February 2014 Technical Bulletin ISDTB-2014-01. For those areas which have a continuous road grade (or no dummy segment), the depth was taken from SWMHYMO VxD simulation.

for the overall development area are presented in the enclosed **Appendix A**, including for the three historical storms per OSDG. Refer to **Figure 1** for the location of storm maintenance holes.

Table 2.7 Storm Hydraulic Grade Line - Phase 1A Trunk and Relevant Phase 2B Storm Sewers

MH ID	Street	Proposed Ground	USF (m)	100 year 3 h	nour Chicago	_	nour Chicago 20%
WIH ID	Street	Elev. (m)	USF (III)	HGL (m)	USF – HGL (m)	HGL (m)	USF – HGL (m)
MH194	Top of the escarpment	82.05	N/A	80.47	N/A	80.55	N/A
MH193	OSHEDINAA	84.68	82.68	81.12	1.56	81.28	1.40
MH192	OSHEDINAA	84.99	82.99	81.46	1.53	81.64	1.35
MH191	OSHEDINAA	85.76	83.76	81.72	2.04	81.93	1.83
MH190	OSHEDINAA	86.36	84.36	81.96	2.40	82.19	2.17
MH180	OSHEDINAA	86.96	84.96	82.27	2.69	82.77	2.19
MH178	HEMLOCK	89.00	86.60	83.41	3.19	83.47	3.13
MH176	HEMLOCK	88.03	85.63	83.77	1.86	83.85	1.78
MH231	CODD'S	89.81	87.41	85.61	1.79	85.64	1.77
MH305	CODD'S	91.00	88.60	86.54	2.06	86.56	2.04
MH207	HEMLOCK	88.53	86.13	84.65	1.48	84.65	1.48
MH206	HEMLOCK	89.10	86.70	85.65	1.05	85.65	1.05
MH308	BAREILLE- SNOW	89.68	87.28	86.88	0.40	86.69	0.59
MH309	BAREILLE- SNOW	90.15	87.75	87.44	0.31	87.08	0.67
MH205	HEMLOCK	89.35	86.95	85.86	1.09	85.88	1.07
MH310	MICHAEL STOCQUA	90.04	87.64	87.28	0.36	87.42	0.22
MH311	MICHAEL STOCQUA	90.69	88.29	87.44	0.85	87.56	0.73

Along the Phase 1A trunk and Phase 2B storm sewers presented above, a minimum 0.3 m clearance between the USF and HGL is maintained during the 100 year 3 hour Chicago storm and the HGL elevations remain below USF elevations during the sensitivity analysis. This is also true for the results for the remainder of the development area for additional storm simulations (enclosed in **Appendix A**).

2.6 Conclusion

The storm servicing of Blocks 11 and 12 was addressed during the detailed design of Phase 2B. The purpose of this evaluation is to assess the impact on the dual drainage system of discretizing Blocks 11 and 12 into Parcels 1-5 and the associated revisions to the storm servicing. The proposed minor and major connectivity of the five parcels is presented on **Figure 3** and minor system capture and required on-site storage is summarized in **Table 2.2**.

In terms of major flow, the depth and velocity of flow on streets adjacent to the five parcels was evaluated. City guidelines with respect to ponding during the minor system design storm, as well as maximum depth and velocity of flow are maintained. Major flow from the adjacent street segments is at or below that accounted for in the Phase 2B model.

With respect to minor flow, the hydraulic grade line evaluation was updated with the revised inflow hydrographs from the five parcels. Results indicate that a minimum 0.3 m clearance between the USF and HGL is maintained during the 100 year 3 hour Chicago storm and the HGL elevations remain below USF elevations during the sensitivity analysis.

It is therefore concluded that the proposed storm servicing to support Parcels 1-5 can be accommodated by the existing storm infrastructure.

3. Wastewater Outlet

3.1 Objective

The objective of this evaluation is to assess the impact on the existing wastewater system by the sub-division of Blocks 11 and 12 into five parcels. **Figure 4** shows the location of the subject site and the existing sanitary sewers which will be impacted by this change.

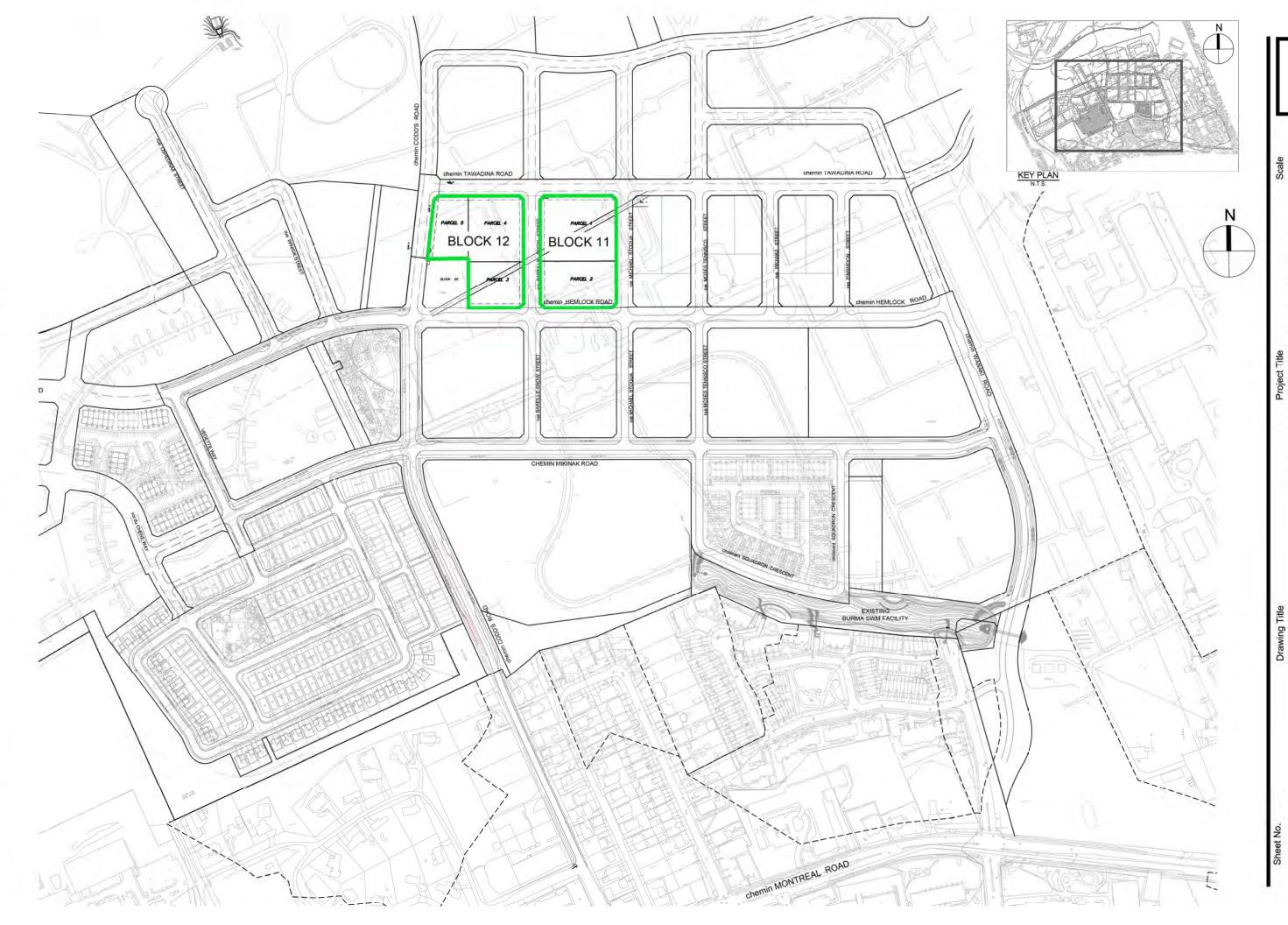
3.2 Existing Conditions

Development of Phase 2B included the construction of sanitary sewers in Codd's Road from MH231A to the MH340A and Bareille-Snow Street from BLK308A to MH304A. The sanitary sewer on Codd's Road was designed to capture wastewater flows from Block 12 and the sanitary sewer on Bareille-Snow Street was designed to capture wastewater flows from Block 11. The Bareille-Snow sewer outlets to a sanitary sewer in Hemlock Road. The latter sewer was designed in 2017, using the City's wastewater flow criteria in effect at that time and predicted a flow of 28.49 l/s tributary from the Bareille-Snow sewer. The Bareille-Snow sanitary sewer was designed in 2019 based on flow calculation criteria in effect at that time and predicted a slightly less flow of 25.17 l/s. A highlighted copy of the Phase 2B sanitary sewer design sheet is included in **Appendix B**. The spreadsheet has been highlighted to indicate the immediate downstream sewers on Codd's Road and Bareille-Snow Street. The flow calculations in the Phase 2B spreadsheet were based on the City of Ottawa's wastewater criteria in effect of that time (2019) and the block population densities noted in the Master Servicing Study.

3.3 Proposed Condition

Because of the sub-division of Blocks 11 and 12 into five parcels, less wastewater flow is now proposed to outlet to the Codd's Road sanitary sewer. The Phase 2B sewer designed assumed all Block 12 would outlet to that sewer but now only parcel 5 is proposed to outlet in that direction. No further analysis is therefore needed for the Codd's Road sewer.

Parcels 3 and 4, which represent the balance of Block 12, are now proposed to outlet to the existing sanitary sewer in Bareille-Snow Street and not the Codd's Road sewer. There is no

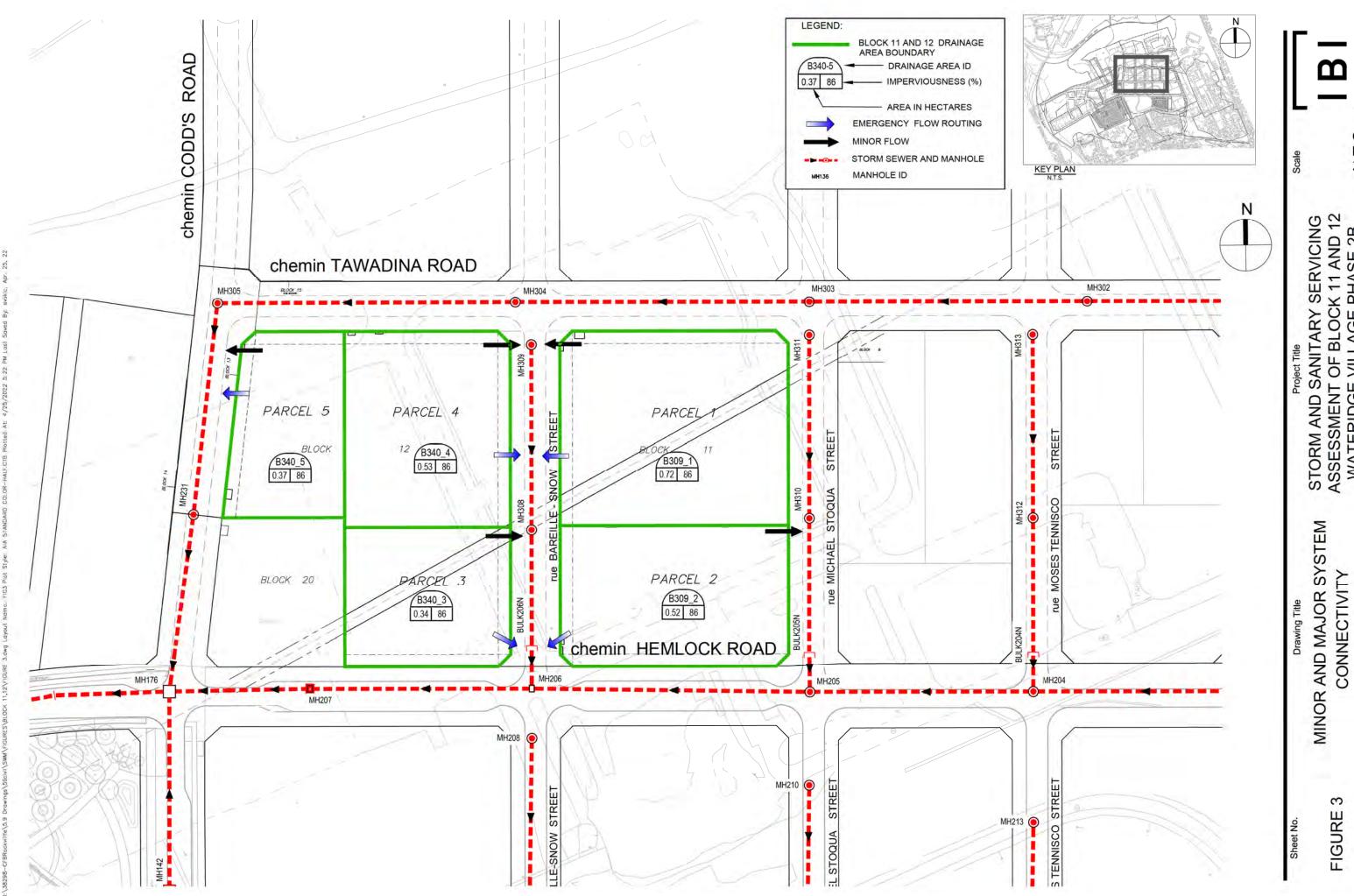

proposed change to the wastewater outlet for parcels 1 and 2. The Phase 2B design assumed all Block 11 would outlet to the Bareille-Snow sewer. Consequently, the expected wastewater flows to the latter pipe will likely increase.

An analysis of the ability of the existing sanitary sewer system in Bareille-Snow Street to accommodate the flows from both Block 11 and 12 was completed. This analysis is included on the updated sanitary sewer spreadsheet included in **Appendix B**. The updated spreadsheet was based not only on the current City of Ottawa wastewater criteria, which came into effect in 2018 but also on the most current concept plans for the various parcels which are also included in **Appendix B**. The updated analysis includes the existing sewer system highlighted on the Phase 2B design sheet.

Based on the updated analysis, the calculated wastewater flows tributary to the Hemlock Road sewer from Bareille-Snow Street is 30.31 l/s. This shows a wastewater flow increase of 1.82 l/s as a result of re-directing wastewater flows from parcels 3 and 4 in Block 12. The capacity of that sewer is 88.83 l/s. The Phase 1B design of the sanitary sewer in Hemlock Road between Bareille-Snow Street and Codd's Road indicated a spare capacity in that sewer of about 58 l/s. For reference, a highlighted copy of the Phase 1B sanitary sewer design sheet is included in **Appendix B**.

3.4 Conclusion

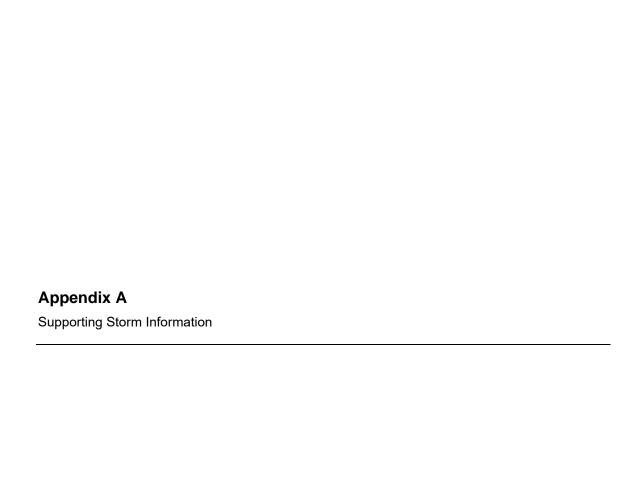
The impact of re-directing wastewater flows from Block 12 to the Bareille-Snow Street sanitary sewer has been completed. Based on the analysis noted above, the existing wastewater system in Wateridge Village Phase 1B and 2B has sufficient available capacity to carry the re-directed flows from Block 12. It is therefore concluded that the existing sanitary sewers in Bareille-Snow Street, Codd's Road and Hemlock Road adjacent to the subject property can accommodate the re-direction of flows from Block 12.


LOCATION PLAN

STORM AND SANITARY SERVICING ASSESSMENT OF BLOCK 11 AND 12 WATERIDGE VILLAGE PHASE 2B

N.T.S.


STORM AND SANITARY SERVICING ASSESSMENT OF BLOCK 11 AND 12 WATERIDGE VILLAGE PHASE 2B


N.T.S.

STORM AND SANITARY SERVICING ASSESSMENT OF BLOCK 11 AND 12 WATERIDGE VILLAGE PHASE 2B

N.T.S.

Summary of Model Files

DDSWMM:

5 year 3 hour Chicago: 118863-3CHI5.DAT 100 year 3 hour Chicago: 118863-3CHI100.DAT 100 year 3 hour Chicago + 20%: 118863-3CHI120.DAT

100 year 24 hour SCS Type II: 118863-24SCS100.DAT 100 year 24 hour SCS Type II + 20%: 118863-24SCS120.DAT

July 1979: 118863-JUL79.DAT August 1988: 118863-AUG88.DAT August 1996: 118863-Aug96.DAT

SWMHYMO VxD:

118863VD.dat

XPSWMM:

5 year 3 hour Chicago: 118863-3CHI5_BLK1112_V08_2022-03-15.XP 100 year 3 hour Chicago: 118863-3CHI100_BLK1112_V08_2022-02-28.XP 100 year 3 hour Chicago + 20%: 118863-3CHI120_BLK1112_V08_2022-02-28.XP

100 year 24 hour SCS Type II: 118863-24SCS100_BLK1112_V08_2022-03-15.XP 100 year 24 hour SCS Type II + 20%: 118863-24SCS120_BLK1112_V08_2022-03-15.XP

July 1979: 118863-JUL1979_BLK1112_V08_2022-03-15.XP August 1988: 118863-AUG1988_BLK1112_V08_2022-03-15.XP August 1996: 118863-AUG1996_BLK1112_V08_2022-03-15.XP

Velocity x Depth Calculation

Iteration equation:

Velocity:

$$v_x = v_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (v_{\max} - v_{\min})$$

Depth:

$$d_{x} = d_{\min} + \frac{Q_{x} - Q_{\min}}{Q_{\max} - Q_{\min}} (d_{\max} - d_{\min})$$

								100 Y	ear 3 Hou	ır Chica	go Storn	n								
						SWMHY	MO (11886	3VD.OUT)		Calcula		et: Overflo	ow for Typ Area	ical Road	SWMHY	'MO (118863\	VD.OUT)	Velocity x Depth		Total Depth (Static +
Area ID (Dummy Segment, if								Velocity (m.	/s)	Flowra	te (cms)		Depth (m	1)		Depth (m)			Ponding Depth	Dynamic)
applicable)	Section	Slope (%)	Qx (I/s)	Qx (cms)	Qmin	Qmax	vmin	vmax	VX	Qmin	Qmax	dmin	dmax	dx	dmin	dmax	dx	(m²/s)	(m)	(m)
S311A	20	1.52	49	0.049	0.039	0.084	0.699	0.847	0.73	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.044	0.03	0.00	0.04
S310A	20	1.22	0	0.000	0.000	0.002	0.000	0.301	0.00	0.000	0.001	0.000	0.001	0.000	N/A	N/A	N/A	0.00	0.29	0.29
S309	20	0.60	43	0.043	0.024	0.053	0.439	0.532	0.50	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.050	0.03	0.00	0.05
S308	20	1.84	65	0.065	0.043	0.092	0.769	0.932	0.84	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.047	0.04	0.00	0.05
S308A	20	0.71	26	0.026	0.009	0.027	0.365	0.478	0.47	0.021	0.027	0.050	0.055	0.054	N/A	N/A	N/A	0.03	0.26	0.31
S340	20	2.40	50	0.050	0.049	0.105	0.878	1.064	0.88	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.041	0.04	0.00	0.04
S205C	24	0.71	37	0.037	0.024	0.053	0.439	0.532	0.48	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.047	0.02	0.00	0.05
S231	20	0.53	100	0.100	0.096	0.155	0.617	0.697	0.62	N/A	N/A	N/A	N/A	N/A	0.068	0.082	0.069	0.04	0.00	0.07
S207	24	0.51	61	0.061	0.053	0.096	0.532	0.617	0.55	N/A	N/A	N/A	N/A	N/A	0.055	0.068	0.057	0.03	0.00	0.06

Velocity x Depth Calculation

Iteration equation:

Velocity:

$$v_x = v_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (v_{\max} - v_{\min})$$

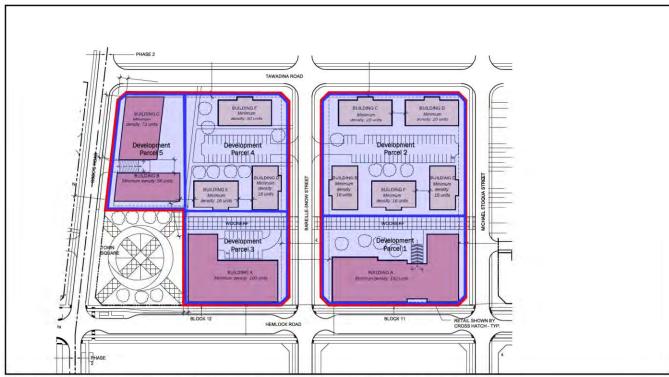
Depth:

$$d_x = d_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (d_{\max} - d_{\min})$$

								100 Year	r 3 Hour Ch	nicago S	Storm + 2	20%								
						SWMH	YMO (1188	363VD.OUT)		Calcul		et: Overfl Ponding /	ow for Typi Area	ical Road	SWMHY	'MO (118863)	VD.OUT)	Velocity x Depth		Total Depth (Static
Area ID (Dummy Segment, if	a ID (Dummy Segment, if Road ROW Longitudinal Overflow Flow					te (cms)		Velocity (m	/s)	Flowra	ite (cms)		Depth (m)		Depth (m)			Ponding Depth	Dynamic)
applicable)	Section	Slope (%)	Qx (I/s)	Qx (cms)	Qmin	Qmax	vmin	vmax	VX	Qmin	Qmax	dmin	dmax	dx	dmin	dmax	dx	(m²/s)	(m)	(m)
S311A	20	1.52	66	0.066	0.039	0.084	0.699	0.847	0.79	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.049	0.04	0.00	0.05
S310A	20	1.22	33	0.033	0.012	0.035	0.478	0.626	0.61	0.028	0.035	0.055	0.060	0.059	N/A	N/A	N/A	0.04	0.29	0.35
S309	20	0.60	71	0.071	0.053	0.096	0.532	0.617	0.57	N/A	N/A	N/A	N/A	N/A	0.055	0.068	0.060	0.03	0.00	0.06
S308	20	1.84	216	0.216	0.167	0.272	1.081	1.221	1.15	N/A	N/A	N/A	N/A	N/A	0.068	0.082	0.075	0.09	0.00	0.07
S308A	20	0.71	268	0.268	0.255	0.364	0.841	0.919	1.29	0.240	0.269	0.125	0.130	0.130	N/A	N/A	N/A	0.17	0.26	0.39
S340	20	2.40	98	0.098	0.049	0.105	0.878	1.064	1.04	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.053	0.06	0.00	0.05
S205C	24	0.71	46	0.046	0.024	0.053	0.439	0.532	0.51	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.052	0.03	0.00	0.05
S231	20	0.53	165	0.165	0.155	0.234	0.697	0.773	0.71	N/A	N/A	N/A	N/A	N/A	0.082	0.095	0.084	0.06	0.00	0.08
S207	24	0.51	89	0.089	0.053	0.096	0.532	0.617	0.60	N/A	N/A	N/A	N/A	N/A	0.055	0.068	0.066	0.04	0.00	0.07

XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO		OUR CHICAGO ED BY 20%		24 HOUR YPE II		24 HOUR E II + 20%	JULY :	1 1979	AUGUS	ST 1988	AUGUS	ST 1996
ID		ELEVATION (M)		HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
Phase 1B																	
S143	143	102.40	100.00	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84
S144	144	99.41	97.01	95.79	1.22	95.79	1.22	95.78	1.23	95.79	1.22	95.78	1.23	95.79	1.22	95.78	1.23
S145	145	97.64	95.24	93.01	2.23	93.01	2.23	93.01	2.23	93.01	2.23	93.00	2.24	93.01	2.23	93.00	2.24
S146	146	95.28	92.88	90.96	1.92	91.82	1.06	90.77	2.11	91.26	1.62	90.91	1.97	91.01	1.87	90.63	2.25
S147	147	93.27	N/A	90.93	N/A	91.78	N/A	90.72	N/A	91.23	N/A	90.88	N/A	90.98	N/A	90.60	N/A
USBRM	N/A	N/A	N/A	90.88	N/A	91.72	N/A	90.67	N/A	91.17	N/A	90.83	N/A	90.93	N/A	90.56	N/A
BURMA	N/A	N/A	N/A	89.41	N/A	89.87	N/A	89.24	N/A	89.53	N/A	89.43	N/A	89.31	N/A	89.04	N/A
OUTLET	N/A	N/A	N/A	89.26	N/A	89.75	N/A	89.07	N/A	89.39	N/A	89.29	N/A	89.15	N/A	88.65	N/A
S152	152	92.73	90.33	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62
S151	151	92.50	90.10	89.58	0.52	89.57	0.53	89.58	0.52	89.58	0.52	89.58	0.52	89.58	0.52	89.57	0.53
S150	150	92.32	89.92	89.49	0.43	89.48	0.44	89.49	0.43	89.49	0.43	89.49	0.43	89.49	0.43	89.49	0.43
S149	149	92.34	89.94	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52
S148	148	92.14	89.74	89.30	0.44	89.29	0.45	89.30	0.44	89.30	0.44	89.30	0.44	89.30	0.44	89.30	0.44
S157	157	91.24	N/A	89.21	N/A	89.20	N/A	89.21	N/A	89.21	N/A	89.21	N/A	89.21	N/A	89.21	N/A
S154	154	91.02	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A
S215	215	90.77	88.37	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79
S216	216	90.85	88.45	87.30	1.15	87.30	1.15	87.30	1.15	87.30	1.15	87.30	1.15	87.31	1.14	87.30	1.15
S217	217	90.66	88.26	87.13	1.13	87.18	1.08	87.12	1.14	87.15	1.11	87.14	1.12	87.13	1.13	87.12	1.14
S218	218	90.40	88.00	87.04	0.96	87.10	0.90	87.02	0.98	87.06	0.94	87.05	0.95	87.04	0.96	87.02	0.98
S219	219	90.08	87.68	86.85	0.83	86.94	0.74	86.82	0.86	86.88	0.80	86.86	0.82	86.84	0.84	86.81	0.87
S220	220	89.86	87.46	86.74	0.72	86.84	0.62	86.70	0.76	86.78	0.68	86.75	0.71	86.72	0.74	86.68	0.78
S221	221	89.88	87.48	86.57	0.91	86.72	0.76	86.51	0.97	86.63	0.85	86.59	0.89	86.54	0.94	86.36	1.12
S222	222	89.86	87.46	86.38	1.08	86.51	0.95	86.32	1.14	86.43	1.03	86.39	1.07	86.35	1.11	86.19	1.27
S200	200	94.71	92.31	90.73	1.58	90.74	1.57	90.73	1.58	90.72	1.59	90.73	1.58	90.72	1.59	90.73	1.58
S214	214	93.52	91.12	90.26	0.86	90.28	0.84	90.26	0.86	90.27	0.85	90.26	0.86	90.26	0.86	90.26	0.86
MH201	201	94.29	91.89	90.72	1.17	90.73	1.16	90.72	1.17	90.72	1.17	90.72	1.17	90.72	1.17	90.71	1.18
MH202	202	93.91	91.51	90.42	1.09	90.43	1.08	90.41	1.10	90.42	1.09	90.41	1.10	90.41	1.10	90.40	1.11
MH203	203	92.38	89.98	88.66	1.32	88.68	1.30	88.63	1.35	88.66	1.32	88.63	1.35	88.64	1.34	88.61	1.37
MH204	204	90.40	88.00	87.08	0.92	87.10	0.90	87.06	0.94	87.08	0.92	87.06	0.94	87.07	0.93	87.02	0.98
MH205	205	89.35	86.95	85.86	1.09	85.88	1.07	85.83	1.12	85.86	1.09	85.84	1.11	85.84	1.11	85.77	1.18
MH206	206	89.10	86.70	85.65	1.05	85.65	1.05	85.62	1.08	85.65	1.05	85.63	1.07	85.63	1.07	85.57	1.13
MH207	207	88.53	86.13	84.65	1.48	84.65	1.48	84.62	1.51	84.65	1.48	84.63	1.50	84.64	1.49	84.58	1.55
S212	212	90.25	87.85	86.86	0.99	86.87	0.98	86.83	1.02	86.85	1.00	86.83	1.02	86.84	1.01	86.82	1.03
S213	213	89.74	87.34	86.45	0.89	86.45	0.89	86.43	0.91	86.45	0.89	86.44	0.90	86.44	0.90	86.42	0.92
S210	210	89.14	86.74	86.43	0.31	86.43	0.31	86.42	0.32	86.43	0.31	86.42	0.32	86.43	0.31	86.41	0.33
S211	211	89.15	86.75	85.94	0.81	85.93	0.82	85.93	0.82	85.94	0.81	85.93	0.82	85.93	0.82	85.92	0.83
S208	208	88.77	86.37	85.92	0.45	85.91	0.46	85.78	0.59	85.91	0.46	85.81	0.56	85.88	0.49	85.70	0.67
S209	209	88.75	86.35	85.46	0.89	85.45	0.90	85.41	0.94	85.46	0.89	85.42	0.93	85.45	0.90	85.38	0.97
MH231	231	89.81	87.41	85.61	1.79	85.64	1.77	85.73	1.67	85.78	1.63	85.84	1.57	85.77	1.63	85.71	1.69

XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO		OUR CHICAGO ED BY 20%		R 24 HOUR		R 24 HOUR E II + 20%	JULY :	1 1979	AUGU	ST 1988	AUGU	ST 1996
ID	Will It Co.	ELEVATION (M)	031 (101)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
Wateridge Village F	Phase 1A																
S153	153	92.78	90.38	89.45	0.93	89.46	0.92	89.44	0.94	89.45	0.93	89.44	0.94	89.45	0.93	89.44	0.94
S160	160	92.27	89.87	89.01	0.86	89.02	0.85	89.01	0.86	89.01	0.86	89.01	0.86	89.01	0.86	89.00	0.87
S161	161	91.94	89.54	88.57	0.97	88.58	0.96	88.57	0.97	88.57	0.97	88.57	0.97	88.57	0.97	88.57	0.97
S162	162	91.34	88.94	88.26	0.68	88.26	0.68	88.25	0.69	88.26	0.68	88.25	0.69	88.26	0.68	88.25	0.69
S163	163	90.94	88.54	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86
S164	164	90.22	87.82	87.00	0.82	87.01	0.81	86.99	0.83	87.00	0.82	87.00	0.82	87.00	0.82	86.99	0.83
S165B	165	89.61	87.21	86.45	0.76	86.45	0.76	86.44	0.77	86.44	0.77	86.44	0.77	86.44	0.77	86.44	0.77
S165	165	89.30	86.90	85.98	0.92	86.05	0.85	85.93	0.97	86.01	0.89	85.99	0.91	85.96	0.94	85.83	1.07
S166	166	88.90	86.50	84.88	1.62	85.03	1.47	84.78	1.72	84.93	1.57	84.88	1.62	84.85	1.65	84.59	1.91
S167	167	88.40	86.00	84.71	1.29	84.86	1.14	84.60	1.40	84.76	1.24	84.71	1.29	84.67	1.33	84.39	1.61
S168	168	87.70	85.30	84.54	0.76	84.66	0.64	84.43	0.87	84.58	0.72	84.54	0.76	84.50	0.80	84.22	1.08
S141	141	87.32	84.92	84.28	0.64	84.39	0.53	84.18	0.74	84.32	0.60	84.28	0.64	84.25	0.67	83.97	0.95
S142	142	87.52	85.12	84.02	1.10	84.12	1.00	83.94	1.18	84.06	1.06	84.03	1.09	84.00	1.12	83.74	1.38
MH176	176	88.03	85.63	83.77	1.86	83.85	1.78	83.69	1.94	83.80	1.83	83.77	1.86	83.75	1.88	83.49	2.14
MH178	178	89.00	86.60	83.41	3.19	83.47	3.13	83.34	3.26	83.44	3.16	83.41	3.19	83.39	3.21	83.18	3.42
MH180	180	88.23	85.83	82.20	3.62	82.44	3.38	81.98	3.84	82.27	3.56 3.73	82.21	3.62	82.10	3.73	81.49	4.34
MH190 MH191	190 191	88.10	85.70 83.96	81.90 81.66	3.80 2.30	82.12 81.86	3.58 2.10	81.65 81.44	4.05 2.52	81.97 81.73	2.23	81.91 81.67	3.79 2.29	81.80 81.56	3.90 2.40	81.23 81.06	4.47 2.91
MH191 MH192	191	86.36 85.92	83.52	81.41	2.30	81.59	1.93	81.21	2.32	81.47	2.23	81.41	2.29	81.31	2.40	80.89	2.63
MH193	193	84.85	82.45	81.09	1.36	81.24	1.93	80.92	1.53	81.47	1.31	81.09	1.36	81.00	1.45	80.60	1.85
MH194	194	82.44	N/A	80.45	N/A	80.53	N/A	80.35	N/A	80.48	N/A	80.46	N/A	80.40	N/A	80.13	N/A
S130	130	02.44	N/A	101.25	N/A	101.25	N/A	101.24	N/A	101.25	N/A	101.24	N/A	101.24	N/A	101.23	N/A
S131	131		N/A	101.05	N/A	101.05	N/A	101.04	N/A	101.05	N/A	101.04	N/A	101.04	N/A	101.03	N/A
S132	132		N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.63	N/A
S133	133		N/A	96.52	N/A	96.52	N/A	96.51	N/A	96.52	N/A	96.51	N/A	96.51	N/A	96.50	N/A
S134	134		N/A	93.01	N/A	93.01	N/A	93.00	N/A	93.01	N/A	93.00	N/A	93.00	N/A	92.99	N/A
S135	135		N/A	90.11	N/A	90.11	N/A	90.10	N/A	90.11	N/A	90.10	N/A	90.10	N/A	90.09	N/A
S136	136		N/A	87.38	N/A	87.38	N/A	87.37	N/A	87.38	N/A	87.37	N/A	87.37	N/A	87.37	N/A
S137	137		86.91	85.77	1.14	85.77	1.14	85.76	1.15	85.77	1.14	85.76	1.15	85.77	1.14	85.76	1.15
S138	138		86.31	84.96	1.35	84.96	1.35	84.95	1.36	84.96	1.35	84.95	1.36	84.95	1.36	84.94	1.37
S139	139		85.66	84.46	1.20	84.48	1.18	84.46	1.20	84.46	1.20	84.46	1.20	84.46	1.20	84.45	1.21
S140	140		N/A	84.35	N/A	84.42	N/A	84.34	N/A	84.37	N/A	84.35	N/A	84.34	N/A	84.34	N/A
S100	100	_	87.16	85.70	1.46	85.69	1.47	85.70	1.46	85.70	1.46	85.70	1.46	85.70	1.46	85.70	1.46
S108	108		86.66	85.24	1.43	85.23	1.43	85.23	1.43	85.24	1.42	85.23	1.43	85.23	1.43	85.23	1.43
S109	109		85.36	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31
S117	117		85.06	83.54	1.52	83.58	1.48	83.53	1.53	83.54	1.52	83.53	1.53	83.54	1.52	83.53	1.53
S118	118		84.71	83.21	1.50	83.48	1.23	83.20	1.51	83.25	1.46	83.22	1.49	83.21	1.50	83.20	1.51
S101	101		87.16	85.55	1.61	85.55	1.61	85.54	1.62	85.55	1.61	85.54	1.62	85.54	1.62	85.54	1.62
S102	102		86.46	84.72	1.74	84.72	1.74	84.71	1.75	84.72	1.74	84.71	1.75	84.71	1.75	84.70	1.76
S119	119		85.46	83.95	1.51	83.95	1.51	83.95	1.51	83.95	1.51	83.94	1.52	83.95	1.51	83.95	1.51
S104	104		N/A	85.90	N/A	85.89	N/A	85.89	N/A	85.90	N/A	85.89	N/A	85.89	N/A	85.88	N/A


XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO		OUR CHICAGO ED BY 20%		24 HOUR YPE II		24 HOUR E II + 20%	JULY 1	l 1979	AUGUS	ST 1988	AUGU	ST 1996
ID		ELEVATION (M)	,	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
S103	103		86.46	84.36	2.10	84.36	2.10	84.34	2.12	84.36	2.10	84.35	2.11	84.35	2.11	84.34	2.12
S105	105		85.71	83.90	1.81	83.91	1.80	83.89	1.82	83.90	1.81	83.89	1.82	83.90	1.81	83.89	1.82
S122	122		84.86	83.53	1.33	83.53	1.33	83.53	1.33	83.53	1.33	83.53	1.33	83.53	1.33	83.53	1.33
S121	121		84.26	82.80	1.46	83.03	1.23	82.43	1.83	82.82	1.44	82.77	1.49	82.61	1.65	81.98	2.28
S127	127		84.36	82.67	1.69	82.92	1.44	82.34	2.02	82.71	1.65	82.66	1.70	82.51	1.85	81.85	2.51
S128	128		N/A	82.61	N/A	82.86	N/A	82.30	N/A	82.67	N/A	82.61	N/A	82.47	N/A	81.81	N/A
S107	107		N/A	85.29	N/A	85.29	N/A	85.28	N/A	85.29	N/A	85.28	N/A	85.28	N/A	85.27	N/A
S106	106		85.61	83.76	1.85	83.75	1.86	83.73	1.88	83.76	1.85	83.74	1.87	83.75	1.86	83.73	1.88
S124	124		85.69	83.94	1.75	83.94	1.75	83.93	1.76	83.94	1.75	83.93	1.76	83.93	1.76	83.92	1.77
S125	125		85.34	83.37	1.97	83.38	1.96	83.35	1.99	83.37	1.97	83.36	1.98	83.36	1.98	83.35	1.99
S126	126		84.96	82.87	2.09	83.14	1.82	82.85	2.11	82.89	2.07	82.85	2.11	82.86	2.10	82.84	2.12
S182	182		N/A	82.46	N/A	82.70	N/A	82.18	N/A	82.52	N/A	82.46	N/A	82.32	N/A	81.68	N/A
S181	181		N/A	82.36	N/A	82.61	N/A	82.11	N/A	82.43	N/A	82.37	N/A	82.24	N/A	81.61	N/A
S110	110		85.56	83.59	1.97	83.80	1.76	83.59	1.97	83.59	1.97	83.59	1.97	83.59	1.97	83.59	1.97
S111	111		84.96	83.59	1.37	83.80	1.16	83.58	1.38	83.59	1.37	83.58	1.38	83.59	1.37	83.58	1.38
S112	112		84.91	83.40	1.52	83.77	1.14	83.18	1.73	83.50	1.41	83.42	1.49	83.22	1.69	83.22	1.69
S113	113		84.51	83.41	1.10	83.74	0.77	83.06	1.45	83.48	1.03	83.40	1.11	83.08	1.43	83.05	1.46
S114	114		83.91	83.06	0.85	83.31	0.60	82.66	1.25	83.11	0.80	83.04	0.87	82.85	1.06	82.49	1.42
S115	115		83.56	83.04	0.52	83.33	0.23	82.64	0.92	83.13	0.43	83.01	0.55	82.83	0.73	82.45	1.11
S116	116		83.71	82.88	0.83	83.16	0.55	82.51	1.20	82.92	0.79	82.85	0.86	82.70	1.01	82.10	1.61
S120	120		83.96	82.86	1.10	83.08	0.88	82.48	1.48	82.88	1.08	82.83	1.13	82.67	1.29	82.06	1.90

XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO		OUR CHICAGO ED BY 20%		R 24 HOUR TYPE II		24 HOUR E II + 20%	JULY :	1 1979	AUGU	ST 1988	AUGUS	ST 1996
ID		ELEVATION (M)	,	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
Phase 2B, 4																	
MH317	317	94.08	91.68	91.17	0.51	91.18	0.50	91.14	0.54	91.15	0.53	91.15	0.53	91.14	0.54	91.11	0.57
MH316	316	94.09	91.69	90.96	0.73	90.96	0.73	90.95	0.74	90.95	0.74	90.95	0.74	90.95	0.74	90.92	0.77
MH315	315	93.39	91.36	90.28	1.08	90.29	1.07	90.25	1.11	90.26	1.10	90.27	1.09	90.27	1.09	90.26	1.10
MH314	314	93.00	91.16	89.91	1.25	89.91	1.25	89.91	1.25	89.91	1.25	89.91	1.25	89.91	1.25	89.89	1.27
MH313	313	92.62	90.71	89.35	1.36	89.34	1.37	89.35	1.36	89.35	1.36	89.35	1.36	89.35	1.36	89.34	1.37
MH312	312	91.36	89.68	88.42	1.26	88.42	1.26	88.41	1.27	88.42	1.26	88.42	1.26	88.42	1.26	88.38	1.30
MH311	311	90.69	88.29	87.44	0.85	87.56	0.73	87.40	0.89	87.48	0.81	87.45	0.84	87.47	0.82	87.38	0.91
MH310	310	90.04	87.64	87.28	0.36	87.42	0.22	87.25	0.39	87.35	0.29	87.30	0.34	87.33	0.31	87.06	0.58
MH309	309	90.15	87.75	87.44	0.31	87.08	0.67	87.33	0.42	87.44	0.31	87.41	0.34	87.43	0.32	87.22	0.53
MH308	308	89.68	87.28	86.88	0.40	86.69	0.59	86.81	0.47	86.88	0.40	86.87	0.41	86.88	0.40	86.76	0.52
MH326	326	94.76	92.36	91.33	1.03	91.33	1.03	91.32	1.04	91.32	1.04	91.32	1.04	91.32	1.04	91.33	1.03
MH318	318	94.40	92.00	91.03	0.97	91.03	0.97	91.00	1.00	91.03	0.97	91.00	1.00	91.00	1.00	91.00	1.00
MH300	300	94.00	91.60	90.71	0.89	90.70	0.90	90.67	0.93	90.70	0.90	90.68	0.92	90.68	0.92	90.68	0.92
MH301	301	93.73	91.33	90.21	1.12	90.21	1.12	90.20	1.13	90.20	1.13	90.21	1.12	90.20	1.13	90.20	1.13
MH302	302	92.80	90.40	88.64	1.76	88.64	1.76	88.63	1.77	88.63	1.77	88.64	1.76	88.63	1.77	88.63	1.77
MH303	303	90.67	88.27	87.80	0.47	87.81	0.46	87.63	0.64	87.65	0.62	87.79	0.48	87.72	0.55	87.64	0.63
MH304	304	90.30	87.90	87.39	0.51	87.38	0.52	87.30	0.60	87.31	0.59	87.38	0.52	87.34	0.56	87.30	0.60
MH305	305	91.00	88.60	86.54	2.06	86.56	2.04	86.61	1.99	86.64	1.96	86.69	1.91	86.65	1.95	86.60	2.00
MH319	319	88.81	86.61	86.13	0.48	86.12	0.49	86.12	0.49	86.13	0.48	86.12	0.49	86.12	0.49	86.12	0.49
MH320	320	89.12	86.92	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43
MH321	321	87.67	85.47	84.18	1.29	84.39	1.08	84.10	1.37	84.15	1.32	84.11	1.36	84.13	1.34	84.09	1.38
MH322	322	87.50	85.30	84.18	1.12	84.39	0.91	84.10	1.20	84.15	1.15	84.10	1.20	84.12	1.18	84.09	1.21
MH323	323	86.57	84.37	83.40	0.97	83.48	0.89	83.31	1.06	83.37	1.00	83.32	1.05	83.34	1.03	83.30	1.07

