

Hydrogeological Assessment Report – Rev.2

2545 9th Line Road, Metcalfe, Ontario

ASB Greenworld Limited

Contents

1.	Intro	duction	1
2.	Back	ground	2
	2.1	Site Description	2
	2.2	Regional Setting	2
	2.3	Existing Local Water Supplies	2
		2.3.1 MECP Well Records On-Site	3
	2.4	Previous Investigations	4
3.	Field	Methodology	4
	3.1	Health and Safety	4
	3.2	Site Inspection	5
	3.3	Aquifer Performance Testing	5
		3.3.1 Test Well Information	5
		3.3.2 Pumping Test Methodology	6
4.	Geol	ogy and Hydrogeology	7
	4.1	Site Geology	7
	4.2	Site Hydrogeology	8
		4.2.1 Hydrostratigraphic Units	8
		4.2.2 Groundwater Levels	8
	4.3	Aquifer Performance Assessment	8
		4.3.1 Pumping Test – TW-1	8
		4.3.2 Pumping Test – TW-2	9
		4.3.3 Summary of Aquifer Performance	9
		4.3.4 Water Quality	10
		4.3.5 Well Interference 4.3.5.1 Interference Assessment	15 15
5.	Wate	r Usage Assessment	16
6.		ct Assessment	16
	-		
7.		mary and Recommendations	17
8.	Refer	rences	19
9.	State	ment of Limitations	20

Table Index

Table 2.1	Summary of MECP Well Record Data	3
Table 2.2	Summary of On-Site MECP Well Record Data	4
Table 4.1	Water Level Summary	8
Table 4.2	Aquifer Performance Testing Summary	9
Table 4.3	Test Well Water Quality Summary – TW-1 and TW-2	10
Table 4.4	Field Parameters TW-1	14
Table 4.5	Field Parameters TW-2	14
Table 4.6	Distance Between Pumping Well and Observation Wells	15
Table 4.7	Maximum Drawdowns in Pumping and Observation	15
Table 5.1	Wells Water Usage	16

Figure Index

1	Site Location Plan
2	Well Locations Plan
3	Regional Topography
4	Physiography
5	Surficial Geology
6	Quaternary Geology
7	Bedrock Geology
	1 2 3 4 5 6 7

Appendices

Appendix A	MECP Well Records
Appendix B	Photographs
Appendix C	Aquifer Performance Testing
Appendix D	Water Well Certificates of Analyses
Appendix E	Observation Well Hydrographs
Appendix F	Nitrate Impact Assessment Calculations

1. Introduction

GHD Limited (GHD) was retained by ASB Greenworld Limited (ASB or "the Client") to complete a hydrogeological assessment in support of a proposed development of the property located at 2545 9th Line Road, in Metcalfe, Ontario (herein referred to as "the Site"). The Site is approximately 14.3 hectares (ha) in size and is located east of 9th Line Road. The Site and surrounding properties are located in an area of Ottawa that is zoned Rural Use. The location of the Site is provided on the **Site Location Plan, Figure 1**.

The Site is currently developed with several buildings and warehouses with asphalt and gravel parking areas and agricultural fields that is serviced by drilled wells and a septic system. Historically, the Site has been used for agricultural, commercial, and residential purposes since at least 1945. ASB proposes to use the Site for storage and distribution of their garden products.

This report has been prepared for the purposes of examining the hydrogeological characteristics of the Site and assessing the capacity of selected Site wells to supply the proposed development. The scope of work completed to achieve the aforementioned purposes included:

- A desktop review of available geological and groundwater mapping, and statistical assessment of Ministry of the Environment, Conservation and Parks (MECP) well records;
- Aquifer performance testing to evaluate the hydraulic properties of two previously drilled water supply wells at the
 Site (denoted as TW-1 and TW-2 for this report) and hydraulic monitoring of another Site drilled well (M-1); and
- Groundwater sampling to characterize the water quality of the aquifer(s) tapped into by TW-1 and TW-2.

A septic assessment was completed concurrently with the hydrogeological assessment and the findings of the septic assessment are presented under separate cover.

This report is organized into the following sections:

Section 1.0 - Introduction: Outlines the purpose, scope of work, and presents the report organization.

Section 2.0 – Background: Provides a description of the existing Site conditions, background information and surrounding land uses, as well as an outline of the proposed development. The regional environmental setting, including the physiography, topography, surface water features in the vicinity and regional geology is presented.

Section 3.0 – Methodology: Describes the field activities and methodologies used to assess the groundwater quantity and quality.

Section 4.0 – Geology and Hydrogeology: Provides a detailed description of the Site geology, hydrogeology, and the hydraulic properties of the underlying stratigraphy and aquifer.

Section 5.0 – Water Usage Assessment: Provides details on the expected water usage of the proposed development.

Section 6.0 - Impact Assessment: Provides details on a predictive assessment for Industrial/Commercial development

Section 7.0 – Summary and Recommendations: Provides a summary of the assessment findings.

Sections 8 and 9 provide References and the Statement of Limitations, respectively. The Figures and Appendices are provided following the text of this report, as indicated in the Table of Contents. Tabulated data is presented in tables within the text.

The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. This report should be read in conjunction with the Statement of Limitations appended to this report. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

2. Background

2.1 Site Description

The Site covers an area of approximately 14.3 ha and is located roughly 500 metres (m) north of the intersection of Victoria Street and 9th Line Road Street in Metcalfe, Ontario which is within the City of Ottawa limits. The parcel has the municipal address of 2545 9th Line Road and is currently developed with several buildings and warehouses, asphalt and gravel parking areas, private drilled water wells, private septic systems and agricultural fields as depicted in the **Well Locations Plan, Figure 2**. The Site is zoned Rural Countryside Zone as per the City of Ottawa Zoning By-Law No. 2008-250. Historically, the Site has been used for agricultural, commercial and residential purposes since at least 1945. It is understood that ASB proposes to use the Site for storage and distribution of their garden products.

The surrounding area is supported by private services for water and septic, is zoned for Rural Use and generally consist of vacant / wooded land, agricultural land, and / or rural residential lots.

2.2 Regional Setting

The Site is relatively flat with local topography sloping radially outward from the central developed area. Mapping indicates topographic relief is on the order of 10 m across the Site. Regional topography is provided as **Figure 3**. Stormwater generated at the Site either infiltrates the ground surface or is directed by overland flow towards the Site boundaries and various drainage features at the Site.

The Site is situated within the physiographic region known as the Russell and Prescott Sand Plains. In the United Counties of Prescott and Russell, and the Regional Municipality of Ottawa-Carleton, there is a group of large sand plains separated by the clays of the lower Ottawa Valley. The plains cover an area of nearly 1500 square kilometers and a ground surface of about 85 metres above sea level (masl). The plains were originally a continuous delta that was built by the Ottawa River into the Champlain Sea. The plains are as thick as 6 to 10 m in some areas (Chapman and Putnam, 1984). The local physiography is illustrated on **Figure 4** showing the Site is within a limestone plain with a clay plain to the south.

Surficial geology mapping on **Figure 5** indicates the Site is a mix of Paleozoic bedrock, littoral-foreshore deposits and stone-poor, carbonate-derived silty to sandy till.

The Quaternary geology (**Figure 6**) indicates the Site is a mix of bedrock; undifferentiated carbonate and clastic sedimentary rock, exposed at surface or covered by a discontinuous, thin layer of drift and till; undifferentiated, predominantly sandy silt to silt matrix, commonly rich in clasts, often high in total matrix carbonate content. Bedrock outcrops were not observed on the Site.

The underlying bedrock is dolostone, sandstone of the Beekmantown group (**Figure 7**). Based upon water well records within 500 m of the Site, bedrock was found varying from surface to 4 metres below ground surface (mbgs).

2.3 Existing Local Water Supplies

Information regarding groundwater characteristics of the immediate area was obtained from a search of the publicly available inventory of existing MECP well records. A total of twenty (20) wells were identified within 500 m of the Site, with seven (7) detailing well decommissioning or monitoring well installations with limited information. Based on location data provided in the well records, ten (10) of the well records are depicted on the Site consisting of four (4) abandonment records and six (6) as water supply wells. The MECP well records are provided in **Appendix A** with the data summarized in **Table 2.1**.

The well records indicate a mix of overburden materials (e.g., sand, clay, boulders) which overlays bedrock interpreted to be limestone and / or sandstone. Based upon the well records, bedrock was encountered at surface and up to depths of approximately 4 m. All of the drilled water wells in this area tap into the limestone and sandstone aquifers,

respectively. Eight (8) well records indicated wells that terminated within the underlying bedrock formation at depths ranging from about 14 m to 29 m. The remaining five (5) well records indicated wells that terminated within the underlying bedrock formation at depths ranging from about 76 m to 93 m.

The groundwater in the well records was generally described as "fresh". The bedrock wells encountered water at an average depth of 36.5 m with an average static depth of 5.7 m with one (1) flowing artesian well identified (Well ID # 1513409) located southwest of the Site (well drilled to a depth of 18.3 m into sandstone bedrock with fresh water being found at 16.8 m). Pumping rates from the well records reviewed averaged about 56 L/min.

For the well records depicted to be located on the Site, bedrock was reported at depths ranging from 1 m to 3 m. Three (3) of the wells were completed to depths ranging from 20m to 27m and the remaining three (3) were completed to depths of 76m to 93m. The Site wells are discussed further in section 3.3.

No dug / bored wells or drilled overburden wells were identified in our review of available records. **Table 2.1** summarizes the data reviewed in the well records within 500 m of the Site:

Table 2.1 Summary of MECP Well Record Data

Well Use	Well Type/Unit	No. Wells	Well Depth Min – Max (Avg) (mbgs)	Water Encountered Depth Min – Max (Avg) (mbgs)	Static WL Min – Max (mbgs)	Yield Min – Max (Avg) (L/min)
Water Supply	Overburden – Dug/Bored	0 (0%)				
Water Supply	Overburden – Drilled	0 (0%)				
Water Supply	Bedrock	13 (100%)	14.0 – 93.0 (45.2)	8.5 – 90.5 (36.5)	0 – 10.7 (5.7)	7.6 – 151 (56.2)
Total		13				
Abandoned or Monitoring Wells	Drilled	7	NA	NA	NA	NA

Notes: Data based on MECP well record information (refer to Appendix A for well information).

2.3.1 MECP Well Records On-Site

As previously indicated, ten (10) of the well records are depicted to be on the Site based upon a search of the publicly available MECP well records. The records consist of four (4) abandonment records and six (6) water supply wells. During the fieldwork of this hydrogeological assessment, GHD observed four (4) water supply wells on Site. These wells are denoted as TW-1, M-1, TW-2 and Donut Factory Well based upon the locations observed by GHD and graphically illustrated on the **Well Locations Plan, Figure 2**.

Well records were not provided to GHD for the water supply wells located on the Site. GHD attempted to match the MECP database well records with the wells located on the Site. Without well tags on the wells on site, GHD was not able to exactly match the well records within the MECP database with the four (4) supply wells observed at the Site. It should be noted that coordinates provided for historical well records are typically not of survey grade quality, thus the locations shown on the well records may not always be accurate. **Table 2.2** summarizes the well records from the MECP database that are indicated to be on the Site.

Table 2.2 Summary of On-Site MECP Well Record Data

	Well	Date			Well		Casing		Well	Yield Min –
Well ID	Tag	Completed (yyyy/mm/dd)	Status	Use	Type	Dia. (m)	Material	Depth (m)	Depth (m)	Max (Avg) (L/min)
7045997	A035017	2007/05/31	Abandoned	No Data	No Data	0.15		No [Data	
7046030	A035018	2007/05/30	Abandoned	No Data	No Data	0.20	No Data			
1507664	No Data	1961/01/10	Water Supply	Domestic	Bedrock	0.15	No Data	4.3	22.9	11.3
1512297	No Data	1972/09/08	Water Supply	Irrigation	Bedrock	0.15	Steel	6.4	87.5	26.5
1512298	No Data	1972/09/12	Water Supply	Commercial	Bedrock	0.15	Steel	6.7	93.0	68.0
1514164	No Data	1974/05/27	Water Supply	Industrial	Bedrock	0.15	Steel	6.7	27.4	45.4
1514335	No Data	1974/10/07	Abandoned	Supply well	Bedrock	0.15	Steel	6.7	68.6	No Data
1514336	No Data	1974/10/09	Water Supply	Industrial	Bedrock	0.15	Steel	6.4	76.2	75.6
1516652	No Data	1978/08/04	Water Supply	Commercial	Bedrock	0.20	Steel	6.1	19.8	18.9
1535357	A012448	2004/10/28	Abandoned	No Data	No Data			No Data		

2.4 Previous Investigations

The draft report entitled "Terrain and Hydrogeological Assessment, Proposed Replacement Septic Sewage Disposal Systems, Continental Mushroom Corp" prepared by Golder Associates in May 1996 was reviewed as part of this investigation. The test pits documented in this report were utilized, where applicable, in this hydrogeological assessment.

3. Field Methodology

To achieve the purposes of this assessment, the following field activities were undertaken:

- Prepared and implemented a Health and Safety Plan for the field activities;
- Conducted a Site inspection of the Site water supply wells and conditions;
- Completed aquifer performance testing of two (2) water supply wells (denoted as TW-1 and TW-2 in this report)
 and conducted water level monitoring of observation wells; and
- Collected groundwater samples for parameters prescribed in the City of Ottawa's document Hydrogeological and Terrain Analysis Guidelines, dated March 2021.

3.1 Health and Safety

For projects that incorporate field activities, GHD conducts Health and Safety planning. For this project, a site-specific Health and Safety Plan (HASP) was prepared and implemented during the field activities. The HASP presents the visually observed Site conditions to identify potential physical hazards to field personnel. Required personal protective equipment was also listed in the HASP. It is mandatory for GHD personnel involved in the field program, to read and have a copy of the HASP available at the Site.

3.2 Site Inspection

GHD observed the general surficial characteristics of the Site and neighbouring lands on October 14, 2022. The Site consisted of various structures, warehouses, asphalt and gravel parking areas while the surrounding area was observed to consist of forested areas, agricultural fields and few residential lots. Photographs are provided in **Appendix B**.

GHD observed three (3) drilled water supply wells on the Site during our site inspection. Two (2) drilled wells were located within well pits and one (1) was located above grade within a pump house.

An unnamed tributary of the North Castor River is located along the eastern and northern portions of the Site. Five (5) surface water and compost wastewater lagoons are located in the central portion of the Site. Wetland areas, as indicated by the Canadian Wetland Inventory (CWI) database, are located on the northern portion of the Site and adjacent to the east of the Site. Visual observations at the time of the assessment noted that the wetlands indicated along the northern portion of the Site were not immediately apparent and may no longer exist as a result of local agricultural operations.

The nearest surface water body is the Middle Castor River located approximately 1.8 km southeast of the Site.

3.3 Aquifer Performance Testing

GHD conducted pumping tests of existing wells, denoted as TW-1 and TW-2 for this report, on October 26 and 27, 2022. The following sections provide details regarding the aquifer performance testing.

3.3.1 Test Well Information

Two (2) drilled wells on the Site were utilized for assessment of the local aquifer via pumping tests. Well records were not provided to GHD for TW-1 and TW-2. There are MECP Well records for the Site plotted in general proximity of the observed well locations; however, some of the wells were installed prior to the requirement for a well identification tag to be affixed to the well casing. GHD was not able to definitively match the well record information to the measured data collected from the wells. A third well was used as an observation well, labelled as M-1 for this assessment, with water level monitoring completed during the testing activities. The locations of TW-1, TW-2 and M-1 as identified in the field by GHD are illustrated on **Figure 2**.

Test well TW-1 was observed to be a drilled well located with a concrete well pit that extended above grade by 0.2 m. The measured well depth was approximately 47.7 mbgs. An existing submersible pump was outfitted in the well and installed to an unknown depth. Adjacent to the well pit was a pump house that housed the plumbing and pressure tank for water distribution.

Test well TW-2 was observed to be a drilled well extending above grade by 0.4 m and was located in a pump house. The measured well depth was 98.6 mbgs. An existing submersible pump was outfitted in the well and installed to an unknown depth. Inside the pump house was the plumbing and pressure tank for water distribution.

Observation well M-1 was observed to be a drilled well located with a concrete well pit that extended above grade by 0.2 m. The well depth was measured to be 47.7 mbgs.

As previously mentioned, well records were not provided to GHD for TW-1, TW-2 or M-1. With regards to construction details of the test wells and to assess compliance with Ontario Regulation 903¹, GHD was unable to reconcile the well records indicated to be on the Site with the actual test wells on Site. The well records indicate construction dates in the 1970s, prior to Ontario Regulation 903. Based upon the wells outlined in Table 2.2, the well records indicate that the wells installed and mapped to the Site were constructed with 0.15 m diameter steel casings that were installed to depths of 6 m or greater.

¹ Ontario Ministry of the Environment, 1990. Ontario Regulation 903: Wells (Ontario Water Resources Act, as amended).

It is understood that TW-1 and M-1 will be abandoned by a licensed well contractor and replaced with a new drilled well located closer to the office building which will increase the separation from the office septic system. The new well should be constructed in accordance with Ontario Regulation 903 with consideration of the hydrogeological sensitivity of the Site. The casing will be extended at least 12 m with a minimum of 6 m cased into competent bedrock. If after advancing 12 m into the bedrock, a minimum of 6 m of competent rock has not encountered, the well casing will be advanced further until this minimum requirement is met. The new well should target the same aquifer as TW-2 as this well is of a more desirable quality and quantity.

TW-2 should be inspected by a licensed well contractor for compliance with Ontario Regulation 903 and for casing length. It is anticipated that the casing extends to 6 m meeting the requirement in Ontario Regulation 903 however it may need to be extended similar to the considerations for the replacement well for TW-1 due to the hydrological sensitivity of the site.

Ontario Regulation 903 requires that the well owner must maintain the well at all times after the completion of the well's structural stage in a way that prevents surface water and other foreign materials from entering the well. Future changes or alternations to the wells will need to be completed in accordance with Ontario Regulation 903. Based on our observations, it is recommended that the wells constructed within pits be outfitted with pitless adaptors, the casings raised above the ground surface a minimum of 40 cm and fitted with vermin proof lids, and the ground surface graded away from the well. The well located within the pump house should have a new vermin proof well seal installed with any holes sealed or plugged. Wells that are not being used or maintained for future use as a well should be abandoned in accordance with Ontario Regulation 903.

3.3.2 Pumping Test Methodology

GHD completed a constant rate pumping test of well TW-1 on October 26, 2022, and TW-2 on October 27, 2022. The pumping tests were conducted to assess aquifer conditions and evaluate the availability of a suitable groundwater resource for the proposed storage and distribution of garden product development.

It is understood by GHD that the current proposed usage will be a warehouse that will be utilized to store and distribute garden products, with no processing on-site that would require greater water usage. Therefore, the water usage would be related to general cleaning, washroom or kitchen purposes. Staffing is proposed to consist of 2 to 5 staff with growth potential to have 10 to 15 staff. The proponent has indicated that this would be a maximum number of staff and that the planned processes, current and future, do not require water.

To assess the potential water usage, reference is made to Section 8 of the Ontario Building Code (Subsection 8.2.1.3. – Sewage System Design Flows). Water usage for a warehouse with 15 staff, three (3) loading bays and a 260 m² of office space would yield a maximum water usage on the order of 2,550 litres per day (L/day). Supporting calculations are provided in Section 5 of this report. The pumping tests for each test well were conducted for six (6) hours at a constant rate of 26.5 L/min (7 US gpm) which equates to a volume of 9,540 L of water pumped from each test well and is nearly four (4) times the estimated water usage that is expected to be required when the operation is fully staffed. Recovery measurements were collected after the pumping was completed.

The existing submersible pumps installed in the wells were used to conduct the testing. Water levels in the pumped water wells and observation well were monitored throughout the aquifer performance testing. Measurements were collected manually and using data loggers to evaluate drawdown, recovery and the potential of mutual interference. The discharge water was directed away from the pumped wells a distance of about 30 m downgradient and away from wells used for observation monitoring. This practice safeguards against artificial recharge of the wells from occurring during the pumping tests.

The pumped water wells were chlorinated in advance of the pumping test. Non-detect chlorine levels were confirmed in the field prior to bacteria sampling conducted at the water wells.

Water samples were collected throughout the testing and submitted to ALS Limited (ALS) in Ottawa, a CALA accredited analytical laboratory for the testing. Water samples were collected after 1 hour and 6 hours of testing for the following parameters:

- Polycyclic aromatic hydrocarbons (sampled after 6 hours of pumping);
- Volatile organic compounds (sampled after 6 hours of pumping);
- Petroleum hydrocarbons fractions F1 F4 (sampled after 6 hours of pumping);
- Organochlorine (OC) pesticides (sampled after 6 hours of pumping);
- Trace metals (filtered) (sampled after 1 and 6 hours of pumping);
- Bacteriological parameters including total coliform and E.coli (sampled after 6 hours of pumping); and
- General chemistry parameters (sampled after 6 hours of pumping).

Field measurements of methane, pH, temperature, free chlorine, turbidity, and conductivity were completed with a Horiba multiparameter meter, colorimeter and methane meter. Water levels were collected from the wells using audible water level meters and data loggers.

4. Geology and Hydrogeology

The following sections provide a detailed description of the geology and hydrogeology of the Site based on available information.

4.1 Site Geology

GHD did not conduct a subsurface soil investigation as part of this assessment. Based upon information reviewed from the water well records, the local geology generally consists of overburden comprised of clay with sand and boulders underlain by limestone and sandstone bedrock. Overburden thickness in the area appears to range from surface to about 4 mbgs.

A draft Terrain and Hydrogeological Assessment was previously completed at the Site by Golder Associates in 1996. The Terrain and Hydrogeological Assessment involved a subsurface investigation program that explored the subsurface soil conditions by advancing thirteen (13) test pits throughout the Site. Test pits were advanced to 0.9 to 1.4 mbgs near the main office/shipping building and 0.3 to 1.8 mbgs near the production house building at the back of the Site.

The test pits advanced near the main office/shipping building generally encountered topsoil at the surface, underlain by a silty sand till over bedrock. Groundwater was indicated to be encountered at 1 mbgs and was reported to flow towards the north.

The test pits advanced near the production house building at the back of the Site encountered either topsoil or fill at the surface, underlain by either a silty sand or a sand with gravel till over bedrock. Groundwater was reported to conform with the topography in this area which is towards the southeast.

Due to shallow soils over bedrock, the Site would be considered to be hydrogeologically sensitive resulting in an anticipated higher risk for shallow sources of contamination impacting the underlying water resources or downgradient receptors. The Site is within a highly vulnerable aquifer suggesting that contamination from surface sources may impact underlying groundwater due to a lack of sufficient soil above. The primary source of contamination for the development would be the septic system. Mitigative measures include extending the well casing, as discussed in Section 3.3.1, or installation of advanced treatment equipment to improve the quality of the septic effluent.

4.2 Site Hydrogeology

4.2.1 Hydrostratigraphic Units

The hydrostratigraphic units (i.e. aquifer/aquitard unit) underlying the Site include the following based on well records reviewed:

- Thin veneer of overburden generally consisting of topsoil, clay with sand and boulders (not expected to be water bearing).
- Limestone aguifer from about 14 m to 29 m.
- Sandstone aquifer from about 76 m to 93 m.

4.2.2 Groundwater Levels

Water levels were obtained from test wells TW-1 and TW-2, and observation well M-1 on October 26 and 27, 2022 prior to the commencement of the pumping tests. The data is summarized in **Table 4.1**. Based upon the potentiometric groundwater elevations computed from estimated ground elevations, the groundwater flow appears to be in a southeasterly direction. Shallow groundwater flow tapped by monitoring wells was not assessed (note: groundwater elevations are based upon regional topographic contours and are for the purposes of evaluation potentiometric elevations only).

Table 4.1 Water Level Summary

Location	Description	Ground	Depth of Well	Water Lev	vel (mbgs)	Potentiometric
	Description	Elevation* (m)	(mbgs)	10/26/22	10/27/22	Elevation (masl)
TW-1	Drilled Water Supply Well	~91	47.7	8.30	9.05	~83
TW-2	Drilled Water Supply Well	~95	98.6	9.69	9.74	~85
M-1	Drilled Observation Well	~90	47.7	8.83	9.08	~81

Notes:

masl = metres above sea level

4.3 Aquifer Performance Assessment

The following sections discuss the pumping test results and coefficients, well interference and water quality.

4.3.1 Pumping Test – TW-1

The pumping test was commenced on October 26, 2022. The results of the constant rate pumping test including field testing data are graphically presented in **Appendix C, Figures C-1 to C-4**.

The water level during the pumping test at TW-1 is illustrated on **Figures C-1** and **C-2** showing water level versus time. The plot shows a minimal drawdown of the water level over the course of the 6-hour test conducted at a constant rate of 26.5 L/min. After 6 hours of pumping, the water level was 11.0 metres below top of pipe (mbtp). The maximum drawdown was about 2.4 m over the course of the testing with about 37.0 m of available drawdown remaining above the bottom of the well. Approximately 6% of the available drawdown was used during the pumping test. A total groundwater volume of about 9,540 L was pumped during the testing.

Recovery measurements were collected manually for 60 minutes after pumping ceased. The water level recovered about 65% in 1 hour and recovered to about 80% in 24 hours. The estimated transmissivity of the pumped water well was 33.6 m²/day (2253 gpd/ft) based on the drawdown and 12.0 m²/day (805 gpd/ft) based on the recovery period and

^{*}Elevations estimated from regional topographic contours provided on **Figure 3**. The elevations provided are for the purposes of evaluating potentiometric elevations and should not be relied upon as a legal survey or topographic elevation survey.

represents a moderate transmissivity. The specific capacity for this well is calculated to be 11.1 L/min/m based upon the pumping test completed.

The plotted data indicates the aquifer that this well is tapped into can safely provide long-term quantities of groundwater at a pumping rate of 26.5 L/min (7 US gpm) and adequate recovery is provided between uses.

TW-1 and M-1 are to be abandoned and a replacement well constructed closer to the office building. This will increase the setback distance from the septic system. The new well should be constructed as per the considerations in Section 3.3.1. Extending the well casing and the increased setback distance from the septic system are suitable mitigative measures in a hydrogeologically sensitive area. The new well should be pump tested for quantity and quality as per MECP D-5-5 and City of Ottawa requirements. The pumping rate should be compared to the potential water usage demand for current and future uses.

4.3.2 Pumping Test – TW-2

The pumping test was commenced on October 27, 2022. The results of the constant rate pumping test including field testing data are graphically presented in **Appendix C, Figures C-5 to C-8**.

The water level during the pumping test at TW-2 is illustrated on **Figures C-1** and **C-2** showing water level versus time. The plot shows the water level drop and then recovery quickly within the first 10 minutes. This is the result of flow rate adjustments occurring at the wellhead to obtain a constant rate of 26.5 L/min. At 10 minutes, the rate was adjusted to 26.5 L/min which was maintained for the remaining 6 hours. After six (6) hours of constant pumping, the water level was about 10.7 mbtp. The drawdown was about 0.5 m over the course of the testing with about 88.3 m of available drawdown remaining above the bottom of the well. Approximately 0.5% of the available drawdown was used during the pumping test. A total groundwater volume of about 9,540 L was pumped during the testing.

Recovery measurements were collected manually for 60 minutes after pumping ceased. The water level recovered about 76% in 1 hour and fully recovered 100% in 4 hours and 50 minutes. The estimated transmissivity for TW-2 was 83.9 m²/day (5633 gpd/ft) based on the drawdown and 186.5 m²/day (12517 gpd/ft) based on the recovery period and represents a high transmissivity. The specific capacity for this well is calculated to be 52.9 L/min/m based upon the pumping test completed.

The plotted data indicates the aquifer that this well is tapped into can safely provide long-term quantities of groundwater at a pumping rate of 26.5 L/min (7 US gpm) based upon the pumping test completed.

4.3.3 Summary of Aquifer Performance

Table 4.2 summarizes the data and coefficients obtained from the pumping tests.

Table 4.2 Aguifer Performance Testing Summary

Well No.	Step No.	Yi	eld	Test	Time	1	imum vdown	1	ilable down*		ecific pacity		nated nissivity
	NO.	gpm	L/min	Type	min	feet	metres	feet	metres	gpm/ft	L/min/m	gpd/ft	m²/day
	1	0	0	Static	0	0	0	129.3	39.4				
TW-1	2	7	26.5	Const.	360	7.8	2.4	121.5	37.0	0.9	11.1	2253	33.6
	3	0	0	Recvy.	6	65% recovery in 1 hour; 80% recovery in 24 hours					805	12.0	
	1	0	0	Static	0	0	0	291.3	88.8				
TIME	2	var	ious		10								
TW-2	3	7	26.5	Const.	360	1.6	0.5	289.7	88.3	4.27	52.9	5633	84.0
	4	0	0	Recvy.	76% re	ecovery in	n 1 hour; 1	00% reco	overy in 4 l	nours 50 r	ninutes	12517	186.5

Notes:

gpm = US gallons per minute; gpd/ft = gallons per day per foot

4.3.4 Water Quality

Groundwater samples from the pumped well were obtained for laboratory testing during the course of the pumping test for the purpose of water quality analyses. The wells were sampled after one (1) hour and at six (6) hours at the end of the constant rate test on October 26 and 27, 2022. The water samples were delivered to ALS in Ottawa. Certificates of chemical analyses are presented in **Appendix D**. The water quality data are summarized and compared with the Ontario Drinking Water Standards (ODWS)² in **Table 4.3**.

Table 4.3 Test Well Water Quality Summary – TW-1 and TW-2

Davamatav	Pumped Wa	ter Well TW-1	_	Water Well V-2	ODV	vs
Parameter	1 hr (GW-001)	6 hrs (GW-002)	1 hr (GW-003)	6 hr (GW-004)	MAC / IMAC	AO/OG
Bacteriological (Colony Forn	ning Units)	-				
Total Coliform		8		<1	<6*	NS
E.coli		<1		<1	0	NS
Background		3		1	NS	NS
Heterotrophic Plate Count		78		1	NS	NS
Semi-Volatile Organic Comp	ounds (µg/L)					
Acenaphthene		<0.20		<0.20	NS	NS
Acenaphthylene		<0.20		<0.20	NS	NS
Anthracene		<0.20		<0.20	NS	NS
Benzo(a)anthracene		<0.20		<0.20	NS	NS
Benzo(a)pyrene		<0.044		<0.044	0.01	NS
Benzo(b+j)fluoranthene		<0.10		<0.10	NS	NS
Benzo(ghi)perylene		<0.20		<0.20	NS	NS
Benzo(k)fluoranthene		<0.10		<0.10	NS	NS
Chrysene		<0.10		<0.10	NS	NS
Dibenzo(a,h)anthracene		<0.20		<0.20	NS	NS
Fluoranthene		<0.20		<0.20	NS	NS
Fluorene		<0.20		<0.20	NS	NS
Indeno(1,2,3-cd)pyrene		<0.20		<0.20	NS	NS
1-Methylnaphthalene		<0.40		<0.40	NS	NS
2-Methylnaphthalene		<0.40		<0.40	NS	NS
Naphthalene		<0.20		<0.20	NS	NS
Phenanthrene		<0.20		<0.20	NS	NS
Pyrene		<0.20		<0.20	NS	NS
Volatile Organic Compounds	: (μg/L)		1	1		
Acetone		<20		<20	NS	NS

² Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines. June 2003, revised June 2006.

[&]quot;Recvy" refers to Recovery measurements; "Const" refers to the Constant Rate test conducted for 360 minutes.

^{*}Available Drawdown refers to the height of water in the well above the bottom.

Static water level at the pumped well TW-1 was 8.54 mbtp (8.30 mbgs) at the start of the testing

Static water level at the pumped well TW-2 was 10.16 mbtp (9.74 mbgs) at the start of the testing.

Parameter	Pumped Wat	ter Well TW-1		Water Well V-2	ODV	vs
rai ailletei	1 hr (GW-001)	6 hrs (GW-002)	1 hr (GW-003)	6 hr (GW-004)	MAC / IMAC	AO/OG
Bromomethane		<0.50		<0.50	NS	NS
Carbon tetrachloride		<0.20		<0.20	5	NS
Chlorobenzene		<0.50		<0.50	NS	NS
Chloroform		<0.50		<0.50	NS	NS
1,2-Dichlorobenzene		<0.50		<0.50	20	3
1,3-Dichlorobenzene		<0.50		<0.50	NS	NS
1,4-Dichlorobenzene		<0.50		<0.50	5	1
Dichlorofluoromethane		<0.50		<0.50	NS	NS
1,1-Dichloroethane		<0.50		<0.50	NS	NS
1,2-Dichloroethane		<0.50		<0.50	5	NS
1,1-Dichloroethylene		<0.50		<0.50	NS	NS
trans-1,2-Dichloroethane		<0.50		<0.50	NS	NS
cis-1,2-Dichloroethane		<0.50		<0.50	NS	NS
1,2-Dichloropropane		<0.50		<0.50	NS	NS
Ethylene Dibromide		<0.20		<0.20	NS	NS
Hexane		<0.50		<0.50	NS	NS
Methyl Ethyl Ketone		<20		<20	NS	NS
Methyl Isobutyl Ketone		<20		<20	NS	NS
Methyl Tert-Butyl Ether		<0.50		<0.50	NS	NS
Methylene Chloride		<1.0		<1.0	NS	NS
Styrene		<0.50		<0.50	NS	NS
Tetrachloroethylene		<0.50		<0.50	30	NS
1,1,1,2-Tetrachloroethane		<0.50		<0.50	NS	NS
1,1,2,2-Tetrachloroethane		<0.50		<0.50	NS	NS
1,1,1-Trichloroethane		<0.50		<0.50	NS	NS
1,1,2-Trichloroethane		<0.50		<0.50	NS	NS
Trichloroethylene		<0.50		<0.50	5	NS
Trichlorofluoromethane		<0.50		<0.50	NS	NS
Vinyl Chloride		<0.50		<0.50	2	NS
Benzene		<0.50		<0.50	5	NS
Toluene		<0.50		<0.50	NS	24
Ethylbenzene		<0.50		<0.50	NS	2.4
Xylenes		<0.50		<0.50	NS	300
Bromodichloromethane		<0.50		<0.50	NS	NS
Bromoform		<0.50		<0.50	NS	NS
Dibromochloromethane		<0.50		<0.50	NS	NS
Petroleum Hydrocarbons	1	I	I	1	1	
PHC F1 (C ₆ – C ₁₀)		<25		<25	NS	NS

Parameter -			TV	Water Well V-2	ODWS		
	1 hr (GW-001)	6 hrs (GW-002)	1 hr (GW-003)	6 hr (GW-004)	MAC / IMAC	AO/OG	
PHC F2 (C ₁₀ – C ₁₆)		<100		<100	NS	NS	
PHC F3 (C ₁₆ – C ₃₄)		<250		<250	NS	NS	
PHC F4 (C ₃₄ – C ₅₀)		<250		<250	NS	NS	
Trace Metals (dissolved) (mg/L	<u>'</u> _)		1				
Aluminum	0.0011	<0.0010	<0.0010	<0.0010	NS	0.1	
Arsenic	0.00099	0.00071	<0.0010	<0.0010	0.025	NS	
Boron	0.039	0.029	0.077	0.077	5	NS	
Barium	0.209	0.212	0.149	0.149	1	NS	
Beryllium	<0.000020	<0.000020	<0.000020	<0.000020	NS	NS	
Cobalt	0.00059	0.00047	<0.00010	<0.00010	NS	NS	
Calcium	113	127	97.5	96.9	NS	NS	
Cadmium	0.0000118	0.00000064	<0.000050	<0.000050	0.005	NS	
Copper	0.00139	0.00048	0.00115	0.00035	NS	1	
Chromium	<0.00050	<0.00050	<0.00050	<0.00050	0.05	NS	
Magnesium	42.8	46.7	35.5	36.1	NS	NS	
Manganese	0.0501	0.0762	0.0413	0.0420	NS	0.05	
Molybdenum	0.0178	0.0204	0.00593	0.00604	NS	NS	
Nickel	0.00225	0.00176	0.00063	<0.00050	NS	NS	
Sodium	107	109	28.0	28.8	NS	200 (20*)	
Lead	0.000408	0.000992	0.000103	<0.000050	0.01	NS NS	
Silver	<0.000010	<0.000010	<0.000010	<0.000010	NS	NS	
Strontium	1.50	1.32	2.06	2.05	NS	NS	
Thallium	<0.000010	<0.000010	<0.000010	<0.000010	NS	NS	
Antimony	0.00012	<0.00010	<0.00010	<0.00010	0.006	NS	
Selenium	0.000050	0.000099	0.000110	0.000141	0.01	NS	
Uranium	0.00405	0.00462	0.000249	0.000246	0.02	NS	
Vanadium	<0.00050	<0.00050	<0.00050	<0.00050	NS	NS	
Zinc	0.0016	<0.0010	0.0137	0.0066	NS	5	
General Chemistry Parameters			310.101				
Tannin + Lignin (mg phenol/L)		1.21		0.86	NS	NS	
Alkalinity (mg/L as CaCO ₃)		345		269	NS	30 – 500	
pH		8.15		8.43	NS	6.5 – 8.5	
Conductivity (µS/cm)		1420		790	NS	NS	
Total Dissolved Solids (mg/L)		792		495	NS	500	
Colour (TCU)		2.4		2.9	NS	5	
Turbidity (NTU)	<u></u>	1.04		0.10	NS	5	
Total Kjeldahl Nitrogen (mg/L)	<u></u>	0.180		0.194	NS	 NS	
Ammonia + Ammonium (mg/L)		0.0353		0.194	NS	NS	

Doubleston	Pumped Wa	ter Well TW-1		Water Well V-2	ODV	ws
Parameter	1 hr (GW-001)	6 hrs (GW-002)	1 hr (GW-003)	6 hr (GW-004)	MAC / IMAC	AO/OG
Nitrite (as N mg/L)		<0.050		<0.020	1	NS
Nitrate (as N mg/L)		<0.100		<0.010	10	NS
Chloride (mg/L)		208		67.0	NS	250
Hydrogen Sulphide		<0.011		0.019	NS	0.05
Sulphide (mg/L)		<0.010		0.018	NS	NS
Sulphate (mg/L)		111		62.5	NS	500
Dissolved Organic Carbon (mg/L)		17.4		1.98	NS	5
Hardness (mg/L as CaCO₃)		509		391	NS	80 – 100
Potassium	6.81	6.14		5.14	NS	NS
OC Pesticides						
Diazinon	-	<0.10		<0.10	NS	NS

Notes:

MAC = maximum acceptable concentration; IMAC - Interim MAC; AO / OG = aesthetic objective / operational guideline

Bold / shaded indicates the concentration exceeds the ODWS

The laboratory analyses indicated that the health-related parameter of total coliform was in exceedance of the ODWS at TW-1. No other health-related parameters were in exceedance of the ODWS. In general, the test results indicate the majority of parameters meet the ODWS for TW-1 and TW-2 with the exception of the aesthetic objectives for:

- Manganese (TW-1);
- Total Dissolved Solids (TW-1);
- Dissolved Organic Carbon (TW-1); and
- Hardness (TW-1 and TW-2).

