

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/

Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (LPAT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community &

Residential

Commercial & Institutional

Environmental Restoration

PROPOSED PARKING LOT EXPANSION 600 MARCH ROAD

Stormwater Management Report

STORMWATER MANAGEMENT REPORT

NOKIA PARKING LOT EXPANSION 600 MARCH ROAD

Prepared by:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6

November 7, 2023

Ref: R-2023-143 Novatech File No. 121334

November 7, 2023

Nokia 600 March Road Ottawa, Ontario K2K 2T6

Attention: Margaret Wolodarski

Re: Stormwater Management Report

NOKIA - Parking Lot Expansion 600 March Road, Ottawa, ON Novatech File No.: 121334

Enclosed is a copy of the 'Stormwater Management Report' for the proposed temporary parking lot expansion of the existing Nokia property at 600 March Road in the City of Ottawa. This report addresses the approach to storm drainage and stormwater management, and it is being submitted in support of a Site Plan Control Application.

Please contact the undersigned, should you have any questions or require additional information.

Yours truly,

NOVATECH

François Thauvette, P. Eng.

Francis Thank

Senior Project Manager | Land Development & Public-Sector Engineering

cc: Eric Surprenant (City of Ottawa)

Erik Cunnington (Colliers)

TABLE OF CONTENTS

1.0	II.	NTRO	DUCTION	.1
1	.1	Loca	ation and Site Description	.1
1	.2	Pre-	Consultation Information	.1
1	.3	Prop	oosed Development	.2
1	.4	Refe	erence Material	.2
1	.5	Stor	m Drainage and Stormwater Management	.2
	1.5.	1	Stormwater Management Criteria and Objectives	3
	1.5.2	2	Allowable Release Rate	3
	1.5.3	3	Post-Development Conditions	4
	1.	.5.3.1	Area A-1 – Controlled Flow from Main Parking Lot (Incl. OS-1 & OS-2)	4
	1.	.5.3.2	Area A-2 – Controlled Flow from South Parking Lot and SWM Pond	5
	1.	.5.3.3	Summary of Post- Development Flows	6
	1.	.5.3.4	Stormwater Quality Control	6
2.0	S	ITE G	RADING	.7
3.0	G	EOTI	ECHNICAL INVESTIGATIONS	.7
4.0	Е	ROSI	ON AND SEDIMENT CONTROL	.7
5.0	С	ONC	LUSION	.8

LIST OF FIGURES

Figure 1 Aerial Plan

LIST OF APPENDICES

Appendix A: Project Correspondence

Appendix B: Development Servicing Study Checklist

Appendix C: IDF Curves, SWM Calculations

Appendix D: Engineering Drawings

LIST OF PLANS

General Plan of Services (121334-GP)

Grading and Erosion and Sediment Control Plan (121334-GR)

Post-Development Stormwater Management Plan (121334-SWM)

1.0 INTRODUCTION

The Nokia Ottawa Office has recently severed their 10.453 ha property into two parcels; the retained property (5.183 ha), as outlined in RED in Figure 1 below, and the existing parking lots to the south, which will be re-developed as the new Nokia campus (5.270 ha, post road widening). As part of the proposed re-development, Nokia has retained Novatech to complete the site servicing, grading, and stormwater management design for the proposed parking lot expansion adjacent to their existing office building. Additional parking is required to meet the employees needs as the large existing parking lots to the south will be re-developed as part of the new Nokia campus. This report is being submitted in support of a Site Plan Control application for the proposed parking lot expansion only.

1.1 Location and Site Description

The subject site is located within the Kanata Research Park (KRP) and consists of the northern portion of the Nokia property located at 600 March Road. The area to be redeveloped around the existing building consists of drive aisles and small parking lots surrounded by landscaped areas. The site to be re-developed covers an approximate area of 2.298 hectares (of the total 5.183 ha) within the retained portion of the Nokia property. The subject site is generally surrounded by other commercial properties. The legal description of the subject site is designated as Block 6 and Part of Block 1 Registered Plan 4M-642 and Parts of Lot 9 Concession 4, Geographic Township of March, City of Ottawa.

Figure 1: Aerial view of the site

1.2 Pre-Consultation Information

A pre-consultation meeting was held with the City of Ottawa on April 21, 2023, at which time the client was advised of the general submission requirements. Subsequent meetings were held with City of Ottawa staff to further discuss the approach to storm drainage and stormwater management. Based on a review of **O. Reg. 525/98: Approval Exemptions**, a Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approval (ECA) is not anticipated to be required for the proposed parking lot expansion of an existing office building. Refer to **Appendix A** for a summary of the correspondence related to the proposed development.

1.3 Proposed Development

The proposed development is to expand the existing parking lot adjacent to the building to accommodate the parking needs of the Nokia employees. This is a direct result of the recent severance of the previously larger (10.453 ha) Nokia property, as the existing parking lots to the south will be re-developed as part of the new Nokia campus (to be filed under a separate SPC Application with the City of Ottawa). The proposed parking lot expansion is temporary, as the intent is to re-develop this property in the future to accommodate a large mixed-use development. The proposed parking lot will be serviced by the municipal storm sewer in Legget Drive. Where possible, existing trees and vegetation will be maintained on site, within the limits of the area to be re-developed.

1.4 Reference Material

The following design guidelines have been used to establish the stormwater management requirements for the proposed development:

- Ottawa Sewer Design Guidelines (2012) and Technical Bulletins (2010-present)
- Ministry of the Environment Design Guidelines for Sewage Works (2008)
- MOE Stormwater Management Planning and Design Manual (2003)
- Ontario Provincial Standards

The following reports, studies and guidelines were reviewed as part of the design process:

- ¹ KRP Stormwater Drainage Brief, prepared by Novatech in June 1987.
- ² Shirley's Brook and Watts Creek Subwatershed Study, prepared by Dillon Consulting Ltd. in 1999.
- ³ KRP Stormwater Management Plan (Report No. 93063, revised April 2000), prepared by Novatech in October 1999.
- ⁴ KRP Stormwater Drainage Brief, prepared by Novatech on December 11, 2000.
- ⁵ Geotechnical Investigation and Hydrogeological Assessment 600 March Road, Kanata, Ontario (Project No.: 12566614), prepared by GHD on June 16, 2023.

1.5 Storm Drainage and Stormwater Management

Under current conditions, storm drainage from the area to be re-developed either sheet drains towards on-site catchbasins that flow through pipes located below the building and/or sheet drains uncontrolled towards Legget Drive. As described in the previous KRP SWM Reports^{1,3,4}, stormwater quality control measures are currently being provided by the downstream stormwater management facilities (SWMF) located just west of Shirley's Brook, on the 349 Terry Fox Drive property and on the 525 Legget Drive property behind the Brookstreet Hotel.

Under post-development conditions, the proposed parking lot will be serviced by a new on-site storm sewer system and new on-site SWM pond located near the southeast corner of the property. Site flows from the new paved parking lots and adjacent landscaped areas will be controlled prior to being directed to the municipal storm sewer in Legget Drive. Due to the existing topography, runoff from a small portion of the landscaped boulevard along March Road will sheet drain onto the subject site and has been accounted for in the SWM design for the area to be redeveloped. The existing downstream SWMF will continue to provide stormwater quality control measures for the subject site, other private properties as well as a portion of the Legget Drive and

Terry Fox Drive municipal right-of-way. The approach for the stormwater management design for the subject site is discussed in the subsequent sections of the report.

1.5.1 Stormwater Management Criteria and Objectives

The stormwater management (SWM) criteria have been provided during pre-consultation meetings with the City of Ottawa. The SWM criteria and objectives are as follows and apply only to the portion of the site to be re-developed:

- Provide a dual drainage system (i.e., minor system and emergency overland flow route for events exceeding the 100-year design storm).
- Control post-development storm flows, up to an including the 100-year design event, to the
 maximum allowable release rate calculated using the Rational Method, with a runoff
 coefficient equivalent to existing conditions, but in no case greater than C=0.5, a time of
 concentration no less than 10 minutes and a 5-year rainfall intensity from City of Ottawa IDF
 curves.
- Ensure that a maximum of 0.35m of surface ponding will occur on the paved surfaces (i.e., private drive aisles or parking lots) during the 100-year storm event.
- Ensure that the surface ponding limits do not touch any part of the building envelope and remain below the lowest building opening during the stress test event (100-year + 20%).
- Target a stormwater quality control equivalent to an 'Enhanced' Level of Protection (i.e., minimum 80% TSS removal) for the portion of the site to be re-developed.
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion a Sediment Control.

No further stormwater management control measures are required for the portion of the site that remains unchanged.

Refer to **Appendix A** for correspondence from the City of Ottawa.

1.5.2 Allowable Release Rate

The allowable release rates from the 2.298 ha portion of the site to be re-developed and the two offsite tributary areas (OS-1 and OS-2), along the March Road boulevard, have been calculated using the Rational Method and are summarized in **Table 1**.

Table 1: Allowable Release Rates Summary Table

Description	C _{w5}	Time of Concentration (min)	Area (ha)	5-Yr Allowable Release Rate (L/s)
Portion of Site to be Re-developed (2.298 ha)	0.44	20	2.298	196.1
OS-1 (0.087 ha)	0.22	20	0.087	3.7
OS-2 (0.069 ha)	0.20	20	0.069	2.7
Total (2.454 ha)	0.42	-	2.454	202.5

Refer to **Appendix C** for detailed calculations.

1.5.3 Post-Development Conditions

Stormwater runoff from the portion of the site to be re-developed, including the paved parking lots, adjacent landscaped areas, and small SWMF near the southeast property corner, will be attenuated by inlet control devices (ICDs) installed within the new storm sewer system, prior to being directed to the municipal storm sewer in Legget Drive. Refer to the enclosed Post-Development Stormwater Management Plan (121334-SWM) for sub-catchment areas.

1.5.3.1 Area A-1 – Controlled Flow from Main Parking Lot (Including OS-1 & OS-2)

The post-development flow from this sub-catchment area will be attenuated by an ICD installed in the outlet pipe of STM MH 112. Stormwater runoff from this sub-catchment area will be temporarily stored underground within the storm sewer system and on the parking lot surface prior to being discharged into the downstream storm sewer system.

Table 1.1 summarizes the post-development design flow from this sub-catchment area as well as the ICD specifications, the anticipated ponding elevations, storage volumes required and storage volume provided for the 5-year and the 100-year design events.

Table	1.1:	Storn	nwater	Flows,	ICD &	Surface	Storage	

	Controlled Site Flows from Area A-1 (Incl. Areas OS-1 & OS-2)							
Design Event	ICD Type	Peak Flow	Ponding Elevation	~Average Flow (50% Qpeak)**	Storage Vol. Required*	Max Storage Available		
2-Year	167mm dia.	94.4 L/s	81.21 m	47.2 L/s	156.6 m ³			
5-Year	Orifice Plug	94.6 L/s	81.23 m	47.3 L/s	242.2 m ³	1,001.1 m ³		
100-Year	Type ICD	97.6 L/s	81.38 m	48.8 L/s	582.1 m ³			

Storage volumes are based on the 50% Qpeak flow rates, which generally represents the average flow.