Appendix B

Supporting Sanitary Information

SCHEDULE "A" PARCEL IDENTIFICATION, DESCRIPTION, AND MINIMUM DENSITY¹

^{**}Boundaries of the development parcels are estimated. Purchasers to provide dimensioned sketch or electronic survey to confirm these boundaries

¹ This image if provided for demonstration purposes only

IBI GROUP

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com LEGEND

Block 11&12 Proposed Conditions

Old Criteria being used

AS-BUILT SANITARY SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Canada Lands Company

AREA UNIT TYPES AREA POPULATION PEAK PEAK AREA (Ha) PEAK AREA (Ha) FLOW FLOW FLOW FLOW CAPACITY LENGTH DIA SLOPE VELOCITY AVA		LOCATION			1				RESIDI	ENTIAL					I			ICI AREAS				INFILTR	RATION ALLO	OWANCE	FIXED	TOTAL			PROPO	SED SEWER	R DESIGN		
Process Proc		LOCATION			AREA		UNIT	TYPES			POPU	ILATION										ARE	A (Ha)	FLOW	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY		ABLE
Page 1	STREET	AREA ID				SF	SD	TH	APT		IND	СПМ	FACTOR									IND	CUM	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)			ACITY
Column C	0.1.22.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	МН	МН	(Ha)	<u> </u>			7	(Ha)				(L/s)	IND	CUM	IND	CUM	IND	CUM	(L/s)			(=.0)	(=0)	(=/5)	(=.0)	(,	()	(70)	(m/s)	L/s	(%)
Column C	Dhana 4D			+		1		1			1					1																1	
	Filase ID			+	1	+		+				1				1		-					-	-	1	-	1			1		+	-
	rue Michael Stoqua Street	FX205A	BUI K205AN	MH205A						0.66	33.1	33.1	4 00	0.54		0.00		0.00		0.00	0.00	0.66	0.66	0.18	0.00	0.72	66 24	21 00	250	1 14	1 307	65.52	98.91%
No. Control Contro	Tao michael etequa exect	2,200,1	202.1200711							0.00	00.1	00.1	1.00	0.01		0.00		0.00		0.00	0.00	0.00	0.00	0.10	0.00	02	00.21	27.00	200		1.001	00.02	00.0170
No. 25 PART MICEN MICE	Hemlock Road	205A	MH205A	MH206A	0.25						0.0	186.6	4.00	3.02		0.00		0.00		0.00	0.00	0.25	2.51	0.70	0.00	3.73	31.02	111.90	250	0.25	0.612	27.29	87.99%
No.																																	
Biss 51	rue Bareille-Snow Street	EX206A-B	BULK206AN	MH206A						<u>9.79</u>	<u>2598.3</u>	2598.3	3.49	36.78		0.00		0.00		0.00	0.00	9.79	9.79	2.74	0.00	39.52	88.83	21.00	250	2.05	1.753	49.30	55.50%
Biss 51																																	
Park	Hemlock Road	206A	MH206A	MH207A	0.20						0.0	2784.9	3.47	39.14		0.00		0.00		0.00	0.00	0.20	12.50	3.50	0.00	42.64	100.88	89.30	300	1.00	1.383	58.24	57.73%
Park		54514	1411007111	141100714	2.00			1					4.00	2.22		2.22		0.00		0.00		0.00	0.00			0.00	50.00	10.00	0.50		0.007	40.00	00.000/
Prince Communication Com	Block 20	PARK1	MH207AN	MH207A	0.32	1					0.0	0.0	4.00	0.00		0.00		0.00		0.00	0.00	0.32	0.32	0.09	0.00	0.09	50.02	13.80	250	0.65	0.987	49.93	99.82%
Prince Communication Com	Hamlack Bood	DADK1 207A	MH207A	DIII K176AB	0.12	1		1			0.0	2794.0	2.47	20.14		0.00		0.00		0.00	0.00	0.12	12.04	3.62	0.00	12.77	134 50	22 10	300	1 79	1 9/15	01.93	68.23%
Presence Researt	Heililock Road	FAINT, 201A	IVII IZU/A	BOLKITOAL	0.12	1				1	0.0	2104.9	3.47	39.14		0.00		0.00		0.00	0.00	0.12	12.54	3.02	0.00	42.11	134.35	33.10	300	1.70	1.043	91.03	00.2370
Presence Researt	Phase 1A		+	+	1	 	 	+		 	 	1	1	+	 										1	 		+			+	+	1
Prise 18 2 700 COM			BULK176AF	MH176A							0.0	2784.9	3.47	39.14		0.00		0.00		0.00	0.00	0.00	12.94	3.62	0.00	42.77	65.38	21.97	300	0.42	0.896	22.61	34.59%
Primer Variat Road 2004, COM2 Mir/SMA 2014 2025 202						1				İ													12.2										
Prince P	Phase 1B										Ì																						
Phase IA COME BULK153AN MATISAS COME BULK153AN MATIS	chemin Wanaki Road	200A, COM1	MH200A	MH214A	0.25						0.0	0.0	4.00	0.00		0.00	0.90	0.90		0.00	0.78	1.15	1.15	0.32	0.00	1.10	71.01	98.50	250	1.31	1.401	69.90	98.45%
Chemin Warnah Road	chemin Wanaki Road	214A, COM2	MH214A	BULK153AN	0.16						0.0	0.0	4.00	0.00		0.00	0.65	1.55		0.00	1.35	0.81	1.96	0.55	0.00	1.89	57.20	44.60	250	0.85	1.129	55.30	96.69%
Chemin Warnah Road																																	
Chemin Warnah Road																																	
Chemin Warman Road								1																									96.35%
Chemin Wannah Road 10A, COMS MH19A0 MH19																																	91.93%
Chemin Wannaki Road 149A MH149A						1		1																									90.43%
Chemin Wanaki Road 148A MH149A MH157A 0.04 0.00 0.0						+		-									0.95																87.38% 87.30%
Phase 18						1				1																							87.27%
Chemin Wanaki Road 143B SULK143AE MH143A 0.31 1040 1040 4.00 1.69 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.31 0.31 0.09 0.00 1.77 43.87 21.50 250 0.50 0.866 42.70 0.00 1.69 0.00	Chemin Wanaki Noau	140A	IVII I I 40A	WITTSTA	0.04	1				1	0.0	0.0	4.00	0.00		0.00		3.03		0.00	3.32	0.04	4.01	1.55	0.00	4.07	30.70	20.50	250	0.33	0.724	32.03	07.2770
Chemin Wanaki Road 143B SULK143AE MH143A 0.31 1040 1040 4.00 1.69 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.31 0.31 0.09 0.00 1.77 43.87 21.50 250 0.50 0.866 42.70 0.00 1.69 0.00	Phase 1B																																
Chemin Wanaki Road 143A MH143A 0.27		143B	BULK143AE	MH143A	0.31	1				İ	104.0	104.0	4.00	1.69		0.00		0.00		0.00	0.00	0.31	0.31	0.09	0.00	1.77	43.87	21.50	250	0.50	0.866	42.10	95.96%
Chemin Wanaki Road 145A, 145B, 145C MH145A MH146A 277 835.6 939.6 3.82 14.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.67 105.83 53.30 250 2.91 2.089 90.16 0.00 0.0	chemin Wanaki Road	143A	MH143A	MH144A	0.27						0.0	104.0	4.00	1.69		0.00				0.00	0.00	0.27	0.58	0.16	0.00	1.85	83.69	34.70				81.85	97.79%
Chemin Wanaki Road 146A MH147A 0.14	chemin Wanaki Road	144A, 144B	MH144A	MH145A	0.72						0.0	104.0	4.00	1.69		0.00		0.00		0.00	0.00	0.72	1.30	0.36	0.00	2.05	88.61	41.10	250	2.04	1.749	86.56	97.69%
Chemin Wanaki Road PARK2 BLK147AE MH147A 0.55 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.55 0.15 0.00 0.15 39.24 17.70 250 0.40 0.774 39.08 0.00	chemin Wanaki Road	145A, 145B, 145C	MH145A	MH146A	2.77						835.6	939.6	3.82	14.53		0.00		0.00		0.00	0.00	2.77	4.07	1.14	0.00	15.67	105.83	53.30	250	2.91	2.089	90.16	85.19%
Chemin Wanaki Road PARK2 BLK147AE MH147A 0.55 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.55 0.15 0.00 0.15 39.24 17.70 250 0.40 0.774 39.08 0.00																																	
Chemin Wanaki Road 147C BLK147AW MH147A 0.10 33.6 33.6 4.00 0.54 0.00 0.00 0.00 0.00 0.00 0.00	chemin Wanaki Road	146A	MH146A	MH147A	0.14						0.0	939.6	3.82	14.53		0.00		0.00		0.00	0.00	0.14	4.21	1.18	0.00	15.71	43.54	37.30	250	0.97	1.206	27.83	63.92%
Chemin Wanaki Road 147C BLK147AW MH147A 0.10 33.6 33.6 4.00 0.54 0.00 0.00 0.00 0.00 0.00 0.00		DA5://0	DI IZZ Z	NAULT CO.	0.55	1		ļ		ļ		1	4.00	0.00	1	0.00		0.00		0.00	0.00	0 ==	0 ==	0.15	0.00	0.15	00.01	17.5	050	0.10		00.00	00.0101
Chemin Wanaki Road 147A MH147A MH170A 0.03 0.0 973.2 3.81 15.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.38 38.74 10.30 250 0.39 0.765 22.36 0.06 0.06 0.06 0.06 0.06 0.00	chemin Wanaki Road	PARK2	BLK147AE	MH147A	0.55		-	-		ļ	0.0	0.0	4.00	0.00		0.00		0.00		0.00	0.00	0.55	0.55	0.15	0.00	0.15	39.24	17.70	250	0.40	U.774	39.08	99.61%
Chemin Wanaki Road 147A MH147A MH170A 0.03 0.00 973.2 3.81 15.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.38 38.74 10.30 250 0.39 0.765 22.36 0.624 15.21 0.66 0.00 0.	shamin Wanaki Basi	1470	DI K1/17/\\A	MU1474	0.10	1	-	+		1	33.6	33 F	4.00	0.54	 	0.00		0.00		0.00	0.00	0.10	0.10	0.03	0.00	0.57	41.62	17.70	250	0.45	0.924	41.04	98.62%
Chemin Wanaki Road 147B MH170A MH147C 0.16 0.0 973.2 3.81 15.01 0.00 0.00 0.00 0.00 0.00 0.00 16.42 31.63 38.20 250 0.26 0.624 15.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	chemin wanaki Road	1470	DLN 147AW	IVID 14/A	0.10	1		+	-		33.0	33.0	4.00	0.54	1	0.00		0.00		0.00	0.00	0.10	0.10	0.03	0.00	0.57	41.02	17.70	200	0.40	U.02 I	41.04	90.0270
Chemin Wanaki Road 147B MH170A MH147C 0.16 0.0 973.2 3.81 15.01 0.00 0.00 0.00 0.00 0.00 0.00 16.42 31.63 38.20 250 0.26 0.624 15.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	chemin Wanaki Road	147A	MH147Δ	MH1704	0.03		1	1			0.0	973.2	3.81	15.01	 	0.00		0.00		0.00	0.00	0.03	4 89	1.37	0.00	16.38	38 74	10.30	250	0.39	0.765	22.36	57.72%
Chemin Wanaki Road MH147C BLK148AW 0.0 973.2 3.81 15.01 0.00 0.00 0.00 0.00 5.05 1.41 0.00 16.42 46.01 11.80 250 0.55 0.908 29.58 Phase 1A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.42 46.01 11.80 250 0.55 0.908 29.58 Phase 1A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.42 62.04 8.00 250 1.00 1.224 45.61 Chemin Wanaki Road 157A MH157A MH158A 0.05 0.0 3.81 15.01 0.00 3.83 0.0 9.91 2.77 0.00 21.11 31.02 25.68 250 0.25 0.612 9.91						1		1	<u> </u>						1																		48.08%
Phase 1A		5			55																												64.30%
chemin Wanaki Road BULK148AW MH157A MH157A MH157A MH158A 0.05 3.81 15.01 0.00 0.00 0.00 0.00 5.05 1.41 0.00 16.42 62.04 8.00 250 1.00 1.224 45.61 chemin Wanaki Road 157A MH157A MH158A 0.05 0.0 973.2 3.81 15.01 0.00 3.83 0.05 9.91 2.77 0.00 21.11 31.02 25.68 250 0.612 9.91			1			1					†	1	1	1		T								<u> </u>	1	T				1	1	 	<u> </u>
chemin Wanaki Road 157A MH157A MH158A 0.05 0.0 973.2 3.81 15.01 0.00 3.83 0.00 3.32 0.05 9.91 2.77 0.00 21.11 31.02 25.68 250 0.25 0.612 9.91	Phase 1A				Ì	1						1		Ì											Ì	1						1	1
	chemin Wanaki Road		BULK148AV	MH157A							0.0	973.2	3.81	15.01		0.00		0.00		0.00	0.00	0.00	5.05	1.41	0.00	16.42	62.04	8.00	250	1.00	1.224	45.61	73.52%
		_																															
Street No. 2 INST1 BULK158AN MH158A	chemin Wanaki Road	157A	MH157A	MH158A	0.05						0.0	973.2	3.81	15.01		0.00		3.83		0.00	3.32	0.05	9.91	2.77	0.00	21.11	31.02	25.68	250	0.25	0.612	9.91	31.94%
Street No. 2 INST1 BULK158AN MH158A 0.0 0.0 2.62 2.62 0.00 0.00 2.27 2.62 2.62 0.73 0.00 3.01 39.24 15.10 250 0.40 0.774 36.23																																	
	Street No. 2	INST1	BULK158AN	MH158A						ļ	0.0	0.0	4.00	0.00	2.62	2.62		0.00		0.00	2.27	2.62	2.62	0.73	0.00	3.01	39.24	15.10	250	0.40	0.774	36.23	92.33%
100 MARCA MARCA 100 MARCA		450.		14115	0.00	1	ļ	<u> </u>		1		070.0	6.51	45.01		0.00		0.00		0.00	F.00	0.00	40.77	0	0.00	04.10	04.00	00.01	0.50	0.05	0.010	001	00.050/
chemin Wanaki Road 158A MH158A MH158A 0.00 24.18 31.02 68.91 250 0.25 0.612 6.84	chemin Wanaki Road	158A	MH158A	MH154A	0.22	1	<u> </u>	1			0.0	973.2	3.81	15.01	 	2.62		3.83		0.00	5.60	0.22	12.75	3.57	0.00	24.18	31.02	68.91	250	0.25	0.612	6.84	22.05%
				1	<u> </u>	1		1	<u> </u>		<u> </u>	1	1	1	<u> </u>	l	l					<u> </u>	1	1	<u> </u>	I	<u> </u>			l	ı	1	1

IBI GROUP

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com LEGEND

Block 11&12 Proposed Conditions

Old Criteria being used

AS-BUILT SANITARY SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Canada Lands Company

AREA UNIT TYPES	(L/s) (L/s) 3.62 0.00 2 3.62 0.00 2 0.22 0.00 0.41 0.00 2 4.04 0.00 2 4.04 0.00 2 5.60 0.00 2 9.66 0.00 3	(L/s) (L/s) (L/s) 0.00 24.23 104 0.00 24.23 62. 0.00 2.13 55. 0.00 3.85 46. 0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	(m) 37	(mm) 250 250 250 250 250 250 250 250 300 300 300	SLOPE (%) 2.83 1.02 0.80 0.55 0.41 0.40 0.47 1.15 0.92 0.44	(full) (m/s) 2.060 1.237 1.095 0.908 0.784 0.774 0.948 1.483	\$0.13 80.13 38.42 53.36 42.16 12.07 11.58 40.20 79.22 42.68	58.12% 73.23% 44.11%
Phase 1B Phase 1B	3.62 0.00 2 3.62 0.00 2 0.22 0.00 0.41 0.00 2 4.04 0.00 2 4.04 0.00 2 5.60 0.00 2 9.66 0.00 3	0.00 24.23 104 0.00 24.23 62. 0.00 2.13 55. 0.00 3.85 46. 0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	37	250 250 250 250 250 250 250 250 300 300	2.83 1.02 0.80 0.55 0.41 0.40 0.47 1.15	0.908 0.774 0.948 1.483	80.13 38.42 53.36 42.16 12.07 11.58 40.20 79.22	(%) 76.78% 61.32% 96.16% 91.63% 30.39% 29.51% 58.12% 73.23%
Phase 1B Block 9 154A	3.62 0.00 2 3.62 0.00 2 0.22 0.00 0.41 0.00 2 4.04 0.00 2 4.04 0.00 2 5.60 0.00 2 9.66 0.00 3	0.00 24.23 104 0.00 24.23 62. 0.00 2.13 55. 0.00 3.85 46. 0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	37	250 250 250 250 250 250 250 250 300 300	2.83 1.02 0.80 0.55 0.41 0.40 0.47 1.15	2.060 1.237 1.095 0.908 0.784 0.774 0.948 1.483	80.13 38.42 53.36 42.16 12.07 11.58 40.20 79.22	76.78% 61.32% 96.16% 91.63% 30.39% 29.51% 58.12% 73.23%
Block 9 154A Ex BULK MH217A 0.19 0.0 973.2 3.81 15.01 2.62 3.83 0.00 5.60 0.19 12.94	3.62 0.00 2 0.22 0.00 0.41 0.00 4.04 0.00 2 4.04 0.00 2 5.60 0.00 2 9.66 0.00 9 9.70 0.00	0.00 24.23 62. 0.00 2.13 55. 0.00 3.85 46. 0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	56 78.50 19 56.10 101 70.80 12 9.70 14 9.90 16 21.40 18 46.90 16 40.20	250 250 250 250 250 250 300 300 300	0.80 0.55 0.41 0.40 0.47 1.15	1.237 1.095 0.908 0.784 0.774 0.948 1.483 1.326	38.42 53.36 42.16 12.07 11.58 40.20 79.22 42.68	96.16% 91.63% 30.39% 29.51% 58.12% 73.23%
Block 9 MH217Aa MH217A MH217A	3.62 0.00 2 0.22 0.00 0.41 0.00 4.04 0.00 2 4.04 0.00 2 5.60 0.00 2 9.66 0.00 9 9.70 0.00	0.00 24.23 62. 0.00 2.13 55. 0.00 3.85 46. 0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	56 78.50 19 56.10 101 70.80 12 9.70 14 9.90 16 21.40 18 46.90 16 40.20	250 250 250 250 250 250 300 300 300	0.80 0.55 0.41 0.40 0.47 1.15	1.237 1.095 0.908 0.784 0.774 0.948 1.483 1.326	38.42 53.36 42.16 12.07 11.58 40.20 79.22 42.68	96.16% 91.63% 30.39% 29.51% 58.12% 73.23%
croissant Squadron Crescent 215Aa-b MH215A MH216A 0.79 3 4 117.8 117.8 1.91 0.00 14.42 croissant Squadron Crescent 218A MH218A MH218B 0.02 1 0.0 11855 3.75 18.01 2.62 3.83 0.00 5.60 0.02 14.42 croissant Squadron Crescent	0.22 0.00 0.41 0.00 4.04 0.00 2 4.04 0.00 2 5.60 0.00 2 5.60 0.00 2 9.66 0.00 9.70 0.00	0.00 2.13 55. 0.00 3.85 46. 0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	19 56.10 101 70.80 12 9.70 14 9.90 16 21.40 18 46.90 16 40.20	250 250 250 250 250 300 300 300	0.80 0.55 0.41 0.40 0.47 1.15	1.095 0.908 0.784 0.774 0.948 1.483	53.36 42.16 12.07 11.58 40.20 79.22	96.16% 91.63% 30.39% 29.51% 58.12% 73.23%
croissant Squadron Crescent 216Aa-b MH216A MH217A 0.67 2 6 94.5 212.3 4.00 3.44 0.00 1.46 Croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 0.02 14.42 Thorncliffe Village THORN1 MH600A MH601A MH218B 0.0 1574.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.41 0.00 2 4.04 0.00 2 5.60 0.00 2 5.60 0.00 2 9.66 0.00 2 9.70 0.00 2 5.60 0.00 0.00 2 5.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 3.85 46. 0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	70.80 72 9.70 24 9.90 16 21.40 18 46.90 76 40.20	250 250 250 250 300 300 300	0.55 0.41 0.40 0.47 1.15	0.908 0.784 0.774 0.948 1.483	42.16 12.07 11.58 40.20 79.22 42.68	91.63% 30.39% 29.51% 58.12% 73.23%
croissant Squadron Crescent 216Aa-b MH216A MH217A 0.67 2 6 94.5 212.3 4.00 3.44 0.00 1.46 croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 0.02 14.42 Thorncliffe Village THORN1 MH600A MH601A MH601A 1574.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 5.55 19.99 Thorncliffe Village MH601A MH218B MH218B 0.07 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 0.00	0.41 0.00 2 4.04 0.00 2 5.60 0.00 2 5.60 0.00 2 9.66 0.00 2 9.70 0.00 2 5.60 0.00 0.00 2 5.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 3.85 46. 0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	70.80 72 9.70 24 9.90 16 21.40 18 46.90 76 40.20	250 250 250 250 300 300 300	0.55 0.41 0.40 0.47 1.15	0.908 0.784 0.774 0.948 1.483	42.16 12.07 11.58 40.20 79.22 42.68	91.63% 30.39% 29.51% 58.12% 73.23%
croissant Squadron Crescent 217A MH217A MH218A 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 0.02 14.42 croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 0.02 14.42 Thorncliffe Village THORN1 MH600A MH601A 5.55 1574.0 1574.0 3.66 23.36 0.00 <td>4.04 0.00 2 4.04 0.00 2 5.60 0.00 2 5.60 0.00 2 9.66 0.00 9.70 0.00</td> <td>0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.</td> <td>9.70 9.90 16 21.40 18 46.90 76 40.20</td> <td>250 250 300 300 300</td> <td>0.41 0.40 0.47 1.15</td> <td>0.784 0.774 0.948 1.483</td> <td>12.07 11.58 40.20 79.22 42.68</td> <td>30.39% 29.51% 58.12% 73.23% 44.11%</td>	4.04 0.00 2 4.04 0.00 2 5.60 0.00 2 5.60 0.00 2 9.66 0.00 9.70 0.00	0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	9.70 9.90 16 21.40 18 46.90 76 40.20	250 250 300 300 300	0.41 0.40 0.47 1.15	0.784 0.774 0.948 1.483	12.07 11.58 40.20 79.22 42.68	30.39% 29.51% 58.12% 73.23% 44.11%
croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 0.02 14.44 Thorncliffe Village THORN1 MH600A MH601A 5.55 1574.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 5.55 19.99 Thorncliffe Village MH601A MH218B 0.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 19.99 croissant Squadron Crescent 218B MH218B MH219A 0.07 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.07 34.50 croissant Squadron Crescent 219A MH219A 0.015 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.07 34.65 croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43	4.04 0.00 2 5.60 0.00 2 5.60 0.00 2 9.66 0.00 4 9.70 0.00 3	0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	24 9.90 16 21.40 18 46.90 76 40.20	250 300 300 300	0.40 0.47 1.15	0.774 0.948 1.483	11.58 40.20 79.22 42.68	29.51% 58.12% 73.23% 44.11%
croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 0.02 14.44 Thorncliffe Village THORN1 MH600A MH601A 5.55 1574.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 5.55 19.99 Thorncliffe Village MH601A MH218B 0.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 19.99 croissant Squadron Crescent 218B MH218B MH219A 0.07 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.07 34.50 croissant Squadron Crescent 219A MH219A 0.15 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.01 34.65 croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43	4.04 0.00 2 5.60 0.00 2 5.60 0.00 2 9.66 0.00 4 9.70 0.00 3	0.00 27.66 39. 0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	24 9.90 16 21.40 18 46.90 76 40.20	250 300 300 300	0.40 0.47 1.15	0.774 0.948 1.483	11.58 40.20 79.22 42.68	29.51% 58.12% 73.23% 44.11%
Thorncliffe Village THORN1 MH600A MH601A MH218B 5.55 1574.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 0.00 19.99 Troissant Squadron Crescent 218B MH218B MH219A 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.60 0.00 2 5.60 0.00 2 9.66 0.00 9.70 0.00	0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	16 21.40 18 46.90 76 40.20	300 300 300	0.47 1.15 0.92	0.948 1.483	40.20 79.22 42.68	58.12% 73.23% 44.11%
Thorncliffe Village THORN1 MH600A MH601A MH218B 5.55 1574.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 5.55 19.99 0.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.60 0.00 2 5.60 0.00 2 9.66 0.00 9.70 0.00	0.00 28.96 69. 0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	16 21.40 18 46.90 76 40.20	300 300 300	0.47 1.15 0.92	0.948 1.483	40.20 79.22 42.68	58.12% 73.23% 44.11%
Thorncliffe Village MH601A MH218B 0.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 19.99 0.00 19.99 0.00 19.99 0.00 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 19.99 0.00 19.99 0.00 19.99 0.00 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 0.00 19.99 0.00 19.99 0.00 1574.0 1	9.66 0.00 9.70 0.00 9.70 9.70 9.70 9.70 9.70	0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	18 46.90 76 40.20	300	0.92	1.483	79.22 42.68	73.23%
Thorncliffe Village MH601A MH218B MH218B MH218B MH218B MH219A 0.07 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.07 34.50 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.07 34.65 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 34.65 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 34.65 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 34.65 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 34.65 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 34.65 0.0 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 34.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9.66 0.00 9.70 0.00 9.70 9.70 9.70 9.70 9.70	0.00 28.96 108 0.00 54.08 96. 0.00 54.12 66.	18 46.90 76 40.20	300	0.92	1.483	79.22 42.68	73.23%
croissant Squadron Crescent 218B MH218B MH219A 0.07 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.07 34.50 croissant Squadron Crescent 219A MH219A MH220A 0.15 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 34.65 croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.15 34.65 croissant Squadron Crescent 221A MH221A 1.46 319.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 1.46 36.11 croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13 croissant Squadron Crescent MH222A MH223A MH223A 0.0 3078	9.66 0.00 5 9.70 0.00 5	0.00 54.08 96. 0.00 54.12 66.	76 40.20	300	0.92	1.326	42.68	44.11%
croissant Squadron Crescent 219A MH219A MH220A 0.15 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 34.65 croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 1.46 36.11 croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 1.46 36.11 croissant Squadron Crescent MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13 croissant Squadron Crescent MH223A MH223A MH223A 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13	9.70 0.00	0.00 54.12 66.						
croissant Squadron Crescent 219A MH219A MH220A 0.15 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 0.15 34.65 croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 1.46 36.11 croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13 croissant Squadron Crescent MH222A MH223A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13 croissant Squadron Crescent MH223A MH223A MH223A 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13	9.70 0.00	0.00 54.12 66.						
croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 1.46 36.11 croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13 croissant Squadron Crescent MH222A MH223A 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13			72.40	300	0.44	0.017	40.70	
croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13 croissant Squadron Crescent MH222A MH223A 0.00 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.02 36.13 croissant Squadron Crescent MH222A MH223A 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.00 36.13	10 11 0 00						12.79	19.12%
croissant Squadron Crescent MH222A MH223A 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.00 36.13		0.00 58.52 74.			0.55	1.025	16.30	21.78%
				300	0.41	0.885	6.07	9.40%
croissant Squadron Crescent RI OCK 15 RI K223AF MH223A	10.12 0.00	0.00 58.53 58.	32 81.60	300	0.34	0.806	0.30	0.51%
croiscant Squadron Crascant RLOCK 15 RLK223AF MH223A Design by Others								
Cloissant Oquadion Oloscott BEOOK 10 BENEZONE MINEZON		109	23 10.00	250	3.10	2.156	109.23	100.00%
croissant Squadron Crescent 222A MH223A MH165A 0.22 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 0.22 36.35	10.18 0.00	0.00 58.59 96.	24 36.10	300	0.91	1.319	37.65	39.12%
	evision					Date		
	mission No. 1					2016-07-08		
	mission No. 2					2016-11-04		
	mission No. 3					2017-01-25		
	r Mattamy's Design	gn				2017-12-08		
	Submission					2018-01-29		
• • • • • • • • • • • • • • • • • • • •	1 & 12 Study					2022-03-15		
17000 L/Ha/day	Date:					Sheet No:	/:	
38298.5.7.1	2016-07-08	-08				1 of 2		

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 MH231A Existing infrastructure (shown for information only)
Block 11, 12 Existing Conditions

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

				1			RESIDENTIAL					1			ICI A	REAS				I INFILTE	RATION ALL	OWANCE	1		TOTAL	1		PROPO	SED SEWER	RDESIGN	
	LOCATION			AREA	l	UNIT TYPES	AREA	POPII	ILATION	RES	PEAK			ΔRF	A (Ha)	ILLAU		ICI	PEAK		A (Ha)	FLOW	FIXED FI	_OW (L/s)	FLOW	CAPACITY	LENGTH	DIA			AVAILABLE
		FROM	TO	w/ Units			unia Hait	_		PEAK	FLOW	INSTITI	JTIONAL		IERCIAL	INDUS	STRIAL	PEAK	FLOW		T				1					(full)	CAPACITY
STREET	AREA ID	MH	MH	(Ha)	SF SD	/ TH/F TH/S	APT W/O UNIT	IND	CUM	FACTOR		IND			CUM			FACTOR	(L/s)	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s (%)
Pimiwidon Street	MH317-1, MH317-2	MH317A	MH316A	1.50		104		284.2	284.2	3.47	3.20	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.50	1.50	0.50	0.00	0.00	3.69	40.68	83.00	250	0.43	0.803	36.99 90.93%
Pimiwidon Street	MH316A	MH316A	BULK202AN	0.16		1		2.7	286.9	3.47	3.23	0.00	0.00	0.00	0.00		0.00	1.00	0.00	0.16	1.66	0.55	0.00	0.00	3.77	37.74	43.10	250	0.37	0.745	33.96 90.00%
Pimiwidon Street	•	BULK202AN	MH202A					0.0	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.66	0.55	0.00	0.00	3.77	40.68	21.00	250	0.43	0.803	36.91 90.72%
Wigwas Street	MH315A	MH315A	MH314A	0.79	2	18		55.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.79	0.79	0.26	0.00	0.00	0.92	49.63	111.64	250	0.64	0.979	48.72 98.16%
Wigwas Street	MH314A	MH314A	BULK203AN	0.06				0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.06	0.85	0.28	0.00	0.00	0.93	83.46	14.37	250	1.81	1.647	82.53 98.88%
Wigwas Street	-	BULK203AN	MH203A					0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.85	0.28	0.00	0.00	0.93	80.17	21.00	250	1.67	1.582	79.24 98.83%
Moses Tennisco Street	MH313A	MH313A	MH312A	0.66	2	16		50.0	50.0	3.65	0.59	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.66	0.66	0.22	0.00	0.00	0.81	75.73	77.20	250	1.49	1.495	74.92 98.93%
Moses Tennisco Street	MH312A, PARK	MH312A	BULK204AN	0.21		2		5.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.87	0.29	0.00	0.00	0.94	94.29	49.70	250	2.31	1.861	93.35 99.00%
																															1
Park	PARK	MH350A	pipe	0.42				0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.42	0.42	0.14	0.00	0.00	0.14	48.39	11.00	200	2.00	1.492	48.25 99.71%
Moses Tennisco Street		BULK204AN	MH204A					0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.87	0.29	0.00	0.00	0.94	89.90	21.00	250	2.10	1.774	88.96 98.95%
																															,
Michael Stoqua Street	MH311A	MH311A	MH310A	0.44		9		27.7	27.7	3.69	0.33	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.44	0.15	0.00	0.00	0.48	72.35	77.82	250	1.36	1.428	71.87 99.34%
Michael Stoqua Street	MH310A	MH310A	BULK205AN	0.21		2		5.4	33.1	3.68	0.39	0.00	0.00	0.00	0.00		0.00	1.00	0.00	0.21	0.65	0.21	0.00	0.00	0.61	65.66	49.19	250	1.12	1.296	65.05 99.07%
Michael Stoqua Street	•	BULK205AN	MH205A					0.0	33.1	3.68	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.65	0.21	0.00	0.00	0.61	66.24	21.00	250	1.14	1.307	65.63 99.08%
Wanaki Road	MH200A	MH200A	MH318A					0.0	0.0	3.80	0.00	0.00	0.00	1.01	1.01	0.00	0.00	1.50	0.49	1.01	1.01	0.33	0.00	0.00	0.82	42.53	63.35	250	0.47	0.839	41.71 98.06%
Wanaki Road	MH318A	MH318A	MH300A					0.0	0.0	3.80	0.00	0.00	0.00	0.95	1.96	0.00	0.00	1.50	0.95	0.95	1.96	0.65	0.00	0.00	1.60	42.53	77.11	250	0.47	0.839	40.93 96.24%
Tawadina Road	MH300A	MH300A	MH301A	0.47		15		40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78 92.79%
Tawadina Road	MH301A MH302A	MH301A	MH302A	0.54		14		37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33 95.18%
Tawadina Road Tawadina Road	MH302A MH303A	MH302A MH303A	MH303A MH304A	0.26 0.21		2		5.4 0.0	83.7 83.7	3.61 3.61	0.98	0.00	0.00	0.00	1.96 1.96	0.00	0.00	1.50 1.50	0.95 0.95	0.26 0.21	3.23 3.44	1.07	0.00	0.00	3.00	72.61 31.02	111.69 112.10	250 250	1.37 0.25	1.433 0.612	69.62 95.87% 27.95 90.11%
i awauiila Noau	WINSUSA	IVITIOUSA	IVITI304A	0.21				0.0	03.1	3.01	0.90	0.00	0.00	0.00	1.90	0.00	0.00	1.50	0.95	0.21	3.44	1.14	0.00	0.00	3.07	31.02	112.10	230	0.25	0.012	27.93 90.1176
Tawadina Road	MH305A	MH305A	MH304A	0.24				0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55 99.84%
Bareille-Snow Street	EXT-1	BULK304AN	MH304A	7.35			905	1629.0	1629.0	3 12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11 39.04%
							555	1020.0	1020.0	0.12	10.10	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.00	7.00	20	0.00	0.00	10.01	01.02	20.00	200	0.20	0.012	12:11
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	1.47			190	342.0			20.38	0.00		0.00		0.00	0.00	1.00	0.64	1.47	12.50	4.13	0.00	0.00	25.14	39.72	119.21	250	0.41	0.784	14.58 36.70%
Bareille-Snow Street	MH308A	MH308A	BULK206AN	0.07				0.0		3.06							0.00	1.00	0.64	0.07	12.57		0.00	0.00	25.17	84.15	16.82	250	1.84		58.99 70.09%
Bareille-Snow Street		BULK206AN	MH206A					0.0	2054.7	3.06	20.38	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.00	12.57	4.15	0.00	0.00	25.17	88.83	21.00	250	2.05	1.753	63.66 71.67%
Codd's Road	MH340A	MH340A	BLK231AN	1.78			278	500.4	500.4	3.38	5.48	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.78	1.78	0.59	0.00	0.00	6.07	75.98	70.00	250	1.50	1.500	69.91 92.01%
Codd's Road		MH231A	BULK176AN					0.0	500.4	3.38	5.48	0.00		0.00		0.00	0.00	1.00	0.00	0.00	1.78	0.59	0.00	0.00	6.07	83.92	50.22	250	1.83	1.656	77.86 92.77%
																														+ +	
Design Parameters:				Notes:						Designed:		KH			No.							Revision								Date	
Residential	ICI A	roos		Mannings Demand (i	coefficient (n) =	2	0.013 30 L/day 20	00 L/day							2						Submission I Submission I									2018-12-20	
SF 3.4 p/p/u	ICI A	1000		3. Infiltration	,		30 L/day 20 33 L/s/Ha	o Liuay		Checked:		.IIM			3							P Submission	1704IGM							2019-03-15	
TH/F/SD 2.7 p/p/u	INST 28.00	0 L/Ha/dav			allowance. al Peaking Facto		JJ L/3/11a			oneckeu.		JIIVI			4						Record infor		I (No.1)							2020-10-08	
TH/S 2.3 p/p/u		0 L/Ha/day				a = 1+(14/(4+(P	1000)^0.5))0.8								5						Record infor									2021-03-23	
APT 1.8 p/p/u	IND 35,000 L/Ha/day MOE Chart where K = 0.8 Correction Factor Dwg. Reference					rence:	118863-40	0		6							11 & 12 Stud								2022-03-15						
Other 60 p/p/Ha	17000 L'Harday MCE Chait 17000 L'Harday MCE Chait 17000 L'Harday 5. Commercial and Institutional Peak Factors based on total area,										F	ile Referen	ce:						Date:							Sheet No:					
			1.5 if are	eater than 20%.	otherwise 1.0				1						118863.5.7.	.1						2021-03-31							1 of 1		

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 MH231A Existing infrastructure (shown for information only)
Block 11&12 Proposed Conditions

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

				1			RESIDE	ENTIAL					1			ICI A	REAS				INFILT	RATION ALL	OWANCE			TOTAL			PROPO	SED SEWEI	RDESIGN		
	LOCATION			AREA	l	HNIT '	TYPES	AREA	P ∩ P II	LATION	RES	PEAK	+		ADE	A (Ha)	u LLAO		ICI	PEAK		A (Ha)	FLOW	FIXED F	LOW (L/s)	FLOW	CARACITY	LENGTH	DIA	SLOPE		AVAIL	RIE
		FROM	то	w/ Units	l			w/o Units			PEAK	FLOW	INISTIT	UTIONAL		MERCIAL	INDI	JSTRIAL	PEAK	FLOW		T			1	1.50	CAFACITI	LLNGIII	DIA		(full)	CAPA	
STREET	AREA ID	MH	MH	(Ha)	SF	SD / TH/F	TH/S APT	(Ha)	IND	CUM	FACTOR		IND	CUM	IND		IND		FACTOR		IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
				(/				(,				,	1																		, ,,		(,
Pimiwidon Street	MH317-1, MH317-2	MH317A	MH316A	1.50	1	104			284.2	284.2	3.47	3.20	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.50	1.50	0.50	0.00	0.00	3.69	40.68	83.00	250	0.43	0.803	36.99	90.93%
Pimiwidon Street	MH316A	MH316A	BULK202AN	0.16		1			2.7	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.16	1.66	0.55	0.00	0.00	3.77	37.74	43.10	250	0.37	0.745	33.96	90.00%
Pimiwidon Street	•	BULK202AN	MH202A						0.0	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.66	0.55	0.00	0.00	3.77	40.68	21.00	250	0.43	0.803	36.91	90.72%
Wigwas Street	MH315A	MH315A	MH314A	0.79	2	18			55.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.79	0.79	0.26	0.00	0.00	0.92	49.63	111.64	250	0.64	0.979	48.72	98.16%
Wigwas Street	MH314A	MH314A	BULK203AN	0.06					0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.06	0.85	0.28	0.00	0.00	0.93	83.46	14.37	250	1.81	1.647	82.53	98.88%
Wigwas Street	-	BULK203AN	MH203A						0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.85	0.28	0.00	0.00	0.93	80.17	21.00	250	1.67	1.582	79.24	98.83%
Moses Tennisco Street	MH313A	MH313A	MH312A	0.66	2	16			50.0	50.0	3.65	0.59	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.66	0.66	0.22	0.00	0.00	0.81	75.73	77.20	250	1.49	1.495	74.92	98.93%
Moses Tennisco Street	MH312A, PARK	MH312A	BULK204AN	0.21		2			5.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.87	0.29	0.00	0.00	0.94	94.29	49.70	250	2.31	1.861	93.35	99.00%
Park	PARK	MH350A	pipe	0.42					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.42	0.42	0.14	0.00	0.00	0.14	48.39	11.00	200	2.00	1.492	48.25	99.71%
Moses Tennisco Street	-	BULK204AN	MH204A						0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.87	0.29	0.00	0.00	0.94	89.90	21.00	250	2.10	1.774	88.96	98.95%
Michael Stoqua Street	MH311A	MH311A	MH310A	0.44	1	9			27.7	27.7	3.69	0.33	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.44	0.15	0.00	0.00	0.48	72.35	77.82	250	1.36	1.428	71.87	99.34%
Michael Stoqua Street	MH310A	MH310A	BULK205AN	0.21	'	2			5.4	33.1	3.68	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.65	0.10	0.00	0.00	0.40	65.66	49.19	250	1.12	1.296	65.05	99.07%
Michael Stoqua Street	-	BULK205AN		0.21					0.0	33.1		0.39	0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.65	0.21	0.00	0.00	0.61	66.24	21.00	250	1.14	1.307	65.63	99.08%
Wanaki Road	MH200A	MH200A	MH318A						0.0	0.0	3.80	0.00	0.00	0.00	1.01	1.01	0.00	0.00	1.50	0.49	1.01	1.01	0.33	0.00	0.00	0.82	42.53	63.35	250	0.47	0.839	41.71	98.06%
Tawadina Road	MH300A	MH300A	MH301A	0.47		15			40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78	92.79%
Tawadina Road	MH301A	MH301A	MH302A	0.54		14		1	37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33	95.18%
Tawadina Road	MH302A	MH302A	MH303A	0.26		2			5.4	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.26	3.23	1.07	0.00	0.00	3.00	72.61	111.69	250	1.37	1.433	69.62	95.87%
Tawadina Road	MH303A	MH303A	MH304A	0.21					0.0	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.21	3.44	1.14	0.00	0.00	3.07	31.02	112.10	250	0.25	0.612	27.95	90.11%
Tawadina Road	MH305A	MH305A	MH304A	0.24					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55	99.84%
Bareille-Snow Street	EXT-1	BULK304AN	MH304A	7.35			905		1629.0	1629.0	3.12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11	39.04%
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	1.48			140		252.0	1964.7	3.07	19.57	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	1.48	12.51	4.13	0.00	0.00	24.33	39.72	119.21	250	0.41	0.784	15.39	38.75%
Bareille-Snow Street	MH308A	MH308A	BULK206AN	0.96			352		633.6	2598.3	3.00	25.23	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.96	13.47	4.45	0.00	0.00	30.31	84.15	16.82	250	1.84	1.661	53.85	63.99%
Bareille-Snow Street	1111100011	BULK206AN		0.00			002		0.0	2598.3		25.23	0.00		0.00	1.96		0.00	1.00	0.64	0.00	13.47	4.45	0.00	0.00	30.31	88.83	21.00	250	2.05	1.753	58.52	65.88%
Codd's Road	MH340A	MH340A	BLK231AN	0.88			212		381.6	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.88	0.88	0.29	0.00	0.00	4.53	75.98	70.00	250	1.50	1.500	71.46	94.04%
Codd's Road		MH231A	BULK176AN						0.0	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.88	0.29	0.00	0.00	4.53	83.92	50.22	250	1.83	1.656	79.40	94.61%
Design Parameters:				Notes:							Designed:	:	KH			No.						F	Revision								Date		
-				1. Mannings	coefficient (r	n) =	0.013									1						Submission I	No. 1 for City	Review							2018-12-20		
Residential	ICI A	Areas		2. Demand (per capita):		280 L/day	200	L/day							2						Submission I	No. 2 for City	Review							2019-03-15		
SF 3.4 p/p/u				3. Infiltration	allowance:		0.33 L/s/Ha				Checked:		JIM			3						MECI	P Submission	1							2019-04-17		
TH/F/SD 2.7 p/p/u		00 L/Ha/day		Residentia												4						Record infor									2020-10-08		
TH/S 2.3 p/p/u		00 L/Ha/day				,	(14/(4+(P/1000)^0.5))0.	.8								5			-			Record infor					·				2021-03-23		-
APT 1.8 p/p/u		00 L/Ha/day	MOE Chart		where K = 0						Dwg. Refe	rence:	118863-40	00		6						Block	11 & 12 Stud	,							2022-03-15		
Other 60 p/p/Ha	1700	00 L/Ha/day					Factors based on total	al area,									ile Referer							Date:							Sheet No:		
				1.5 if gre	eater than 20)%, otherwi	se 1.0										118863.5.7	7.1						2021-03-31	1						1 of 1		

Technical Memorandum

To/Attention Mary Jarvis - Canada Lands Company **Date** November 23, 2022

From Jim Moffatt – IBI Group Project No 118863-2.0

cc Krisendat Sewgoolam - Canada Lands Company

Meghan Black - IBI Group Anton Chetrar - IBI Group

Subject Block 11 - Parcel 1 Site Plan Submission

Wateridge Village Phase 2B

Introduction

This technical memorandum has been prepared for Canada Lands Company and includes a review of the proposed site plan for Parcel 1 at Block 11 in Phase 2B of the Wateridge Village community. The review is based on the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing prepared by IBI Group dated April 26, 2022, also included in **Appendix A**.