Sample results for VOCs, PAHs, PHCs and OC Pesticides were reported below detection limits.

As indicated previously TW-1 is to be abandoned and replaced with a new well. The new well should target the same aquifer as TW-2 as this water bearing zone is of a more desirable quality and quantity. Discussion of the water quality encountered in the two (2) wells and treatment options is provided in the following paragraphs.

Aesthetic objectives (AO) are established for parameters that may impair the taste, odour or colour of water or which may interfere with good water quality control practices. Operational guidelines (OG) are established for parameters that, if not controlled, may negatively affect the efficient and effective treatment, disinfection and distribution of the water.

Overall, the analytical results indicate TW-2, the deeper bedrock well, to have better water quality with only hardness (391 mg/L) above its respective AO of the ODWS. Elevated hardness is related to the overburden materials containing calcium and to a lesser extent, magnesium. Elevated hardness is a common trait of groundwater supplies in Southern Ontario and can be treated using commercially available treatment equipment such as a water softener. Although hardness in excess of 300 mg/L at TW-1 and TW-2 and is considered very hard, a maximum treatable value is not provided within the D-5-5 Guideline. However, the Ontario Drinking Water Objective states that water with hardness in excess of 500 mg/L (TW-1) is unacceptable for most domestic purposes.

If TW-1 was to be used as a potential water source, treatment is recommended. Total dissolved solids (TDS) were elevated above its aesthetic objective of 500 mg/L. TDS may be the result of hard water including calcium and / or

[&]quot;<" indicates concentrations are less than laboratory reporting limits

^{*}The aesthetic objective for sodium in drinking water is 200 mg/L. When the sodium concentration exceeds 20 mg/L, this information should be communicated to those on sodium restricted diets.

magnesium as well as other constituents such as sodium and chloride. TDS can be treated with commercially available reverse osmosis systems.

The colour related aesthetic objective for manganese in drinking water is 0.05 mg/L. Manganese is objectionable in water supplies because it stains laundry and fixtures black, and at excessive concentrations causes undesirable tastes in beverages. Manganese is present in some groundwater due to chemically reducing underground conditions coupled with the presence of manganese mineral deposits. Manganese staining can be addressed through increased cleaning or reduced through treatment such as a greensand filter.

For the bacteriological parameters tested at TW-1, there were eight (8) bacteriological colony forming units (CFUs) of total coliform reported. Total coliform are bacteria that occur naturally in nature within, for example, soil, decaying vegetation and as well as within the intestines of warm-blooded animals. Many coliforms do not pose a risk to human health; however, they are used as an indicator as to whether potentially harmful bacteria may also be present such as E. coli. E. coli concentrations were less than the laboratory reporting limit of 1 CFU within the water sample collected and tested at the end of the pumping test. Therefore, sewage contamination is not expected to be the source of the detected coliform at TW-1. Also, ammonia, nitrite and nitrate are often indications of sewage effluent contamination, and they were reported at low concentrations or below detection limits. TW-1 is to be abandoned and replaced with a new well that will be constructed closer to the office building increasing the setback from the septic system. There were no bacteriological parameters detected within the water sample collected and tested at the end of pumping within test well TW-2.

As a proactive measure, GHD recommends that bacteriological treatment (i.e. ultraviolet (UV) treatment) to be used at wells that will be connected to potable water plumbing.

Dissolved organic carbon (DOC) in the sample collected from TW-1 was elevated compared to the AO value of 5 mg/L. Elevated DOC is an indicator of potential water quality deterioration during storage and distribution and an indicator of potential chlorination by-product problems. Elevated DOC can be reduced using coagulant treatment or a high-pressure membrane treatment. If desired, taste and odour can be treated with commercially available equipment such as an activated carbon filter.

To supplement the analytical data, field measurements were obtained throughout the pumping test by GHD as shown on Figures C-3 and C-7 and Tables 4.4 and 4.5. Future water quality testing should be expanded to include colour and hydrogen sulphide (using the methylene blue method).

Table 4.4 Field Parameters TW-1

Parameter	Units	Reading at 1hr	Reading at 6hr
pH	pH units	8.84	8.04
Temperature	°C	11.6	11.5
Conductivity	mS/cm	1.83	1.96
Turbidity	NTU	12.2	0.00
Free Chlorine	mg/L	0.00	0.00
Methane	% LEL	0	0

Table 4.5 Field Parameters TW-2

Parameter	Units	Reading at 1hr	Reading at 6hr
pH	pH units	8.25	8.20
Temperature	°C	10.5	10.9
Conductivity	mS/cm	1.15	1.11
Turbidity	NTU	0.00	0.00
Free Chlorine	mg/L	0.00	0.00
Methane	% LEL	0	0

4.3.5 Well Interference

In order to assess the potential for hydraulic connection between the pumped water supply wells and local area wells, monitoring was conducted of the drilled test wells and drilled observation well throughout the pumping tests. Data loggers were installed within TW-1, TW-2 and M-1. The data is provided in **Appendix E**.

The approximate linear distances between the pumped water wells and observation well are provided in **Table 4.4** based upon the locations plotted on **Figure 2**.

Table 4.6 Distance Between Pumping Well and Observation Wells

Location	Distances between Pumped Water Wells and Observation Wells (metres)					
Location	TW-1	TW-2	M-1			
Pumped well – TW-1		150	19			
Pumped Well – TW-2	150		157			
Observation Well – M-1	19	157				

Notes:

Distances based upon locations identified on Well Locations Plan, Figure 2.

The following table provides the maximum water level drawdowns observed during the pumping tests.

Table 4.7 Maximum Drawdowns in Pumping and Observation Wells

Pumped Well Location	Drawdown (m)					
Pulliped Well Location		TW-2	M-1			
TW-1	-2.4 (drawdown during pump test)	0	-0.13			
TW-2	-0.03	-0.6 (drawdown during pump test)	0			

Notes:

Negative drawdown (denoted by minus sign and shaded cell) indicates water level lowered during the testing Zero drawdown denoted by BLACK text

4.3.5.1 Interference Assessment

There was minimal drawdown observed during the pumping tests conducted at the wells indicating there is little hydraulic connection between the wells within the bedrock aquifer.

As daily usage is expected to be well below the volumes pumped during the testing conducted, it is our opinion that there is sufficient water quantity below the Site for the planned development without significant interference risk to future and existing neighbouring wells.

5. Water Usage Assessment

It is understood by GHD that the current proposed usage will be a warehouse that will be utilized to store and distribute garden products, with no processing on-site that would require greater water usage. As per the City of Ottawa Zoning By-law No. 2008-250, the usage would be considered Rural General Industrial Zone designation with the Site being considered a warehouse. The water usage would be related to general cleaning, washroom or kitchen purposes. Staffing is proposed to consist of 2 to 5 staff to start with a potential growth of 10 to 15 staff. The proponent has indicated that this would be a maximum number of staff and that the planned processes, current and future, do not require water.

To assess the potential water usage reference is made to Section 8 of the Ontario Building Code, subsection 8.2.1.3. – Sewage System Design Flows. Water usage for a warehouse with 15 staff, three (3) loading bays and 260m² of office space water usage would be on the order of 2,550 litres per day. It is to be noted that designs flows are generally conservative in nature with actual daily usage typically 2 to 3 times less. **Table 5.1** provides the calculations that were utilized to estimate the maximum daily water usage of the proposed development.

Table 5.1 Water Usage

Volume (L)	Establishment	Quantity	Water Usage (L)
75	Office Building: per each 9.3 m ² of floor space	260 m ² / 9.3 m ² ≈ 28	2,100
150	Warehouse: Per loading bay	3	450
		TOTAL:	2,550

Based upon our understanding of the Ottawa Design Guidelines Water Distribution maximum daily demand for industrial use and MECP(Section 3.4.4 Industrial Water Demands), industrial water demands expressed in terms of water requirements per gross hectare of industrial development is 35 cubic metres per hectare per day (m³/ha/d). For a 14.3 ha site, the daily water demand is on the order of 500,000 L/day.

Utilizing TW-2 and the information from our pumping test (i.e. pumping rate of 26.5 L/min resulting in a specific capacity of 52.9 L/m/min and drawdown of 0.5 m), we can use a simplistic approach (specific capacity = flow rate / drawdown) to theoretically estimate the approximate potential yield given that there was an available drawdown of approximately 88 m during our pumping test. At an estimated flow rate of 4698 L/min, the resultant drawdown would be 88 m. Thus, theoretically and ideally, the aquifer that this well is tapping into is capable of producing on the order of 6.76 million litres per day based upon the information from our testing and is therefore indicating that the underlying aquifer below this Site is capable of producing sufficient water to meet potential future industrial water demands, should this be required.

6. Impact Assessment

A Predictive Assessment for an Industrial / Commercial Development (Section 5.6.3 of the MOE D-5-4 Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment) was completed. This guideline only applies to industrial / commercial developments which have an average daily flow of less than 4,500 L/day/lot. The current system design indicates 2,550 L/day. The sewage assessed for the Site is to consist of domestic wastes only, no industrial / commercial cooling or process wastewater was considered.

For the purposes of calculating the potential impact of the proposed development, 2,550 L/day for the warehouse is considered to be the design septic effluent loading rate. Appendices 9.3.1 and 9.3.2 of the MOEE's "Manual of Policy, Procedures and Guidelines for On-Site Sewage Systems indicate daily sewage flow data for factory or plant workers per day or per shift with no showers or industrial waste at 75 litres. It is understood that there are to be 5 to 10

employees with one shift each, resulting in flow data of 375 to 750 litres per day. This is less than the design flow of 2,550 L/day. The maximum number of users based off 2,550 L/day and utilizing 75 litres per day would be 34.

While most constituents in septic effluent are usually removed within a short distance of movement within soil, mobile constituents such as chlorides and nitrates will require sustained dilution to meet the drinking water standards of 10 mg/L N for nitrate.

The MECP normally considers sewage from a Class 4 waste disposal system will contain 40 mg/L of nitrate. For the purpose of assessing the impact of projected nitrate loading, the dilution requirement of 4:1 was utilized in the impact computations.

A summary of the applicable parameters that were considered in the waste disposal evaluation and the computation of the projected nitrate concentration are presented below. The detailed calculations can be reviewed in **Appendix F**. The calculations used a recharge rate of 175 mm/year, considered to be applicable for silty sand material based upon the soils encountered within the test pits advanced previously. The maximum allowable flow rate was calculated by dividing the recharge rate by a factor of three as per D-5-4. Nitrate concentrations from the test wells were non-detect. Nitrate impacts to the water bearing aquifers from the development are not expected.

Using dilution only, the nitrate concentration generated from sewage at the Site is calculated to be 4 mg/L indicating that nitrate impacts from septic effluent will not be an issue. The proposed development meets the 10 mg/L drinking water standard for nitrate. The nitrate dilution calculations ignore losses to surface through shallow groundwater discharge, denitrification in the soil and any dilution within the water below the Site. The actual nitrate concentration is expected to be less than the projected nitrate concentration.

The property is within a highly vulnerable aquifer area and would be considered to be a hydraulically sensitive site due to thin soil cover. No karst, areas of fractured bedrock at surface or highly permeable soils were identified at the Site. The proponent has retained a septic installer that reviewed the existing septic system and has proposed a replacement system. The proposed replacement system is an advanced septic treatment (Norweco HK 3020L-3M) and will utilize the existing septic bed. The advanced treatment system is capable of reducing the nitrates to 7.9mg/L0 this would result in a nitrate value of 0.85mg/L after dilution.

7. Summary and Recommendations

Supporting data upon which our conclusions and recommendations are based have been presented in the foregoing sections of this report. The following conclusions and recommendations are governed by the physical properties of the subsurface materials that were encountered at the Site and assume that they are representative of the overall Site conditions. It should be noted that these conclusions and recommendations are intended for use by the designers only. Contractors bidding on or undertaking any work at the Site should examine the factual results of the assessment, satisfy themselves as to the adequacy of the information for construction, and make their own interpretation of this factual data as it affects their proposed construction techniques, equipment capabilities, costs, sequencing, and the like. Comments, techniques, or recommendations pertaining to construction should not be constructions to the contractor.

Each test well at the Site was visually inspected and observed to be secure and in good working order. As previously mentioned, well records were not provided to GHD for TW-1, TW-2 or M-1 and GHD was not able to definitively match any of the MECP database well records to the Site wells. With regards to construction details of the test wells and to assess compliance with the Ontario Regulation 903, the well records indicate construction dates in the 1970s, prior to Ontario Regulation 903. Based upon the wells outlined in Table 2.2, the well records indicate that the wells installed and mapped to the Site were constructed with 0.15 m diameter steel casings that were installed to depths of 6 m or greater. Ontario Regulation 903 requires that the well owner must maintain the well at all times after the completion of the well's structural stage in a way that prevents surface water and other foreign materials from entering the well. TW-1 and M-1 are to be abandoned and replaced with a new well located closer to the office building and meet minimum casing requirements outlined in this document. TW-2 is located within the pump house should have a new vermin

proof well seal installed with any holes sealed or plugged. Future changes or alternations to the wells will need to be completed in accordance with Ontario Regulation 903. Wells that are not being used or maintained for future use as a well should be abandoned in accordance with Ontario Regulation 903.

Based on the proposed current and future development details provided to GHD, the maximum daily water usage of the proposed development is estimated to be 2,550 L/day that would include up to 15 staff. The pumping tests for each test well were conducted for six (6) hours at a constant rate of 26.5 L/min (7 US gpm), providing a total water volume of 9,540 L of water, which substantially exceeds the estimated maximum daily water usage.

Based on the results of the hydrogeological assessment, the pumped water wells had sufficient water of good quality, in particular TW-2. With the exception of total coliform at TW-1, which are at low levels and can be addressed with treatment, each well can provide ample supply of groundwater for the proposed development with minimal draw on the aquifer complex and insignificant interference to area wells anticipated. Water quality is discussed in **Section 4.3.4** with TW-2 having the more desirable water quality and quantity to support development. The only elevated water quality parameter for TW-2 was hardness that can result in a buildup of material on plumbing fixtures be reduced through installation of a commercially available water softener. As a proactive measure, GHD recommends that bacteriological treatment (i.e. ultraviolet (UV) treatment) to be used at wells that will be connected to potable water plumbing.

It is our professional opinion that the hydrogeologic assessment completed at the Site supports the groundwater needs of ASB's proposed warehouse that will be utilized to store and distribute garden products.

We trust this report meets your immediate needs. Should any questions arise regarding any aspect of our report, please contact our office.

All of Which is Respectfully Submitted,

GHD

Steve Gagne, H.S.Bc.

Steven Granie

Associate, Project Director

Robert Neck, P.Geo. (Limited)

Senior Geoscientist, Project Director

GHD | ASB Greenworld Limited | 12586015 | Hydrogeological Assessment Report – Rev.2

8. References

Chapman and Putnam, 1984. The Physiography of Southern Ontario, 3rd Edition. Ministry of Natural Resources.

City of Ottawa, March 2021. Hydrogeological and Terrain Analysis Guidelines.

Environmental Protection Act, R.S.O. 1990, and associated regulations.

Fetter, C.W., 1994. Applied Hydrogeology, 3rd Edition.

Freeze, R.A. and J.A. Cherry. 1979. Groundwater.

Occupational Health and Safety Act, R.S.O. 1990, and associated regulations.

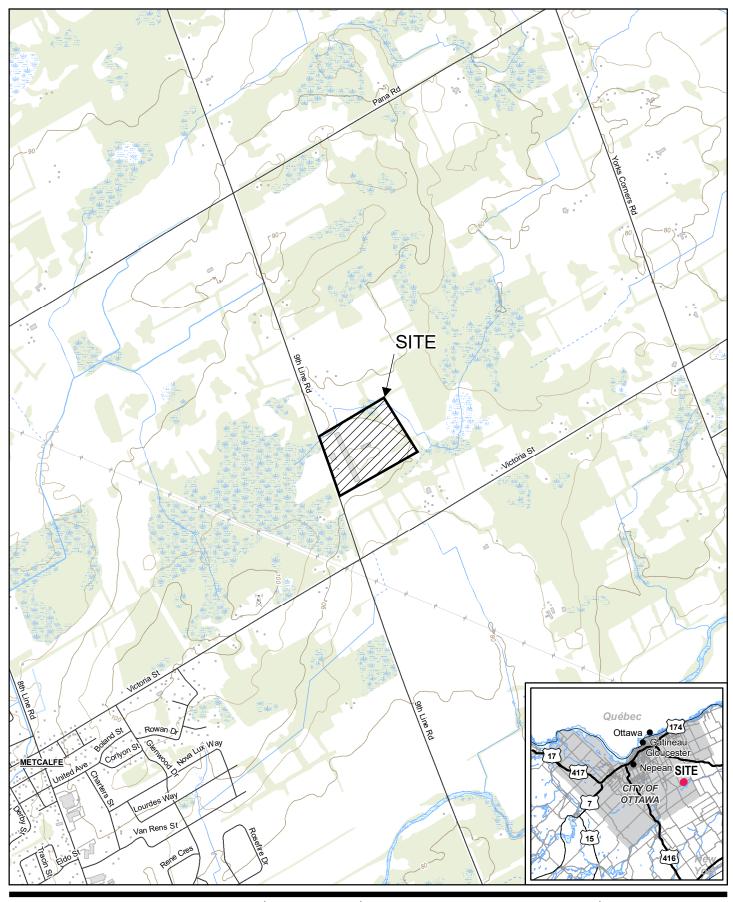
Ontario Geological Survey, 2003. Surficial Geology of Southern Ontario.

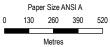
Ontario Ministry of the Environment, 2011. Ontario Regulation 153/04: Records of Site Condition Part XV.1 of the Act (*Environmental Protection Act* 153/04, as amended).

Ontario Ministry of the Environment. June 2003. Revised June 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines.

Ontario Ministry of the Environment and Energy. August 1996. D-5-4 Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment.

Ontario Ministry of the Environment and Energy. August 1996. D-5-5 Private Wells: Water Supply Assessment.

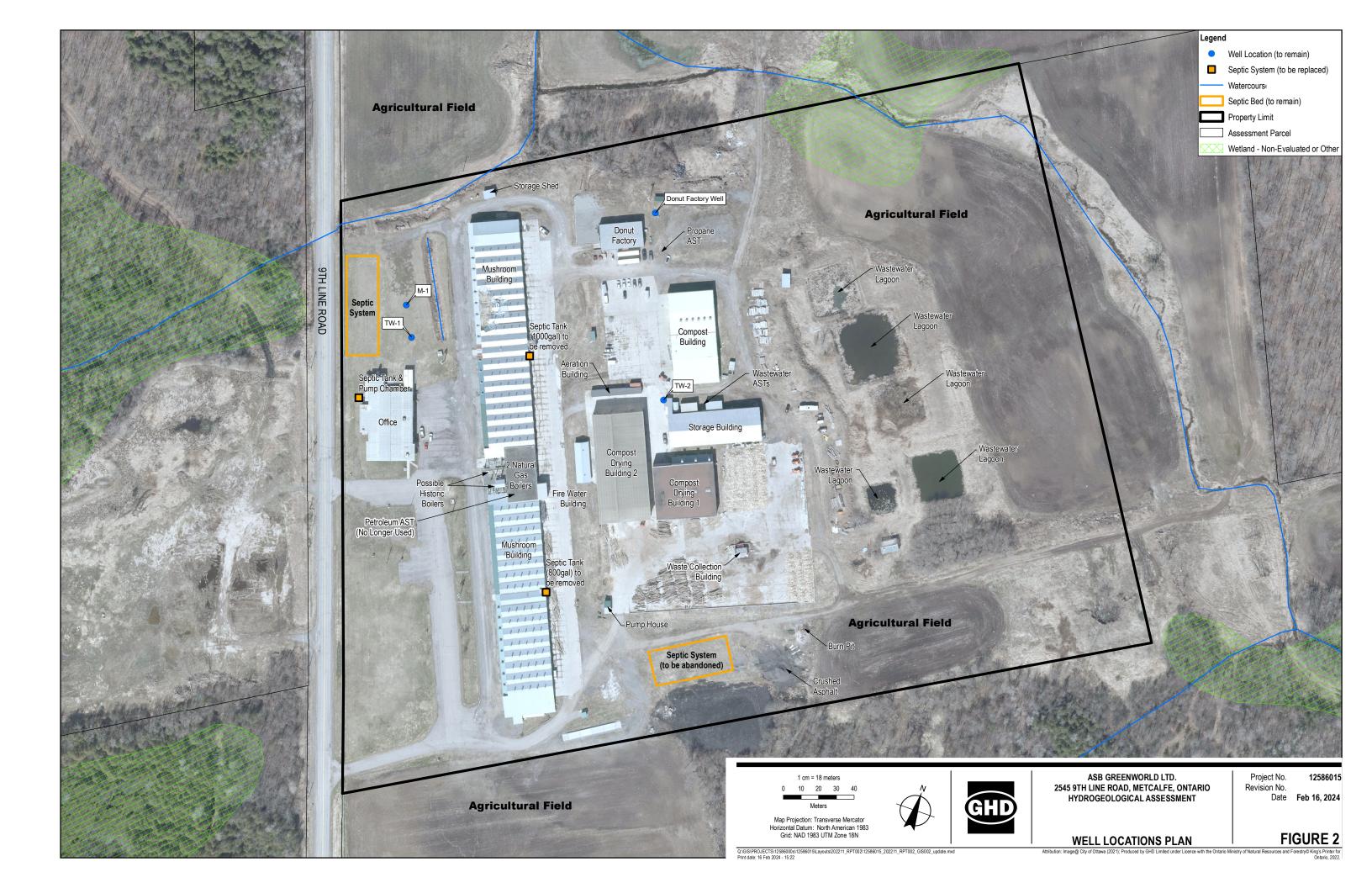

9. Statement of Limitations

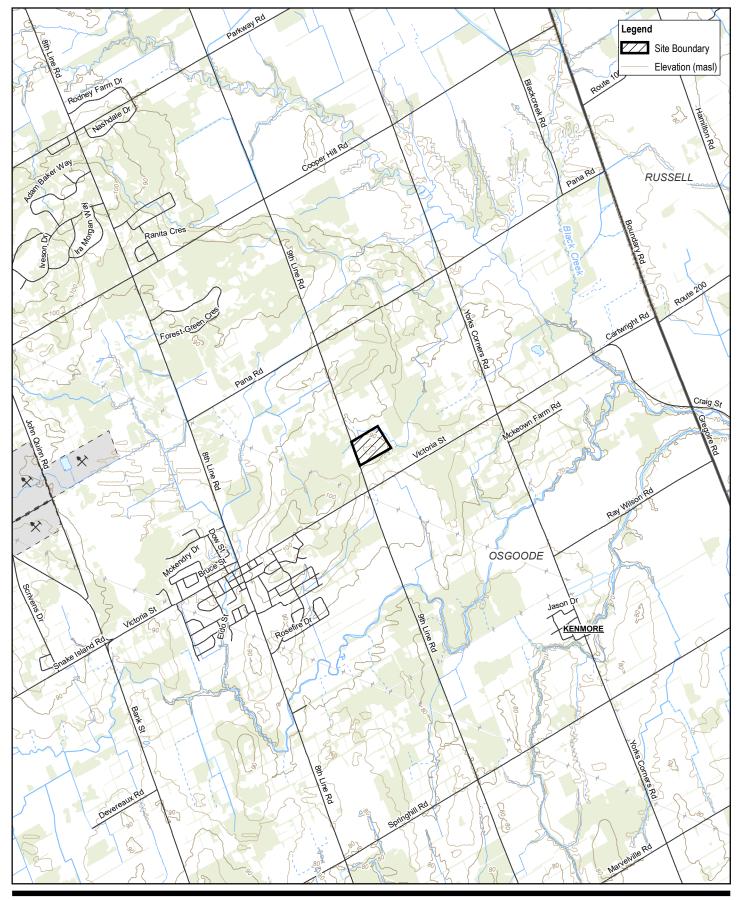

This report is intended solely for ASB Greenworld Limited in assessing the hydrogeological aspects of the Site (2545 9th Line Road, Metcalfe, Ontario) and is prohibited for use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. Client shall defend, indemnify and hold GHD harmless from any liability arising from or related to Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

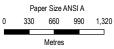
The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of hydrogeological engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a hydrogeological study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

Figures

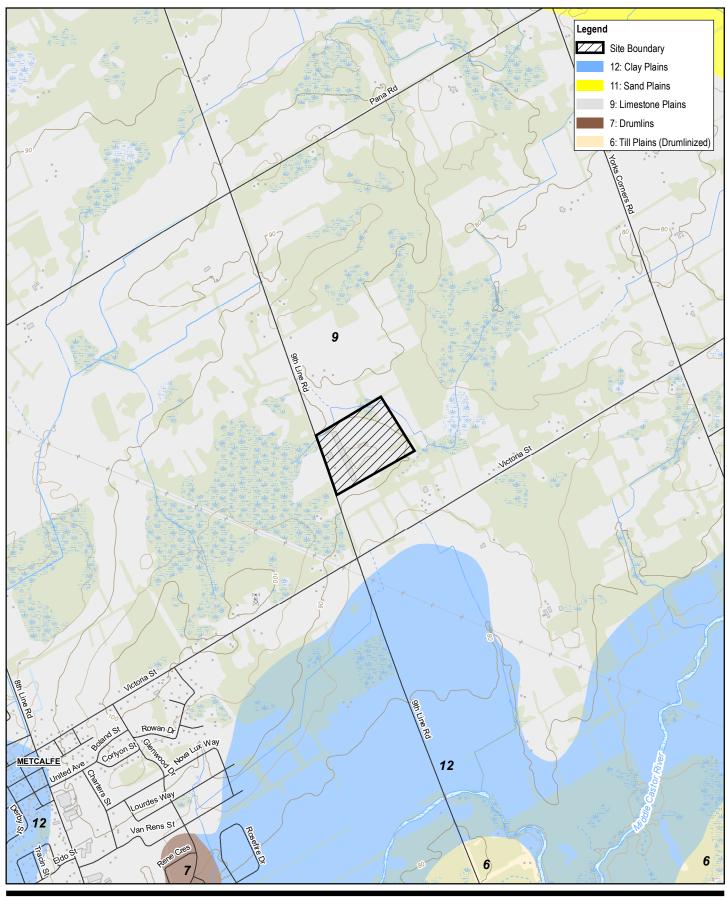

GHD


ASB GREENWORD LTD. 2545 9TH LINE ROAD, METCALFE, ONTARIO HYDROGEOLOGICAL ASSESSMENT


Project No. 12586015
Revision No. -

Date Nov 15, 2022

SITE LOCATION MAP

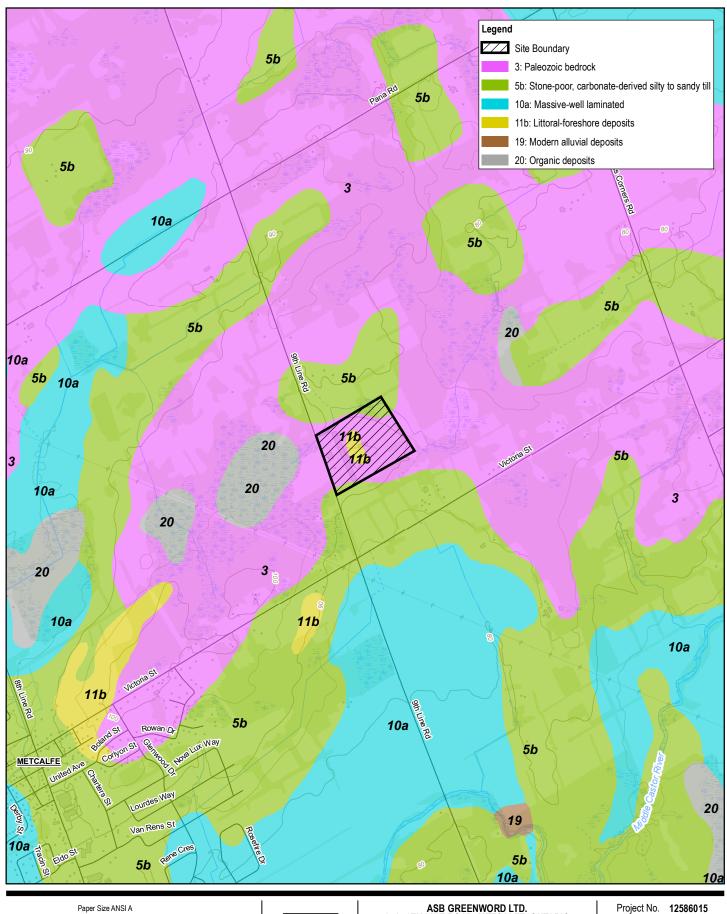


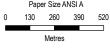
ASB GREENWORD LTD. 2545 9TH LINE ROAD, METCALFE, ONTARIO HYDROGEOLOGICAL ASSESSMENT

Project No. 12586015
Revision No. -

Date Nov 17, 2022

REGIONAL TOPOGRAPHY PLAN

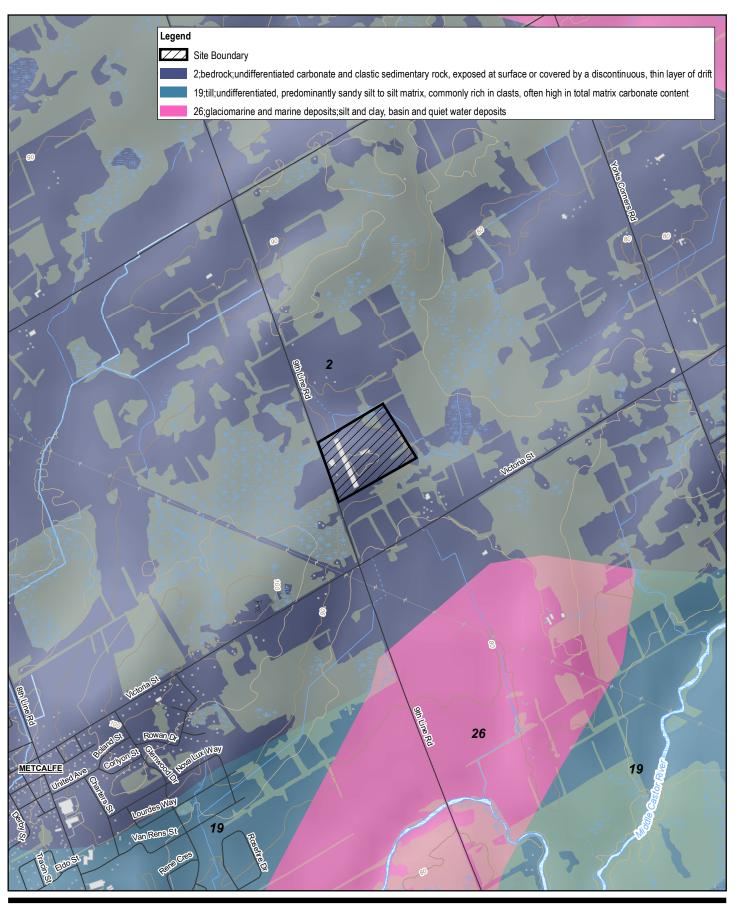


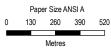

ASB GREENWORD LTD. 2545 9TH LINE ROAD, METCALFE, ONTARIO HYDROGEOLOGICAL ASSESSMENT

Project No. 12586015 Revision No. -

Date Nov 15, 2022

PHYSIOGRAPHIC PLAN

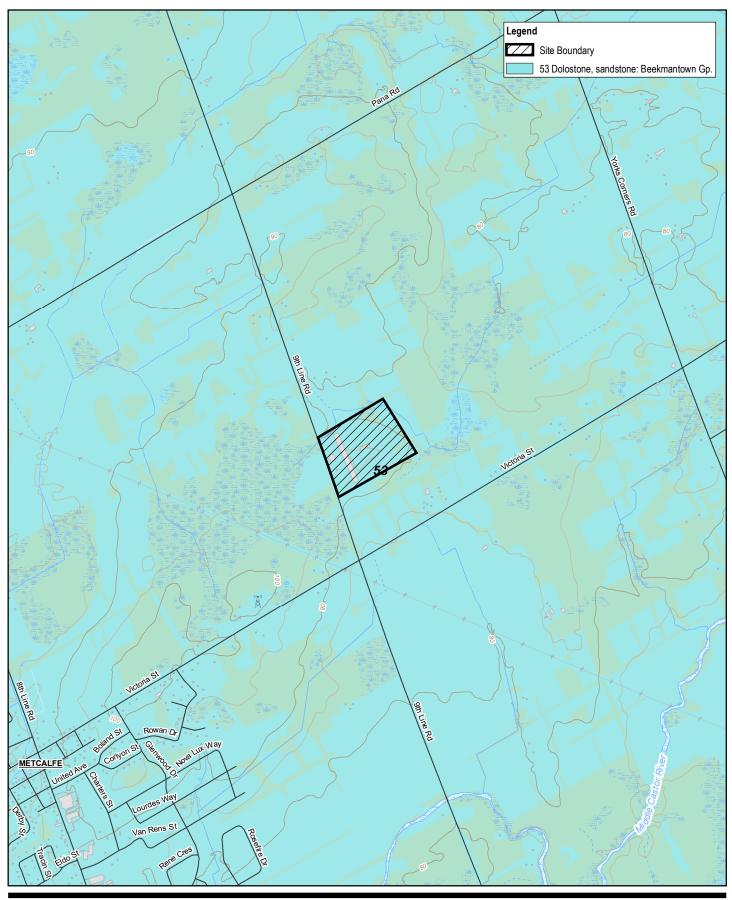


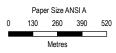

ASB GREENWORD LTD. 2545 9TH LINE ROAD, METCALFE, ONTARIO HYDROGEOLOGICAL ASSESSMENT

Project No. 12586015 Revision No.

Date Nov 17, 2022

SURFICIAL GEOLOGY



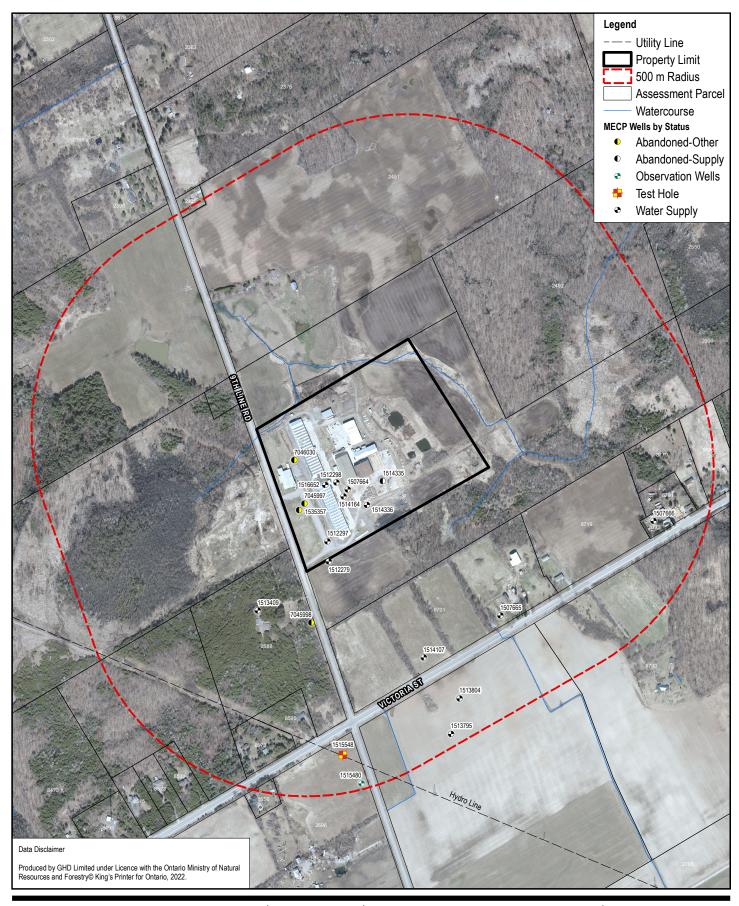


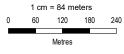
ASB GREENWORD LTD. 2545 9TH LINE ROAD, METCALFE, ONTARIO HYDROGEOLOGICAL ASSESSMENT Project No. 12586015 Revision No. -

Date Nov 15, 2022

QUATERNARY GEOLOGY

GHD


ASB GREENWORD LTD. 2545 9TH LINE ROAD, METCALFE, ONTARIO HYDROGEOLOGICAL ASSESSMENT Project No. 12586015 Revision No. -


Date Dec 5, 2022

BEDROCK GEOLOGY

Appendices

Appendix A MECP Well Records

ASB GREENWORD LTD. 2545 9TH LINE ROAD, METCALFE, ON HYDROGEOLOGICAL ASSESSMENT Project No. 12567037 Revision No.

Date Dec 2, 2022

MECP WELL LOCATION PLAN

APPENDIX A

MECP WELL RECORD LISTINGS

Ministry of the Environment, Conservation & Parks (MECP)

© Water Well Information System (WWIS). Ministry of the Environment, Conservation, and Parks. 2021.