Refer to **Appendix C** for detailed SWM calculations.

As indicated in the table above, this sub-catchment area will provide sufficient storage for the 2-year, 5-year and 100-year design events. Per City of Ottawa Design Guidelines, the site grading design will ensure that surface ponding depths will not touch the building envelope or lowest building openings during the 100-year+20% stress test. During larger storm events, stormwater within the paved lots will cascade towards (lower) downstream catchments areas and ultimately overflow towards Legget Drive, therefore generally maintaining existing drainage patterns.

Deviation from Ottawa Sewer Design Guidelines

The following outlines a deviation from the current Ottawa Sewer Design Guidelines (Technical Bulletin PIEDTB-2016-01 Section 8.3.11.1, first bullet), specifically related to no surface ponding allowed within the private parking lots and drive aisles during the 2-year storm event.

As discussed with City staff, several factors played a role in the design of the temporary parking lot, and thus the proposed on-site storm sewer system and SWM design:

- The shallow depth of the 375mm dia. (receiving) storm sewer in Legget Drive, limits the
 pipe size and slope of the proposed on-site storm sewer system, which in turn limits both
 the conveyance capacity of the system and thus potential storage available underground.
- The topography of the existing site and adjacent Right-of-Ways (i.e., >2.7m drop from March Road to Legget Drive), affects the grading of the proposed parking lot expansion

^{**}Represents rounded values.

and thus the layout of the catchbasins and storm sewer system, further limiting the potential storage available on the surface and more importantly underground.

- The length of the proposed on-site storm sewer required to drain the new parking lot starting from a shallow receiving sewer in Legget Drive, results in minimal cover on-site and the need for thermal insulation along most of the sewer pipe segments.
- Retrofitting an existing parking lot to meet current City standards, for which the original parking lot was not designed.
- Keeping in mind that this is a temporary parking lot, thus trying to keep construction costs to a minimum.

Considering the factors listed above, we concluded that temporary 'nuisance' surface ponding within the new parking lot during frequent (i.e., 2-year) rainstorm events is less of a concern than potentially surcharging the downstream municipal storm sewer system. As a result, we are intentionally over-controlling post-development flow as part of the on-site SWM design. Based on correspondence from the City, over-controlling site flows from the new parking lot should alleviate any negative impacts on the City's municipal storm sewer system.

As a result, a deviation from the Ottawa Sewer Design Guidelines is being requested, specifically related to no surface ponding allowed within the private parking lots and drive aisles during the 2-year storm event.

1.5.3.2 Area A-2 – Controlled Flow from South Parking Lot and SWM Pond

The post-development flow from this sub-catchment area will be attenuated by an ICD installed in the outlet pipe of STM MH 116. Stormwater runoff from this sub-catchment area will be temporarily stored within the proposed dry pond prior to being discharged into the downstream storm sewer system then conveyed to the municipal storm sewer in Legget Drive.

Table 1.2 summarizes the post-development design flow from this sub-catchment area as well as the ICD specifications, the anticipated ponding elevations, storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

Table 1.2: Stormwater Flows, ICD & Surface 5	Storage
--	---------

	Controlled Site Flows from Area A-1 (Pond)							
Design Event	ICD Type	Peak Flow	Ponding Elevation	~Average Flow (50% Qpeak)**	Storage Vol. Required*	Max Storage Available		
2-Year	118mm dia.	20.4 L/s	78.76 m	10.2 L/s	87.3 m ³			
5-Year	Orifice Plug	23.3 L/s	78.90 m	11.7 L/s	124.1 m ³	406.3 m ³		
100-Year	Type ICD	30.1 L/s	79.30 m	15.1 L/s	268.7 m ³			

^{*}Storage volumes are based on the 50% Qpeak flow rates, which generally represents the average flow.

Refer to **Appendix C** for detailed SWM calculations.

As indicated in the table above, this sub-catchment area will provide sufficient storage for the 2-year, 5-year, 100-year, as well as the 100-year + 20% design events. During larger storm events, stormwater within the SWM pond would overflow towards the Legget Drive municipal Right-of-Way.

^{**}Represents rounded values.

1.5.3.3 Summary of Post- Development Flows

Table 1.3 compares the post-development site flows from the proposed parking lot expansion area to the total uncontrolled pre-development flows (including flows from OS-1 & OS-2) and the maximum allowable release rate.

Table 1.3: Stormwater Flow Comparison Table

			Drainage A	reas A-1	to A-2 (Inc	l. OS-1 & OS-2)
Design	Uncontrolled	Allowable Release Rate (L/s)	Post-Development Conditions			
Event	Flows (L/s)		A-1 (Incl. OS-1 & OS- 2) Flow (L/s)	A-2 Flow (L/s)	Total Flow (L/s)	Reduction in Flow (L/s or %)*
2-Yr	150.0		94.4	20.4	114.8	35.2 or 23%
5-Yr	202.5	202.5	94.6	23.3	117.9	84.6 or 42%
100-Yr	399.7		97.6	30.1	127.7	272.0 or 68%

^{*}Reduced flow compared to pre-development uncontrolled conditions.

As indicated above, the 2-year, 5-year and 100-year post-development flows will be over-controlled when compared to the allowable release rate specified by the City of Ottawa. Furthermore, this represents a significant reduction in total site flow rate when compared to the respective pre-development conditions for the portion of the site to be re-developed. Refer to **Appendix C** for detailed SWM calculations. As indicated above, over-controlling the post-development site flows should alleviate any negative impacts the temporary parking lot will have on the City's municipal storm sewer system.

Maintenance and Monitoring of the Storm Sewer and Stormwater Management Systems

It is recommended that the client implement a maintenance and monitoring program for both the on-site storm sewers and the stormwater management systems: The storm drainage system should be inspected routinely (at least annually); the ICDs should be inspected to ensure they are free of debris.

1.5.3.4 Stormwater Quality Control

Based on correspondence from the City of Ottawa, it is recommended that surface parking lots and drive aisles within the portion of the site to be re-developed meet an 'Enhanced' Level of Protection (i.e.: 80% TSS removal) as an appropriate water quality target. Landscaped areas are considered clean for the purposes of water quality and aquatic habitat protection. As described in the previous KRP SWM Reports, stormwater quality control measures are currently being provided by the downstream stormwater management facility (SWMF) located just west of Shirley's Brook, on the 349 Terry Fox Drive property. Stormwater runoff from the proposed parking lot expansion will continue to be directed to the same municipal storm sewer in Legget Drive, which directs flows to this existing SWMF. Due to the temporary nature of the proposed parking lot expansion, no additional water quality treatment is being proposed on-site, other than what is currently being provided by the downstream SWMF.

When the subject site is redeveloped as future mixed-use lands, a full re-design of the on-site SWM system, including both quantity and quality control measures, will need to be implemented.

2.0 SITE GRADING

The topography of the existing site generally slopes from west to east. The existing grades drop by approximately 5.0m from west to east along Terry Fox Drive, while also dropping by 0.8m from north to south along March Road. Since the parking lot modifications are being proposed on the west and south sides of the existing building, the main challenge will be the 3.0m drop from west to east on the south side of the building.

The proposed grading design will need to tie into existing elevations around the perimeter of the site as well as around the existing building. The intent is to maintain as many of the existing trees as possible around the perimeter of the site, which have the best chance of surviving in the future, while accommodating the parking needs of the Nokia employees. Based on the proposed grading design, most of the existing landscaped berms located on the west side of the property will need to be flattened and the grade lowered to accommodate the proposed parking lot expansion. The western portion of the main parking lot will slope from west to east (i.e., maximum 3:1 terracing) to make up the grade difference, which means that surface ponding will only be possible closer to the building. The parking lot on the south side of the building will slope towards the proposed stormwater management pond located within the southeast corner of the property. Due to the existing topography of the site, the emergency overflow route will continue to be towards Legget Drive. The proposed grading design will also ensure that the south property line is the high point to ensure no surface runoff is directed to the severed lands to the south. Refer to the enclosed Grading and ESC Plan (121334-GR) for details.

3.0 GEOTECHNICAL INVESTIGATIONS

GHD prepared a Geotechnical Investigation and Hydrogeological Assessment Report for the entirety of the 600 March Road property. Although much of the information is related to the new Nokia Campus development on the severed portion of the site, the report also includes information related to the proposed parking lot expansion. Refer to the Geotechnical Report⁵ described in Section 1.4 of the report, for subsurface conditions, construction recommendations and geotechnical inspection requirements.

4.0 EROSION AND SEDIMENT CONTROL

To mitigate erosion and to prevent sediment from entering the storm sewer system and downstream ditches, temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter bags will be placed under the grates of nearby catchbasins, manholes and will remain in place until vegetation has been established and construction is completed.
- Silt fencing will be placed per OPSS 577 and OPSD 219.110 along the surrounding construction limits.
- Mud mats will be installed at the site entrance.
- Street sweeping and cleaning will be performed, as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site.
- On-site dewatering is to be directed to a sediment trap and/or gravel splash pad and discharged safely to an approved outlet as directed by the engineer.

The temporary erosion and sediment control measures will be implemented prior to construction and will remain in place during all phases of construction. Regular inspection and maintenance of the erosion control measures will be undertaken.

5.0 CONCLUSION

This report has been prepared in support of a Site Plan Control application for the proposed temporary parking lot expansion at 600 March Road. The conclusions are as follows:

- The proposed stormwater design (i.e., stormwater quantity control measures), will
 ultimately reduce peak flows into the municipal sewer in Legget Drive.
 - Post-development flow from sub-catchment area A-1, and A-2 will be controlled by inlet control devices (ICDs) installed within the on-site storm sewer system.
 - The total post-development flow from the subject site will be approximately 114.8 L/s during the 2-year event, 117.9 L/s during the 5-year event and 127.7 L/s during the 100-year event, over-controlled when compared to the allowable release rate (202.5 L/s) specified by the City of Ottawa. The post-development conditions also represent a significant reduction when compared to the respective predevelopment conditions.
 - Over-controlling the post-development site flows should alleviate any negative impacts the temporary parking lot will have on the City's municipal storm sewer system.
 - Stormwater quality control measures will continue to be provided by the downstream stormwater management facility (SWMF) located just west of Shirley's Brook, on the 349 Terry Fox Drive property.
 - Regular inspection and maintenance of the storm sewer system, including the inlet control devices and SWM pond is recommended to ensure that the storm drainage system is clean and operational.
- Erosion and sediment controls will be provided both during construction and on a permanent basis.

It is recommended that the proposed site servicing and stormwater management design be approved for implementation.

NOVATECH

Prepared by: Reviewed by:

F.S. THAUVETTE HIS November 7, 2023

Zarak Ali, E.I.T. Land Development François Thauvette, P. Eng. Senior Project Manager – Land Development

APPENDIX A

Project Correspondence

Pre-Application Consultation Site Plan Control

570 March Road Meeting Date: 2023.04.21

Owner: Nokia Canada Inc. Ward: 4 – Kanata North Applicant: Colliers Strategy & Consulting Councillor: Cathy Curry

Proposal Once construction on the new Nokia campus starts, the existing campus will lose **Summary:** the majority of its parking. Nokia's Network Infrastructure Business still needs to

continue to operate from the existing campus until they move to the new campus in October 2027. The purpose of the Site Plan Application is to add additional parking stalls to the existing campus lands to accommodate employees parking needs.