Figure 1, in the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing, shows the location site plan for Parcel 1 at Block 11 for which DesignWorks Engineering is seeking approvals. Parcel 1 in Block 11 is surrounded by Tawadina Street to the north, Bareille-Snow Street to the west, Parcel 2 to the south and Michael Stoqua Street to the east. The plan consists of two 9-storey residential buildings with one level of underground parking.

The DesignWorks Engineering site plan shows different storm and sanitary servicing outlets than the ones provided by the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing dated April 26, 2022. This memorandum will outline the impacts on wastewater disposal and a review of the water supply and low impact development for the proposed development. In terms of management of stormwater, the proposed design was compared to the aforementioned April 2022 IBI memo.

Sanitary Servicing

As stated previously, our review will be based on the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing prepared by IBI Group dated April 26, 2022.

In the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing, Parcel 1 in Block 11 is proposed to outlet into the sanitary sewer system on Barreille-Snow Street, north of MH308A. On the site plan submitted by DesignWorks Engineering for parcel, the sanitary sewer is proposed to outlet on Tawadina Street, west of MH304A.

An analysis of the ability of the existing sanitary sewer system in Tawadina Street to accommodate the flows from Parcel 1 in Block 11 was also completed. This analysis is included on the updated sanitary sewer spreadsheet included in **Appendix B**. The updated spreadsheet was based not only on the current City of Ottawa wastewater criteria, which came into effect in 2018 but also on the proposed site plan as submitted by DesignWorks Engineering. The following **Table 1** provides a review of the impacts of this change and the ability of the sanitary sewers to accept and convey any changes in flows.

Mary Jarvis - November 23, 2022

Table 1: Sanitary Flow vs Sewer Capacity Analysis

Street Location		Original	Plan	Fi	nal DesignW	orks Plan	Sewe	r Desi	gn
	Units	Total Popn	Flows(I/s)	Units	TotalPopn	Flows(I/s)	Size(mm)		are :ity(l/s)
								Flow	%
Tawadina MH303A – MH304A	0	83.7	3.07	240	515.7	7.96	250	23.06	74.33
Bareille-Snow MH304A - MH308A	140	1964.7	24.33	0	2238.3	26.80	250	12.93	32.54

The updated analysis includes the existing sewer system highlighted on the Phase 2B design sheet. It is noted that the proposed site plan has new population of 432.0 people. This shows an increase of 273.6 people from the results of the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing. The new calculated wastewater flows in the Tawadina Road sewer from MH303A to MH304A from Parcel 1 is 7.96 l/s. This shows a wastewater flow increase of 4.89 l/s as a result of re-directing wastewater flow of Parcels 1 from Barreille-Snow Street to Tawadina Road. The spare capacity of that sewer is 23.06 l/s. The capacity of the sanitary sewer in Barreille-Snow Street was analyzed as well. The wastewater flow between MH304A and MH308A is 26.80 l/s. This shows an increase of 2.47 l/s in wastewater flow with an available capacity of 12.93 l/s. For reference, a highlighted copy of the Phase 2B sanitary sewer design sheet is included in **Appendix B**.

The impact of re-directing wastewater flows from Parcel 1 in Block 11 to the Tawadina Road sanitary sewer has been completed. Based on the analysis noted above, the existing wastewater system in Wateridge Village Phase 2B has sufficient available capacity to carry the re-directed flows from Parcel 1 in Block 11. It is therefore concluded that the existing sanitary sewers in Tawadina Road, Bareille-Snow Street adjacent to the subject property can accommodate the re-direction of flows from Parcel 1 in Block 11.

Stormwater Servicing

The stormwater servicing is not consistent with the servicing presented in the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing prepared by IBI Group dated April 26, 2022. For example, the minor storm connection proposed by DesignWorks Engineering is to Tawadina Road to the north, while it was concluded in the IBI memo that the connection is to be to Bareille-Snow Street to the west. IBI cannot at this time comment on the implication of such a change. It should be noted that in addition to minor system connectivity, the April 2022 memo also outlined major system connectivity as well as minor and major system requirements.

Mary Jarvis - November 23, 2022

Water Servicing

The objective of this evaluation is to review the water distribution of the submitted site plan by DesignWorks Engineering. A watermain model for the site plan area was included in the phase 2B Design Brief. For reference, the modeling results for Phase 2B are included in **Appendix C**.

The site plan shows a new 200mm diameter watermain connection at the existing 400mm watermain on Tawadina Road. This connection is expected to service both buildings on the site plan. The water design criteria used in calculating the water demands and system pressures for the site plan in Block 11 submitted by DesignWorks Engineering is based on the latest City of Ottawa Water Distribution Guidelines. It is also confirmed that the fire flow demand was calculated on the latest Fire Underwriters Survey (FUS) 2020.

The Wateridge Phase 2B figure shows four nodes around the subject site (I14, I16, I18 and I20). The basic day pressures range from 551.6 kPa to 555.0 kPa on Tawadina Road. The City of Ottawa criteria for pressure reduction during basic day demand is 552 kPa. Therefore, based on our analysis the building along Tawadina Road will not require pressure reducing valves on internal plumbing. The peak hour pressures range between 498.8 kPa and 508.1 kPa. The City criteria is that peak hour pressures must exceed 276 kPa so there is no issue with this criterial. The fire flows available during maximum day demand range between 462.6 l/s and 850.5 l/s which greatly exceeds the required fire flow rate of 320.17 l/s for the proposed buildings on the site plan.

The results of the average day demand for the site shows a demand of 1.4 L/s or 120,960 L/day. The City of Ottawa requires that a minimum 2 feeds be provided to a service area with a demand above 50,000 L/day, to avoid service disruptions. Therefore, an additional watermain connection to service the site is required.

Low Impact Development

A review of the proposed site plan, located at Wateridge Village Phase 2B – Block 11, low impact development (LID) requirements was completed and included in **Appendix D**.

Conclusion

In summary, a review of the proposed site plan for which DesignWorks Engineering is seeking approvals was completed. In terms of wastewater disposal impacts, although the proposed sanitary servicing outlet is not consistent the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing, we can conclude that the existing sanitary sewer in Tawadina Road can accommodate the re-direction of flows from Parcel 1 in Block 11. Based on the analysis above of the water distribution, an additional watermain connection is required at the proposed site plan to meet City of Ottawa Design Guidelines.

In terms of management of stormwater, the stormwater servicing is not consistent with the servicing presented in the Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing prepared by IBI Group dated April 26, 2022. Therefore, IBI cannot at this time comment on the implication of such a change.

Mary Jarvis - November 23, 2022

We trust our conclusions are satisfactory for your purposes. We are, of course, available to review and discuss the information contained within this document.

Regards,

IBI GROUP

Jim Moffatt, P. Eng. Associate

Mary Jarvis - November 23, 2022

APPENDIX A

• Assessment of Revised Block 11 and 12 Storm and Sanitary Servicing

Memorandum

To/Attention John Bernier, City of Ottawa **Date** April 26, 2022

Shawn Wessel, City of Ottawa

From Meghan Black Project No 118863-5.3.1.5

Jim Moffatt

cc Mary Jarvis, Canada Lands

Company

Subject Assessment of Revised Block 11 and 12 Storm and Sanitary

Servicing

1. Background

Blocks 11 and 12 are located within Phase 2B of the Wateridge development and are indicated in **Figure 1**. The municipal servicing of the two blocks was addressed in, "Design Brief, Wateridge Village at Rockcliffe Phase 2B," prepared by IBI Group in April 2019. Subsequent to the approval of the Phase 2B detailed design, Canada Lands Company has sub-divided the subject blocks into five parcels for development. The parcels, identified as Parcels 1-5, are being considered for purchase by various parties. IBI has been engaged to assess the impact of this change on adjacent existing storm and sanitary sewers. Enclosed **Figure 1** depicts Blocks 11 and 12 and the respective five parcels.

2. Stormwater Management

2.1 Objective

The objective of the evaluation is to assess the impact on the dual drainage system of discretizing Blocks 11 and 12 into Parcels 1-5 and the associated impacts to the storm servicing. The detailed design of Parcels 1-5 will be carried out by others.

2.2 Dual Drainage Design

Per the Phase 2B design brief, minor storm runoff from Block 11 (identified as drainage area B309) drains to Bareille-Snow Street, with major flow tipping to Bareille-Snow Street at Hemlock Road. Minor flow from Block 12 (identified as drainage area B340) drains to Codd's Road with major flow draining to Hemlock Road. The minor system restriction for the two development blocks corresponds to between the 5 and 100 year storm event, and no on-site storage was proposed. The storm drainage area plan (Drawing 750) from the Phase 2B submission is enclosed in **Appendix A** for reference. With the proposed adjustments to the storm servicing for the subdivided or discretized parcels, minor system capture and on-site storage has been re-assessed.

2.3 Hydrological Analysis

Hydrological analysis of the dual drainage system of the subject site has been conducted using DDSWMM, consistent with the simulations completed for the Phase 2B design brief.

2.3.1 Storm and Design Parameters

The following storms and design parameters have been used in the evaluation. The main hydrological parameters are summarized in **Table 2.1**, with a comparison of what was included in the Phase 2B evaluation.

- **Design Storms:** The subject site has been evaluated with the following storms, consistent with the Phase 2B evaluation:
 - 5 and 100 year 3 hour Chicago storm events, and associated stress test; applied for the evaluation of the trunk storm sewers;
 - 100 year 24 hour SCS Type II storm event, applied for the evaluation of the trunk storm sewers:
 - July 1979, August 1988, August 1996 historical storms per the OSDG.
- Area and Imperviousness: Block 11 (identified as drainage area B309) and Block 12 (identified as drainage area B340) have been discretized into Parcels 1 through 5. An imperviousness value of 86% has been applied to the parcels, consistent with the values applied for B309 and B340 in the Phase 2B design brief.
- **Infiltration:** Infiltration losses were selected to be consistent with the OSDG. The Horton values are as follows: $f_0 = 76.2 \text{ mm/h}$, $f_c = 13.2 \text{ mm/h}$, $k = 0.00115 \text{ s}^{-1}$.
- Subcatchment Width: The catchment width for the parcels was based on 225 m/ha.
- **Slope:** The ground slope was based upon the average slope for both impervious and pervious area. Generally, the slope is approximately 2% (0.02 m/m). This assumes a slope of approximately 1% for impervious or road surfaces and 3% for pervious surfaces (lot grading).
- Initial Abstraction (Detention Storage): Detention storage depths of 1.5 mm and 4.67 mm were used for impervious and pervious areas, respectively. These values are consistent with the OSDG.
- **Manning's roughness:** Manning's roughness coefficients of 0.013 and 0.25 were used for impervious and pervious areas, respectively.
- Baseflow: No baseflow components were assumed for any of the areas contributing runoff to the minor system within the DDSWMM model.
- **Minor System Capture:** The minor system capture for the parcels ranges from the 5 year to the 100 year, with three parcels capturing between the 5 and 100 year simulated flow.
- Major System Storage and Routing: In order to continue to satisfy City design guidelines, on-site storage has been introduced on four of the parcels, as noted below.

A summary of parameters and minor system and on-site storage is presented in the following tables. A summary from the Phase 2B detailed design is included to facilitate review. Refer to

Figure 2 for the overall storm sewer network and to **Figure 3** for a depiction of the minor and major system connectivity for the five parcels.

Table 2.1 Hydrological Parameters

			Phas	se 2B Desig	n Brief						Currer	nt Evaluation			
Block	Drainage Area ID	Area (ha)	Major System: D/S Segment ID	Minor System: MH ID	IMP Ratio	Segment Length (m)	Sub- catchment Width (m)	Parcel	Drainage Area ID	Area (ha)	Major System: D/S Segment ID	Minor System: MH ID	IMP Ratio	Segment Length (m)	Sub- catchment Width (m)
11	B309	1.24	S308A on	MH309 on	0.86	135.1	270.2	1	B309_1	0.72	S308 on Bareille- Snow	MH309 on Bareille- Snow	0.86	81	162
11	B309	1.24	Bareille- Snow	Bareille- Snow	0.80	133.1	210.2	2	B309_2	0.52	S308A on Bareille- Snow	MH310 on Michael Stoqua	0.86	58.5	117
				MUZOE				3	B340_3	0.34	S308A on Bareille- Snow	MH308 on Bareille- Snow	0.86	38.25	76.5
12 B3	B340	1.24	S207 on Hemlock	MH305 on Codd's Road	0.86	173.1	346.3	4	B340_4	0.53	S308 on Bareille- Snow	MH309 on Bareille- Snow	0.86	59.63	119.25
				Noau				5	B340_5	0.37	S340 on Codd's	MH305 on Codd's Road	0.86	41.63	83.25

Table 2.2 Minor System Restriction and On-site Storage

		Phase 2	2B Design Brief					Current Evaluation		
		Minor Sy	ystem Capture	Required On-			Minor	System Capture	Major	System
Block	Drainage Area ID	Simulated Flow (I/s)	Corresponding Design Storm	Site Storage (cu-m)	Parcel	Drainage Area ID	Simulated Flow (I/s)	Corresponding Design Storm	Required On- Site Storage (cu-m)	Comment
11	B309	370	Between 5 and	None	1	B309_1	195	Between 5 and 100 year	43	Control up to the 100 year event
	B309	370	100	None	2	B309_2	105	5 year	64	Control up to the 100 year event
					3	B340_3	95	Between 5 and 100 year	18	Control up to the 100 year event
12	B340	366	Between 5 and 100	None	4	B340_4	150	Between 5 and 100 year	21	Control up to the 100 year event
					5	B340_5	139	100 year	None	N/A

2.4 Results of Hydrological Modeling

2.4.1 Minor System

The minor system hydrographs generated by the hydrological model were exported to the hydraulic model for analysis, discussed in **Section 2.5**.

2.4.2 Major System

Due to the adjustment in major system connectivity, the major system has been reassessed. Refer to drainage areas on Drawing 750 from the Phase 2B submission in **Appendix A**.

2.4.2.1 Street Segment Storage

The available and utilized street sag storage is summarized in the below table for street segments in affected by the revised storm servicing of Parcels 1-5.

Table 2.3 Summary of On-site Street Storage (Available and Utilized) During Target Minor System Design Storm in Vicinity of Parcels 1-5

Street	Drainage Area ID	Minor System Design Storm	Available Static Storage (cu-m)	Total Storage Utilized During Minor System Design Storm (cu-m)	Overflow During Minor System Design Storm (I/s)
Michael Stocqua	S310A	5	61.39	0	0
Bareille-Snow	S308A	5	40.38	0	0
Hemlock	S176C	5	1.14	0	0

The results indicate that there is no ponding on the street segments during the minor system design storm.

2.4.2.2 Velocity x Depth

According to the City of Ottawa Sewer Design Guidelines (October 2012), the maximum depth of flow should not exceed 350 mm and the product of velocity and depth on all the street segments should not exceed $0.6~\text{m}^2/\text{s}$ during the 100 year storm event.

The cascading overflow is the flow exiting a drainage area when maximum minor system inflow and maximum available ponding has been utilized. To determine velocity of the cascading overflow, a SWMHYMO file was created (118863VD.dat).

To determine velocity of the cascading overflow at critical locations, SWMHYMO was used. The ROW sections were entered into the model with the appropriate longitudinal slopes to obtain the maximum velocity of flow using the Route Channel routine. The overflow is obtained from the respective DDSWMM output file and is noted in the footnotes of the below tables.

To determine depth of the cascading overflow, the *Calculation Sheet: Overflow From Typical Road Ponding Area* provided at the February 2014 Technical Bulletin ISDTB-2014-01 was used. The

exception to this is where the road is on grade in which case the depths were obtained from the SWMHYMO model.

The results are presented in Table 2.4 and Table 2.5 and the supporting calculations are included in **Appendix A**.

Table 2.4 Summary of Cascading Flow during the 100 year 3 hour Chicago storm

Street	Drainage Area ID	Dummy Segment ID	Overflow (I/s) ¹	Velocity (m/s)²	Max. Static Ponding Depth (m)	Depth of Dynamic Flow (m) ³	Max. Depth (Static + Dynamic) (m)	Velocity x Depth (m²/s)
Michael Stoqua	S311A	N/A	49	0.73	N/A	0.04	0.04	0.03
Michael Stoqua	S310A	D14	0	0	0.29	0	0.29	0
Bareille-Snow	S309	N/A	43	0.50	N/A	0.05	0.05	0.03
Bareille-Snow	S308	N/A	65	0.84	N/A	0.05	0.05	0.04
Bareille-Snow	S308A	D18	26	0.47	0.26	0.05	0.31	0.03
Codd's	S340	N/A	50	0.88	N/A	0.04	0.04	0.04
Codd's	S231	N/A	100	0.62	N/A	0.07	0.07	0.04
Hemlock	S205C	N/A	37	0.48	N/A	0.05	0.05	0.02
Hemlock	S207	N/A	61	0.55	N/A	0.06	0.06	0.03

⁽¹⁾ Overflow from DDSWMM output 118863-3CHI100.out (2) Velocity from SWMHYMO output 118863VD.out

Table 2.5 Summary of Cascading Flow during the 100 year 3 hour Chicago storm + 20%

Street	Drainage Area ID	Dummy Segment ID	Overflow (I/s) ¹	Velocity (m/s)²	Max. Static Ponding Depth (m)	Depth of Dynamic Flow (m) ³	Max. Depth (Static + Dynamic) (m)	Velocity x Depth (m²/s)
Michael Stoqua	S311A	N/A	66	0.79	N/A	0.05	0.05	0.04
Michael Stoqua	S310A	D14	33	0.61	0.29	0.06	0.35	0.04
Bareille-Snow	S309	N/A	71	0.57	N/A	0.06	0.06	0.03
Bareille-Snow	S308	N/A	216	1.15	N/A	0.08	0.08	0.09
Bareille-Snow	S308A	D18	268	1.29	0.26	0.13	0.39	0.17
Codd's	S340	N/A	98	1.04	N/A	0.05	0.05	0.06
Codd's	S231	N/A	165	0.71	N/A	0.08	0.08	0.06
Hemlock	S205C	N/A	46	0.51	N/A	0.05	0.05	0.03

⁽³⁾ Depth of the cascading overflow was determined from the Calculation Sheet: Overflow From Typical Road Ponding Area provided in the February 2014 Technical Bulletin ISDTB-2014-01. For those areas which have a continuous road grade (or no dummy segment), the depth was taken from SWMHYMO VxD simulation.

Street	Drainage Area ID	Dummy Segment ID	Overflow (I/s) ¹	Velocity (m/s) ²	Max. Static Ponding Depth (m)	Depth of Dynamic Flow (m) ³	Max. Depth (Static + Dynamic) (m)	Velocity x Depth (m²/s)
Hemlock	S207	N/A	89	0.60	N/A	0.07	0.07	0.04

⁽¹⁾ Overflow from DDSWMM output 118863-3CHI120.out

During the 100 year 3 hour Chicago storm, the summation of depth of ponding and depth of cascading flow for all street segments is less than the City guideline of 0.35 m. The product of depth and velocity is also less than the City guideline of 0.6 m²/s.

During the sensitivity analysis applying the 100 year 3 hour Chicago storm increased by 20%, the summation of depth of ponding and depth of cascading flow for all street segments is less than the City guideline of 0.35 m, with the exception of S308A, noted in the above table in bold red type. At all locations, the product of depth and velocity is less than the City guideline of 0.6 m²/s.

These results are consistent with those of the Phase 2B detailed design. It should be noted that major flow from the above-noted affected areas is at or below that accounted for in the Phase 2B model.

The area at which total depth of ponding and cascading flow exceeds 0.35 m during the stress test is noted in the below table with the critical adjacent property elevation.

Table 2.6 Critical Ponding Locations during the Stress Test and Adjacent Property Elevations

Drainage Area ID	Low Point Elevation (m)	Max. Depth (Static + Dynamic) (m)	(1) Corresponding Elevation (m)	(2) Adjacent Property Line (m)	Difference (2) – (1)
S308A	88.74	0.39	89.13	89.01	-0.12

The corresponding stress test ponding elevation is greater than the adjacent block grading at the boulevard. At the detailed design stage of the blocks, house openings must be greater than the ponding elevation.

2.5 Storm Hydraulic Grade Line Analysis

The hydraulic grade line (HGL) was evaluated using the XPSWMM hydraulic model. The existing overall model for the Wateridge site, most recently revised as part of the Phase 4 submission (December 2021), was revised to include the revised servicing of Parcels 1-5.

XPSWMM simulations were conducted for the 100 year 3 hour Chicago storm to ensure that the HGL is at least 0.3 m below the underside of footing elevations. A sensitivity analysis was also performed using the 100 year Chicago storm with a 20% increase in intensity to ensure that there is no severe flooding to properties. Hydraulic grade line elevations along the existing downstream Phase 1A trunk storm sewer and relevant Phase 2B storm sewers are presented in the below table for these storms, along with a comparison of underside of footing (USF) elevations. Results

⁽²⁾ Velocity from SWMHYMO output 118863VD.out

⁽³⁾ Depth of the cascading overflow was determined from the Calculation Sheet: Overflow From Typical Road Ponding Area provided in the February 2014 Technical Bulletin ISDTB-2014-01. For those areas which have a continuous road grade (or no dummy segment), the depth was taken from SWMHYMO VxD simulation.

for the overall development area are presented in the enclosed **Appendix A**, including for the three historical storms per OSDG. Refer to **Figure 1** for the location of storm maintenance holes.

Table 2.7 Storm Hydraulic Grade Line - Phase 1A Trunk and Relevant Phase 2B Storm Sewers

MH ID	Street	Proposed Ground	USF (m)	100 year 3 h	nour Chicago	_	nour Chicago 20%
WIH ID	Street	Elev. (m)	USF (III)	HGL (m)	USF – HGL (m)	HGL (m)	USF – HGL (m)
MH194	Top of the escarpment	82.05	N/A	80.47	N/A	80.55	N/A
MH193	OSHEDINAA	84.68	82.68	81.12	1.56	81.28	1.40
MH192	OSHEDINAA	84.99	82.99	81.46	1.53	81.64	1.35
MH191	OSHEDINAA	85.76	83.76	81.72	2.04	81.93	1.83
MH190	OSHEDINAA	86.36	84.36	81.96	2.40	82.19	2.17
MH180	OSHEDINAA	86.96	84.96	82.27	2.69	82.77	2.19
MH178	HEMLOCK	89.00	86.60	83.41	3.19	83.47	3.13
MH176	HEMLOCK	88.03	85.63	83.77	1.86	83.85	1.78
MH231	CODD'S	89.81	87.41	85.61	1.79	85.64	1.77
MH305	CODD'S	91.00	88.60	86.54	2.06	86.56	2.04
MH207	HEMLOCK	88.53	86.13	84.65	1.48	84.65	1.48
MH206	HEMLOCK	89.10	86.70	85.65	1.05	85.65	1.05
MH308	BAREILLE- SNOW	89.68	87.28	86.88	0.40	86.69	0.59
MH309	BAREILLE- SNOW	90.15	87.75	87.44	0.31	87.08	0.67
MH205	HEMLOCK	89.35	86.95	85.86	1.09	85.88	1.07
MH310	MICHAEL STOCQUA	90.04	87.64	87.28	0.36	87.42	0.22
MH311	MICHAEL STOCQUA	90.69	88.29	87.44	0.85	87.56	0.73

Along the Phase 1A trunk and Phase 2B storm sewers presented above, a minimum 0.3 m clearance between the USF and HGL is maintained during the 100 year 3 hour Chicago storm and the HGL elevations remain below USF elevations during the sensitivity analysis. This is also true for the results for the remainder of the development area for additional storm simulations (enclosed in **Appendix A**).

2.6 Conclusion

The storm servicing of Blocks 11 and 12 was addressed during the detailed design of Phase 2B. The purpose of this evaluation is to assess the impact on the dual drainage system of discretizing Blocks 11 and 12 into Parcels 1-5 and the associated revisions to the storm servicing. The proposed minor and major connectivity of the five parcels is presented on **Figure 3** and minor system capture and required on-site storage is summarized in **Table 2.2**.

In terms of major flow, the depth and velocity of flow on streets adjacent to the five parcels was evaluated. City guidelines with respect to ponding during the minor system design storm, as well as maximum depth and velocity of flow are maintained. Major flow from the adjacent street segments is at or below that accounted for in the Phase 2B model.

With respect to minor flow, the hydraulic grade line evaluation was updated with the revised inflow hydrographs from the five parcels. Results indicate that a minimum 0.3 m clearance between the USF and HGL is maintained during the 100 year 3 hour Chicago storm and the HGL elevations remain below USF elevations during the sensitivity analysis.

It is therefore concluded that the proposed storm servicing to support Parcels 1-5 can be accommodated by the existing storm infrastructure.

3. Wastewater Outlet

3.1 Objective

The objective of this evaluation is to assess the impact on the existing wastewater system by the sub-division of Blocks 11 and 12 into five parcels. **Figure 4** shows the location of the subject site and the existing sanitary sewers which will be impacted by this change.

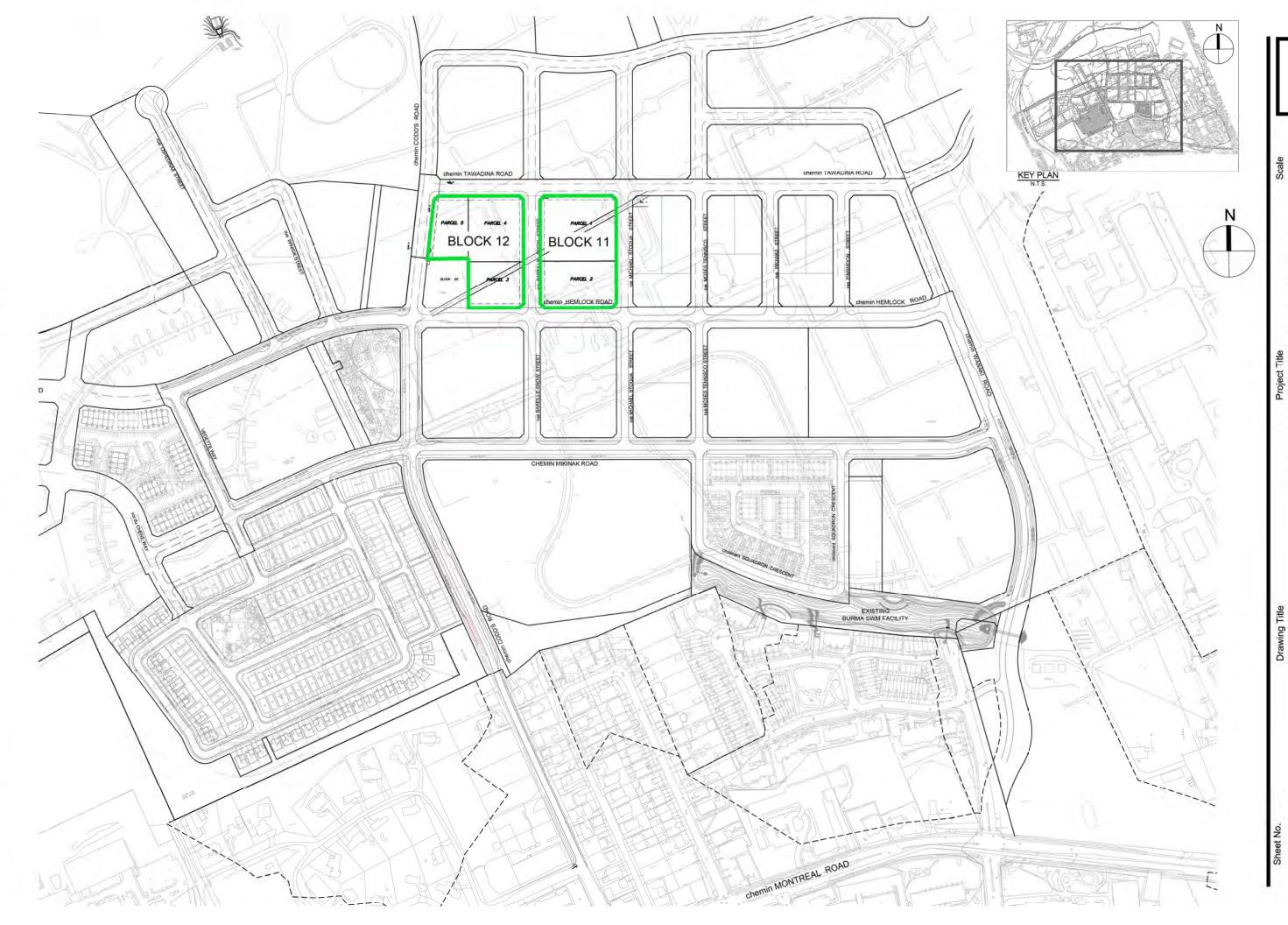
3.2 Existing Conditions

Development of Phase 2B included the construction of sanitary sewers in Codd's Road from MH231A to the MH340A and Bareille-Snow Street from BLK308A to MH304A. The sanitary sewer on Codd's Road was designed to capture wastewater flows from Block 12 and the sanitary sewer on Bareille-Snow Street was designed to capture wastewater flows from Block 11. The Bareille-Snow sewer outlets to a sanitary sewer in Hemlock Road. The latter sewer was designed in 2017, using the City's wastewater flow criteria in effect at that time and predicted a flow of 28.49 l/s tributary from the Bareille-Snow sewer. The Bareille-Snow sanitary sewer was designed in 2019 based on flow calculation criteria in effect at that time and predicted a slightly less flow of 25.17 l/s. A highlighted copy of the Phase 2B sanitary sewer design sheet is included in **Appendix B**. The spreadsheet has been highlighted to indicate the immediate downstream sewers on Codd's Road and Bareille-Snow Street. The flow calculations in the Phase 2B spreadsheet were based on the City of Ottawa's wastewater criteria in effect of that time (2019) and the block population densities noted in the Master Servicing Study.

3.3 Proposed Condition

Because of the sub-division of Blocks 11 and 12 into five parcels, less wastewater flow is now proposed to outlet to the Codd's Road sanitary sewer. The Phase 2B sewer designed assumed all Block 12 would outlet to that sewer but now only parcel 5 is proposed to outlet in that direction. No further analysis is therefore needed for the Codd's Road sewer.

Parcels 3 and 4, which represent the balance of Block 12, are now proposed to outlet to the existing sanitary sewer in Bareille-Snow Street and not the Codd's Road sewer. There is no

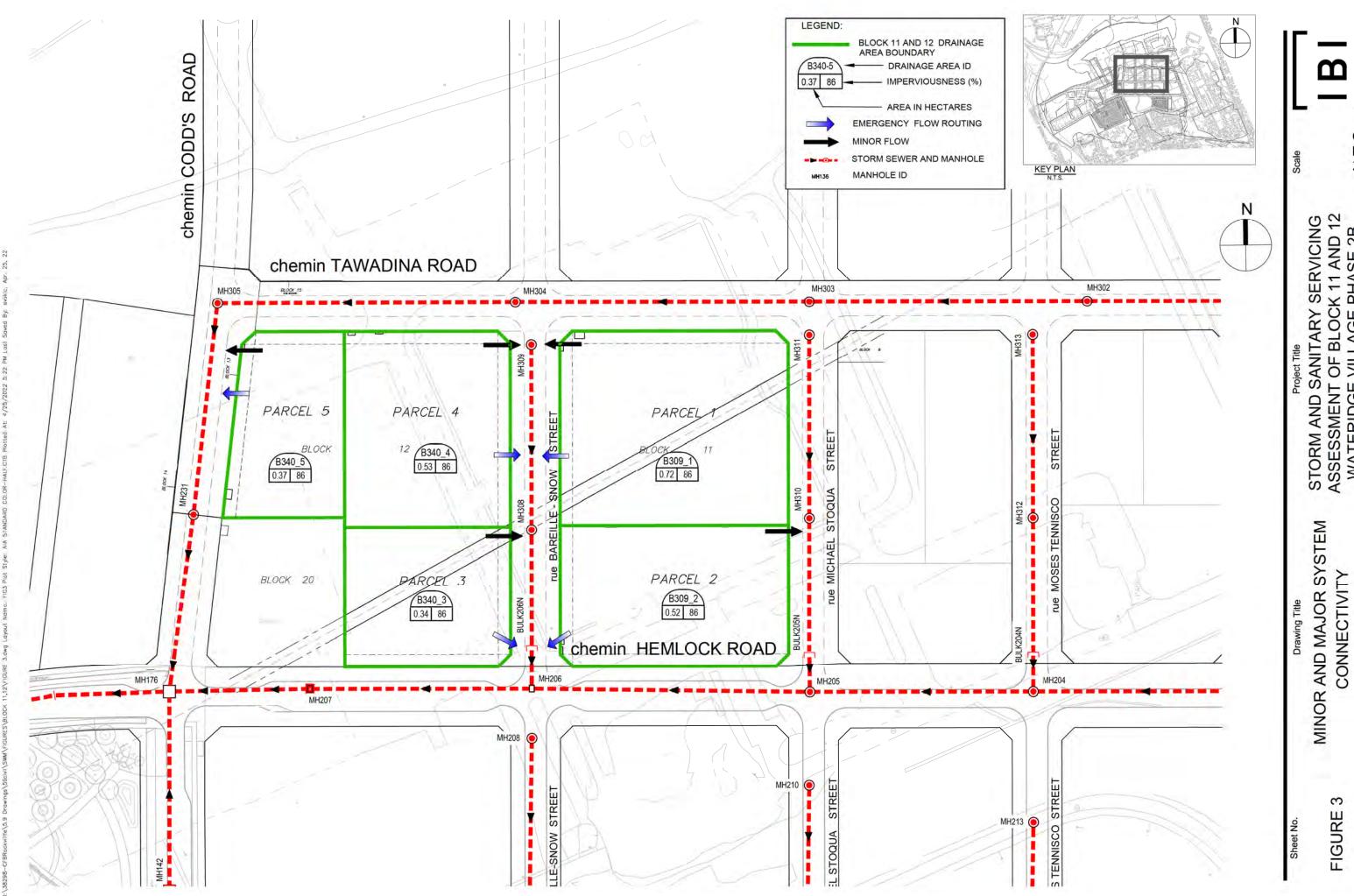

proposed change to the wastewater outlet for parcels 1 and 2. The Phase 2B design assumed all Block 11 would outlet to the Bareille-Snow sewer. Consequently, the expected wastewater flows to the latter pipe will likely increase.

An analysis of the ability of the existing sanitary sewer system in Bareille-Snow Street to accommodate the flows from both Block 11 and 12 was completed. This analysis is included on the updated sanitary sewer spreadsheet included in **Appendix B**. The updated spreadsheet was based not only on the current City of Ottawa wastewater criteria, which came into effect in 2018 but also on the most current concept plans for the various parcels which are also included in **Appendix B**. The updated analysis includes the existing sewer system highlighted on the Phase 2B design sheet.

Based on the updated analysis, the calculated wastewater flows tributary to the Hemlock Road sewer from Bareille-Snow Street is 30.31 l/s. This shows a wastewater flow increase of 1.82 l/s as a result of re-directing wastewater flows from parcels 3 and 4 in Block 12. The capacity of that sewer is 88.83 l/s. The Phase 1B design of the sanitary sewer in Hemlock Road between Bareille-Snow Street and Codd's Road indicated a spare capacity in that sewer of about 58 l/s. For reference, a highlighted copy of the Phase 1B sanitary sewer design sheet is included in **Appendix B**.

3.4 Conclusion

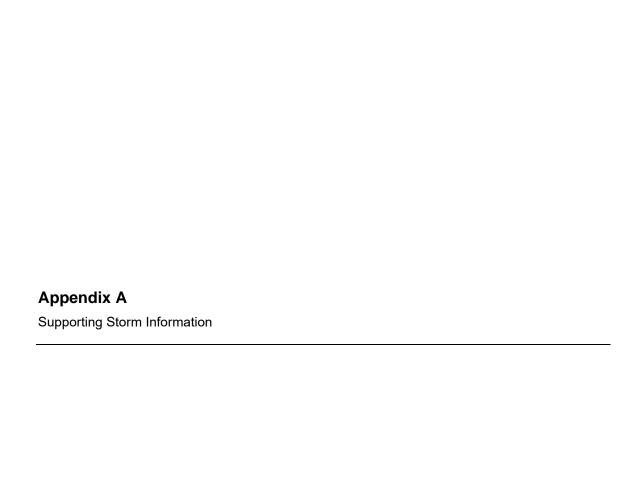
The impact of re-directing wastewater flows from Block 12 to the Bareille-Snow Street sanitary sewer has been completed. Based on the analysis noted above, the existing wastewater system in Wateridge Village Phase 1B and 2B has sufficient available capacity to carry the re-directed flows from Block 12. It is therefore concluded that the existing sanitary sewers in Bareille-Snow Street, Codd's Road and Hemlock Road adjacent to the subject property can accommodate the re-direction of flows from Block 12.


LOCATION PLAN

STORM AND SANITARY SERVICING ASSESSMENT OF BLOCK 11 AND 12 WATERIDGE VILLAGE PHASE 2B

N.T.S.


STORM AND SANITARY SERVICING ASSESSMENT OF BLOCK 11 AND 12 WATERIDGE VILLAGE PHASE 2B


N.T.S.

STORM AND SANITARY SERVICING ASSESSMENT OF BLOCK 11 AND 12 WATERIDGE VILLAGE PHASE 2B

N.T.S.