Powered by Location Intelligence

DISCLAIMER: All effort has been taken to ensure the accuracy of the data is the same as the source. There are instances where the original PDF document is different and in those cases, the PDF should be used instead.

1802

01/09/1961

02/24/1961

FRESH

Easting: 464580.80 Latitude: 45.249731 18 Northing: 5010792.00 Longitude: -75.45136 Elev (masl): 94.93

Lot: 019 Con: 09

OTTAWA-CARLETON Municipality: Township: OSGOODE TOWNSHIP

LOCATION Street:

City: n/a

Water Supply Well Status: Prim. Use: n/a Sec. Use: n/a Boring Method: Diamond

CLEAR Test Method: Pump Set (m): n/a SWL (ft) 13 Final Level: 57 ft Pump Rate: 3 GPM Recom. Rate: n/a GPM

Tag: Audit No:

Contractor License:

Received Date:

Well Completion Date:

Well Depth (m): 22 86 Depth to Bedrock (m): 10 Depth to Water: Water Kind:

Pipe ID: 10578269 **Pump Test ID** 991507664 Flowing: Ν Pump Duration (hr): 1 Pump Duration (m): 0

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930052076	6	inch	STEEL	n/a	14 ft
2	930052077	6	inch	OPEN HOLE	n/a	75 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth
1	BOULDERS	CLAY	n/a	n/a	0	10 ft
2	ROCK	LIMESTONE	n/a	n/a	10	75 ft

End of Record

2

ft

Easting: 464920.80 Northing: 18 5010512.00 Elev (masl): 84.66

Latitude: 45.247227 Longitude: -75.447008

020 I ot: Tag: OCATION Con: 09 **Audit No:** Municipality: OTTAWA-CARLETON **Contractor License:** 1526 OSGOODE TOWNSHIP Township: **Well Completion Date:** 12/30/1955 Street: Received Date: 01/06/1956 City: n/a Well Status: Water Supply Well Depth (m): 14.0208 Depth to Bedrock (m): Prim. Use: n/a Depth to Water: Sec. Use: n/a Boring Method: Cable Tool Water Kind: Not stated CLEAR Test Method: Pipe ID: 10578270

Pump Set (m): n/a SWL (ft) 9 Final Level: 19 ft Pump Rate: 2 GPM Recom. Rate: n/a GPM

Pump Test ID 991507665 Flowing: Ν Pump Duration (hr): 2 Pump Duration (m): 0

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930052078	4	inch	STEEL	n/a	7 ft
2	930052079	4	inch	OPEN HOLE	n/a	46 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth
1	TOPSOIL	n/a	n/a	n/a	0	2 ft
2	LIMESTONE	n/a	n/a	n/a	2	46 ft

End of Record

3601

04/23/1963

05/21/1963

Easting: 465260.80

Northing: 5010722.00

Elev (masl): 88.22

Latitude: 45.249134 Longitude: -75.44269 Well ID: 1507666

Lot: 020 Con: 09

Municipality: OTTAWA-CARLETON
Township: OSGOODE TOWNSHIP

Street:

City: n/a

Well Status: Water Supply
Prim. Use: n/a
Sec. Use: n/a
Boring Method: Cable Tool

Test Method: CLEAR
Pump Set (m): n/a
SWL (ft) 14
Final Level: 16 ft
Pump Rate: 6 GPM
Recom. Rate: 5 GPM

Tag: Audit No:

Contractor License:

Received Date:

Well Completion Date:

Well Depth (m): 15.5448
Depth to Bedrock (m): 10
Depth to Water: ft

Water Kind: FRESH

 Pipe ID:
 10578271

 Pump Test ID
 991507666

 Flowing:
 N

 Pump Duration (hr):
 1

 Pump Duration (m):
 0

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930052080	4	inch	STEEL	n/a	21 ft
2	930052081	4	inch	OPEN HOLE	n/a	51 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth
1	CLAY	TOPSOIL	n/a	n/a	0	10 ft
2	LIMESTONE	n/a	n/a	n/a	10	51 ft

End of Record

1836

11/17/1972

01/10/1973

Easting: 464538.80
Northing: 5010632.00

Latitude: 45.248288 Longitude: -75.451884 Well ID: **1512279**

Elev (masl): 90.89

Lot: 020

Con: 09
Municipality: OTTAWA-CARLETON
Township: OSGOODE TOWNSHIP
Street:

n/a

City:

/ELL

Well Status: Water Supply Prim. Use: n/a Sec. Use: n/a

Boring Method: Rotary (Air)

Test Method: n/a

 Tag: Audit No:

Contractor License:

Received Date:

Well Completion Date:

 Well Depth (m):
 28.956

 Depth to Bedrock (m):
 0

 Depth to Water:
 ft

 Water Kind:
 FRESH

 Pipe ID:
 10582841

 Pump Test ID
 991512279

 Flowing:
 N

 Pump Duration (hr):
 1

 Pump Duration (m):
 0

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930060766	6	inch	STEEL	n/a	21 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Laver	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth

End of Record

Easting: 464535.80
Northing: 5010677.00
Elev (masl): 91.17

Latitude: 45.248693 **Longitude:** -75.451925

Well ID: 1512297

Lot: 020 Tag:
Con: 09 Audit No:

 Municipality:
 OTTAWA-CARLETON
 Contractor License:
 1505

 Township:
 OSGOODE TOWNSHIP
 Well Completion Date:
 09/08/1972

 Street:
 Received Date:
 02/07/1973

Street: City:

Well Status: Water Supply

n/a

Prim. Use: n/a
Sec. Use: n/a
Boring Method: Rotary (Air)

Test Method: CLEAR
Pump Set (m): n/a
SWL (ft) 18
Final Level: 120 ft
Pump Rate: 7 GPM
Recom. Rate: 7 GPM

Well Depth (m): 87.4776
Depth to Bedrock (m): 3
Depth to Water: ft
Water Kind: FRESH

 Pipe ID:
 10582859

 Pump Test ID
 991512297

 Flowing:
 N

 Pump Duration (hr):
 10

 Pump Duration (m):
 0

CASING DETAILS

Laver Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930060792	6	inch	STEEL	n/a	21 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom De	epth
1	TOPSOIL	SAND	n/a	BROWN	0	3	ft
2	LIMESTONE	SANDSTONE	n/a	GREY	3	287	ft

End of Record

0

Easting: 464555.80

Northing: 5010807.00

Elev (masl): 94.29

Latitude: 45.249864 **Longitude:** -75.45168

Vell ID: 1512298

Pump Duration (m):

Lot: 019 Tag: LOCATION Con: 09 Audit No: Municipality: OTTAWA-CARLETON **Contractor License:** 1505 Township: OSGOODE TOWNSHIP Well Completion Date: 09/12/1972 Street: **Received Date:** 02/07/1973 City: n/a Well Status: Water Supply Well Depth (m): 92.964 Prim. Use: Depth to Bedrock (m): n/a 4 Depth to Water: Sec. Use: Industrial ft Boring Method: Rotary (Air) Water Kind: **FRESH** Test Method: CLEAR Pipe ID: 10582860 Pump Set (m): n/a Pump Test ID 991512298 SWL (ft) Flowing: 21 Ν Final Level: 120 ft Pump Duration (hr): 10

CASING DETAILS

Recom. Rate: 18 GPM

18 GPM

Pump Rate:

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930060793	6	inch	STEEL	n/a	22 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth
1	TOPSOIL	SAND	n/a	BROWN	0	4 ft
2	LIMESTONE	SANDSTONE	n/a	GREY	4	305 ft

Easting: 464380.80 18 Northing: 5010523.00 Elev (masl): 93.30

Latitude: 45.247299 Longitude: -75.453889

Lot: 020 Con: 80

Municipality: OTTAWA-CARLETON Township: OSGOODE TOWNSHIP

Street:

City: n/a

Well Status: Water Supply Prim. Use: WELI n/a Sec. Use: n/a Boring Method: Cable Tool

Test Method: CLOUDY Pump Set (m): n/a SWL (ft) -20 Final Level: 35 ft Pump Rate: 10 GPM Recom. Rate: 5 GPM

Tag: Audit No:

Contractor License: 1517 Well Completion Date: 08/15/1973 09/10/1973 Received Date:

Well Depth (m): 18.288 Depth to Bedrock (m): 4 Depth to Water: ft Water Kind: **FRESH**

Pipe ID: 10583965 Pump Test ID 991513409 Flowing: Pump Duration (hr): Pump Duration (m): 10

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930062677	5	inch	STEEL	n/a	11 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth
1	SAND	n/a	n/a	YELLOW	0	4 ft
2	SANDSTONE	n/a	n/a	BLACK	4	60 ft

End of Record

Easting: 464810.80 18 Northing: 5010249.00 Elev (masl): 82.84

Latitude: 45.244855 Longitude: -75.448391

Lot: 021 LOCATION Con: 09

Municipality: OTTAWA-CARLETON Township: OSGOODE TOWNSHIP

Street:

City: n/a

Water Supply Well Status: WELL Prim. Use: Sec. Use: n/a Boring Method: Air Percussion

Test Method: Pump Set (m): n/a SWL (ft) 22 Final Level: 50 ft Pump Rate: 40 GPM Recom. Rate: 5 GPM

Tag: Audit No:

Contractor License: 3658 Well Completion Date: 07/27/1973 Received Date: 02/11/1974

Well Depth (m): 82.296 Depth to Bedrock (m): 3 Depth to Water: ft Water Kind: **FRESH**

Pipe ID: 10584347 Pump Test ID 991513795 Flowing: Ν Pump Duration (hr): 2 Pump Duration (m): 0

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Dept	th
1	930063266	6	inch	STEEL	n/a	19 ft	t
2	930063267	6	inch	OPEN HOLE	n/a	270 ft	t

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom De	pth
1	CLAY	TOPSOIL	n/a	BROWN	0	3	ft
2	LIMESTONE	n/a	n/a	GREY	3	260	ft
3	SANDSTONE	n/a	n/a	GREY	260	270	ft

Easting: 464829.80 18 Northing: 5010328.00 Elev (masl): 83.40

Latitude: 45.245567 Longitude: -75.448154

Lot: 021 Con: 09

LOCATION Municipality: OTTAWA-CARLETON OSGOODE TOWNSHIP Township:

Street:

City: n/a

Well Status: Water Supply WELL Prim. Use: n/a Sec. Use: n/a

Boring Method: Air Percussion Test Method: CLEAR

Pump Set (m): n/a SWL (ft) 28 Final Level: 90 ft Pump Rate: 15 GPM Recom. Rate: 5 GPM

Tag: Audit No:

Contractor License: 3658 06/10/1973 **Well Completion Date: Received Date:**

02/11/1974

Well Depth (m): 86.5632 Depth to Bedrock (m): 3 Depth to Water: ft Water Kind: **FRESH**

> Pipe ID: 10584356 Pump Test ID 991513804 Flowing: Ν

Pump Duration (hr): 2 Pump Duration (m): Ω

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930063282	6	inch	STEEL	n/a	21 ft
2	930063283	6	inch	OPEN HOLE	n/a	284 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth
1	CLAY	GRAVEL	SAND	BROWN	0	3 ft
2	LIMESTONE	n/a	n/a	GREY	3	262 ft
3	SANDSTONE	n/a	n/a	GREY	262	284 ft

End of Record

464749.80 Easting: 18 5010418.00 Northing: Elev (masl): 85.60

Latitude: 45.246373 Longitude: -75.44918

Lot: 020 Con:

N9 Municipality: OTTAWA-CARLETON Township: OSGOODE TOWNSHIP

LOCATION Street:

City: n/a

Well Status: Water Supply Prim. Use: n/a Sec. Use: n/a Boring Method: Cable Tool

Test Method: **CLEAR** Pump Set (m): n/a SWL (ft) 10 Final Level: 30 ft Pump Rate: 20 GPM Recom. Rate: 5 GPM

Contractor License: 2308 Well Completion Date: 06/20/1974 **Received Date:** 07/02/1974

Well Depth (m): 15.24 Depth to Bedrock (m): 8 Depth to Water: ft Water Kind: **FRESH**

Tag:

Audit No:

Pipe ID: 10584656 Pump Test ID 991514107 Flowing: Ν Pump Duration (hr): 2 Pump Duration (m): 0

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930063750	5	inch	STEEL	n/a	19 ft
2	930063751	5	inch	OPEN HOLE	n/a	50 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom D	epth
1	HARDPAN	n/a	n/a	n/a	0	8	ft
2	LIMESTONE	n/a	n/a	n/a	8	50	ft

End of Record

Easting: 464571.80 18 Northing: 5010777.00 Elev (masl): 94.49

Latitude: 45.249595 Longitude: -75.451474

08/01/1974

0

Received Date:

Pump Duration (m):

Lot: 019 Tag: LOCATION Con: Audit No: 09

Municipality: OTTAWA-CARLETON Contractor License: 1836 OSGOODE TOWNSHIP Well Completion Date: Township: 05/27/1974

Street: City:

Well Status: Water Supply Well Depth (m): 27.432 WELL Depth to Bedrock (m): Prim. Use:

n/a 3 Sec. Use: n/a Depth to Water: ft Boring Method: Rotary (Air) Water Kind: **FRESH**

Test Method: CLEAR Pipe ID: 10584711 Pump Set (m): n/a Pump Test ID 991514164 SWL (ft) 35 Flowing: Ν Final Level: Pump Duration (hr): 85 ft 1

PUMP Pump Rate: 15 GPM Recom. Rate: 12 GPM

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930063848	6	inch	STEEL	n/a	22 ft
2	930063849	6	inch	OPEN HOLE	n/a	90 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depti	h
1	BOULDERS	n/a	n/a	n/a	0	3 ft	
2	LIMESTONE	n/a	n/a	n/a	3	90 ft	

End of Record

68.58

0

Easting: 464659.80 Northing: 5010811.00 Elev (masl): 94.26

Latitude: 45.249906 Longitude: -75.450355

Lot: 019

Con: 09 OTTAWA-CARLETON Municipality: Township: OSGOODE TOWNSHIP

OCATION Street: City: n/a

> Well Status: Abandoned-Supply Prim. Use:

n/a Sec. Use: n/a Boring Method: Rotary (Air)

Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:

PUMP

Tag: Audit No:

Contractor License: 1836 Well Completion Date: 10/07/1974 Received Date: 10/23/1974

Well Depth (m): Depth to Bedrock (m):

Depth to Water: Water Kind:

Pipe ID: **Pump Test ID** Flowing: Pump Duration (hr): Pump Duration (m):

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930064168	6	inch	STEEL	n/a	22 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom Depth
1	LIMESTONE	n/a	n/a	n/a	0	225 ft

End of Record

464623.80 Easting: 18 Northing: 5010757.00 Fley (masl)

Latitude: 45.249418 Longitude: -75.45081

94.06

Con: 09

Municipality: OTTAWA-CARLETON Township: OSGOODE TOWNSHIP

019

OCATION Street:

Lot:

City: n/a

Well Status: Water Supply Well Depth (m): Prim. Use: n/a Depth to Bedrock (m): Depth to Water: Sec. Use:

n/a Boring Method: Rotary (Air)

Test Method: CLEAR Pipe ID: 10584881 Pump Set (m): Pump Test ID 991514336 n/a SWL (ft) Flowing: 22 Ν Pump Duration (hr): 1

Final Level: 230 ft Pump Rate: 25 GPM Recom. Rate: 20 GPM

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930064169	6	inch	STEEL	n/a	21 ft
2	930064170	6	inch	OPEN HOLE	n/a	250 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom D	epth
1	GRAVEL	n/a	n/a	n/a	0	4	ft
2	LIMESTONE	n/a	n/a	n/a	4	220	ft
3	SANDSTONE	n/a	n/a	n/a	220	250	ft

End of Record

Easting: 464611.80 18 Northing: 5010139.00

Latitude: 45.243854 Longitude: -75.450919

Elev (masl): 83.14 Lot: 021

Con: 08 OTTAWA-CARLETON Municipality: Township: OSGOODE TOWNSHIP

Street:

WELL

City:

Well Status: Observation Wells Prim. Use: n/a

Sec. Use: n/a Boring Method: Rotary (Air)

Test Method: n/a Pump Set (m): n/a SWL (ft) Final Level: n/a ft Pump Rate: n/a GPM Recom. Rate: n/a GPM

Tag:

1836

76.2

FRESH

4

ft

0

10/09/1974

10/23/1974

Audit No:

Contractor License:

Received Date:

Water Kind:

Pump Duration (m):

Well Completion Date:

Audit No: **Contractor License:** Well Completion Date: 06/16/1976

> **Received Date:** 07/28/1976 Well Depth (m):

1505

19.812

13

Depth to Bedrock (m): Depth to Water: Water Kind:

Pipe ID: 10585996 Pump Test ID 991515480 Flowing: Ν Pump Duration (hr): n/a Pump Duration (m): n/a

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930066030	6	inch	STEEL	n/a	13 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom D	epth
1	SAND	GRAVEL	HARDPAN	BROWN	0	3	ft
2	BOULDERS	n/a	n/a	GREY	3	4	ft
3	SAND	GRAVEL	HARDPAN	BROWN	4	13	ft
4	LIMESTONE	n/a	n/a	GREY	13	65	ft

Easting: 464570.80 18 Northing: 5010202.00 Elev (masl): 84.35

Latitude: 45.244419 Longitude: -75.451445

Lot: Tag: LOCATION Con: 08 Audit No: Municipality: OTTAWA-CARLETON Contractor License: 1505 Township: OSGOODE TOWNSHIP Well Completion Date: 06/16/1976 Street: 08/19/1976 Received Date: City: Well Status: Test Hole Well Depth (m): 43.8912 WELL Prim. Use: Depth to Bedrock (m): n/a 3 Sec. Use: Depth to Water: ft n/a Boring Method: Rotary (Air) Water Kind: SULPHUR Test Method: Pipe ID: 10586064 n/a Pump Set (m): n/a Pump Test ID 991515548 SWL (ft) Flowing: n/a Ν Final Level: n/a ft Pump Duration (hr): n/a

CASING DETAILS

Recom. Rate: n/a GPM

Pump Rate:

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930066146	6	inch	STEEL	n/a	19 ft

FORMATION DETAILS

Easting: 464530.80

5010802.00

Northing:

n/a GPM

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom D	epth
1	SAND	GRAVEL	TILL	BROWN	0	3	ft
2	LIMESTONE	BOULDERS	n/a	GREY	3	4	ft
3	SAND	GRAVEL	TILL	BROWN	4	13	ft
4	GRAVEL	SAND	TILL	BROWN	13	16	ft
5	LIMESTONE	n/a	n/a	GREY	16	144	ft

Latitude: 45.249818

Longitude: -75.451998

End of Record

n/a

Pump Duration (m):

	Elev (mas	92.96		
z	Lot:	019	Tag:	
0	Con:	09	Audit No:	
E	Municipality:	OTTAWA-CARLETON	Contractor License:	1558
S	Township:	OSGOODE TOWNSHIP	Well Completion Date:	08/04/1978
Ö	Street:		Received Date:	09/08/1978
	City:	n/a		
	Well Status:	Water Supply	Well Depth (m):	19.812
	Prim. Use:	n/a	Depth to Bedrock (m):	9
VE	Sec. Use:	n/a	Depth to Water:	ft
>	Boring Method	: Cable Tool	Water Kind:	FRESH
ST	Test Method:	CLOUDY	Pipe ID:	10587128
Ш	Pump Set (m):	n/a	Pump Test ID	991516652
-	SWL (ft)	30	Flowing:	N
Σ	Final Level:	30 ft	Pump Duration (hr):	1
5	Pump Rate:	30 GPM	Pump Duration (m):	0

CASING DETAILS

Recom. Rate: 5 GPM

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Case ID	Casing Diamter	Diamter Units	Material	Top Depth	Bottom Depth
1	930067730	8	inch	STEEL	n/a	20 ft
2	930067731	8	inch	OPEN HOLE	n/a	65 ft

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer	Material	Material 2	Material 3	Colour	Top Depth	Bottom D	epth
1	CLAY	SAND	BOULDERS	BROWN	0	9	ft
2	LIMESTONE	n/a	n/a	GREY	9	20	ft
3	LIMESTONE	VERY	HARD	GREY	20	50	ft
4	LIMESTONE	HARD	n/a	BLACK	50	65	ft

End of Record

	Easting:	464474.00	Latitude:	45.249311	Well ID: 1535357
18	Northing:	5010746.00	Longitude:	-75.452718	1000001
	Elev (masl):	92.06			

Lot: n/a LOCATION Con: n/a Municipality: OTTAWA-CARLETON Township: OSGOODE TOWNSHIP

Street: 9TH LINE City: **METCALF**

Well Status: Abandoned-Other

EL Prim. Use: n/a Sec. Use: n/a Boring Method: n/a

Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:

A012448 Tag: Audit No: 712517 Contractor License: 1517 Well Completion Date: 10/28/2004 Received Date: 01/14/2005

Well Depth (m): 0 Depth to Bedrock (m): n/a

Depth to Water: Water Kind:

Pipe ID: **Pump Test ID** Flowing: Pump Duration (hr): Pump Duration (m):

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer Case ID Casing Diamter Diamter Units Material Top Depth **FORMATION DETAILS**

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Material Material 2 Material 3 Colour Top Depth Bottom Depth

End of Record

07/03/2007

Easting: 464485.00 18 5010761.00 Northing: Elev (masl): 91.58

Latitude: 45.249447 Longitude: -75.452579 7045997

Lot: 019 LOCATION Con: 09 Municipality: OTTAWA-CARLETON OSGOODE TOWNSHIP Township: Street: 2545 9TH LINE ROAD

City: **METCALF**

Well Status: Abandoned-Other

Prim. Use: WEL n/a Sec. Use: n/a **Boring Method:**

Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:

Tag: A035017 Audit No: Z38810 Contractor License: 1517 05/31/2007 Well Completion Date:

Well Depth (m): 0

Received Date:

Depth to Bedrock (m): n/a Depth to Water: Water Kind:

Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Case ID Casing Diamter Diamter Units Material Top Depth

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Material Material 2 Material 3 Colour Top Depth Bottom Depth

End of Record

Easting: 464501.00 5010496.00 Northing: Elev (masl): 89.57

Latitude: 45.247062 Longitude: -75.452356 7045998

Lot: LOCATION Con: Municipality: OTTAWA-CARLETON Township: OSGOODE TOWNSHIP Street: 9TH LINE 2540 City: **METCALF**

Tag: A035019 Audit No: Z38812 Contractor License: 1517 Well Completion Date: 05/01/2007 07/03/2007 Received Date:

Well Status: Abandoned-Other WELI

Prim. Use: n/a Sec. Use: n/a **Boring Method:**

Well Depth (m): 0 Depth to Bedrock (m): n/a

Depth to Water: Water Kind:

Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate: Recom. Rate:

Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):

CASING DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer Case ID Casing Diamter Diamter Units Material Top Depth **Bottom Depth FORMATION DETAILS** Layer Value of "0" denotes a Null value and cannot be stratified and ordered. Material Material 2 Material 3 Colour Top Depth Bottom Depth

End of Record

A035018

Easting: 464463.00 18 Northing: 5010857.00 Elev (masl): 90.94

Latitude: 45.25031 Longitude: -75.452866 7046030

Lot: 019 LOCATION Con: 09 Municipality: OTTAWA-CARLETON Township: OSGOODE TOWNSHIP Street: 9TH LINE ROAD 2545 City: METCALF

Audit No: 738811 Contractor License: 1517 Well Completion Date: 05/31/2007 Received Date: 07/03/2007

Well Status: Abandoned-Other ELL Prim. Use: n/a Sec. Use: n/a **Boring Method:**

Well Depth (m): 0 Depth to Bedrock (m): n/a Depth to Water: Water Kind:

Tag:

Test Method: Pump Set (m): SWL (ft) Final Level: Pump Rate:

Recom. Rate:

Pipe ID: Pump Test ID Flowing: Pump Duration (hr): Pump Duration (m):

CASING DETAILS

Laver Value of "0" denotes a Null value and cannot be stratified and ordered.

Layer Case ID Casing Diamter Diamter Units Material Top Depth

FORMATION DETAILS

Layer Value of "0" denotes a Null value and cannot be stratified and ordered.

Material Material 2 Material 3 Colour Top Depth Bottom Depth

End of Record

Appendix B Photographs

Photo 1 - View of drilled water well TW-1 and pump shed/building.

Photo 2 - Interior view of well pit of drilled water well TW-1.

Site Photographs

Photo 3 - Location of drilled well M-1 used as an observation well.

Photo 4 - Interior view of well pit of drilled water well M-1.

Site Photographs

Photo 5 - View of building that houses drilled water well TW-2.

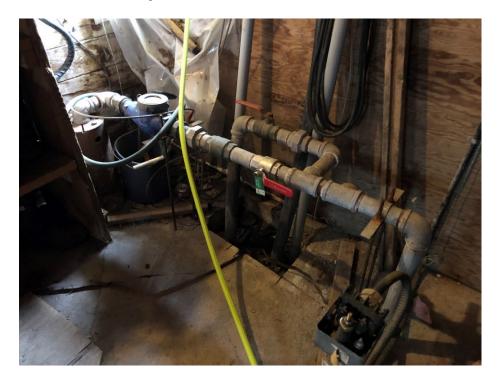
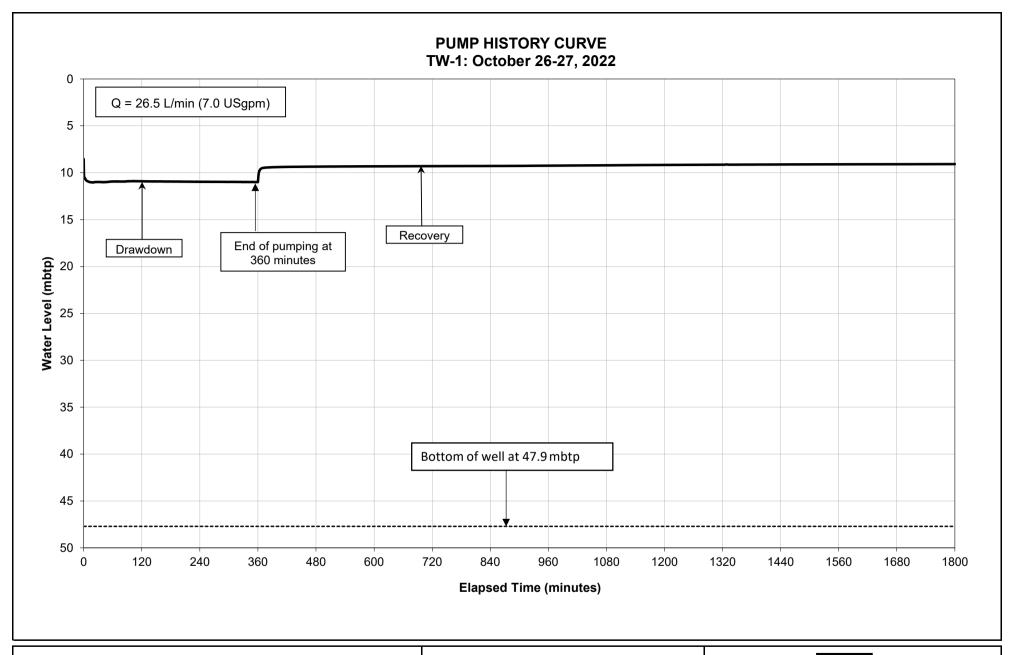



Photo 6 – Drilled water well TW-2 located inside pump house.

Appendix C

Aquifer Performance Testing

PUMP HISTORY CURVE

Drilled Well

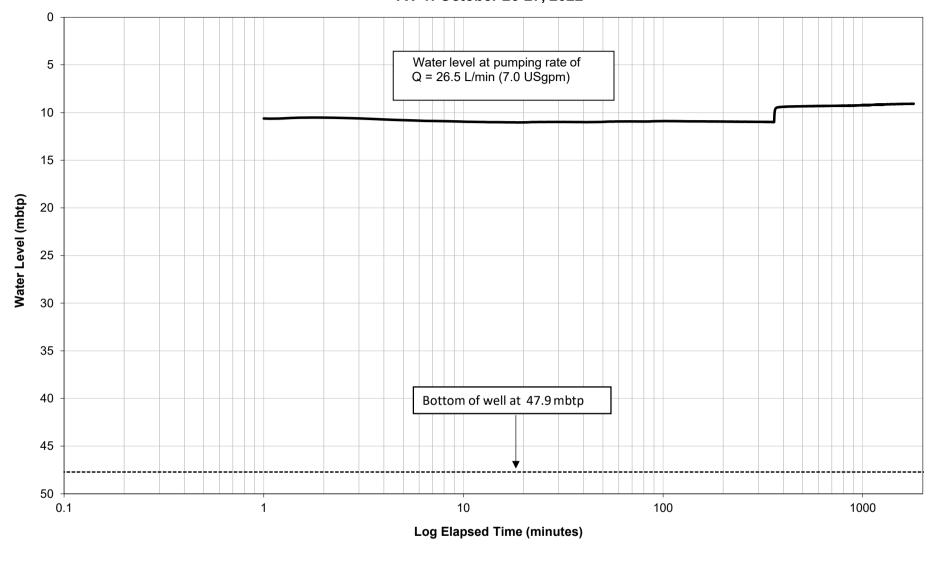
MECP Well ID: Unknown

Static Level = 8.54 mbtp (8.30 mbgs)

DATE: December 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario

JOB NUMBER: 12586015


DRAWING NUMBER: C-1

347 PIDO ROAD, UNIT 29 PETERBOROUGH, ON K9J 6X7 www.ghd.com

Note: m = metres; mbtp = metres below top of pipe; mbgs = metres below ground surface; Stick up = 0.24 m

CONSTANT RATE TEST: WATER LEVEL vs. LOG ELAPSED TIME TW-1: October 26-27, 2022

CONSTANT RATE

Drilled Well

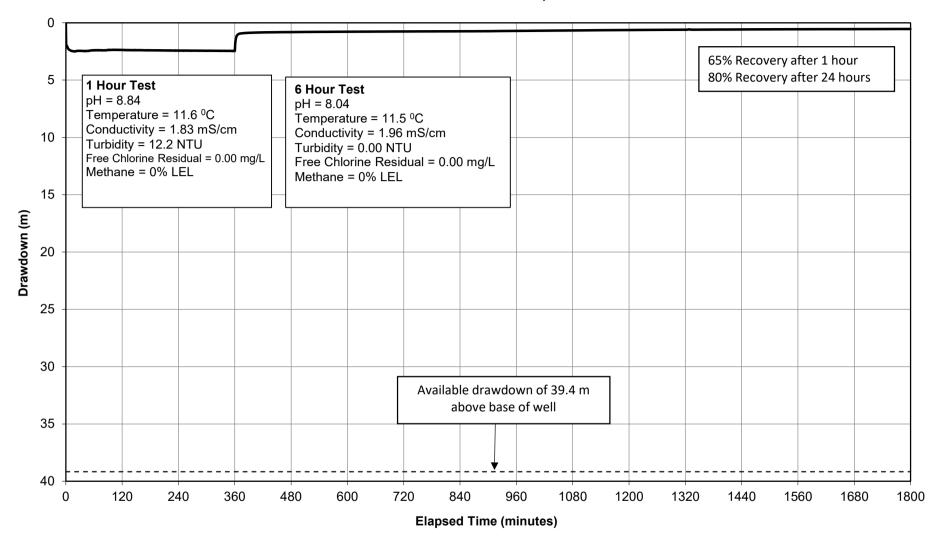
MECP Well ID: Unknown

Static Level = 8.54 mbtp (8.30 mbgs)

Note: m = metres; mbtp = metres below top of pipe; mbgs = metres below ground surface; Stick up = 0.24 m

DATE: December 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario


JOB NUMBER: 12586015

DRAWING NUMBER: C-2

347 PIDO ROAD, UNIT 29
PETERBOROUGH, ON K9J 6X7
www.ghd.com

CONSTANT RATE DRAWDOWN, RECOVERY AND TESTING DETAILS TW-1: October 26-27, 2022

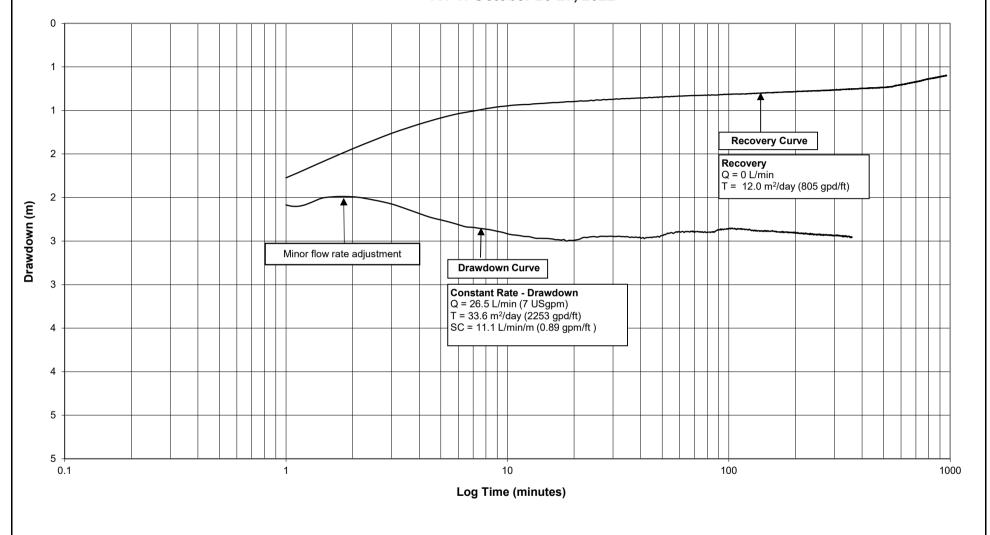
CONSTANT RATE DRAWDOWN

Drilled Well
MECP Well ID: Unknown
Static Level = 8.54 mbtp (8.30 mbgs)

DATE: December 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario

JOB NUMBER: 12586015


DRAWING NUMBER: C-3

347 PIDO ROAD, UNIT 29 PETERBOROUGH, ON K9J 6X7

www.ghd.com

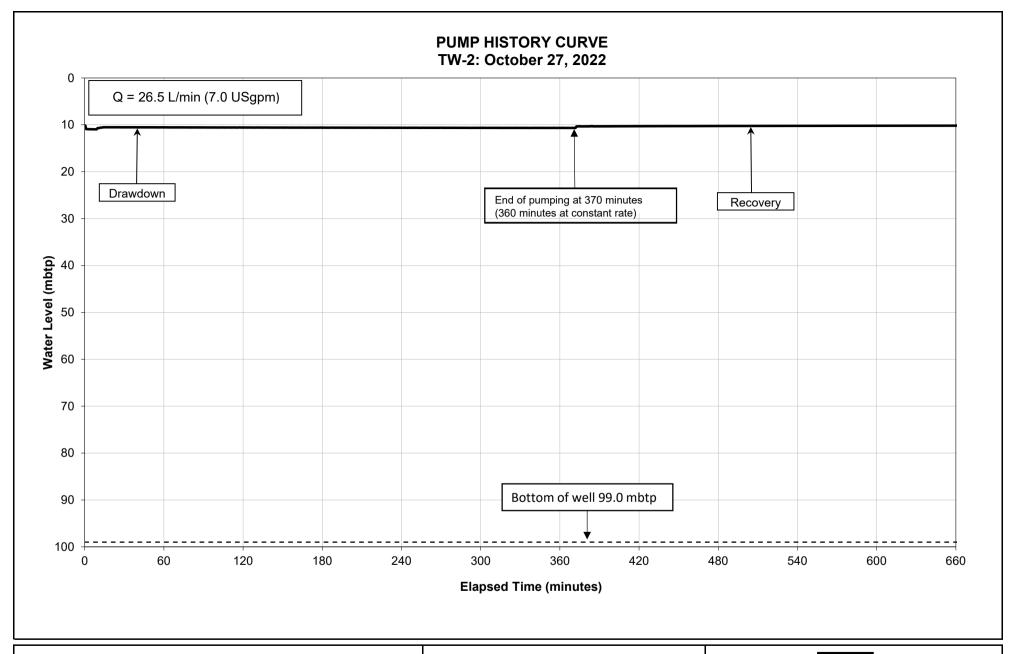
CONSTANT RATE: DRAWDOWN and RECOVERY VS LOG TIME TW-1: October 26-27, 2022

TRANSMISSIVITY

Drilled Well
MECP Well ID: Unknown
Static Level = 8.54 mbtp (8.30 mbgs)

DATE: December 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario


JOB NUMBER: 12586015

DRAWING NUMBER: C-4

347 PIDO ROAD, UNIT 29
PETERBOROUGH, ON K9J 6X7
www.ghd.com

Note: m = metres; mbtp = metres below top of pipe; mbgs = metres below ground surface; Stick up = 0.24 m

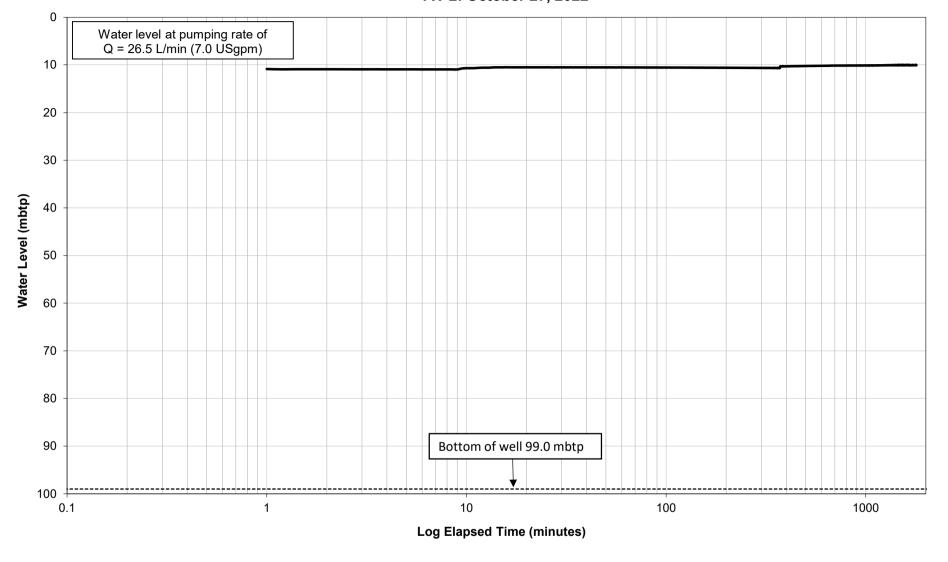
PUMP HISTORY CURVE

Drilled Well MECP Well ID: Unknown Static Level = 10.16 mbtp (9.74 mbg)