Attendees: Internal External

Krishon Walker, Planner Aaron Clodd, Colliers

Julie Candow, Infrastructure Project Greg Winters, Novatech

Manager James Ireland, Novatech

Nancy Young, Planning Forester Francois Thauvette, Novatech

Ryan James, Novatech

Meeting Notes

Planning Comments (Provided by Krishon Walker)

- The site is located within the City's Suburban Transect as outlined on Schedule A –
 Transect Policy Areas of the Official Plan, is designated Kanata North Economic District
 on Schedule B5 Suburban (West) Transect of the Official Plan (the Plan) and is along
 the March Road Mainstreet Corridor. The Kanata North Economic District is one of two
 Special Economic Districts identified in the Plan and is intended to support the City's
 economic development and growth.
- The site is currently zoned as Mixed-Use Centre Zone, Urban Exception 2816, Holding Provision (MC[2816]-h). Please ensure that your proposal complies with all applicable provisions under the Zoning By-law (specifically Part 4 of the Zoning By-law).

Feel free to contact Krishon Walker at Krishon.Walker@ottawa.ca for follow-up questions.

Engineering Comments (Provided by Julie Candow)

Please note the following information regarding the engineering design submission for the above noted site:

- The Stormwater Management Criteria, for the subject site, is to be based on the following:
 - a. Please refer to following background reports:
 - a. Shirley's Brook and Watts Creek Subwatershed Study, prepared by Dillon Consulting Ltd., 1999
 - b. Kanata Research Park, Storm Water Management Report, prepared by Novatech, dated June 1987

- c. Stormwater Management Plan, Kanata Research Park, City of Kanata, prepared by Novatech, dated April 2000
- d. Kanata Research Park Subdivision Design Brief, prepared by Novatech, dated August 2000

The stormwater management criteria shall be in accordance with the minor and major system storm allocations presented in the above mentioned reports.

- b. If the capacity of the receiving storm sewer is in question, over-controlling may be required, in which case flows to the storm sewer in excess of the 5-year storm release rate, up to and including the 100-year storm event, must be detained on site. In such a case the pre-development condition will be determined using the smaller of a runoff coefficient of 0.5 or the actual existing site runoff coefficient.
- c. The stormwater management area for the site can be limited to the area of the site that is to be redeveloped. The area's of the site that are to remain in existing conditions do not require further stormwater management.
- d. An enhanced level of water quality treatment (80% TSS Removal) is required for the portion of the site that is to be redeveloped.
- e. The treatment level in the north cell of stormwater management pond in SWM Facility No. 1 should be confirmed. Otherwise, stormwater quality control shall be achieved onsite.
- f. Please provide within the SWM Report the legal agreements related to the private SWM Facility No. 1 outlet located to the east on KRP lands.

Feel free to contact Julie Candow at Julie.Candow@ottawa.ca for follow-up questions.

Forestry Comments (Provided by Nancy Young)

- Section 4.8.2 of the New Official Plan provides strong direction to maintain the urban forest canopy and its ecosystem services during intensification noting when considering the impacts on individual trees, planning and development decisions, including Committee of Adjustment decisions, shall give priority to the retention and protection of large, healthy trees over replacement plantings and compensation. Applications must address the cumulative impacts on the urban forest, over time and space, with the goal of 40% urban forest canopy cover in mind. Further, that the City and the Committee of Adjustment may refuse a development application where it deems the loss of a tree(s) avoidable.
- The City has adopted a suite of High Performance Development Standards to improve the climate change resiliency of new developments. While these are not yet being fully implemented, it is recommended to provide the following details on the Landscape Plan:
 - For parking lots, provide 1 new tree for every 5 parking spaces to help cool the landscape of the site.
 - Confirm sufficient Soil volumes to support canopy cover on site (30m³ for street trees)
 - Proposed species must not include invasive species and target a minimum of 50% native species
- A TCR is required for this proposal, with the proposed parking locations overlaid on the tree layer, to assess and design around major tree impacts.
 - The TCR should also include an approximation of the anticipated road widening and concept site plans if available

- The TCR will be used to identify specific trees and groupings of trees that are a high priority for retention, and those that are more likely retainable through both the parking and building design.
- Trees along the March, Terry Fox, and Legget frontages are the highest priority to retain as screening for the site, through both stages of development.
- Parking (especially temporary) is not generally an acceptable reason to remove protected trees. All options to reduce the number of temporary parking spaces must be considered (e.g. leasing space in existing parking lots, transit, shuttles, working from home, etc).
- As discussed in the meeting, while a Landscape Plan is generally required for each site
 plan, given the temporary nature of this situation, I think we will need to make a modified
 arrangement. If there are any areas of tree retention that could be bolstered with planting
 at this stage, we can look at that, but I don't think it is in anyone's best interest to plant
 temporary trees unless they could be transplanted later. The Landscape Plan for the
 eventual build will need to address all planting for the site, working toward the 40% canopy
 cover target from the Official Plan.

TCR requirements:

- The TCR must list all trees on site, as well as off-site trees if the CRZ extends into the developed area, by species, diameter and health condition.
 - a. Please identify trees by ownership private onsite, private on adjoining site, city owned, co-owned (trees on a property line)
- If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained.
- All retained trees must be shown, and all retained trees within the area impacted by the
 development process must be protected as per City guidelines available at <u>Tree Protection</u>
 Specification or by searching Ottawa.ca.
- The location of tree protection fencing must be shown on the plan.
- The City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.

LP tree planting requirements:

- The Official Plan requires that "On urban properties subject to site plan control or community planning permits, development shall create tree planting areas within the site and in the adjacent boulevard, as applicable, that meet the soil volume requirements in any applicable City standards or best management practices or in accordance with the recommendation of a Landscape Architect;"
- Minimum Setbacks
 - Maintain 1.5m from sidewalk or MUP/cycle track or water service laterals.
 - Maintain 2.5m from curb
 - Coniferous species require a minimum 4.5m setback from curb, sidewalk or MUP/cycle track/pathway.

- Maintain 7.5m between large growing trees, and 4m between small growing trees. Park or open space planting should consider 10m spacing, except where otherwise approved in naturalization / afforestation areas.
- Adhere to Ottawa Hydro's planting guidelines (species and setbacks) when planting around overhead primary conductors.

Tree specifications

- Minimum stock size: 50mm tree caliper for deciduous, 200cm height for coniferous.
- Maximize the use of large deciduous species wherever possible to maximize future canopy coverage
- Tree planting on city property shall be in accordance with the City of Ottawa's Tree Planting Specification; and include watering and warranty as described in the specification (can be provided by Forestry Services).
- Plant native trees whenever possible
- No root barriers, dead-man anchor systems, or planters are permitted.
- No tree stakes unless necessary (and only 1 on the prevailing winds side of the tree)

Hard surface planting

- Curb style planter is highly recommended
- No grates are to be used and if guards are required, City of Ottawa standard (which can be provided) shall be used.
- Trees are to be planted at grade

Soil Volume

- Please document on the LP that adequate soil volumes can be met:

Tree Type/Size	Single Tree Soil Volume (m3)	Multiple Tree Soil Volume (m3/tree)
Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15

Sensitive Marine Clay

Please follow the City's 2017 Tree Planting in Sensitive Marine Clay guidelines

Tree Canopy

- The landscape plan shall show how the proposed tree planting will replace and increase canopy cover on the site over time, to support the City's 40% urban forest canopy cover target.
- At a site level, efforts shall be made to provide as much canopy cover as possible, through tree planting and tree retention, with an aim of 40% canopy cover at 40 years, as appropriate. Indicate on the plan the projected future canopy cover at 40 years for the site.

Feel free to contact Nancy Young at Nancy. Young@ottawa.ca for follow-up questions.

Application Submission Information

Application Type: Standard Non Rural

Site plan control application approval timelines vary based on the development complexity, scale, the quality of the submission and public consultation process if applicable. The legislated timeline under the Planning Act is 60 days. For more information on standard processing timelines, please visit: https://ottawa.ca/en/city-hall/planning-and-development/information-development-application-forms#site-plan-control

Prior to submitting a formal application, it is recommended that you pre-consult with the Ward Councillor, Cathy Curry.

For information on application fees, please visit: https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development-application-review-process/development-application-fees

To request City of Ottawa plan(s) or report information please contact the City of Ottawa Information Centre: lnformationCentre@ottawa.ca or (613) 580-2424 ext. 44455

Application Submission Requirements

For information on the preparation of Studies and Plans and the City's requirements, please visit: https://ottawa.ca/en/city-hall/planning-and-development/information-development-development-application-review-process/development-application-submission/guide-preparing-studies-and-plans

Please provide electronic copies (PDF) of all plans and studies required. Hard copies are not required at this time.

Note that many of the plans and studies collected with this application must be signed, sealed and dated by a qualified engineer, architect, surveyor, planner or designated specialist.

APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST

Legend: **S** indicates that the study or plan is required with application submission. **A** indicates that the study or plan may be required to satisfy a condition of approval/draft approval.

For information and guidance on preparing required studies and plans refer here:

S/A	ENGIN	EERING	S/A
S	Site Servicing Plan	Site Servicing Study / Assessment of Adequacy of Public Services	
s	3. Grade Control and Drainage Plan	Geotechnical Study / Slope Stability Study	s
	5. Composite Utility Plan	6. Groundwater Impact Study	
	7. Servicing Options Report	8. Wellhead Protection Study	
	9. Transportation Impact Assessment (TIA)	10.Erosion and Sediment Control Plan / Brief	s
s	11.Storm water Management Report / Brief	12.Hydro geological and Terrain Analysis	
	13.Hydraulic Water main Analysis	14.Noise / Vibration Study	
	15.Roadway Modification Functional Design	16.Confederation Line Proximity Study	

S/A	PLANNING / DES	IGN / SURVEY	S/A
	17.Draft Plan of Subdivision	18.Plan Showing Layout of Parking Garage	
	19.Draft Plan of Condominium	20.Planning Rationale	S
S	21.Site Plan	22.Minimum Distance Separation (MDS)	
	23.Concept Plan Showing Proposed Land Uses and Landscaping	24.Agrology and Soil Capability Study	
	25.Concept Plan Showing Ultimate Use of Land	26.Cultural Heritage Impact Statement	
S	27.Landscape Plan	28.Archaeological Resource Assessment Requirements: S (site plan) A (subdivision, condo)	
S	29.Survey Plan	30.Shadow Analysis	
	31.Architectural Building Elevation Drawings (dimensioned)	32.Design Brief (includes the Design Review Panel Submission Requirements)	
	33.Wind Analysis		

S/A	ENVIRON	IMENTAL	S/A		
	34.Phase 1 Environmental Site Assessment	35.Impact Assessment of Adjacent Waste Disposal/Former Landfill Site			
	36.Phase 2 Environmental Site Assessment (depends on the outcome of Phase 1)	37.Assessment of Landform Features			
	38.Record of Site Condition	39.Mineral Resource Impact Assessment			
s	40.Tree Conservation Report	41.Environmental Impact Statement / Impact Assessment of Endangered Species			
	42.Mine Hazard Study / Abandoned Pit or Quarry Study	43.Integrated Environmental Review (Draft, as part of Planning Rationale)	s		
S/A	ADDITIONAL REQUIREMENTS				
S	44. Applicant's Public Consultation Strategy (may be provided as part of the Planning Rationale)	45.Site Lighting Plan			

Meeting Date: 2023.04.21	Application Type: Site Plan Control

46. Site Lighting Certification Letter

File Lead (Assigned Planner): Krishon Walker Infrastructure Approvals Project Manager: Julie Candow Site Address (Municipal Address): 570 March Road Preliminary Assessment: 1 2 3 4 5

*One (1) indicates that considerable major revisions are required before a planning application is submitted, while five (5) suggests that proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, the Planning, Real Estate and Economic Development Department will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again preconsult with the Planning, Real Estate and Economic Development Department.