Summary of Model Files

DDSWMM:

5 year 3 hour Chicago: 118863-3CHI5.DAT 100 year 3 hour Chicago: 118863-3CHI100.DAT 100 year 3 hour Chicago + 20%: 118863-3CHI120.DAT

100 year 24 hour SCS Type II: 118863-24SCS100.DAT 100 year 24 hour SCS Type II + 20%: 118863-24SCS120.DAT

July 1979: 118863-JUL79.DAT August 1988: 118863-AUG88.DAT August 1996: 118863-Aug96.DAT

SWMHYMO VxD:

118863VD.dat

XPSWMM:

5 year 3 hour Chicago: 118863-3CHI5_BLK1112_V08_2022-03-15.XP 100 year 3 hour Chicago: 118863-3CHI100_BLK1112_V08_2022-02-28.XP 100 year 3 hour Chicago + 20%: 118863-3CHI120_BLK1112_V08_2022-02-28.XP

100 year 24 hour SCS Type II: 118863-24SCS100_BLK1112_V08_2022-03-15.XP 100 year 24 hour SCS Type II + 20%: 118863-24SCS120_BLK1112_V08_2022-03-15.XP

July 1979: 118863-JUL1979_BLK1112_V08_2022-03-15.XP August 1988: 118863-AUG1988_BLK1112_V08_2022-03-15.XP August 1996: 118863-AUG1996_BLK1112_V08_2022-03-15.XP

Velocity x Depth Calculation

Iteration equation:

Velocity:

$$v_x = v_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (v_{\max} - v_{\min})$$

Depth:

$$d_{x} = d_{\min} + \frac{Q_{x} - Q_{\min}}{Q_{\max} - Q_{\min}} (d_{\max} - d_{\min})$$

								100 Y	ear 3 Hou	ır Chica	go Storn	n								
						SWMHY	MO (11886	3VD.OUT)		Calcula		et: Overflo	ow for Typ Area	ical Road	SWMHY	'MO (118863\	VD.OUT)	Velocity x Depth		Total Depth (Static +
Area ID (Dummy Segment, if								Velocity (m.	/s)	Flowra	te (cms)		Depth (m	1)		Depth (m)			Ponding Depth	Dynamic)
applicable)	Section	Slope (%)	Qx (I/s)	Qx (cms)	Qmin	Qmax	vmin	vmax	VX	Qmin	Qmax	dmin	dmax	dx	dmin	dmax	dx	(m²/s)	(m)	(m)
S311A	20	1.52	49	0.049	0.039	0.084	0.699	0.847	0.73	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.044	0.03	0.00	0.04
S310A	20	1.22	0	0.000	0.000	0.002	0.000	0.301	0.00	0.000	0.001	0.000	0.001	0.000	N/A	N/A	N/A	0.00	0.29	0.29
S309	20	0.60	43	0.043	0.024	0.053	0.439	0.532	0.50	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.050	0.03	0.00	0.05
S308	20	1.84	65	0.065	0.043	0.092	0.769	0.932	0.84	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.047	0.04	0.00	0.05
S308A	20	0.71	26	0.026	0.009	0.027	0.365	0.478	0.47	0.021	0.027	0.050	0.055	0.054	N/A	N/A	N/A	0.03	0.26	0.31
S340	20	2.40	50	0.050	0.049	0.105	0.878	1.064	0.88	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.041	0.04	0.00	0.04
S205C	24	0.71	37	0.037	0.024	0.053	0.439	0.532	0.48	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.047	0.02	0.00	0.05
S231	20	0.53	100	0.100	0.096	0.155	0.617	0.697	0.62	N/A	N/A	N/A	N/A	N/A	0.068	0.082	0.069	0.04	0.00	0.07
S207	24	0.51	61	0.061	0.053	0.096	0.532	0.617	0.55	N/A	N/A	N/A	N/A	N/A	0.055	0.068	0.057	0.03	0.00	0.06

Velocity x Depth Calculation

Iteration equation:

Velocity:

$$v_x = v_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (v_{\max} - v_{\min})$$

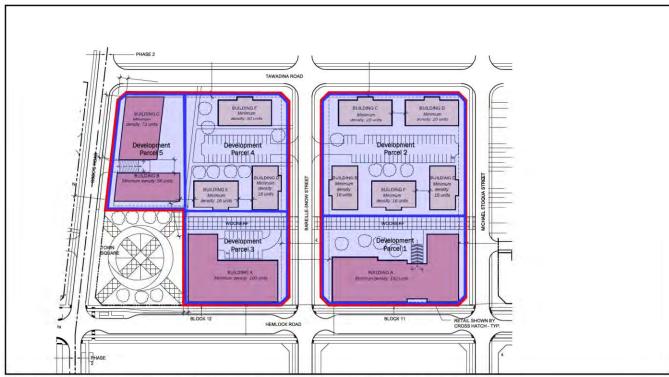
Depth:

$$d_x = d_{\min} + \frac{Q_x - Q_{\min}}{Q_{\max} - Q_{\min}} (d_{\max} - d_{\min})$$

								100 Year	r 3 Hour Ch	nicago S	Storm + 2	20%								
						SWMH	YMO (1188	363VD.OUT)		Calcul		et: Overfl Ponding /	ow for Typi Area	ical Road	SWMHY	'MO (118863)	VD.OUT)	Velocity x Depth		Total Depth (Static
Area ID (Dummy Segment, if	a ID (Dummy Segment, if Road ROW Longitudinal Overflow Flow					te (cms)		Velocity (m	/s)	Flowra	ite (cms)		Depth (m)		Depth (m)			Ponding Depth	Dynamic)
applicable)	Section	Slope (%)	Qx (I/s)	Qx (cms)	Qmin	Qmax	vmin	vmax	VX	Qmin	Qmax	dmin	dmax	dx	dmin	dmax	dx	(m²/s)	(m)	(m)
S311A	20	1.52	66	0.066	0.039	0.084	0.699	0.847	0.79	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.049	0.04	0.00	0.05
S310A	20	1.22	33	0.033	0.012	0.035	0.478	0.626	0.61	0.028	0.035	0.055	0.060	0.059	N/A	N/A	N/A	0.04	0.29	0.35
S309	20	0.60	71	0.071	0.053	0.096	0.532	0.617	0.57	N/A	N/A	N/A	N/A	N/A	0.055	0.068	0.060	0.03	0.00	0.06
S308	20	1.84	216	0.216	0.167	0.272	1.081	1.221	1.15	N/A	N/A	N/A	N/A	N/A	0.068	0.082	0.075	0.09	0.00	0.07
S308A	20	0.71	268	0.268	0.255	0.364	0.841	0.919	1.29	0.240	0.269	0.125	0.130	0.130	N/A	N/A	N/A	0.17	0.26	0.39
S340	20	2.40	98	0.098	0.049	0.105	0.878	1.064	1.04	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.053	0.06	0.00	0.05
S205C	24	0.71	46	0.046	0.024	0.053	0.439	0.532	0.51	N/A	N/A	N/A	N/A	N/A	0.041	0.055	0.052	0.03	0.00	0.05
S231	20	0.53	165	0.165	0.155	0.234	0.697	0.773	0.71	N/A	N/A	N/A	N/A	N/A	0.082	0.095	0.084	0.06	0.00	0.08
S207	24	0.51	89	0.089	0.053	0.096	0.532	0.617	0.60	N/A	N/A	N/A	N/A	N/A	0.055	0.068	0.066	0.04	0.00	0.07

XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO		OUR CHICAGO ED BY 20%		24 HOUR YPE II		24 HOUR E II + 20%	JULY :	1 1979	AUGUS	ST 1988	AUGUS	ST 1996
ID		ELEVATION (M)		HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
Phase 1B																	
S143	143	102.40	100.00	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84	98.16	1.84
S144	144	99.41	97.01	95.79	1.22	95.79	1.22	95.78	1.23	95.79	1.22	95.78	1.23	95.79	1.22	95.78	1.23
S145	145	97.64	95.24	93.01	2.23	93.01	2.23	93.01	2.23	93.01	2.23	93.00	2.24	93.01	2.23	93.00	2.24
S146	146	95.28	92.88	90.96	1.92	91.82	1.06	90.77	2.11	91.26	1.62	90.91	1.97	91.01	1.87	90.63	2.25
S147	147	93.27	N/A	90.93	N/A	91.78	N/A	90.72	N/A	91.23	N/A	90.88	N/A	90.98	N/A	90.60	N/A
USBRM	N/A	N/A	N/A	90.88	N/A	91.72	N/A	90.67	N/A	91.17	N/A	90.83	N/A	90.93	N/A	90.56	N/A
BURMA	N/A	N/A	N/A	89.41	N/A	89.87	N/A	89.24	N/A	89.53	N/A	89.43	N/A	89.31	N/A	89.04	N/A
OUTLET	N/A	N/A	N/A	89.26	N/A	89.75	N/A	89.07	N/A	89.39	N/A	89.29	N/A	89.15	N/A	88.65	N/A
S152	152	92.73	90.33	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62	89.71	0.62
S151	151	92.50	90.10	89.58	0.52	89.57	0.53	89.58	0.52	89.58	0.52	89.58	0.52	89.58	0.52	89.57	0.53
S150	150	92.32	89.92	89.49	0.43	89.48	0.44	89.49	0.43	89.49	0.43	89.49	0.43	89.49	0.43	89.49	0.43
S149	149	92.34	89.94	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52	89.42	0.52
S148	148	92.14	89.74	89.30	0.44	89.29	0.45	89.30	0.44	89.30	0.44	89.30	0.44	89.30	0.44	89.30	0.44
S157	157	91.24	N/A	89.21	N/A	89.20	N/A	89.21	N/A	89.21	N/A	89.21	N/A	89.21	N/A	89.21	N/A
S154	154	91.02	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A	87.68	N/A
S215	215	90.77	88.37	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79	87.58	0.79
S216	216	90.85	88.45	87.30	1.15	87.30	1.15	87.30	1.15	87.30	1.15	87.30	1.15	87.31	1.14	87.30	1.15
S217	217	90.66	88.26	87.13	1.13	87.18	1.08	87.12	1.14	87.15	1.11	87.14	1.12	87.13	1.13	87.12	1.14
S218	218	90.40	88.00	87.04	0.96	87.10	0.90	87.02	0.98	87.06	0.94	87.05	0.95	87.04	0.96	87.02	0.98
S219	219	90.08	87.68	86.85	0.83	86.94	0.74	86.82	0.86	86.88	0.80	86.86	0.82	86.84	0.84	86.81	0.87
S220	220	89.86	87.46	86.74	0.72	86.84	0.62	86.70	0.76	86.78	0.68	86.75	0.71	86.72	0.74	86.68	0.78
S221	221	89.88	87.48	86.57	0.91	86.72	0.76	86.51	0.97	86.63	0.85	86.59	0.89	86.54	0.94	86.36	1.12
S222	222	89.86	87.46	86.38	1.08	86.51	0.95	86.32	1.14	86.43	1.03	86.39	1.07	86.35	1.11	86.19	1.27
S200	200	94.71	92.31	90.73	1.58	90.74	1.57	90.73	1.58	90.72	1.59	90.73	1.58	90.72	1.59	90.73	1.58
S214	214	93.52	91.12	90.26	0.86	90.28	0.84	90.26	0.86	90.27	0.85	90.26	0.86	90.26	0.86	90.26	0.86
MH201	201	94.29	91.89	90.72	1.17	90.73	1.16	90.72	1.17	90.72	1.17	90.72	1.17	90.72	1.17	90.71	1.18
MH202	202	93.91	91.51	90.42	1.09	90.43	1.08	90.41	1.10	90.42	1.09	90.41	1.10	90.41	1.10	90.40	1.11
MH203	203	92.38	89.98	88.66	1.32	88.68	1.30	88.63	1.35	88.66	1.32	88.63	1.35	88.64	1.34	88.61	1.37
MH204	204	90.40	88.00	87.08	0.92	87.10	0.90	87.06	0.94	87.08	0.92	87.06	0.94	87.07	0.93	87.02	0.98
MH205	205	89.35	86.95	85.86	1.09	85.88	1.07	85.83	1.12	85.86	1.09	85.84	1.11	85.84	1.11	85.77	1.18
MH206	206	89.10	86.70	85.65	1.05	85.65	1.05	85.62	1.08	85.65	1.05	85.63	1.07	85.63	1.07	85.57	1.13
MH207	207	88.53	86.13	84.65	1.48	84.65	1.48	84.62	1.51	84.65	1.48	84.63	1.50	84.64	1.49	84.58	1.55
S212	212	90.25	87.85	86.86	0.99	86.87	0.98	86.83	1.02	86.85	1.00	86.83	1.02	86.84	1.01	86.82	1.03
S213	213	89.74	87.34	86.45	0.89	86.45	0.89	86.43	0.91	86.45	0.89	86.44	0.90	86.44	0.90	86.42	0.92
S210	210	89.14	86.74	86.43	0.31	86.43	0.31	86.42	0.32	86.43	0.31	86.42	0.32	86.43	0.31	86.41	0.33
S211	211	89.15	86.75	85.94	0.81	85.93	0.82	85.93	0.82	85.94	0.81	85.93	0.82	85.93	0.82	85.92	0.83
S208	208	88.77	86.37	85.92	0.45	85.91	0.46	85.78	0.59	85.91	0.46	85.81	0.56	85.88	0.49	85.70	0.67
S209	209	88.75	86.35	85.46	0.89	85.45	0.90	85.41	0.94	85.46	0.89	85.42	0.93	85.45	0.90	85.38	0.97
MH231	231	89.81	87.41	85.61	1.79	85.64	1.77	85.73	1.67	85.78	1.63	85.84	1.57	85.77	1.63	85.71	1.69

XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO		OUR CHICAGO ED BY 20%		R 24 HOUR		R 24 HOUR E II + 20%	JULY :	1 1979	AUGU	ST 1988	AUGU	ST 1996
ID	Will It Co.	ELEVATION (M)	031 (101)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
Wateridge Village F	Phase 1A																
S153	153	92.78	90.38	89.45	0.93	89.46	0.92	89.44	0.94	89.45	0.93	89.44	0.94	89.45	0.93	89.44	0.94
S160	160	92.27	89.87	89.01	0.86	89.02	0.85	89.01	0.86	89.01	0.86	89.01	0.86	89.01	0.86	89.00	0.87
S161	161	91.94	89.54	88.57	0.97	88.58	0.96	88.57	0.97	88.57	0.97	88.57	0.97	88.57	0.97	88.57	0.97
S162	162	91.34	88.94	88.26	0.68	88.26	0.68	88.25	0.69	88.26	0.68	88.25	0.69	88.26	0.68	88.25	0.69
S163	163	90.94	88.54	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86	87.68	0.86
S164	164	90.22	87.82	87.00	0.82	87.01	0.81	86.99	0.83	87.00	0.82	87.00	0.82	87.00	0.82	86.99	0.83
S165B	165	89.61	87.21	86.45	0.76	86.45	0.76	86.44	0.77	86.44	0.77	86.44	0.77	86.44	0.77	86.44	0.77
S165	165	89.30	86.90	85.98	0.92	86.05	0.85	85.93	0.97	86.01	0.89	85.99	0.91	85.96	0.94	85.83	1.07
S166	166	88.90	86.50	84.88	1.62	85.03	1.47	84.78	1.72	84.93	1.57	84.88	1.62	84.85	1.65	84.59	1.91
S167	167	88.40	86.00	84.71	1.29	84.86	1.14	84.60	1.40	84.76	1.24	84.71	1.29	84.67	1.33	84.39	1.61
S168	168	87.70	85.30	84.54	0.76	84.66	0.64	84.43	0.87	84.58	0.72	84.54	0.76	84.50	0.80	84.22	1.08
S141	141	87.32	84.92	84.28	0.64	84.39	0.53	84.18	0.74	84.32	0.60	84.28	0.64	84.25	0.67	83.97	0.95
S142	142	87.52	85.12	84.02	1.10	84.12	1.00	83.94	1.18	84.06	1.06	84.03	1.09	84.00	1.12	83.74	1.38
MH176	176	88.03	85.63	83.77	1.86	83.85	1.78	83.69	1.94	83.80	1.83	83.77	1.86	83.75	1.88	83.49	2.14
MH178	178	89.00	86.60	83.41	3.19	83.47	3.13	83.34	3.26	83.44	3.16	83.41	3.19	83.39	3.21	83.18	3.42
MH180	180	88.23	85.83	82.20	3.62	82.44	3.38	81.98	3.84	82.27	3.56 3.73	82.21	3.62	82.10	3.73	81.49	4.34
MH190 MH191	190 191	88.10	85.70 83.96	81.90 81.66	3.80 2.30	82.12 81.86	3.58 2.10	81.65 81.44	4.05 2.52	81.97 81.73	2.23	81.91 81.67	3.79 2.29	81.80 81.56	3.90 2.40	81.23 81.06	4.47 2.91
MH191 MH192	191	86.36 85.92	83.52	81.41	2.30	81.59	1.93	81.21	2.32	81.47	2.23	81.41	2.29	81.31	2.40	80.89	2.63
MH193	193	84.85	82.45	81.09	1.36	81.24	1.93	80.92	1.53	81.47	1.31	81.09	1.36	81.00	1.45	80.60	1.85
MH194	194	82.44	N/A	80.45	N/A	80.53	N/A	80.35	N/A	80.48	N/A	80.46	N/A	80.40	N/A	80.13	N/A
S130	130	02.44	N/A	101.25	N/A	101.25	N/A	101.24	N/A	101.25	N/A	101.24	N/A	101.24	N/A	101.23	N/A
S131	131		N/A	101.05	N/A	101.05	N/A	101.04	N/A	101.05	N/A	101.04	N/A	101.04	N/A	101.03	N/A
S132	132		N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.64	N/A	99.63	N/A
S133	133		N/A	96.52	N/A	96.52	N/A	96.51	N/A	96.52	N/A	96.51	N/A	96.51	N/A	96.50	N/A
S134	134		N/A	93.01	N/A	93.01	N/A	93.00	N/A	93.01	N/A	93.00	N/A	93.00	N/A	92.99	N/A
S135	135		N/A	90.11	N/A	90.11	N/A	90.10	N/A	90.11	N/A	90.10	N/A	90.10	N/A	90.09	N/A
S136	136		N/A	87.38	N/A	87.38	N/A	87.37	N/A	87.38	N/A	87.37	N/A	87.37	N/A	87.37	N/A
S137	137		86.91	85.77	1.14	85.77	1.14	85.76	1.15	85.77	1.14	85.76	1.15	85.77	1.14	85.76	1.15
S138	138		86.31	84.96	1.35	84.96	1.35	84.95	1.36	84.96	1.35	84.95	1.36	84.95	1.36	84.94	1.37
S139	139		85.66	84.46	1.20	84.48	1.18	84.46	1.20	84.46	1.20	84.46	1.20	84.46	1.20	84.45	1.21
S140	140		N/A	84.35	N/A	84.42	N/A	84.34	N/A	84.37	N/A	84.35	N/A	84.34	N/A	84.34	N/A
S100	100	_	87.16	85.70	1.46	85.69	1.47	85.70	1.46	85.70	1.46	85.70	1.46	85.70	1.46	85.70	1.46
S108	108		86.66	85.24	1.43	85.23	1.43	85.23	1.43	85.24	1.42	85.23	1.43	85.23	1.43	85.23	1.43
S109	109		85.36	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31	84.05	1.31
S117	117		85.06	83.54	1.52	83.58	1.48	83.53	1.53	83.54	1.52	83.53	1.53	83.54	1.52	83.53	1.53
S118	118		84.71	83.21	1.50	83.48	1.23	83.20	1.51	83.25	1.46	83.22	1.49	83.21	1.50	83.20	1.51
S101	101		87.16	85.55	1.61	85.55	1.61	85.54	1.62	85.55	1.61	85.54	1.62	85.54	1.62	85.54	1.62
S102	102		86.46	84.72	1.74	84.72	1.74	84.71	1.75	84.72	1.74	84.71	1.75	84.71	1.75	84.70	1.76
S119	119		85.46	83.95	1.51	83.95	1.51	83.95	1.51	83.95	1.51	83.94	1.52	83.95	1.51	83.95	1.51
S104	104		N/A	85.90	N/A	85.89	N/A	85.89	N/A	85.90	N/A	85.89	N/A	85.89	N/A	85.88	N/A


XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO		OUR CHICAGO ED BY 20%		24 HOUR YPE II		24 HOUR E II + 20%	JULY 1	1 1979	AUGUS	ST 1988	AUGU	ST 1996
ID		ELEVATION (M)	,	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
S103	103		86.46	84.36	2.10	84.36	2.10	84.34	2.12	84.36	2.10	84.35	2.11	84.35	2.11	84.34	2.12
S105	105		85.71	83.90	1.81	83.91	1.80	83.89	1.82	83.90	1.81	83.89	1.82	83.90	1.81	83.89	1.82
S122	122		84.86	83.53	1.33	83.53	1.33	83.53	1.33	83.53	1.33	83.53	1.33	83.53	1.33	83.53	1.33
S121	121		84.26	82.80	1.46	83.03	1.23	82.43	1.83	82.82	1.44	82.77	1.49	82.61	1.65	81.98	2.28
S127	127		84.36	82.67	1.69	82.92	1.44	82.34	2.02	82.71	1.65	82.66	1.70	82.51	1.85	81.85	2.51
S128	128		N/A	82.61	N/A	82.86	N/A	82.30	N/A	82.67	N/A	82.61	N/A	82.47	N/A	81.81	N/A
S107	107		N/A	85.29	N/A	85.29	N/A	85.28	N/A	85.29	N/A	85.28	N/A	85.28	N/A	85.27	N/A
S106	106		85.61	83.76	1.85	83.75	1.86	83.73	1.88	83.76	1.85	83.74	1.87	83.75	1.86	83.73	1.88
S124	124		85.69	83.94	1.75	83.94	1.75	83.93	1.76	83.94	1.75	83.93	1.76	83.93	1.76	83.92	1.77
S125	125		85.34	83.37	1.97	83.38	1.96	83.35	1.99	83.37	1.97	83.36	1.98	83.36	1.98	83.35	1.99
S126	126		84.96	82.87	2.09	83.14	1.82	82.85	2.11	82.89	2.07	82.85	2.11	82.86	2.10	82.84	2.12
S182	182		N/A	82.46	N/A	82.70	N/A	82.18	N/A	82.52	N/A	82.46	N/A	82.32	N/A	81.68	N/A
S181	181		N/A	82.36	N/A	82.61	N/A	82.11	N/A	82.43	N/A	82.37	N/A	82.24	N/A	81.61	N/A
S110	110		85.56	83.59	1.97	83.80	1.76	83.59	1.97	83.59	1.97	83.59	1.97	83.59	1.97	83.59	1.97
S111	111		84.96	83.59	1.37	83.80	1.16	83.58	1.38	83.59	1.37	83.58	1.38	83.59	1.37	83.58	1.38
S112	112		84.91	83.40	1.52	83.77	1.14	83.18	1.73	83.50	1.41	83.42	1.49	83.22	1.69	83.22	1.69
S113	113		84.51	83.41	1.10	83.74	0.77	83.06	1.45	83.48	1.03	83.40	1.11	83.08	1.43	83.05	1.46
S114	114		83.91	83.06	0.85	83.31	0.60	82.66	1.25	83.11	0.80	83.04	0.87	82.85	1.06	82.49	1.42
S115	115		83.56	83.04	0.52	83.33	0.23	82.64	0.92	83.13	0.43	83.01	0.55	82.83	0.73	82.45	1.11
S116	116		83.71	82.88	0.83	83.16	0.55	82.51	1.20	82.92	0.79	82.85	0.86	82.70	1.01	82.10	1.61
S120	120		83.96	82.86	1.10	83.08	0.88	82.48	1.48	82.88	1.08	82.83	1.13	82.67	1.29	82.06	1.90

XPSWMM NODE	MH NO.	PROPOSED GROUND	USF (M)	100 YEAR	3 HOUR CHICAGO		OUR CHICAGO ED BY 20%		R 24 HOUR TYPE II		24 HOUR E II + 20%	JULY :	1 1979	AUGU	ST 1988	AUGUS	ST 1996
ID		ELEVATION (M)	,	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)	HGL (M)	USF - HGL (M)
Phase 2B, 4																	
MH317	317	94.08	91.68	91.17	0.51	91.18	0.50	91.14	0.54	91.15	0.53	91.15	0.53	91.14	0.54	91.11	0.57
MH316	316	94.09	91.69	90.96	0.73	90.96	0.73	90.95	0.74	90.95	0.74	90.95	0.74	90.95	0.74	90.92	0.77
MH315	315	93.39	91.36	90.28	1.08	90.29	1.07	90.25	1.11	90.26	1.10	90.27	1.09	90.27	1.09	90.26	1.10
MH314	314	93.00	91.16	89.91	1.25	89.91	1.25	89.91	1.25	89.91	1.25	89.91	1.25	89.91	1.25	89.89	1.27
MH313	313	92.62	90.71	89.35	1.36	89.34	1.37	89.35	1.36	89.35	1.36	89.35	1.36	89.35	1.36	89.34	1.37
MH312	312	91.36	89.68	88.42	1.26	88.42	1.26	88.41	1.27	88.42	1.26	88.42	1.26	88.42	1.26	88.38	1.30
MH311	311	90.69	88.29	87.44	0.85	87.56	0.73	87.40	0.89	87.48	0.81	87.45	0.84	87.47	0.82	87.38	0.91
MH310	310	90.04	87.64	87.28	0.36	87.42	0.22	87.25	0.39	87.35	0.29	87.30	0.34	87.33	0.31	87.06	0.58
MH309	309	90.15	87.75	87.44	0.31	87.08	0.67	87.33	0.42	87.44	0.31	87.41	0.34	87.43	0.32	87.22	0.53
MH308	308	89.68	87.28	86.88	0.40	86.69	0.59	86.81	0.47	86.88	0.40	86.87	0.41	86.88	0.40	86.76	0.52
MH326	326	94.76	92.36	91.33	1.03	91.33	1.03	91.32	1.04	91.32	1.04	91.32	1.04	91.32	1.04	91.33	1.03
MH318	318	94.40	92.00	91.03	0.97	91.03	0.97	91.00	1.00	91.03	0.97	91.00	1.00	91.00	1.00	91.00	1.00
MH300	300	94.00	91.60	90.71	0.89	90.70	0.90	90.67	0.93	90.70	0.90	90.68	0.92	90.68	0.92	90.68	0.92
MH301	301	93.73	91.33	90.21	1.12	90.21	1.12	90.20	1.13	90.20	1.13	90.21	1.12	90.20	1.13	90.20	1.13
MH302	302	92.80	90.40	88.64	1.76	88.64	1.76	88.63	1.77	88.63	1.77	88.64	1.76	88.63	1.77	88.63	1.77
MH303	303	90.67	88.27	87.80	0.47	87.81	0.46	87.63	0.64	87.65	0.62	87.79	0.48	87.72	0.55	87.64	0.63
MH304	304	90.30	87.90	87.39	0.51	87.38	0.52	87.30	0.60	87.31	0.59	87.38	0.52	87.34	0.56	87.30	0.60
MH305	305	91.00	88.60	86.54	2.06	86.56	2.04	86.61	1.99	86.64	1.96	86.69	1.91	86.65	1.95	86.60	2.00
MH319	319	88.81	86.61	86.13	0.48	86.12	0.49	86.12	0.49	86.13	0.48	86.12	0.49	86.12	0.49	86.12	0.49
MH320	320	89.12	86.92	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43	85.49	1.43
MH321	321	87.67	85.47	84.18	1.29	84.39	1.08	84.10	1.37	84.15	1.32	84.11	1.36	84.13	1.34	84.09	1.38
MH322	322	87.50	85.30	84.18	1.12	84.39	0.91	84.10	1.20	84.15	1.15	84.10	1.20	84.12	1.18	84.09	1.21
MH323	323	86.57	84.37	83.40	0.97	83.48	0.89	83.31	1.06	83.37	1.00	83.32	1.05	83.34	1.03	83.30	1.07

Appendix B

Supporting Sanitary Information

SCHEDULE "A" PARCEL IDENTIFICATION, DESCRIPTION, AND MINIMUM DENSITY¹

^{**}Boundaries of the development parcels are estimated. Purchasers to provide dimensioned sketch or electronic survey to confirm these boundaries

¹ This image if provided for demonstration purposes only

IBI GROUP

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com LEGEND

Block 11&12 Proposed Conditions

Old Criteria being used

AS-BUILT SANITARY SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Canada Lands Company

	LOCATION			1				RESIDI	ENTIAL								ICI AREAS				INFILTE	RATION ALL	WANCE	FIXED	TOTAL			PROPO	SED SEWER	R DESIGN		
	LOCATION			AREA		UNIT	TYPES		AREA	POPU	LATION	PEAK	PEAK				A (Ha)			PEAK	ARE	A (Ha)	FLOW	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY		ABLE
STREET	AREA ID	FROM	ТО	Phase 1B	SF	SD	TH	APT	EXTERNAL	IND	сим	FACTOR			UTIONAL		ERCIAL	INDUS		FLOW	IND	СИМ	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full)		ACITY
J	7.1.(2.1.12	MH	MH	(Ha)	<u> </u>			7	(Ha)				(L/s)	IND	CUM	IND	CUM	IND	CUM	(L/s)			(=:0)	(=0)	(=/5)	(=.0)	(,	()	(,0)	(m/s)	L/s	(%)
Dhara 4D			+				1								1																	-
Phase 1B			+	1	1		+		-						1		-							1	-	1			-		1	-
rue Michael Stoqua Street	EX205A	BUI K205AN	MH205A						0.66	33.1	33.1	4.00	0.54		0.00		0.00		0.00	0.00	0.66	0.66	0.18	0.00	0.72	66.24	21 00	250	1.14	1.307	65.52	98.91%
rao imenaer etequa etect	2,200,1	202.12007.							0.00	00.1	00.1	1.00	0.01		0.00		0.00		0.00	0.00	0.00	0.00	0.10	0.00	02	00.21	27.00	200		1.001	00.02	00.0170
Hemlock Road	205A	MH205A	MH206A	0.25						0.0	186.6	4.00	3.02		0.00		0.00		0.00	0.00	0.25	2.51	0.70	0.00	3.73	31.02	111.90	250	0.25	0.612	27.29	87.99%
rue Bareille-Snow Street	EX206A-B	BULK206AN	MH206A						<u>9.79</u>	<u>2598.3</u>	2598.3	3.49	36.78		0.00		0.00		0.00	0.00	9.79	9.79	2.74	0.00	39.52	88.83	21.00	250	2.05	1.753	49.30	55.50%
Hemlock Road	206A	MH206A	MH207A	0.20						0.0	2784.9	3.47	39.14		0.00		0.00		0.00	0.00	0.20	12.50	3.50	0.00	42.64	100.88	89.30	300	1.00	1.383	58.24	57.73%
	DARKA	1411007411	14110074	0.00						0.0	0.0	4.00	0.00		0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	50.00	40.00	050	0.05	0.007	40.00	00.000/
Block 20	PARK1	MH207AN	MH207A	0.32			1			0.0	0.0	4.00	0.00		0.00		0.00		0.00	0.00	0.32	0.32	0.09	0.00	0.09	50.02	13.80	250	0.65	0.987	49.93	99.82%
Hemlock Road	PARK1, 207A	MH207A	BULK176AE	0.12	<u> </u>		-			0.0	2784.9	3.47	39.14		0.00		0.00	-	0.00	0.00	0.12	12.94	3.62	0.00	42.77	134.59	33.10	300	1.78	1.845	91.83	68.23%
Hellilock Road	TAINT, 201A	WII IZOTA	DOLKTTOAL	0.12			+			0.0	2104.3	3.47	33.14		0.00		0.00		0.00	0.00	0.12	12.54	3.02	0.00	72.11	134.33	33.10	300	1.70	1.043	31.03	00.2370
Phase 1A		1	1	1	1		1	<u> </u>					1	1				 						1	 		 			+	1	
Hemlock Road		BULK176AE	MH176A		1				1	0.0	2784.9	3.47	39.14	1	0.00		0.00		0.00	0.00	0.00	12.94	3.62	0.00	42.77	65.38	21.97	300	0.42	0.896	22.61	34.59%
Phase 1B																																
chemin Wanaki Road	200A, COM1	MH200A	MH214A	0.25						0.0	0.0	4.00	0.00		0.00	0.90	0.90		0.00	0.78	1.15	1.15	0.32	0.00	1.10	71.01	98.50	250	1.31	1.401	69.90	98.45%
chemin Wanaki Road	214A, COM2	MH214A	BULK153AN	0.16						0.0	0.0	4.00	0.00		0.00	0.65	1.55		0.00	1.35	0.81	1.96	0.55	0.00	1.89	57.20	44.60	250	0.85	1.129	55.30	96.69%
Phase 1A																																
chemin Wanaki Road	COM2		MH153A	0.04						0.0	0.0	4.00	0.00		0.00	0.00	1.55		0.00		0.00	1.96	0.55	0.00	1.89	51.91	20.13	250	0.70	1.024	50.01	96.35%
chemin Wanaki Road	153A, COM3 151A, COM4	MH153A	MH151A MH150A	0.21						0.0	0.0	4.00	0.00		0.00	0.88	2.43 2.88		0.00	2.11	1.09	3.05	0.85	0.00	2.96 3.51	36.70	85.04	250 250	0.35 0.35	0.724	33.74	91.93%
chemin Wanaki Road chemin Wanaki Road	151A, COM4 150A, COM5	MH151A MH150A	MH150A MH149A	0.11 0.11	<u> </u>		-			0.0	0.0	4.00	0.00		0.00	0.45 0.95	3.83	-	0.00	2.50 3.32	0.56 1.06	3.61 4.67	1.01 1.31	0.00	4.63	36.70 36.70	40.97 41.34	250	0.35	0.724 0.724	33.19 32.07	90.43% 87.38%
chemin Wanaki Road	149A	MH149A	MH148A	0.11	1		+		-	0.0	0.0	4.00	0.00		0.00	0.93	3.83		0.00	3.32	0.10	4.07	1.34	0.00	4.66	36.70	40.04	250	0.35	0.724	32.07	87.30%
chemin Wanaki Road	148A	MH148A		0.10			+			0.0	0.0	4.00	0.00		0.00		3.83		0.00	3.32	0.10	4.81	1.35	0.00	4.67	36.70	20.58	250	0.35	0.724	32.04	87.27%
onemin Wandid Noda	140/1	10111111071	WIIIIOTT	0.04	1		+			0.0	0.0	4.00	0.00		0.00		0.00	1	0.00	0.02	0.04	4.01	1.00	0.00	4.07	00.70	20.00	200	0.00	0.724	02.00	07.2770
Phase 1B																																
chemin Wanaki Road	143B	BULK143AE	MH143A	0.31						104.0	104.0	4.00	1.69		0.00		0.00		0.00	0.00	0.31	0.31	0.09	0.00	1.77	43.87	21.50	250	0.50	0.866	42.10	95.96%
chemin Wanaki Road	143A	MH143A	MH144A	0.27						0.0	104.0	4.00	1.69		0.00		0.00		0.00	0.00	0.27	0.58	0.16	0.00	1.85	83.69	34.70	250	1.82	1.652	81.85	97.79%
chemin Wanaki Road	144A, 144B	MH144A	MH145A	0.72						0.0	104.0	4.00	1.69		0.00		0.00		0.00	0.00	0.72	1.30	0.36	0.00	2.05	88.61	41.10	250	2.04	1.749	86.56	97.69%
chemin Wanaki Road	145A, 145B, 145C	MH145A	MH146A	<u>2.77</u>						835.6	939.6	3.82	14.53		0.00		0.00		0.00	0.00	2.77	4.07	1.14	0.00	15.67	105.83	53.30	250	2.91	2.089	90.16	85.19%
chemin Wanaki Road	146A	MH146A	MH147A	0.14			1			0.0	939.6	3.82	14.53		0.00		0.00		0.00	0.00	0.14	4.21	1.18	0.00	15.71	43.54	37.30	250	0.97	1.206	27.83	63.92%
ah amin Wanaki Da i d	PARK2	DI K147AF	MH147A	0.55	ļ		-			0.0	0.0	4.00	0.00	ļ	0.00		0.00		0.00	0.00	0.55	0.55	0.15	0.00	0.15	20.24	17.70	250	0.40	0.774	20.00	00.619/
chemin Wanaki Road	PARKZ	BLN 14/AE	IVITI 147A	0.55		 	1			0.0	0.0	4.00	0.00		0.00		0.00		0.00	0.00	0.55	0.55	0.15	0.00	0.15	39.24	17.70	250	0.40	0.774	39.08	99.61%
chemin Wanaki Road	147C	BI Κ147Δ\Λ/	MH147A	0.10	1	1	1	 	1	33.6	33.6	4.00	0.54	1	0.00		0.00		0.00	0.00	0.10	0.10	0.03	0.00	0.57	41.62	17.70	250	0.45	0.821	41.04	98.62%
CHEHIII WAHAN INDAU	1470	DEIXITAW	WILLIAM A	0.10	 		+			55.0	55.0	7.00	0.04	<u> </u>	0.00		0.00		0.00	0.00	0.10	0.10	0.00	0.00	0.01	71.02		200	0.70	0.021	71.07	55.52 /u
chemin Wanaki Road	147A	MH147A	MH170A	0.03	1	1	1	1	1	0.0	973.2	3.81	15.01	1	0.00		0.00		0.00	0.00	0.03	4.89	1.37	0.00	16.38	38.74	10.30	250	0.39	0.765	22.36	57.72%
chemin Wanaki Road	147B		MH147C	0.16						0.0	973.2	3.81	15.01		0.00		0.00		0.00	0.00	0.16	5.05	1.41	0.00	16.42	31.63	38.20	250	0.26	0.624	15.21	48.08%
chemin Wanaki Road			BLK148AW						1	0.0	973.2	3.81	15.01		0.00		0.00		0.00	0.00	0.00	5.05	1.41	0.00	16.42	46.01	11.80	250	0.55	0.908	29.58	64.30%
Phase 1A																																
chemin Wanaki Road		BULK148AV	MH157A							0.0	973.2	3.81	15.01		0.00		0.00		0.00	0.00	0.00	5.05	1.41	0.00	16.42	62.04	8.00	250	1.00	1.224	45.61	73.52%
											<u> </u>		<u> </u>																			L
chemin Wanaki Road	157A	MH157A	MH158A	0.05	ļ		ļ			0.0	973.2	3.81	15.01		0.00		3.83		0.00	3.32	0.05	9.91	2.77	0.00	21.11	31.02	25.68	250	0.25	0.612	9.91	31.94%
Of the of May 0	INIOTA	DI II ICAECA	1 1455			ļ						4.00	0.00	0.00	0.00		0.00		0.00	0.07	0.00	0.00	0.70	0.00	0.04	00.04	15.10	050	0.40	0.777	00.00	00.000/
Street No. 2	INST1	BULK158AN	I MH158A		ļ		-			0.0	0.0	4.00	0.00	2.62	2.62		0.00		0.00	2.27	2.62	2.62	0.73	0.00	3.01	39.24	15.10	250	0.40	0.774	36.23	92.33%
chemin Wanaki Bood	158A	MU159A	MH154A	0.22		 	1			0.0	073.2	2.01	15.01		2.62		3.83		0.00	5.60	0.22	12.75	3.57	0.00	24.19	31.02	69.01	250	0.25	0.612	6.94	22.05%
chemin Wanaki Road	IDBA	IVITI 156A	IVITI 134A	0.22	 	 	1	-	-	0.0	973.2	3.81	10.01	1	2.02	-	ა.გა		0.00	5.60	0.22	12.75	3.31	0.00	24.18	31.02	68.91	250	0.25	0.012	6.84	22.05%
	l	ı	1			l	l	l	I		1	1	1		l	l	ıl	ı İ				l	l	1		<u> </u>	ı			ı		

IBI GROUP

400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com LEGEND

Block 11&12 Proposed Conditions

Old Criteria being used

AS-BUILT SANITARY SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Canada Lands Company

AREA UNIT TYPES AREA POPULATION PEAK PEAK FLOW INSTITUTION IND CUM I	AREA (Ha) FLOW (L/s) 0.19 12.94 3.62 0.00 12.94 3.62 0.79 0.79 0.22 0.67 1.46 0.41 0.02 14.42 4.04 0.02 14.44 4.04 5.55 19.99 5.60 0.00 19.99 5.60	FLOW (L/s) ((m) 24.40 37 24.40 36 78.50 49 56.10 01 70.80 72 9.70 24 9.90	250 250 250 250 250 250 250 250	0.80 0.55 0.41	1.237 1.095 0.908 0.784	AVAILABLE CAPACITY L/s (%) 80.13 76.78% 38.42 61.32% 53.36 96.16% 42.16 91.63% 12.07 30.39% 11.58 29.51%
STREET AREA ID MH MH (Ha) SF SD TH APT (Ha) IND CUM CUM CUM IND CUM	0.19 12.94 3.62 0.00 12.94 3.62 0.79 0.79 0.22 0.67 1.46 0.41 0.02 14.42 4.04 0.02 14.44 4.04 5.55 19.99 5.60	0.00 24.23 104. 0.00 24.23 62.6 0.00 2.13 55.4 0.00 3.85 46.0 0.00 27.65 39.0 0.00 27.66 39.0 0.00 28.96 69.	37 24.40 56 78.50 49 56.10 01 70.80 72 9.70 24 9.90 16 21.40	250 250 250 250 250 250	2.83 1.02 0.80 0.55 0.41	2.060 1.237 1.095 0.908	L/s (%) 80.13 76.78% 38.42 61.32% 53.36 96.16% 42.16 91.63% 12.07 30.39%
Phase 18	0.19 12.94 3.62 0.00 12.94 3.62 0.79 0.79 0.22 0.67 1.46 0.41 0.02 14.42 4.04 0.02 14.44 4.04 5.55 19.99 5.60	0.00 24.23 104. 0.00 24.23 62.6 0.00 2.13 55.4 0.00 3.85 46.0 0.00 27.65 39.0 0.00 27.66 39.0 0.00 28.96 69.	37 24.40 56 78.50 49 56.10 01 70.80 72 9.70 24 9.90 16 21.40	250 250 250 250 250 250	2.83 1.02 0.80 0.55 0.41	2.060 1.237 1.095 0.908	80.13 76.78% 38.42 61.32% 53.36 96.16% 42.16 91.63% 12.07 30.39%
Block 9 154A Ex. BULK MH217Aa 0.19 0.0 973.2 3.81 15.01 2.62 3.83 0.00 5.60	0.00 12.94 3.62 0.79 0.79 0.22 0.67 1.46 0.41 0.02 14.42 4.04 0.02 14.44 4.04 5.55 19.99 5.60	0.00 24.23 62.1 0.00 2.13 55.4 0.00 3.85 46.1 0.00 27.65 39.3 0.00 27.66 39.3 0.00 28.96 69.3	56. 78.50 49 56.10 01 70.80 72 9.70 24 9.90 16 21.40	250 250 250 250 250 250	0.80 0.55 0.41	1.237 1.095 0.908 0.784	38.42 61.32% 53.36 96.16% 42.16 91.63% 12.07 30.39%
Block 9	0.00 12.94 3.62 0.79 0.79 0.22 0.67 1.46 0.41 0.02 14.42 4.04 0.02 14.44 4.04 5.55 19.99 5.60	0.00 24.23 62.1 0.00 2.13 55.4 0.00 3.85 46.1 0.00 27.65 39.3 0.00 27.66 39.3 0.00 28.96 69.3	56. 78.50 49 56.10 01 70.80 72 9.70 24 9.90 16 21.40	250 250 250 250 250 250	0.80 0.55 0.41	1.237 1.095 0.908 0.784	38.42 61.32% 53.36 96.16% 42.16 91.63% 12.07 30.39%
croissant Squadron Crescent 215Aa-b MH215A MH216A 0.79 3 4 117.8 117.8 4.00 1.91 0.00 5.60 croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.79 0.79 0.22 0.67 1.46 0.41 0.02 14.42 4.04 0.02 14.44 4.04 5.55 19.99 5.60	0.00 2.13 55.4 0.00 3.85 46.1 0.00 27.65 39.1 0.00 27.66 39.2 0.00 28.96 69.1	49 56.10 01 70.80 72 9.70 24 9.90 16 21.40	250 250 250 250 250	0.80 0.55 0.41	1.095 0.908 0.784	53.36 96.16% 42.16 91.63% 12.07 30.39%
croissant Squadron Crescent 216Aa-b MH216A MH217A 0.67 2 6 94.5 212.3 4.00 3.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.60 croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 Thorncliffe Village THORN1 MH600A MH601A 0.0 5.55 1574.0 1574.0 3.66 23.36 0.00 0.	0.67	0.00 3.85 46.0 0.00 27.65 39.0 0.00 27.66 39.0 0.00 28.96 69.0	70.80 72 9.70 24 9.90 16 21.40	250 250 250	0.55 0.41 0.40	0.908	42.16 91.63% 12.07 30.39%
croissant Squadron Crescent 216Aa-b MH216A MH217A 0.67 2 6 94.5 212.3 4.00 3.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.60 croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 Thorncliffe Village THORN1 MH600A MH601A 0.0 5.55 1574.0 1574.0 3.66 23.36 0.00 0.	0.67	0.00 3.85 46.0 0.00 27.65 39.0 0.00 27.66 39.0 0.00 28.96 69.0	70.80 72 9.70 24 9.90 16 21.40	250 250 250	0.55 0.41 0.40	0.908	42.16 91.63% 12.07 30.39%
croissant Squadron Crescent 217A MH218A 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 Thorncliffe Village THORN1 MH600A MH601A 0.0 1574.0 3.66 23.36 0.00 0.	0.02 14.42 4.04 0.02 14.44 4.04 5.55 19.99 5.60	0.00 27.65 39. 0.00 27.66 39. 0.00 28.96 69.	72 9.70 24 9.90 16 21.40	250 250	0.41	0.784	12.07 30.39%
croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 Thorncliffe Village THORN1 MH600A MH601A MH218B 0.0 1574.0 3.66 23.36 0.00	0.02 14.44 4.04 5.55 19.99 5.60	0.00 27.66 39.2 0.00 28.96 69.	24 9.90 16 21.40	250	0.40		
croissant Squadron Crescent 218A MH218A MH218B 0.02 0.0 1185.5 3.75 18.01 2.62 3.83 0.00 5.60 Thorncliffe Village THORN1 MH600A MH601A 5.55 1574.0 1574.0 3.66 23.36 0.00	0.02 14.44 4.04 5.55 19.99 5.60	0.00 27.66 39.2 0.00 28.96 69.	24 9.90 16 21.40	250	0.40		
Thorncliffe Village THORN1 MH600A MH601A MH218B	5.55 19.99 5.60	0.00 28.96 69.	16 21.40			0.774	11.58 29.51%
Thorncliffe Village THORN1 MH600A MH601A MH218B	5.55 19.99 5.60	0.00 28.96 69.	16 21.40			0.774	11.58 29.51%
Thorncliffe Village MH601A MH218B 0.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00				300			i i
Thorncliffe Village MH601A MH218B 0.0 1574.0 3.66 23.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00				300			
croissant Squadron Crescent 218B MH218B MH219A 0.07 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 croissant Squadron Crescent 219A MH219A MH220A 0.15 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent 221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent MH222A MH223A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60	0.00 19.99 5.60	0.00 28.96 108.					40.20 58.12%
croissant Squadron Crescent 219A MH219A MH220A 0.15 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent MH222A MH223A 0.0 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60			18 <i>46.90</i>	300	1.15	1.483	79.22 73.23%
croissant Squadron Crescent 219A MH219A MH220A 0.15 0.0 2759.5 3.47 38.82 2.62 3.83 0.00 5.60 croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent MH222A MH223A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60							
croissant Squadron Crescent 220A, 220B MH220A MH221A 1.46 319.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent MH222A MH223A 0.0 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60	0.07 34.50 9.66	0.00 54.08 96.7		300			42.68 44.11%
croissant Squadron Crescent 221A MH221A MH222A 0.02 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60 croissant Squadron Crescent MH222A MH223A 0.0 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60	0.15 34.65 9.70	0.00 54.12 66.9		300			12.79 19.12%
croissant Squadron Crescent MH222A MH223A 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60	1.46 36.11 10.11	0.00 58.52 74.8		300			16.30 21.78%
	0.02 36.13 10.12	0.00 58.53 64.6		300			6.07 9.40%
	0.00 36.13 10.12	0.00 58.53 58.8	32 81.60	300	0.34	0.806	0.30 0.51%
croissant Squadron Crescent BLOCK 15 BLK223AE MH223A Design by Others		109.	23 10.00	250	3.10	2.156	109.23 100.00%
croissant Squadron Crescent 222A MH223A MH165A 0.22 0.0 3078.5 3.43 42.81 2.62 3.83 0.00 5.60	0.22 36.35 10.18	0.00 58.59 96.2	24 36.10	300	0.91	1.319	37.65 39.12%
Design Parameters: Notes: Designed: WY No.	Revision					Date	
1. Mannings coefficient (n) = 0.013 1.	City submission No. 1					2016-07-08	
Residential ICI Areas 2. Demand (per capita): 350 L/day 300 L/day 2.	City submission No. 2					2016-11-04	
SF 3.4 p/p/u Peak Factor 3. Infiltration allowance: 0.28 L/s/Ha Checked: JIM 3.	City submission No. 3					2017-01-25	
TH/SD 2.7 p/p/u INST 50,000 L/Ha/day 1.5 4. Residential Peaking Factor: 4.	Revised as per Mattamy's I					2017-12-08	
APT 1.8 p/p/u COM 50,000 L/Ha/day 1.5 Harmon Formula = 1+(14/(4+P^0.5)) 5.	As-Built Submission					2018-01-29	
Other 60 p/p/Ha IND 35,000 L/Ha/day MOE Chart where P = population in thousands Dwg. Reference: 38298-501 6.						2022-03-15	
17000 L/Ha/day	Block 11 & 12 Study	Date:			,	Sheet No:	
38298.5.7.1	D	16-07-08				1 of 2	