DATE: December 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario

JOB NUMBER: 12586015


DRAWING NUMBER: C-5

347 PIDO ROAD, UNIT 29 PETERBOROUGH, ON K9J 6X7 www.ghd.com

Note: m = metres; mbtp = metres below top of pipe; mbgs = metres below ground surface; Stick up = 0.42 m

CONSTANT RATE TEST: WATER LEVEL vs. LOG ELAPSED TIME TW-2: October 27, 2022

CONSTANT RATE

Drilled Well

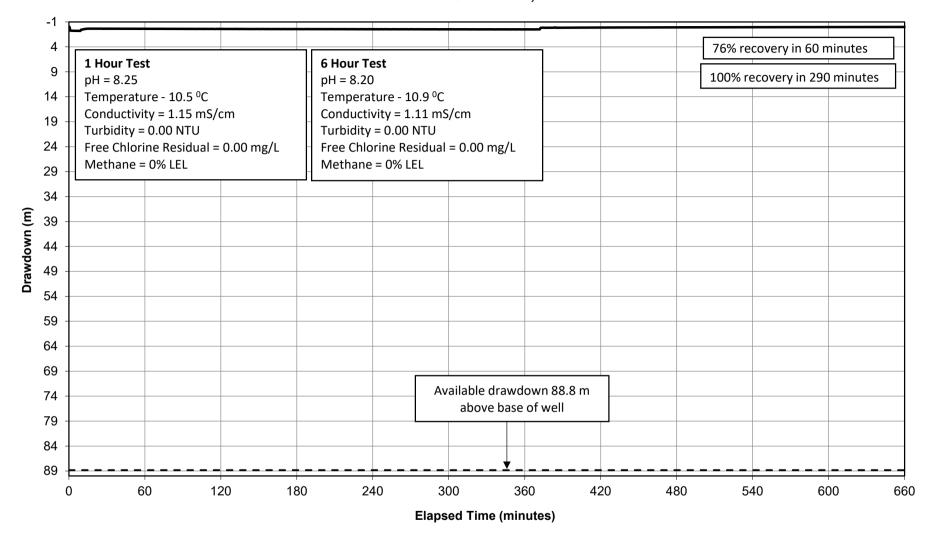
MECP Well ID: Unknown

Static Level = 10.16 mbtp (9.74 mbgs)

Note: m = metres; mbtp = metres below top of pipe; mbgs = metres below ground surface; Stick up = 0.42 m

DATE: December 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario


JOB NUMBER: 12586015

DRAWING NUMBER: C-6

347 PIDO ROAD, UNIT 29
PETERBOROUGH, ON K9J 6X7
www.ghd.com

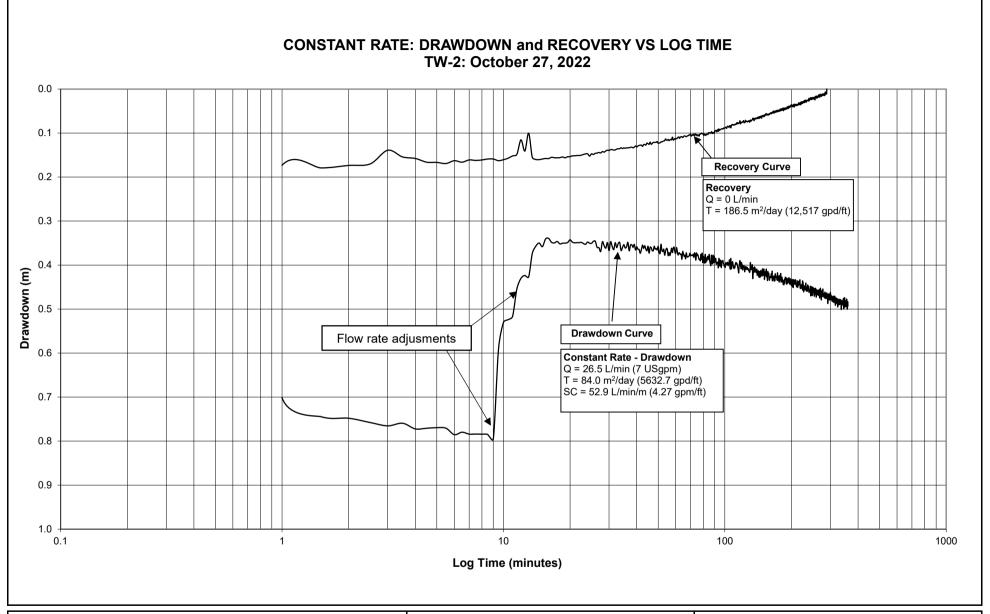
CONSTANT RATE DRAWDOWN, RECOVERY AND TESTING DETAILS TW-2: October 27, 2022

CONSTANT RATE DRAWDOWN

Drilled Well
MECP Well ID: Unknown
Static Level = 10.16 mbtp (9.74 mbgs)

DATE: December 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario


JOB NUMBER: 12586015

DRAWING NUMBER: C-7

347 PIDO ROAD, UNIT 29
PETERBOROUGH, ON K9J 6X7
www.ghd.com

Note: m = metres; mbtp = metres below top of pipe; mbgs = metres below ground surface; Stick up = 0.42 m

TRANSMISSIVITY

Drilled Well
MECP Well ID: Unknown
Static Level = 10.16 mbtp (9.74 mbgs)

DATE: December 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario

JOB NUMBER: 12586015

DRAWING NUMBER: C-8

347 PIDO ROAD, UNIT 29
PETERBOROUGH, ON K9J 6X7
www.ghd.com

Note: m = metres; mbtp = metres below top of pipe; mbgs = metres below ground surface; Stick up = 0.42 m

Appendix D

Water Well Certificates of Analyses

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Page Work Order : WT2219921 : 1 of 7

Client : GHD Limited Laboratory : Waterloo - Environmental

Contact : Pascal Renella **Account Manager** : Rick Hawthorne Address

Address : 60 Northland Road, Unit 1

Waterloo ON Canada N2V 2B8

Telephone : +1 519 886 6910 Date Samples Received : 28-Oct-2022 10:00

> : 29-Oct-2022 **Date Analysis**

Commenced

Issue Date : 09-Nov-2022 09:28

Telephone : 519 725 3313 **Project** : 12586015-03.004 РО : 735-003748-1

C-O-C number Sampler ----Site

12586015-SSOW-735-003748-1 Quote number

: 455 Phillip Street

Waterloo ON Canada N2L 3X2

No. of samples received : 2 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- **Analytical Results**
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Andrea Armstrong	Department Manager - Air Quality and Volatiles	Organics, Waterloo, Ontario
Danielle Gravel	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Metals, Waterloo, Ontario
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Ruby Sujeepan		Microbiology, Waterloo, Ontario

 Page
 :
 2 of 7

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
CFU/100mL	colony forming units per 100 mL
CFU/1mL	colony forming units per 1 mL
CU	colour units (1 CU = 1 mg/L Pt)
meq/L	milliequivalents per litre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
WT2219921-001	GW-002	RRR:Detection limit raised due to instrument sensitivity.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
PEHT	Parameter exceeded recommended holding time prior to analysis.
RRR	Refer to report comments for issues regarding this analysis.

<: less than.

 Page
 :
 3 of 7

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2219921-001

Sub-Matrix: Water Client sample ID: GW-002

(Matrix: Water) Client sampling date / time: 26-Oct-2022 16:00

Analyte CAS Number Result LOR Unit Method Prep Date Analysis Date	2 728617 2 728618 2 724936 2 721148 2 728619 2 729135 2 728620 2 728623 2 729132
Physical Tests Colour, true C	2 728617 2 728618 2 724936 2 721148 2 728619 2 729135 2 728620 2 728623 2 729132
conductivity	2 728617 2 728618 2 724936 2 721148 2 728619 2 729135 2 728620 2 728623 2 729132
hardness (as CaCO3), dissolved	2 - 728618 724936 721148 728619 2 729135 728620 728623 729132
pH	2 728618 2 724936 2 721148 2 728619 2 729135 2 728620 2 728623 2 729132
solids, total dissolved [TDS]	2 724936 721148 2 728619 2 729135 2 728620 2 728623 2 729132
turbidity	721148 728619 2 729135 2 728620 2 728623 2 729132
alkalinity, total (as CaCO3)	728619 729135 728620 728623 729132
Anions and Nutrients ammonia, total (as N) 7664-41-7 0.0353 0.0050 mg/L E298 03-Nov-2022 07-Nov-2022 chloride 16887-00-6 208 DLDS, 2.50 mg/L E235.Cl 03-Nov-2022 04-Nov-2022 fluoride 16984-48-8 <0.100 DLDS, 0.100 mg/L E235.F 03-Nov-2022 04-Nov-2022 Nitrate (as N) 14797-55-8 <0.100 DLDS, 0.100 mg/L E318 04-Nov-2022 04-Nov-2022 nitrate (as N) 14797-65-0 <0.050 DLDS, 0.100 mg/L E235.NO3 03-Nov-2022 04-Nov-2022 nitrite (as N) 14797-65-0 <0.050 DLDS, 0.050 mg/L E235.NO3 03-Nov-2022 04-Nov-2022 nitrite (as N) 14808-79-8 111 DLDS, 1.50 mg/L E235.SO4 03-Nov-2022 04-Nov-2022 Organic / Inorganic Carbon	729135 728620 728623 729132
ammonia, total (as N) 7664-41-7 0.0353 0.0050 mg/L E298 03-Nov-2022 07-Nov-2022 chloride 16887-00-6 208 olds 2.50 mg/L E235.Cl 03-Nov-2022 04-Nov-2022 fluoride 16984-48-8 <0.100 olds 0.100 mg/L E235.F 03-Nov-2022 04-Nov-202 Kjeldahl nitrogen, total [TKN] 0.180 0.050 mg/L E318 04-Nov-202 04-Nov-202 nitrate (as N) 14797-55-8 <0.100 olds 0.100 mg/L E235.NO3 03-Nov-2022 04-Nov-202 nitrite (as N) 14797-65-0 <0.050 olds 0.050 mg/L E235.NO3 03-Nov-2022 04-Nov-202 sulfate (as SO4) 14808-79-8 111 olds 1.50 mg/L E235.SO4 03-Nov-2022 04-Nov-202 Organic / Inorganic Carbon	728620 728623 729132
chloride 16887-00-6 208 DLDS. 2.50 2.50 mg/L E235.CI 03-Nov-2022 04-Nov-2022 fluoride 16984-48-8 <0.100 DLDS. 0.100 mg/L E235.F 03-Nov-2022 04-Nov-2022 Kjeldahl nitrogen, total [TKN] 0.180 0.050 mg/L E318 04-Nov-2022 04-Nov-202 nitrate (as N) 14797-55-8 <0.100 DLDS. 0.100 mg/L E235.NO3 03-Nov-2022 04-Nov-202 nitrite (as N) 14797-65-0 <0.050 DLDS. 0.050 mg/L E235.NO2 03-Nov-2022 04-Nov-202 sulfate (as SO4) 14808-79-8 111 DLDS. 1.50 mg/L E235.SO4 03-Nov-2022 04-Nov-202 Organic / Inorganic Carbon	728620 728623 729132
fluoride 16984-48-8 <0.100 DLDS. 0.100 mg/L E235.F 03-Nov-2022 04-Nov-2022 04-	728623 729132
Kjeldahl nitrogen, total [TKN] 0.180 0.050 mg/L E318 04-Nov-2022 04-Nov-2	729132
nitrate (as N) 14797-55-8 <0.100 olds 0.100 olds 0.100 olds 0.25 0.100 olds 0.25 0.100 olds 0.25 <td></td>	
nitrite (as N) 14797-65-0 <0.050 olds 0.050 olds 0.050 mg/L E235.NO2 03-Nov-2022 04-Nov-2022 sulfate (as SO4) 111 olds 1.50 mg/L E235.SO4 03-Nov-2022 04-Nov-2022 Organic / Inorganic Carbon 0.050 mg/L 0.050 mg/L E235.SO4 03-Nov-2022 04-Nov-2022	728621
nitrite (as N) 14797-65-0 <0.050 PLDS. 0.050 PLDS.	1
Organic / Inorganic Carbon	728622
Organic / Inorganic Carbon	
carbon, dissolved organic [DOC] 17.4 0.50 mg/L E358-L 31-Oct-2022 01-Nov-202	723366
Total Sulfides	
sulfide, total (as H2S) 7783-06-4 <0.011 0.011 mg/L E395-H - 02-Nov-202	726653
sulfide, total (as S) 18496-25-8 < 0.010 0.010 mg/L E395-H - 02-Nov-202	726653
Microbiological Tests	
coliforms, total 8 PEHT. 1 CFU/100mL E012.TC - 29-Oct-202	721298
heterotrophic plate count [HPC] 78 PEHT. 1 CFU/1mL E012.HPC - 29-Oct-202	
coliforms, total background 3 1 CFU/100mL E012.BG.TC - 29-Oct-202	
coliforms, Escherichia coli [E. coli] Not Detected 1 CFU/100mL E012A.EC - 29-Oct-202	
Ion Balance	
anion sum 15.1 0.10 meq/L EC101 - 09-Nov-202	, _
cation sum 15.1 0.10 meg/L EC101 - 09-Nov-202	
ion balance (APHA) <0.01 0.01 % EC101 - 09-Nov-202	
Dissolved Metals	1
aluminum, dissolved 7429-90-5 <0.0010 0.0010 mg/L E421 31-Oct-2022 31-Oct-202	722924
antimony, dissolved 7440-36-0 <0.00010 0.00010 mg/L E421 31-Oct-2022 31-Oct-202	
arsenic, dissolved 7440-38-2 0.00071 0.00010 mg/L E421 31-Oct-2022 31-Oct-2022	
barium, dissolved 7440-39-3 0.212 0.00010 mg/L E421 31-Oct-2022 31-Oct-202	
beryllium, dissolved 7440-41-7 <0.000020 0.000020 mg/L E421 31-Oct-2022 31-Oct-2022	
boron, dissolved 7440-42-8 0.029 0.010 mg/L E421 31-Oct-2022 31-Oct-202	
cadmium, dissolved 7440-43-9 0.0000064 0.0000050 mg/L E421 31-Oct-2022 31-Oct-2022	
calcium, dissolved 7440-70-2 127 0.050 mg/L E421 31-Oct-2022 31-Oct-2022	
chromium, dissolved 7440-47-3 <0.00050 0.00050 mg/L E421 31-Oct-2022 31-Oct-2022	
cobalt, dissolved 7440-48-4 0.00047 0.00010 mg/L E421 31-Oct-2022 31-Oct-202	
copper, dissolved 7440-50-8 0.00048 0.00020 mg/L E421 31-Oct-2022 31-Oct-2022	
lead, dissolved 7439-92-1 0.000408 0.000050 mg/L E421 31-Oct-2022 31-Oct-202	
magnesium, dissolved 7439-95-4 46.7 0.0050 mg/L E421 31-Oct-2022 31-Oct-2022	
nickel, dissolved 7440-02-0 0.00176 0.00050 mg/L E421 31-Oct-2022 31-Oct-2022	722924

 Page
 :
 4 of 7

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2219921-001

Sub-Matrix: Water Client sample ID: GW-002

(Matrix: Water) Client sampling date / time: 26-Oct-2022 16:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Dissolved Metals								
potassium, dissolved	7440-09-7	6.14	0.050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
selenium, dissolved	7782-49-2	0.000099	0.000050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
sodium, dissolved	7440-23-5	109	0.050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
strontium, dissolved	7440-24-6	1.32	0.00020	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421	31-Oct-2022	31-Oct-2022	72292
uranium, dissolved	7440-61-1	0.00462	0.000010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
vanadium, dissolved	7440-62-2	<0.00050	0.00050	mg/L	E421	31-Oct-2022	31-Oct-2022	72292
zinc, dissolved	7440-66-6	<0.0010	0.0010	mg/L	E421	31-Oct-2022	31-Oct-2022	72292
dissolved metals filtration location		Field	-	-	EP421	-	31-Oct-2022	72292
Aggregate Organics								
tannin + lignin (as tannic acid)		1.21	0.10	mg/L	E563	-	31-Oct-2022	722654
Volatile Organic Compounds							•	
Acetone	67-64-1	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
benzene	71-43-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichlorobenzene, 1,2-	95-50-1	< 0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichlorobenzene, 1,3-	541-73-1	< 0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichlorobenzene, 1,4-	106-46-7	< 0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloromethane	75-09-2	<1.0	1.0	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloropropane, 1,2-	78-87-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
dichloropropylene, trans-1,3-	10061-02-6	<0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
styrene	100-42-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794
tetrachloroethylene	127-18-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72794

 Page
 :
 5 of 7

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2219921-001

Sub-Matrix: Water Client sample ID: GW-002

(Matrix: Water) Client sampling date / time: 26-Oct-2022 16:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds								
toluene	108-88-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
trichloroethylene	79-01-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
BTEX, total		<1.0	1.0	μg/L	E611D	03-Nov-2022	03-Nov-2022	727945
Hydrocarbons								
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	03-Nov-2022	03-Nov-2022	727946
F2 (C10-C16)		<100	100	μg/L	E601.SG	02-Nov-2022	08-Nov-2022	725959
F2-naphthalene		<100	100	μg/L	EC600SG	-	03-Nov-2022	-
F3 (C16-C34)		<250	250	μg/L	E601.SG	02-Nov-2022	08-Nov-2022	725959
F3-PAH	n/a	<250	250	μg/L	EC600SG	-	03-Nov-2022	-
F4 (C34-C50)		<250	250	μg/L	E601.SG	02-Nov-2022	08-Nov-2022	725959
F1-BTEX		<25	25	μg/L	EC580	-	04-Nov-2022	_
hydrocarbons, total (C6-C50)		<370	370	μg/L	EC581SG	-	04-Nov-2022	_
chromatogram to baseline at nC50	n/a	YES	-	-	E601.SG	02-Nov-2022	08-Nov-2022	725959
Hydrocarbons Surrogates	.,,						00 1107 2022	. 20000
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	82.5	1.0	%	E601.SG	02-Nov-2022	08-Nov-2022	725959
dichlorotoluene, 3,4-	97-75-0	84.7	1.0	%	E581.F1-L	03-Nov-2022	03-Nov-2022	727946
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	94.5	1.0	%	E611D	03-Nov-2022	03-Nov-2022	727945
difluorobenzene, 1,4-	540-36-3	91.0	1.0	%	E611D	03-Nov-2022	03-Nov-2022	727945
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
acenaphthylene	208-96-8	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
anthracene	120-12-7	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benz(a)anthracene	56-55-3	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(a)pyrene	50-32-8	<0.044 RRR.	0.044	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(b+j)fluoranthene	n/a	<0.10	0.10	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(g,h,i)perylene	191-24-2	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(k)fluoranthene	207-08-9	<0.10	0.10	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
chrysene	218-01-9	<0.10	0.10	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dibenz(a,h)anthracene	53-70-3	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
fluoranthene	206-44-0	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
fluorene	86-73-7	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
indeno(1,2,3-c,d)pyrene	193-39-5	<0.20	0.20	µg/L	E655A	01-Nov-2022	02-Nov-2022	724805
methylnaphthalene, 1-	90-12-0	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
methylnaphthalene, 1+2-	50-12-0	<0.60	0.6	μg/L	E655A	01-Nov-2022	02-Nov-2022 02-Nov-2022	724805
methylnaphthalene, 2-	91-57-6	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022 02-Nov-2022	724805
naphthalene	91-20-3	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022 02-Nov-2022	724805
phenanthrene	91-20-3 85-01-8	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022 02-Nov-2022	724805
pyrene	129-00-0	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022 02-Nov-2022	724805
pyrene	129-00-0	-0.20	0.20	H9/∟	LUUUA	J 1-140V-2022	UZ-INUV-ZUZZ	124000

 Page
 :
 6 of 7

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2219921-001

Sub-Matrix: Water Client sample ID: GW-002

(Matrix: Water) Client sampling date / time: 26-Oct-2022 16:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Phthalate Esters								
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	<2.0	2.0	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
diethyl phthalate	84-66-2	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dimethyl phthalate	131-11-3	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Semi-Volatile Organics								
biphenyl	92-52-4	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
bis(2-chloroethyl) ether	111-44-4	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
bis(2-chloroisopropyl) ether	39638-32-9	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
chloroaniline, 4-	106-47-8	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dichlorobenzidine, 3,3'-	91-94-1	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrotoluene, 2,4-	121-14-2	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrotoluene, 2,4 + 2,6-	n/a	<0.60	0.6	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrotoluene, 2,6-	606-20-2	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
trichlorobenzene, 1,2,4-	120-82-1	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Semi-Volatile Organics Surrogates								
fluorobiphenyl, 2-	321-60-8	90.6	1.0	%	E655A	01-Nov-2022	02-Nov-2022	724805
nitrobenzene-d5	4165-60-0	99.2	1.0	%	E655A	01-Nov-2022	02-Nov-2022	724805
terphenyl-d14, p-	1718-51-0	94.7	1.0	%	E655A	01-Nov-2022	02-Nov-2022	724805
Chlorinated Phenolics								
chlorophenol, 2-	95-57-8	<0.30	0.30	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dichlorophenol, 2,4-	120-83-2	<0.30	0.30	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
pentachlorophenol [PCP]	87-86-5	<0.50	0.50	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
tetrachlorophenol, 2,3,4,6-	58-90-2	<0.50	0.50	μg/L	E651D	01-Nov-2022	02-Nov-2022	724808
trichlorophenol, 2,4,5-	95-95-4	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
trichlorophenol, 2,4,6-	88-06-2	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Non-Chlorinated Phenolics								
dimethylphenol, 2,4-	105-67-9	<0.50	0.50	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrophenol, 2,4-	51-28-5	<1.0	1.0	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
phenol	108-95-2	<0.50	0.50	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Phenolics Surrogates								
tribromophenol, 2,4,6-	118-79-6	110	1.0	%	E651D	01-Nov-2022	02-Nov-2022	724808
tribromophenol, 2,4,6-	118-79-6	110	0.22	%	E655A	01-Nov-2022	02-Nov-2022	724805
Pesticides								
diazinon	333-41-5	<0.10	0.10	μg/L	E660E-H	01-Nov-2022	04-Nov-2022	724791
Pesticides Surrogates								
fluorobiphenyl, 2-	321-60-8	94.4	0.10	%	E660E-H	01-Nov-2022	04-Nov-2022	724791
terphenyl-d14, p-	1718-51-0	109	0.10	%	E660E-H	01-Nov-2022	04-Nov-2022	724791

 $\label{thm:please refer} Please\ refer\ to\ the\ General\ Comments\ section\ for\ an\ explanation\ of\ any\ qualifiers\ detected.$

Analytical Results

WT2219921-002

Sub-Matrix: Water Client sample ID: GW-001

(Matrix: Water) Client sampling date / time: 26-Oct-2022 11:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
							Date	

 Page
 :
 7 of 7

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2219921-002

Sub-Matrix: Water Client sample ID: GW-001

(Matrix: Water) Client sampling date / time: 26-Oct-2022 11:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Dissolved Metals								
aluminum, dissolved	7429-90-5	0.0011	0.0010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
antimony, dissolved	7440-36-0	0.00012	0.00010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
arsenic, dissolved	7440-38-2	0.00099	0.00010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
barium, dissolved	7440-39-3	0.209	0.00010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
boron, dissolved	7440-42-8	0.039	0.010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
cadmium, dissolved	7440-43-9	0.0000118	0.0000050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
calcium, dissolved	7440-70-2	113	0.050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
chromium, dissolved	7440-47-3	<0.00050	0.00050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
cobalt, dissolved	7440-48-4	0.00059	0.00010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
copper, dissolved	7440-50-8	0.00139	0.00020	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
lead, dissolved	7439-92-1	0.000992	0.000050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
magnesium, dissolved	7439-95-4	42.8	0.0050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
manganese, dissolved	7439-96-5	0.0501	0.00010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
molybdenum, dissolved	7439-98-7	0.0204	0.000050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
nickel, dissolved	7440-02-0	0.00225	0.00050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
potassium, dissolved	7440-09-7	6.81	0.050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
selenium, dissolved	7782-49-2	0.000050	0.000050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
sodium, dissolved	7440-23-5	107	0.050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
strontium, dissolved	7440-24-6	1.50	0.00020	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
uranium, dissolved	7440-61-1	0.00405	0.000010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
vanadium, dissolved	7440-62-2	<0.00050	0.00050	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
zinc, dissolved	7440-66-6	0.0016	0.0010	mg/L	E421	31-Oct-2022	31-Oct-2022	722924
dissolved metals filtration location		Field	-	-	EP421	-	31-Oct-2022	722924

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

:WT2219921 **Work Order** Page : 1 of 15

Client GHD Limited Laboratory : Waterloo - Environmental

Contact : Pascal Renella **Account Manager** : Rick Hawthorne Address

Address :455 Phillip Street : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :519 725 3313 Telephone : +1 519 886 6910 Project : 12586015-03.004 **Date Samples Received** : 28-Oct-2022 10:00 PO : 735-003748-1 Issue Date : 09-Nov-2022 09:28

C-O-C number ٠____ Sampler Site

Quote number : 12586015-SSOW-735-003748-1

Waterloo ON Canada N2L 3X2

No. of samples received :2 No. of samples analysed :2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit). RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

 Page
 :
 3 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Polycyclic Aromatic Hydrocarbons	QC-MRG4-7248020		benzo(a)pyrene	50-32-8	E655A	<0.040 RRQC	0.02 μg/L	Blank result exceeds
	01					μg/L		permitted value

Result Qualifiers

Qualifier Description

RRQC Refer to report comments for information regarding this QC result.

Laboratory Control Sample (LCS) Recoveries										
Semi-Volatile Organics	QC-MRG4-7248020		dichlorobenzidine, 3,3'- 91-94-1		E655A	25.6 % RRQC	30.0-130%	Recovery less than lower		
	02							control limit		
Chlorinated Phenolics	QC-MRG4-7248020		pentachlorophenol [PCP]	87-86-5	E655A	148 % LCS-H	50.0-140%	Recovery greater than		
	02							upper control limit		
Non-Chlorinated Phenolics	QC-MRG4-7248020		dinitrophenol, 2,4-	51-28-5	E655A	174 % LCS-H	50.0-140%	Recovery greater than		
	02							upper control limit		

Result Qualifiers

Qualifier	Description
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered
	reliable. Other results, if reported, have been qualified.
RRQC	Refer to report comments for information regarding this QC result.

 Page
 :
 4 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water

Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group

Method Sampling Date Extraction / Preparation Analysis

Analyte Group	Method	Sampling Date	Ext							
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Tannin & Lignin in Water										
HDPE [ON MECP]										
GW-002	E563	26-Oct-2022					31-Oct-2022	28 days	5 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
GW-002	E298	26-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	9 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										
GW-002	E235.CI	26-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	9 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP]										,
GW-002	E235.F	26-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	9 days	✓
Anions and Nutrients : Nitrate in Water by IC										
HDPE [ON MECP]	5005 NO.0	00.0.1.0000								
GW-002	E235.NO3	26-Oct-2022	03-Nov-2022				04-Nov-2022	7 days	9 days	EHT
Anions and Nutrients : Nitrite in Water by IC										
HDPE [ON MECP]										
GW-002	E235.NO2	26-Oct-2022	03-Nov-2022				04-Nov-2022	7 days	9 days	EHT
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP]										
GW-002	E235.SO4	26-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	9 days	✓

ALS

 Page
 :
 5 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analysis Cross	Mathad	Committee Date	Ev	traction / Pr				Holding Tim		
Analyte Group	Method	Sampling Date					Anatoria Data	Analysis Holding Times		Fire
Container / Client Sample ID(s)			Preparation Date	Rec	g Times Actual	Eval	Analysis Date	Rec	Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) GW-002	E318	26-Oct-2022	04-Nov-2022				04-Nov-2022	28 days	9 days	✓
Chlorinated Phenolics : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap GW-002	E655A	26-Oct-2022	01-Nov-2022				02-Nov-2022			
Chlorinated Phenolics : Phenolics (Ontario Chlorophenols List) by GC-MS							•			
Amber glass/Teflon lined cap GW-002	E651D	26-Oct-2022	01-Nov-2022	7 days	6 days	✓	02-Nov-2022	40 days	1 days	4
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) GW-001	E421	26-Oct-2022	31-Oct-2022				31-Oct-2022	180 days	5 days	4
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) GW-002	E421	26-Oct-2022	31-Oct-2022				31-Oct-2022	180 days	5 days	4
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)							•			
Glass vial (sodium bisulfate) GW-002	E581.F1-L	26-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	8 days	4
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) GW-002	E601.SG	26-Oct-2022	02-Nov-2022	14 days	7 days	✓	08-Nov-2022	40 days	6 days	1
Microbiological Tests : E. coli (MF-mFC-BCIG)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] GW-002	E012A.EC	26-Oct-2022					29-Oct-2022	48 hrs	70 hrs	* EHTL
Microbiological Tests : Heterotrophic Plate Count by MF (MF-mHPC)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] GW-002	E012.HPC	26-Oct-2022					29-Oct-2022	48 hrs	65 hrs	≭ EHTL

Page 6 of 15 WT2219921 Work Order : Client GHD Limited 12586015-03.004 Project

Matrix: Water Analyte Group	Method	Sampling Date Extraction / Preparation					Holding time excee			
Container / Client Sample ID(s)	ivietriou	Gamping Date			g Times	Eval	Analysis Date Holding			Eval
Container / Criefit Gample 15(3)			Preparation Date	Rec	Actual	⊏vai	Allalysis Date	Rec	Actual	⊏vai
Microbiological Tests : Total Coliforms (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] GW-002	E012.TC	26-Oct-2022					29-Oct-2022	48 hrs	65 hrs	# EHTL
Microbiological Tests : Total Coliforms Background (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] GW-002	E012.BG.TC	26-Oct-2022					29-Oct-2022	48 hrs	65 hrs	* EHTL
Non-Chlorinated Phenolics : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap GW-002	E655A	26-Oct-2022	01-Nov-2022				02-Nov-2022			
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lo	ow Level)									
Amber glass dissolved (sulfuric acid) GW-002	E358-L	26-Oct-2022	31-Oct-2022				01-Nov-2022	28 days	6 days	✓
Pesticides : Miscellaneous Pesticides by GC-MS										
Amber glass/Teflon lined cap GW-002	E660E-H	26-Oct-2022	01-Nov-2022	14 days	6 days	4	04-Nov-2022	40 days	3 days	✓
Phthalate Esters : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap GW-002	E655A	26-Oct-2022	01-Nov-2022				02-Nov-2022			
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP] GW-002	E290	26-Oct-2022	03-Nov-2022				04-Nov-2022	14 days	9 days	✓
Physical Tests : Colour (True) by Spectrometer (2 CU)										
HDPE [ON MECP] GW-002	E329-L	26-Oct-2022	01-Nov-2022				04-Nov-2022	48 hrs	121 hrs	x EHTL
Physical Tests : Conductivity in Water										
HDPE [ON MECP] GW-002	E100	26-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	9 days	✓

 Page
 :
 7 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Watti. Water		_				varaation.	Tiolding time exce	oddiioo , ·	***************************************	Troiding Tim	
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Physical Tests : pH by Meter											
HDPE [ON MECP]											
GW-002	E108	26-Oct-2022	03-Nov-2022				04-Nov-2022	14 days	9 days	✓	
Physical Tests : TDS by Gravimetry											
HDPE [ON MECP]											
GW-002	E162	26-Oct-2022					01-Nov-2022	7 days	6 days	✓	
Physical Tests : Turbidity by Nephelometry											
HDPE [ON MECP]											
GW-002	E121	26-Oct-2022					29-Oct-2022	3 days	3 days	✓	
Polycyclic Aromatic Hydrocarbons : BNA (ON 625-511 list) by GC-MS											
Amber glass/Teflon lined cap											
GW-002	E655A	26-Oct-2022	01-Nov-2022				02-Nov-2022				
Semi-Volatile Organics : BNA (ON 625-511 list) by GC-MS				1		T					
Amber glass/Teflon lined cap	E055A	00.0.4.0000	04 Nov. 0000	7	0.1		00 No 0000	40 1	4 1	√	
GW-002	E655A	26-Oct-2022	01-Nov-2022	7 days	6 days	✓	02-Nov-2022	40 days	1 days	•	
Total Sulfides : Total Sulfide by Colourimetry (Automated Flow)											
HDPE total (zinc acetate+sodium hydroxide) [ON MECP]	E395-H	26-Oct-2022					02-Nov-2022	7 days	7 days	✓	
GW-002	E395-FI	20-001-2022					UZ-INOV-2UZZ	7 days	7 days	•	
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-N	IS										
Glass vial (sodium bisulfate) GW-002	E611D	26-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	8 days	✓	
GVV-002	LOTID	20-001-2022	03-1404-2022				03-1404-2022	14 uays	o uays	•	

Legend & Qualifier Definitions

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

 Page
 :
 8 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type			ion: × = QC frequ	ount			<u> </u>
	Method	QC Lot #	QC	ount Regular	Actual	Frequency (%)) Evaluation
Analytical Methods	Method	QC L01#	QC .	rregular	Actual	Expected	Lvaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	728619	1	14	7.1	5.0	✓
Ammonia by Fluorescence	E298	729135	1	19	5.2	5.0	✓
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	727946	1	9	11.1	5.0	✓
Chloride in Water by IC	E235.CI	728620	1	18	5.5	5.0	✓
Colour (True) by Spectrometer (2 CU)	E329-L	724671	1	12	8.3	5.0	✓
Conductivity in Water	E100	728617	1	16	6.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	722924	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723366	1	20	5.0	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	721582	1	19	5.2	5.0	✓
Fluoride in Water by IC	E235.F	728623	1	1	100.0	5.0	✓
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC	721178	0	4	0.0	5.0	se
Nitrate in Water by IC	E235.NO3	728621	1	4	25.0	5.0	✓
Nitrite in Water by IC	E235.NO2	728622	1	4	25.0	5.0	✓
pH by Meter	E108	728618	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	728624	1	1	100.0	5.0	✓
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	724936	1	20	5.0	5.0	✓
Total Coliforms (MF-mEndo)	E012.TC	721298	0	3	0.0	5.0	Jc .
Total Coliforms Background (MF-mEndo)	E012.BG.TC	721299	0	1	0.0	5.0	x
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	729132	1	16	6.2	5.0	1
Total Sulfide by Colourimetry (Automated Flow)	E395-H	726653	1	6	16.6	5.0	1
Turbidity by Nephelometry	E121	721148	1	4	25.0	5.0	1
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	727945	1	19	5.2	5.0	1
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	728619	1	14	7.1	5.0	1
Ammonia by Fluorescence	E298	729135	1	19	5.2	5.0	1
BNA (ON 625-511 list) by GC-MS	E655A	724805	1	2	50.0	5.0	1
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	727946	1	9	11.1	5.0	1
Chloride in Water by IC	E235.Cl	728620	1	18	5.5	5.0	√
Colour (True) by Spectrometer (2 CU)	E329-L	724671	1	12	8.3	5.0	1
Conductivity in Water	E100	728617	1	16	6.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	722924	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723366	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	728623	1	1	100.0	5.0	✓
Miscellaneous Pesticides by GC-MS	E660E-H	724791	1	4	25.0	5.0	√
Nitrate in Water by IC	E235.NO3	724731	1	4	25.0	5.0	✓

 Page
 :
 9 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix: Water		Evaluat	ion: × = QC freque	ency outside spe	ecification; ✓ =	QC frequency with	in specificatio
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Nitrite in Water by IC	E235.NO2	728622	1	4	25.0	5.0	✓
pH by Meter	E108	728618	1	20	5.0	5.0	√
Phenolics (Ontario Chlorophenols List) by GC-MS	E651D	724808	1	2	50.0	5.0	√
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	725959	1	13	7.6	5.0	✓
Sulfate in Water by IC	E235.SO4	728624	1	1	100.0	5.0	✓
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	724936	1	20	5.0	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	729132	1	16	6.2	5.0	√
Total Sulfide by Colourimetry (Automated Flow)	E395-H	726653	1	6	16.6	5.0	√
Turbidity by Nephelometry	E121	721148	1	4	25.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	727945	1	19	5.2	5.0	√
Method Blanks (MB)							
Alkalinity Species by Titration	E290	728619	1	14	7.1	5.0	✓
Ammonia by Fluorescence	E298	729135	1	19	5.2	5.0	<u> </u>
BNA (ON 625-511 list) by GC-MS	E655A	724805	1	2	50.0	5.0	<u> </u>
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	727946	1	9	11.1	5.0	<u> </u>
Chloride in Water by IC	E235.CI	728620	1	18	5.5	5.0	<u> </u>
Colour (True) by Spectrometer (2 CU)	E329-L	724671	1	12	8.3	5.0	<u> </u>
Conductivity in Water	E100	728617	1	16	6.2	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	722924	1	20	5.0	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723366	1	20	5.0	5.0	√
E. coli (MF-mFC-BCIG)	E012A.EC	721582	1	19	5.2	5.0	<u> </u>
Fluoride in Water by IC	E235.F	728623	1	1	100.0	5.0	<u> </u>
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC	721178	1	4	25.0	5.0	√
Miscellaneous Pesticides by GC-MS	E660E-H	724791	1	4	25.0	5.0	<u> </u>
Nitrate in Water by IC	E235.NO3	728621	1	4	25.0	5.0	<u> </u>
Nitrite in Water by IC	E235.NO2	728622	1	4	25.0	5.0	√
Phenolics (Ontario Chlorophenols List) by GC-MS	E651D	724808	1	2	50.0	5.0	√
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	725959	1	13	7.6	5.0	√
Sulfate in Water by IC	E235.SO4	728624	1	1	100.0	5.0	√
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	<u> </u>
TDS by Gravimetry	E162	724936	1	20	5.0	5.0	<u> </u>
Total Coliforms (MF-mEndo)	E012.TC	721298	1	3	33.3	5.0	<u>√</u>
Total Coliforms Background (MF-mEndo)	E012.BG.TC	721299	1	1	100.0	5.0	<u> </u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	729132	1	16	6.2	5.0	<u> </u>
Total Sulfide by Colourimetry (Automated Flow)	E395-H	726653	1	6	16.6	5.0	<u>√</u>
Turbidity by Nephelometry	E121	721148	1	4	25.0	5.0	<u> </u>
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	727945	1	19	5.2	5.0	<u> </u>
Matrix Spikes (MS)							-

 Page
 :
 10 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Width. Water	Evaluation: A = QO requestoy outside obcompanion, A = QO requestoy within obcompanion										
Quality Control Sample Type			Co	ount	Frequency (%)						
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation				
Matrix Spikes (MS) - Continued											
Ammonia by Fluorescence	E298	729135	1	19	5.2	5.0	✓				
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	727946	1	9	11.1	5.0	✓				
Chloride in Water by IC	E235.Cl	728620	1	18	5.5	5.0	✓				
Dissolved Metals in Water by CRC ICPMS	E421	722924	1	20	5.0	5.0	✓				
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723366	1	20	5.0	5.0	✓				
Fluoride in Water by IC	E235.F	728623	1	1	100.0	5.0	✓				
Nitrate in Water by IC	E235.NO3	728621	1	4	25.0	5.0	✓				
Nitrite in Water by IC	E235.NO2	728622	1	4	25.0	5.0	✓				
Sulfate in Water by IC	E235.SO4	728624	1	1	100.0	5.0	✓				
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	✓				
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	729132	1	16	6.2	5.0	✓				
Total Sulfide by Colourimetry (Automated Flow)	E395-H	726653	1	6	16.6	5.0	✓				
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	727945	1	19	5.2	5.0	✓				

 Page
 :
 11 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms Background (MF-mEndo)	E012.BG.TC	Water	APHA 9222B (mod)	Noncoliform bacteria observed on Total Coliform plates are enumerated.
	NA/ . I . I			
	Waterloo -			
Heterotrophic Plate Count by MF (MF-mHPC)	Environmental E012.HPC	Water	SM 9215D	Following filtration (0.45 µm), and incubation at 35.0 ±0.5°C for 48 hours, the observed
Theterotrophic Flate Count by Wil (Wil -IIII II O)	EU12.NFC	Water	OW 32 10D	colonies are enumerated.
	Waterloo -			osionios dio ordinoratoa.
	Environmental			
Total Coliforms (MF-mEndo)	E012.TC	Water	APHA 9222B (mod)	Following filtration (0.45 µm), and incubation at 35.0 ±0.5°C for 24 hours, colonies
				exhibiting characteristic morphology of the target organism are enumerated and
	Waterloo -			confirmed.
	Environmental			
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies
	Materia.			exhibiting characteristic morphology of the target organism are enumerated.
	Waterloo -			
Conductivity in Water	Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
Conductivity in Water	E100	Water	Ai 11A 2310 (IIIOu)	measured by immersion of a conductivity cell with platinum electrodes into a water
	Waterloo -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Environmental			camping conducting measurements are temperature compensated to 20 c.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Waterloo -			pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
				scatter under defined conditions.
	Waterloo -			
TDS by Gravimetry	Environmental E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
150 by Gravimeny	E 102	Water	Ai 11A 2540 0 (1110d)	filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Waterloo -			with gravimetric measurement of the residue.
	Environmental			g.aa
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
	Waterloo -			
	Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
	Waterloo -			
	Environmental			

 Page
 :
 12 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Waterloo -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Waterloo -			
	Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Waterloo -			alkalinity values.
	Environmental			
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021)
	Environmental			
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
,	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Environmental			` , , ,
Colour (True) by Spectrometer (2 CU)	E329-L	Water	APHA 2120 C (mod)	Colour (True Colour) is determined by filtering a sample through a 0.45 micron membrane filter followed by analysis of the filtrate using the platinum-cobalt colourimetric
	Waterloo -			method. Colour measurements can be highly pH dependent, and apply to the pH of the
	Environmental			sample as received (at time of testing), without pH adjustment.
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Waterloo -			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion
	Environmental			with infrared detection of CO2. NPOC does not include volatile organic species that are
				purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Sulfide by Colourimetry (Automated	E395-H	Water	APHA 4500 -S	Sulfide is determined using the gas dialysis automated methlyene blue colourimetric
Flow)			E-Auto-Colorimetry	method. Results expressed "as H2S" if reported represent the maximum possible H2S
	Vancouver -			concentration based on the total sulfide concentration in the sample. The H2S
	Environmental			calculation converts Total Sulphide as (S2-) and reports it as Total Sulphide as (H2S)
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	Waterloo -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.

