EDWARD J. CUHACI AND ASSOCIATES ARCHITECTS INC.

ÉCOLE ÉLÉMENTAIRE CATHOLIQUE AVALON III TENTH LINE ROAD, OTTAWA, ON SERVICING AND STORMWATER MANAGEMENT REPORT

JUNE 2, 2023

ÉCOLE ÉLÉMENTAIRE CATHOLIQUE AVALON III TENTH LINE ROAD, OTTAWA, ON SERVICING AND STORMWATER MANAGEMENT REPORT

EDWARD J. CUHACI AND ASSOCIATES ARCHTIECTS INC.

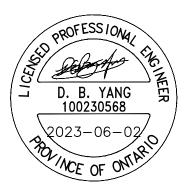
SITE PLAN APPLICATION

PROJECT NO.: 221-12984-00 DATE: JUNE 2023

WSP CANADA INC. 2611 QUEESVIEW DRIVE, SUITE 300 OTTAWA, ON, CANADA, K2B 8K2

TEL:: +1 613-829-2800

WSP.COM


SIGNATURES

PREPARED BY

Mostafa Sayed, EIT Designer

REVIEWED BY

Ding Bang (Winston) Yang, P.Eng Senior Civil Engineer

This report was prepared by WSP Canada Inc. for the account of Edward J. Cuhaci and Associates Architects Inc., in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP Canada Inc.'s best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

ÉCOLE ÉLÉMENTAIRE CATHOLIQUE

TABLE OF CONTENTS

1	GENERAL12
1.1	Executive summary12
1.2	Date and Revision Number13
1.3	Location Map and Plan13
1.4	Adherence to zoning and related requirements14
1.5	Pre-Consultation meetings14
1.6	Higher level studies15
1.7	Statement of objectives and servicing criteria15
1.8	Available existing and proposed infrastructure15
1.9	Environmentally significant areas, watercourses and municipal drains16
1.10	Concept level master grading plan16
1.11	Development phasing16
1.12	Geotechnical sutdy16
1.12 2	
	Geotechnical sutdy16
2	Geotechnical sutdy
2 2.1	Geotechnical sutdy
2 2.1 2.2	Geotechnical sutdy
2 2.1 2.2 2.3	Geotechnical sutdy
2 2.1 2.2 2.3 2.4	Geotechnical sutdy
2 2.1 2.2 2.3 2.4 2.5	Geotechnical sutdy
2 2.1 2.2 2.3 2.4 2.5 2.6	Geotechnical sutdy

2.10	Off-site requirements19
2.11	Calculation of water demands19
2.12	Model Schematic
2.13	Water Supply Conclusion20
3	WASTEWATER DISPOSAL
3.1	Design Criteria21
3.2	Consistency with master servicing study21
3.3	Description of existing sanitary sewer21
3.4	Verification of available capacity in downstream sewer21
3.5	Calculations for New sanitary sewEr22
3.6	Description of proposed sewer network22
4	SITE STORM SERVICING23
4.1	Existing condition23
4.2	Analysis of availabLe capacity in public infrastructure 23
4.3	Drainage drawing23
4.4	Water quantity control objective23
4.5	Water quality control objective24
4.6	Design criteria24
4.7	Proposed minor system24
4.8	Stormwater management24
4.9	Inlet Controls25
4.10	On-site detention25
4.11	Watercourses26
4.12	Pre and Post development peak flow rates26
4.13	Impacts to receiving watercourses27

5	SEDIMENT AND EROSION CONTROL	28
5.1	General	28
6	APPROVAL AND PERMIT REQUIREMENTS	29
6.1	General	29
7	CONCLUSION CHECKLIST	30
7.1	Conclusions and recommendations	30
7.2	Comments received from review agencies	30

TABLES
TABLE 2-1 BOUNDARY CONDITION17
TABLE 4-1: ON-SITE STORAGE REQUIREMENTS
TABLE 4-2: ICD TTPE20
FIGURES
FIGURE 1-1 SITE LOCATION14
APPENDICES
A
PRE-CONSULTATION MEETING NOTES
DSEL DRAWINGS FOR SSS PHASE 1
ARCHITECTURAL SITE PLAN
TOPO SURVEY
В
FIRE UNDERWRITERS SURVEY - FIRE FLOW CALCULATION
FOR BUILDING
FIRE UNDERWRITERS SURVEY - FIRE FLOW CALCULATION
FOR PORTABLE CLASSROOM
WATER DEMAND CALCULATION
BOUNDARY CONDITION
C
SANITARY SEWER DESIGN SHEET
EXISTING SANITARY SEWER DESIGN SHEET BY DSEL
D
STORM SEWER DESIGN SHEET
EXISTING SEWER DESIGN SHEET BY DSEL