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 MH231A Existing infrastructure (shown for information only)
Block 11, 12 Existing Conditions

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

	MH316A														ICI A	REAS				I INFILTE	RATION ALL	OWANCE	1		TOTAL	1		PROPO	SED SEWER	RDESIGN	
	LOCATION			ΔRFΔ	l	LINIT TYPES		POPII	ΙΙ ΔΤΙΟΝ	RES	PEAK	-		ΔRF	A (Ha)	ILLAU		ICI	PEAK		A (Ha)	FLOW	FIXED FI	_OW (L/s)	FLOW	CAPACITY	LENGTH	DIA			AVAILABLE
		FROM	TO				unia Hait	_		PEAK	FLOW	INSTITI	JTIONAL		IERCIAL	INDUS	STRIAL	PEAK	FLOW		T				1					(full)	CAPACITY
STREET	AREA ID				SF SD	/ TH/F TH/S		IND	CUM	FACTOR		IND			CUM			FACTOR	(L/s)	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s (%)
Pimiwidon Street									284.2	3.47	3.20	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.50	1.50	0.50	0.00	0.00	3.69	40.68	83.00	250	0.43	0.803	36.99 90.93%
Pimiwidon Street				0.16		1			286.9	3.47	3.23	0.00	0.00	0.00	0.00		0.00	1.00	0.00	0.16	1.66	0.55	0.00	0.00	3.77	37.74	43.10	250	0.37	0.745	33.96 90.00%
Pimiwidon Street	•	BULK202AN	MH202A					0.0	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.66	0.55	0.00	0.00	3.77	40.68	21.00	250	0.43	0.803	36.91 90.72%
Wigwas Street	MH315A	MH315A	MH314A	0.79	2	18		55.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.79	0.79	0.26	0.00	0.00	0.92	49.63	111.64	250	0.64	0.979	48.72 98.16%
Wigwas Street	MH314A	MH314A	BULK203AN	0.06				0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.06	0.85	0.28	0.00	0.00	0.93	83.46	14.37	250	1.81	1.647	82.53 98.88%
Wigwas Street	-	BULK203AN	MH203A					0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.85	0.28	0.00	0.00	0.93	80.17	21.00	250	1.67	1.582	79.24 98.83%
Moses Tennisco Street	MH313A	MH313A	MH312A	0.66	2	16		50.0	50.0	3.65	0.59	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.66	0.66	0.22	0.00	0.00	0.81	75.73	77.20	250	1.49	1.495	74.92 98.93%
Moses Tennisco Street	MH312A, PARK	MH312A	BULK204AN			2			55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.87	0.29	0.00	0.00	0.94	94.29	49.70	250	2.31	1.861	93.35 99.00%
Park	PARK	MH350A	pipe	0.42				0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.42	0.42	0.14	0.00	0.00	0.14	48.39	11.00	200	2.00	1.492	48.25 99.71%
Moses Tennisco Street		BULK204AN	MH204A					0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.87	0.29	0.00	0.00	0.94	89.90	21.00	250	2.10	1.774	88.96 98.95%
Michael Stoqua Street						-		_	27.7	3.69	0.33	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.44	0.15	0.00	0.00	0.48	72.35	77.82	250	1.36	1.428	71.87 99.34%
Michael Stoqua Street				0.21		2				3.68	0.39	0.00	0.00	0.00	0.00		0.00	1.00	0.00	0.21	0.65	0.21	0.00	0.00	0.61	65.66	49.19	250	1.12	1.296	65.05 99.07%
Michael Stoqua Street	•	BULK205AN	MH2U5A					0.0	33.1	3.68	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.65	0.21	0.00	0.00	0.61	66.24	21.00	250	1.14	1.307	65.63 99.08%
Wanaki Road	MH200A	MH200A	MH318A					0.0	0.0	3.80	0.00	0.00	0.00	1.01	1.01	0.00	0.00	1.50	0.49	1.01	1.01	0.33	0.00	0.00	0.82	42.53	63.35	250	0.47	0.839	41.71 98.06%
Wanaki Road	MH318A	MH318A	MH300A					0.0	0.0	3.80	0.00	0.00	0.00	0.95	1.96	0.00	0.00	1.50	0.95	0.95	1.96	0.65	0.00	0.00	1.60	42.53	77.11	250	0.47	0.839	40.93 96.24%
Tawadina Road	MH300A	MH300A	MH301A	0.47		15		40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78 92.79%
Tawadina Road	MH301A MH302A	MH301A	MH302A	0.54		14		37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33 95.18%
Tawadina Road Tawadina Road	MH302A MH303A	MH302A MH303A	MH303A MH304A	0.26 0.21		2		5.4 0.0	83.7 83.7	3.61 3.61	0.98	0.00	0.00	0.00	1.96 1.96	0.00	0.00	1.50 1.50	0.95 0.95	0.26 0.21	3.23 3.44	1.07	0.00	0.00	3.00	72.61 31.02	111.69 112.10	250 250	1.37 0.25	1.433 0.612	69.62 95.87% 27.95 90.11%
i awauiila Noau	WINSUSA	IVITIOUSA	IVITI304A	0.21				0.0	03.1	3.01	0.96	0.00	0.00	0.00	1.90	0.00	0.00	1.50	0.95	0.21	3.44	1.14	0.00	0.00	3.07	31.02	112.10	230	0.25	0.012	27.93 90.1176
Tawadina Road	MH305A	MH305A	MH304A	0.24				0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55 99.84%
Bareille-Snow Street	EXT-1	BULK304AN	MH304A	7.35			905	1629.0	1629.0	3 12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11 39.04%
							555	1020.0	1020.0	0.12	10.10	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.00	7.00	20	0.00	0.00	10.01	01.02	20.00	200	0.20	0.012	12:11 00:01%
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	1.47			190	342.0			20.38	0.00		0.00		0.00	0.00	1.00	0.64	1.47	12.50	4.13	0.00	0.00	25.14	39.72	119.21	250	0.41	0.784	14.58 36.70%
Bareille-Snow Street	MH308A	MH308A	BULK206AN	0.07				0.0		3.06							0.00	1.00	0.64	0.07	12.57		0.00	0.00	25.17	84.15	16.82	250	1.84		58.99 70.09%
Bareille-Snow Street		BULK206AN	MH206A					0.0	2054.7	3.06	20.38	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.00	12.57	4.15	0.00	0.00	25.17	88.83	21.00	250	2.05	1.753	63.66 71.67%
Codd's Road	MH340A	MH340A	BLK231AN	1.78			278	500.4	500.4	3.38	5.48	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.78	1.78	0.59	0.00	0.00	6.07	75.98	70.00	250	1.50	1.500	69.91 92.01%
Codd's Road		MH231A	BULK176AN					0.0	500.4	3.38	5.48	0.00		0.00		0.00	0.00	1.00	0.00	0.00	1.78	0.59	0.00	0.00	6.07	83.92	50.22	250	1.83	1.656	77.86 92.77%
																														+ +	
Design Parameters:				Notes:				•		Designed:	:	KH	•		No.				•	•		Revision		•	•	•			•	Date	
Residential	ICI A	roos		Mannings Demand (i	coefficient (n) =	2	0.013 30 L/day 20	00 L/day							2						Submission I Submission I									2018-12-20	
SF 3.4 p/p/u	ICI A	l CdS		Demand () Infiltration	,		30 L/day 20 33 L/s/Ha	o L/day		Checked:		.IIM			3							No. 2 for City P Submission								2019-03-15	
TH/F/SD 2.7 p/p/u	INST 28.00	0 L/Ha/dav			allowance. al Peaking Facto		JJ L/3/11a			Checkeu.		JIIVI			4						Record infor									2020-10-08	
TH/S 2.3 p/p/u		0 L/Ha/day				a = 1+(14/(4+(P	1000)^0.5))0.8								5						Record infor									2021-03-23	
APT 1.8 p/p/u		0 L/Ha/day	MOE Chart			Correction Factor				Dwg. Refe	erence:	118863-40	0		6							11 & 12 Stud								2022-03-15	
Other 60 p/p/Ha		17000 L/Ha/day 5. Commercial and Institutional Peak Factors based on total area,										F	ile Referen	ce:						Date:							Sheet No:				
	1/U00 L/Ha/day 5. Commercial and Institutional Heak Factors based on total area, 1.5 if greater than 20%, otherwise 1.0										118863.5.7.	.1						2021-03-31							1 of 1						

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 MH231A Existing infrastructure (shown for information only)
Block 11&12 Proposed Conditions

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

				1			RESID	ENTIAL					1			ICI A	REAS			1	INFII TI	RATION ALL	OWANCE			TOTAL			PROPO	SED SEWEI	DESIGN		
	LOCATION			AREA	1	HNIT '	TYPES	AREA	PODII	ILATION	RES	PEAK	+		ADE	A (Ha)	u LLAO		ICI	PEAK		A (Ha)	FLOW	FIXED F	LOW (L/s)	FLOW	CARACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAILA	BI E
		FROM	то	w/ Units	l			w/o Units			PEAK	FLOW	INISTIT	UTIONAL		MERCIAL	INDI	JSTRIAL	PEAK	FLOW		1			1	1.50	CAFACITI	LLNGIII	DIA		(full)	CAPA	
STREET	AREA ID	MH	MH	(Ha)	SF	SD / TH/F	TH/S APT	(Ha)	IND	CUM	FACTOR		IND	CUM	IND		IND		FACTOR		IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
				()				(1.12)				,	1							· · · /											, ,		(,
Pimiwidon Street	MH317-1, MH317-2	MH317A	MH316A	1.50	1	104			284.2	284.2	3.47	3.20	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.50	1.50	0.50	0.00	0.00	3.69	40.68	83.00	250	0.43	0.803	36.99	90.93%
Pimiwidon Street	MH316A	MH316A	BULK202AN	0.16		1			2.7	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.16	1.66	0.55	0.00	0.00	3.77	37.74	43.10	250	0.37	0.745	33.96	90.00%
Pimiwidon Street	•	BULK202AN	MH202A						0.0	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.66	0.55	0.00	0.00	3.77	40.68	21.00	250	0.43	0.803	36.91	90.72%
Wigwas Street	MH315A	MH315A	MH314A	0.79	2	18			55.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.79	0.79	0.26	0.00	0.00	0.92	49.63	111.64	250	0.64	0.979	48.72	98.16%
Wigwas Street	MH314A	MH314A	BULK203AN	0.06					0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.06	0.85	0.28	0.00	0.00	0.93	83.46	14.37	250	1.81	1.647	82.53	98.88%
Wigwas Street	-	BULK203AN	MH203A						0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.85	0.28	0.00	0.00	0.93	80.17	21.00	250	1.67	1.582	79.24	98.83%
Moses Tennisco Street	MH313A	MH313A	MH312A	0.66	2	16		1	50.0	50.0	3.65	0.59	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.66	0.66	0.22	0.00	0.00	0.81	75.73	77.20	250	1.49	1.495	74.92	98.93%
Moses Tennisco Street	MH312A, PARK	MH312A	BULK204AN	0.21		2			5.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.87	0.29	0.00	0.00	0.94	94.29	49.70	250	2.31	1.861	93.35	99.00%
Park	PARK	MH350A	pipe	0.42					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.42	0.42	0.14	0.00	0.00	0.14	48.39	11.00	200	2.00	1.492	48.25	99.71%
Moses Tennisco Street	-	BULK204AN	MH204A						0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.87	0.29	0.00	0.00	0.94	89.90	21.00	250	2.10	1.774	88.96	98.95%
Michael Stoqua Street	MH311A	MH311A	MH310A	0.44	1	9			27.7	27.7	3.69	0.33	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44	0.44	0.15	0.00	0.00	0.48	72.35	77.82	250	1.36	1,428	71.87	99.34%
Michael Stoqua Street	MH310A	MH310A	BULK205AN	0.21	'	2			5.4	33.1	3.68	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.65	0.10	0.00	0.00	0.40	65.66	49.19	250	1.12	1.296	65.05	99.07%
Michael Stoqua Street	-	BULK205AN		0.21					0.0	33.1		0.39	0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.65	0.21	0.00	0.00	0.61	66.24	21.00	250	1.14	1.307	65.63	99.08%
Wanaki Road	MH200A	MH200A	MH318A						0.0	0.0	3.80	0.00	0.00	0.00	1.01	1.01	0.00	0.00	1.50	0.49	1.01	1.01	0.33	0.00	0.00	0.82	42.53	63.35	250	0.47	0.839	41.71	98.06%
Tawadina Road	MH300A	MH300A	MH301A	0.47		15			40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78	92.79%
Tawadina Road	MH301A	MH301A	MH302A	0.54		14			37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33	95.18%
Tawadina Road	MH302A	MH302A	MH303A	0.26		2			5.4	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.26	3.23	1.07	0.00	0.00	3.00	72.61	111.69	250	1.37	1.433	69.62	95.87%
Tawadina Road	MH303A	MH303A	MH304A	0.21					0.0	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.21	3.44	1.14	0.00	0.00	3.07	31.02	112.10	250	0.25	0.612	27.95	90.11%
Tawadina Road	MH305A	MH305A	MH304A	0.24					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55	99.84%
Bareille-Snow Street	EXT-1	BULK304AN	MH304A	7.35			905		1629.0	1629.0	3.12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11	39.04%
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	1.48			140		252.0	1964.7	3.07	19.57	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	1.48	12.51	4.13	0.00	0.00	24.33	39.72	119.21	250	0.41	0.784	15.39	38.75%
Bareille-Snow Street	MH308A	MH308A	BULK206AN	0.96			352		633.6	2598.3	3.00	25.23	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.96	13.47	4.15	0.00	0.00	30.31	84.15	16.82	250	1.84	1.661	53.85	63.99%
Bareille-Snow Street		BULK206AN							0.0	2598.3		25.23	0.00		0.00	1.96		0.00	1.00	0.64	0.00	13.47	4.45	0.00	0.00	30.31	88.83	21.00	250	2.05	1.753	58.52	65.88%
Codd's Road	MH340A	MH340A	BLK231AN	0.88			212		381.6	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.88	0.88	0.29	0.00	0.00	4.53	75.98	70.00	250	1.50	1.500	71.46	94.04%
Codd's Road		MH231A	BULK176AN						0.0	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.88	0.29	0.00	0.00	4.53	83.92	50.22	250	1.83	1.656	79.40	94.61%
Design Parameters:				Notes:				1			Designed:	<u> </u>	KH	1		No.						F	Revision								Date		
				1. Mannings	I. Mannings coefficient (n) = 0.013											1						Submission I	No. 1 for City	Review							2018-12-20		
Residential	ICI A	Areas		2. Demand (,		280 L/day	200	L/day							2						Submission I									2019-03-15		
SF 3.4 p/p/u				3. Infiltration			0.33 L/s/Ha				Checked:		JIM			3			-				P Submission				·				2019-04-17		
TH/F/SD 2.7 p/p/u		00 L/Ha/day		Residentia												4	1					Record infor									2020-10-08		
TH/S 2.3 p/p/u		00 L/Ha/day				,	(14/(4+(P/1000)^0.5))0	0.8					110000 :-			5						Record infor									2021-03-23		
APT 1.8 p/p/u		00 L/Ha/day	MOE Chart		where K = 0						Dwg. Refe	rence:	118863-40	00		6						Block	11 & 12 Stud	,							2022-03-15		
Other 60 p/p/Ha	1700	00 L/Ha/day					k Factors based on total	al area,									ile Referer							Date:							Sheet No:		
				1.5 if gre	eater than 20)%, otherwi	se 1.0										118863.5.7	7.1						2021-03-31	1						1 of 1		

IBI GROUP MEMORANDUM 6

Mary Jarvis - November 23, 2022

APPENDIX B

- Sanitary Sewer Spreadsheet Original Concept Site Plan
- Sanitary Sewer Spreadsheet DesignWorks Engineering Site Plan

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 MH231A Existing infrastructure (shown for information only)
Block 11&12 Proposed Conditions

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

				1				RESIDENT	ΙΔΙ								ICI A	REAS				INFILTS	RATION ALL	OWANCE	1		TOTAL	1		PROPO	SED SEWER	DESIGN		
	LOCATION			AREA	1	LIMIT	TYPES		AREA	POPULA	ATION	RES	PEAK			ADE	A (Ha)	ILLAU		ICI	PEAK		A (Ha)	FLOW	FIXED F	LOW (L/s)	FLOW	CARACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAII	ABLE
	ı	FROM	то	w/ Units			1		o Units	1 21 22		PEAK	FLOW	INICTIT	UTIONAL		IERCIAL	INDU	STRIAL	PEAK	FLOW	ARE	()	FLOW	1	1	FLOW	CAPACITI	LENGIH	DIA	SLOPE	(full)		ACITY
STREET	AREA ID	MH	MH	(Ha)	SF	SD / TH/F	TH/S	APT W/	(Ha)	IND	CUM	FACTOR		IND	CUM	IND	CUM	IND	CUM	FACTOR		IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
				(****)					()				,																			` -,		(,
Pimiwidon Street	MH317-1, MH317-2	MH317A	MH316A	1.50	1	104				284.2	284.2	3.47	3.20	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.50	1.50	0.50	0.00	0.00	3.69	40.68	83.00	250	0.43	0.803	36.99	90.93%
Pimiwidon Street	MH316A	MH316A	BULK202AN	0.16		1				2.7	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.16	1.66	0.55	0.00	0.00	3.77	37.74	43.10	250	0.37	0.745	33.96	90.00%
Pimiwidon Street	-	BULK202AN	MH202A							0.0	286.9	3.47	3.23	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.66	0.55	0.00	0.00	3.77	40.68	21.00	250	0.43	0.803	36.91	90.72%
Wigwas Street	MH315A	MH315A	MH314A	0.79	2	18				55.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.79	0.79	0.26	0.00	0.00	0.92	49.63	111.64	250	0.64	0.979	48.72	98.16%
Wigwas Street	MH314A	MH314A	BULK203AN	0.79		10				0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.79	0.79	0.28	0.00	0.00	0.92	83.46	14.37	250	1.81	1.647	82.53	98.88%
Wigwas Street	-	BULK203AN		0.00						0.0	55.4	3.64			0.00	0.00			0.00	1.00	0.00	0.00	0.85	0.28	0.00	0.00	0.93	80.17	21.00	250	1.67	1.582	79.24	98.83%
vvigwas outcor		DOLKEOSAIV	WII IZOOA							0.0	00.4	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.20	0.00	0.00	0.55	00.17	27.00	200	1.07	1.002	10.24	30.0370
Moses Tennisco Street	MH313A	MH313A	MH312A	0.66	2	16				50.0	50.0	3.65	0.59	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.66	0.66	0.22	0.00	0.00	0.81	75.73	77.20	250	1.49	1.495	74.92	98.93%
Moses Tennisco Street	MH312A, PARK	MH312A	BULK204AN	0.21		2				5.4	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.87	0.29	0.00	0.00	0.94	94.29	49.70	250	2.31	1.861	93.35	99.00%
D. d.	DADI	MU0504		0.40						0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00	0.40	0.40	0.44	0.00	0.00	0.44	40.00	44.00	000	0.00	4 400	40.05	00.740/
Park	PARK	MH350A	pipe	0.42						0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.42	0.42	0.14	0.00	0.00	0.14	48.39	11.00	200	2.00	1.492	48.25	99.71%
Moses Tennisco Street	-	BULK204AN	MH204A							0.0	55.4	3.64	0.65	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.87	0.29	0.00	0.00	0.94	89.90	21.00	250	2.10	1.774	88.96	98.95%
Mish and Ottomas Observed	MH311A	MH311A	MH310A	0.44	1	9				27.7	27.7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00	0.44	0.44	0.45	0.00	0.00	0.40	70.05	77.00	050	4.00	1.428	74.07	99.34%
Michael Stoqua Street Michael Stoqua Street	MH310A	MH310A	BULK205AN	0.44	<u> </u>	2				5.4	33.1	3.69 3.68	0.33	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.44 0.21	0.44	0.15 0.21	0.00	0.00	0.48 0.61	72.35 65.66	77.82 49.19	250 250	1.36 1.12	1.426	71.87 65.05	99.34%
Michael Stoqua Street	WITSTUA -	BULK205AN		0.21						0.0	33.1	3.68	0.39	0.00	0.00	0.00	0.00		0.00	1.00	0.00	0.00	0.65	0.21	0.00	0.00	0.61	66.24	21.00	250	1.14	1.307	65.63	99.08%
Wilchael Stoqua Street	-	BULK 200AN	IVITZUSA							0.0	33.1	3.00	0.39	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.21	0.00	0.00	0.01	00.24	21.00	250	1.14	1.307	00.03	99.00%
Wanaki Road	MH200A	MH200A	MH318A							0.0	0.0	3.80	0.00	0.00	0.00	1.01	1.01	0.00	0.00	1.50	0.49	1.01	1.01	0.33	0.00	0.00	0.82	42.53	63.35	250	0.47	0.839	41.71	98.06%
Tawadina Road	MH300A	MH300A	MH301A	0.47		15				40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78	92.79%
Tawadina Road	MH301A	MH301A	MH302A	0.54		14				37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33	95.18%
Tawadina Road	MH302A	MH302A	MH303A	0.26		2				5.4	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.26	3.23	1.07	0.00	0.00	3.00	72.61	111.69	250	1.37	1.433	69.62	95.87%
Tawadina Road	MH303A	MH303A	MH304A	0.21						0.0	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.21	3.44	1.14	0.00	0.00	3.07	31.02	112.10	250	0.25	0.612	27.95	90.11%
Tawadina Road	MH305A	MH305A	MH304A	0.24						0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55	99.84%
rawaana roaa	Will TOOCK Y	1111100071		0.2.						0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.21	0.21	0.00	0.00	0.00	0.00	10.00		200	0.01	0.070	10.00	00.0170
Bareille-Snow Street	EXT-1	BULK304AN	MH304A	7.35				905		1629.0	1629.0	3.12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11	39.04%
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	1.48				140		252.0	1964.7	3.07	19.57	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	1.48	12.51	4.13	0.00	0.00	24.33	39.72	119.21	250	0.41	0.784	15.39	38.75%
Bareille-Snow Street	MH308A	MH308A	BULK206AN	0.96				352		633.6	2598.3	3.00	25.23	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.96	13.47	4.45	0.00	0.00	30.31	84.15	16.82	250	1.84	1.661	53.85	63.99%
Bareille-Snow Street		BULK206AN	MH206A							0.0	2598.3	3.00		0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.00	13.47	4.45	0.00	0.00	30.31	88.83	21.00	250	2.05	1.753	58.52	65.88%
O. III. D I	MH340A	14110404	DUMOOAAN	0.00				040		004.0	004.0	0.40	4.04	0.00	0.00	0.00	0.00	0.00	0.00	4.00	0.00	0.00	0.00	0.00	0.00	0.00	4.50	75.00	70.00	050	4.50	4.500	74.40	04.040/
Codd's Road Codd's Road	MH340A	MH340A MH231A	BLK231AN BULK176AN	0.88				212		381.6 0.0	381.6 381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.88	0.88	0.29	0.00	0.00	4.53 4.53	75.98 83.92	70.00 50.22	250 250	1.50 1.83	1.500 1.656	71.46 79.40	94.04%
Codd s Road		IVIT 23 IA	BULK 176AN							0.0	301.0	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.29	0.00	0.00	4.53	03.92	50.22	250	1.03	1.000	79.40	94.01%
Design Denometers				Materi								Danisas 1		IZU.			Na							Davidalası								Dete		
Design Parameters:				Notes: 1. Mannings	coefficient	t (n) =		0.013				Designed:		KH			No.							Revision No. 1 for City	Poviow							Date 2018-12-20		
Residential		ICI Areas		Nannings Demand (u.u.is L/day	200 L	/day							2							No. 2 for City								2019-03-15		
SF 3.4 p/p/u				3. Infiltration			0.33		200 L	,		Checked:		JIM			3							P Submission								2019-04-17		
TH/F/SD 2.7 p/p/u	INST	28,000 L/Ha/day		Residentia			2.00										4							mation Added								2020-10-08		
TH/S 2.3 p/p/u		28,000 L/Ha/day					(14/(4+(P/100	00)^0.5))0.8									5								d (No.2)							2021-03-23		
APT 1.8 p/p/u		35,000 L/Ha/day	MOE Chart			0.8 Correct		,				Dwg. Refe	rence:	118863-40	00		6						Block	11 & 12 Stud	ly							2022-03-15		
Other 60 p/p/Ha		17000 L/Ha/day		5. Commercia	al and Insti	itutional Pea	k Factors bas	ed on total are	ea,								F	le Referen	ce:						Date:							Sheet No:		
1		•		1.5 if are	eater than 2	20%, otherwi	ise 1.0											118863.5.7.	.1						2021-03-3	1						1 of 1		

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 MH231A Existing infrastructure (shown for information only)
Block 11 Proposed Conditions (DesignWorks Engineering)

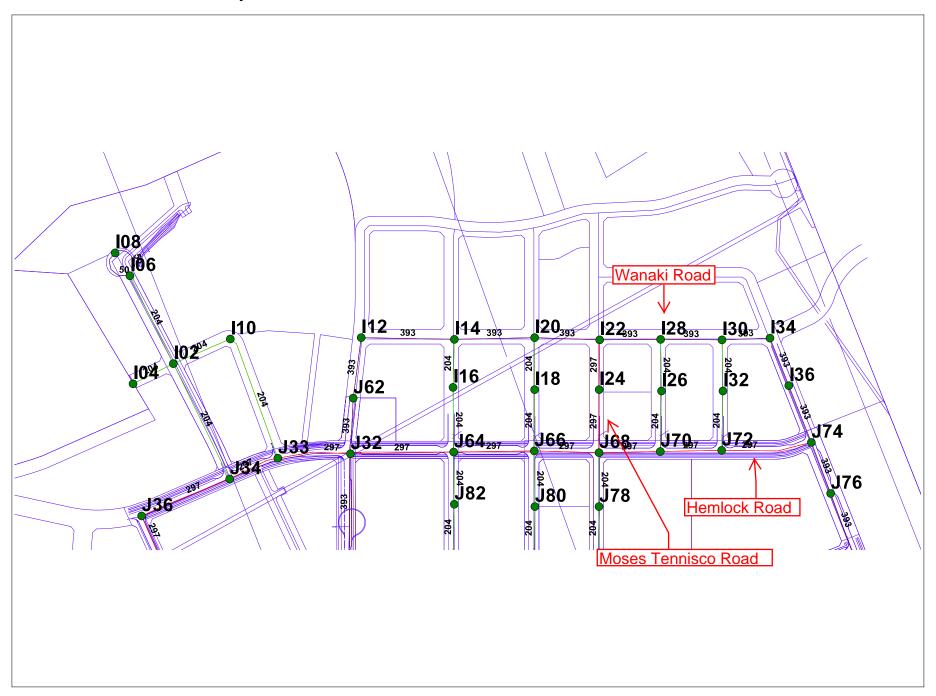
SANITARY SEWER DESIGN SHEET

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

	LOCATION						RESI	DENTIAL								ICI A	REAS				INFILTI	RATION ALL	OWANCE	FIVED F	LOW (L/s)	TOTAL			PROPO	SED SEWER	R DESIGN		$\overline{}$
	LOCATION			AREA		UNIT T	YPES	AREA	POPU	LATION	RES	PEAK			ARE	A (Ha)			ICI	PEAK	ARE	A (Ha)	FLOW	FIXED F	LOW (L/S)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA!	ILABLE
STREET	AREA ID	FROM	TO	w/ Units	SF	SD / TH/F	TH/S APT	w/o Units	IND	СПМ	PEAK	FLOW	INSTIT	UTIONAL	COMM	MERCIAL	INDU	STRIAL	PEAK	FLOW	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	CAP	PACITY
SIREEI	AREA ID	MH	MH	(Ha)	ər	3D / TH/F	IH/S API	(Ha)	IND	COW	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)	IND	COM	(L/S)	IND	COM	(L/S)	(L/S)	(m)	(mm)	(%)	(m/s)	L/s	(%)
Tawadina Road	MH300A	MH300A	MH301A	0.47		15			40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78	92.79%
Tawadina Road	MH301A	MH301A	MH302A	0.54		14			37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33	95.18%
Tawadina Road	MH302A	MH302A	MH303A	0.26		2			5.4	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.26	3.23	1.07	0.00	0.00	3.00	72.61	111.69	250	1.37	1.433	69.62	95.87%
Tawadina Road	MH303A	MH303A	MH304A	0.93			240		432.0	515.7	3.37	5.64	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.93	4.16	1.37	0.00	0.00	7.96	31.02	112.10	250	0.25	0.612	23.06	74.33%
Tawadina Road	MH305A	MH305A	MH304A	0.24					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55	99.84%
B 111 B 01 1	F) (F)	B1 II 1 (00 (1))							1000 0	1000 0										0.00						10.01	24.22	22.22					
Bareille-Snow Street	EXT-1	BULK304AN	MH304A	7.35			905		1629.0	1629.0	3.12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11	39.04%
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	0.76			52		93.6	2238.3	3.04	22 04	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.76	12.51	4 13	0.00	0.00	26.80	39.72	119.21	250	0.41	0.784	12 93	32.54%
Bareille-Snow Street	MH308A	MH308A	BULK206AN	0.96			352		633.6	2871.9		27.61	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.96	13.47	4.45	0.00	0.00	32.69	84.15	16.82	250	1.84	1.661	51.46	61.15%
Bareille-Snow Street		BULK206AN	MH206A						0.0	2871.9		27.61	0.00	0.00	0.00		0.00	0.00		0.64	0.00	13.47		0.00	0.00	32.69	88.83	21.00	250	2.05	1.753	56.13	63.20%
																															1		
Codd's Road	MH340A	MH340A	BLK231AN	0.88			212		381.6	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.88	0.88	0.29	0.00	0.00	4.53	75.98	70.00	250	1.50	1.500	71.46	94.04%
Codd's Road		MH231A	BULK176AN						0.0	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.88	0.29	0.00	0.00	4.53	83.92	50.22	250	1.83	1.656	79.40	94.61%
																															'	<u> </u>	\perp
													-																	-	+'	 	+
Design Parameters:				Notes:		1				1	Designed	:	KH		1	No.		ı				F	Revision								Date		
				1. Mannings	coefficient	(n) =	0.013									1						Submission N	No. 1 for City	Review							2018-12-20		$\overline{}$
Residential	IC	l Areas		2. Demand	(per capita):	: `	280 L/day	200) L/day							2						Submission N	No. 2 for City	Review						-	2019-03-15	-	
SF 3.4 p/p/u				3. Infiltration	2. Demand (per capita): 260 L/day 200 L/day 3. Infiltration allowance: 0.33 L/s/Ha Che								JIM			3						MECF	P Submission							•	2019-04-17	•	
TH/F/SD 2.7 p/p/u	INST 28	,000 L/Ha/day		4. Residenti	Residential Peaking Factor:											4						Record inforr	mation Added	(No.1)							2020-10-08		
TH/S 2.3 p/p/u		,000 L/Ha/day		Harmon Formula = 1+(14/(4+(P/1000)^0.5))0.8												5						Record inforr	mation Added	(No.2)							2021-03-23		
APT 1.8 p/p/u	IND 35	,000 L/Ha/day	MOE Chart									erence:	118863-40	00																			
Other 60 p/p/Ha	17	7000 L/Ha/day		Commercial and Institutional Peak Factors based on total area,													ile Referen							Date:							Sheet No:		
				1.5 if gr	eater than 2	20%, otherwis	e 1.0										118863.5.7	.1						2021-03-3	1						1 of 1		

IBI GROUP MEMORANDUM 7

Mary Jarvis - November 23, 2022


APPENDIX C

• Water Modeling Results – Phase 2B Design Brief

Wateridge Overall Model

Phase 2 Node ID's and Pipe Sizes

Phase 2 Basic Day (Max HGL) Pressures

Phase 2 Peak Hour Pressures

Phase 2 Max Day + Fire Design Fireflows

IBI GROUP MEMORANDUM

Mary Jarvis - November 23, 2022

APPENDIX D

• Low Impact Development (LID) Review

November 22, 2022 1

To: Anton Chetrar & Jim Moffatt

IBI

400-333 Preston Street, Ottawa, ON K1S 5N4

Krisendat Sewgoolam & Mary Jarvis Canada Lands Corporation (CLC)

30 Metcalfe Street, Suite 601, Ottawa, Ontario, K1P 5L4

From: Chris Denich, M.Sc. P.Eng., Aquafor Beech Ltd.

55 Regal Road, Guelph, ON, N1K 1B6

Re: Submission 1: Site Plan Package Submission to Canada Lands Company; 1050

Tawadina Road, Ottawa

At the request of CLC, we have completed a review of submission 1 for 1050 Tawadina Road, Ottawa (Block 11) in regards to the Low Impact Development (LID) requirements. The review has been based on the designs as detailed in the relevant reports and site drawings prepared by Westurban Developments and offer the following advisory comments, without prejudice. The following documents, reports and drawings were reviewed:

- 1. Wateridge Village Municipal Servicing and Stormwater Management Feasibility Study Report (October 21, 2022) Prepared by Design Works Engineering Ltd.;
- 2. Civil Drawings (Issued for CLC Submission) October 25, 2022 Prepared by Design Works Engineering Ltd:
 - a. Site Grading Plan;
 - b. Site Servicing Plan;
 - c. Site Erosion and Sediment Control Plan;
 - d. Utility Plan;
- 3. Geotechnical Investigation Proposed Two New Apartments Buildings 1050 Tawadina Road, Ottawa, ON (November 3, 2022) Prepared by Englobe.
- 4. Architectural Drawings (undated) Prepared By Formed Alliance Architects Studio (FAAS)
- 5. Landscape Drawings (October 24, 3022) Prepared by CSW

General Comments

- 1. In regards to submission 1, it is noted that CLC's goal for this overall development is for the Wateridge Village development (Former CFB Rockcliffe) to be a model community for LID. In general, the proposed design is not in keeping with CLC's design vision nor the LID Demonstration Project goals and objectives, including overall aesthetic enhancement and synergies using LIDs. The current site plan does not demonstrate LID technologies to the full extent.
- 2. It is acknowledged that per Section 5.3 Wateridge Village Municipal Servicing and Stormwater Management Feasibility Study Report that reference has been appropriately made to Wateridge Phase 2B LID Developer's Checklist, which was include as Appendix D. It is further noted that notwithstanding the comments below, the design calculations demonstrates that proposed LID achieves the required 4mm LID Infiltration target and 4mm LID Erosion Target, but does not achieve the required Minimum Water Quality Target of the 15mm event as specified in Table 2.1.

November 22, 2022 2

3. It is acknowledged that a series two (2) Soleno Underground Infiltration Systems (Solo Max Perforated Subdrain) been included with the intent of infiltrating runoff from the respective roof drainage area. The following is noted:

- a. Sufficient design details have not been provided for the proposed Underground Infiltration Systems. No design details and/or cross-sections are provided within the civil drawings and no product specifications/ technical documents. Trench widths, bedding materials, filter fabrics, founding elevations, backfill and compaction requirements etc. should be detailed.
- b. Per the TRCA/CVC LID Planning and Design Guide (2010), Wiki Document (wiki.sustainabletechnologies.ca) or most current, infiltration galleries (soakaways, trenches and chambers), should be set back at least four (4) metres from building foundations (specifically where liveable spaces, mechanical rooms, parking or other are located sub-surface) unless infiltration facility inverts are located below the lowest finished floor elevation. As such the following is recommended:
 - i. Show offset from the respective Building A proximal to the infiltration gallery and increase to 4m if feasible.
 - ii. Please confirm if the infiltration system inverts are located below the lowest finished floor elevation of Building A proximal to the infiltration system.
 - iii. If 4m cannot be accommodated or infiltration systems cannot be located below the lowest finished floor elevation, it is recommended that inclusion of impermeable barriers proximal to the building side of the infiltration system or additional building waterproofing be included.
- c. It is understood that the infiltration systems will accept roof runoff. Pre-treatment devises (leaf screens and/or filters) are recommended to prevent debris from entering the infiltration systems.
- d. The Wateridge Village Municipal Servicing and Stormwater Management Feasibility Study Report should include a discussion of winter operation/ functionality of the infiltration systems
- e. Per the TRCA/CVC LID Planning and Design Guide (2010), Wiki Document (wiki.sustainabletechnologies.ca) or most current, please confirm that the impervious drainage area to the areas of each infiltration systems is between 5:1 and 20:1.
- f. LID specific Erosion and Sediment Controls and Construction Staging for Section 5.21 of the Stormwater Management Existing Conditions Report & LID Pilot Project Scoping (Aquafor Beech (2015) have not been provided. LID controls that rely on infiltration require specific ESC controls to be in place during construction to prevent contamination/ clogging during construction.
- g. LID designs should reference the requirements of the City of Ottawa, Low Impact Development Technical Guidance Report – Implementation in Areas with Potential Hydrogeological Constraints (February 2021) for design, analysis and in-situ testing requirements.
- 4. No discussion or details are provided with the Wateridge Village Municipal Servicing and Stormwater Management Feasibility Study Report or the Geotechnical Investigation in regards to the site context as it relates to the Underground Infiltration Systems specifically:
 - a. In-situ Infiltration rates of the native soils within the proposed footprint of the Underground Infiltration Systems
 - b. the seasonally high groundwater elevation,

November 22, 2022 3

- c. bedrock elevation, and
- d. the soil stratigraphy that proposed Underground Infiltration Systems would be founded
- 5. As an advisory comment, opportunities for additional LID integration into the site include but are not limited to:
 - a. Raised planter areas: opportunity to design as bioretention planters
 - b. Tree plantings: opportunity to design tree pits or cluster plantings
 - c. Area drains: opportunity to design as bioretention areas
 - d. Unit paver areas: opportunity to design as permeable pavements

The above noted comments should be considered preliminary in nature and limited to the information provided. Additional information shall be required prior to Aquafor Beech completing a thorough and complete review.