 Page
 :
 13 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Tannin & Lignin in Water	E563 Waterloo - Environmental	Water	APHA 5550 B-Colorimetry	This analysis is carried out using procedures adapted from APHA Method 5550 B. "Tannin & Lignin ". Both lignin and tannin contain aromatic hydroxyl groups that react with Folin phenol reagent (tungstophosphoric and molybdophosphoric acids) to form a blue color suitable for the estimation of tannin and lignin concentrations. However, the reaction is not specific for lignin or tannin, nor for compounds containing aromatic hydroxyl groups, in as much as many other reducing materials, both organic and inorganic, respond similarly.
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L Waterloo - Environmental	Water	CCME PHC in Soil - Tier 1	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG Waterloo - Environmental	Water	CCME PHC in Soil - Tier 1	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME hydrocarbon fractions (F2-F4).
VOCs (Eastern Canada List) by Headspace GC-MS	E611D Waterloo - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Phenolics (Ontario Chlorophenols List) by GC-MS	E651D Waterloo - Environmental	Water	EPA 8270E (mod)	Phenolics are analyzed by GC-MS.
BNA (ON 625-511 list) by GC-MS	E655A Waterloo - Environmental	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
Miscellaneous Pesticides by GC-MS	E660E-H Waterloo - Environmental	Water	EPA 8270E (mod)	Pesticides are analyzed by GC-MS.
Dissolved Hardness (Calculated)	EC100 Waterloo - Environmental	Water	АРНА 2340В	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Waterloo - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).

 Page
 :
 14 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
			1	ethylbenzene and xylenes (BTEX).
	Waterloo -			
	Environmental			
SUM F1 to F4 where F2-F4 is SG treated	EC581SG	Water	CCME PHC in Soil - Tier	
	Waterloo -		1	F3(C16-C34), and F4(C34-C50), where F2-F4 have been treated with silica gel. F4G-sg
	Environmental			is not used within this calculation due to overlap with other fractions.
F2-F4 (sg) minus PAH	EC600SG	Water	CCME PHC in Soil - Tier	F2-F4 (sg) minus PAH is calculated as follows: F2-F4 minus PAH = Sum of CCME
(3)	2000000		1	Fraction 2 (C10-C16), CCME Fraction 3 (C16-C34), and CCME Fraction 4 (C34-C50).
	Waterloo -		·	minus select Polycyclic Aromatic Hydrocarbons (PAH).
	Environmental			, , , , ,
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Waterloo -			
	Environmental			
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
	Waterloo -		(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the
	Environmental			analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
	Liiviioiiiieiilai			biased low.
Preparation for Dissolved Organic Carbon for	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion				
	Waterloo -			
	Environmental			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Waterloo -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
	Environmental			
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
	NA			extracted using a hexane liquid-liquid extraction.
	Waterloo -			
Phenolics Extraction	Environmental EP651	Water	EPA 3511 (mod)	Phenolics are extracted from acidic aqueous sample using DCM liquid-liquid extraction.
THEHORICS EXTRACTION	EPODI	vvalci	LI A 3311 (IIIOu)	Thenonics are extracted from acidic aqueous sample using Downinguid-inquid extraction.
	Waterloo -			
	Environmental			

 Page
 :
 15 of 15

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
Pesticides & Toxaphene Extraction by DCM	EP660D	Water	EPA 1699 (mod)	Samples are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : WT2219921

Client : GHD Limited
Contact : Pascal Renella
Address : 455 Phillip Street

Waterloo ON Canada N2L 3X2

Telephone

Project : 12586015-03.004 PO : 735-003748-1

C-O-C number : ---

Sampler :--- 519 725 3313

Site :--

Quote number : 12586015-SSOW-735-003748-1

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 19

Laboratory : Waterloo - Environmental

Account Manager : Rick Hawthorne

Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :+1 519 886 6910

Date Samples Received : 28-Oct-2022 10:00

Date Analysis Commenced : 29-Oct-2022

Issue Date : 09-Nov-2022 09:28

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario	
Andrea Armstrong	Department Manager - Air Quality and Volatiles	Waterloo Organics, Waterloo, Ontario	
Danielle Gravel	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario	
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario	
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario	
Jon Fisher	Department Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario	
Jon Fisher	Department Manager - Inorganics	Waterloo Metals, Waterloo, Ontario	
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia	
Ruby Sujeepan		Waterloo Microbiology, Waterloo, Ontario	

 Page
 :
 2 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							UP) Report				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	C Lot: 721148)										
WT2219921-001	GW-002	turbidity		E121	0.10	NTU	1.04	0.96	0.08	Diff <2x LOR	
Physical Tests (QC	C Lot: 724671)										
WT2219921-001	GW-002	colour, true		E329-L	2.0	CU	2.4	3.5	1.1	Diff <2x LOR	
Physical Tests (QC	C Lot: 724936)										
WT2219751-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	666	676	1.42%	20%	
Physical Tests (QC	Lot: 728617)										
WT2219438-001	Anonymous	conductivity		E100	2.0	μS/cm	1590	1580	0.316%	10%	
Physical Tests (QC	C Lot: 728618)										
WT2219438-001	Anonymous	рН		E108	0.10	pH units	7.12	7.19	0.978%	4%	
Physical Tests (QC	C Lot: 728619)										
WT2219438-001	Anonymous	alkalinity, total (as CaCO3)		E290	2.0	mg/L	602	610	1.40%	20%	
Anions and Nutrier	nts (QC Lot: 728620)										
WT2219921-001	GW-002	chloride	16887-00-6	E235.CI	2.50	mg/L	208	208	0.360%	20%	
Anions and Nutrier	nts (QC Lot: 728621)										
WT2219921-001	GW-002	nitrate (as N)	14797-55-8	E235.NO3	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
Anions and Nutrier	its (QC Lot: 728622)										
WT2219921-001	GW-002	nitrite (as N)	14797-65-0	E235.NO2	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 728623)										
WT2219921-001	GW-002	fluoride	16984-48-8	E235.F	0.100	mg/L	<0.100	<0.100	0	Diff <2x LOR	
Anions and Nutrier	its (QC Lot: 728624)										
WT2219921-001	GW-002	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	111	110	0.639%	20%	
Anions and Nutrier	nts (QC Lot: 729132)										
TY2203479-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	1.32	1.44	9.03%	20%	
Anions and Nutrier	its (QC Lot: 729135)										
WT2219765-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.144	0.148	2.75%	20%	
Organic / Inorganic	Carbon (QC Lot: 7233	366)									
WT2219419-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Sulfides (QC	Lot: 726653)										
	GW-002	sulfide, total (as S)	18496-25-8	E395-H	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	

 Page
 :
 4 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	ts (QC Lot: 721582)	- continued									
WT2220039-011	Anonymous	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 722924)										
WT2219765-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00579	0.00590	1.74%	20%	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0348	0.0340	2.32%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.110	0.116	4.86%	20%	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	39.1	41.1	5.12%	20%	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00015	0.00014	0.000004	Diff <2x LOR	
	copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00076	0.00077	0.000008	Diff <2x LOR		
	lead, dissolved	7439-92-1	E421	0.000050	mg/L	0.000140	0.000136	0.000004	Diff <2x LOR		
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	16.4	16.3	0.745%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00888	0.00882	0.715%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.0104	0.0103	1.68%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.908	0.900	0.941%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	36.1	36.1	0.133%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	1.06	1.03	2.57%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000028	0.000025	0.000002	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000271	0.000264	2.50%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0165	0.0164	0.627%	20%	
ggregate Organics	(OC Lot: 722654)										
A22C5934-004	Anonymous	tannin + lignin (as tannic acid)		E563	0.10	mg/L	3.42	3.44	0.737%	20%	
olatile Organic Co	mpounds (QC Lot: 7										
VT2219921-001	GW-002	Acetone	67-64-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR	
		benzene	71-43-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromodichloromethane	75-27-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromoform	75-25-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	

 Page
 :
 5 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

ub-Matrix: Water							Labora	tory Duplicate (D	иР) кероп		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
olatile Organic Co	mpounds (QC Lot: 72	7945) - continued									
WT2219921-001	GW-002	bromomethane	74-83-9	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		carbon tetrachloride	56-23-5	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR	
		chlorobenzene	108-90-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		chloroform	67-66-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dibromochloromethane	124-48-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dibromoethane, 1,2-	106-93-4	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR	
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,3-	541-73-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
	dichlorobenzene, 1,4- dichlorodifluoromethane dichloroethane, 1,1- dichloroethane, 1,2-	dichlorobenzene, 1,4-	106-46-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		75-71-8	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		75-34-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloroethane, 1,2-	107-06-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, 1,1-	75-35-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloromethane	75-09-2	E611D	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 1,2-	78-87-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		hexane, n-	110-54-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	<20	<20	0	Diff <2x LOR	
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		styrene	100-42-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethylene	127-18-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
	trichloroethane, 1,1,1-	71-55-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		trichloroethane, 1,1,2-	79-00-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichlorofluoromethane	75-69-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		vinyl chloride	75-09-4 75-01-4	E611D	0.50	μg/L μg/L	<0.50	<0.50	0	Diff <2x LOR	

 Page
 :
 6 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water	ub-Matrix: Water					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Cor	mpounds (QC Lot: 72794	45) - continued									
WT2219921-001	GW-002	xylene, m+p-	179601-23-1	E611D	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 727946)										
WT2219921-001	GW-002	F1 (C6-C10)		E581.F1-L	25	μg/L	<25	<25	0	Diff <2x LOR	

 Page
 :
 7 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 721148)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 724671)					
colour, true	E329-L	2	CU	<2.0	
Physical Tests (QCLot: 724936)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 728617)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 728619)					
alkalinity, total (as CaCO3)	E290	1	mg/L	1.1	
Anions and Nutrients (QCLot: 728620)					
chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 728621)					
nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 728622)					
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 728623)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 728624)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 729132)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 729135)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot: 723366)					
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Total Sulfides (QCLot: 726653)					
sulfide, total (as S)	18496-25-8 E395-H	0.01	mg/L	<0.010	
Microbiological Tests (QCLot: 721178)					
heterotrophic plate count [HPC]	E012.HPC	1	CFU/1mL	<1	
Microbiological Tests (QCLot: 721298)					
coliforms, total	E012.TC	1	CFU/100mL	<1	
Microbiological Tests (QCLot: 721299)					

 Page
 :
 8 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
licrobiological Tests (QCLot: 7212	99) - continued					
coliforms, total background		E012.BG.TC	1	CFU/100mL	<1	
licrobiological Tests (QCLot: 7215	82)					
coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	
Dissolved Metals (QCLot: 722924)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	
ggregate Organics (QCLot: 72265	4)					
tannin + lignin (as tannic acid)		E563	0.1	mg/L	<0.10	
olatile Organic Compounds (QCL	ot: 727945)					
Acetone	67-64-1	E611D	20	μg/L	<20	
benzene	71-43-2	E611D	0.5	μg/L	<0.50	
bromodichloromethane	75-27-4	E611D	0.5	μg/L	<0.50	

 Page
 :
 9 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

nalyte	CAS Number Method	LOR	Unit	Result	Qualifier
olatile Organic Compounds (QCLot	t: 727945) - continued				
bromoform	75-25-2 E611D	0.5	μg/L	<0.50	
bromomethane	74-83-9 E611D	0.5	μg/L	<0.50	
carbon tetrachloride	56-23-5 E611D	0.2	μg/L	<0.20	
chlorobenzene	108-90-7 E611D	0.5	μg/L	<0.50	
chloroform	67-66-3 E611D	0.5	μg/L	<0.50	
dibromochloromethane	124-48-1 E611D	0.5	μg/L	<0.50	
dibromoethane, 1,2-	106-93-4 E611D	0.2	μg/L	<0.20	
dichlorobenzene, 1,2-	95-50-1 E611D	0.5	μg/L	<0.50	
dichlorobenzene, 1,3-	541-73-1 E611D	0.5	μg/L	<0.50	
dichlorobenzene, 1,4-	106-46-7 E611D	0.5	μg/L	<0.50	
dichlorodifluoromethane	75-71-8 E611D	0.5	μg/L	<0.50	
dichloroethane, 1,1-	75-34-3 E611D	0.5	μg/L	<0.50	
dichloroethane, 1,2-	107-06-2 E611D	0.5	μg/L	<0.50	
dichloroethylene, 1,1-	75-35-4 E611D	0.5	μg/L	<0.50	
dichloroethylene, cis-1,2-	156-59-2 E611D	0.5	μg/L	<0.50	
dichloroethylene, trans-1,2-	156-60-5 E611D	0.5	μg/L	<0.50	
dichloromethane	75-09-2 E611D	1	μg/L	<1.0	
dichloropropane, 1,2-	78-87-5 E611D	0.5	μg/L	<0.50	
dichloropropylene, cis-1,3-	10061-01-5 E611D	0.3	μg/L	<0.30	
dichloropropylene, trans-1,3-	10061-02-6 E611D	0.3	μg/L	<0.30	
ethylbenzene	100-41-4 E611D	0.5	μg/L	<0.50	
hexane, n-	110-54-3 E611D	0.5	μg/L	<0.50	
methyl ethyl ketone [MEK]	78-93-3 E611D	20	μg/L	<20	
methyl isobutyl ketone [MIBK]	108-10-1 E611D	20	μg/L	<20	
methyl-tert-butyl ether [MTBE]	1634-04-4 E611D	0.5	μg/L	<0.50	
styrene	100-42-5 E611D	0.5	μg/L	<0.50	
tetrachloroethane, 1,1,1,2-	630-20-6 E611D	0.5	μg/L	<0.50	
tetrachloroethane, 1,1,2,2-	79-34-5 E611D	0.5	μg/L	<0.50	
tetrachloroethylene	127-18-4 E611D	0.5	μg/L	<0.50	
toluene	108-88-3 E611D	0.5	μg/L	<0.50	
trichloroethane, 1,1,1-	71-55-6 E611D	0.5	μg/L	<0.50	
trichloroethane, 1,1,2-	79-00-5 E611D	0.5	μg/L	<0.50	
trichloroethylene	79-01-6 E611D	0.5	μg/L	<0.50	
trichlorofluoromethane	75-69-4 E611D	0.5	μg/L	<0.50	
vinyl chloride	75-01-4 E611D	0.5	μg/L	<0.50	

 Page
 :
 10 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

nalyte	CAS Number	Method	LOR	Unit	Result	Qualifier
olatile Organic Compounds (QCL	ot: 727945) - continued					
xylene, m+p-	179601-23-1	E611D	0.4	μg/L	<0.40	
xylene, o-	95-47-6	E611D	0.3	μg/L	<0.30	
ydrocarbons (QCLot: 725959)						•
F2 (C10-C16)		E601.SG	100	μg/L	<100	
F3 (C16-C34)		E601.SG	250	μg/L	<250	
F4 (C34-C50)		E601.SG	250	μg/L	<250	
ydrocarbons (QCLot: 727946)						'
F1 (C6-C10)		E581.F1-L	25	μg/L	<25	
olycyclic Aromatic Hydrocarbons	(QCLot: 724805)					'
acenaphthene	83-32-9	E655A	0.2	μg/L	<0.20	
acenaphthylene	208-96-8	E655A	0.2	μg/L	<0.20	
anthracene	120-12-7	E655A	0.2	μg/L	<0.20	
benz(a)anthracene	56-55-3	E655A	0.2	μg/L	<0.20	
benzo(a)pyrene	50-32-8	E655A	0.02	μg/L	# <0.040	RRQC
benzo(b+j)fluoranthene	n/a	E655A	0.1	μg/L	<0.10	
benzo(g,h,i)perylene	191-24-2	E655A	0.2	μg/L	<0.20	
benzo(k)fluoranthene	207-08-9	E655A	0.1	μg/L	<0.10	
chrysene	218-01-9	E655A	0.1	μg/L	<0.10	
dibenz(a,h)anthracene	53-70-3	E655A	0.2	μg/L	<0.20	
fluoranthene	206-44-0	E655A	0.2	μg/L	<0.20	
fluorene	86-73-7	E655A	0.2	μg/L	<0.20	
indeno(1,2,3-c,d)pyrene	193-39-5	E655A	0.2	μg/L	<0.20	
methylnaphthalene, 1-	90-12-0	E655A	0.4	μg/L	<0.40	
methylnaphthalene, 2-	91-57-6	E655A	0.4	μg/L	<0.40	
naphthalene	91-20-3	E655A	0.2	μg/L	<0.20	
phenanthrene	85-01-8	E655A	0.2	μg/L	<0.20	
pyrene	129-00-0	E655A	0.2	μg/L	<0.20	
hthalate Esters (QCLot: 724805)						
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655A	2	μg/L	<2.0	
diethyl phthalate	84-66-2	E655A	0.2	μg/L	<0.20	
dimethyl phthalate	131-11-3	E655A	0.2	μg/L	<0.20	
emi-Volatile Organics (QCLot: 72	4805)					
biphenyl	92-52-4	E655A	0.4	μg/L	<0.40	
bis(2-chloroethyl) ether	111-44-4	E655A	0.4	μg/L	<0.40	
bis(2-chloroisopropyl) ether	39638-32-9	E655A	0.4	μg/L	<0.40	

 Page
 :
 11 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Semi-Volatile Organics (QCLot: 72	4805) - continued					
chloroaniline, 4-	106-47-8	E655A	0.4	μg/L	<0.40	
dichlorobenzidine, 3,3'-	91-94-1	E655A	0.4	μg/L	<0.40	
dinitrotoluene, 2,4-	121-14-2	E655A	0.4	μg/L	<0.40	
dinitrotoluene, 2,6-	606-20-2	E655A	0.4	μg/L	<0.40	
trichlorobenzene, 1,2,4-	120-82-1	E655A	0.4	μg/L	<0.40	
Chlorinated Phenolics (QCLot: 724	1805)					
chlorophenol, 2-	95-57-8	E655A	0.3	μg/L	<0.30	
dichlorophenol, 2,4-	120-83-2	E655A	0.3	μg/L	<0.30	
pentachlorophenol [PCP]	87-86-5	E655A	0.5	μg/L	<0.50	
trichlorophenol, 2,4,5-	95-95-4	E655A	0.2	μg/L	<0.20	
trichlorophenol, 2,4,6-	88-06-2	E655A	0.2	μg/L	<0.20	
Chlorinated Phenolics (QCLot: 724	1808)					
tetrachlorophenol, 2,3,4,6-	58-90-2	E651D	0.5	μg/L	<0.50	
Ion-Chlorinated Phenolics (QCLot	t: 724805)					
dimethylphenol, 2,4-	105-67-9	E655A	0.5	μg/L	<0.50	
dinitrophenol, 2,4-	51-28-5	E655A	1	μg/L	<1.0	
phenol	108-95-2	E655A	0.5	μg/L	<0.50	
Pesticides (QCLot: 724791)						
diazinon	333-41-5	E660E-H	0.1	μg/L	<0.10	

 Page
 :
 12 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 721148)									
turbidity		E121	0.1	NTU	200 NTU	92.4	85.0	115	
Physical Tests (QCLot: 724671)									
colour, true		E329-L	2	CU	25 CU	97.6	85.0	115	
Physical Tests (QCLot: 724936)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	105	85.0	115	
Physical Tests (QCLot: 728617)									
conductivity		E100	1	μS/cm	1409 μS/cm	100	90.0	110	
Physical Tests (QCLot: 728618)									
рН		E108		pH units	7 pH units	100	98.0	102	
Physical Tests (QCLot: 728619)									
alkalinity, total (as CaCO3)		E290	1	mg/L	150 mg/L	106	85.0	115	
Anions and Nutrients (QCLot: 728620)	40007.00.0	5005 O	0.5				00.0	140	
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 728621)	44707.55.0	Eggs NO2	0.00		0.5 "	101	00.0	440	
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 728622)	14797-65-0	Eggs NOO	0.04		0.5 "	400	00.0	440	ı
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 728623)	40004 40 0	E005 E	0.00			101	00.0	440	ı
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 728624)	14808-79-8	E235.SO4	0.2	m a /l	400 //	400	90.0	110	I
sulfate (as SO4)	14000-79-0	E235.5U4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 729132) Kjeldahl nitrogen, total [TKN]		E318	0.05	m a /l	4 "	400	75.0	125	
		E310	0.05	mg/L	4 mg/L	108	75.0	125	
Anions and Nutrients (QCLot: 729135)	7664-41-7	E209	0.005	mg/l	0.0//	05.0	85.0	115	
ammonia, total (as N)	/ 004-41-/	E290	0.005	mg/L	0.2 mg/L	95.2	00.0	115	
Organic / Inorganic Carbon (QCLot: 723366) carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	105	80.0	120	
pearson, dissolved organic [DOO]		2000 E	0.5	mg/L	6.57 Hg/L	103	00.0	120	
T-4-1 C. (5-1 (OC) -4: -700050)									
Total Sulfides (QCLot: 726653) sulfide, total (as H2S)	7783-06-4	E395-H		mg/L	0.085 mg/L	103	80.0	120	
Jamas, Islai (as 1120)	7700 00-4		1	9/ -	0.000 Hig/L	100	00.0	.20	

 Page
 :
 13 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Sulfides (QCLot: 726653) - continued									
sulfide, total (as S)	18496-25-8	E395-H	0.01	mg/L	0.08 mg/L	102	80.0	120	
									I
Dissolved Metals (QCLot: 722924)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	0.1 mg/L	99.3	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	0.05 mg/L	97.3	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	0.05 mg/L	103	80.0	120	
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.0125 mg/L	100.0	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.005 mg/L	92.8	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	0.05 mg/L	91.1	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.005 mg/L	102	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	2.5 mg/L	99.7	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.0125 mg/L	96.6	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.0125 mg/L	97.7	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.0125 mg/L	96.8	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.025 mg/L	104	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	2.5 mg/L	103	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.0125 mg/L	101	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.0125 mg/L	96.6	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.025 mg/L	98.3	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	2.5 mg/L	95.0	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	0.05 mg/L	103	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.005 mg/L	100	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	2.5 mg/L	100	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.0125 mg/L	100	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	0.05 mg/L	101	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.00025 mg/L	108	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.025 mg/L	98.3	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.025 mg/L	98.6	80.0	120	
					, and the second				1
Aggregate Organics (QCLot: 722654)									
tannin + lignin (as tannic acid)		E563	0.1	mg/L	5 mg/L	103	85.0	115	
Volatile Organic Compounds (QCLot: 727945)									
Acetone	67-64-1	E611D	20	μg/L	100 μg/L	118	70.0	130	
benzene	71-43-2	E611D	0.5	μg/L	100 μg/L	106	70.0	130	
bromodichloromethane	75-27-4	E611D	0.5	μg/L	100 μg/L	104	70.0	130	

 Page
 :
 14 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Volatile Organic Compounds (QCLot:	727945) - continued								
bromoform	75-25-2 E	E611D	0.5	μg/L	100 μg/L	94.8	70.0	130	
bromomethane	74-83-9 E	E611D	0.5	μg/L	100 μg/L	96.8	60.0	140	
carbon tetrachloride	56-23-5 E	E611D	0.2	μg/L	100 μg/L	85.6	70.0	130	
chlorobenzene	108-90-7 E	E611D	0.5	μg/L	100 μg/L	97.5	70.0	130	
chloroform	67-66-3 E	E611D	0.5	μg/L	100 μg/L	99.4	70.0	130	
dibromochloromethane	124-48-1 E	E611D	0.5	μg/L	100 μg/L	90.5	70.0	130	
dibromoethane, 1,2-	106-93-4 E	E611D	0.2	μg/L	100 μg/L	82.9	70.0	130	
dichlorobenzene, 1,2-	95-50-1 E	E611D	0.5	μg/L	100 μg/L	92.9	70.0	130	
dichlorobenzene, 1,3-	541-73-1 E	E611D	0.5	μg/L	100 μg/L	94.0	70.0	130	
dichlorobenzene, 1,4-	106-46-7 E	E611D	0.5	μg/L	100 μg/L	94.3	70.0	130	
dichlorodifluoromethane	75-71-8 E	E611D	0.5	μg/L	100 μg/L	98.9	60.0	140	
dichloroethane, 1,1-	75-34-3 E	E611D	0.5	μg/L	100 μg/L	103	70.0	130	
dichloroethane, 1,2-	107-06-2 E	E611D	0.5	μg/L	100 μg/L	110	70.0	130	
dichloroethylene, 1,1-	75-35-4 E	E611D	0.5	μg/L	100 μg/L	100.0	70.0	130	
dichloroethylene, cis-1,2-	156-59-2 E	E611D	0.5	μg/L	100 μg/L	86.2	70.0	130	
dichloroethylene, trans-1,2-	156-60-5 E	E611D	0.5	μg/L	100 μg/L	102	70.0	130	
dichloromethane	75-09-2 E	E611D	1	μg/L	100 μg/L	95.9	70.0	130	
dichloropropane, 1,2-	78-87-5 E	E611D	0.5	μg/L	100 μg/L	102	70.0	130	
dichloropropylene, cis-1,3-	10061-01-5 E	E611D	0.3	μg/L	100 μg/L	104	70.0	130	
dichloropropylene, trans-1,3-	10061-02-6 E	E611D	0.3	μg/L	100 μg/L	111	70.0	130	
ethylbenzene	100-41-4 E	E611D	0.5	μg/L	100 μg/L	100	70.0	130	
hexane, n-	110-54-3 E	E611D	0.5	μg/L	100 μg/L	100.0	70.0	130	
methyl ethyl ketone [MEK]	78-93-3 E	E611D	20	μg/L	100 μg/L	114	70.0	130	
methyl isobutyl ketone [MIBK]	108-10-1 E	E611D	20	μg/L	100 μg/L	103	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4 E	E611D	0.5	μg/L	100 μg/L	106	70.0	130	
styrene	100-42-5 E	E611D	0.5	μg/L	100 μg/L	96.7	70.0	130	
tetrachloroethane, 1,1,1,2-	630-20-6 E		0.5	μg/L	100 μg/L	83.5	70.0	130	
tetrachloroethane, 1,1,2,2-	79-34-5 E		0.5	μg/L	100 μg/L	104	70.0	130	
tetrachloroethylene	127-18-4 E	E611D	0.5	μg/L	100 μg/L	96.8	70.0	130	
coluene	108-88-3 E		0.5	μg/L	100 μg/L	107	70.0	130	
richloroethane, 1,1,1-	71-55-6 E		0.5	μg/L	100 μg/L	93.0	70.0	130	
richloroethane, 1,1,2-	79-00-5 E		0.5	μg/L	100 µg/L	96.0	70.0	130	
trichloroethylene	79-01-6 E		0.5	μg/L	100 μg/L	81.7	70.0	130	
richlorofluoromethane	75-69-4 E		0.5	μg/L	100 μg/L 100 μg/L	97.0	60.0	140	
vinyl chloride	75-01-4 E		0.5	μg/L	100 μg/L 100 μg/L	90.3	60.0	140	
xylene, m+p-	179601-23-1 E		0.4	μg/L	100 μg/L 200 μg/L	97.8	70.0	130	

 Page
 :
 15 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analyte Volatile Organic Compounds (QCLot: 727945) - xylene, o-		Method			Spike	Recovery (%)	D	11	
Volatile Organic Compounds (QCLot: 727945) -	continued	Method						Limits (%)	
			LOR	Unit	Concentration	LCS	Low	High	Qualifier
	95-47-6	E611D	0.3	μg/L	100 μg/L	102	70.0	130	
Hydrocarbons (QCLot: 725959)									
F2 (C10-C16)		E601.SG	100	μg/L	5190.11 μg/L	102	70.0	130	
F3 (C16-C34)		E601.SG	250	μg/L	6225.68 µg/L	102	70.0	130	
F4 (C34-C50)		E601.SG	250	μg/L	6014.63 μg/L	96.3	70.0	130	
Hydrocarbons (QCLot: 727946)									
F1 (C6-C10)		E581.F1-L	25	μg/L	2000 μg/L	108	80.0	120	
Polycyclic Aromatic Hydrocarbons (QCLot: 724	805)								
acenaphthene	83-32-9	E655A	0.2	μg/L	1.6 μg/L	94.8	50.0	140	
acenaphthylene	208-96-8	E655A	0.2	μg/L	1.6 μg/L	97.1	50.0	140	
anthracene	120-12-7	E655A	0.2	μg/L	1.6 µg/L	105	50.0	140	
benz(a)anthracene	56-55-3	E655A	0.2	μg/L	1.6 µg/L	119	50.0	140	
benzo(a)pyrene	50-32-8	E655A	0.02	μg/L	1.6 µg/L	109	50.0	140	
benzo(b+j)fluoranthene	n/a	E655A	0.1	μg/L	1.6 µg/L	74.0	50.0	140	
benzo(g,h,i)perylene	191-24-2	E655A	0.2	μg/L	1.6 μg/L	67.9	50.0	140	
benzo(k)fluoranthene	207-08-9	E655A	0.1	μg/L	1.6 μg/L	105	50.0	140	
chrysene	218-01-9	E655A	0.1	μg/L	1.6 µg/L	95.1	50.0	140	
dibenz(a,h)anthracene	53-70-3	E655A	0.2	μg/L	1.6 µg/L	73.3	50.0	140	
fluoranthene	206-44-0	E655A	0.2	μg/L	1.6 μg/L	90.1	50.0	140	
fluorene	86-73-7	E655A	0.2	μg/L	1.6 μg/L	89.8	50.0	140	
indeno(1,2,3-c,d)pyrene	193-39-5	E655A	0.2	μg/L	1.6 μg/L	66.4	50.0	140	
methylnaphthalene, 1-	90-12-0	E655A	0.4	μg/L	1.6 μg/L	97.7	50.0	140	
methylnaphthalene, 2-	91-57-6	E655A	0.4	μg/L	1.6 µg/L	86.6	50.0	140	
naphthalene	91-20-3	E655A	0.2	μg/L	1.6 µg/L	87.4	50.0	140	
phenanthrene	85-01-8	E655A	0.2	μg/L	1.6 μg/L	93.6	50.0	140	
pyrene	129-00-0	E655A	0.2	μg/L	1.6 µg/L	86.4	50.0	140	
					, 5				
Phthalate Esters (QCLot: 724805)									
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655A	2	μg/L	6.4 µg/L	116	50.0	140	
diethyl phthalate	84-66-2	E655A	0.2	μg/L	6.4 μg/L	100	50.0	140	
dimethyl phthalate	131-11-3	E655A	0.2	μg/L	6.4 µg/L	107	50.0	140	
Semi-Volatile Organics (QCLot: 724805)									
biphenyl	92-52-4	E655A	0.4	μg/L	1.6 µg/L	97.1	50.0	140	

 Page
 :
 16 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Semi-Volatile Organics (QCLot: 724805) - continued								
bis(2-chloroethyl) ether	111-44-4	E655A	0.4	μg/L	1.6 µg/L	85.5	50.0	140	
bis(2-chloroisopropyl) ether	39638-32-9	E655A	0.4	μg/L	1.6 µg/L	89.4	50.0	140	
chloroaniline, 4-	106-47-8	E655A	0.4	μg/L	1.6 μg/L	61.4	30.0	130	
dichlorobenzidine, 3,3'-	91-94-1	E655A	0.4	μg/L	1.6 μg/L	# 25.6	30.0	130	RRQC
dinitrotoluene, 2,4-	121-14-2	E655A	0.4	μg/L	1.6 µg/L	121	50.0	140	
dinitrotoluene, 2,6-	606-20-2	E655A	0.4	μg/L	1.6 µg/L	118	50.0	140	
trichlorobenzene, 1,2,4-	120-82-1	E655A	0.4	μg/L	1.6 µg/L	72.0	50.0	140	
Chlorinated Phenolics (QCLot: 724805)									
chlorophenol, 2-	95-57-8	E655A	0.3	μg/L	4.8 μg/L	87.6	50.0	140	
dichlorophenol, 2,4-	120-83-2	E655A	0.3	μg/L	4.8 μg/L	106	50.0	140	
pentachlorophenol [PCP]	87-86-5	E655A	0.5	μg/L	4.8 μg/L	# 148	50.0	140	LCS-H
trichlorophenol, 2,4,5-	95-95-4	E655A	0.2	μg/L	4.8 μg/L	115	50.0	140	
trichlorophenol, 2,4,6-	88-06-2	E655A	0.2	μg/L	4.8 μg/L	114	50.0	140	
Chlorinated Phenolics (QCLot: 724808)									
tetrachlorophenol, 2,3,4,6-	58-90-2	E651D	0.5	μg/L	4.8 μg/L	115	50.0	140	
Non-Chlorinated Phenolics (QCLot: 72	4805)								
dimethylphenol, 2,4-	105-67-9	E655A	0.5	μg/L	4.8 µg/L	98.8	30.0	130	
dinitrophenol, 2,4-	51-28-5	E655A	1	μg/L	4.8 µg/L	# 174	50.0	140	LCS-H
phenol	108-95-2	E655A	0.5	μg/L	4.8 μg/L	114	50.0	140	
Pesticides (QCLot: 724791)									•
diazinon	333-41-5	E660E-H	0.1	μg/L	0.2 μg/L	94.8	60.0	130	

Qualifiers

Qualifier	Description
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
RRQC	Refer to report comments for information regarding this QC result.