- DWG C05 PRE-DEVELOPMENT DRAINAGE PLAN
- DWG C06 POST-DEVELOPMENT DRAINAGE PLAN
- STORMWATER MANAGEMENT CALCULATIONS

Ε

DWG C04 - EROSION AND SEDIMENT CONTROL PLAN

F

SUBMISSION CHECK LIST

1 GENERAL

1.1 EXECUTIVE SUMMARY

WSP was retained by Edward J. Cuhaci and Associates Architects Inc. to provide servicing, grading and stormwater management design services for the proposed new Avalon III Ecole Catholic Elementarie School on a 1.747 ha site located at the southwest corner of Tenth Line Road and Sweetvalley Drive, in the proposed Summerside South Phase 1 subdivision development within the Mer Bleue Community in Orleans Ottawa. The construction of services and base course asphalt is complete on Sweetvalley Drive, on which the school property will front. All services for the school site will be available from Sweetvalley Drive. The subjected development is bounded by the Phase 1 of the subdivision development to the north, McKinnon's Creek channel block to the west and Existing residential block to the south. The future McKinnon's Creek channel block will be designed by the subdivision developer in a later date. This report outlines findings and calculations pertaining to the servicing of the proposed building with a gross building area of 2,308.8 square metres.

The proposed school building is a two storey school building with gross floor area of 2,862.8 square metre and maximum building height will not be higher than 18 metres which is located at the northeast corner of the subjected site, southwest corner of the Tenth Line Road and Sweetvalley Drive intersection. To the south of the proposed school building, there will be future portable classroom. These portable classrooms will be removed when the addition to the school is needed. East of the school, it's Tenth Line Road. Tenth Line Road will be widened in the future. Southwest of the school, there will be playground and practise football/soccer field. West of the school, there will be parking spots for the staff and visitors. Since the proposed school and portable classrooms are located close to the Sweetvalley Drive and Tenth Line Road R.O.W. These streets will be used as the fire route to service the school building and portable classrooms area.

There will be three future additional parking spots to the west of the proposed parking areas will be constructed at a later time. The current grading and servicing design have been provided to allow for the future site plan changes with minimal changes to grading and servicing modifications only within the areas that will be impacted by the future development.

The surrounding neighbourhood is being developed by Mattamy Home Mer Bleue 2 Limited. with David Schaefer Engineering Ltd providing engineering design services. Information regarding the proposed municipal services was provided by DSEL, as described in Design Brief – Summerside South – Phase 1, 2464 Tenth Line Road, Project: 15-766, Revised June 24, 2019. Excerpts from the Design Brief are provided in Appendix A of this report.

Currently the land proposed for the building abuts the collector road Sweetvalley Drive which is located to the north of the subject site. The natural topography of the property in the vicinity of the collector road slopes from both east and west towards Pewee Place. Currently the land is vacant and half grass covered and half abandoned storage warehouse. The total study area was considered to be 1.747 ha in size. It is part of lot 5, concession 11, geographic Township of Cumberland in City of Ottawa. Based on the topographic survey, portion of the site is sloping from the northeast corner to the southwest corner and will be draining toward McKinnon's Creek Channel block. The east portion of the site is slopping toward Tenth Line Road. The south portion of the site is slopping toward the existing residential block to the south. The existing piped stormwater system within Summerside South phase 1 subdivision development conveys drainage to expanded Avalon West SWM Facility then discharges to the McKinnon's Creek.

As per the Summerside South Phase 1 Design Brief by DSEL, the following criteria apply: runoff from all storm events up to and including the 1:100 year event must be restricted to a calculated rate based on an imperviousness ratio of 0.50, 2 year simulated flow of 567 l/s. The subject site must provide sufficient storage to accommodate runoff from the 1:100 year event. Stormwater quality control is not required for this site. Design of a drainage and stormwater management system in this development must be prepared in accordance with the following documents:

- Sewer Design Guidelines, City of Ottawa, October 2012;
- Stormwater Management Planning and Design Manual, Ministry of the Environment, March 2003; and
- Stormwater Management Facility Design Guidelines, City of Ottawa, April 2012