August 17, 2023

Cameron Salisbury, MEDes., RPP., MCIP Directory of Development WestUrban Developments Ltd. 111-2036 Island Highway South Campbell River, BC V9W 0E8

Re: Permeability Testing and Monitoring Well Installations – 1050 Tawadina Road, Ottawa

McIntosh Perry ('MP') was retained by Cameron Salisbury of WestUrbanDevelopments Ltd. ('Client') to conduct permeability investigations within an undeveloped parcel of land located at 1050 Tawadina Road in Ottawa, Ontario ('the Site'). The scope of work included the completion of in-situ permeability testing at two locations in the northwest and southeast corner of the Site, at varying depths (0.5, 1.0., and 1.5 m below ground surface (bgs)). Additionally, McIntosh Perry advanced two boreholes equipped with monitoring wells within these same areas.

Permeability Testing - Infiltration Values

McIntosh Perry completed permeability testing in the northwest and southeast corners of the Site at 0.5, 1.0., and 1.5 m bgs. To complete these tests, MP utilized a Guelph Permeameter (a constant head permeameter used to measure in-situ saturated hydraulic conductivities of soil). Holes were dug using either a hand auger or mechanized equipment (backhoe). A total of six (6) holes/test pits were advanced, three (3) within the northwest portion of the Site (Hole 1A, TP1, and TP2), and three (3) within the southeast portion of the Site (TP3, TP4, and TP5). The locations of these holes are indicated on Figure 1 below. This work was completed on July 17, 2023 (Hole 1A) and August 2, 2023 (TP1, TP2, TP3, TP4, TP5).

Figure 1. Infiltration Testing and Monitoring Well Locations

Each infiltration test consisted of a 5-15 cm head test, based on the level of saturation and subsurface materials encountered where testing was attempted. Water was added to the Guelph Permeameter reservoir and allowed to infiltrate into the soil at the specified head pressure. Changes in reservoir water level (h) were recorded at regular intervals and normalized for change in time (t). each test was considered complete when dh/dt (change in head/change in time) reached a steady-state for at least three consecutive measurements.

Appendix C.2 of the Toronto Region Conservation Authority's (TRCA) Stormwater Management Criteria (August 2012) provides guidance on the calculation of infiltration rates using field saturated hydraulic conductivity (K_s). The recommended calculation is as follows:

$$K_{fs} = (6 \times 10^{-11}) (I^{3.7363})$$

Where:

- K_{fs} is the field saturated hydraulic conductivity (in cm/s), as measured by a Guelph Permeameter, double-ring infiltrometer, single-ring infiltrometer, or other accepted method
- I is the infiltration rate (in mm/hr)

Based on the above calculation, the estimated soil infiltration rate (I) from the data collected at all locations is shown in the table below.

Table 1: Infiltration Rates

Borehole ID	K _{fs} cm/s	Infiltration Rate (mm/hour)	Corrected I* (mm/hr)	Subsurface Materials	Depth of Hole (m bgs)
Hole 1A	4.07 x 10 ⁻⁸	5.7	1.64	Clay	0.5
TP1	2.80 x 10 ⁻⁶	17.7	5.08	Silty sand	1.0
TP2	1.48 x 10 ⁻⁶	14.9	4.28	Silty sand	1.5
TP3	2.95 x 10 ⁻⁶	18.02	5.15	Medium to fine- grained sand	0.5
TP4	2.34 x 10 ⁻⁶	16.9	4.84	Silty sand	1.0
TP5	1.32 x 10 ⁻⁶	14.5	4.15	Fine-grained sand with silt and clay	1.5

^{*}Includes a safety factor calculated per TRCA guidance. Safety factors are chosen based on the ratio of highest to lowest permeability rates measured at the same test location, within unique strata.

As shown, the highest infiltration rate was observed in TP5 at a depth of approximately 1.5 m bgs. The lowest infiltration rate was observed in Hole 1A at a depth of approximately 0.5 m bgs. These values are generally consistent with the observed stratigraphy, in that fine-grain materials will typically have lower hydraulic conductivity rates.

Monitoring Well Installations

McIntosh Perry installed two (2) boreholes (equipped with monitoring wells) on August 4, 2023. Boreholes were advanced by Strata Drilling under the supervision of McIntosh Perry personnel. One borehole was installed within overburden materials at bedrock refusal (1.9 m bgs), and one was drilled through bedrock materials until interception with groundwater occurred (8.3 m bgs). In addition, groundwater level measurements were obtained from each monitoring well after installation (approximately 10-15 after installation).

Monitoring well BH23-1 (MW) was installed within the southeast portion of the Site to a final depth of 1.9 m bgs. Monitoring well BH23-2 (MW) was installed within the northwest portion of the Site, to a final depth of 8.3 m bgs. Based on test pits dug as part of the infiltration testing, overburden encountered within the area of BH23-1 (MW) and BH23-2 (MW) included cobbles/debris followed by silty sand with trace gravel and clay until refusal on bedrock. Bedrock was encountered at 2 m bgs at BH23-2 (MW), after which time Strata employed the use of an air hammer to advance the borehole to a final depth of 8.3 m bgs. Groundwater was encountered in bedrock between 6-7 m bgs.

The newly installed monitoring wells were constructed using 2" (51 mm) Schedule 40 polyvinyl chloride (PVC) well screen (10 slot), flush-threaded to Schedule 40 PVC riser pipe. A silica sand filter pack was installed from the base of each well screen to 0.3 m above the top of the screen. A bentonite clay seal was installed above the silica sand filter pack to prevent infiltration of surface water into the groundwater monitoring well. The screened interval was positioned to intersect the water table.

Water Level Measurements

Water levels were measured immediately after the installation of both wells, on August 4, 2023. No groundwater was observed in BH23-1 (MW). Details of groundwater level measurements are described below:

Monitoring Well	Water Level (m bgs)	Well Depth (m bgs)
BH23-1 (MW)	(no water observed)	1.9 (overburden)
BH23-2 (MW)	5.9	8.3 (bedrock)

It should be noted that the above water levels may not be representative of long-term, stabilized groundwater table. Part of the rationale for installing the monitoring wells is to partially provide infrastructure for future measurements of the groundwater table.

We trust that this information is satisfactory for your present requirements. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Respectfully submitted,

McIntosh Perry Consulting Engineers Ltd.

Leslu

Rebecca Leduc, M.Sc. Environmental Scientist

 $\underline{r.leduc@mcintoshperry.com}$

Office: 343-764-2080

Jordan Bowman, P.Geo., P.Biol. (AB) Manager, Geo-Environmental j.bowman@mcintoshperry.com

Office: 613-714-4602

Servicing study guidelines for development applications

4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1 General Content

Executive Summary (for larger reports only).

Proposed phasing of the development, if applicable.

Date and revision number of the report.
Location map and plan showing municipal address, boundary, and layout of proposed development.
Plan showing the site and location of all existing services.
Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.
Summary of Pre-consultation Meetings with City and other approval agencies.
Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.
Statement of objectives and servicing criteria.
Identification of existing and proposed infrastructure available in the immediate area.
Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).
Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.
Identification of potential impacts of proposed piped services on private services (such as wells and sentic fields on adjacent lands) and mitigation required to address potential impacts

Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme

Reference to geotechnical studies and recommendations concerning servicing.
All preliminary and formal site plan submissions should have the following information: • Metric scale
North arrow (including construction North)
∘ Key plan
Name and contact information of applicant and property owner
∘ Property limits including bearings and dimensions
 Existing and proposed structures and parking areas
∘ Easements, road widening and rights-of-way
Adjacent street names
• Adjacent street names
4.2 Development Servicing Report: Water
Confirm consistency with Master Servicing Study, if available
Availability of public infrastructure to service proposed development
Identification of system constraints
Identify boundary conditions
Confirmation of adequate domestic supply and pressure
Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.
Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.
Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design
Address reliability requirements such as appropriate location of shut-off valves
Check on the necessity of a pressure zone boundary modification.
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range

Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.
4.3 Development Servicing Report: Wastewater
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).
Confirm consistency with Master Servicing Study and/or justifications for deviations.
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.
Description of existing sanitary sewer available for discharge of wastewater from proposed development.
Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)
Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.
Description of proposed sewer network including sewers, pumping stations, and forcemains.
Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.
Special considerations such as contamination, corrosive environment etc.

4.4 Development Servicing Report: Stormwater Checklist

drain, right-of-way, watercourse, or private property)
Analysis of available capacity in existing public infrastructure.
A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.
Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.
Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.
Description of the stormwater management concept with facility locations and descriptions with references and supporting information.
Set-back from private sewage disposal systems.
Watercourse and hazard lands setbacks.
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.
Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.
Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).
Identification of watercourses within the proposed development and how watercourses will be protected or, if necessary, altered by the proposed development with applicable approvals.
Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.
Any proposed diversion of drainage catchment areas from one outlet to another.
Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.
If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 year return period storm event.
Identification of potential impacts to receiving watercourses
Identification of municipal drains and related approval requirements.
Descriptions of how the conveyance and storage capacity will be achieved for the development.
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.

Inclusion of hydraulic analysis including hydraulic grade line elevations.
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.
Identification of fill constraints related to floodplain and geotechnical investigation.
4.5 Approval and Permit Requirements: Checklist
The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.
Changes to Municipal Drains.
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)
4.6 Conclusion Checklist
Clearly stated conclusions and recommendations
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario

APPENDIX B

Water Model Results Water Demand Calculations Fire flow Calculations Architectural Building Areas

Chetrar, Anton

From: Jhamb, Nishant <nishant.jhamb@ottawa.ca>
Sent: Wednesday, November 8, 2023 1:42 PM

To: Chetrar, Anton

Subject: RE: 1050 Tawadina Road - Water Boundary Conditions

Attachments: 1050 Tawadina Road Oct 2023.pdf

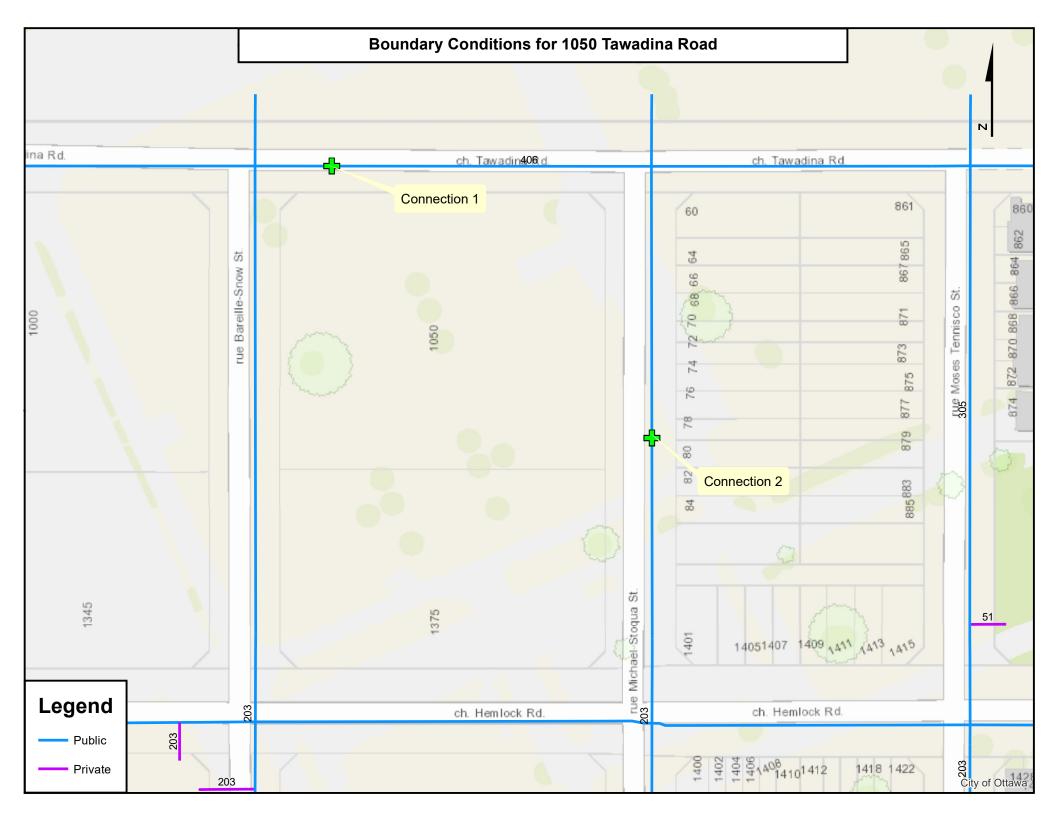
Follow Up Flag: Follow up Flag Status: Flagged

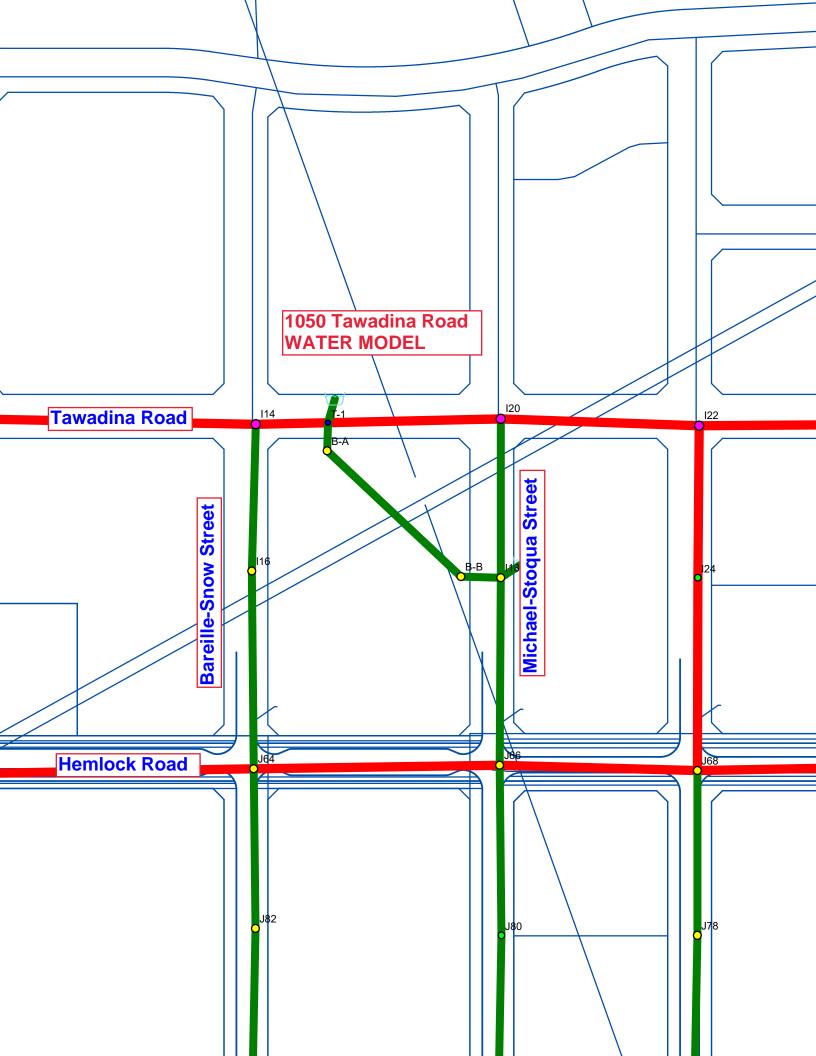
Hello Anton

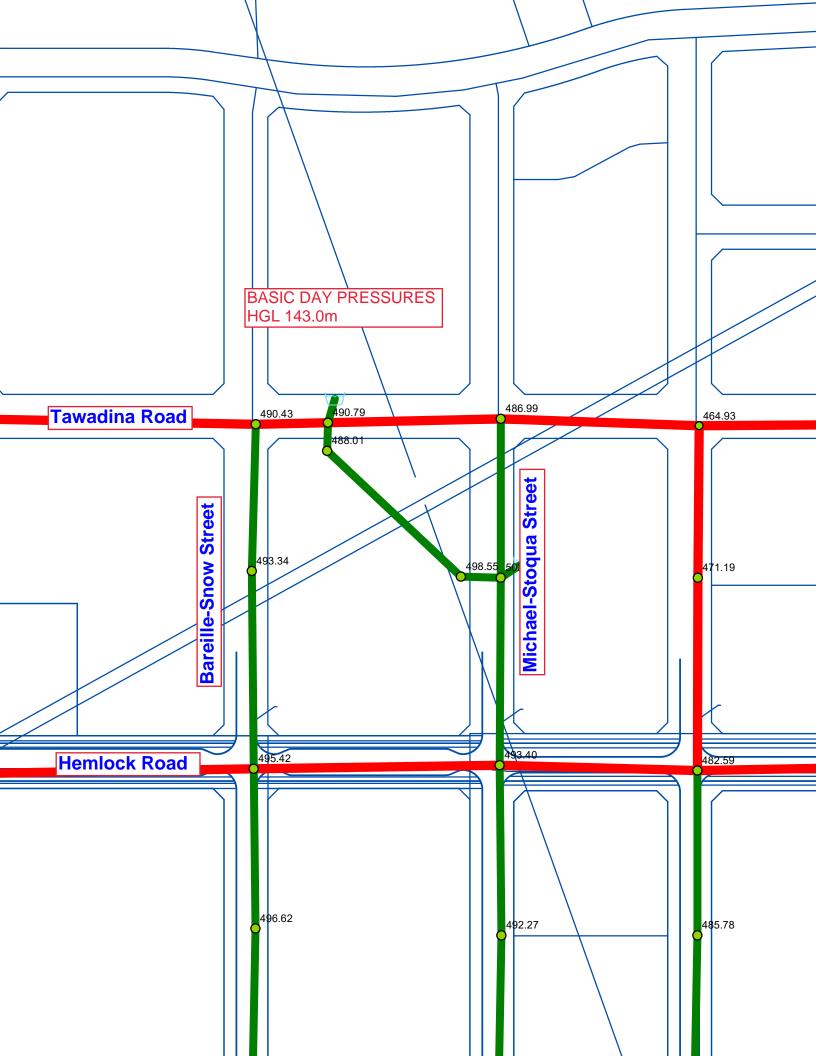
The following are boundary conditions, HGL, for hydraulic analysis for 1050 Tawadina Road (zone MONT), assumed to be connected to the 406 mm watermain on Tawadina Road and the 203 mm on Michael Stoqua Street (see attached PDF for location).

Min HGL: 143.0 m Max HGL: 143.0 m

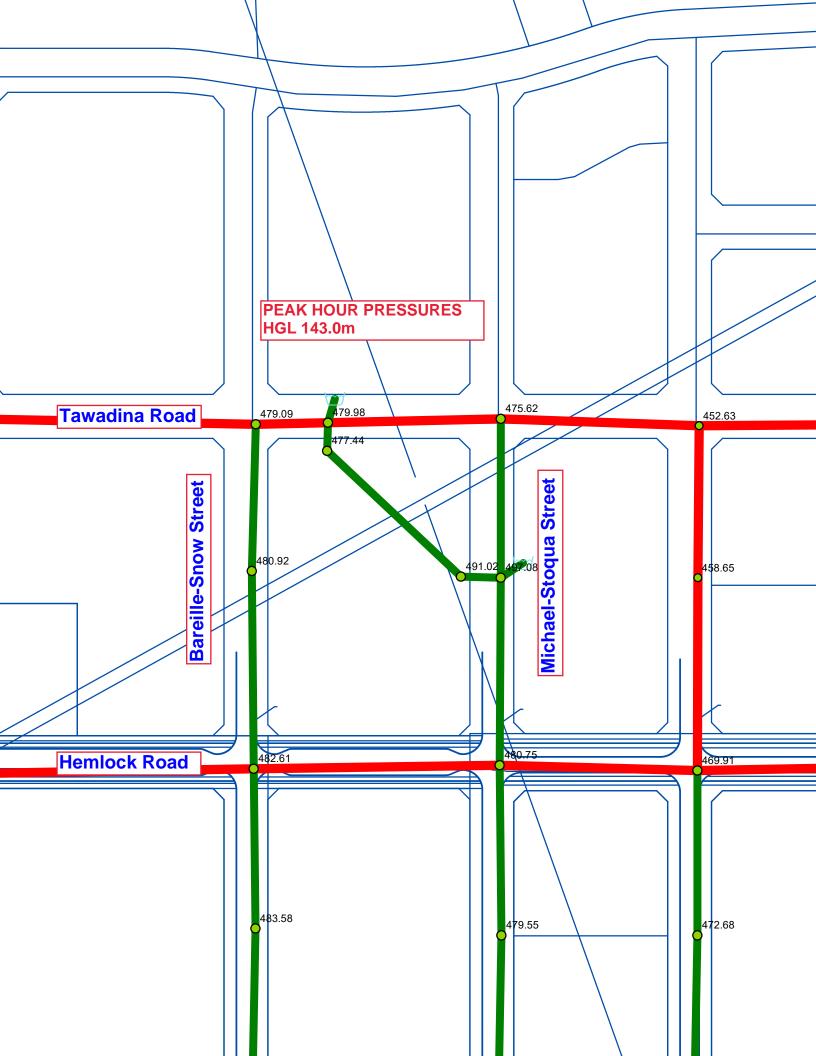
Max Day + Fire Flow (166.7 L/s): 140.5 m (Connection 1) and 137.2 m (Connection 2) Max Day + Fire Flow (183.3 L/s): 141.7 m (Connection 1) and 137.9 m (Connection 2)

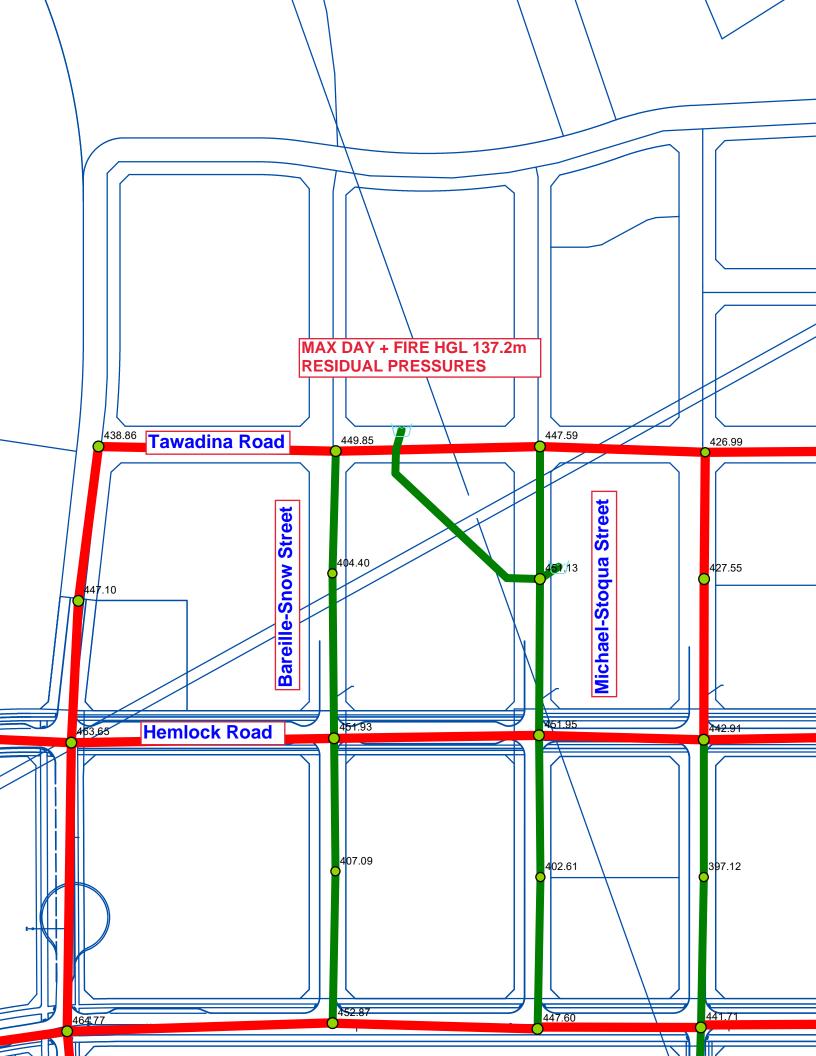

Note: A Second pump turns ON at Montreal pump station for the higher fire demand of 183.3 L/s

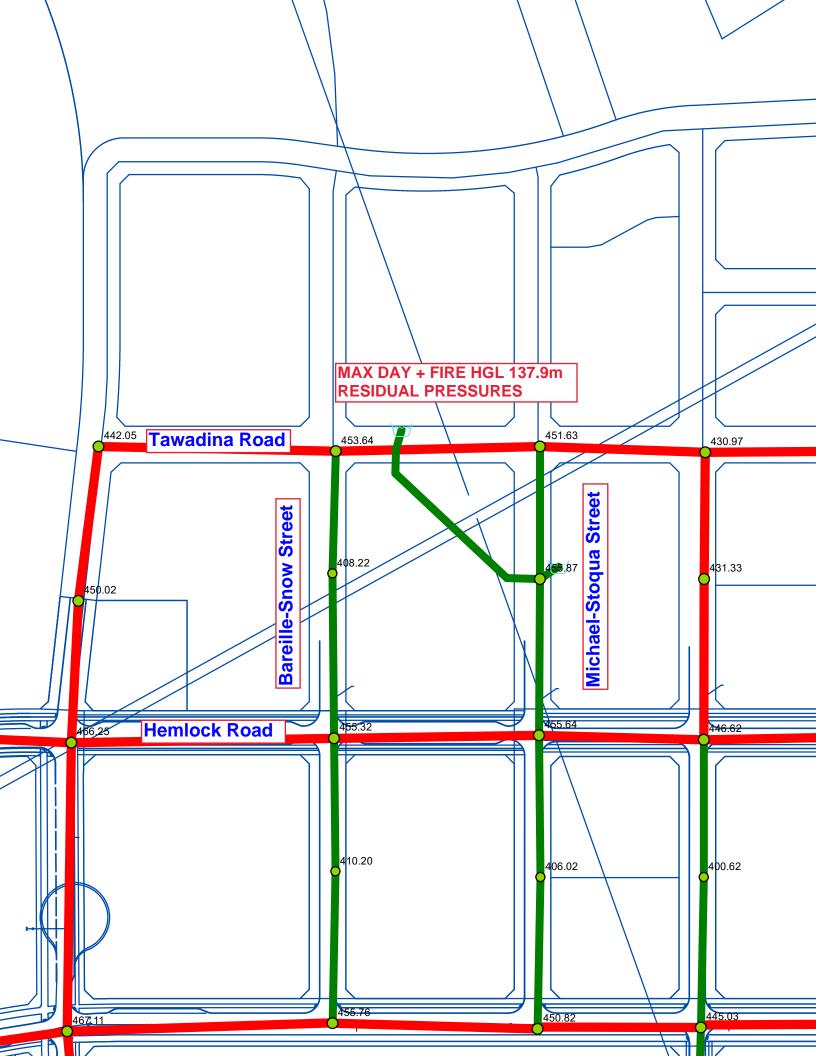

These are for current conditions and are based on computer model simulation.


Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Thanks


Nishant Jhamb, P.Eng
Project Manager | Gestionnaire de projet
Planning, Real Estate and Economic Development Department
Development Review - Central Branch
City of Ottawa | Ville d'Ottawa
110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1
613.580.2424 ext./poste 23112, nishant.jhamb@ottawa.ca


	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	120	2.19	90.65	140.35	486.99
2	114	2.19	90.30	140.35	490.43
3	l18	0.73	90.15	141.55	503.67
4	I16	0.73	89.70	140.04	493.34
5	J64	1.49	89.10	139.66	495.42
6	J66	0.98	89.40	139.75	493.40
7	T-1	0.00	90.40	140.49	490.79
8	В-А	0.81	90.80	140.60	488.01
9	В-В	0.60	90.50	141.38	498.55


Peak Hour Pressures

4	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	120	12.03	90.65	139.19	475.62
2	114	12.03	90.30	139.19	479.09
3	l18	4.01	90.15	140.88	497.08
4	116	4.01	89.70	138.78	480.92
5	J64	8.18	89.10	138.35	482.61
6	J66	5.38	89.40	138.46	480.75
7	T-1	0.00	90.40	139.38	479.98
8	В-А	4.43	90.80	139.52	477.44
9	В-В	3.28	90.50	140.61	491.02

Date: Friday, November 10, 2023, Time: 10:02:21, Page 1

1	ID	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Node Pressure at Fire Demand (kPa)	Critical Pressure for Design Run (kPa)	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
1	120	222.14	1,872.48	120	139.98	447.59	139.96	1,872.52	139.98
2	I14	222.14	1,929.31	I14	139.98	449.85	139.96	1,929.36	139.98
3	I18	218.49	1,522.77	R02	280.88	299.19	139.96	1,522.77	139.97
4	I16	218.49	560.71	I16	139.96	404.40	139.96	560.72	139.96
5	J64	220.39	1,295.15	J64	139.97	451.93	139.96	1,295.16	139.97
6	J66	219.12	1,377.44	J66	139.97	451.95	139.96	1,377.45	139.97

1	ID	Total Demand (L/s)	Hydrant Available Flow (L/s)	Critical Node ID for Design Run	Critical Node Pressure at Available Flow (kPa)	Critical Node Pressure at Fire Demand (kPa)	Critical Pressure for Design Run (kPa)	Hydrant Design Flow (L/s)	Hydrant Pressure at Design Flow (kPa)
1	120	222.14	1,889.92	120	139.98	451.63	139.96	1,889.96	139.98
2	l14	222.14	1,947.66	I14	139.98	453.64	139.96	1,947.71	139.98
3	I18	218.49	1,537.13	R02	282.03	300.16	139.96	1,537.13	139.97
4	I16	218.49	564.22	I16	139.96	408.22	139.96	564.22	139.96
5	J64	220.39	1,305.39	J64	139.97	455.32	139.96	1,305.41	139.97
6	J66	219.12	1,388.65	J66	139.97	455.64	139.96	1,388.67	139.97

Chetrar, Anton

From: Brogan Gordon-Cooper <Brogan@faasarch.com>

Sent: Monday, July 31, 2023 4:25 PM

To: Anton Chetrar

Cc: Christine McCuaig; James Andalis

Subject: RE: 1050 Tawadina - Civil Package Revisions and Response

Follow Up Flag: Follow up Flag Status: Flagged

*** Exercise caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. ***

Hi Anton,

I reviewed the below internally with James Andalis, and we agree with the assumptions used for the Fire Flow Calculations for Type of Construction, Occupancy and Contents, and Automatic Sprinkler Protection.

Please amend this email confirmation with your response and let us know if you have any additional questions or concerns.

Thank-you,

FAAS

Brogan Gordon-Cooper ARCHITECT, AAA, M.Arch P. 587-358-0456

From: Anton Chetrar < Anton. Chetrar@ibigroup.com>

Sent: Monday, July 31, 2023 1:36 PM

To: Brogan Gordon-Cooper <Brogan@faasarch.com> **Cc:** Christine McCuaig <christine@q9planning.com>

Subject: RE: 1050 Tawadina - Civil Package Revisions and Response

Hi Brogan,

Please find attached most up to date drawings including CAD files.

In regards to the fireflow, the city is looking to get confirmation that the assumptions used for the fire flow calculation are correct. We will need items 2,4 and 5 confirmed: Type of construction, Occupancy and Contents, and Type of Sprinkler system being used. These calculations are included in our Servicing Brief, Water Distribution section and can be updated within a day of receiving the information.

		Type V Wood Frame	1.5	Turanill	0.8
2	Turns of Comptunation	Type III Ordinary Construction	1.0	Type II Noncombustible	
	Type of Construction	Type II Noncombustible Construction	8.0	Construction	0.0
		Type I Fire Resistive Construction	0.6	Construction	
3	Required Fire Flow	RFF = 220C√A			
		Noncombustible Contents	-25%		-25%
	Occupancy and Contents	Limited Conbustible Contents	-15%	Noncombustible Contents	
4		Combustible Contents	0%		
4		Free Burning Contents	15%	Contents.	
		Rapid Burning Contents	25%		
	Fire Flow	D 200			
		Automatic Sprinkler Conforming to NFPA	-30%	Yes	-30%
	Automatic Sprinkler	Standard Water Supply for both the	-10%	Yes	-10%
5	Protection	system and Fire Department Hose Lines	-1090	res	
		Fully Supervised System	-10%	No	
	Fire Flow				
	•				

Let me know if any questions.

Regards, Anton Chetrar | P.ENG. Cell 613-882-8197

Suite 500, 333 Preston Street Ottawa ON K1S 5N4 Canada tel +1 613 225 1311 ext 64072

IBI Group is now proudly a part of Arcadis.

NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message.

NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

From: Brogan Gordon-Cooper <Brogan@faasarch.com>

Sent: Monday, July 31, 2023 1:15 PM

To: Anton Chetrar < Anton. Chetrar@ibigroup.com>
 Cc: Christine McCuaig < christine@q9planning.com>

Subject: FW: 1050 Tawadina - Civil Package Revisions and Response

*** Exercise caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. ***

Hi Anton,

I am following up with structural on the USF and TOF elevations for item number 24 and hoping to have that resolved shortly – however as previously noted these numbers would be preliminary in nature and might change as we develop the building permit and IFC drawings.

For the fire flow calculation, I believe we chatted about the items required from FAAS. However, can you please send any outstanding information you require to complete the calculation and confirm how long it will take your team to provide the letter once that information is provided?

Finally, could you please send me a copy of all the most current civil plans, PDF and CAD downsaved to 2017 or earlier? I just want to ensure our plans match yours completely.

Thank-you,

FΛΛS

Brogan Gordon-Cooper ARCHITECT, AAA, M.Arch P. 587-358-0456

From: Christine McCuaig <christine@q9planning.com>

Sent: Wednesday, July 26, 2023 8:40 AM

To: James Andalis < james@faasarch.com>; Brogan Gordon-Cooper < Brogan@faasarch.com>

Subject: Fwd: 1050 Tawadina - Civil Package Revisions and Response

Hi James and Brogan,

Please see below.

Per city comment 24 -- this was the request for USF and TOF elevations -- and as we discussed in our call, we were going to provide close approximations. Brogan -- can you confirm if this info is on the current package you sent out?

Per city comment 31 - City comment is "Please provide an email confirmation or memo from the architect confirming that all the parameters used in the fire flow calculations are applicable. This includes, floor area (protected vertical openings), occupancy charge, sprinkler reduction and type of construction. Please have the email or memo appended to the report." Do you have a response for this that you can flip over to Anton?

Thanks Christine

Christine McCuaig, RPP MCIP M.Pl c. 613-850-8345

----- Forwarded message ------

From: Anton Chetrar < Anton. Chetrar@ibigroup.com>

Date: Tue, Jul 25, 2023 at 3:43 PM

Subject: RE: 1050 Tawadina - Civil Package Revisions and Response

To: Christine McCuaig <christine@q9planning.com>

Cc: Jim Moffatt <imoffatt@ibigroup.com>, denich.c@aquaforbeech.com <denich.c@aquaforbeech.com>

Hi Christine,

Please find attached our current response document. There are a few items on which we are waiting information from others:

- Item #24 (Structural)
- Item #31 (Architect)

 Item #36 (LID) Item #37 (LID) Item #38 (LID) Item #58 (LID)
For the LID part, we are following up with McIntoshPerry and it appears that the infiltration testing has not yet been completed as per attached e-mail.
If you have any questions, please let us know.
Thanks,
Anton Chetrar P.ENG.
Cell 613-882-8197
Suite 500, 333 Preston Street
Ottawa ON K1S 5N4 Canada
tel +1 613 225 1311 ext 64072
IBI Group is now proudly a part of Arcadis.
NOTE: This email message/attachments may contain privileged and confidential information. If received in error, please notify the sender and delete this e-mail message.
NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

From: Christine McCuaig < christine@q9planning.com>

Sent: Tuesday, July 25, 2023 11:52 AM

Item #35 (Mechanical)

To: Jim Moffatt < <u>imoffatt@ibigroup.com</u>>; Anton Chetrar < <u>Anton.Chetrar@ibigroup.com</u>>; Demetrius Yannoulopoulos

<<u>dyannoulopoulos@ibigroup.com</u>>

Subject: 1050 Tawadina - Civil Package Revisions and Response

*** Exercise caution. This is an EXTERNAL email. DO unexpected email. ***	NOT open attachments or click links from unknown senders or
Hi All,	
	at for the civil resubmission. Please give me an overview of what ny responses that we have previously discussed where the City is pe of SPC.
Thanks	
Christine	
Christine McCuaig, RPP MCIP	M.PI
Principal Senior Planner & Proj	ect Manager
613-850-8345	
Q9 Planning & Design	

Please consider the environment before printing this e-mail. / Pensez à l'environnement avant d'imprimer ce courriel

NOTE: This e-mail message and attachments may contain privileged and confidential information. If you have received this message in error, please immediately notify the sender and delete this e-mail message. / NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.

ARCADIS IBI GROUP

500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada

IBI GROUP

ibigroup.com

WATERMAIN DEMAND CALCULATION SHEET

1050 Tawadina Road | WestUrban Deveopments Ltd. 142609-6.0 | Rev #2 | 2023-10-24 Prepared By: AB | Checked By: AC

RESIDENTIAL		NON-RESIDENTIAL (ICI)		AVERAGE DAILY DEMAND (I/s)		MAXIMUM DAILY DEMAND (I/s)		MAXIMUM HOURLY DEMAND (I/s)			FIRE						
NODE	SINGLE FAMILY UNITS	APARTMENT 1Bedroom	APARTMENT 2 Bedroom	POPULATION	INDUST. (ha)	COMM. (ha)	INSTIT. (ha)	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	DEMAND (I/min)
BUILDING A		83	63	248.50				0.81		0.81	2.01		2.01	4.43		4.43	11,000
BUILDING B		61	47	184.10				0.60		0.60	1.49		1.49	3.28		3.28	10,000
TOTAL		144	110	432.60						1.40			3.50			7.71	

	ASSUMPTIONS								
POPULATION DENSITY		WATER DEMAND RATES		PEAKING FACTORS FOR POP. OF	501 TO 3000	FIRE DEMANDS			
Single Family	3.4 persons/unit	Residential	280 l/cap/day	Maximum Daily		Single Family 10,000 l/min (166.7 l/s)			
				Residential	2.5 x avg. day				
Townhouse	2.7 persons/unit			Commercial	1.5 x avg. day	Semi Detached			
		Commercial Shopping Center	2,500 L/(1000m2)/day	Maximum Hourly		& Townhouse 10,000 l/min (166.7 l/s)			
Apartment - 1 Bedroom	1.4 persons/unit			Residential	2.2 x max. day				
Apartment - 2 Bedroom	2.1 persons/unit			Commercial	1.8 x max. day	Medium Density 15,000 I/min (250 I/s)			

ARCADIS IBI GROUP

FIRE UNDERWRITERS SURVEY

500-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
ibigroup.com

1050 Tawadina Road | WestUrban Deveopments Ltd.

142609-6.0 | Rev #2 | 2024-03-01

Prepared By: AB | Checked By: AC

IBI GROUP

STEP	TEP Contents Description			Adjustment Factor		Resu	ılt	
	Floor Area	Building A						
1	Total Storey					9	storey	
	Total Effective Floor Area					11409	m2	
		Type V Wood Frame Type III Ordinary Construction		Type II				
2	Type of Construction			Noncombustible	0.8			
_	Type of Constitution	Type II Noncombustible Construction	8.0	Construction	0.0			
		Type I Fire Resistive Construction	0.6	Construction				
3	Required Fire Flow	RFF=220C√A				19000	L/min	
		Noncombustible Contents	-25%					
		Limited Conbustible Contents	-15%	Noncombustible				
4	Occupancy and Contents	Combustible Contents	0%		-25%	-4750	L/min	
~		Free Burning Contents	15%	Contents.				
		Rapid Burning Contents	25%					
	Fire Flow					14250	L/min	
		Automatic Sprinkler Conforming to NFPA 13	-30%	Yes	-30%	-4275	L/min	
	Automatic Sprinkler Protection	Standard Water Supply for both the system	-10%	Yes	-10%	-1425	L/min	
5		and Fire Department Hose Lines	-1070	165	-1070	-1425	L/111111	
		Fully Supervised System	-10%	No				
	Fire Flow							
	Exposure Adjustment	Based on Table 6 Exposure Adjustement Cha	Subject Building					
		Separation (m)		With unprotected				
	North	Length X Height Factor (m.storeys)	0	·	0%	0	L/min	
		Construction Type	Type II	opening				
		Separation (m)	6.208	With upprotected				
	South	Length X Height Factor (m.storeys)		With unprotected	20%	2850	L/min	
6		Construction Type	Type II	opening				
O		Separation (m)	>30	With unprotected				
	East	Length X Height Factor (m.storeys)	0		0%	0	L/min	
		Construction Type	Type II	opening				
		Separation (m)	>30	With upprotected				
	West	Length X Height Factor (m.storeys)	0	With unprotected	0%	0	L/min	
		Construction Type	Type II	opening				
	Fire Flow					2850	L/min	
7	Total Demoire d Sire Si					11400		
7	Total Required Fire Flow	Rounded to Nearest 1000 L/min				11000	L/min	

Notes 1. Fire flow calculation are based on Fire Underwriters Survey version 2020.

ARCADIS IBI GROUP

FIRE UNDERWRITERS SURVEY

500-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
ibigroup.com

1050 Tawadina Road | WestUrban Deveopments Ltd.

142609-6.0 | Rev #2 | 2024-03-01

Prepared By: AB | Checked By: AC

IBI GROUP

STEP	Contents	Description	Adjustment Factor		Resu	ılt	
	Floor Area	Building B					m2
1	Total Storey			9	storey		
	Total Effective Floor Area					8844	m2
		Type V Wood Frame	1.5	Type II			
2	Type of Construction	Type III Ordinary Construction	1.0	Noncombustible	0.8		
_	Type of Constitution	Type II Noncombustible Construction	8.0	Construction	0.0		
		Type I Fire Resistive Construction	0.6	Constituction			
3	Required Fire Flow	RFF=220C√A				17000	L/min
		Noncombustible Contents	-25%				
		Limited Conbustible Contents	-15%	Nanaganah (-44-1-			
4	Occupancy and Contents	Combustible Contents	0%	Noncombustible	-25%	-4250	L/min
4		Free Burning Contents	15%	Contents.			
		Rapid Burning Contents	25%				
	Fire Flow			-		12750	L/min
		Automatic Sprinkler Conforming to NFPA 13	-30%	Yes	-30%	-3825	L/min
	Automatic Sprinkler	Standard Water Supply for both the system	-10%	Vaa	100/	1075	l /main
5	Protection	and Fire Department Hose Lines		Yes	-10%	-1275	L/min
		Fully Supervised System	-10%	No			
	Fire Flow	-5100	L/min				
	Exposure Adjustment	Based on Table 6 Exposure Adjustement Cha					
		Separation (m)		With uppratected			
	North	Length X Height Factor (m.storeys)		With unprotected	20%	2550	L/min
		Construction Type	Type II	opening			
		Separation (m)	>30	\A/:41			
	South	Length X Height Factor (m.storeys)	0	With unprotected	0%	0	L/min
		Construction Type	Type II	opening			
6		Separation (m)	>30	\A/ith			
	East	Length X Height Factor (m.storeys)	0	With unprotected	0%	0	L/min
		Construction Type	Type II	opening			
		Separation (m)	>30	VA (table a constraint)			
	West	Length X Height Factor (m.storeys)	0	With unprotected	0%	0	L/min
		Construction Type	Type II	opening			
	Fire Flow		-			2550	L/min
_		1				10200	
7	Total Required Fire Flow	Rounded to Nearest 1000 L/min				10000	L/min

Notes 1. Fire flow calculation are based on Fire Underwriters Survey version 2020.