 Page
 :
 17 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery (%) Recovery			
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
Anions and Nutr	ients (QCLot: 728620)										
WT2219921-001	GW-002	chloride	16887-00-6	E235.CI	492 mg/L	500 mg/L	98.5	75.0	125		
Anions and Nutr	ients (QCLot: 728621)										
WT2219921-001	GW-002	nitrate (as N)	14797-55-8	E235.NO3	12.1 mg/L	12.5 mg/L	96.7	75.0	125		
Anions and Nutr	ients (QCLot: 728622)										
WT2219921-001	GW-002	nitrite (as N)	14797-65-0	E235.NO2	2.44 mg/L	2.5 mg/L	97.6	75.0	125		
Anions and Nutr	ients (QCLot: 728623)										
WT2219921-001	GW-002	fluoride	16984-48-8	E235.F	4.97 mg/L	5 mg/L	99.5	75.0	125		
Anions and Nutr	ients (QCLot: 728624)										
WT2219921-001	GW-002	sulfate (as SO4)	14808-79-8	E235.SO4	494 mg/L	500 mg/L	98.7	75.0	125		
Anions and Nutr	ients (QCLot: 729132)										
TY2203479-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.82 mg/L	2.5 mg/L	113	70.0	130		
Anions and Nutr	ients (QCLot: 729135)										
WT2219765-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125		
Organic / Inorga	nic Carbon (QCLot: 72	3366)									
WT2219419-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.93 mg/L	5 mg/L	118	70.0	130		
Total Sulfides(QCLot: 726653)										
WT2219958-001	Anonymous	sulfide, total (as S)	18496-25-8	E395-H	1.08 mg/L	1 mg/L	108	75.0	125		
Dissolved Metals	s (QCLot: 722924)										
WT2219907-001	Anonymous	aluminum, dissolved	7429-90-5	E421	ND mg/L	0.1 mg/L	ND	70.0	130		
		antimony, dissolved	7440-36-0	E421	0.0505 mg/L	0.05 mg/L	101	70.0	130		
		arsenic, dissolved	7440-38-2	E421	0.0537 mg/L	0.05 mg/L	107	70.0	130		
		barium, dissolved	7440-39-3	E421	0.0118 mg/L	0.0125 mg/L	94.4	70.0	130		
		beryllium, dissolved	7440-41-7	E421	0.00472 mg/L	0.005 mg/L	94.4	70.0	130		
		boron, dissolved	7440-42-8	E421	0.043 mg/L	0.05 mg/L	86.2	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.00515 mg/L	0.005 mg/L	103	70.0	130		
		calcium, dissolved	7440-70-2	E421	ND mg/L	2.5 mg/L	ND	70.0	130		
		chromium, dissolved	7440-47-3	E421	0.0120 mg/L	0.0125 mg/L	96.2	70.0	130		
		cobalt, dissolved	7440-48-4	E421	0.0122 mg/L	0.0125 mg/L	97.6	70.0	130		
	1	copper, dissolved	7440-50-8	E421	0.0120 mg/L	0.0125 mg/L	95.9	70.0	130		

 Page
 :
 18 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water				Matrix Spike (MS) Report						
ous mann. Tuto.					Spi	ke	Recovery (%)	Recovery Limits (%)		
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	s (QCLot: 722924) -	continued								
WT2219907-001	Anonymous	lead, dissolved	7439-92-1	E421	0.0252 mg/L	0.025 mg/L	101	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	2.5 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0117 mg/L	0.0125 mg/L	93.3	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0120 mg/L	0.0125 mg/L	95.6	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0239 mg/L	0.025 mg/L	95.7	70.0	130	
		potassium, dissolved	7440-09-7	E421	2.31 mg/L	2.5 mg/L	92.5	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0578 mg/L	0.05 mg/L	116	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00440 mg/L	0.005 mg/L	88.0	70.0	130	
		sodium, dissolved	7440-23-5	E421	2.22 mg/L	2.5 mg/L	88.7	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.0125 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0496 mg/L	0.05 mg/L	99.1	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.000263 mg/L	0.00025 mg/L	105	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0242 mg/L	0.025 mg/L	96.9	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.0244 mg/L	0.025 mg/L	97.5	70.0	130	
Aggregate Organ	nics (QCLot: 722654)								
VA22C5934-004	Anonymous	tannin + lignin (as tannic acid)		E563	ND mg/L	1.96 mg/L	ND	70.0	130	
/olatile Organic	Compounds (QCLo	t: 727945)								
WT2219921-001	GW-002	Acetone	67-64-1	E611D	90 μg/L	100 μg/L	90.5	60.0	140	
		benzene	71-43-2	E611D	98.1 μg/L	100 μg/L	98.1	60.0	140	
		bromodichloromethane	75-27-4	E611D	94.3 µg/L	100 μg/L	94.3	60.0	140	
		bromoform	75-25-2	E611D	82.5 μg/L	100 μg/L	82.5	60.0	140	
		bromomethane	74-83-9	E611D	85.0 μg/L	100 μg/L	85.0	60.0	140	
		carbon tetrachloride	56-23-5	E611D	80.3 μg/L	100 μg/L	80.3	60.0	140	
		chlorobenzene	108-90-7	E611D	91.4 μg/L	100 μg/L	91.4	60.0	140	
		chloroform	67-66-3	E611D	92.1 μg/L	100 μg/L	92.1	60.0	140	
		dibromochloromethane	124-48-1	E611D	81.2 μg/L	100 μg/L	81.2	60.0	140	
		dibromoethane, 1,2-	106-93-4	E611D	73.4 μg/L	100 μg/L	73.4	60.0	140	
		dichlorobenzene, 1,2-	95-50-1	E611D	91.0 μg/L	100 μg/L	91.0	60.0	140	
		dichlorobenzene, 1,3-	541-73-1	E611D	95.1 μg/L	100 μg/L	95.1	60.0	140	
		dichlorobenzene, 1,4-	106-46-7	E611D	94.5 μg/L	100 μg/L	94.5	60.0	140	
		dichlorodifluoromethane	75-71-8	E611D	76.6 μg/L	100 μg/L	76.6	60.0	140	
		dichloroethane, 1,1-	75-34-3	E611D	93.9 μg/L	100 μg/L	93.9	60.0	140	
		dichloroethane, 1,2-	107-06-2	E611D	97.7 μg/L	100 μg/L	97.7	60.0	140	
		dichloroethylene, 1,1-	75-35-4	E611D	92.8 μg/L	100 μg/L	92.8	60.0	140	
	1	dichloroethylene, cis-1,2-	156-59-2	E611D	1 78.8 μg/L	100 μg/L	78.8	60.0	140	

 Page
 :
 19 of 19

 Work Order
 :
 WT2219921

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water						Matrix Spike (MS) Report					
					Spi	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
Volatile Organic	Compounds (QCLo	t: 727945) - continued									
WT2219921-001	GW-002	dichloroethylene, trans-1,2-	156-60-5	E611D	95.5 μg/L	100 μg/L	95.5	60.0	140		
		dichloromethane	75-09-2	E611D	84.7 μg/L	100 μg/L	84.7	60.0	140		
		dichloropropane, 1,2-	78-87-5	E611D	92.7 μg/L	100 μg/L	92.7	60.0	140		
		dichloropropylene, cis-1,3-	10061-01-5	E611D	93.6 μg/L	100 μg/L	93.6	60.0	140		
		dichloropropylene, trans-1,3-	10061-02-6	E611D	101 μg/L	100 μg/L	101	60.0	140		
		ethylbenzene	100-41-4	E611D	99.9 μg/L	100 μg/L	99.9	60.0	140		
		hexane, n-	110-54-3	E611D	92.6 μg/L	100 μg/L	92.6	60.0	140		
		methyl ethyl ketone [MEK]	78-93-3	E611D	85 μg/L	100 μg/L	84.9	60.0	140		
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	78 μg/L	100 μg/L	77.8	60.0	140		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	97.5 μg/L	100 μg/L	97.5	60.0	140		
		styrene	100-42-5	E611D	92.2 μg/L	100 μg/L	92.2	60.0	140		
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	77.6 μg/L	100 μg/L	77.6	60.0	140		
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	90.9 μg/L	100 μg/L	90.9	60.0	140		
		tetrachloroethylene	127-18-4	E611D	93.9 μg/L	100 μg/L	93.9	60.0	140		
		toluene	108-88-3	E611D	105 μg/L	100 μg/L	105	60.0	140		
		trichloroethane, 1,1,1-	71-55-6	E611D	88.3 µg/L	100 μg/L	88.3	60.0	140		
		trichloroethane, 1,1,2-	79-00-5	E611D	86.9 µg/L	100 μg/L	86.9	60.0	140		
		trichloroethylene	79-01-6	E611D	79.8 µg/L	100 μg/L	79.8	60.0	140		
		trichlorofluoromethane	75-69-4	E611D	89.5 µg/L	100 μg/L	89.5	60.0	140		
		vinyl chloride	75-01-4	E611D	78.8 µg/L	100 μg/L	78.8	60.0	140		
		xylene, m+p-	179601-23-1	E611D	194 µg/L	200 μg/L	96.8	60.0	140		
		xylene, o-	95-47-6	E611D	100 μg/L	100 μg/L	100	60.0	140		
Hydrocarbons (QCLot: 727946)										
WT2219921-001	GW-002	F1 (C6-C10)		E581.F1-L	1850 μg/L	2000 μg/L	92.6	60.0	140		

10/26/9083 Front Mey

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 -

Canada Toll Free: 1 800 668 9878

Page [of [

Report To Contact and company name below will appear on the final report Company: GHD Ltd. (GHDL100) Select Report Format:	19921
Select Report Format. Post Education Post	19921
Pascal Renella	19921
Company address below will appear on the final report Select Distribution:	886 6910
Company address below will appear on the final report Select Distribution: PAX	
Fees may apply to rush resuests on weekends, statutory holidays an routine tests	
City/Province: Waterloo, ON	
Invoice To Same as Report To YES NO Select Invoice Distribution: Demail of Fortests that can not be performed according to the Copy of Invoice with Report YES NO Select Invoice Distribution: Demail of Fax Invoicing-Canada@ghd.com Company: GHD Ltd. (GHDL100) Email of Tax Invoicing-Canada@ghd.com Indicate Filtered (F), Preserved (P) or Filtered and Filtered (F), Preserved (P) or Filtered (F), Preserved (P) or Filtered and Filtered (F), Preserved (P) or Fi	
Copy of Invoice with Report	
Company: GHD Ltd. (GHDL100) Email 1 or Fax Invoicing-Canada@ghd.com Contact: Email 2 Project Information Oil and Gas Required Fields (client use) ALS Account #/ Quote #: WT2022GHDL1000126 AFE/Cost Center: PO# Telephone : +1 51	
Company: GHD Ltd. (GHDL100) Email 1 or Fax Invoicing-Canada@grid.com Contact: Email 2 Project Information Oil and Gas Required Fields (client use) ALS Account #/ Quote #: WT2022GHDL1000126 AFE/Cost Center: PO#	
Email 2	HOLD AGE REQUIF
Project Information Oil and Gas Required Fields (client use) ALS Account # / Quote #: WT2022GHDL1000126 AFE/Cost Center: PO# Inh #: 12586015 Major/Minor Code: Routing Code:	HOLD AGE REGL
ALS Account # / Quote #: WT2022GHDL1000126	HOLE AGE RE
Iob #: 12586015 Major/Minor Code: Routing Code: C S S S S S S S S S	[유] [왕
······································	
PO / AFE: Requisitioner:	NO SA
SD: Location: Lo	를 있다.
ALS Sample # Sample Identification and/or Coordinates (Dass (Calco)) ALS Sample # Sample Identification and/or Coordinates (Lief Filed Files) (In this description will appear on the report) Requisitioner: ALS Contact: Rick H Sampler: ALS Sample # Sample Identification and/or Coordinates (Date only) (In this description will appear on the report) Requisitioner: ALS Contact: Rick H Sampler: ALS Sample # Sample Type (In this description will appear on the report)	SAMPLES (SAMPLES SETENDED STENDED STENDED FOR STENDE FOR STENDED F
ALS Sample # Sample Identification and/or Coordinates Date Time Sample Type (lab use only) (This description will appear on the report) (dd-mmm-yy) (hh:mm) Sample Type	SP E SP
ALS Sample # Sample Identification and/or Coordinates Date Time (lab use only) (This description will appear on the report) (dd-mmm-yy) (hh:mm)	<u> </u>
GW-12586015- GW - 002 26-047-22 16400 WATER RRRRRRRRR	27
9W-12380015	
GW-12586015- GW - OO/ 26-007-22 11400 WATER R	
GW-12588015	
CW-12586015	
GW-12586015- WATER R	
Trip-Blank WATER	_R-
mg l	
Notes / Specify Limits for result evaluation by selecting from drop-down below SAMPLE RECEIPT DETAILS (lab use only)	
	OLING INITIATED
Are samples taken from a Regulated DW System? New Cords to Cold M. Bowward, Gib e M. Submission Comments identified on Sample Receipt Notification: TYES	Оио
☐ YES ☐ NO Cooler Custody Seals Intact: ☐ YES ☐ N/A Sample Custody Seals Intact R = CUECKMARK INITIAL COOLER TEMPERATURES °C FINAL COOLER TEM	
	ERATURES °C
EY YES [] NO [] 3.	<u> </u>
SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) / FINAL SHIPMENT RECEPTION (lab use on	
Released by: G-BOCIN Date: Date: Time: Received by:	Time:
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION / WHITE - LABGRATORY COPY YELLOW - CLIENT COPY Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.	AUG 2020 FROM

If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

MA 05-474 MM-363 GG 56 N356 VW-012

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Page Work Order : WT2220058 : 1 of 8

Client : GHD Limited Laboratory : Waterloo - Environmental

Contact : Pascal Renella **Account Manager** : Rick Hawthorne Address

Address : 60 Northland Road, Unit 1

Waterloo ON Canada N2V 2B8

Telephone : +1 519 886 6910 Date Samples Received : 28-Oct-2022 07:40

> : 29-Oct-2022 **Date Analysis**

Commenced

Issue Date : 09-Nov-2022 10:59

Waterloo ON Canada N2L 3X2 Telephone : 519 725 3313 **Project** : 12586015-03.004

РО : 735-003748-1

C-O-C number Sampler ----Site

12586015-SSOW-735-003748-1 Quote number

: 455 Phillip Street

No. of samples received : 3 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- **Analytical Results**
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Danielle Gravel	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Metals, Waterloo, Ontario
Kelsey Hesch	Analyst	Organics, Waterloo, Ontario
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Ruby Sujeepan		Microbiology, Waterloo, Ontario

 Page
 :
 2 of 8

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
CFU/100mL	colony forming units per 100 mL
CFU/1mL	colony forming units per 1 mL
CU	colour units (1 CU = 1 mg/L Pt)
meq/L	milliequivalents per litre
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

RRR - Detection limit raised due to suspected laboratory contamination.

Sample Comments

Sample	Client Id	Comment
WT2220058-001	GW-12586015-GW-004	RRR:Detection limit raised due to instrument sensitivity.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
RRR	Refer to report comments for issues regarding this analysis.

<: less than.

 Page
 :
 3 of 8

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2220058-001

Sub-Matrix:Water
(Matrix: Water)

Client sample ID: GW-12586015-GW-004
Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests							Date	
colour, true		2.9	2.0	CU	E329-L	01-Nov-2022	04-Nov-2022	724671
conductivity		790	2.0	μS/cm	E100	03-Nov-2022	06-Nov-2022	729186
hardness (as CaCO3), dissolved		391	0.50	mg/L	EC100	-	02-Nov-2022	-
рН		8.43	0.10	pH units	E108	03-Nov-2022	06-Nov-2022	729184
solids, total dissolved [TDS]		495 DLDS	20	mg/L	E162	-	02-Nov-2022	726629
turbidity		0.10	0.10	NTU	E121	-	04-Nov-2022	730340
alkalinity, total (as CaCO3)		269	2.0	mg/L	E290	03-Nov-2022	06-Nov-2022	729185
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.125	0.0050	mg/L	E298	02-Nov-2022	04-Nov-2022	726698
chloride	16887-00-6	67.0	0.50	mg/L	E235.CI	03-Nov-2022	04-Nov-2022	729182
fluoride	16984-48-8	0.192	0.020	mg/L	E235.F	03-Nov-2022	04-Nov-2022	729179
Kjeldahl nitrogen, total [TKN]		0.194	0.050	mg/L	E318	02-Nov-2022	03-Nov-2022	726029
nitrate (as N)	14797-55-8	<0.020	0.020	mg/L	E235.NO3	03-Nov-2022	04-Nov-2022	729180
nitrite (as N)	14797-65-0	<0.010	0.010	mg/L	E235.NO2	03-Nov-2022	04-Nov-2022	729181
sulfate (as SO4)	14808-79-8	62.5	0.30	mg/L	E235.SO4	03-Nov-2022	04-Nov-2022	729183
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		1.98	0.50	mg/L	E358-L	31-Oct-2022	01-Nov-2022	723488
Total Sulfides								
sulfide, total (as H2S)	7783-06-4	0.019	0.011	mg/L	E395-H	-	02-Nov-2022	727164
sulfide, total (as S)	18496-25-8	0.018	0.010	mg/L	E395-H	-	02-Nov-2022	727164
Microbiological Tests								
coliforms, total		Not Detected	1	CFU/100mL	E012.TC	-	29-Oct-2022	721574
heterotrophic plate count [HPC]		1	1	CFU/1mL	E012.HPC	-	29-Oct-2022	721573
coliforms, total background		1	1	CFU/100mL	E012.BG.TC	-	29-Oct-2022	721575
coliforms, Escherichia coli [E. coli]		Not Detected	1	CFU/100mL	E012A.EC	-	29-Oct-2022	721578
Ion Balance								
anion sum		8.58	0.10	meq/L	EC101	-	09-Nov-2022	-
cation sum		9.20	0.10	meq/L	EC101	-	09-Nov-2022	-
ion balance (APHA)		3.49	0.01	%	EC101	-	09-Nov-2022	-
Dissolved Metals								
aluminum, dissolved	7429-90-5	<0.0010	0.0010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
antimony, dissolved	7440-36-0	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
arsenic, dissolved	7440-38-2	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
barium, dissolved	7440-39-3	0.149	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
boron, dissolved	7440-42-8	0.077	0.010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
cadmium, dissolved	7440-43-9	<0.0000050	0.0000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
calcium, dissolved	7440-70-2	96.9	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
chromium, dissolved	7440-47-3	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
cobalt, dissolved	7440-48-4	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
copper, dissolved	7440-50-8	0.00035	0.00020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
lead, dissolved	7439-92-1	<0.000050	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
magnesium, dissolved	7439-95-4	36.1	0.0050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
manganese, dissolved	7439-96-5	0.0420	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
molybdenum, dissolved	7439-98-7	0.00604	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
nickel, dissolved	7440-02-0	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874

 Page
 :
 4 of 8

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2220058-001 Sub-Matrix:**Water**

(Matrix: Water)

Client sample ID: GW-12586015-GW-004
Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Dissolved Metals								
ootassium, dissolved	7440-09-7	5.14	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
selenium, dissolved	7782-49-2	0.000141	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
sodium, dissolved	7440-23-5	28.8	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	72487
strontium, dissolved	7440-24-6	2.05	0.00020	mg/L	E421	01-Nov-2022	01-Nov-2022	72487
hallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	72487
uranium, dissolved	7440-61-1	0.000246	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	72487
vanadium, dissolved	7440-62-2	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	72487
zinc, dissolved	7440-66-6	0.0066	0.0010	mg/L	E421	01-Nov-2022	01-Nov-2022	72487
dissolved metals filtration location		Field	-	-	EP421	-	01-Nov-2022	72487
Aggregate Organics								
annin + lignin (as tannic acid)		0.86	0.10	mg/L	E563	-	31-Oct-2022	72265
Volatile Organic Compounds								
Acetone	67-64-1	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
benzene	71-43-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
promodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
promoform	75-25-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
promomethane	74-83-9	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichloromethane	75-09-2	<1.0	1.0	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichloropropane, 1,2-	78-87-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
dichloropropylene, cis+trans-1,3-		<0.50	0.50	μg/L	E611D	03-Nov-2022		72806
dichloropropylene, cis-1,3-	542-75-6 10061-01-5	<0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022 03-Nov-2022	72806
dichloropropylene, trans-1,3-	10061-01-5	<0.30	0.30	μg/L μg/L	E611D	03-Nov-2022	03-Nov-2022 03-Nov-2022	72806
ethylbenzene		<0.50	0.50	μg/L μg/L	E611D	03-Nov-2022 03-Nov-2022		
•	100-41-4	<0.50		-	E611D	03-Nov-2022	03-Nov-2022	72806
nexane, n-	110-54-3		0.50	μg/L ug/l	E611D	03-Nov-2022 03-Nov-2022	03-Nov-2022	72806
nethyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L			03-Nov-2022	72806
methyl tort hytyl other [MIBK]	108-10-1	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
styrene	100-42-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	72806
tetrachloroethane, 1,1,2,2- tetrachloroethylene	79-34-5 127-18-4	<0.50 <0.50	0.50 0.50	μg/L μg/L	E611D E611D	03-Nov-2022 03-Nov-2022	03-Nov-2022 03-Nov-2022	72806 72806

 Page
 :
 5 of 8

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2220058-001 Sub-Matrix:**Water**

(Matrix: Water)

Client sample ID: GW-12586015-GW-004
Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds							23.0	
toluene	108-88-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethylene	79-01-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylene, o-	95-47-6	< 0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
BTEX, total		<1.0	1.0	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
Hydrocarbons								
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	03-Nov-2022	03-Nov-2022	728064
F2 (C10-C16)		<100	100	μg/L	E601.SG	02-Nov-2022	08-Nov-2022	725961
F2-naphthalene		<100	100	μg/L	EC600SG	-	03-Nov-2022	-
F3 (C16-C34)		<250	250	μg/L	E601.SG	02-Nov-2022	08-Nov-2022	725961
F3-PAH	n/a	<250	250	μg/L	EC600SG	-	03-Nov-2022	-
F4 (C34-C50)		<250	250	μg/L	E601.SG	02-Nov-2022	08-Nov-2022	725961
F1-BTEX		<25	25	μg/L	EC580	-	04-Nov-2022	_
hydrocarbons, total (C6-C50)		<370	370	μg/L	EC581SG	-	04-Nov-2022	-
chromatogram to baseline at nC50	n/a	YES	-	-	E601.SG	02-Nov-2022	08-Nov-2022	725961
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	77.6	1.0	%	E601.SG	02-Nov-2022	08-Nov-2022	725961
dichlorotoluene, 3,4-	97-75-0	107	1.0	%	E581.F1-L	03-Nov-2022	03-Nov-2022	728064
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	109	1.0	%	E611D	03-Nov-2022	03-Nov-2022	728063
difluorobenzene, 1,4-	540-36-3	99.6	1.0	%	E611D	03-Nov-2022	03-Nov-2022	728063
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
acenaphthylene	208-96-8	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
anthracene	120-12-7	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benz(a)anthracene	56-55-3	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(a)pyrene	50-32-8	<0.044 RRR,	0.044	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(b+j)fluoranthene	n/a	<0.10	0.10	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(g,h,i)perylene	191-24-2	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
benzo(k)fluoranthene	207-08-9	<0.10	0.10	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
chrysene	218-01-9	<0.10	0.10	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dibenz(a,h)anthracene	53-70-3	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
fluoranthene	206-44-0	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
fluorene	86-73-7	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
indeno(1,2,3-c,d)pyrene	193-39-5	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
methylnaphthalene, 1-	90-12-0	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
methylnaphthalene, 1+2-		<0.60	0.6	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
methylnaphthalene, 2-	91-57-6	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
naphthalene	91-20-3	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
phenanthrene	85-01-8	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
pyrene	129-00-0	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
les and	120-00-0		1	1 3,-	1	1	32 113V-2022	1 . 2 4000

 Page
 :
 6 of 8

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2220058-001 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-GW-004
Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Phthalate Esters								
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	<2.0	2.0	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
diethyl phthalate	84-66-2	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dimethyl phthalate	131-11-3	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Semi-Volatile Organics								
biphenyl	92-52-4	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
bis(2-chloroethyl) ether	111-44-4	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
bis(2-chloroisopropyl) ether	39638-32-9	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
chloroaniline, 4-	106-47-8	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dichlorobenzidine, 3,3'-	91-94-1	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrotoluene, 2,4-	121-14-2	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrotoluene, 2,4 + 2,6-	n/a	<0.60	0.6	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrotoluene, 2,6-	606-20-2	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
trichlorobenzene, 1,2,4-	120-82-1	<0.40	0.40	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Semi-Volatile Organics Surrogates								
fluorobiphenyl, 2-	321-60-8	87.2	1.0	%	E655A	01-Nov-2022	02-Nov-2022	724805
nitrobenzene-d5	4165-60-0	95.0	1.0	%	E655A	01-Nov-2022	02-Nov-2022	724805
terphenyl-d14, p-	1718-51-0	96.2	1.0	%	E655A	01-Nov-2022	02-Nov-2022	724805
Chlorinated Phenolics								
chlorophenol, 2-	95-57-8	<0.30	0.30	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dichlorophenol, 2,4-	120-83-2	<0.30	0.30	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
pentachlorophenol [PCP]	87-86-5	<0.50	0.50	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
tetrachlorophenol, 2,3,4,6-	58-90-2	<0.50	0.50	μg/L	E651D	01-Nov-2022	02-Nov-2022	724808
trichlorophenol, 2,4,5-	95-95-4	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
trichlorophenol, 2,4,6-	88-06-2	<0.20	0.20	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Non-Chlorinated Phenolics								
dimethylphenol, 2,4-	105-67-9	<0.50	0.50	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
dinitrophenol, 2,4-	51-28-5	<1.0	1.0	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
phenol	108-95-2	<0.50	0.50	μg/L	E655A	01-Nov-2022	02-Nov-2022	724805
Phenolics Surrogates								
tribromophenol, 2,4,6-	118-79-6	101	1.0	%	E651D	01-Nov-2022	02-Nov-2022	724808
tribromophenol, 2,4,6-	118-79-6	101	0.22	%	E655A	01-Nov-2022	02-Nov-2022	724805
Pesticides								
diazinon	333-41-5	<0.10	0.10	μg/L	E660E-H	01-Nov-2022	04-Nov-2022	724791
Pesticides Surrogates								
fluorobiphenyl, 2-	321-60-8	100	0.10	%	E660E-H	01-Nov-2022	04-Nov-2022	724791
terphenyl-d14, p-	1718-51-0	111	0.10	%	E660E-H	01-Nov-2022	04-Nov-2022	724791

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2220058-002

Sub-Matrix: Water Client sample ID: GW-12586015-GW-003 - (Matrix: Water) Client sampling date / time: 27-Oct-2022 09:30

Analyte CAS I	lumber	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
							Date	

 Page
 :
 7 of 8

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2220058-002 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: GW-12586015-GW-003 - Client sampling date / time: 27-Oct-2022 09:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Dissolved Metals								
aluminum, dissolved	7429-90-5	<0.0010	0.0010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
antimony, dissolved	7440-36-0	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
arsenic, dissolved	7440-38-2	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
barium, dissolved	7440-39-3	0.149	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
boron, dissolved	7440-42-8	0.077	0.010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
cadmium, dissolved	7440-43-9	<0.0000050	0.0000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
calcium, dissolved	7440-70-2	97.5	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
chromium, dissolved	7440-47-3	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
cobalt, dissolved	7440-48-4	<0.00010	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
copper, dissolved	7440-50-8	0.00115	0.00020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
lead, dissolved	7439-92-1	0.000103	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
magnesium, dissolved	7439-95-4	35.5	0.0050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
manganese, dissolved	7439-96-5	0.0413	0.00010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
molybdenum, dissolved	7439-98-7	0.00593	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
nickel, dissolved	7440-02-0	0.00063	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
potassium, dissolved	7440-09-7	5.09	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
selenium, dissolved	7782-49-2	0.000110	0.000050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
sodium, dissolved	7440-23-5	28.0	0.050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
strontium, dissolved	7440-24-6	2.06	0.00020	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
uranium, dissolved	7440-61-1	0.000249	0.000010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
vanadium, dissolved	7440-62-2	<0.00050	0.00050	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
zinc, dissolved	7440-66-6	0.0137	0.0010	mg/L	E421	01-Nov-2022	01-Nov-2022	724874
dissolved metals filtration location		Field	-	-	EP421	-	01-Nov-2022	724874

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2220058-003

Sub-Matrix: Water Client sample ID: Trip Blank

(Matrix: Water) Client sampling date / time: 27-Oct-2022 14:30

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds							Buto	
Acetone	67-64-1	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
benzene	71-43-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
bromodichloromethane	75-27-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
bromoform	75-25-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
bromomethane	74-83-9	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
carbon tetrachloride	56-23-5	<0.20	0.20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
chlorobenzene	108-90-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
chloroform	67-66-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dibromochloromethane	124-48-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063

 Page
 :
 8 of 8

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Results

WT2220058-003

Sub-Matrix: Water Client sample ID: Trip Blank

(Matrix: Water) Client sampling date / time: 27-Oct-2022 14:30

Analida	0404/2004	Popult	LOR	Unit	Mothod	Pron Data	Ameliate	OCI et
Analyte	CAS Number	Result	LUR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds							Date	
dibromoethane, 1,2-	106-93-4	<0.20	0.20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorobenzene, 1,2-	95-50-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorobenzene, 1,3-	541-73-1	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorobenzene, 1,4-	106-46-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichlorodifluoromethane	75-71-8	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethane, 1,1-	75-34-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethane, 1,2-	107-06-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethylene, 1,1-	75-35-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethylene, cis-1,2-	156-59-2	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloroethylene, trans-1,2-	156-60-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloromethane	75-09-2	<1.3 RRR,	1.3	μg/L	E611D	03-Nov-2022	04-Nov-2022	728063
dichloropropane, 1,2-	78-87-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloropropylene, cis+trans-1,3-	542-75-6	<0.50	0.5	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloropropylene, cis-1,3-	10061-01-5	<0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
dichloropropylene, trans-1,3-	10061-02-6	<0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
hexane, n-	110-54-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
methyl ethyl ketone [MEK]	78-93-3	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
methyl isobutyl ketone [MIBK]	108-10-1	<20	20	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
methyl-tert-butyl ether [MTBE]	1634-04-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
styrene	100-42-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
tetrachloroethane, 1,1,1,2-	630-20-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
tetrachloroethane, 1,1,2,2-	79-34-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
tetrachloroethylene	127-18-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
toluene	108-88-3	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethane, 1,1,1-	71-55-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethane, 1,1,2-	79-00-5	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichloroethylene	79-01-6	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
trichlorofluoromethane	75-69-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
vinyl chloride	75-01-4	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
BTEX, total		<1.0	1.0	μg/L	E611D	03-Nov-2022	03-Nov-2022	728063
Hydrocarbons								
F1 (C6-C10)		<25	25	μg/L	E581.F1-L	03-Nov-2022	03-Nov-2022	728064
F1-BTEX		<25	25	μg/L	EC580	-	04-Nov-2022	-
Hydrocarbons Surrogates								
dichlorotoluene, 3,4-	97-75-0	92.3	1.0	%	E581.F1-L	03-Nov-2022	03-Nov-2022	728064
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	105	1.0	%	E611D	03-Nov-2022	03-Nov-2022	728063
difluorobenzene, 1,4-	540-36-3	101	1.0	%	E611D	03-Nov-2022	03-Nov-2022	728063

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

:WT2220058 **Work Order** Page : 1 of 16

Client GHD Limited Laboratory : Waterloo - Environmental

Contact : Pascal Renella **Account Manager** : Rick Hawthorne Address

Address :455 Phillip Street : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :519 725 3313 Telephone : +1 519 886 6910 **Project** : 12586015-03.004 **Date Samples Received** : 28-Oct-2022 07:40 PO : 735-003748-1 Issue Date : 09-Nov-2022 10:59

C-O-C number ٠____ Sampler Site

Quote number : 12586015-SSOW-735-003748-1

Waterloo ON Canada N2L 3X2

No. of samples received :3 No. of samples analysed :3

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit). RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- Matrix Spike outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ● Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.

 Page
 :
 3 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Physical Tests	QC-MRG2-7291850		alkalinity, total (as CaCO3)		E290	2.6 mg/L	2 mg/L	Blank result exceeds
	01							permitted value
Polycyclic Aromatic Hydrocarbons	QC-MRG4-7248020		benzo(a)pyrene	50-32-8	E655A	<0.040 RRQC	0.02 μg/L	Blank result exceeds
	01					μg/L		permitted value

Result Qualifiers

 Qualifier
 Description

 RRQC
 Refer to report comments for information regarding this QC result.

Laboratory Control Sample (LCS) Recoveries											
Semi-Volatile Organics	QC-MRG4-7248020		dichlorobenzidine, 3,3'-	91-94-1	E655A	25.6 % RRQC	30.0-130%	Recovery less than lower			
	02							control limit			
Chlorinated Phenolics	QC-MRG4-7248020		pentachlorophenol [PCP]	87-86-5	E655A	148 % LCS-H	50.0-140%	Recovery greater than			
	02							upper control limit			
Non-Chlorinated Phenolics	QC-MRG4-7248020		dinitrophenol, 2,4-	51-28-5	E655A	174 % LCS-H	50.0-140%	Recovery greater than			
	02							upper control limit			

Result Qualifiers

 Qualifier
 Description

 LCS-H
 Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

 RRQC
 Refer to report comments for information regarding this QC result.