François Thauvette

From: Walker, Krishon < krishon.walker@ottawa.ca>

Sent: Thursday, October 12, 2023 4:23 PM

To: Cunnington, Erik

Cc: Ryan James; James Ireland; Francois Thauvette; Angela Taggart; kirby@kerryhill.ca;

Surprenant, Eric; Young, Nancy

Subject: 600 March Road (Parking Lot Expansion)

Hi Erik,

Please see the notes from our meeting yesterday below:

Planning

I did not have an opportunity to mention this yesterday but Cash-In-Lieu of Conveyance of Parkland will be required in accordance with the Parkland Dedication By-law No. 2022-280.

Engineering

- Nuisance ponding increases the risk of ICD being removed and in turn surcharging City system. Underground storage is to be looked at exhaustively in combination to dry pond proposed.
- Assessment of residual capacity of Leggett sewer system is to be carried out by Novatech with assessment of HGLs and impact on Legget Sewer.
- Also, normally only one sewer connection is allowed per property.
- This would technically be deviations from our standards but we can work with consultant on these items.

As it relates to the Geotechnical study, if it looked at conditions here, that should be acceptable for pavement structure.

In addition to the material submitted, we will require the Stormwater management Study to be provided.

Feel free to contact Eric Surprenant for follow-up questions.

Forestry

TCR and General comments

• The Tree Conservation Plan has been provided with this submission. Slight modifications have been made to adjust the parking lot layout to retain a small number of trees along the March Rd frontage and additional trees adjacent to the existing building. Further information is required to assess the overall canopy cover impacts of this design (including tree planting opportunities), and whether further alterations could allow for the retention of more of the trees identified as a high priority on site.

- Section 4.8.2 of New Official Plan provides strong direction to maintain the urban forest canopy and its ecosystem services during intensification noting when considering the impacts on individual trees, planning and development decisions, including Committee of Adjustment decisions, shall give priority to the retention and protection of large, healthy trees over replacement plantings and compensation. Applications must address the cumulative impacts on the urban forest, over time and space, with the goal of 40% urban forest canopy cover in mind. Further, that the City and the Committee of Adjustment may refuse a development application where it deems the loss of a tree(s) avoidable. Site plan control applications must create tree planting areas within the site and in the adjacent boulevard, meeting the City's soil volume requirements and planting standards.
- Trees along the March, Terry Fox, and Legget frontages are the highest priority to retain as screening for the site, through all stages of development.
- Temporary uses (parking, staging, etc.) are not generally an acceptable reason to remove protected trees. Ensure that plans, including for construction use, account for the retention of as many existing trees as possible.
- Please continue to explore options to further reduce parking spaces or pull the parking closer to the building to allow for retention of more of those trees around the perimeter of the site with a reasonable chance of retention through the future site plan.
- The TCR must meet the requirements laid out in <u>Schedule E</u> of the Tree Protection By-law. Please provide further detail on the following within the TCR:
 - Canopy cover assessment and comparison
 - Confirmation that the proposed tree protection fencing location is measured as 10xdbh as a radius from the trunk of each tree
 - Mitigation recommendations where excavation is proposed within the CRZ of any protected tree
 - Installation of retaining/toe walls and parking islands in close proximity to protected trees without impacting tree stability or survival
 - o Discussion of options considered to design parking to minimize tree impacts
 - A summary table of trees to be removed, retained and planted

Landscape Plan comments

- A Landscape Plan is required with this application. To support the City's urban forest canopy cover target, efforts shall be made to provide as much canopy cover as possible at a site level, through tree planting and tree retention. The Landscape Plan shall show how the proposed tree planting and retention will contribute to the City's overall canopy cover over time by doing a projection of the future canopy cover for the site to 40 years. The calculations for the canopy cover projection must be shown on the plan.
- Since our first meeting, the City has adopted the new <u>Landscape Plan Terms of Reference</u>.
 Please ensure that the conceptual landscape plan addresses the high level aspects of these requirements (in particular, the section below, related to canopy cover projection). Future landscape plans must address all of the components within this document.

- The site plan is mostly hard surface. Along with the canopy cover targets, please demonstrate how urban heat islands will be addressed. Best Management Practices include provision of one tree for every 5 parking spaces within parking lot areas.
- The Official Plan designates March Rd as a Scenic Entry Route and provides direction to maintain or enhance the views from these roadways through provision of landscaping (including a double row of trees) as screening from parking lots and outdoor storage. The Landscape, Site plan and TCR will need to address how this landscape screening will be provided, accounting for retention of existing trees and any potential road widening.
- The Official Plan section 4.8.2, sub 3 provides the following direction related to tree planting related to site plans:
 - a) Preserve and provide space for mature, healthy trees on private and public property, including the provision of adequate volumes of high-quality soil as recommended by a Landscape Architect;
 - b) On urban properties subject to site plan control or community planning permits, development shall create tree planting areas within the site and in the adjacent boulevard, as applicable, that meet the soil volume requirements in any applicable City standards or best management practices or in accordance with the recommendation of a Landscape Architect;
- Understanding that most planting on this site will be temporary, prior to the development of the
 lot, the priority areas for tree planting are around the perimeter of the site, including the Right
 of Ways.
- The planting plan should prioritize large-growing native species to increase the canopy cover on site. Along the March Rd frontage, where screening is a high priority, conifers or trees with low, dense branching should be considered.
- Please document on the LP that adequate soil volumes can be met:

Tree	Single Tree Soil Volume	Multiple Tree Soil Volume
Type/Size	(m3)	(m3/tree)
Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15

Feel free to contact Nancy Young for follow-up questions.

Let me know if you have any questions.

Best Regards,
Krishon Walker, MCIP, RPP, PMP
Planner II | Urbaniste II
Economic Development Services | Services de développement économique

Planning, Real Estate and Economic Development | Direction générale de la planification, de l'immobilier et du développement économique

City of Ottawa | Ville d'Ottawa 110 Laurier Avenue West / 110 avenue Laurier Ouest Ottawa, Ontario, K1P 1J1 613.580.2424 ext./poste 24161

My pronouns are he/him

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

4

François Thauvette

From: Surprenant, Eric <Eric.Surprenant@ottawa.ca>

Sent: Friday, October 13, 2023 10:09 AM

To: Francois Thauvette

Cc: Walker, Krishon; Cunnington, Erik; James Ireland; Greg Winters

Subject: Re: 600 March Road - Parking Lot Expansion (121334)

Hello François,

Thanks for reaching out. I can agree that for a temporary parking lot we can be flexible on a few fronts. Please ensure that your rational is well presented in the Stormwater Management study, the overcontrol of the site does address the concern and therefore we will not ask that you analyse the Leggett Sewer.

As for the more frequent ponding occurring in Nokia's "temporary" parking as I noted please also provide full rational in the Stormwater Management report.

Hopefully this addresses your concerns.

Let me know if you have any further questions.

Thanks,

Eric Surprenant, CET

Sr, Project Manager, Infrastructure Projects, West Planning, Real Estate & Economic Development

613 580-2424 ext.: 27794

Absence Alert:

From: Francois Thauvette <f.thauvette@novatech-eng.com>

Sent: October 12, 2023 15:13

To: Surprenant, Eric < Eric. Surprenant@ottawa.ca>

Cc: Walker, Krishon krishon.walker@ottawa.ca; Cunnington, Erik <Erik.Cunnington@colliers.com; James Ireland krishon.walker@ottawa.ca; Cunnington, Erik <Erik.Cunnington@colliers.com; James Ireland krishon.walker@ottawa.ca; Cunnington, Erik <Erik.Cunnington@colliers.com; James Ireland krishon.walker@ottawa.ca; Cunnington, Erik <Erik.Cunnington@colliers.com; James Ireland

Subject: RE: 600 March Road - Parking Lot Expansion (121334)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Eric,

In our Teams call yesterday, you mentioned that the City 'might' be looking for an analysis of the City's downstream storm sewer system. Unfortunately, you left before the end of the meeting, so we never finished the conversation. Is an analysis necessary if we intend to over-control post-development flows from the new temporary parking lot by approximately 74 L/s less than the allowable release rate specified by the City? We assume that since we are over-controlling post-development flows, there would be no negative impact on the City's sewer system. Based on the current design, the 100-year post-development peak storm flows will be controlled to approximately 128 L/s (based on the capacity of the on-site storm sewer) vs. a Q allowable of ~202 L/s. As discussed, we cannot upsize the on-site storm sewer nor can we increase its slope as the receiving sewer in Legget Drive is a (shallow) 375mm dia. pipe and we are already struggling with cover.

An analysis of the municipal storm sewer system was never included in our scope of work as this is typically done by the City's SWM modelling group and we are significantly over-controlling post-development flows when compared to the allowable release rate specified by the City. If necessary, we assume the City's SWM modelling group could input our post-development flows into their model to analyse the downstream sewer system. We do not have the HGL information, nor do we have the storm drainage area plan for the municipal storm sewer system in this area. Please review and provide additional clarification (re: the analysis of the downstream storm sewer system) as part of the City's formal response.

Regards,

François Thauvette, P. Eng., Sr. Project Manager | Land Development & Public-Sector Engineering

NOVATECH

Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | T: 613.254.9643 Ext: 219 | C: 613.276.0310 The information contained in this email message is confidential and is for exclusive use of the addressee.

-----Original Appointment-----

From: Walker, Krishon < krishon.walker@ottawa.ca>

Sent: Tuesday, October 3, 2023 2:24 PM

To: Walker, Krishon; Cunnington, Erik; Ryan James; James Ireland; Francois Thauvette; Young, Nancy; Surprenant, Eric

Cc: Angela Taggart; kirby@kerryhill.ca

Subject: 600 March Road (Parking Lot Expansion)

When: Wednesday, October 11, 2023 1:45 PM-2:30 PM (UTC-05:00) Eastern Time (US & Canada).