	22.01 Wate	erridge Areas	JM 2024-02-27				
Build	ing A Building	Area	Building B Building area				
Level	Area (m²)	Area (ft²)		Level	Area (m²)	Area (ft²)	
Main Floor	1919.1 m ²	20657 ft ²		Main Floor	1415.6 m ²	15237 ft ²	
2nd Floor	2003.2 m ²	21562 ft ²		2nd Floor	1331.0 m ²	14326 ft ²	
3rd Floor	2003.2 m ²	21562 ft ²		3rd Floor	1331.0 m ²	14326 ft ²	
4th Floor	1208.5 m ²	13008 ft ²		4th Floor	898.9 m ²	9675 ft ²	
5th Floor	1112.8 m ²	11978 ft ²		5th Floor	898.9 m ²	9675 ft ²	
6th Floor	1112.8 m ²	11978 ft ²		6th Floor	742.3 m ²	7990 ft ²	
7th Floor	683.2 m ²	7354 ft ²		7th Floor	742.3 m ²	7990 ft ²	
8th Floor	683.2 m ²	7354 ft ²		8th Floor	742.3 m ²	7990 ft ²	
9th Floor	683.2 m ²	7354 ft ²		9th Floor	742.3 m ²	7990 ft ²	
Total	11409.2 m ²	122807 ft ²		Total	8844.2 m ²	95199 ft ²	

Notes: Areas measured from outside of Sheathing

Building A Gross Floor Area								
Level	Area (m²)	Area (ft²)						
Main Floor	1564.3 m ²	16838 ft ²						
2nd Floor	1651.0 m ²	17771 ft ²						
3rd Floor	1651.0 m ²	17771 ft ²						
4th Floor	957.8 m ²	10310 ft ²						
5th Floor	877.8 m ²	9449 ft ²						
6th Floor	877.8 m ²	9449 ft ²						
7th Floor	500.5 m ²	5388 ft ²						
8th Floor	500.5 m ²	5388 ft ²						
9th Floor	500.5 m ²	5387 ft ²						
Total	9081.4 m ²	97751 ft ²						

Building B Gross Floor Area								
Level	Area (m²)	Area (ft²)						
Main Floor	995.3 m ²	10713 ft ²						
2nd Floor	106.7 m ²	1148 ft ²						
3rd Floor	1072.7 m ²	11546 ft ²						
4th Floor	698.2 m ²	7515 ft ²						
5th Floor	698.2 m ²	7515 ft ²						
6th Floor	552.0 m ²	5942 ft ²						
7th Floor	552.0 m ²	5942 ft ²						
8th Floor	552.0 m ²	5942 ft ²						
9th Floor	552.0 m ²	5942 ft ²						
Total	5779.1 m ²	62205 ft ²						

Notes: Areas base on the below definition from the City of Ottawa Zoning Bylaw (By-law 2008-250, Section 54)

Gross Floor Area means the total area of each floor whether located above, at or below grade, measured from the interiors of outside walls and including floor area occupied by interior walls and floor area created by bay windows, but excluding;

- (a) floor area occupied by shared mechanical, service and electrical equipment that serve the building (By-law 2008-326)
- (b) common hallways, corridors, stairwells, elevator shafts and other voids, steps and landings;
- (By-law 2008-326) (By-law 2017-302)
- (c) bicycle parking; motor vehicle parking or loading facilities;
- (d) common laundry, storage and washroom facilities that serve the building or tenants;
- (e) common storage areas that are accessory to the principal use of the building; (By-law 2008-326)
- (f) common amenity area and play areas accessory to a principal use on the lot; and (By-law 2008-326)
- (g) living quarters for a caretaker of the building. (surface de plancher hors oeuvre brute)

APPENDIX C

Sanitary Sewer Design Sheet Wateridge Phase 2B Sanitary Design Sheet Wateridge Phase 2B Sanitary Drainage Area Plan Wateridge Phase 2B Sanitary Design Sheet Update Wateridge Phase 1B Sanitary Design Sheet Update Wateridge Phase 1A Sanitary Design Sheet Update

SANITARY SEWER DESIGN SHEET

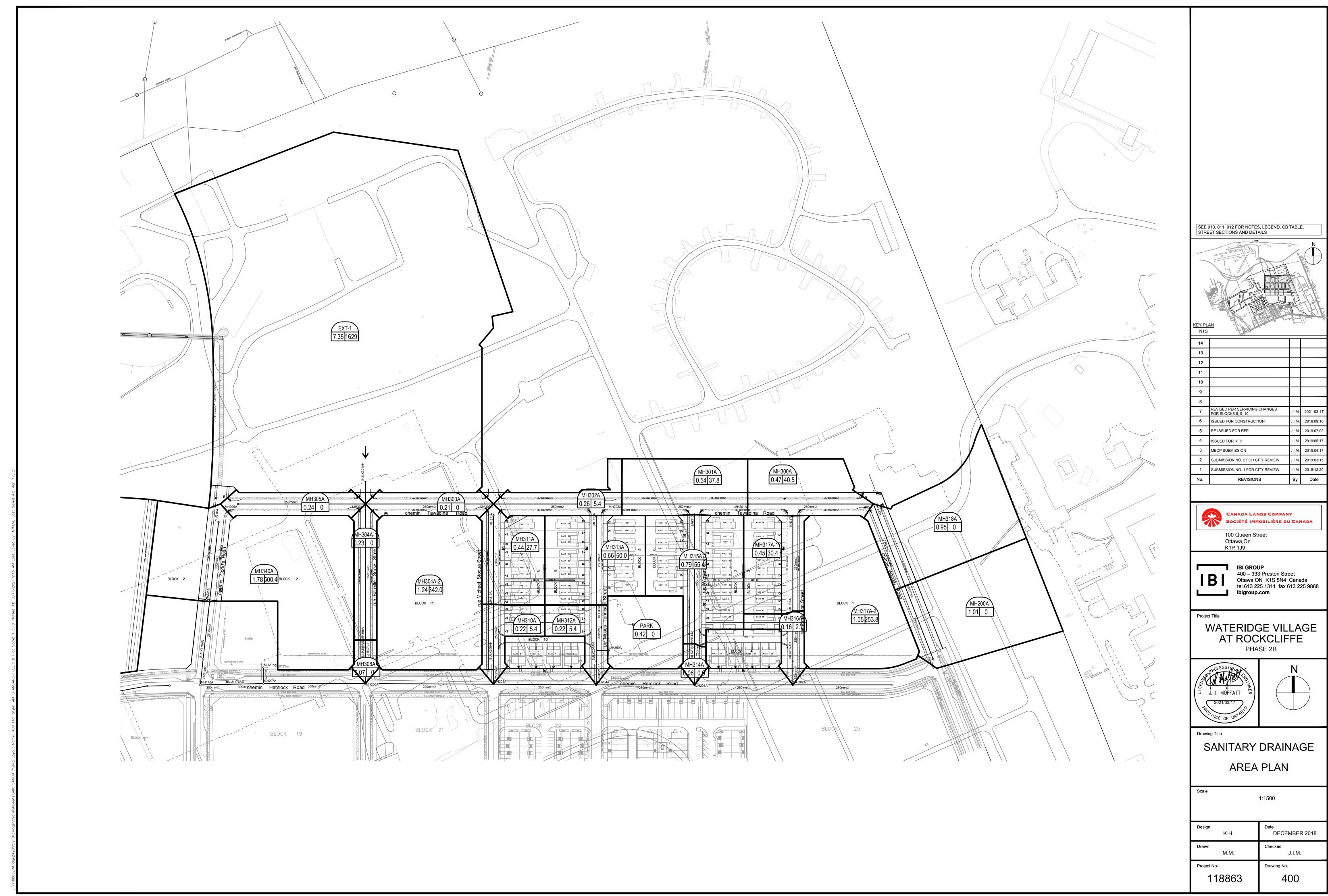
1050 Tawadina Road WestUrban Developments Ltd.

CITY OF OTTAWA

ARCADIS ARCADIS IBI GROUP 500-333 Preston Street

IBIGROUP Ottawa, Ontario K1S 5N4 Canada ibigroup.com

	LOCATION	vi						RESIDE	NTIAL								ICI AI	REAS				INFILT	RATION ALLO	OWANCE	FIVEDE	1 0 1 ()	TOTAL			PROPO	SED SEWER	DESIGN		
	LOCATION	N		AREA		UNIT T	TYPES		AREA	POPUL	LATION	RES	PEAK			ARE	A (Ha)			ICI	PEAK	ARE	A (Ha)	FLOW	FIXEDE	LOW (L/s)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	AILABLE
STREET	AREA ID	FROM	TO	w/ Units	SF	TYP.	1 Bed	2 Bed	w/o Units	IND	CUM	PEAK	FLOW	INSTITU		COMM			STRIAL	PEAK	FLOW	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	CAF	PACITY
STREET	ANLAID	MH	MH	(Ha)	Ji	APT	APT	APT	(Ha)	IND	COIVI	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)	IIVD	COM	(1.73)	IND	COM	(173)	(1.73)	(111)	(11111)	(70)	(m/s)	L/s	(%)
Michael-Stoqua Street		BLDG A/B	CTRL MH1A	0.72			146	108		431.2	431.2	3.41	4.76	0.00	0.0	0.00	0.0	0.00	0.0	1.00	0.00	0.72	0.72	0.24	0.00	0.00	5.00	40.49	4.26	200	1.40	1.248	35.49	87.66%
Wildriaci Gloqua Gli ect		CTRL MH1A	TEE	0.12			110	100		0.0	431.2	3.41	4.76	0.00	0.0	0.00	0.0	0.00	0.0	1.00	0.00	0.00	0.72	0.24	0.00	0.00	5.00	34.22	10.77	200	1.00	1.055	29.22	85.40%
																				-														
Design Parameters:				Notes:							[0	Designed:		AC			No.						1	Revision								Date		
				1. Mannings co	pefficient (n))=		0.013									1.						Servicing Bri	ef - Submissio	n No. 1							2023-07-04		
Residential		ICI Areas		2. Demand (pe	er capita):		280	L/day	200	L/day							2						Servicing Bri	ef - Submission	1 No. 2							2023-12-05		
SF 3.4 p/p/u				3. Infiltration a				L/s/Ha			1	Checked:		JIM			3.							ef - Submission								2024-03-27		
APT 1.8 p/p/u	INST 28,	,000 L/Ha/day		4. Residential		otor	0.00	Lisiia			ľ	onoonou.	•	Olivi			0.						Cor violing Bir	0. 00000.0.	1110. 1							202 1 00 21		
							// /D//000)	\40 E\\0 0																										
1Bed 1.4 p/p/u		,000 L/Ha/day				ormula = 1+(14/)^0.5))0.8			L																							
2 Bed 2.1 p/p/u	IND 35,	,000 L/Ha/day	MOE Chart		where K = 0	0.8 Correction	Factor				[Dwg. Refer	ence:	142609																				
Other 60 p/p/Ha	17	7000 L/Ha/day		5. Commercia	l and Institut	tional Peak Fa	ctors based	on total area	a,									File Re	ference:						Date:							Sheet No:		
				1.5 if greater th	nan 20%, oth	nerwise 1.0												142609	-6.04.04						2024-03-2	7						1of 1		



IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 MH231A Existing infrastructure (shown for information only)
Block 11 Proposed Conditions (DesignWorks Engineering)

SANITARY SEWER DESIGN SHEET

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

	LOCATION						RESI	DENTIAL								ICI A	REAS				INFILTI	RATION ALL	OWANCE	FIVED F	LOW (L/s)	TOTAL			PROPO	SED SEWER	₹ DESIGN		
	LOCATION			AREA		UNIT T	YPES	AREA	POPU	LATION	RES	PEAK			ARE	A (Ha)			ICI	PEAK	ARE	A (Ha)	FLOW	FIXED F	LOW (L/S)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY		ILABLE
STREET	AREA ID	FROM	TO	w/ Units	SF	SD / TH/F	TH/S APT	w/o Units	IND	СПМ	PEAK	FLOW	INSTIT	UTIONAL	COMM	MERCIAL	INDU	STRIAL	PEAK	FLOW	IND	CUM	(L/s)	IND	CUM	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	CAP	PACITY
SIKEEI	AREA ID	MH	MH	(Ha)	ər	SD / TH/F	IN/S API	(Ha)	IND	COW	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)	IND	COM	(L/S)	IND	COM	(L/S)	(L/S)	(m)	(mm)	(%)	(m/s)	L/s	(%)
Tawadina Road	MH300A	MH300A	MH301A	0.47		15			40.5	40.5	3.67	0.48	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.47	2.43	0.80	0.00	0.00	2.24	31.02	109.85	250	0.25	0.612	28.78	92.79%
Tawadina Road	MH301A	MH301A	MH302A	0.54		14			37.8	78.3	3.62	0.92	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.54	2.97	0.98	0.00	0.00	2.85	59.18	110.39	250	0.91	1.168	56.33	95.18%
Tawadina Road	MH302A	MH302A	MH303A	0.26		2			5.4	83.7	3.61	0.98	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.26	3.23	1.07	0.00	0.00	3.00	72.61	111.69	250	1.37	1.433	69.62	95.87%
Tawadina Road	MH303A	MH303A	MH304A	0.93			240		432.0	515.7	3.37	5.64	0.00	0.00	0.00	1.96	0.00	0.00	1.50	0.95	0.93	4.16	1.37	0.00	0.00	7.96	31.02	112.10	250	0.25	0.612	23.06	74.33%
																																	
Tawadina Road	MH305A	MH305A	MH304A	0.24					0.0	0.0	3.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.24	0.24	0.08	0.00	0.00	0.08	49.63	111.61	250	0.64	0.979	49.55	99.84%
D 111 0 01 1	EVE 4	B1 11 1400 4444							1000 0	1000 0										0.00			0.10			10.01	24.22	22.22					
Bareille-Snow Street	EXT-1	BULK304AN	MH304A	7.35			905		1629.0	1629.0	3.12	16.49	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	7.35	7.35	2.43	0.00	0.00	18.91	31.02	20.00	250	0.25	0.612	12.11	39.04%
Bareille-Snow Street	MH304A-1, MH304A-2	MH304A	MH308A	0.76			52		93.6	2238.3	3.04	22 04	0.00	0.00	0.00	1.96	0.00	0.00	1.00	0.64	0.76	12.51	4 13	0.00	0.00	26.80	39.72	119.21	250	0.41	0.784	12 93	32.54%
Bareille-Snow Street	MH308A	MH308A	BULK206AN	0.96			352		633.6	2871.9		27.61	0.00	0.00	0.00	1.96	0.00	0.00	1.00		0.96	13.47	4.45	0.00	0.00	32.69	84.15	16.82	250	1.84	1.661	51.46	61.15%
Bareille-Snow Street		BULK206AN	MH206A	0.00			002		0.0	2871.9		27.61	0.00	0.00	0.00		0.00	0.00		0.64	0.00			0.00	0.00	32.69		21.00	250	2.05	1.753	56.13	
																															1		
Codd's Road	MH340A	MH340A	BLK231AN	0.88			212		381.6	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.88	0.88	0.29	0.00	0.00	4.53	75.98	70.00	250	1.50	1.500	71.46	94.04%
Codd's Road		MH231A	BULK176AN						0.0	381.6	3.43	4.24	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.88	0.29	0.00	0.00	4.53	83.92	50.22	250	1.83	1.656	79.40	94.61%
																																	
																															+		+
Design Parameters:				Notes:							Designed		KH	1	1	No.					!		Revision							-	Date		\perp
2 co.g. r a.ao.c.					coefficient	(n) =	0.013				Doorgillou	•				1						Submission N	No. 1 for City I	Review							2018-12-20		
Residential	ICI	Areas		2. Demand			280 L/day	200) L/day							2						Submission N									2019-03-15		
SF 3.4 p/p/u				3. Infiltration	n allowance:	:	0.33 L/s/Ha		•		Checked:		JIM			3						MECF	Submission							-	2019-04-17		-
TH/F/SD 2.7 p/p/u	INST 28,	000 L/Ha/day		4. Residenti	ial Peaking F	Factor:										4						Record inforr	mation Added	(No.1)						-	2020-10-08	-	
TH/S 2.3 p/p/u	COM 28,	000 L/Ha/day			Harmon Fo	ormula = 1+(14/(4+(P/1000)^0.5)	8.0(1					5						Record inforr	mation Added	(No.2)							2021-03-23		
APT 1.8 p/p/u	IND 35,	000 L/Ha/day	MOE Chart		where K =	0.8 Correction	on Factor				Dwg. Refe	erence:	118863-40	00																			
Other 60 p/p/Ha	17	000 L/Ha/day					Factors based on to	otal area,									ile Referen							Date:							Sheet No:		
		•		1.5 if gr	eater than 2	20%, otherwis	se 1.0										118863.5.7	.1						2021-03-3	1						1 of 1		

IBI GROUP 500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Existing infrastructure (shown for information only)

SANITARY SEWER DESIGN SHEET

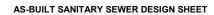
Wateridge at Rockcliffe - Phase 2B

City of Ottawa

Canada Lands Company

RESIDENTIAL ICI AREAS INFILTRATION ALLOWANCE PROPOSED SEWER DESIGN LOCATION
 POPULATION
 RES
 PEAK

 IND
 CUM
 PEAK
 FLOW


 FACTOR
 (L/s)
 FIXED FLOW (L/s) | AREA (Ha)
| INSTITUTIONAL | COMMERCIAL | IND | CUM | IND | CUM | | ICI | PEAK | PEAK | FLOW | IND | CUM | FACTOR | (L/s) | AREA UNIT TYPES AREA w/o Units AREA (Ha) FLOW FLOW CAPACITY LENGTH DIA SLOPE VELOCITY FROM TO w/ Units (full) (m/s) CAPACITY L/s (%) SF SD / TH/F TH/S (L/s) STREET ARFA ID APT IND CUM IND CUM (L/s) (L/s) (m) (mm) (%) MH311A MH310A
 0.00
 0.00
 5.20
 72.35
 77.82
 250
 1.36
 1.428
 67.15
 92.81%

 0.00
 0.00
 5.33
 65.66
 49.19
 250
 1.12
 1.296
 60.33
 91.89%

 0.00
 0.00
 5.33
 66.24
 21.00
 250
 1.14
 1.307
 60.91
 91.96%
 MH310A BULK205AN
 0.44
 0.44
 0.15

 0.21
 0.65
 0.21

 0.00
 0.65
 0.21
 MH311A MH310A BULK205AN MH205A Bareille-Snow Street BULK206AN MH206A 0.0 2910.2 2.96 27.94 0.00 0.00 0.00 3.15 0.00 0.00 1.00 1.00 1.00 1.00 1.77 5.86 0.00 0.00 34.83 88.83 21.00 250 2.05 1.753 54.00 60.79% Design Parameters: No. 1. Mannings coefficient (n) = 0.013 2018-12-20 2023-11-29 Submission No. 1 for City Review ICI Areas 2. Demand (per capita): 280 L/day 200 L/day 1050 Tawadina outlet to Michael Stoqua JIM 3. Infiltration allowance: Checked: 0.33 L/s/Ha 2023-12-05 INST 28,000 L/Ha/day . Residential Peaking Factor: Harmon Formula = 1+(14/(4+(P/1000)^0.5))0.8 28.000 L/Ha/day Dwg. Reference: 118863-400 IND 35,000 L/Ha/day MOE Chart where K = 0.8 Correction Factor Sheet No: 1 of 1 Other 60 p/p/Ha . Commercial and Institutional Peak Factors based on total area, File Reference: 118863.5.7.1 17000 L/Ha/day 1.5 if greater than 20%, otherwise 1.0

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

1050 Tawadina

Former CFB Rockcliffe City of Ottawa Canada Lands Company

	LOCATION							RESIDE	NTIAL								ICI AREAS			INFILTE	RATION ALL	OWANCE	FIXED	TOTAL			PROPO	SED SEWER	R DESIGN		
	LOCATION			AREA		'T TINU	YPES		AREA	POPUI	ATION	PEAK	PEAK			ARE	A (Ha)		PEAK	ARE	A (Ha)	FLOW	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAIL	LABLE
STREET	AREA ID	FROM MH	TO MH	Phase 1B (Ha)	SF	SD	TH	APT	EXTERNAL (Ha)	IND	CUM	FACTOR	FLOW (L/s)	INSTIT	CUM	COMM IND		INDUSTRIAL IND CUM	FLOW (L/s)	IND	CUM	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	L/s	ACITY (%)
Phase 1B																															
rue Michael Stoqua Street	EX205A	BULK205AN	MUIDOEA						1.38	450.7	450.7	2.20	5.06		0.00		0.00	0.00	0.00	1.38	4.20	0.40	0.00	E E4	00.04	21.00	250	1.14	1.307	CO 72	04.000/
rue Michael Stoqua Street	EXZUSA	BULK205AN	WHZU5A						1.36	459.7	459.7	3.39	5.06		0.00		0.00	0.00	0.00	1.38	1.38	0.46	0.00	5.51	00.24	21.00	250	1.14	1.307	00.73	91.08%
		+		-	+	+ +									1		1						+						+		
Hemlock Road	205A	MH205A	MH206A	0.25						0.0	613.2	3.34	6.64		0.00		0.00	0.00	0.00	0.25	3.23	1.07	0.00	7.71	31.02	111.90	250	0.25	0.612	23.31	75.16%
rue Bareille-Snow Street	EX206A-B	BULK206AN	MH206A							<u>2910.2</u>	2910.2	2.96	27.94		0.00		3.15	0.00	1.02	0.00	17.77	5.86	0.00	34.83	88.83	21.00	250	2.05	1.753	54.00	60.79%
Hemlock Road	206A	MH206A	MH207A	0.20						0.0	3523.4	2.91	33.18		0.00		3.15	0.00	2.73	0.20	21.20	7.00	0.00	42.91	66.15	89.30	300	0.43	0.907	23.24	35.14%
						ļļ.																									
						<u> </u>																									
Hemlock Road	PARK1, 207A	MH207A	BULK176AE	0.12						0.0	3523.4	2.91	33.18		0.00		3.15	0.00	2.73	0.12	21.64	7.14	0.00	43.05	49.42	33.10	300	0.24	0.677	6.37	12.88%
<u> </u>																															
Phase 1A		D									0500.4	2.24	00.40		0.00		0.45	0.00	0.70	0.00	24.24		0.00	10.05	00.40	0.4.07	222	0.40	0.000	05.07	07.070/
Hemlock Road		BULK176AE	MH1/6A							0.0	3523.4	2.91	33.18		0.00		3.15	0.00	2.73	0.00	21.64	7.14	0.00	43.05	68.42	21.97	300	0.46	0.938	25.37	37.07%
				1		<u> </u>								1									1			-					
Phase 1B				1		<u> </u>								1									1			-					
Codd's Road	231A. EXPARK1	MUIODAA	BULK176AN	,		1			0.76	43.3	129.0	3.57	1.49		0.00		0.00	0.00	0.00	0.76	1.63	0.54	0.00	2.03	83.92	50.20	250	1.83	1.656	81.89	97.58%
Codd's Road	ZSIA, EXPARKI	MILSTA	BULKITOAN	v	-	+			0.76	43.3	129.0	3.37	1.49		0.00		0.00	0.00	0.00	0.76	1.03	0.54	0.00	2.03	03.92	50.20	230	1.03	1.000	01.09	97.36%
Phase 1A		+		1	+	1							1	1	1		1		1				+			1					
Codd's Road		BULK176AN	MU176A		+	1				0.0	129.0	3.57	1.49	1	0.00		0.00	0.00	0.00	0.00	1.63	0.54	0.00	2.03	55.49	23.23	250	0.80	1.095	53.46	96.34%
Codd's Road		BOLKITOAN	WITTTOA		+	+ +				0.0	129.0	3.31	1.45	<u> </u>	0.00		0.00	0.00	0.00	0.00	1.03	0.54	0.00	2.03	33.49	23.23	230	0.00	1.093	33.40	90.34 /0
	 	+	†	1	+	+ +						<u> </u>	1	 	1					†	 	†	1		 	+	 		+		+
		+		1	1	1 1						1	1		1		1						1								
Design Parameters:	•	•	•	Notes:			<u> </u>			1		Designed	:	WY			No.			•	R	evision	•	•	•				Date		
				1. Mannings	s coefficient	(n) =	0	0.013				1					1.				City sub	mission No.	1						2016-07-08		
Residential		ICI Areas		2. Demand (280 L		300	L/day							2.				City sub	mission No. 2	2						2016-11-04		
SF 3.4 p/p/u			Peak Factor	3. Infiltration			0.33 L			•		Checked:		JIM			3.					mission No. 3							2017-01-25		
TH/SD 2.7 p/p/u	INST 50,000	0 L/Ha/day	1.5	4. Residentia		actor:								-			4.					er Mattamy's I							2017-12-08		
APT 1.8 p/p/u		0 L/Ha/day	1.5			ormula = 1+(1	4/(4+P^0.5))										5.					t Submission							2018-01-29		
Other 60 p/p/Ha		0 L/Ha/day	MOE Chart			population in						Dwg. Refe	rence:	38298-501			6.					Capacity Che							2023-11-29		
		0 L/Ha/day										1					Fi	le Reference:			•		ate:						Sheet No:		
		,		1														38298.5.7.1					3-11-29						2 of 2		
<u> </u>																															

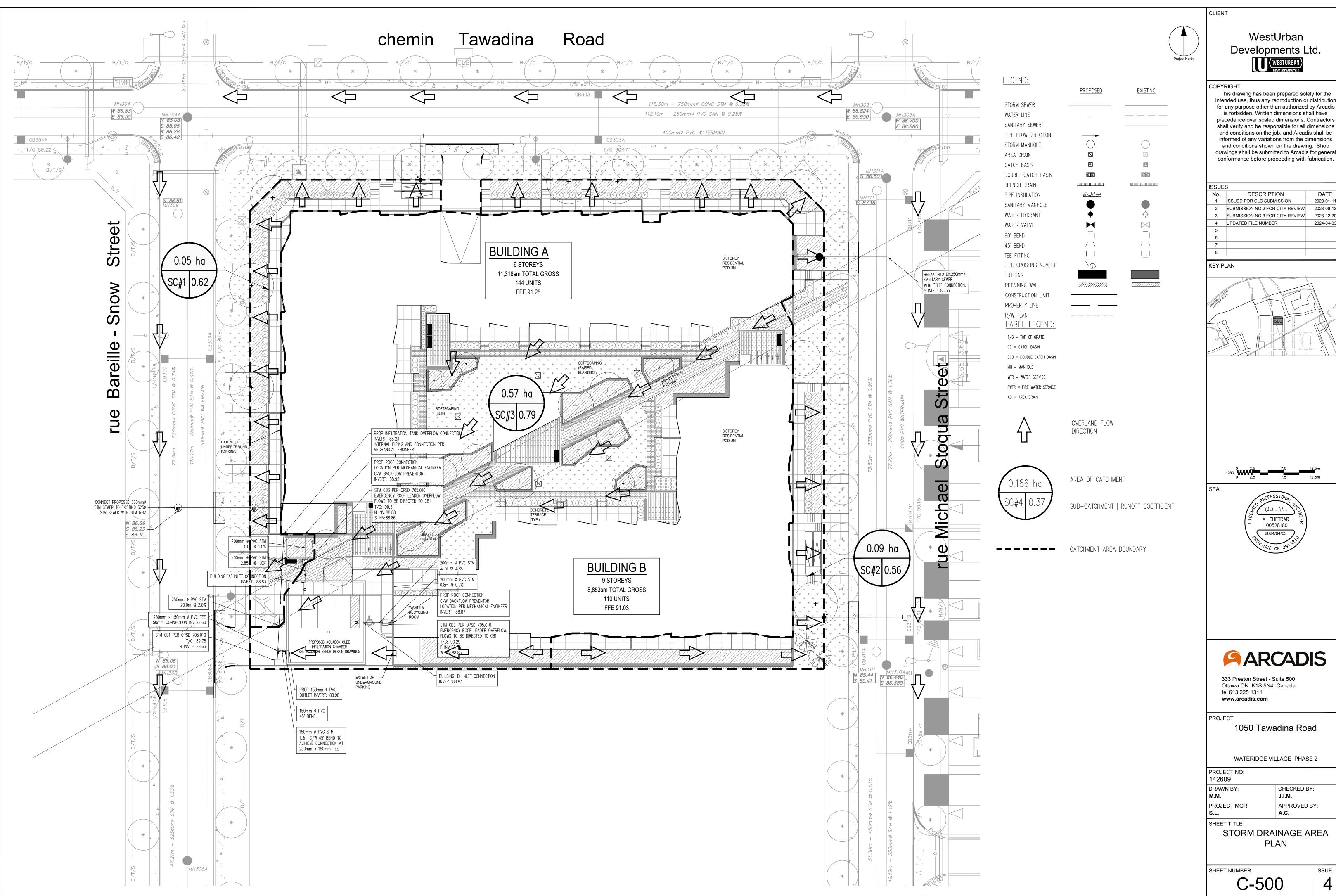
IBI GROUP 500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

1050 Tawadina

Former CFB Rockcliffe City of Ottawa Canada Lands Company

	LOCATIO	M .						RESIDE	NTIAL							ICI AREAS				INFILTE	RATION ALL	OWANCE	FIXED	TOTAL			PROPO	SED SEWER	DESIGN		-
	LOCATIO			AREA		UNIT	TYPES		AREA	POPUI	ATION	PEAK	PEAK		AREA				PEAK	ARE	A (Ha)	FLOW	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY		LABLE
STREET	AREA ID	FROM MH	TO MH	Ph1 (Ha)	SF	SD	TH	APT	External (Ha)	IND	CUM	FACTOR	FLOW (L/s)	INSTITUTIONAL IND CUM	COMME		INDUST IND		FLOW (L/s)	IND	сим	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	CAPA L/s	ACITY (%)
Street No. 11	EXT 11	IDIII K176A	N MH176A						0.00	120.0	129.0	2.57	1.49	0.00	I I	0.00		0.00	0.00	1.63	1.63	0.54		2.03	56.18	23.23	250	0.82	1.109	54.15	96.39%
Sileet No. 11	LXIII	BOLKITOA	IN WITTTOA						0.00	129.0	129.0	3.31	1.43	0.00		0.00		0.00	0.00	1.03	1.03	0.54		2.03	30.10	23.23	230	0.02	1.109	34.13	30.3370
Hemlock Road	EXT 10	BULK176A	E MH176A						0.00	3523.4	3523.4	2.91	33.18	0.00		3.15		0.00	2.73	21.64	21.64	7.14		43.05	68.42	21.97	300	0.46	0.938	25.37	37.07%
						-																									
Codd's Road	176A(a), EXT	14 MH176A	MH142A	0.25					0.86	270.7	3923.1	2.87	36.52	0.00		3.15		0.00	2.73	1.11	24.38	8.05		47.30	81.80	102.77	375	0.20	0.717	34.50	42.17%
Codd's Road	PARKb	BULK142A	W MH142A	0.82						0.0	0.0	3.80	0.00	0.00		0.00		0.00	0.00	0.82	0.82	0.27		0.27	48.45	16.40	250	0.61	0.956	48.18	99.44%
			•																												
Codd's Road	142A	MH142A	MH141A	0.13						0.0	3923.1	2.87	36.52	0.00		3.15		0.00	2.73	0.13	25.33	8.36		47.62	114.23	53.48	375	0.39	1.002	66.61	58.31%
																									+						
chemin MIKINAK ROAD	141A	MH141A	MH124A	0.26			5			13.5	8037.3	2.64	68.73	5.11		3.15		0.00	7.17	0.26	61.21	20.20		96.10	128.04	54.85	375	0.49	1.123	31.94	24.95%
EX Shaft		MH124A	MH200A							0.0	9238.4	2.59	77.57	5.11		3.15		0.00	7.17	0.00	82.77	27.31		112.06	176.39	116.83	375	0.93	1.547	64.34	36.47%
EX Shaft		MH200A	EX. Shaft							0.0	9910.7	2.57	82.44	5.1		3.2		0.0	7.17	0.00	98.24	32.42		122.03	200.37	12.90	375	1.2	1.757	78.34	39.10%
				Neteri								la		10		N .						evision							D. f.		
Design Parameters:				Notes: 1. Mannings	coefficient	t (n) =		0.013				Designed:		AC		No.					Submission N		Poviou						Date 2023-10-26		
Residential		ICI Areas		2. Demand (L/day	300	L/day						2.						Capacity Ch							2023-10-20		
SF 3.4 p/p/u			Peak Factor	r 3. Infiltration	allowance	,):		L/s/Ha		L/s/Ha		Checked:		JIM							-1	1 , ,									
TH/SD 2.7 p/p/u		50,000 L/Ha/day	1.5	4. Residentia			B :														•	•		•	•	•		•	•	•	
APT 1.8 p/p/u		50,000 L/Ha/day	1.5			Formula = 1+ = population i						Dwa. Refe		38298-501																	
Other 60 p/p/Ha		35,000 L/Ha/day 17000 L/Ha/day	MOE Chart	1	where P =	= population	in inousands	i				Dwg. Rete	rence:	30290-301		Fil	e Reference:	. 1					Date:						Sheet No:		
		Linurday															88298.5.7.1						23-11-29						2 of 2		

APPENDIX D


Storm Sewer Design Sheet
142609-500 - Storm Drainage Area Plan
Wateridge Phase 2B Storm Design Sheet
Wateridge Phase 2B Storm Drainage Area Plan
Modified Rational Method on-site SWM calculations
Temporary Orifice Sizing
Sample Runoff Coefficient Calculations
Minor system release rate (Wateridge Phase 2B)
Architectural Drawing SPC.P01, Parkade Plan
Architectural Drawing SPC.110, Roof Plan
Letter from Mechanical Engineer re City Comments
Correspondence from 1375 Hemlock Development re grading

STORM SEWER DESIGN SHEET

ARCADIS ARCADIS IBI GROUP
500-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada ibigroup.com

1050 Tawadina Road
WestUrban Developments Ltd.
City of Ottawa

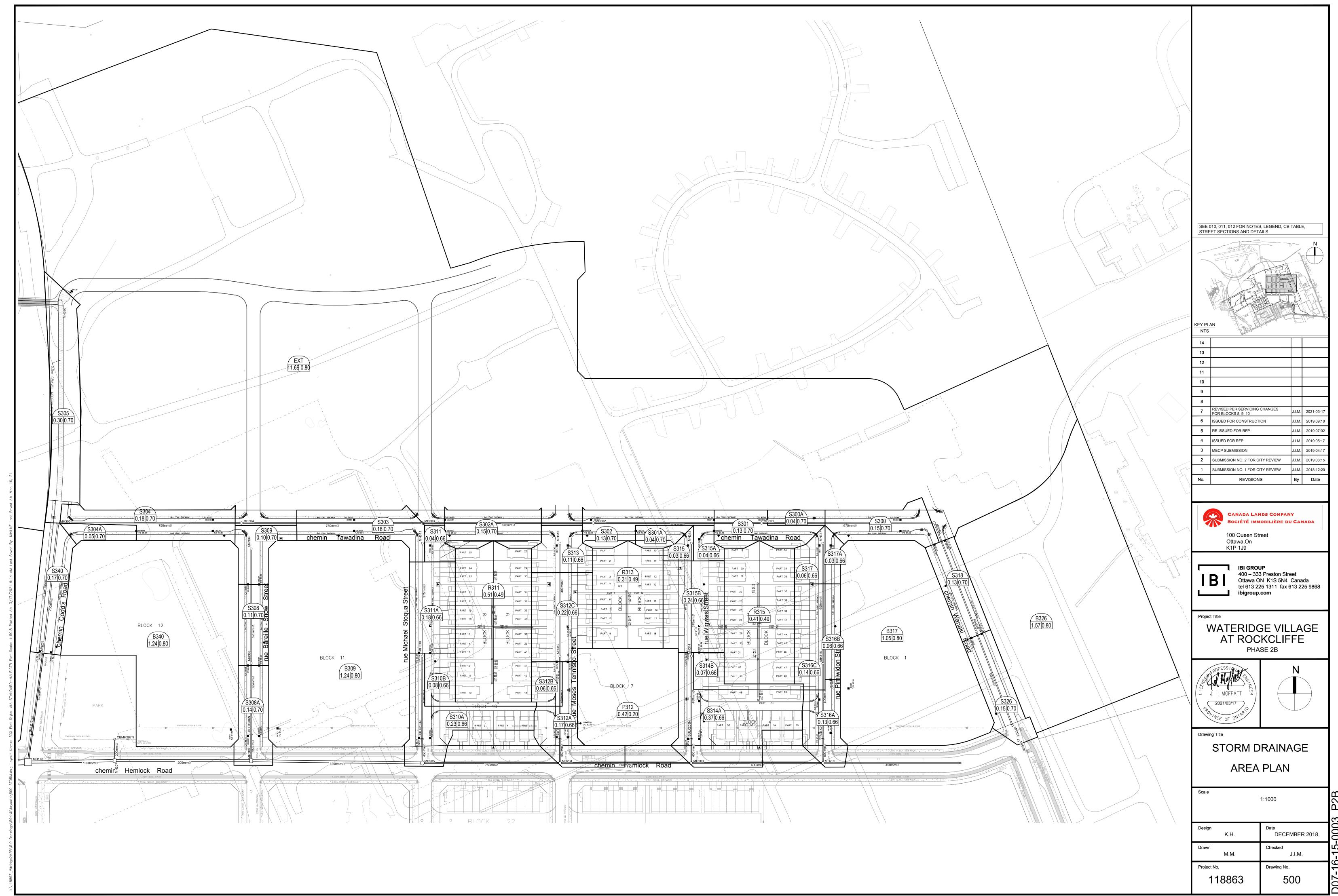
	LOCATION						А	AREA (H	ła)											RATIO	NAL DESIG	NFLOW										SEWER DATA				
				C=	C- C	- 0	= C	-	C= C=	C=	C=	C=	IND	CUM	INLET	TIME	TOTAL	i (2)	i (5)	i (10)	i (100)	2yr PEAK	5yr PEAK	10yr PEAK 100yr PEAK	FIXED	FLOW	DESIGN	CAPACITY	LENGTH		PIPE SIZE (n	nm)	SLOPE	VELOCITY	AVAIL	CAP (2yr)
STREET	AREA ID	FROM	то	0.20	0.25 0.4	10 0.	.50 0.6	.57 0	.65 0.69	0.70	0.79	0.80	2.78AC	2.78AC	(min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s) FLOW (L/s)	IND	CUM	FLOW (L/s)	(L/s)	(m)	DIA	w	н	(%)	(m/s)	(L/s)	(%)
BUILDING A	SC3	BUILDING A	CTRL MH1								0.57		125	1.25	10.00	0.04	10.04	76.81				96.15			0.00	0.00	96.15	142.67	4.29	300			2.00	1.955	46.52	32.61%
		CTRL MH 1	MH1										0.00	1.25	10.04	0.10	10.14	76.66				95.97			1.00	1.00	95.97	142.67	12.17	300			2.00	1.955	46.70	32.73%
Definitions:				Notes:											Designed:		AC				No.					Revis	sion							Date		
Q = 2.78CiA, where:				1. Manning	s coefficie	nt (n) =	0.0	.013													1.				Servicing E	rief - Submis	sion No. 2							2023-07-04		
Q = Peak Flow in Litres;	per Second (L/s)																																			
A = Area in Hectares (H	la)														Checked:		JIM																			
i = Rainfall intensity in m	nillimeters per hour (mm	hr)																																		
[i = 732.951/(TC+6.19	99)*0.810]	2 YEAR																																		
[i = 998.071/(TC+6.0	53)^0.814]	5 YEAR													Dwg. Refe	rence:	142609-50	0																		
[i = 1174.184 / (TC+6.0	14)^0.816]	10 YEAR																				File Re	ference:				Date	e:						Sheet No:		
[i = 1735.688 / (TC+6.0	014)^0.820]	100 YEAR		l																		14260	9-6.04.04				2023-0	7-04						1 of 1		

Developments Ltd.

This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by Arcadis is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and Arcadis shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to Arcadis for general

ISSUES	S	
No.	DESCRIPTION	DATE
1	ISSUED FOR CLC SUBMISSION	2023-01-11
2	SUBMISSION NO.2 FOR CITY REVIEW	2023-09-13
3	SUBMISSION NO.3 FOR CITY REVIEW	2023-12-20
4	UPDATED FILE NUMBER	2024-04-03
5		
6		
7		
8		

CHECKED BY: APPROVED BY:


18977

AN No.

CITY

D07-12-23-

Š.