Matrix Spike (MS) Recoveries								
Dissolved Metals	WT2220058-002	GW-12586015-GW-0	silver, dissolved	7440-22-4	E421	56.1 % ^{MS-Ag}	70.0-130%	Recovery less than lower
		03						data quality objective

Result Qualifiers

Qualifier	Description
MS-Ag	MS-Ag: Matrix Spike recovery for silver was marginally below DQO (40 to <60%) due to its instability in the sample matrix. Silver was not detected. Reported result (< LOR) is reliable

 Page
 :
 4 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

latrix: **Water** Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time

Method	Sampling Date		raction / Pr	eparation			Analys	is	
							Analysis		
		Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
		Date	Rec	Actual			Rec	Actual	
E563	27-Oct-2022					31-Oct-2022	28 days	4 days	✓
E298	27-Oct-2022	02-Nov-2022				03-Nov-2022	28 days	7 days	✓
E235.CI	27-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	8 days	✓
E235.F	27-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	8 days	✓
E235.NO3	27-Oct-2022	03-Nov-2022				04-Nov-2022	7 days	8 days	EHT
E235.NO2	27-Oct-2022	03-Nov-2022				04-Nov-2022	7 days	8 days	# EHT
E235.SO4	27-Oct-2022	03-Nov-2022				04-Nov-2022	28 days	8 days	✓
		E298 27-Oct-2022 E235.Cl 27-Oct-2022 E235.NO3 27-Oct-2022 E235.NO2 27-Oct-2022	E298 27-Oct-2022 02-Nov-2022 E235.Cl 27-Oct-2022 03-Nov-2022 E235.F 27-Oct-2022 03-Nov-2022 E235.NO3 27-Oct-2022 03-Nov-2022 E235.NO2 27-Oct-2022 03-Nov-2022	E298 27-Oct-2022 02-Nov-2022 E235.Cl 27-Oct-2022 03-Nov-2022 E235.F 27-Oct-2022 03-Nov-2022 E235.NO3 27-Oct-2022 03-Nov-2022	E298 27-Oct-2022 02-Nov-2022 E235.Cl 27-Oct-2022 03-Nov-2022 E235.F 27-Oct-2022 03-Nov-2022 E235.NO3 27-Oct-2022 03-Nov-2022	E298 27-Oct-2022 02-Nov-2022 E235.Cl 27-Oct-2022 03-Nov-2022 E235.NO3 27-Oct-2022 03-Nov-2022 E235.NO2 27-Oct-2022 03-Nov-2022 E235.NO2 27-Oct-2022 03-Nov-2022	E298 27-Oct-2022 02-Nov-2022 03-Nov-2022 E235.Cl 27-Oct-2022 03-Nov-2022 04-Nov-2022 E235.F 27-Oct-2022 03-Nov-2022 04-Nov-2022 E235.NO3 27-Oct-2022 03-Nov-2022 04-Nov-2022 E235.NO2 27-Oct-2022 03-Nov-2022 04-Nov-2022	E298 27-Oct-2022 02-Nov-2022 03-Nov-2022 28 days E235.Cl 27-Oct-2022 03-Nov-2022 04-Nov-2022 28 days E235.F 27-Oct-2022 03-Nov-2022 04-Nov-2022 28 days E235.NO3 27-Oct-2022 03-Nov-2022 04-Nov-2022 7 days	E298 27-Oct-2022 02-Nov-2022 03-Nov-2022 28 days 7 days E235.CI 27-Oct-2022 03-Nov-2022 04-Nov-2022 28 days 8 days E235.F 27-Oct-2022 03-Nov-2022 04-Nov-2022 28 days 8 days E235.NO3 27-Oct-2022 03-Nov-2022 04-Nov-2022 7 days 8 days

ALS

 Page
 :
 5 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E	/aluation: × =	Holding time exce	edance ; v	= vvitnin	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
GW-12586015-GW-004	E318	27-Oct-2022	02-Nov-2022				03-Nov-2022	28 days	7 days	✓
Chlorinated Phenolics : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022				02-Nov-2022			
Chlorinated Phenolics : Phenolics (Ontario Chlorophenols List) by GC-MS										
Amber glass/Teflon lined cap										
GW-12586015-GW-004	E651D	27-Oct-2022	01-Nov-2022	7 days	5 days	✓	02-Nov-2022	40 days	1 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
GW-12586015-GW-003	E421	27-Oct-2022	01-Nov-2022				01-Nov-2022	180	5 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
GW-12586015-GW-004	E421	27-Oct-2022	01-Nov-2022				01-Nov-2022	180	5 days	✓
								days		
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)										
GW-12586015-GW-004	E581.F1-L	27-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	7 days	✓
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate)										
Trip Blank	E581.F1-L	27-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	7 days	✓
Hydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E601.SG	27-Oct-2022	02-Nov-2022	14	6 days	✓	08-Nov-2022	40 days	6 days	✓
				days						
Microbiological Tests : E. coli (MF-mFC-BCIG)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-GW-004	E012A.EC	27-Oct-2022					29-Oct-2022	48 hrs	47 hrs	✓
GVV-12000010-GVV-004	2012/1120							_		

ALS

 Page
 :
 6 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix: Water	Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time
Matrix: water	Evaluation: * - Holding time exceedance, * - Within Holding Time

viatrix: water						· araaro	nolaing time exce	,		Troiding Till
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Microbiological Tests : Heterotrophic Plate Count by MF (MF-mHPC)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-GW-004	E012.HPC	27-Oct-2022					29-Oct-2022	48 hrs	47 hrs	✓
Microbiological Tests : Total Coliforms (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-GW-004	E012.TC	27-Oct-2022					29-Oct-2022	48 hrs	47 hrs	✓
Microbiological Tests : Total Coliforms Background (MF-mEndo)										
Sterile HDPE (Sodium thiosulphate) [ON MECP]										
GW-12586015-GW-004	E012.BG.TC	27-Oct-2022					29-Oct-2022	48 hrs	47 hrs	✓
Non-Chlorinated Phenolics : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022				02-Nov-2022			
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	vel)									
Amber glass dissolved (sulfuric acid)										
GW-12586015-GW-004	E358-L	27-Oct-2022	31-Oct-2022				01-Nov-2022	28 days	5 days	✓
Pesticides : Miscellaneous Pesticides by GC-MS										
Amber glass/Teflon lined cap										
GW-12586015-GW-004	E660E-H	27-Oct-2022	01-Nov-2022	14	5 days	✓	04-Nov-2022	40 days	3 days	✓
				days						
Phthalate Esters : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022				02-Nov-2022			
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP]										
GW-12586015-GW-004	E290	27-Oct-2022	03-Nov-2022				06-Nov-2022	14 days	10 days	✓
Physical Tests : Colour (True) by Spectrometer (2 CU)										
HDPE [ON MECP]										
GW-12586015-GW-004	E329-L	27-Oct-2022	01-Nov-2022				04-Nov-2022	48 hrs	123 hrs	3c
										EHT

 Page
 :
 7 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

								,		Holding Ti
nalyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
hysical Tests : Conductivity in Water										
HDPE [ON MECP]										
GW-12586015-GW-004	E100	27-Oct-2022	03-Nov-2022				06-Nov-2022	28 days	10 days	✓
hysical Tests : pH by Meter										
HDPE [ON MECP]										
GW-12586015-GW-004	E108	27-Oct-2022	03-Nov-2022				06-Nov-2022	14 days	10 days	✓
hysical Tests : TDS by Gravimetry				•						
HDPE [ON MECP]										
GW-12586015-GW-004	E162	27-Oct-2022					02-Nov-2022	7 days	6 days	✓
hysical Tests : Turbidity by Nephelometry										
HDPE [ON MECP]										
GW-12586015-GW-004	E121	27-Oct-2022					04-Nov-2022	3 days	8 days	×
										EHT
olycyclic Aromatic Hydrocarbons : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022				02-Nov-2022			
emi-Volatile Organics : BNA (ON 625-511 list) by GC-MS										
Amber glass/Teflon lined cap (sodium bisulfate)										
GW-12586015-GW-004	E655A	27-Oct-2022	01-Nov-2022	14	5 days	✓	02-Nov-2022	40 days	1 days	✓
				days						
otal Sulfides : Total Sulfide by Colourimetry (Automated Flow)										
HDPE total (zinc acetate+sodium hydroxide)										
GW-12586015-GW-004	E395-H	27-Oct-2022					02-Nov-2022	7 days	6 days	✓
olatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS	s									
Glass vial (sodium bisulfate)										
GW-12586015-GW-004	E611D	27-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	7 days	✓
olatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-M	s									
	1	I								
Glass vial (sodium bisulfate)										
Glass vial (sodium bisulfate) Trip Blank	E611D	27-Oct-2022	03-Nov-2022				03-Nov-2022	14 days	7 days	1

Legend & Qualifier Definitions

 Page
 :
 8 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

 Page
 :
 9 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type		Lvaluati	on: × = QC frequ	ount			<u> </u>
	Method	QC Lot #	QC	Regular	Actual	Frequency (%) Expected) Evaluation
Analytical Methods	Wethod	QC LOI #	40	regular	Actual	Expected	Lvaldation
Laboratory Duplicates (DUP)		700405		4.4			
Alkalinity Species by Titration	E290	729185	1	14	7.1	5.0	√
Ammonia by Fluorescence	E298	726698	1	20	5.0	5.0	✓
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	728064	1	13	7.6	5.0	✓
Chloride in Water by IC	E235.Cl	729182	1	18	5.5	5.0	✓
Colour (True) by Spectrometer (2 CU)	E329-L	724671	1	12	8.3	5.0	✓
Conductivity in Water	E100	729186	1	12	8.3	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	724874	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723488	1	20	5.0	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	721578	1	10	10.0	5.0	✓
Fluoride in Water by IC	E235.F	729179	1	4	25.0	5.0	✓
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC	721573	1	5	20.0	5.0	✓
Nitrate in Water by IC	E235.NO3	729180	1	14	7.1	5.0	✓
Nitrite in Water by IC	E235.NO2	729181	1	4	25.0	5.0	✓
pH by Meter	E108	729184	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	729183	1	7	14.2	5.0	✓
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	726629	1	20	5.0	5.0	✓
Total Coliforms (MF-mEndo)	E012.TC	721574	1	9	11.1	5.0	✓
Total Coliforms Background (MF-mEndo)	E012.BG.TC	721575	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	726029	1	20	5.0	5.0	✓
Total Sulfide by Colourimetry (Automated Flow)	E395-H	727164	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	730340	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	728063	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	729185	1	14	7.1	5.0	1
Ammonia by Fluorescence	E298	726698	1	20	5.0	5.0	√
BNA (ON 625-511 list) by GC-MS	E655A	724805	1	2	50.0	5.0	1
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	728064	1	13	7.6	5.0	1
Chloride in Water by IC	E235.CI	729182	1	18	5.5	5.0	1
Colour (True) by Spectrometer (2 CU)	E329-L	724671	1	12	8.3	5.0	√
Conductivity in Water	E100	729186	1	12	8.3	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	724874	1	19	5.2	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723488	1	20	5.0	5.0	1
Fluoride in Water by IC	E235.F	729179	1	4	25.0	5.0	✓
Miscellaneous Pesticides by GC-MS	E660E-H	724791	1	4	25.0	5.0	√
Nitrate in Water by IC	E235.NO3	729180	1	14	7.1	5.0	√

 Page
 :
 10 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix: Water		Evaluati	on: × = QC freque	ency outside spe	ecification; ✓ =	QC frequency with	าin specification
Quality Control Sample Type				unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Nitrite in Water by IC	E235.NO2	729181	1	4	25.0	5.0	✓
pH by Meter	E108	729184	1	17	5.8	5.0	✓
Phenolics (Ontario Chlorophenols List) by GC-MS	E651D	724808	1	2	50.0	5.0	✓
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	725961	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	729183	1	7	14.2	5.0	✓
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	726629	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	726029	1	20	5.0	5.0	✓
Total Sulfide by Colourimetry (Automated Flow)	E395-H	727164	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	730340	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	728063	1	20	5.0	5.0	✓
Method Blanks (MB)							
Alkalinity Species by Titration	E290	729185	1	14	7.1	5.0	√
Ammonia by Fluorescence	E298	726698	1	20	5.0	5.0	√
BNA (ON 625-511 list) by GC-MS	E655A	724805	1	2	50.0	5.0	√
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	728064	1	13	7.6	5.0	√
Chloride in Water by IC	E235.CI	729182	1	18	5.5	5.0	√
Colour (True) by Spectrometer (2 CU)	E329-L	724671	1	12	8.3	5.0	√
Conductivity in Water	E100	729186	1	12	8.3	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	724874	1	19	5.2	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723488	1	20	5.0	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	721578	1	10	10.0	5.0	√
Fluoride in Water by IC	E235.F	729179	1	4	25.0	5.0	✓
Heterotrophic Plate Count by MF (MF-mHPC)	E012.HPC	721573	1	5	20.0	5.0	√
Miscellaneous Pesticides by GC-MS	E660E-H	724791	1	4	25.0	5.0	√
Nitrate in Water by IC	E235.NO3	729180	1	14	7.1	5.0	✓
Nitrite in Water by IC	E235.NO2	729181	1	4	25.0	5.0	√
Phenolics (Ontario Chlorophenols List) by GC-MS	E651D	724808	1	2	50.0	5.0	✓
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	725961	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	729183	1	7	14.2	5.0	√
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	726629	1	20	5.0	5.0	✓
Total Coliforms (MF-mEndo)	E012.TC	721574	1	9	11.1	5.0	✓
Total Coliforms Background (MF-mEndo)	E012.BG.TC	721575	1	3	33.3	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	726029	1	20	5.0	5.0	✓
Total Sulfide by Colourimetry (Automated Flow)	E395-H	727164	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	730340	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	728063	1	20	5.0	5.0	√
Matrix Spikes (MS)					•		

 Page
 :
 11 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Width. Water		Lvaidatioi	i Qo neque	stroy outside spe	concation, • - v	go nequency wit	inii speemean
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Ammonia by Fluorescence	E298	726698	1	20	5.0	5.0	✓
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	728064	1	13	7.6	5.0	✓
Chloride in Water by IC	E235.Cl	729182	1	18	5.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	724874	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	723488	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	729179	1	4	25.0	5.0	✓
Nitrate in Water by IC	E235.NO3	729180	1	14	7.1	5.0	✓
Nitrite in Water by IC	E235.NO2	729181	1	4	25.0	5.0	✓
Sulfate in Water by IC	E235.SO4	729183	1	7	14.2	5.0	✓
Tannin & Lignin in Water	E563	722654	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	726029	1	20	5.0	5.0	✓
Total Sulfide by Colourimetry (Automated Flow)	E395-H	727164	1	20	5.0	5.0	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	728063	1	20	5.0	5.0	✓

 Page
 :
 12 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total Coliforms Background (MF-mEndo)	E012.BG.TC	Water	APHA 9222B (mod)	Noncoliform bacteria observed on Total Coliform plates are enumerated.
	NA/ . I . I			
	Waterloo -			
Heterotrophic Plate Count by MF (MF-mHPC)	Environmental E012.HPC	Water	SM 9215D	Following filtration (0.45 µm), and incubation at 35.0 ±0.5°C for 48 hours, the observed
Theterotrophic Flate Count by Wil (Wil -IIII II O)	EU12.NFC	Water	OW 32 10D	colonies are enumerated.
	Waterloo -			osionios dio ordinoratoa.
	Environmental			
Total Coliforms (MF-mEndo)	E012.TC	Water	APHA 9222B (mod)	Following filtration (0.45 µm), and incubation at 35.0 ±0.5°C for 24 hours, colonies
				exhibiting characteristic morphology of the target organism are enumerated and
	Waterloo -			confirmed.
	Environmental			
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies
	Materia.			exhibiting characteristic morphology of the target organism are enumerated.
	Waterloo -			
Conductivity in Water	Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
Conductivity in Water	E100	Water	Ai 11A 2310 (IIIOU)	measured by immersion of a conductivity cell with platinum electrodes into a water
	Waterloo -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Environmental			camping conducting measurements are temperature compensated to 20 c.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Waterloo -			pH should be measured in the field within the recommended 15 minute hold time.
	Environmental			
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
				scatter under defined conditions.
	Waterloo -			
TDS by Gravimetry	Environmental E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
150 by Gravimeny	E 102	Water	Ai 11A 2540 0 (1110d)	filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Waterloo -			with gravimetric measurement of the residue.
	Environmental			g.aa
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
	Waterloo -			
	Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
				detection.
	Waterloo -			
	Environmental			

 Page
 :
 13 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			detection.
	Environmental			
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV
	M. A. ala			detection.
	Waterloo -			
Sulfate in Water by IC	Environmental	Water	EPA 300.1 (mod)	to any in the interest of the transfer of the section of the secti
Sunate in Water by io	E235.SO4	vvalei	LFA 300.1 (III0d)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Waterloo -			
	Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Waterloo -			alkalinity values.
	Environmental			
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Waterloo -		2010	This method is approved under US EPA 40 CFR Part 136 (May 2021)
	Environmental			The medica is approved and the Erick to Strike are 100 (may 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low	E318	Water	Method Fialab 100,	TKN in water is determined by automated continuous flow analysis with membrane
Level)			2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Environmental			
Colour (True) by Spectrometer (2 CU)	E329-L	Water	APHA 2120 C (mod)	Colour (True Colour) is determined by filtering a sample through a 0.45 micron membrane filter followed by analysis of the filtrate using the platinum-cobalt colourimetric
	Waterloo -			method. Colour measurements can be highly pH dependent, and apply to the pH of the
	Environmental			sample as received (at time of testing), without pH adjustment.
Dissolved Organic Carbon by Combustion	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a
(Low Level)	Waterloo -			direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Environmental			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are
	Environmental			purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Sulfide by Colourimetry (Automated	E395-H	Water	APHA 4500 -S	Sulfide is determined using the gas dialysis automated methlyene blue colourimetric
Flow)			E-Auto-Colorimetry	method. Results expressed "as H2S" if reported represent the maximum possible H2S
	Vancouver -			concentration based on the total sulfide concentration in the sample. The H2S
	Environmental			calculation converts Total Sulphide as (S2-) and reports it as Total Sulphide as (H2S)
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	Waterloo -		3020B (1110a)	Commontant Control Inc.
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
	1			-,

 Page
 :
 14 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Tannin & Lignin in Water	E563	Water	APHA 5550	This analysis is carried out using procedures adapted from APHA Method 5550 B.
			B-Colorimetry	"Tannin & Lignin ". Both lignin and tannin contain aromatic hydroxyl groups that react
	Waterloo -			with Folin phenol reagent (tungstophosphoric and molybdophosphoric acids) to form a
	Environmental			blue color suitable for the estimation of tannin and lignin concentrations. However, the
				reaction is not specific for lignin or tannin, nor for compounds containing aromatic
				hydroxyl groups, in as much as many other reducing materials, both organic and
				inorganic, respond similarly.
CCME PHC - F1 by Headspace GC-FID (Low	E581.F1-L	Water	CCME PHC in Soil - Tier	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in
Level)			1	headspace vials and are heated and agitated on the headspace autosampler, causing
	Waterloo -			VOCs to partition between the aqueous phase and the headspace in accordance with
	Environmental			Henry's law.
Silica Gel Treated CCME PHCs - F2-F4sg by	E601.SG	Water	CCME PHC in Soil - Tier	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID
GC-FID			1	for CCME hydrocarbon fractions (F2-F4).
	Waterloo -			
	Environmental			
VOCs (Eastern Canada List) by Headspace	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
GC-MS				Samples are prepared in headspace vials and are heated and agitated on the
	Waterloo -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Environmental			the headspace in accordance with Henry's law.
Phenolics (Ontario Chlorophenols List) by	E651D	Water	EPA 8270E (mod)	Phenolics are analyzed by GC-MS.
GC-MS				
	Waterloo -			
	Environmental			
BNA (ON 625-511 list) by GC-MS	E655A	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
	Waterloo -			
N	Environmental	147.7	EDA 0070E (1)	B # # # 00 M0
Miscellaneous Pesticides by GC-MS	E660E-H	Water	EPA 8270E (mod)	Pesticides are analyzed by GC-MS.
	Waterloo -			
Dissolved Hardness (Calculated)	Environmental	Water	APHA 2340B	
Dissolved Hardness (Calculated)	EC100	vvalei	APRA 2340D	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and
	\\/-t			Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	Waterloo -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Environmental			calculated from dissolved Calcium and Magnesium concentrations, because it is a
Ion Balance using Discalued Metals	50404	Matar	ADLIA 1020E	property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA
	\\/_++=:1 · ·			Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are
	Waterloo -			used where available. Minor ions are included where data is present.
	Environmental			Ion Balance cannot be calculated accurately for waters with very low electrical
				conductivity (EC).

 Page
 :
 15 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
			1	ethylbenzene and xylenes (BTEX).
	Waterloo -			
	Environmental			
SUM F1 to F4 where F2-F4 is SG treated	EC581SG	Water	CCME PHC in Soil - Tier	Hydrocarbons, total (C6-C50) is the sum of CCME Fraction F1(C6-C10), F2(C10-C16),
			1	F3(C16-C34), and F4(C34-C50), where F2-F4 have been treated with silica gel. F4G-sg
	Waterloo -			is not used within this calculation due to overlap with other fractions.
FO F4 (ca) wines DAII	Environmental	10/		
F2-F4 (sg) minus PAH	EC600SG	Water	CCME PHC in Soil - Tier	F2-F4 (sg) minus PAH is calculated as follows: F2-F4 minus PAH = Sum of CCME Fraction 2 (C10-C16), CCME Fraction 3 (C16-C34), and CCME Fraction 4 (C34-C50),
	Waterloo -		·	minus select Polycyclic Aromatic Hydrocarbons (PAH).
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia		Water	Wictiod (Cicicine	
Preparation for Aminonia	EP298	vvaler		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Waterloo -			
	Environmental			
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
			(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the
	Waterloo -		,	analytical method as TKN. This method is unsuitable for samples containing high levels
	Environmental			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
				biased low.
Preparation for Dissolved Organic Carbon for	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion				
	Waterloo -			
	Environmental			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Waterloo -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
PHCs and PAHs Hexane Extraction	Environmental	\\/-+	EDA 2544 (*** - 4)	
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	Waterloo -			
	Environmental			
Phenolics Extraction	EP651	Water	EPA 3511 (mod)	Phenolics are extracted from acidic aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
	Environmental			

 Page
 :
 16 of 16

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
Pesticides & Toxaphene Extraction by DCM	EP660D	Water	EPA 1699 (mod)	Samples are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : WT2220058

:455 Phillip Street

Contact : GHD Limited : Pascal Renella

Waterloo ON Canada N2L 3X2

Telephone

Address

Project : 12586015-03.004 PO : 735-003748-1

C-O-C number : ---

Sampler :--- 519 725 3313

Site :---

Quote number : 12586015-SSOW-735-003748-1

No. of samples received : 3

No. of samples analysed : 3

Page : 1 of 19

Laboratory : Waterloo - Environmental

Account Manager : Rick Hawthorne
Address : 60 Northland Roa

: 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone :+1 519 886 6910

Date Samples Received :28-Oct-2022 07:40

Date Analysis Commenced : 29-Oct-2022

Issue Date : 09-Nov-2022 10:59

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario
Danielle Gravel	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Metals, Waterloo, Ontario
Kelsey Hesch	Analyst	Waterloo Organics, Waterloo, Ontario
Lindsay Gung	Supervisor - Water Chemistry	Vancouver Inorganics, Burnaby, British Columbia
Ruby Sujeepan		Waterloo Microbiology, Waterloo, Ontario

 Page
 :
 2 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	OUP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (Q	C Lot: 724671)										
WT2219921-001	Anonymous	colour, true		E329-L	2.0	CU	2.4	3.5	1.1	Diff <2x LOR	
Physical Tests (Q	C Lot: 726629)										
WT2219765-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	327	313	4.53%	20%	
Physical Tests (Q0	C Lot: 729184)										
WT2220058-001	GW-12586015-GW-004	рН		E108	0.10	pH units	8.43	8.43	0.00%	4%	
Physical Tests (Qo	C Lot: 729185)										
WT2220058-001	GW-12586015-GW-004	alkalinity, total (as CaCO3)		E290	2.0	mg/L	269	276	2.61%	20%	
Physical Tests (Qo	C Lot: 729186)										
WT2220058-001	GW-12586015-GW-004	conductivity		E100	2.0	μS/cm	790	806	2.00%	10%	
Physical Tests (Q0	C Lot: 730340)										
WT2220018-010	Anonymous	turbidity		E121	0.10	NTU	26.2	25.4	3.10%	15%	
Anions and Nutrier	nts (QC Lot: 726029)										
WT2219431-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.250	mg/L	7.85	8.30	5.56%	20%	
Anions and Nutrier	nts (QC Lot: 726698)										
WT2219521-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 729179)										
WT2220058-001	GW-12586015-GW-004	fluoride	16984-48-8	E235.F	0.020	mg/L	0.192	0.196	0.004	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 729180)										
WT2220058-001	GW-12586015-GW-004	nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 729181)										
WT2220058-001	GW-12586015-GW-004	nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 729182)										
WT2220058-001	GW-12586015-GW-004	chloride	16887-00-6	E235.CI	0.50	mg/L	67.0	65.2	2.80%	20%	
Anions and Nutrier	nts (QC Lot: 729183)										
WT2220058-001	GW-12586015-GW-004	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	62.5	61.5	1.52%	20%	
Organic / Inorganic	Carbon (QC Lot: 7234	88)									
WT2219719-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	6.34	6.73	5.97%	20%	
Total Sulfides (QC	Lot: 727164)										
WT2219979-001	Anonymous	sulfide, total (as S)	18496-25-8	E395-H	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	

 Page
 :
 4 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

ub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
	ts (QC Lot: 721573) - c	continued										
WT2220018-013	Anonymous	heterotrophic plate count [HPC]		E012.HPC	1	CFU/1mL	>200	>200	0.00%	65%		
Microbiological Tes	ts (QC Lot: 721574)											
WT2220058-001	GW-12586015-GW-004	coliforms, total		E012.TC	1	CFU/100mL	<1	<1	0	Diff <2x LOR		
Microbiological Tes	ts (QC Lot: 721575)											
WT2220058-001	GW-12586015-GW-004	coliforms, total background		E012.BG.TC	1	CFU/100mL	1	<1	0	Diff <2x LOR		
Microbiological Tes	ts (QC Lot: 721578)											
NT2220058-001	GW-12586015-GW-004	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	<1	0	Diff <2x LOR		
Dissolved Metals (C	QC Lot: 724874)											
VT2220058-001	GW-12586015-GW-004	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.149	0.149	0.0191%	20%		
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR		
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.077	0.077	0.00005	Diff <2x LOR		
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	96.9	96.3	0.654%	20%		
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00035	0.00034	0.000005	Diff <2x LOR		
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	36.1	35.4	1.93%	20%		
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0420	0.0415	1.02%	20%		
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00604	0.00602	0.410%	20%		
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	5.14	5.04	1.88%	20%		
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.000141	0.000174	0.000033	Diff <2x LOR		
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	28.8	28.1	2.42%	20%		
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	2.05	2.04	0.441%	20%		
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000246	0.000246	0.162%	20%		
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0066	0.0069	0.0002	Diff <2x LOR		

 Page
 :
 5 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

ub-Matrix: Water						Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
Aggregate Organics	(QC Lot: 722654) - c	ontinued										
/A22C5934-004	Anonymous	tannin + lignin (as tannic acid)		E563	0.10	mg/L	3.42	3.44	0.737%	20%		
olatile Organic Cor	mpounds (QC Lot: 728	3063)										
ΓY2203475-001	Anonymous	Acetone	67-64-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR		
		benzene	71-43-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		bromodichloromethane	75-27-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		bromoform	75-25-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		bromomethane	74-83-9	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		carbon tetrachloride	56-23-5	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR		
		chlorobenzene	108-90-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		chloroform	67-66-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dibromochloromethane	124-48-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dibromoethane, 1,2-	106-93-4	E611D	0.20	μg/L	<0.20	<0.20	0	Diff <2x LOR		
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichlorobenzene, 1,3-	541-73-1	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichlorobenzene, 1,4-	106-46-7	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichlorodifluoromethane	75-71-8	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloroethane, 1,1-	75-34-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloroethane, 1,2-	107-06-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloroethylene, 1,1-	75-35-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloromethane	75-09-2	E611D	1.0	μg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropane, 1,2-	78-87-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR		
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR		
		ethylbenzene	100-41-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		hexane, n-	110-54-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	<20	<20	0	Diff <2x LOR		
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	μg/L	<20	<20	0	Diff <2x LOR		
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
			100-42-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		styrene tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	μg/L μg/L	<0.50	<0.50	0	Diff <2x LOR		
			79-34-5	E611D	0.50	μg/L μg/L	<0.50	<0.50	0	Diff <2x LOR		
		tetrachloroethane, 1,1,2,2-	127-18-4	20110	0.50	µg/L	~0.50	~0.50		DIII >ZX LUR		

 Page
 :
 6 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Volatile Organic Compounds (QC Lot: 728063) - continued												
TY2203475-001	Anonymous	toluene	108-88-3	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		trichloroethane, 1,1,1-	71-55-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		trichloroethane, 1,1,2-	79-00-5	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		trichloroethylene	79-01-6	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		trichlorofluoromethane	75-69-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		vinyl chloride	75-01-4	E611D	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR		
		xylene, m+p-	179601-23-1	E611D	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR		
		xylene, o-	95-47-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR		
Hydrocarbons (QC	Lot: 728064)											
TY2203475-001	Anonymous	F1 (C6-C10)		E581.F1-L	25	μg/L	<25	<25	0	Diff <2x LOR		

 Page
 :
 7 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Meti	thod	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 724671)						
colour, true	E32	29-L	2	CU	<2.0	
Physical Tests (QCLot: 726629)						
solids, total dissolved [TDS]	E16	52	10	mg/L	<10	
Physical Tests (QCLot: 729185)						
alkalinity, total (as CaCO3)	E29	90	1	mg/L	# 2.6	
Physical Tests (QCLot: 729186)						
conductivity	E10	00	1	μS/cm	<1.0	
Physical Tests (QCLot: 730340)						
turbidity	E12	21	0.1	NTU	<0.10	
Anions and Nutrients (QCLot: 726029)						
Kjeldahl nitrogen, total [TKN]	E31	18	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 726698)						
ammonia, total (as N)	7664-41-7 E29	98	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 729179)						
fluoride	16984-48-8 E23	35.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 729180)					·	
nitrate (as N)	14797-55-8 E23	35.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 729181)					·	
nitrite (as N)	14797-65-0 E23	35.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 729182)					·	
chloride	16887-00-6 E23	35.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 729183)					·	
sulfate (as SO4)	14808-79-8 E23	35.SO4	0.3	mg/L	<0.30	
Organic / Inorganic Carbon (QCLot: 723488)					·	
carbon, dissolved organic [DOC]	E35	58-L	0.5	mg/L	<0.50	
Total Sulfides (QCLot: 727164)					·	
sulfide, total (as S)	18496-25-8 E39	95-H	0.01	mg/L	<0.010	
Microbiological Tests (QCLot: 721573)						
heterotrophic plate count [HPC]	E01:	12.HPC	1	CFU/1mL	<1	
Microbiological Tests (QCLot: 721574)						
coliforms, total	E01:	12.TC	1	CFU/100mL	<1	
Microbiological Tests (QCLot: 721575)						

 Page
 :
 8 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

nalyte	CAS Number Method	LOR	Unit	Result	Qualifier
icrobiological Tests (QCLot: 721575) - continued				
coliforms, total background	E012.BG.TC	1	CFU/100mL	<1	
icrobiological Tests (QCLot: 721578)				
coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/100mL	<1	
issolved Metals (QCLot: 724874)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
chromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
ggregate Organics (QCLot: 722654)					
tannin + lignin (as tannic acid)	E563	0.1	mg/L	<0.10	
olatile Organic Compounds (QCLot:	728063)				
Acetone	67-64-1 E611D	20	μg/L	<20	
benzene	71-43-2 E611D	0.5	μg/L	<0.50	
bromodichloromethane	75-27-4 E611D	0.5	μg/L	<0.50	

 Page
 :
 9 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

nalyte	CAS Number Method	LOR	Unit	Result	Qualifier
olatile Organic Compounds (QCLot	t: 728063) - continued				
bromoform	75-25-2 E611D	0.5	μg/L	<0.50	
bromomethane	74-83-9 E611D	0.5	μg/L	<0.50	
carbon tetrachloride	56-23-5 E611D	0.2	μg/L	<0.20	
chlorobenzene	108-90-7 E611D	0.5	μg/L	<0.50	
chloroform	67-66-3 E611D	0.5	μg/L	<0.50	
dibromochloromethane	124-48-1 E611D	0.5	μg/L	<0.50	
dibromoethane, 1,2-	106-93-4 E611D	0.2	μg/L	<0.20	
dichlorobenzene, 1,2-	95-50-1 E611D	0.5	μg/L	<0.50	
dichlorobenzene, 1,3-	541-73-1 E611D	0.5	μg/L	<0.50	
dichlorobenzene, 1,4-	106-46-7 E611D	0.5	μg/L	<0.50	
dichlorodifluoromethane	75-71-8 E611D	0.5	μg/L	<0.50	
dichloroethane, 1,1-	75-34-3 E611D	0.5	μg/L	<0.50	
dichloroethane, 1,2-	107-06-2 E611D	0.5	μg/L	<0.50	
dichloroethylene, 1,1-	75-35-4 E611D	0.5	μg/L	<0.50	
dichloroethylene, cis-1,2-	156-59-2 E611D	0.5	μg/L	<0.50	
dichloroethylene, trans-1,2-	156-60-5 E611D	0.5	μg/L	<0.50	
dichloromethane	75-09-2 E611D	1	μg/L	<1.0	
dichloropropane, 1,2-	78-87-5 E611D	0.5	μg/L	<0.50	
dichloropropylene, cis-1,3-	10061-01-5 E611D	0.3	μg/L	<0.30	
dichloropropylene, trans-1,3-	10061-02-6 E611D	0.3	μg/L	<0.30	
ethylbenzene	100-41-4 E611D	0.5	μg/L	<0.50	
hexane, n-	110-54-3 E611D	0.5	μg/L	<0.50	
methyl ethyl ketone [MEK]	78-93-3 E611D	20	μg/L	<20	
methyl isobutyl ketone [MIBK]	108-10-1 E611D	20	μg/L	<20	
methyl-tert-butyl ether [MTBE]	1634-04-4 E611D	0.5	μg/L	<0.50	
styrene	100-42-5 E611D	0.5	μg/L	<0.50	
tetrachloroethane, 1,1,1,2-	630-20-6 E611D	0.5	μg/L	<0.50	
tetrachloroethane, 1,1,2,2-	79-34-5 E611D	0.5	μg/L	<0.50	
tetrachloroethylene	127-18-4 E611D	0.5	μg/L	<0.50	
toluene	108-88-3 E611D	0.5	μg/L	<0.50	
trichloroethane, 1,1,1-	71-55-6 E611D	0.5	μg/L	<0.50	
trichloroethane, 1,1,2-	79-00-5 E611D	0.5	μg/L	<0.50	
trichloroethylene	79-01-6 E611D	0.5	μg/L	<0.50	
trichlorofluoromethane	75-69-4 E611D	0.5	μg/L	<0.50	
vinyl chloride	75-01-4 E611D	0.5	μg/L	<0.50	

 Page
 :
 10 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
olatile Organic Compounds (QCL	ot: 728063) - continued					
xylene, m+p-	179601-23-1	E611D	0.4	μg/L	<0.40	
xylene, o-	95-47-6	E611D	0.3	μg/L	<0.30	
ydrocarbons (QCLot: 725961)						
F2 (C10-C16)		E601.SG	100	μg/L	<100	
F3 (C16-C34)		E601.SG	250	μg/L	<250	
F4 (C34-C50)		E601.SG	250	μg/L	<250	
ydrocarbons (QCLot: 728064)						
F1 (C6-C10)		E581.F1-L	25	μg/L	<25	
olycyclic Aromatic Hydrocarbons	(QCLot: 724805)					
acenaphthene	83-32-9	E655A	0.2	μg/L	<0.20	
acenaphthylene	208-96-8	E655A	0.2	μg/L	<0.20	
anthracene	120-12-7	E655A	0.2	μg/L	<0.20	
benz(a)anthracene	56-55-3	E655A	0.2	μg/L	<0.20	
benzo(a)pyrene	50-32-8	E655A	0.02	μg/L	# <0.040	RRQC
benzo(b+j)fluoranthene	n/a	E655A	0.1	μg/L	<0.10	
benzo(g,h,i)perylene	191-24-2	E655A	0.2	μg/L	<0.20	
benzo(k)fluoranthene	207-08-9	E655A	0.1	μg/L	<0.10	
chrysene	218-01-9	E655A	0.1	μg/L	<0.10	
dibenz(a,h)anthracene	53-70-3	E655A	0.2	μg/L	<0.20	
fluoranthene	206-44-0	E655A	0.2	μg/L	<0.20	
fluorene	86-73-7	E655A	0.2	μg/L	<0.20	
indeno(1,2,3-c,d)pyrene	193-39-5	E655A	0.2	μg/L	<0.20	
methylnaphthalene, 1-	90-12-0	E655A	0.4	μg/L	<0.40	
methylnaphthalene, 2-	91-57-6	E655A	0.4	μg/L	<0.40	
naphthalene	91-20-3	E655A	0.2	μg/L	<0.20	
phenanthrene	85-01-8	E655A	0.2	μg/L	<0.20	
pyrene	129-00-0	E655A	0.2	μg/L	<0.20	
hthalate Esters (QCLot: 724805)						
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655A	2	μg/L	<2.0	
diethyl phthalate	84-66-2	E655A	0.2	μg/L	<0.20	
dimethyl phthalate	131-11-3	E655A	0.2	μg/L	<0.20	
emi-Volatile Organics (QCLot: 724	1805)					
biphenyl	92-52-4	E655A	0.4	μg/L	<0.40	
bis(2-chloroethyl) ether	111-44-4	E655A	0.4	μg/L	<0.40	
bis(2-chloroisopropyl) ether	39638-32-9	E655A	0.4	μg/L	<0.40	

 Page
 :
 11 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Semi-Volatile Organics (QCLot: 72	4805) - continued					
chloroaniline, 4-	106-47-8	E655A	0.4	μg/L	<0.40	
dichlorobenzidine, 3,3'-	91-94-1	E655A	0.4	μg/L	<0.40	
dinitrotoluene, 2,4-	121-14-2	E655A	0.4	μg/L	<0.40	
dinitrotoluene, 2,6-	606-20-2	E655A	0.4	μg/L	<0.40	
trichlorobenzene, 1,2,4-	120-82-1	E655A	0.4	μg/L	<0.40	
Chlorinated Phenolics (QCLot: 724	1805)					
chlorophenol, 2-	95-57-8	E655A	0.3	μg/L	<0.30	
dichlorophenol, 2,4-	120-83-2	E655A	0.3	μg/L	<0.30	
pentachlorophenol [PCP]	87-86-5	E655A	0.5	μg/L	<0.50	
trichlorophenol, 2,4,5-	95-95-4	E655A	0.2	μg/L	<0.20	
trichlorophenol, 2,4,6-	88-06-2	E655A	0.2	μg/L	<0.20	
Chlorinated Phenolics (QCLot: 724	1808)					
tetrachlorophenol, 2,3,4,6-	58-90-2	E651D	0.5	μg/L	<0.50	
Non-Chlorinated Phenolics (QCLot	t: 724805)					
dimethylphenol, 2,4-	105-67-9	E655A	0.5	μg/L	<0.50	
dinitrophenol, 2,4-	51-28-5	E655A	1	μg/L	<1.0	
phenol	108-95-2	E655A	0.5	μg/L	<0.50	
Pesticides (QCLot: 724791)						
diazinon	333-41-5	E660E-H	0.1	μg/L	<0.10	

 Page
 :
 12 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 724671)										
colour, true		E329-L	2	CU	25 CU	97.6	85.0	115		
Physical Tests (QCLot: 726629)										
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	103	85.0	115		
Physical Tests (QCLot: 729184)								1		
рН		E108		pH units	7 pH units	100	98.0	102		
Physical Tests (QCLot: 729185)		5000							1	
alkalinity, total (as CaCO3)		E290	1	mg/L	150 mg/L	113	85.0	115		
Physical Tests (QCLot: 729186)		E100	1	110/200	4400 04	00.0	00.0	140		
conductivity		E100	1	μS/cm	1409 μS/cm	99.8	90.0	110		
Physical Tests (QCLot: 730340) turbidity		E121	0.1	NTU	OOO NITU	00.0	85.0	115	I	
turbidity		E121	0.1	NIO	200 NTU	90.9	65.0	115		
Anima and Nathings (OCL at 700000)										
Anions and Nutrients (QCLot: 726029) Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	96.1	75.0	125		
Anions and Nutrients (QCLot: 726698)					g. <u>-</u>					
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	97.9	85.0	115		
Anions and Nutrients (QCLot: 729179)										
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	102	90.0	110		
Anions and Nutrients (QCLot: 729180)										
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	100.0	90.0	110		
Anions and Nutrients (QCLot: 729181)										
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	99.4	90.0	110		
Anions and Nutrients (QCLot: 729182)										
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 729183)										
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110		
Organic / Inorganic Carbon (QCLot: 723488)			0.5					100	1	
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	105	80.0	120		
Total Sulfides (QCLot: 727164)	7783-06-4	F305-H		mg/l	0.095 mg/l	106	80.0	120		
sulfide, total (as H2S)	1103-00-4	LJ3J-N		mg/L	0.085 mg/L	106	60.0	120		