Where: Microsoft Teams Meeting

Importance: High

Hello all,

I am pushing our meeting back by 15 minutes – we will meet from 1:45 pm to 2:30 pm. That should give us enough time to discuss submission package and next steps.

Best Regards,

Krishon Walker, MCIP, RPP, PMP

Planner II | Urbaniste II

Economic Development Services | Services de développement économique

Planning, Real Estate and Economic Development | Direction générale de la planification, de l'immobilier et du développement économique

City of Ottawa | Ville d'Ottawa

110 Laurier Avenue West / 110 avenue Laurier Ouest

Ottawa, Ontario, K1P 1J1

613.580.2424 ext./poste 24161

My pronouns are he/him

Microsoft Teams meeting

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 233 394 456 22

Passcode: Hr5n9K

Download Teams | Join on the web

Join with a video conferencing device

teams@vc.ottawa.ca

Video Conference ID: 117 869 330 9

Alternate VTC instructions

Or call in (audio only)

+1 613-319-1080,,880618839# Canada, Ottawa-Hull

Phone Conference ID: 880 618 839#

Find a local number | Reset PIN

<u>Learn More</u> | <u>Meeting options</u>

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you. Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

APPENDIX B

Development Servicing Study Checklist

Servicing study guidelines for development applications

4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1 General Content

Executive Summary (for larger reports only).

Proposed phasing of the development, if applicable.

Date and revision number of the report.
Location map and plan showing municipal address, boundary, and layout of proposed development.
Plan showing the site and location of all existing services.
Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.
Summary of Pre-consultation Meetings with City and other approval agencies.
Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.
Statement of objectives and servicing criteria.
Identification of existing and proposed infrastructure available in the immediate area.
Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).
Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.
Identification of potential impacts of proposed piped services on private services (such as wells and sentic fields on adjacent lands) and mitigation required to address potential impacts

Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme

	Reference to geotechnical studies and recommendations concerning servicing.
	All preliminary and formal site plan submissions should have the following information: • Metric scale
	North arrow (including construction North)
	∘ Key plan
	Name and contact information of applicant and property owner
	∘ Property limits including bearings and dimensions
	 Existing and proposed structures and parking areas
	 Easements, road widening and rights-of-way
	Adjacent street names
	4.2 Development Servicing Report: Water
	Confirm consistency with Master Servicing Study, if available
	Availability of public infrastructure to service proposed development
_	Identification of system constraints
	Identify boundary conditions
_	Confirmation of adequate domestic supply and pressure
	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design
	Address reliability requirements such as appropriate location of shut-off valves
	Check on the necessity of a pressure zone boundary modification.
	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range

Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.
4.3 Development Servicing Report: Wastewater
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).
Confirm consistency with Master Servicing Study and/or justifications for deviations.
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.
Description of existing sanitary sewer available for discharge of wastewater from proposed development.
Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)
Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.
Description of proposed sewer network including sewers, pumping stations, and forcemains.
Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.
Special considerations such as contamination, corrosive environment etc.

4.4 Development Servicing Report: Stormwater Checklist

drain, right-of-way, watercourse, or private property)
Analysis of available capacity in existing public infrastructure.
A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.
Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.
Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.
Description of the stormwater management concept with facility locations and descriptions with references and supporting information.
Set-back from private sewage disposal systems.
Watercourse and hazard lands setbacks.
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.
Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.
Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).
Identification of watercourses within the proposed development and how watercourses will be protected or, if necessary, altered by the proposed development with applicable approvals.
Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.
Any proposed diversion of drainage catchment areas from one outlet to another.
Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.
If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 year return period storm event.
Identification of potential impacts to receiving watercourses
Identification of municipal drains and related approval requirements.
Descriptions of how the conveyance and storage capacity will be achieved for the development.
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.

Inclusion of hydraulic analysis including hydraulic grade line elevations.
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.
Identification of fill constraints related to floodplain and geotechnical investigation.
4.5 Approval and Permit Requirements: Checklist
The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.
Changes to Municipal Drains.
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)
4.6 Conclusion Checklist
Clearly stated conclusions and recommendations
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario

Visit us: Ottawa.ca/planning Visitez-nous: Ottawa.ca/urbanisme

APPENDIX C

IDF Curves, SWM Calculations

Ottawa Sewer Design Guidelines

APPENDIX 5-A

OTTAWA INTENSITY DURATION FREQUENCY (IDF) CURVE

City of Ottawa Appendix 5-A.1 October 2012

Proposed Parking Lot 600 March Road

			Pre - Deve	elopment Storn	nwater Flow	3						Q _{cap375mm dia. @}
		A imperv (ha)	Δ (ha)	A pervious (ha)	Weighted	Weighted	2-Year	5-Year	100-Year	Allowable	Allowable Flows	_{0.5%} =129L/s
Description	Area (ha)	C=0.9	C=0.7	C=0.2	C _{w5}		Flow (L/s)				5-year (L/s)	
Subject Site to be Developed	2.298	0.778	0.000	1.520	0.44	0.50	145.3	196.1	386.1	0.44	196.1	T _c = 20mins
Offsite Tributary Area OS-1	0.087	0.002	0.000	0.085	0.22	0.27	2.7	3.7	7.8	0.22	3.7	T _c = 20mins
Offsite Tributary Area OS-2	0.069	0.000	0.000	0.069	0.20	0.25	2.0	2.7	5.8	0.20	2.7	T _c = 20mins
Total	2.454	0.780	0.000	1.674	0.42	0.49	150.0	202.5	399.7	0.42	202.5	

					Post	- Developme	nt Stormwate	er Flows								
Area	Description	Area (ha)	A imp (ha)	A perv (ha)	C ₅	C ₁₀₀	Unco	ntrolled Flov	v (L/s)	Con	trolled Flow	(L/s)	Storage Required (m³)			Storage 3
	·	. ,	C=0.9	C=0.2			2-year	5-year	100-year	2-year	5-year	100-year	2-year	5-year	100-year	Available (m ³)
A-1	Controlled Flow (Incl. OS-1 and OS-2 Flows)	1.720	1.231	0.489	0.70	0.79	-	-	-	94.4	94.6	97.6	156.6	242.2	582.1	1001.1
A-2	Controlled Flow (Pond)	0.765	0.501	0.264	0.66	0.74	-	-	-	20.4	23.3	30.1	87.3	124.1	268.7	406.3
	Totals :	2.485	-	-	-	-	0.0	0.0	0.0	114.8	117.9	127.7	243.9	366.3	850.8	1407.4
•		•	•	•			Total On-	Site Stormwa	ater Flows	114.8	117.9	127.7		•	•	