IBI GROUP

400-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
tel 613 225 1311 fax 613 225 9868

LEGEND

Black text 5 year event curve design
Blue text 100 year event curve design

MH206

MH311 Record Information No. 2

STORM SEWER DESIGN SHEET

Wateridge at Rockcliffe - Phase 2B City of Ottawa Canada Lands Company

	ibigroup.com								MILSTI	Record Info	ormation is	NO. 2													Ca	anada Lands	Company
	LOCATION		C= C=	C= C=	AREA (Ha) C= C=	C= C=	C= C=	IND CUM	INLET	TIME	TOTAL	i (2)	i (5)	i (10)		N FLOW 100) 2yr PEAK 5yr PEAK	10vr PEAK 100vr PEAK	FIXED	DESIGN	CAPACITY	LENGTH	PIPE SIZE (m	SEWER DATA		VELOCITY	AVAIL CA	AP (2vr)
STREET	AREA ID	FROM	TO 0.20 0.30	0.40 0.49	0.57 0.65	0.66 0.70	0.73 0.80	2.78AC 2.78AC		IN PIPE	(min)	(mm/hr)		(mm/hr)		m/hr) FLOW (L/s) FLOW (L/s)					(m)	DIA W	H	(%)	(m/s)	(L/s)	(%)
Pimiwidon Street	S317A, B317	MH317	MH316			0.09	1.05	2.50 2.50	10.00	0.88	10.88	76.81	104.19			8.56 260.52			260.52	439.15		600		0.47	1.505		40.68%
Pimiwidon Street Pimiwidon Street	S316A-B	MH316 BULK202N				0.33		0.61 3.11 0.00 3.11	10.88 11.64	0.76 0.24	11.64 11.88	73.59 71.03	99.78 96.26			0.92 309.90 44.83 298.95			309.90 298.95	313.81 320.28		600 600		0.24 0.25	1.075 1.097	3.91 21.33	1.25% 6.66%
Wigwas Street	S315, S315A-B, R31	5 MH315	MH314	0.41		0.31		1.13 1.13	10.00	0.98	10.98	76.81	104.19	122.14	178	8.56 117.46			117.46	142.86	73.50	375		0.61	1.253	25.40	17.78%
Wigwas Street	S314A-B	MH314 BULK203N	BULK203N	0		0.44		0.81 1.93	10.98	0.50	11.48	73.24	99.30	116.38	170	0.09 192.10 6.06 187.59			192.10	294.44	54.27	450		0.98	1.793	102.34	34.76%
Wigwas Street								0.00 1.93	11.48	0.18	11.66	71.55		113.63					187.59	247.07		450		0.69	1.505	59.47	
Moses Tennisco St Moses Tennisco St	S313, R313 S312A-C	MH313 MH312	MH312 BULK204N	0.31		0.11 0.45		0.62 0.62 0.83 1.45	10.00 10.81	0.81	10.81 11.18	76.81 73.82	104.19 100.09			8.56 65.03 1.46 145.11			65.03 145.11	111.88 400.16		300 450		1.23 1.81	1.533 2.437	46.86 255.05	41.88% 63.74%
Park Block 7	P312	CBMH350	pipe 0.42					0.23 0.23	10.00	0.13	10.13	76.81	104.19			8.56 24.33			24.33	87.74		250		2.00	1.731	63.40	
	1 312																										
Moses Tennisco St		BULK204N	MH204					0.00 1.68	11.18	0.11	11.29	72.54	98.34	115.24	168	8.43 165.53			165.53	400.16	16.00	450		1.81	2.437	234.63	58.63%
Michael Stoqua St Michael Stoqua St	S311, S311A, R311 S310A-B	MH311 MH310	MH310 BLK205N	0.45		0.22 0.37		1.02 1.02 0.68 1.70	10.00 10.77	0.77 0.56	10.77 11.33	76.81 73.97	104.19 100.30	122.14 117.55		8.56 105.93 1.82 170.06			105.93 170.06	181.07 270.97	73.30 55.30	375 450		0.98 0.83	1.588 1.651	75.15 100.92	41.50% 37.24%
Michael Stoqua St		BLK205N						0.00 1.70	11.33	0.16	11.48	72.06		114.46		7.27 165.60			165.60	279.02		450		0.88	1.700	113.42	
Bareille-Snow St	S309, B309	MH309	MH308			0.10		2.95 2.95	10.00	0.72	10.72	76.81	104.19			8.56 307.62			307.62	385.95		525		0.74	1.727		20.30%
Bareille-Snow St Bareille-Snow St	S308, S308A	MH308 BULK206N	BULK206N MH206			0.25		0.49 3.44 0.00 3.44	10.72 11.06	0.34 0.12	11.06 11.18	74.15 72.96	100.54 98.91			2.24 345.75 9.42 340.15			345.75 340.15	517.42 536.52		525 525		1.33 1.43	2.315 2.401	171.67 196.37	
Wanaki Road	B200, S200A	MH326	MH318			0.15	1.57	3.78 3.78	10.00	0.69	10.69	76.81	104.19			8.56 394.22			394.22	457.45		600		0.51	1.567		13.82%
Wanaki Road	S318	MH318	MH300			0.13		0.25 4.04	10.69	0.83	11.52	74.24	100.66	117.99	17:	2.45 406.34			406.34	443.79	75.72	600		0.48	1.521	37.46	8.44%
Tawadina Road Tawadina Road	S300, S300A S301, S301A	MH300 MH301	MH301 MH302			0.19 0.17		0.37 4.41 0.33 4.74	11.52 13.12	1.59 0.88	13.12 14.00	71.41 66.60	96.78 90.18	113.41 105.65		5.73 426.43 4.34 427.21			426.43 427.21	438.47 769.51		675 675		0.25 0.77	1.187 2.083	12.03 342.29	2.74% 44.48%
Tawadina Road	S302, S302A	MH302	MH303			0.28		0.54 5.28	14.00	0.69	14.69	64.24	86.94	101.83	148	8.73 459.22			459.22	996.00	111.13	675		1.29	2.696	536.79	53.89%
Tawadina Road Tawadina Road	S303 S304, S304A	MH303 MH304	MH304 MH305			0.18 0.23		0.35 5.63 0.45 6.08	14.69 16.30	1.62 1.51	16.30 17.82	62.52 58.85	84.59 79.57	99.06 93.16	130	4.67 476.43 6.02 483.78			476.43 483.78	556.99 603.49	120.08	750 750		0.23 0.27	1.221 1.323		14.46% 19.84%
Codd's Road Codd's Road	S340, B340, B340A S231	MH305 MH231	MH231 MH176			0.17 0.12		4.82 10.90 0.23 11.14	17.82 18.32	0.50 0.43	18.32 18.75	55.83 54.91	75.44 74.17	88.31 86.82		8.90 822.55 6.71 826.06			822.55 826.06	1,308.85 1,240.05		750 750		1.27 1.14	2.870 2.719	486.29 413.99	37.15% 33.38%
- Coud o Modu	5201		WATER CO.			0.12		0.20	10.02	0.10	10.70	01.01		00.02		520.00			020.00	1,210.00	7 0.00	7.00			210	110.00	00.00%
Block 1	-	DICB1	Pipe 1.05					0.58 0.58	61.68	0.20	61.88	24.06	32.28	37.67	54	4.75	31.97		31.97	62.04	14.59	250		1.00	1.224	30.07	48.47%
Block 11	_	DICB3	Pipe 1.24					0.69 0.69	81.62	0.19	81.81	19.53	26.16	30.52	44	4.31	30.55		30.55	62.04	13.63	250		1.00	1.224	31.49	50.76%
Block 12	_	DICB4	Pipe 1.24					0.69 0.69	80.96	0.23	81.19	19.65	26.32	30.70		4.58	30.74		30.74	60.47	16.78	250		0.95	1.193		49.17%
Block 8	-	DICB5	Pipe 0.66					0.37 0.37	28.47	0.15	28.62	41.47	55.87	65.32	95	5.20	34.93		34.93	62.04	11.20	250		1.00	1.224	27.11	43.69%
																											-
																											-
																											-
											-				+						 		+		, ===		
																									, ,		
															-												
Definitions:			Notes:						Designed:		KH				, A	No.			Revision						Date		
Q = 2.78CiA, where:	_			pefficient (n) =	0.013				pesigned:		INI					1	Subi	nission No.	1 for City Rev	iew					2018-12-20		
Q = Peak Flow in Litr A = Area in Hectares									Checked:		JIM				_	3	Subi		2 for City Revi ubmission	iew					2019-03-15 2019-04-17		
	n millimeters per hour ((mm/hr) 2 YEAR														4 5		ord Informat	tion Added (No						2020-10-08 2021-03-31		
[i = 998.071 / (TC+	6.053)^0.814]	5 YEAR							Dwg. Refer	ence:	118863-50	00					Red	מוווטוווום היכ	uon Audeu (No								
[i = 1174.184 / (TC		10 YEAR 100 YEAR														File Reference: 118863.5.7.1				Date: 2021-03-31					Sheet No: 1 of 1		
			•																								

Ottawa, Ontario K1S 5N4 Canada

STORMWATER MANAGEMENT

Development Name | Name of Client/Developer 142609-6.0 | Rev #1 | 2023-07-04 Prepared By: AC | Checked By: JIM

IBI GROUP ibigroup.com

Formulas and Descriptions

 i_{2yr} = 1:2 year Intensity = 732.951 / $(T_c+6.199)^{0.810}$ i_{5vr} = 1:5 year Intensity = 998.071 / $(T_c + 6.053)^{0.814}$ i_{100yr} = 1:100 year Intensity = 1735.688 / (T_c+6.014)^{0.820} T_c = Time of Concentration (min) C = Average Runoff Coefficient A = Area (Ha) Q = Flow = 2.78CiA (L/s)

Maximum Allowable Release Rate

Restricted Flowrate (Q $_{restricted}$ = 2.78*C*i $_{5yr}$ *A $_{site}$ based on C=0.50, Tc=20min)

Based on Wateridge Village report

195.00 L/s

Uncontrolled Release (Q uncontrolled = 2.78*C*i 100yr *A uncontrolled)

0.725 (0.58 x 1.25 for 100 year) $T_c =$ 10 min 178.56 mm/hr i _{100yr} = 0.14 Ha

 $\textit{Maximum Allowable Release Rate (Q}_{\textit{max allowable}} = \textit{Q}_{\textit{restricted}} - \textit{Q}_{\textit{uncontrolled}})$

144.62 L/s Q _{max allowable} =

MODIFIED RATIONAL METHOD (100-Year, 5-Year & 2-Year Ponding)

Drainage Area	SC3							
Area (Ha)	0.570	Restricted Flow ICD A	ctual (L/s)=	144.00]			
C =	0.99	Restricted Flow Q _{r for s}	wm calc (L/s)=	72.00	50% reduction for	sub-surface storage		
		100-Year Pond	ing			100-Y	'ear +20% Po	onding
Т _с Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	100YRQ _p 20%	Qp - Qr	Volume 100+20
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(L/s)	(L/s)	(m ³)
9	188.25	294.58	72.00	222.58	120.19			
14	148.72	232.72	72.00	160.72	135.01			
19	123.87	193.83	72.00	121.83	138.88	232.59	160.59	183.08
24	106.68	166.93	72.00	94.93	136.69			
29	94.01	147.11	72.00	75.11	130.70			

	S	torage (m³)				100+20	
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Balance
0.00	138.88	0.00	140	0.00	0.00	183.08	43.08
					convert to flo	w with peak Tc (L/s)	37.79

overflows to: off site

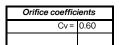
Controlled	Area	ICD Flow
SC3	0.570	144.000
Sum	0.57	144.00
l les entrelles	A	Flann
Uncontrolled	Area	Flow
SC1	0.050	0.98
		Flow 0.98
SC1 SC2	0.050	0.98
SC1 SC2 Sum	0.050 0.090 0.14	0.98 1.76 50.3 8
SC1	0.050 0.090	0.9 1.7 50. 3
SC1 SC2 Sum	0.050 0.090 0.14	0.9

Drainage Area	SC3				
Area (Ha)	0.570				
C =	0.72	Restricted Flow Q _r (L	/s)=	72.00	
<u> </u>		2-Year Ponding	g		
T _c	,	Peak Flow	0	0 -0	Vol

		2- rear Ponding	J		
T _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q _p -Q _r	Volume 2yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
3	121.46	138.58	72.00	66.58	11.98
4	111.72	127.47	72.00	55.47	13.31
5	103.57	118.17	72.00	46.17	13.85
6	96.64	110.26	72.00	38.26	13.77
7	90.66	103.44	72.00	31.44	13.20

	St	orage (m³)		
Overflow	Required	Surface	Sub-surface	Balance
0.00	13.85	0.00	140	0.00

overflows to: off site


IBI GROUP

ARCADIS IBI GROUP

500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada ibigroup.com

ORIFICE SIZING

1050 Tawadina Road | WestUrban Developments 142609-6.0 | Rev #1 | 2023-06-30 Prepared By: AC | Checked By: JIM

		l e e e e e e e e e e e e e e e e e e e					Theoretical Recommended				
	Invert	Diameter	Centre ICD	Max. Pond Elevation	Hydraulic Slope	Target Flow	Orifice	Actual Flow	Orifice	Actual Flow	
	(m)	(mm)	(m)	(m)	(m)	(I/s)	(m)	(I/s)	(m)	(I/s)	
STM MH1	86.86	300	87.010	89.010	2.000	144.00	0.1958	144.09	0.195	142.92	
						144.00				142.92	

Runoff Coefficient Used(C):

ARCADIS IBI GROUP

500-333 Preston Street Ottawa, Ontario K1S 5N4 Canada

0.62

ibigroup.com

RUN-OFF COEFFICIENTS

0.79

Development Name | Name of Client/Developer 142609-6.0 | Rev #1 | 2023-06-29 Prepared By: AC | Checked By: JIM

Ī									
		SC1			SC2			SC3	
	GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHALT	GRASS	ROOF	ASPHALT
	202.32		307.68	432.72		467.28	1016.76		4763.24
-									.=
TOTAL (m²)	202.32	0.00	307.68	432.72	0.00	467.28	1016.76	0.00	4763.24
		510.00			900.00			5780.00	
Runoff Coefficient (C):	0.2	0.9	0.9	0.2	0.9	0.9	0.2	0.9	0.9
Ave. Runoff Coefficient (C):		0.62		-	0.56	0.0	U	0.78	
· · · · · · · · · · · · · · · · · · ·									

0.56

Table 2.1 Hydrological Parameters

	Phase 2B Design Brief							Current Evaluation							
Block	Drainage Area ID	Area (ha)	Major System: D/S Segment ID	Minor System: MH ID	IMP Ratio	Segment Length (m)	Sub- catchment Width (m)	Parcel	Drainage Area ID	Area (ha)	Major System: D/S Segment ID	Minor System: MH ID	IMP Ratio	Segment Length (m)	Sub- catchment Width (m)
11	B309	1.24	S308A on	MH309 on	0.96	135.1	270.2	1	B309_1	0.72	S308 on Bareille- Snow	MH309 on Bareille- Snow	0.86	81	162
11	B309	1.24	Bareille- Snow	Bareille- Snow		135.1	210.2	2	B309_2	0.52	S308A on Bareille- Snow	MH310 on Michael Stoqua	0.86	58.5	117
				MUZOE				3	B340_3	0.34	S308A on Bareille- Snow	MH308 on Bareille- Snow	0.86	38.25	76.5
12	B340	1.24	S207 on Hemlock	MH305 on Codd's Road	0.86	173.1	346.3	4	B340_4	0.53	S308 on Bareille- Snow	MH309 on Bareille- Snow	0.86	59.63	119.25
				Noau				5	B340_5	0.37	S340 on Codd's	MH305 on Codd's Road	0.86	41.63	83.25

Table 2.2 Minor System Restriction and On-site Storage

		Phase 2	2B Design Brief		Current Evaluation												
		Minor Sy	ystem Capture	Required On-			Minor System Capture Major System		System								
Block	Drainage Area ID	Simulated Flow (I/s)	Corresponding Design Storm	Site Storage Parcel (cu-m)		Drainage Area ID	Simulated Flow (I/s)	Corresponding Design Storm	Required On- Site Storage (cu-m)	Comment							
11	B309	370	Between 5 and 100	Between 5 and	Between 5 and	Between 5 and	None	1	B309_1	(195)	Between 5 and 100 year	43	Control up to the 100 year event				
''	B309	370		None	None	NONE	NOHE	None	2	B309_2	105	5 year	64	Control up to the 100 year event			
												3	B340_3	95	Between 5 and 100 year	18	Control up to the 100 year event
12	B340	366	Between 5 and 100	None	4	B340_4	150	Between 5 and 100 year	21	Control up to the 100 year event							
					5	B340_5	139	100 year	None	N/A							

STORM WATER TANK BELOW RAMP (STORAGE VOLUME REQUIRED 140m3 REFER TO CIVIL).

INFILTRATION TANK LOCATION (REFER TO CIVIL)

LEGEND

- √V VISITOR

SHEET NOTES

ARCHITECT FAAS ARCHITECTURE BROGAN GORDON-COOPER 403.923.5072

PLANNING Q9 PLANNING & DESIGN CHRISTINE McCUAIG 613.850.8345

PROJECT TEAM

CIVIL
IBI GROUP
DEMETRIUS YANNOULOPOULOS
613.447.0504

LANDSCAPE ARCHITECT CSW LANDSCAPE ARCHITECTS LTD. JERRY CORUSH 613.866.1608 TRANSPORTATION
IBI GROUP
BEN PASCOLO-NEVEU
613.225.1311 ext.64074

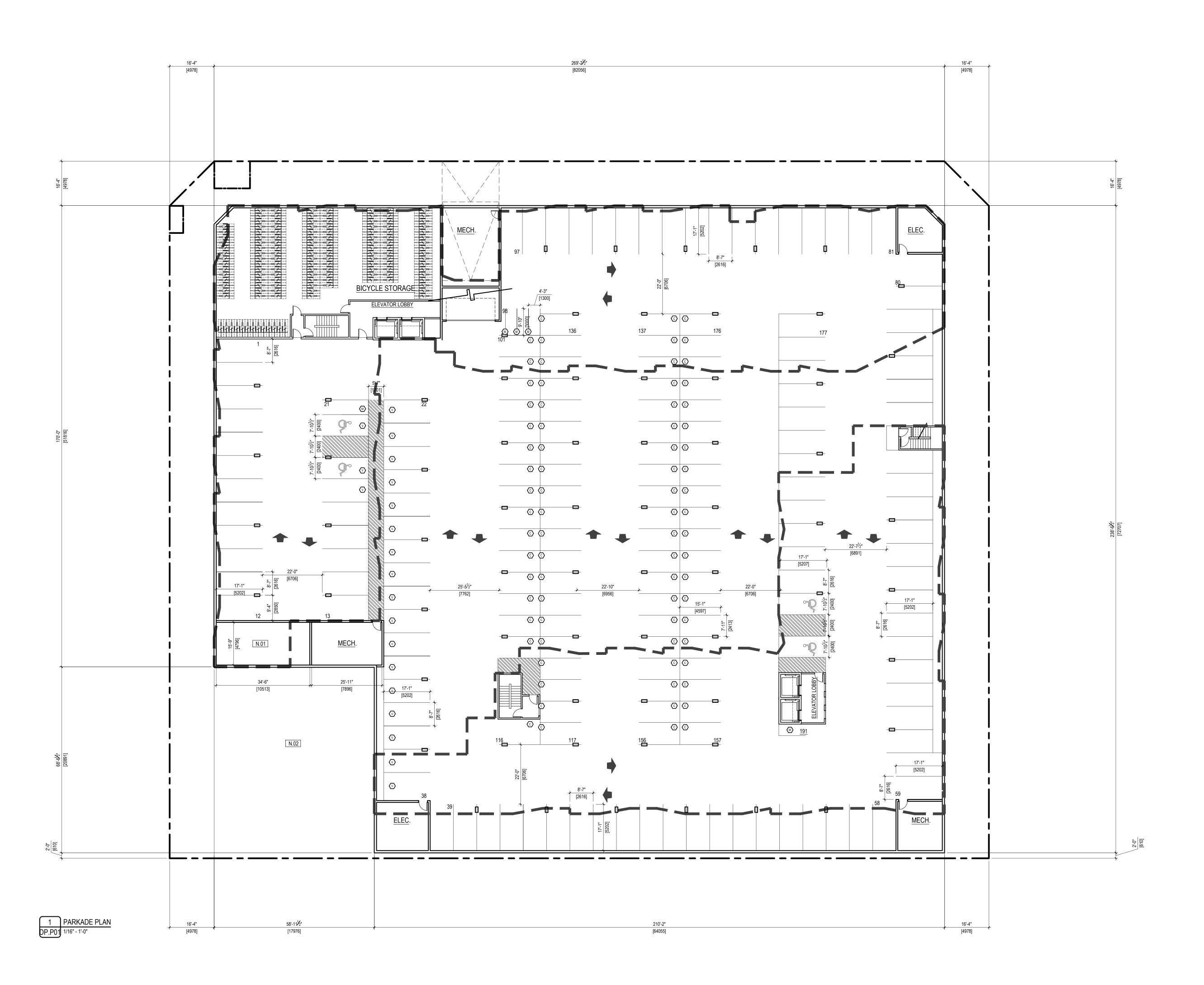
ENVIRONMENTAL ENGLOBE ANDREW NAOUM 613.294.2280

NO.	DESCRIPTION	DATE
03	SPC RESPONSE (DRAFT)	01.19.24
02	ISSUED FOR SPC	02.28.23
01	ISSUED FOR CLC	10.24.22
PROJECT	NAME	

RELEASES

1050 TAWADINA RD WATERIDGE

1050 TAWADINA RD OTTAWA, ON LEGAL ADDRESS
PART OF BLOCK 11
REGISTERED PLAN 4M-1651
CITY OF OTTAWA
ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 2022


22.01.W.U.

SCALE 24.01.19 AS NOTED

PARKADE PLAN

SPC.P01

THIS DRAWING AND DESIGN ARE AT ALL TIMES TO REMAIN THE EXCLUSIVE PROPERTY OF THE ARCHITECT AND MAY NOT BE USED OR REPRODUCED WITHOUT PRIOR WRITTEN CONSENT.

PROJECT TEAM

ARCHITECT FAAS ARCHITECTURE BROGAN GORDON-COOPER 403.923.5072

SHEET NOTES

N.01 *CIVIL TO PROVIDE ADEQUATE ROOF DRAINS @ TOP ROOF OF BUILDING. ARCH CANNOT COORDINATE LOCATION WITHOUT PLACEMENT OF MECH. EQUIPMENT

PLANNING
Q9 PLANNING & DESIGN
CHRISTINE McCUAIG
613.850.8345

CIVIL
IBI GROUP
DEMETRIUS YANNOULOPOULOS
613.447.0504

LANDSCAPE ARCHITECT
CSW LANDSCAPE ARCHITECTS LTD.
JERRY CORUSH
613.866.1608

TRANSPORTATION
IBI GROUP
BEN PASCOLO-NEVEU
613.225.1311 ext.64074

ENVIRONMENTAL
ENGLOBE
ANDREW NAOUM
613.294.2280

REI	RELEASES					
NO.	DESCRIPTION	DATE				
_						
03	SPC RESPONSE (DRAFT)	01.19.24				

 03
 SPC RESPONSE (DRAFT)
 01.19.24

 02
 ISSUED FOR SPC
 02.28.23

 01
 ISSUED FOR CLC
 10.24.22

 PROJECT NAME

1050 TAWADINA RD WATERIDGE

1050 TAWADINA RD
OTTAWA, ON

LEGAL ADDRESS
PART OF BLOCK 11
REGISTERED PLAN 4M-1651
CITY OF OTTAWA
ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 2022

PROJECT NO.

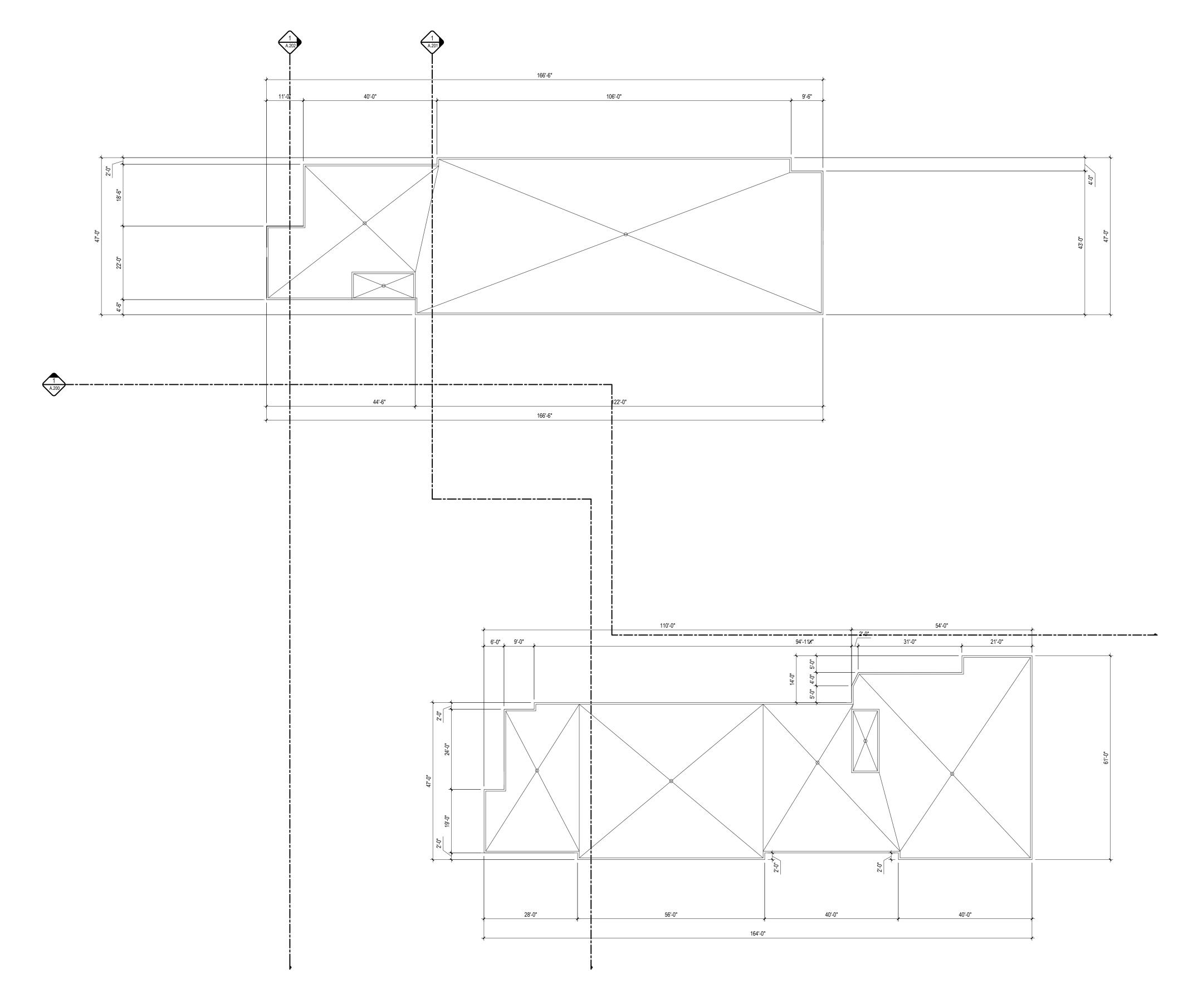
22.01.W.U.

DRAWN CHECKED

DRAWN CHECKED

LB JA

DATE SCALE


24.01.19 AS NOTED

LEVEL 09 ROOFPLAN

DRAWING NUMBER

SPC.110

THIS DRAWING AND DESIGN ARE AT ALL TIMES TO REMAIN THE EXCLUSIVE PROPERTY OF THE ARCHITECT AND MAY NOT BE USED OR REPRODUCED WITHOUT PRIOR WRITTEN CONSENT.

1 LEVEL 09 ROOFPLAN DP.110 1/16" - 1'-0"

Principal, Partners & Associates

F.W.A. Bann, P.Eng. R.Lefebvre, P.Eng. LEED® AP D.R. Vyas, P.Eng., MIEEE S. Hamilton, P.Eng. J. Moffat, P.Eng. E. Pérusse, P.Eng., ing. R. Boivin, P.Eng., ing. R. Leonard, P.Eng. M. Sarasin, P.Eng. A. Bogdanowicz, P.Eng. M.G. Carrière, C.E.T. R. McIntyre, P.Eng.

March 28, 2024

Arcadis Professional Services (Canada) Inc. 333 Preston Street, Suite 500 Ottawa, ON K1S 5N4

ATTENTION: SAMANTHA LABADIE, P.ENG., CIVIL ENGINEER

SUBJECT: 1050 TAWADINA RD. - NEW APARTMENT BUILDING

GWAL PROJECT NO. 2023-437

Site Plan Control Agreement Comments:

Please find herewith response based on the City of Ottawa's Site Plan Control Agreement comments for the above-mentioned project.

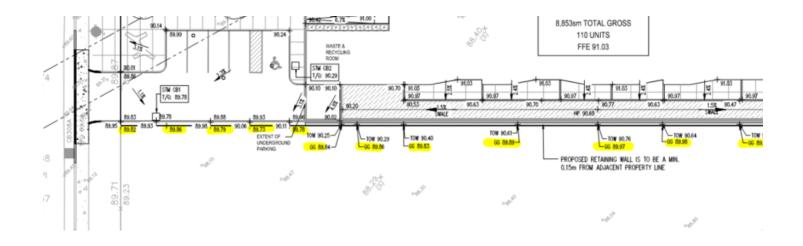
Item 15: The site has two main domestic water supply connections, which will be connected in the parking level.

Item 17: The area drains AD1-AD5 will be drained by gravity in the parking levels into the underground cistern.

We trust the above is satisfactory.

Yours very truly,

GOODKEY, WEEDMARK & ASSOCIATES LTD.



Mark Sarasin, P.Eng. | Senior Associate, Senior Mechanical Engineer MS/nh

e.c.: Teresa Priel (WestUrban Developments Ltd.)
Philip Russo (WestUrban Developments Ltd.)
Mark Sarasin (GWAL - Mechanical)
Xiangyu Cai (GWAL - Mechanical)
Chris Leblanc (GWAL - Mechanical)
Divyakant (Raj) Vyas (GWAL - Electrical)
Liaqat Ali (GWAL - Electrical)
Roger Lavictoire (GWAL - Electrical)

Labadie, Sam

From:	Christine McCuaig <christine@q9planning.com></christine@q9planning.com>
Sent: To:	Wednesday, April 3, 2024 9:41 AM Labadie, Sam
Subject:	Fwd: Wateridge Project - 1050 Tawadina
Attachments:	RE: Wateridge Project - 1050 Tawadina.eml; 221-00473-00_C_B1-C102.pdf
Hey Sam,	
See below and attached	t.
Thanks	
Christine	
Christine McCuaig, RF c. 613-850-8345	P MCIP M.PI
Forwarded mes	SSAge
	e < <u>lshaque.Jafferjee@wsp.com</u> >
Date: Mon, Apr 1, 2024	
•	Project - 1050 Tawadina
•	marcoconstruction.ca>, Christine McCuaig < christine@q9planning.com >
Cc: Yang, Winston < Wir	nston.Yang@wsp.com>, Ali, Zarak < <u>Zarak.Ali@wsp.com</u> >
Christine,	
,	
NA/o will many inches mand	if your anading also ations on the growth side to align with the arrangement of any the year.
development highlighte	ify our grading elevations on the north side to align with the grass grades proposed on the your ed in yellow (see the snippet below). As per Winston's email (attached), these adjustments will ould not affect the slopes towards our sidewalk. Our current grading plan C-102 is attached (noted on this yet).
I hope this clarifies.	

Ishaque Jafferjee

Manager

Land Development & Municipal Engineering, Ontario

P.Eng.

T+ 1 613-829-2800

T+ 1 613-690-3923 (Direct)

M+ 1 613-716-5352

WSP Canada Inc.

2611 Queensview Drive, Suite 300

Ottawa, Ontario,

K2B 8K2 Canada

wsp.com

From: Rod Price < rod@demarcoconstruction.ca >

Sent: Monday, April 1, 2024 11:38 AM

To: Christine McCuaig < christine@q9planning.com>

Cc: Yang, Winston < Winston. Yang@wsp.com >; Jafferjee, Ishaque < Ishaque. Jafferjee@wsp.com >

Subject: Re: Wateridge Project - 1050 Tawadina

Hi again Christine,
I forgot that Winston starts paternity leave today for a month. I'm cc'ing Ishaque to help coordinate.
Thanks,
Rod
Rod Price,
Vice President/General Manager
DEMARCO
195 Menten Place, Unit 103
Ottawa, ON.
K2H 9C1

From: Rod Price < rod@demarcoconstruction.ca>

Tel: 613-829-2777 Fax: 613-829-0778 C: 613-323-2146

Sent: Monday, April 1, 2024 11:27 AM

Email: rod@demarcoconstruction.ca

To: Christine McCuaig <<u>christine@q9planning.com</u>>
Cc: Yang, Winston <<u>Winston.Yang@wsp.com</u>>
Subject: Re: Wateridge Project - 1050 Tawadina

Hi Christine,

K2H 9C1

Ottawa, ON.

Tel: 613-829-2777 Fax: 613-829-0778 C: 613-323-2146

Email: rod@demarcoconstruction.ca

From: Christine McCuaig < christine@q9planning.com>

Sent: Thursday, March 28, 2024 8:00 AM

To: Rod Price < rod@demarcoconstruction.ca >
Subject: Wateridge Project - 1050 Tawadina

Hi Rod,

I am not sure if we've met in passing over the years but I do recognize your name. The City asked us to reach out to you as our developing neighbour to the south of our project at 1050 Tawadina.

Specifically, they wanted to ensure that you have reviewed our grading plan and have no issues with it. Honestly, I am not sure why they are asking. We have a retaining wall and it is proposed on our side of the property line. I have attached the grading plan in any event and happy to answer questions but if you have no issues, please feel free to send me a response to that effect so I can relay to staff.

Thx

Christine

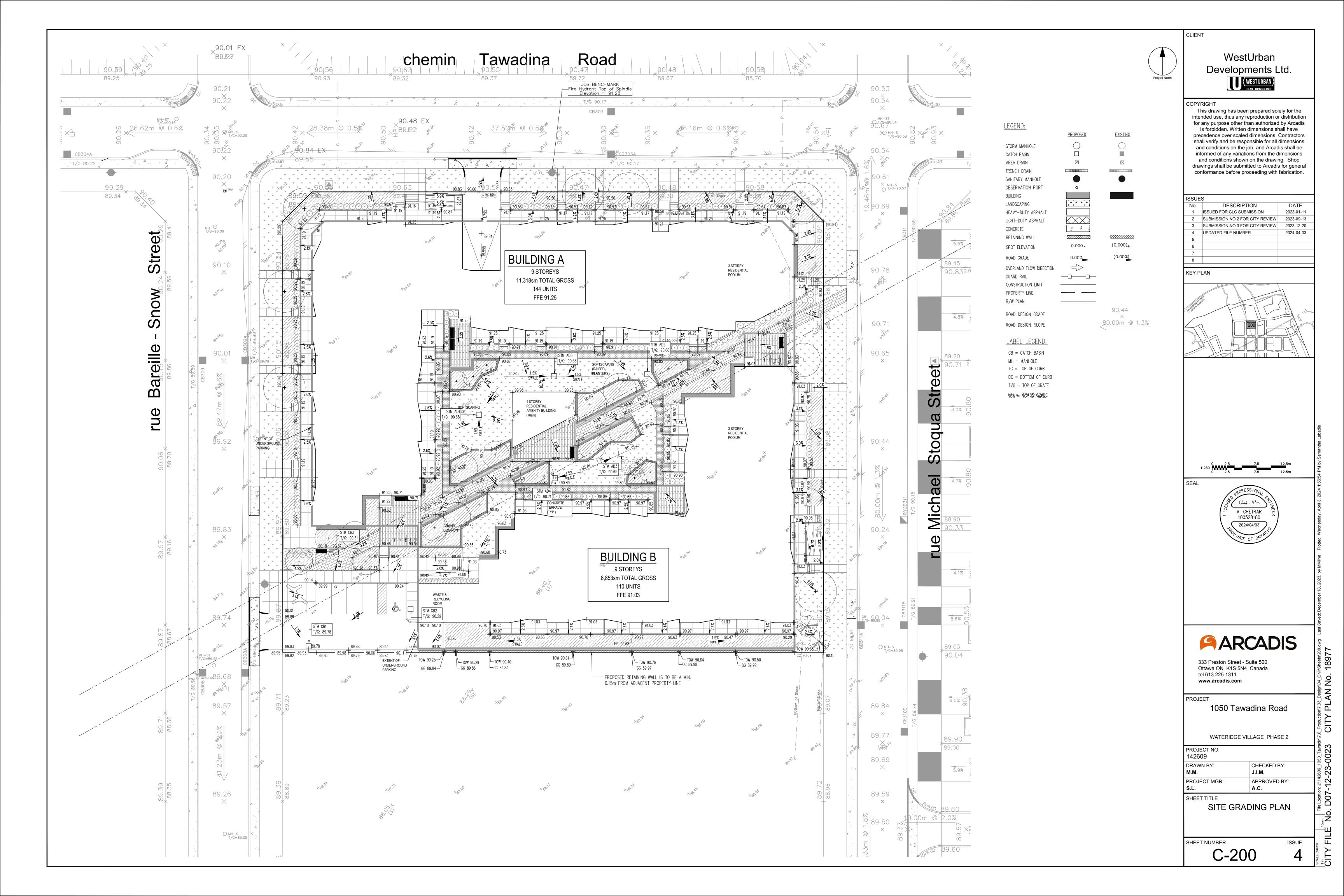
Christine McCuaig, RPP MCIP M.PI

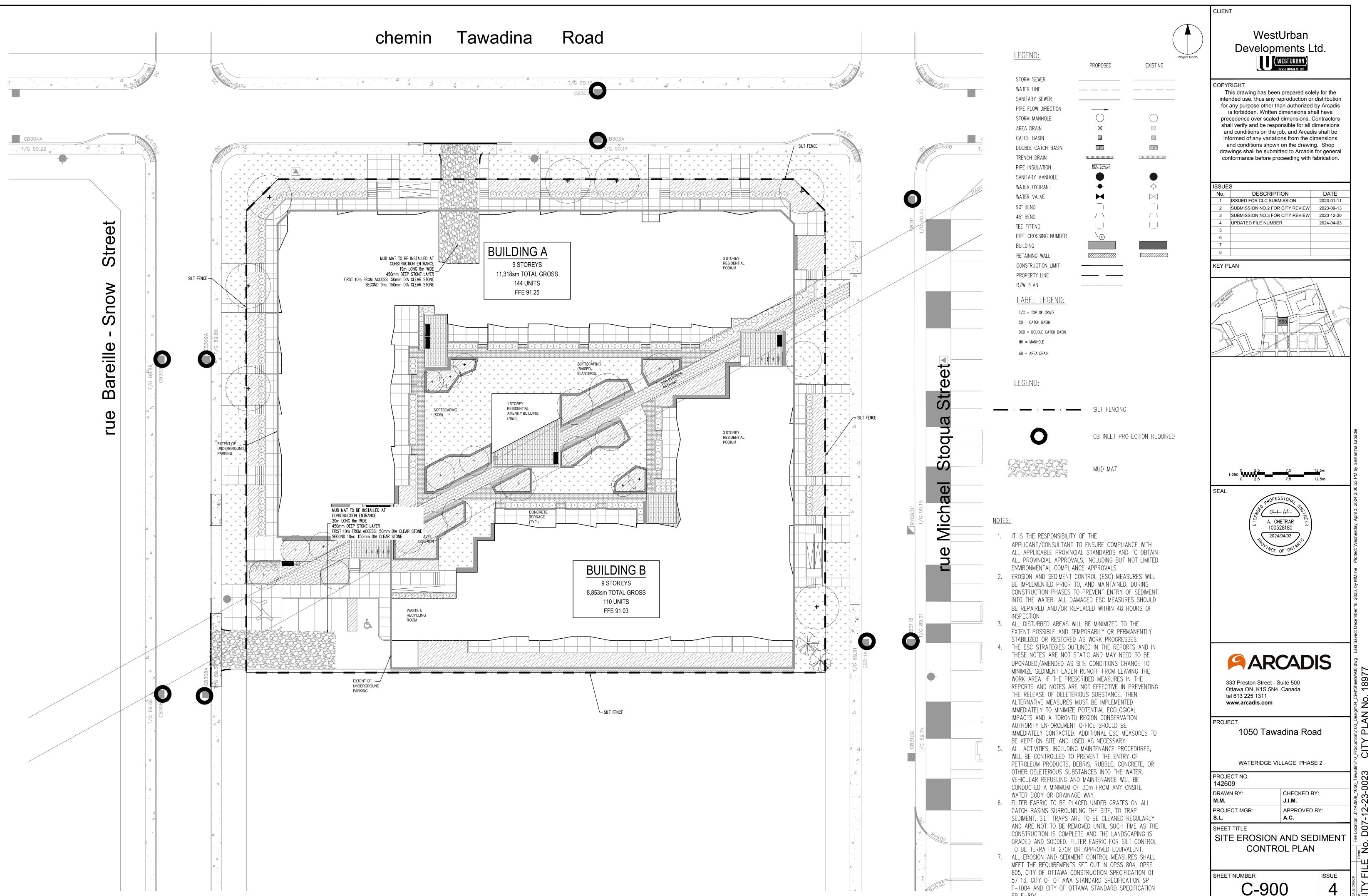
Principal Senior Planner & Project Manager

613-850-8345

Q9 Planning & Design

Please consider the environment before printing this e-mail. / Pensez à l'environnement avant d'imprimer ce courriel


NOTE: This e-mail message and attachments may contain privileged and confidential information. If you have received this message in error, please immediately notify the sender and delete this e-mail message. / NOTE: Ce courriel peut contenir de l'information privilégiée et confidentielle. Si vous avez recu ce message par erreur, veuillez le mentionner immédiatement à l'expéditeur et effacer ce courriel.


NOTICE: This communication and any attachments ("this message") may contain information which is privileged, confidential, proprietary or otherwise subject to restricted disclosure under applicable law. This message is for the sole use of the intended recipient(s). Any unauthorized use, disclosure, viewing, copying, alteration, dissemination or distribution of, or reliance on, this message is strictly prohibited. If you have received this message in error, or you are not an authorized or intended recipient, please notify the sender immediately by replying to this message, delete this message and all copies from your e-mail system and destroy any printed copies. You are receiving this communication because you are listed as a current WSP contact. Should you have any questions regarding WSP's electronic communications policy, please consult our Anti-Spam Commitment at www.wsp.com/casl. For any concern or if you believe you should not be receiving this message, please forward this message to caslcompliance@wsp.com so that we can promptly address your request. Note that not all messages sent by WSP qualify as commercial electronic messages.

AVIS: Ce message, incluant tout fichier l'accompagnant (« le message »), peut contenir des renseignements ou de l'information privilégiés, confidentiels, propriétaires ou à divulgation restreinte en vertu de la loi. Ce message est destiné à l'usage exclusif du/des destinataire(s) voulu(s). Toute utilisation non permise, divulgation, lecture, reproduction, modification, diffusion ou distribution est interdite. Si vous avez reçu ce message par erreur, ou que vous n'êtes pas un destinataire autorisé ou voulu, veuillez en aviser l'expéditeur immédiatement et détruire le message et toute copie électronique ou imprimée. Vous recevez cette communication car vous faites partie des contacts de WSP. Si vous avez des questions concernant la politique de communications électroniques de WSP, veuillez consulter notre Engagement anti-pourriel au www.wsp.com/lcap. Pour toute question ou si vous croyez que vous ne devriez pas recevoir ce message, prière de le transférer au conformitelcap@wsp.com afin que nous puissions rapidement traiter votre demande. Notez que ce ne sont pas tous les messages transmis par WSP qui constituent des messages electroniques commerciaux.

APPENDIX E

142609-900 – Site Erosion and Sediment Control Plan 142609-200 – Site Grading Plan

SP F-804.