 Page
 :
 13 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number M	lethod	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Total Sulfides (QCLot: 727164) - continued									
sulfide, total (as S)	18496-25-8 E3	395-H	0.01	mg/L	0.08 mg/L	106	80.0	120	
Dissolved Metals (QCLot: 724874)									
aluminum, dissolved	7429-90-5 E4	421	0.001	mg/L	0.1 mg/L	103	80.0	120	
antimony, dissolved	7440-36-0 E4	421	0.0001	mg/L	0.05 mg/L	104	80.0	120	
arsenic, dissolved	7440-38-2 E4	421	0.0001	mg/L	0.05 mg/L	104	80.0	120	
barium, dissolved	7440-39-3 E4	421	0.0001	mg/L	0.0125 mg/L	106	80.0	120	
beryllium, dissolved	7440-41-7 E4	421	0.00002	mg/L	0.005 mg/L	102	80.0	120	
boron, dissolved	7440-42-8 E4	421	0.01	mg/L	0.05 mg/L	98.5	80.0	120	
cadmium, dissolved	7440-43-9 E	421	0.000005	mg/L	0.005 mg/L	105	80.0	120	
calcium, dissolved	7440-70-2 E	421	0.05	mg/L	2.5 mg/L	104	80.0	120	
chromium, dissolved	7440-47-3 E4	421	0.0005	mg/L	0.0125 mg/L	103	80.0	120	
cobalt, dissolved	7440-48-4 E4	421	0.0001	mg/L	0.0125 mg/L	103	80.0	120	
copper, dissolved	7440-50-8 E4	421	0.0002	mg/L	0.0125 mg/L	101	80.0	120	
lead, dissolved	7439-92-1 E4	421	0.00005	mg/L	0.025 mg/L	104	80.0	120	
magnesium, dissolved	7439-95-4 E4	421	0.005	mg/L	2.5 mg/L	106	80.0	120	
manganese, dissolved	7439-96-5 E4	421	0.0001	mg/L	0.0125 mg/L	105	80.0	120	
molybdenum, dissolved	7439-98-7 E4	421	0.00005	mg/L	0.0125 mg/L	104	80.0	120	
nickel, dissolved	7440-02-0 E4	421	0.0005	mg/L	0.025 mg/L	105	80.0	120	
potassium, dissolved	7440-09-7 E4	421	0.05	mg/L	2.5 mg/L	107	80.0	120	
selenium, dissolved	7782-49-2 E4	421	0.00005	mg/L	0.05 mg/L	105	80.0	120	
silver, dissolved	7440-22-4 E4	421	0.00001	mg/L	0.005 mg/L	108	80.0	120	
sodium, dissolved	7440-23-5 E4	421	0.05	mg/L	2.5 mg/L	108	80.0	120	
strontium, dissolved	7440-24-6 E4	421	0.0002	mg/L	0.0125 mg/L	106	80.0	120	
thallium, dissolved	7440-28-0 E4	421	0.00001	mg/L	0.05 mg/L	103	80.0	120	
uranium, dissolved	7440-61-1 E4		0.00001	mg/L	0.00025 mg/L	104	80.0	120	
vanadium, dissolved	7440-62-2 E4		0.0005	mg/L	0.025 mg/L	105	80.0	120	
zinc, dissolved	7440-66-6 E4		0.001	mg/L	0.025 mg/L	110	80.0	120	
				J	0.020g/2				
Aggregate Organica (OCL et: 722654)									
Aggregate Organics (QCLot: 722654) tannin + lignin (as tannic acid)	E	563	0.1	mg/L	5 mg/L	103	85.0	115	
,				ū	9, =	.30			
Volatile Organic Compounds (QCLot: 72806	:3)								1
Acetone	67-64-1 E6	611D	20	μg/L	100 μg/L	127	70.0	130	
benzene	71-43-2 E6	611D	0.5	μg/L	100 μg/L	98.2	70.0	130	
bromodichloromethane	75-27-4 E6	611D	0.5	μg/L	100 μg/L	98.7	70.0	130	

 Page
 :
 14 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water					Laboratory Con	trol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifi
Volatile Organic Compounds (QCLot:	: 728063) - continued							
bromoform	75-25-2 E611D	0.5	μg/L	100 μg/L	104	70.0	130	
bromomethane	74-83-9 E611D	0.5	μg/L	100 μg/L	99.5	60.0	140	
carbon tetrachloride	56-23-5 E611D	0.2	μg/L	100 μg/L	88.6	70.0	130	
chlorobenzene	108-90-7 E611D	0.5	μg/L	100 μg/L	91.6	70.0	130	
chloroform	67-66-3 E611D	0.5	μg/L	100 μg/L	98.9	70.0	130	
dibromochloromethane	124-48-1 E611D	0.5	μg/L	100 μg/L	104	70.0	130	
dibromoethane, 1,2-	106-93-4 E611D	0.2	μg/L	100 μg/L	96.7	70.0	130	
dichlorobenzene, 1,2-	95-50-1 E611D	0.5	μg/L	100 μg/L	94.3	70.0	130	
dichlorobenzene, 1,3-	541-73-1 E611D	0.5	μg/L	100 μg/L	90.0	70.0	130	
dichlorobenzene, 1,4-	106-46-7 E611D	0.5	μg/L	100 μg/L	91.7	70.0	130	
dichlorodifluoromethane	75-71-8 E611D	0.5	μg/L	100 μg/L	79.6	60.0	140	
dichloroethane, 1,1-	75-34-3 E611D	0.5	μg/L	100 µg/L	106	70.0	130	
dichloroethane, 1,2-	107-06-2 E611D	0.5	μg/L	100 µg/L	112	70.0	130	
dichloroethylene, 1,1-	75-35-4 E611D	0.5	μg/L	100 µg/L	95.7	70.0	130	
dichloroethylene, cis-1,2-	156-59-2 E611D	0.5	μg/L	100 μg/L	101	70.0	130	
dichloroethylene, trans-1,2-	156-60-5 E611D	0.5	μg/L	100 μg/L	101	70.0	130	
dichloromethane	75-09-2 E611D	1	μg/L	100 μg/L	111	70.0	130	
dichloropropane, 1,2-	78-87-5 E611D	0.5	μg/L	100 μg/L	98.1	70.0	130	
dichloropropylene, cis-1,3-	10061-01-5 E611D	0.3	μg/L	100 μg/L	94.8	70.0	130	
dichloropropylene, trans-1,3-	10061-02-6 E611D	0.3	μg/L	100 μg/L	105	70.0	130	
ethylbenzene	100-41-4 E611D	0.5	μg/L	100 μg/L	92.7	70.0	130	
nexane, n-	110-54-3 E611D	0.5	μg/L	100 μg/L	91.4	70.0	130	
methyl ethyl ketone [MEK]	78-93-3 E611D	20	μg/L	100 μg/L	103	70.0	130	
methyl isobutyl ketone [MIBK]	108-10-1 E611D	20	μg/L	100 μg/L	116	70.0	130	
methyl-tert-butyl ether [MTBE]	1634-04-4 E611D	0.5	μg/L	100 μg/L	91.4	70.0	130	
styrene	100-42-5 E611D	0.5	μg/L	100 μg/L	93.7	70.0	130	
tetrachloroethane, 1,1,1,2-	630-20-6 E611D	0.5	μg/L	100 μg/L	97.0	70.0	130	
tetrachloroethane, 1,1,2,2-	79-34-5 E611D	0.5	μg/L	100 μg/L	110	70.0	130	
tetrachloroethylene	127-18-4 E611D	0.5	μg/L	100 μg/L	93.2	70.0	130	
oluene	108-88-3 E611D	0.5	μg/L	100 μg/L	97.1	70.0	130	
richloroethane, 1,1,1-	71-55-6 E611D	0.5	μg/L	100 μg/L	96.3	70.0	130	
richloroethane, 1,1,2-	79-00-5 E611D	0.5	μg/L	100 μg/L	112	70.0	130	
richloroethylene	79-01-6 E611D	0.5	μg/L	100 μg/L 100 μg/L	91.2	70.0	130	
crichlorofluoromethane	75-69-4 E611D	0.5	μg/L	100 μg/L 100 μg/L	94.8	60.0	140	
vinyl chloride	75-01-4 E611D	0.5	μg/L	100 μg/L 100 μg/L	80.1	60.0	140	
xylene, m+p-	179601-23-1 E611D	0.5	μg/L μg/L	100 μg/L 200 μg/L	94.8	70.0	130	

 Page
 :
 15 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot: 72	8063) - continued								
xylene, o-	95-47-6	E611D	0.3	μg/L	100 μg/L	97.8	70.0	130	
Hydrocarbons (QCLot: 725961)									
F2 (C10-C16)		E601.SG	100	μg/L	5190.11 μg/L	98.0	70.0	130	
F3 (C16-C34)		E601.SG	250	μg/L	6225.68 µg/L	99.1	70.0	130	
F4 (C34-C50)		E601.SG	250	μg/L	6014.63 μg/L	87.8	70.0	130	
Hydrocarbons (QCLot: 728064)									
F1 (C6-C10)		E581.F1-L	25	μg/L	2000 μg/L	108	80.0	120	
Polycyclic Aromatic Hydrocarbons (QCL	.ot: 724805)								
acenaphthene	83-32-9	E655A	0.2	μg/L	1.6 µg/L	94.8	50.0	140	
acenaphthylene	208-96-8	E655A	0.2	μg/L	1.6 μg/L	97.1	50.0	140	
anthracene	120-12-7	E655A	0.2	μg/L	1.6 μg/L	105	50.0	140	
benz(a)anthracene	56-55-3	E655A	0.2	μg/L	1.6 μg/L	119	50.0	140	
benzo(a)pyrene	50-32-8	E655A	0.02	μg/L	1.6 μg/L	109	50.0	140	
benzo(b+j)fluoranthene	n/a	E655A	0.1	μg/L	1.6 μg/L	74.0	50.0	140	
benzo(g,h,i)perylene	191-24-2	E655A	0.2	μg/L	1.6 μg/L	67.9	50.0	140	
benzo(k)fluoranthene	207-08-9	E655A	0.1	μg/L	1.6 μg/L	105	50.0	140	
chrysene	218-01-9	E655A	0.1	μg/L	1.6 μg/L	95.1	50.0	140	
dibenz(a,h)anthracene	53-70-3	E655A	0.2	μg/L	1.6 μg/L	73.3	50.0	140	
fluoranthene	206-44-0	E655A	0.2	μg/L	1.6 μg/L	90.1	50.0	140	
fluorene	86-73-7	E655A	0.2	μg/L	1.6 μg/L	89.8	50.0	140	
indeno(1,2,3-c,d)pyrene	193-39-5	E655A	0.2	μg/L	1.6 μg/L	66.4	50.0	140	
methylnaphthalene, 1-	90-12-0	E655A	0.4	μg/L	1.6 μg/L	97.7	50.0	140	
methylnaphthalene, 2-	91-57-6	E655A	0.4	μg/L	1.6 μg/L	86.6	50.0	140	
naphthalene	91-20-3	E655A	0.2	μg/L	1.6 μg/L	87.4	50.0	140	
phenanthrene	85-01-8		0.2	μg/L	1.6 μg/L	93.6	50.0	140	
pyrene	129-00-0		0.2	µg/L	1.6 μg/L	86.4	50.0	140	
ľ				1.5	۳3,-			-	
Phthalate Esters (QCLot: 724805)									1
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655A	2	μg/L	6.4 μg/L	116	50.0	140	
diethyl phthalate	84-66-2		0.2	μg/L	6.4 μg/L	100	50.0	140	
dimethyl phthalate	131-11-3	E655A	0.2	μg/L	6.4 μg/L	107	50.0	140	
					1-5				
Semi-Volatile Organics (QCLot: 724805)									1
biphenyl	92-52-4	E655A	0.4	μg/L	1.6 μg/L	97.1	50.0	140	
l in the second of the second		l	T	Ι	1 - 1-3-				L

 Page
 :
 16 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Analyte	CAS Number			ру/L 1.6 µg/L 85.5 50.0 140 µg/L 1.6 µg/L 89.4 50.0 140 µg/L 1.6 µg/L 89.4 50.0 130 µg/L 1.6 µg/L #25.6 30.0 130 µg/L 1.6 µg/L 121 50.0 140 µg/L 1.6 µg/L 118 50.0 140 µg/L 1.6 µg/L 72.0 50.0 140 µg/L 1.6 µg/L 72.0 50.0 140 µg/L 4.8 µg/L 106 50.0 140 µg/L 4.8 µg/L #148 50.0 140 µg/L 4.8 µg/L 115 50.0 140 µg/L 4.8 µg/L 115 50.0 140 µg/L 4.8 µg/L 114 50.0 140					
Analyte	CAS Number				Spike	Recovery (%)	Recovery	Limits (%)	
		Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Semi-Volatile Organics (QCLot: 724805) -	continued								
bis(2-chloroethyl) ether	111-44-4	E655A	0.4	μg/L	1.6 µg/L	85.5	50.0	140	
bis(2-chloroisopropyl) ether	39638-32-9	E655A	0.4	μg/L	1.6 μg/L	89.4	50.0	140	
chloroaniline, 4-	106-47-8	E655A	0.4	μg/L	1.6 μg/L	61.4	30.0	130	
dichlorobenzidine, 3,3'-	91-94-1	E655A	0.4	μg/L	1.6 µg/L	# 25.6	30.0	130	RRQC
dinitrotoluene, 2,4-	121-14-2	E655A	0.4	μg/L	1.6 µg/L	121	50.0	140	
dinitrotoluene, 2,6-	606-20-2	E655A	0.4	μg/L	1.6 µg/L	118	50.0	140	
trichlorobenzene, 1,2,4-	120-82-1	E655A	0.4	μg/L	1.6 µg/L	72.0	50.0	140	
Chlorinated Phenolics (QCLot: 724805)									
chlorophenol, 2-	95-57-8	E655A	0.3	μg/L	4.8 μg/L	87.6	50.0	140	
dichlorophenol, 2,4-	120-83-2	E655A	0.3	μg/L	4.8 µg/L	106	50.0	140	
pentachlorophenol [PCP]	87-86-5	E655A	0.5	μg/L	4.8 µg/L	# 148	50.0	140	LCS-H
trichlorophenol, 2,4,5-	95-95-4	E655A	0.2	μg/L	4.8 μg/L	115	50.0	140	
trichlorophenol, 2,4,6-	88-06-2	E655A	0.2	μg/L	4.8 μg/L	114	50.0	140	
Chlorinated Phenolics (QCLot: 724808)									
tetrachlorophenol, 2,3,4,6-	58-90-2	E651D	0.5	μg/L	4.8 μg/L	115	50.0	140	
Non-Chlorinated Phenolics (QCLot: 72480	5)								
dimethylphenol, 2,4-	105-67-9	E655A	0.5	μg/L	4.8 μg/L	98.8	30.0	130	
dinitrophenol, 2,4-	51-28-5	E655A	1	μg/L	4.8 μg/L	# 174	50.0	140	LCS-H
phenol	108-95-2	E655A	0.5	μg/L	4.8 μg/L	114	50.0	140	
Pesticides (QCLot: 724791)									
diazinon	333-41-5	E660E-H	0.1	μg/L	0.2 μg/L	94.8	60.0	130	

Qualifiers

Qualifier	Description
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
RRQC	Refer to report comments for information regarding this QC result.

 Page
 :
 17 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							-	te (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
Anions and Nutr	ients (QCLot: 726029)									
WT2219431-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	ND mg/L	2.5 mg/L	ND	70.0	130	
Anions and Nutr	ients (QCLot: 726698)									
WT2219521-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.103 mg/L	0.1 mg/L	103	75.0	125	
Anions and Nutr	ients (QCLot: 729179)									
WT2220058-001	GW-12586015-GW-004	fluoride	16984-48-8	E235.F	0.983 mg/L	1 mg/L	98.3	75.0	125	
nions and Nutr	ients (QCLot: 729180)									
WT2220058-001	GW-12586015-GW-004	nitrate (as N)	14797-55-8	E235.NO3	2.32 mg/L	2.5 mg/L	92.7	75.0	125	
Anions and Nutr	ents (QCLot: 729181)									
WT2220058-001	GW-12586015-GW-004	nitrite (as N)	14797-65-0	E235.NO2	0.485 mg/L	0.5 mg/L	97.0	75.0	125	
Anions and Nutr	ents (QCLot: 729182)									
WT2220058-001	GW-12586015-GW-004	chloride	16887-00-6	E235.CI	94.4 mg/L	100 mg/L	94.4	75.0	125	
Anions and Nutr	ients (QCLot: 729183)									
WT2220058-001	GW-12586015-GW-004	sulfate (as SO4)	14808-79-8	E235.SO4	96.5 mg/L	100 mg/L	96.5	75.0	125	
Organic / Inorgai	nic Carbon (QCLot: 723	3488)								
WT2219719-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
otal Sulfides (C	CLot: 727164)									
WT2219982-003	Anonymous	sulfide, total (as S)	18496-25-8	E395-H	0.904 mg/L	1 mg/L	90.4	75.0	125	
Dissolved Metals	(QCLot: 724874)									
WT2220058-002	GW-12586015-GW-003	aluminum, dissolved	7429-90-5	E421	0.108 mg/L	0.1 mg/L	108	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0552 mg/L	0.05 mg/L	110	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0608 mg/L	0.05 mg/L	122	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.0125 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.00562 mg/L	0.005 mg/L	112	70.0	130	
		boron, dissolved	7440-42-8	E421	ND mg/L	0.05 mg/L	ND	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00535 mg/L	0.005 mg/L	107	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	2.5 mg/L	ND	70.0	130	
		chromium, dissolved	7440-47-3	E421	0.0133 mg/L	0.0125 mg/L	106	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0127 mg/L	0.0125 mg/L	102	70.0	130	
	T.	copper, dissolved	7440-50-8	E421	0.0122 mg/L	0.0125 mg/L	97.4	70.0	130	

 Page
 :
 18 of 19

 Work Order
 :
 WT2220058

 Client
 :
 GHD Limited

 Project
 :
 12586015-03.004

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Sp	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 724874) - co	ntinued								
WT2220058-002	GW-12586015-GW-003	lead, dissolved	7439-92-1	E421	0.0253 mg/L	0.025 mg/L	101	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	2.5 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.0125 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0137 mg/L	0.0125 mg/L	110	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0250 mg/L	0.025 mg/L	99.9	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	2.5 mg/L	ND	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0614 mg/L	0.05 mg/L	123	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00281 mg/L	0.005 mg/L	56.1	70.0	130	MS-Ag
		sodium, dissolved	7440-23-5	E421	ND mg/L	2.5 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.0125 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0505 mg/L	0.05 mg/L	101	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.000253 mg/L	0.00025 mg/L	101	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0276 mg/L	0.025 mg/L	110	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.0260 mg/L	0.025 mg/L	104	70.0	130	
Aggregate Organ	nics (QCLot: 722654)									
VA22C5934-004	Anonymous	tannin + lignin (as tannic acid)		E563	ND mg/L	1.96 mg/L	ND	70.0	130	
Volatile Organic	Compounds (QCLot: 7	28063)								
TY2203475-001	Anonymous	Acetone	67-64-1	E611D	131 µg/L	100 μg/L	131	60.0	140	
		benzene	71-43-2	E611D	97.1 μg/L	100 μg/L	97.1	60.0	140	
		bromodichloromethane	75-27-4	E611D	99.3 μg/L	100 μg/L	99.3	60.0	140	
		bromoform	75-25-2	E611D	107 μg/L	100 μg/L	107	60.0	140	
		bromomethane	74-83-9	E611D	97.8 μg/L	100 µg/L	97.8	60.0	140	
		carbon tetrachloride	56-23-5	E611D	87.4 μg/L	100 μg/L	87.4	60.0	140	
		chlorobenzene	108-90-7	E611D	91.2 μg/L	100 μg/L	91.2	60.0	140	
		chloroform	67-66-3	E611D	98.8 μg/L	100 μg/L	98.8	60.0	140	
		dibromochloromethane	124-48-1	E611D	105 μg/L	100 μg/L	105	60.0	140	
		dibromoethane, 1,2-	106-93-4	E611D	96.2 μg/L	100 μg/L	96.2	60.0	140	
		dichlorobenzene, 1,2-	95-50-1	E611D	94.3 µg/L	100 μg/L	94.3	60.0	140	
		dichlorobenzene, 1,3-	541-73-1	E611D	88.3 µg/L	100 μg/L	88.3	60.0	140	
		dichlorobenzene, 1,4-	106-46-7	E611D	89.9 μg/L	100 μg/L	89.9	60.0	140	
		dichlorodifluoromethane	75-71-8	E611D	74.5 μg/L	100 μg/L	74.5	60.0	140	
		dichloroethane, 1,1-	75-34-3	E611D	106 μg/L	100 μg/L	106	60.0	140	
		dichloroethane, 1,2-	107-06-2	E611D	111 µg/L	100 μg/L	111	60.0	140	
		dichloroethylene, 1,1-	75-35-4	E611D	93.6 μg/L	100 μg/L	93.6	60.0	140	
	T	dichloroethylene, cis-1,2-	156-59-2	E611D	99.7 μg/L	100 μg/L	99.7	60.0	140	

Page 19 of 19 Work Order: WT2220058 Client GHD Limited 12586015-03.004 Project

Sub-Matrix: Water							Matrix Spik	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Volatile Organic	Compounds (QCLo	t: 728063) - continued								
TY2203475-001	Anonymous	dichloroethylene, trans-1,2-	156-60-5	E611D	99.8 μg/L	100 μg/L	99.8	60.0	140	
		dichloromethane	75-09-2	E611D	110 μg/L	100 μg/L	110	60.0	140	
		dichloropropane, 1,2-	78-87-5	E611D	98.1 μg/L	100 μg/L	98.1	60.0	140	
		dichloropropylene, cis-1,3-	10061-01-5	E611D	95.5 μg/L	100 μg/L	95.5	60.0	140	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	107 μg/L	100 μg/L	107	60.0	140	
		ethylbenzene	100-41-4	E611D	92.1 μg/L	100 μg/L	92.1	60.0	140	
		hexane, n-	110-54-3	E611D	87.6 μg/L	100 μg/L	87.6	60.0	140	
		methyl ethyl ketone [MEK]	78-93-3	E611D	104 μg/L	100 μg/L	104	60.0	140	
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	121 µg/L	100 μg/L	121	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	91.6 μg/L	100 μg/L	91.6	60.0	140	
		styrene	100-42-5	E611D	92.8 μg/L	100 μg/L	92.8	60.0	140	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	97.9 μg/L	100 μg/L	97.9	60.0	140	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	115 μg/L	100 μg/L	115	60.0	140	
		tetrachloroethylene	127-18-4	E611D	92.0 μg/L	100 μg/L	92.0	60.0	140	
		toluene	108-88-3	E611D	96.0 μg/L	100 μg/L	96.0	60.0	140	
		trichloroethane, 1,1,1-	71-55-6	E611D	95.1 μg/L	100 μg/L	95.1	60.0	140	
		trichloroethane, 1,1,2-	79-00-5	E611D	112 μg/L	100 μg/L	112	60.0	140	
		trichloroethylene	79-01-6	E611D	90.3 μg/L	100 μg/L	90.3	60.0	140	
		trichlorofluoromethane	75-69-4	E611D	91.7 μg/L	100 μg/L	91.7	60.0	140	
		vinyl chloride	75-01-4	E611D	77.0 μg/L	100 μg/L	77.0	60.0	140	
		xylene, m+p-	179601-23-1	E611D	188 μg/L	200 μg/L	93.8	60.0	140	
		xylene, o-	95-47-6	E611D	98.1 μg/L	100 μg/L	98.1	60.0	140	
lydrocarbons (QCLot: 728064)									
TY2203475-001	Anonymous	F1 (C6-C10)		E581.F1-L	1920 µg/L	2000 μg/L	96.2	60.0	140	

Qualifiers

Qualifier Description

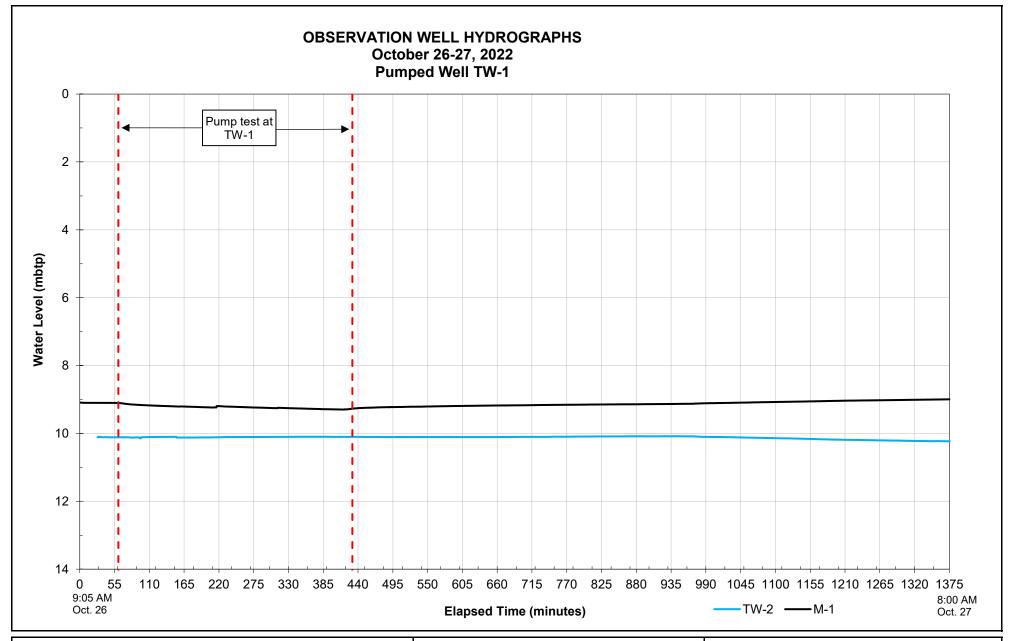
MS-Ag MS-Ag: Matrix Spike recovery for silver was marginally below DQO (40 to <60%) due to its instability in the sample matrix. Silver was not detected. Reported

result (< LOR) is reliable

Chain of Custody (COC) / Analytical Request Form

COC Number: 20 -

Canada Toll Free: 1 800 668 9878


Report To	Contact and company name below will appe	ear on the final report		Reports / F	Recipients				Turi	narou	ınd Tir	ne (T/	AT) Re	quest	ed					enta	וט וג	visio	11	
Company:	The state of the s			Select Report Format: PDF EXCEL EDD (DIGITAL)				Routine [R] if received by 3pm M-F - no surcharges apply								Waterloo Work Order Reference								
Contact:	Pascal Renella	Mer	ge QC/QCI	Reports with COA	YES N	O N/A		ay [P4] if														05	S	
Phone:	519-884-0510		Compare Result	ts to Criteria on Report				ay [P3] ay [P2]										VV	1 1 4		20	UU	O	
	Company address below will appear on the fin-	THE PARTY OF THE PROPERTY OF T	ct Distribution	2010	☐ MAIL ☐	FAX	T 1 da	ay [E] if	receive	ed by 3	3pm M	F - 10	00% rus	h surch	narge n	inimi						-	11.1	
Street:	455 Phillip St.	Ema	il 1 or Fax	pascal.renella@gl	nd.com		Sam	ne day [E may ap	2] if re	eceive ush re	d by 10	am M-	-S - 20	0% rus statuto	h surch	arge. lavs a	1		W		300			
City/Province:	Waterloo, ON	Ema	ail 2	See SSOW/PO			rout	tine tests							,				10	¥W.	m	e III	111	
Postal Code:	N2L 3X2	Ema	ail 3				0	ate and	_	_	_	_		_		_			I TY	$\mathbf{r}_{\mathbf{y}}$	ŊŢ	8.	Ш	
Invoice To	Same as Report To YES [□ NO		Invoice R	ecipients				F	or test	s that ca	n not t	be perfo	rmed ac	cording	g to th			IΨV		251	7		
	Copy of Invoice with Report YES	Z NO Sele	ct Invoice D	Distribution: 🗵 E	MAIL MAIL	FAX								Ana	ılysis	Req	т.	len her		1 610 6	996 801	0		
Company:	GHD Ltd. (GHDL100)	Ema	ail 1 or Fax	Invoicing-Canada	@ghd.com		SS		Inc	dicate	Filtered	(F), P	reserve	d (P) o	r Filten	ed and	16	нерпог	10:+	1 519 6	966 691	U		
Contact:		Ema	ail 2				叫							-				_			_	I	51	00
	Project Information		Oil	and Gas Require	d Fields (client	use)	8	0			(8)											~ 1	OH I	99
ALS Account #	# / Quote #: WT2022GHDL100	0126 AFE/	Cost Center:		PO#		5	Routine	EC		PAF						1 3		. 7			71	2	s) (s
Job #:	12586015	Major	r/Minor Code:		Routing Code:		CONTAINERS		Colour,		CPs	filter)			l II,		_				0	HOLD	STORAGE REQUI	ARI
PO / AFE:		Req	Requisitioner:					eter			sion	eld fi		- 1		2	nou				19	O	8	AZ
LSD:		Loca	ation:	1			P	Parameters	S, Alk,	O	her	s (fie	NH3	ity	F4	ignir	Diaz	(C)	_	ar)	~	8	ST	HO
ALS Lab Work Order # (lab use only):		ALS	Contact:	Rick H	Sampler:		BER		Anions,	тс,ес,тсв,нРс	Is (incl F	d Metal		, Turbidity	HC F1-	Tannins/Lignins	icides (nce (ca	ss (Calc	eld Filte	T	PLES	EXTENDED	SUSPECTED HAZARD (see no
ALS Sample #	Sample Identification (This description will a			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	NUMBER	Groundwater	includes:	TC,EC,1	Semi vols (incl Phenols CPs,PAHs)	Dissolved Metals (field	Sulphide/H2S,	TKN,pH,	VOCs/PHC F1-F4	TDS, Te	OP Pesticides (Diazinon)	Ion Balance (calc)	Hardness (Calc)	DOC (Field Filter)	100	SAMPL	EXTE	SUSP
	GW-12586015- G(1) - OO4	i e		West of the second		WATER		R	R	R	P	R	R	R	R	R	R	13	R	8	4			
	GW-12586015- GW - 00					WATER		-R			-	D	-											
						WATER		-R	_			1									0			
	GW-12586015- TRIP BL	NE				7,37,733,633,53			-							_					-	-	\neg	
	GW-12586015-					WATER		-R	-			_							-			-	-	100
	GW-12586015-					WATER		R	_											1		_		
	4																	1				_	_	
																							•	
The same																								
					-																			
							_		-			-												
							-	\vdash	-	_										-		-		
												CAN	DIE	FOE	DT/D	CTAI	C //a	h	- nelv					
Drinking	Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only)						SAMPLE RECEIPT DETAILS (lab use only) Cooling Method: NONE ICE PACKS FROZEN COOLING INITIATED																	
The second secon				Submission Comments identified on Sample Receipt Notification:																				
	YES NO	,					20000000	er Cust		1100000	100000000000000000000000000000000000000	WHIS OF		s \square	100000000000000000000000000000000000000	10000	CH CH SHARE		/ Seal			YES		W/A
	human consumption/ use?						Cook	1247	ACTION OF CHICAGO	THE PERSON NAMED IN	NOT JUST STORY		TURES	A PROPERTY OF	IN/M	Jain						URES °C		ALAS.
Service Services	YES NO						11	3					,			6	.2		1	7	10	1.3		
	YES NO SHIPMENT RELEASE (client use			INITIAL SHIPMEN	TRECEPTION	(lab use only)	7	1					FINAL	SHIF	MEN	TRE	CEPT	ION (ab us	e onl		,		
																							$\overline{}$	
Released by:	Date:		ceived by:	7 1	Date:	10/00	Time	:	Rece	eived	by:	4			Date	209			-20	200		Time:	100	

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Appendix E

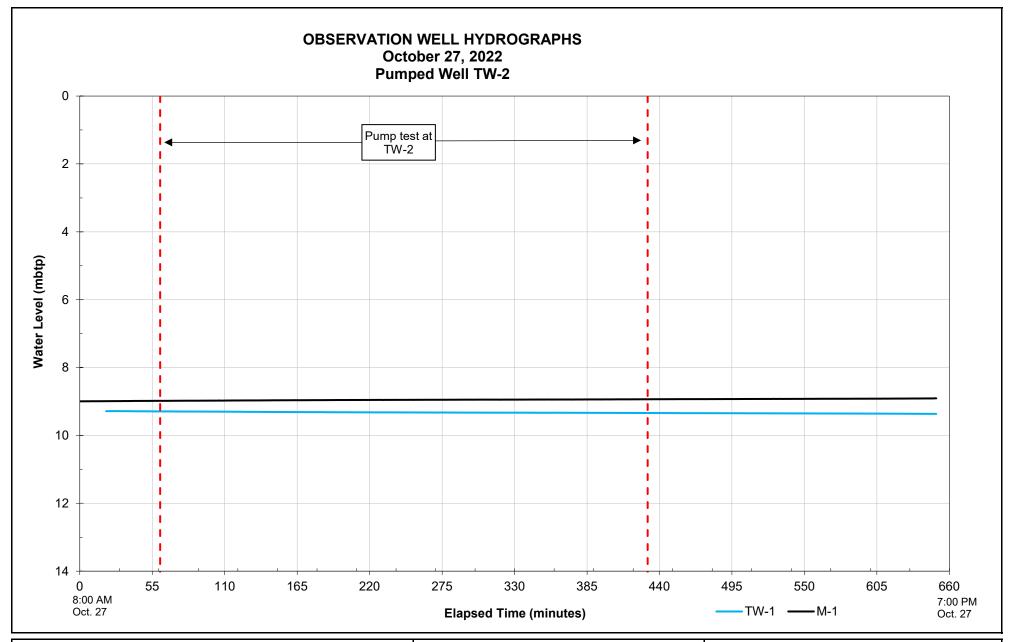
Observation Well Hydrographs

Observation Well Water Levels

Drilled Water Wells

DATE: DECEMBER 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario


JOB NUMBER: 12586015

DRAWING NUMBER: E-1

347 PIDO ROAD, UNIT 29 PETERBOROUGH, ON K9J 6X7 www.ghd.com

Note: m = metres; mbtp = metres below top of pipe

Observation Well Water Levels

Drilled Water Wells

DATE: DECEMBER 2022

LOCATION: 2545 9th Line, Metcalfe, Ontario

JOB NUMBER: 12586015

DRAWING NUMBER: E-2

347 PIDO ROAD, UNIT 29 PETERBOROUGH, ON K9J 6X7 www.ghd.com

Note: m = metres; mbtp = metres below top of pipe

Appendix F

Impact Assessment

Appendix F.1

Recharge Calculations for Nitrate Assessment

Recharge Calculations

Total Area Considered	14.30 ha	_
Available infiltration divided by 3*	57 mm/yr	*171mm/yr from water balance Appendix F.2
Average recharge volume	22331.5 L/day	

Note: Test pits were completed prevoiusly and encountered topsoil underlain by silty sand till over bedrock.

Nitrate Assessment Calculations

Background nitrate	0.05 mg/L	From analytical testing of piezometer and existing well
Nitrate	40 mg/L	Constant
Effluent	2550 L/day	Constant - design rate for the development
Lots	1 lots	
Onsite dilution _{Sandy Silt}	22331.5 L/day	Daily recharge volume
Onsite dilution _{Silty Sand}	0.0 L/day	Daily recharge volume
Onsite dilution _{Sand}	0.0 L/day	Daily recharge volume
Nitrate in precipitation recharge	0.0 mg/L	

Projected Nitrate Level = Background + (Sewage Nitrate+Dilution Nitrate)/(Onsite Dilution+Effluent)

Where: Sewage = Nitrate * Effluent

Dilution Nitrate = Onsite Dilution * Nitrate in precipitation recharge (assumed to be zero)

Projected Nitrate Level_{Sandy Silt} = 4.15 mg/L

Background nitrate sample:	[Nitrate]
TW-1	<0.1
TW-2	<0.1

Appendix F.2Water Budget Pre-Development

Catchment Designation	Existing Site						
Catchinent Designation	Rooftop	Granular Surface	Naturalized Areas / Grass	Total			
Area (m²)	15270	34852	92878	143000			
Pervious Area (m²)	0	0	92878	92878			
% Pervious (m²) of development	0%	0%	64.9%	64.9%			
Impervious Area (m ²)	15270	34852	0	50122			
% Impervious (m²) of development	10.7%	24.4%	0%	35.1%			
/		ION FACTORS	0 70	00.170			
Topography Infiltration Factor	1 0	0.25	0.25	ı			
Soil Infiltration Factor	0	0	0.2				
Land Cover Infiltration Factor	0	0	0.15				
MECP Infiltration Factor	1 0	0.25	0.6	<u> </u>			
Actual Infiltration Factor	0.25	0	0.6				
Runoff Coefficient	0.75	1	0.4				
Runoff from Impervious Surfaces*	0.8	0.8	0				
'		R UNIT AREA)	- -				
Precipitation (mm/yr)	981	981	981	981			
Run On (mm/yr)	0	0	0	0			
Other Inputs (mm/yr)	0	0	0	0			
Total Inputs (mm/yr)	981	981	981	981			
, , ,	OUTPUTS (F	PER UNIT AREA)					
Precipitation Surplus (mm/yr)	785	785	385	525			
Net Surplus (mm/yr)	785	785	385	525			
Evaportranspiration (mm/yr)	196	196	596	456			
Infiltration (mm/yr)	196	0	231	171			
Rooftop Infiltration (mm/yr)	0	0	0	0			
Total Infiltration (mm/yr)	196	0	231	171			
Runoff Pervious Areas	0	0	154	100			
Runoff Impervious Areas	589	785	0	254			
Total Runoff (mm/yr)	589	785	154	354			
Total Outputs (mm/yr)	981	981	981	981			
Difference (Inputs - Outputs)	0	0	0	0			
	INPUTS	(VOLUMES)					
Precipitation (m ³ /yr)	14980	34190	91113	140283			
Run On (m³/yr)	0	0	0	0			
Other Inputs (m ³ /yr)	0	0	0	0			
Total Inputs (m³/yr)	14980	34190	91113	140283			
. , , ,		(VOLUMES)					
Precipitation Surplus (m³/yr)	11984	27352	35777	75112			
Net Surplus (m³/yr)	11984	27352	35777	75112			
Evaportranspiration (m³/yr)	2996	6838	55337	65171			
Infiltration (m ³ /yr)	2996	0	21466	24462			
Rooftop Infiltration (m ³ /yr)	2990	0	0	0			
Total Infiltration (m ³ /yr)	2996	0	21466	24462			
` ,		0					
Runoff Pervious Areas (m³/yr)	0		14311	14311			
Runoff Impervious Areas (m³/yr)	8988	27352	0	36340			
Total Runoff (m³/yr)	8988	27352	14311	50650			
Total Outputs (m³/yr)	14980	34190	91113	140283			
Difference (Inputs - Outputs)	0	0	0	0			

Notes:
Areas estimated from Google Earth

→ The Power of Commitment