Project #: 121334 Project Name: 600 March Road Location: Ottawa

Total Storage

| Total | Total | Volume | Total | Volume | Im² | O.00 |

0 0.5 2.7 48.9 70.6

	dng L			Storage Calc		
		o. 121334			Equal to	50% of the Q
			EAR EVEN			
			d Site Flow	s + Offsite Ar		
WAIDF O				Opesk =	94.4	L/s
- 4	rea -		ha	Qavg =	47.2	Lite
	C=	0.70		Vol(max) =	156.6	m3
				(Vol calculate	d for Qalic	ow-ovg)
Time		Intensity	Q	Qnet	Vol	
(min)		(mmhr)	(L/s)	(L/s)	(m3)	
5		103.57	347.16	299.95	80.99	
10		76.81	257.44	210.24	125.14	
15		61.77	207.03	159.83	143.85	
20		52.03	174.40	127.20	152.64	
25		45.17	151.39	104.19	155.29	
30		40.04	134.22	87.02	155.63	
35		35.05	120.87	73.67	154.70	
40		32.85	110.16	62.96 54.16	151.09	
45		30.24	101.36	54.16 46.79	146.23	
55		25.04	93.99 87.72	46.79	140.37	
55		24.55	82.31	40.52 35.11	133.71	
65		23.15	77.60	30.11	115.41	
70		21.91	73.45	26.25	110.24	
75		20.81	69.76	22.56	101.53	
90		18.14	60.81	13.61	73.51	
105		16.13	54.08	6.88	43.33	
120		14.55	48.81	1.61	11.59	
135		13.30	44.57	-2.63	-21.34	
150	ding L	12.25	41.07	-2.63 -6.13 Storage Calo	-55.21	sing Average
150 sed Park	ect N	12.25 ot o. 121334	41.07	-6.13 Storage Calo Release Rate	-55.21 dations U	sing Average 50% of the Q
and Pari	ect N	12.25 of o. 121334 3E - 1:100	41.07 YEAR EVE	-6.13 Storage Calo Release Rate	-55.21 dations U Equal to	
and Pari sch Proj IRED ST A-1 + O	ect N ORAS 5-1	12:25 ot o: 121334 3E - 1:100 Controlle	41.07 YEAR EVE	-6.13 Storage Calo Release Rate ENT s + Offsite Ar	-55.21 dations U Equal to	50% of the Q
and Pari sch Proj IRED ST A-1 + Q	oct N ORAG S-1	12.25 ot o. 121334 3E - 1:100 Controlle	YEAR EVE	-6.13 Storage Calo Release Rate ENT s + Offsite Ar Openk -	-55.21 dations U Equal to cas 1 & 2 97.6	50% of the Q
and Pari sch Proj IRED ST A-1 + Q	ORAG S-1 CURVE	12.25 ot o. 121334 2E - 1:100 Controlle	41.07 YEAR EVE	-6.13 Storage Calo Release Rate ENT a + Offsite Ar Opeak = Oxyg =	-55.21 dations U Equal to eas 1 & 2 97.6 45.5	Lh Lh
and Pari sch Proj IRED ST A-1 + Q	oct N ORAG S-1	12.25 ot o. 121334 3E - 1:100 Controlle	YEAR EVE	-6.13 Storage Calo Release Rate ENT a + Offsite Ar Opens = Vol(max) =	-55.21 dations U Equal to eas 1 & 2 97.6 45.5 582.1	Lh Lh m3
and Pari sch Proj IRED ST A-1 + Q	ORAG S-1 CURVE	12.25 ot o. 121334 2E - 1:100 Controlle	YEAR EVE	-6.13 Storage Calo Release Rate ENT a + Offsite Ar Opeak = Oxyg =	-55.21 dations U Equal to eas 1 & 2 97.6 45.5 582.1	Lh Lh m3
and Pari and Proj IRED ST A-1 + O WAIDF C	ORAG S-1 CURVE	12.25 ot 0. 121334 2E - 1:100 Controlle 1.720 0.79	41.07 YEAR EVE d Site Flow	-6.13 Storage Calc Release Pate ENT a + Offsite Ar Opesk = Queg = Vol(max) = (Vol calculate	-55.21 dations U Equal to eas 1 & 2 97.6 45.8 582.1 d for Quile	Lh Lh m3
and Parison Project ST A-1 + O A Time (min)	ORAG S-1 CURVE	12.25 ot o. 121334 2E - 1:100 Controlle 1.720 0.79 Intensity (mmhr)	YEAR EVE d Site Flow ha	-6.13 Storage Calc Release Rate ENT a + Offsite Ar Openk = Outg = Vol(max) = (Vol calculate Onst L/s) 854.25	-55.21 dations U Equal to eas 1 & 2 97.6 45.5 582.1 d for Calle Vol (m3) 259.25	Lh Lh m3
and Paris such Proj IRED ST A-1+0 WAIDF C A	ORAG S-1 CURVE	12.25 of 0. 121334 3E - 1:100 Controlle 1.720 0.79 Intensity (mm)br) 242.70 178.56	41.07 YEAR EVE d Site Flow ha Q G/m 913.06 671.75	-6.13 Storage Calo Release Rate ENT a + Offsite Ar Opesk - Queg = Vol(max) = (Vol calculate Onet 4./a) 864.35 622.95	-55.21 dations U Equal to eas 1 & 2 97.6 45.8 582.1 d for Calle Vel (m3) 259.25 373.77	Lh Lh m3
and Paris such Proj IRED ST A-1+Q WAIDF (A	ORAG S-1 CURVE	12.25 of 0. 121334 3E - 1:100 Controlle 1.720 0.79 Intensity (mmhr) 242.70 170.56 142.80	41.07 YEAR EVE d Site Flow ba 0 6.bb 213.06 671.75 537.57	-6.13 Storage Calc Release Pale ENT a + Offsite Ar Opesk = Quege Vol(max) Vol(calculate Onet 6.hb 864.26 622.95 485.77	-55.21 distions U Equal to 97.6 45.8 582.1 d for Calle Vol (m3) 259.25 373.77 439.90	Lh Lh m3
and Paris sch Proj IRED ST A-1 + Q WA IDF C A Time (min) 5 10 15 20	ORAG S-1 CURVE	12.25 ot 0. 121334 2E - 1:100 Controlle 1.720 0.79 Intensity (mmhr) 242.70 178.56 142.89 119.95	41.07 YEAR EVE d Site Flow 913.06 671.75 537.57 451.26	-6.13 Storage Cato Release Rate ENT a + Offsite Ar Opeak = Queg = Vol(max) = (Vol calculate Gnet 6.5a) 56.2.95 455.77 402.46	-55.21 dations U Equal to east 1 & 2 97.6 45.5 582.1 d for Calle Vol (m3) 259.25 373.77 439.90 452.95	Lh Lh m3
and Paris such Proj (RED ST A-1 + Q (MA IDF C A Time (min) 5 10 15 20 25	ORAG S-1 CURVE	12.25 ot 0. 121334 2E - 1:100 Controlle 1.720 0.79 Intensity (mmbr) 242.70 178.56 142.89 119.95 103.85	41.07 YEAR EVE d Site Flow ha 913.06 671.75 537.57 451.65 330.65	-6.13 Storage Calc Release Rate INT a + Offsite Ar Opesit = (Vol calculate Grat 6./a) 864.35 664.35 485.77 402.46 341.85	-55.21 dations U Equal to eas 1 & 2 97.5 48.5 582.1 d for Calle Vol (m3) 259.28 373.77 439.90 482.95 512.81	Lh Lh m3
and Paris sch Proj IRED ST A-1+O WA IDF C A Time (min) 5 10 15 20 25 30	ORAG S-1 CURVE	12.25 of 0. 121334 in 121336 in 22 - 1:100 Controlle 1.720 0.79 Intensity (rembr) 242.70 178.56 142.89 119.95 103.85 21.87	41.07 YEAR EVE d Site Flow ha Q 4.5a) 913.06 671.75 537.57 451.26 390.63 345.61	-6.13 Storage Calc Release Rate ENT - Opent = Out (-55.21 dations U Equal to 97.6 45.5 582.1 d for Califor (m3) 259.28 373.77 439.90 452.95 534.26	Lh Lh m3
and Paris sch Proj siRED ST A-1 + Q WA IDF C A Time (min) 5 10 15 20 25 30 35	ORAG S-1 CURVE	12.25 of 0, 121334 in 121334 infernity (mmbr) 242.70 178.56 142.89 112.95 103.85 91.87 82.58	41.07 YEAR EVE d Site Flow ha Q 4.5a 671.75 537.57 451.26 300.68 345.61 310.66	-6.13 Storage Calc Release Rafe NMT as + Offsite Ar Cpeak = Queg = (Vol calcutate Gnt 64:0 654.35 652.95 458.77 402.46 204.63 341.85 296.81 201.85	-55.21 thatlorus U Equal to eas 1 & 2 97.5 45.8 582.1 d for Calle vol (m3) 259.28 373.77 439.90 482.95 512.81 534.91 5349.91	Lh Lh m3
and Paris sch Proj IRED ST A-1+O WA IDF C A Time (min) 5 10 15 20 25 30	ORAG S-1 CURVE	12.25 of 0. 121334 in 121336 in 22 - 1:100 Controlle 1.720 0.79 Intensity (rembr) 242.70 178.56 142.89 119.95 103.85 21.87	41.07 YEAR EVE d Site Flow ha Q 4.5a) 913.06 671.75 537.57 451.26 390.63 345.61	-6.13 Storage Calc Release Rate ENT - Opent = Out (-55.21 dations U Equal to 97.6 45.5 582.1 d for Califor (m3) 259.28 373.77 439.90 452.95 534.26	Lh Lh m3
and Paris ach Proj IRED ST A-1+O WA IDF (A Time (min) 5 10 15 20 25 30 35 40	ORAG S-1 CURVE	12.25 at a. 121334 2E - 1:100 Controlle 1.720 0.79 Intensity (mmbr) 142.50 142.69 119.95 142.89 119.95 103.85 75.15 69.05	41.07 YEAR EVE d Site Flow ha 913.06 671.75 537.57 451.26 390.68 345.61 310.66 282.70 259.77	-5.13 Storage Calc. Release Rate Rate Cany = Cany	-55.21 dations U Equal to Equal to 297.5 45.5 562.1 d for Qalle (m3) 259.25 373.77 439.90 482.95 512.81 534.25 549.91 551.35 559.62	Lh Lh m3
Time (min) 5 20 25 30 35 40 45	ORAG S-1 CURVE	12.25 of 0.121334 3E - 1:100 Controlle 1.720 0.79 Intensity (mmhr) 242.70 178.56 142.89 112.95 142.89 112.95 91.87 82.58 91.87 82.53 75.15	41.07 YEAR EVE d Site Flow ha 913.06 671.25 537.57 451.26 340.65 340.65 340.65 340.65	-6.13 Storage Calo Release Rate Pare No + Offsito Ar Opeak = Queg = Volymax) = (Vol calculate Ghel Sch 562.95 458.77 402.45 341.85 296.81 261.85 233.90	-55.21 Indices U Equal to 97.5 45.2 97.5 582.1 d for Calle Vol (259.25 373.77 439.95 512.81 534.26 549.91 551.35	Lh Lh m3
150 sed Paris seth Prof IRED ST A-1 + Q WA IDF C A Time (min) 15 20 25 30 35 40 45 50	ORAG S-1 CURVE	12.25 ot o. 121334 3E - 1:100 Controlle 1.720 0.79 Intensity (mmhr) 242.70 178.56 142.89 112.95 103.85 75.15 69.05 63.95	41.07 YEAR EVE d Site Flow 913.06 671.75 537.57 451.65 390.65 345.61 310.65 345.61 310.65 262.70 259.77 240.60	-5.13 Storage Calc. Reliense Rate NMT s + Offsite Ar Opeas - Clarge - Vollenge - Vollen	-55.21 Equal to Equal to 682.1 45.5 582.1 d for Calle Vol (m3) 259.28 373.77 439.90 482.95 512.81 5349.91 551.35 569.91 575.39	Lh Lh m3
150 sed Paris sch Proj IRED ST A-1 + O WA IDF (A Time (min) 5 10 15 20 25 30 40 45 55	ORAG S-1 CURVE	12.25 ot o. 121334 2E - 1:100 Controlle 1.720 0.79 Infarrally (rembr) 242.70 170.56 142.89 119.95 103.85 91.87 82.58 91.87 82.55 63.95 59.62	41.07 YEAR EVE d Site Flow ha 913.06 671.75 913.06 671.75 451.26 350.68 345.61 310.66 252.70 240.60 224.31	-5.13 Storage Calc. Release Rate Release Rate Caveg = Volume Cave	-55.21 dations U Equal to cass 1 & 5 45.8 552.1 d for Calle Vol (m3) 259.37 439.90 482.95 512.81 534.26 549.91 551.35 569.62 575.39 579.17	Lh Lh m3
150 and Paris and Paris sech Proj iRED ST A-1 + Q WA IDF C A Time (min) 5 10 15 20 25 30 35 40 45 50 50	ORAG S-1 CURVE	12.25 ot 0. 121334 2E - 1:100 Controlle 1.720 0.79 Intensity (remite) 242.70 112.95 103.85 112.95 103.85 91.87 82.58 75.15 69.05 59.05 59.05 59.05 59.05	41.07 YEAR EVE d Site Flow ha 913.05 671.75 537.57 451.26 300.65 345.61 310.66 252.70 240.50 224.31 210.25	-5.13 Storage Calc Release Rate NH 1810 Ar Closes - Clo	-55.21 Inform U Equal to 27.5 45.5 552.1 d for Qalle Vol (m3) 259.25 512.81 534.25 549.91 551.32 575.39 575.39 575.17	Lh Lh m3
150 sed Pari ech Proj IRED ST A-1 + O WA IDF C A Time (min) 15 20 25 30 35 40 45 50 55 60 65	ORAG S-1 CURVE	12.25 ot 0. 121334 2E - 1:100 Controlle 1.720 0.79 Intensity (rembr) 242.70 178.56 142.89 119.95 103.85 91.87 82.55 92.55 59.05 53.95 59.62 55.89 52.65	41.07 YEAR EVE d Site Flow has Q S.hah 913.06 671.75 537.57 451.26 300.65 345.61 310.66 282.70 240.60 224.31 210.28 190.06	-5.13 Storage Calc Release Rafe NT - Offsite Ar Closus - Quay = Volymay (Vol calculate - Sub) 564.26 522.95 402.46 341.88 206.81 201.80 175.91 101.45 140.25	-55.21 dations U Equal to 97.5 45.8 582.1 45.8 77.7 429.95 512.81 534.95 549.95 559.62 575.39 579.17 581.32	Lh Lh m3
150 sed Paris ach Proj RED ST A-1+0 WA DF C A Time (min) 15 30 225 30 40 45 50 50 70	ORAG S-1 CURVE	12.25 ot 0.121334 2E - 1:100 Controlle 1.720 0.79 1/2.27 1/2.27 1/2.29	41.07 YEAR EVE d Site Flow ha Q G,ha 913.06 671.75 937.57 451.26 310.68 345.61 310.68 282.70 224.31 210.28 196.06 187.31 210.28	-5.13 Storage Calc Release Res NH State Are Closes - Clo	-55.21 Squal to Equal to Equal to S2.21 97.6 48.5 582.1 d for Calle (m3) 259.28 373.79 429.90 512.81 551.26 569.62 575.79 579.17 581.32 581.32	Lh Lh m3
150 and Paris and Proj special	ORAG S-1 CURVE	12.25 at 0. 121334 2E - 1:100 2E - 1:100 2.79 Internity (rembr) 242.70 170.56 142.89 110.3.85 75.15 69.05 59.62 55.89 52.65 49.79 47.25	41.07 YEAR EVE d Site Flow ha 913.05 671.25 357.57 451.26 350.68 345.61 310.66 252.70 259.77 240.60 224.31 210.26 196.06 197.31	-6.13 Storage Calc Portage Calc Portage Calc Portage 1 + Ottsiba A; Cpeak = Cya Volymay = Voly	-55.21 Initions U Equal to Equal to 297.5 45.8 552.1 45.9 552.3 552.8 552.8 553.9 553.9 553.9 553.9 553.9 553.9 553.9 553.9 553.9 553.9 553.9 553.9 553.9	Lh Lh m3
150 sed Pari ach Proj (min) 5 10 15 20 225 30 35 40 45 50 55 70 75 90 105 105 105 105 105 105 105 10	ORAG S-1 CURVE	12.25 of	41.07 YEAR EVE d Site Flow has 913.06 671.75 537.57 451.26 390.68 346.61 310.68 262.70 240.50 120.25 156.06 157.31 177.78 154.66 137.30 123.75 154.66 137.30 123.75 154.66 137.30 123.75 154.66 137.30 123.75 154.66 137.30	-6.13 Storage Calc Roterane Rate Openia - Carg (No) Solid Calc Solid Calc Solid Calc Solid	-55.21 Equal to Equal to 25.5 (21.25)	Lh Lh m3
150 sed Paris ech Proj RRED 3T A 1+ C A Time (min) 15 20 30 35 45 45 50 65 77 77 79 90 90 90 90 90 90	ORAG S-1 CURVE	12.25 of 12.334 is - 1:1020 Controlle 1.720 0.79 Intensity 1.720 1.72.50 112.25 112.	41.07 YEAR EVE d Site Flow ha 913.05 671.25 537.27 451.26 390.65 345.61 310.66 282.70 299.77 299.77 210.25 221.31 210.26 187.31 177.78 154.66	-6.13 Storage Calco Parlesson Rate NAT	-55.21 Equal to Control of Contro	Lh Lh m3

Proposed Parking		Storage Calculations Using Average						
Novatech Project I		Release Rate Equal to 50% of the Ope						
REQUIRED STORA								
AREA A-1 + OS-1		d Site Flow						
OTTAWA IDF CURN			Opeak =	24.6	L/s			
Anna =	1.720	ha	Qavg =	47.3	L/s			
C =	0.70		Vol(max) =	242.2	m3			
			(Vol calculate	d for Qall	ow-ava)			
Time	Intensity	0	Onet	Vol	-			
	,							
(min)	(mm/hr)	(L/x)	(L/x)	(m3)				
5	141.15	473.21	425.91	127.77				
10	104.19	349.24	301.94	181.16				
15	83.56	280.07	232.77	209.49				
20	70.25	235.47	188.17	225.81				
25	60.90	204.11	156.81	235.22				
30	53.93	180.76	133.46	240.22				
35	48.52	162.62	115.32	242.18				
40	44.18	148.10	100.80	241.92				
45	40.63	135.18	85.85	239.98				
50	37.65		78.91	236.72				
55	35.12			232.41				
60	32.94			227.24				
65	31.04	104.05	56.75	221.34				
70	29.37	98.45	51.15	214.83				
75	27.89	93.48	45.18	207.80				
90	24.29	81.41	34.11	184.20				
105	21.58	72.34	25.04	157.76				
120	12.47	65.25 59.55	17.95	129.26				
150	16.36	54.84	7.54	67.69				

Proposed Parking			Storage Calculations Using Average						
Novatech Project			Release Rate Equal to 50% of the Ope						
REQUIRED STOR									
AREA A-1 + 05-1		d Site Flow							
OTTAWA IDF CUR			Qpeak =	24.6					
Anna =	1.720	ha	Qavg =	47.3	L/s				
C=	0.70		Vol(max) =	242.2	m3				
			(Vol calculate	d for Qall	ow-mys)				
Time	Intensity	0	Onet	Vol					
(min)	(mm/hr)	(L/x)	(L/x)	(m3)					
5	141.15	473.21	425.91	127.77					
10	104.19	349.24	301.94	181.16					
15	83.56	280.07	232.77	209.49					
20	70.25	235.47	188.17	225.81					
25	60.90	204.11	156.81	235.22					
30	53.93	180.76	133.46	240.22					
35	48.52	162.62	115.32	242.18					
40	44.18	148.10	100.80	241.92					
45	40.63	135.18	85.85	239.98					
50	37.65	125.21	78.91	236.72					
55	35.12	117.73		232.41					
60	32.94	110.42		227.24					
65	31.04	104.05	55.75	221.34					
70	29.37	98.45	51.15	214.83					
75	27.89	93.48	45.18	207.80					
90	24.29	81.41	34.11	184.20					
105	21.58	72.34	25.04	157.76					
120	19.47	65.25	17.95	129.26					
135	17.76	59.55	12.25	99.19					
150	16.36	54.84	7.54	67.89					

			Storage Calc	deliner 11	
posed Parking ratech Project i					
DUIRED STORA	NO. 121334	0 VB + 200	PERSONAL PERSON	Equal to	DUTH OF THE I
EA A-1 + OS-1					
FAWAIDF CUR			Opeak =		
	1.720	ha	Qavg =	48.8	
C =	0.79		Vol(max) =		
			(Vol calculate		ow-avg)
Time	Intensity		Qnet	Vol	
(min)		(L/a)	(L/a)		
5	291.24			314.06	
10	214.27			454.38	
15	171.47			536.66	
20	143.94			591.25	
25		465.81			
30	110.24				
35	99.09				
40	90.17			697.05	
45	82.86			709.90	
50	76.74			719.75	
55	71.55			727.21	
60	67.07			732.72	
65	63.18	237.67		736.59	
70	59.75	224.77	175.97	739.08	
75	56.71	213.33	164.53	740.40	
90	49.33	185.59	136.79	738.68	
105	43.80	164.77	115.97	730.58	
120	39.47	148.50	99.70	717.85	
135	36.00	135.42	85.62	701.62	
150	33.13	124.65		882.62	

silations Using Average	Structures	Size (mm)	Area (m²)	TIG	Inv IN	Inv OUT	Structures	Size (mm)	Area (m²)	T/G	Inv IN	Inv OUT
Equal to 50% of the Opeak	STMMH 112	1200	1.13	81.30		78.55	CBMH 106	1200	1.13	81.10	79.05	79.05
	CBMH 110	1200	1.13	81.10		78.65	CBMH 104	1200	1.13	81.15	79.17	79.14
reas 1 & 2	CBMH 108	1200	1.13	81.10	78.89	78.85	CBMH 102	1200	1.13	81.15		79.34
94.6 L/s	STMMH 120	1200	1.13	81.28		78.76	CBMH 100	1200	1.13	81.15	79.57	79.56
47.3 L/s												
242.2 m3												
ed for Qallow-ave)					Area	A-1: Storage	Table					Undergroun
Vol												Storage
***		-		-	-		-	-	-	-	-	
(m2)	- 1	System	STMMH 112	CBMH 110	CRMH 108	STMMH 120	CBMH 106	CBMH 104	CRMH 102	CRMH 100	Pipe	Combine
127.77	Floration	Depth	Volume	Mohama	Molesman.	Moherne.	Volume	Moherne	Moleme.	Molecus	Volume	Volume
181.16	(m)	(m)	(m²)	(m ²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)	(m ²)	(m ²)
209.49	78.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
225.81	78.60	0.04	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.00	5.05
235.22	78.80	0.24	0.27	0.16	0.00	0.05	0.00	0.00	0.00	0.00	10.00	10.48
240.22	79.00	0.44	0.50	0.10	0.14	0.27	0.00	0.00	0.00	0.00	15.00	16.29
242.18	79.20	0.64	0.30	0.50	0.35	0.50	0.17	0.07	0.00	0.00	20.00	22.43
241.92	79.40	0.84	0.95	0.84	0.59	0.72	0.40	0.29	0.07	0.00	25.00	28.86
239.98	79.60	1.04	1.18	1.06	0.81	0.95	0.62	0.52	0.29	0.05	30.00	35.49
236.72	79.80	1.24	1.40	1.29	1.04	1.18	0.85	0.75	0.52	0.27	38.10	45.39
232.41	80.00	1.44	1.63	1.52	1.27	1.40	1.07	0.97	0.75	0.50	38.10	47.20
227.24	80.20	1.64	1.85	1.74	1.49	1.63	1.30	1.20	0.97	0.72	38.10	49.01
221.34	80.40	1.84	2.08	1.97	1.72	1.85	1.53	1.43	1.20	0.95	38.10	50.82
214.83	80.60	2.04	2.31	2.19	1.95	2.08	1.75	1.65	1.43	1.18	38.10	52.63
207.80	80.80	2.24	2.53	2.42	2.17	2.31	1.98	1.88	1.65	1.40	38.10	54.44
184.20	81.00	2.44	2.76	2.65	2.40	2.53	2.21	2.10	1.88	1.63	38.10	56.25
157.76	81.10	2.54	2.87	2.76	2.51	2.65	2.32	2.22	1.99	1.74	39.10	58.16
129.26	81.15	2.59	2.93	2.76	2.51	2.70	2.32	2.27	2.05	1.80	40.10	59.44
99.19	81.20	2.64	2.99	2.76	2.51	2.76	2.32	2.27	2.05	1.80	38.10	57.55
67.89	81.40	2.84	3.10	2.76	2.51	2.85	2.32	2.27	2.05	1.80	38.10	57.76
	81.45	2.89	3.10	2.76	2.51	2.85	2.32	2.27	2.05	1.80	38.10	57.76

				Area	A-1: Storage	e Table					Underground Storage								
	System	STMMH 112	CBMH 110	CBMH 108	STMMH 120	CBMH 106	CBMH 104	CBMH 102	CBMH 100	Pipe	Combined		5 0 1		H 100		H 102		8 02
Elevation (m)	Depth (m)	Volume (m²)	Volume (m²)	Volume (m²)	Volume (m²)	Volume (m²)	Volume (m²)	Volume (m²)	Volume (m²)	Volume (m ³)	Volume (m²)	Anna (m²)	Volume (m²)	Area (m²)	Volume (m ³)	Area (m²)	Volume (m²)	Area (m²)	Vo.
78.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(mr)	(87)	(87)	(m:)	(87)	(m)	(mr)	+
78.60	0.04	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.00	5.05	-		-		-	-	-	
78.80	0.24	0.27	0.16	0.00	0.05	0.00	0.00	0.00	0.00	10.00	10.48	-	-	-		-	-	1 :	
79.00 79.20	0.44	0.50	0.38	0.14	0.27	0.00	0.00	0.00	0.00	15.00	16.29	1	1	1 :	1	1 :	1 1	1 1	
79.40	0.84	0.95	0.84	0.59	0.72	0.40	0.29	0.07	0.00	25.00	28.86	-		-		-	-	-	
79.60	1.04	1.18	1.06	0.81	0.95	0.62	0.52	0.29	0.05	30.00 38.10	35.49 45.39	1	1	1 1	1	1 :	1 1	1 :	
80.00	1.44	1.63	1.52	1.27	1.40	1.07	0.97	0.75	0.50	38.10	47.20	1				1			
80.20 80.40	1.64	1.85	1.74	1.49	1.63	1.30	1.20	0.97	0.72	38.10 38.10	49.01 50.82	1	1	1	1	1 :	1 1	1 :	
80.40	2.04	2.00	2.19	1.72	2.08	1.75	1.43	1.43	118	38.10	52.63	1		1 :		1 :		1	
80.80	2.24	2.53	2.42	2.17	2.31	1.98	1.88	1.65	1.40	38.10	54.44	-		-	-	-	-	-	
81.00	2.44 2.54	2.76	2.65 2.76	2.40 2.51	2.53	2.21	2.10	1.88	1.63	38.10 39.10	56.25 58.16	-	1	-	-	-	-	-	
81.15	2.59	2.93	2.76	2.51	2.70	2.32	2.27	2.05	1.80	40.10	59.44	0.0	0.0	0	0.0	o	0.0	0	
81.20 81.40	2.64 2.84	2.99 3.10	2.76	2.51 2.51	2.76	2.32	2.27	2.05	1.80	38.10 38.10	57.55	15.5	0.4 32.1	15.4 276.9	0.4 29.6	23.6 445.5	0.6 47.5	20.7 456.8	
81.45	2.84	3.10	2.76	2.51	2.85	2.32	2.27	2.05	1.80	38.10	57.76 57.76	302.1 439.0	32.1 50.7	378.9	29.6 46.0	591.2	47.5 73.4	466.8 660.7	
Outlet I	CD w/ 167mm (1:900 Yr Flow (Lis) = Head (m) = Elevation (m) = Pipe Dia.(mm) = Volume (m3) =	97.6 2.63 81.38 375								Stage Sto Are	rage Curv a A-1	e							
	1:5 Yr				\$2.00														
	Flow (L/s) = Head (m) =																		
	Elevation (m) =	81.23																ш	
Outlet I	Pipe Dis.(mm) = Volume (m3) =	242.2																ш	
	1:2 Yr																	Ш	
	Flow (L/s) = Head (m) =				\$1.00									-				ш	
	Elevation (m) =	81.21												-					
	Pipe Dis.(mm) = Volume (m3) =				- 1														
			1		Elevation (m)														
	ze - 1:100 yr Flo	w Chack	1		트 📙									-					
-0.62xAxi2ph	1:100 vr	Flow Charle			. a.a														
$(m^2/a) =$	0.0976	0.0976	1		3														
(m/s²) =	9.81	9.81			å H	/													
(m) =	2.63	2.63			- Н	/													
(m²) =	0.021904051	0.02190			-														
(m) = (mm) =	0.16700031	0.16700			79.00														
	•		1		- 1														
1:	5 yr Flow Chec				- /														
	Q (m ² /a) =	1.5 yr 0.0948			- H														
	g (m/x²) =	9.81			- H														
	h (m) =	2.48			79.00		200.0		400			0.00		800.00			1000.00		
	A (m²) = D (m) = D (mm) =	0.167			0.00		200.0	,	400		Storage (m²			800.00			1000.00		
1:	2 yr Flow Chec	k																	_
	Q (m ³ /a) = g (m/a ²) = h (m) =	9.81 2.46																	
	A (m²) = D (m) = D (mm) =	0.167																	

PI = 3.1415027

PIPE LD. = 375 (PVC Pipe)

UG Storage Pipe Volume

End Aren 0.110 (m²)

Total Largth 345.0 (m)

Pipe Volume 33.1 (m²)

Surface Storage

0 0 124 0.3 36.6 1.5 256.4 30.8 362.2 46.3 0 22.2 74.8 562.7 669.2

0.0 0.5 49.3

0 39.9 135.6 949.9

0.6 3.0 66.7

0 30.3 104.1 712.7 827.6 0 1.0 5.4 113.9

0 30.3 97.5 693.2

roposed Park	ing Lot		Storage Calcu	lations L	Jsing Average
lovatech Proje	ect No. 12	1334	Release Rate	Equal to	50% of the Opeak
EQUIRED ST					
		d Site Flow	vs (Pond)		
TTAWA IDF C	URVE		Qpeak =	20.4	L/s
Area =	0.765	ha	Qavg =	10.2	L/s
C =	0.66		Vol(max) =	87.3	m3
			(Vol calculate	d for Qal	low-avg)
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	103.57	145.03	134.83	40.45	
10	76.81	107.55	97.35	58.41	
15	61.77	86.49	76.29	68.66	
20	52.03	72.86	62.66	75.19	
25	45.17	63.25	53.05	79.57	
30	40.04	56.07	45.87	82.57	
35	36.06	50.49	40.29	84.62	
40	32.86	46.02	35.82	85.97	
45	30.24	42.34	32.14	86.79	
50	28.04	39.27	29.07	87.20	
55	26.17	36.65	26.45	87.27	
60	24.56	34.39	24.19	87.08	
65	23.15	32.42	22.22	86.65	
70	21.91	30.68	20.48	86.03	
75	20.81	29.14	18.94	85.25	
90	18.14	25.41	15.21	82.11	
105	16.13	22.59	12.39	78.07	
120	14.56	20.39	10.19	73.37	
135	13.30	18.62	8.42	68.18	
150	12.25	17.16	6.96	62.60	

Proposed Parking Lot Storage Calculations Using Average												
Novatech Proje				Equal to	50% of the Qpeak							
REQUIRED ST												
OTTAWA IDF C	URVE		Qpeak =	23.3	L/s							
Area =	0.765	ha	Qavg =	11.7	L/s							
C =	0.66		Vol(max) =	124.1	m3							
			(Vol calculate	d for Qall	low-avg)							
Time	Intensity	Q	Qnet	Vol								
(min)	(mm/hr)	(L/s)	(L/s)	(m3)								
5	141.18	197.69	186.04	55.81								
10	104.19	145.90	134.25	80.55								
15	83.56	117.00	105.35	94.82								
20	70.25	98.37	86.72	104.07								
25	60.90	85.27	73.62	110.43								
30	53.93	75.51	63.86	114.96								
35	48.52	67.94	56.29	118.21								
40	44.18	61.87	50.22	120.53								
45	40.63	56.89	45.24	122.15								
50	37.65	52.73	41.08	123.23								
55	35.12	49.18	37.53	123.86								
60	32.94	46.13	34.48	124.13								
65	31.04	43.47	31.82	124.10								
70	29.37	41.13	29.48	123.81								
75	27.89	39.05	27.40	123.31								
90	24.29	34.01	22.36	120.75								
105	21.58	30.22	18.57	117.00								
120	19.47	27.26	15.61	112.39								
135	17.76	24.88	13.23	107.13								
150	16.36	22.91	11.26	101.35								

atech Proje			Release Rate		
		d Site Flow			
AWA IDF C	URVE		Qpeak =	30.1	L/s
Area =	0.765	ha	Qavg =	15.1	L/s
C =	0.74		Vol(max) =	268.7	m3
			(Vol calculate		ow-avg)
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	382.56	367.51	110.25	
10	178.56	281.46	266.41	159.84	
15	142.89	225.24	210.19	189.17	
20	119.95	189.07	174.02	208.83	
25	103.85	163.69	148.64	222.96	
30	91.87	144.81	129.76	233.56	
35	82.58	130.17	115.12	241.74	
40	75.15	118.45	103.40	248.16	
45	69.05	108.84	93.79	253.24	
50	63.95	100.81	85.76	257.27	
55	59.62	93.98	78.93	260.48	
60	55.89	88.10	73.05	263.00	
65	52.65	82.98	67.93	264.94	
70	49.79	78.48	63.43	266.41	
75	47.26	74.49	59.44	267.47	
90	41.11	64.80	49.75	268.66	
105	36.50	57.53	42.48	267.62	
120	32.89	51.85	36.80	264.97	
135	30.00	47.28	32.23	261.09	
150	27.61	43.52	28.47	256.24	

osed Park	ing Lot		Storage Calc	ulations U	sing Average
tech Proje			Release Rate		50% of the Q
			20% IDF Incr	ease	
		d Site Flov	vs (Pond)		
AWA IDF C			Qpeak =	30.1	L/s
Area =	0.765	ha	Qavg =	15.1	L/s
C =	0.74		Vol(max) =	340.1	m3
			(Vol calculate		ow-avg)
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	291.24	459.08	444.03	133.21	
10	214.27	337.75	322.70	193.62	
15	171.47	270.29	255.24	229.71	
20	143.94	226.89	211.84	254.21	
25	124.62	196.43	181.38	272.07	
30	110.24	173.77	158.72	285.70	
35	99.09	156.20	141.15	296.41	
40	90.17	142.14	127.09	305.01	
45	82.86	130.61	115.56	312.01	
50	76.74	120.97	105.92	317.76	
55	71.55	112.78	97.73	322.51	
60	67.07	105.73	90.68	326.43	
65	63.18	99.58	84.53	329.67	
70	59.75	94.18	79.13	332.34	
75	56.71	89.38	74.33	334.50	
90	49.33	77.76	62.71	338.64	
105	43.80	69.04	53.99	340.11	
120	39.47	62.22	47.17	339.63	
135	36.00	56.74	41.69	337.69	
150	33.13	52.23	37.18	334.58	

Structures	Size (mm)	Area (m²)	T/G	Inv IN	Inv OUT
STMMH 116	1200	1.13	79.73	78.12	78.11

Are	a A-2: Stora	ge Table	Surface	Storage	Total Storage	
	System	STMMH 116	Po	nd	Total	
Elevation	Depth	Underground Volume	Area	Volume	Volume	
(m)	(m)	(m ²)	(m²)	(m ³)	(m²)	Design Head
78.11	0.00	0.00	0	0	0.00	-
78.20	0.09	0.10	0.0	0.0	0.10	-0.10
78.35	0.24	0.27	90.4	0.0	0.27	0.05
78.40	0.29	0.33	180.9	6.8	7.11	0.10
78.60	0.49	0.55	220.1	46.9	47.44	0.30
78.80	0.69	0.78	266.3	95.5	96.31	0.50
79.00	0.89	1.01	319.4	154.1	155.10	0.70
79.20	1.09	1.23	379.5	224.0	225.22	0.90
79.35	1.24	1.40	431.1	284.8	286.18	1.05
79.40	1.29	1.46	449.2	306.8	308.24	1.10
79.60	1.49	1.69	528.4	404.5	406.22	1.30
79.65	1.54	1.74		404.5	406.28	1.35

Prepared By: Novalisch
M102011/2139/IDATA/Calculations/Sewer Calcis/SWM/121334-SWM.xtbx

APPENDIX D

Engineering Drawings

121334-GP