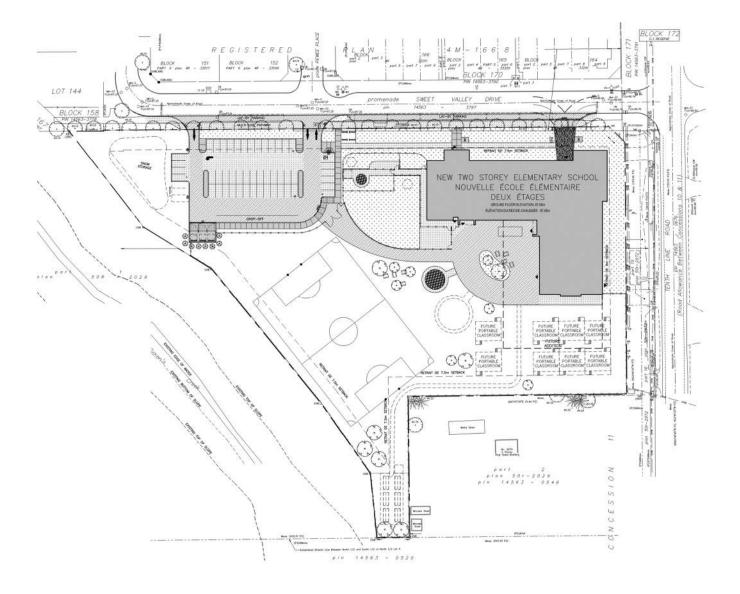
This report was prepared utilizing servicing design criteria obtained from the City of Ottawa and outlines the design for water, sanitary wastewater, and stormwater facilities, including stormwater management.

The format of this report matches that of the servicing study checklist found in Section 4 of the City of Ottawa's Servicing Study Guidelines for Development Applications, November 2009.

The following municipal services are available at the north property line as recorded from drawings received from IBI Group: Sweetvalley Drive:

- 900 mm storm sewer 1800 mm storm sewer, 200mm sanitary sewer and 300mm watermain.

It is proposed that:


- On-site stormwater management systems, employing surface storage and roof storage will be provided to attenuate flow rates leaving the school site. Existing drainage patterns, previously established controlled flow rates and storm sewers will be maintained.
- The subject site maintains emergency overland flow routes for flows deriving from storm events in excess of the maximum design event to the proposed municipal rights-of-way at the southern boundaries of the subdivision development as depicted in DSEL Drawing 34, which attached to Appendix A for reference.

1.2 DATE AND REVISION NUMBER

This version of the report is the initial issue, dated June 2, 2023.

1.3 LOCATION MAP AND PLAN

The proposed institutional development is located at 700 Cope Drive, Stittsville, Ontario at the location shown in Figure 1-1 below.

Figure 1-1 Site Location

1.4 ADHERENCE TO ZONING AND RELATED REQUIREMENTS

The proposed property use will be in conformance with zoning and related requirements prior to approval and construction and is understood to be in conformance with current zoning.

1.5 PRE-CONSULTATION MEETINGS

A pre-consultation meeting was held with the City of Ottawa on August 23, 2022. Notes from this meeting are provided in Appendix A.

1.6 HIGHER LEVEL STUDIES

The review for servicing has been undertaken in conformance with, and utilizing information from, the following documents:

- Ottawa Sewer Design Guidelines, Second Edition, Document SDG002, October 2012, City of Ottawa including:
 - Technical Bulletin ISDTB-2012-4 (20 June 2012)
 - Technical Bulletin ISDTB-2014-01 (05 February 2014)
 - Technical Bulletin PIEDTB-2016-01 (September 6, 2018)
 - Technical Bulletin ISDTB-2018-01 (21 March 2018)
 - Technical Bulletin ISDTB-2018-04 (27 June 2018)
- Ottawa Design Guidelines Water Distribution, July 2010 (WDG001), including:
 - Technical Bulletin ISDTB-2014-02 (May 27, 2014)
 - Technical Bulletin ISTB-2018-02 (21 March 2018)
- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM).
- Design Brief Summerside South -Phase 1 2464 Tenth Line Road, DSEL, Project 15-766, Revised June 24, 2019. (Includes water, sanitary and storm servicing.)
- Stormwater Management Report for Summerside South Phase 1, JFSA, Project 1102-13, Revised June 2019.
- Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS).
- Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 2020.

1.7 STATEMENT OF OBJECTIVES AND SERVICING CRITERIA

The objective of the site servicing is to meet the requirements for the proposed modification of the site while adhering to the stipulations of the applicable higher-level studies and City of Ottawa servicing design guidelines.

1.8 AVAILABLE EXISTING AND PROPOSED INFRASTRUCTURE

Existing storm sewer and watermain stubs have been provided from Sweetvalley Drive to the north of frontage of the site. The sanitary sewer can also be extended from the existing 200mm diameter sanitary along Sweetvalley Drive to the proposed Elementary School next to the existing storm stub. The storm sewer will be connected to the existing 900 mm stub, and flows from south to north. Water and storm sewer stubs have already been provided to the property boundary during the time of construction of Sweetvalley Drive. The works provided by the subdivision developer have already included the water valve and box at the property line, and all work within the right of way, excluding the driveway entrances, water service will be routed to the water entry room from the existing stub. Ultimately, the storm flows from Sweetvalley Drive (servicing the school site) to the Pewee Place storm sewer are intended to be directed to a permanent Avalon West SWM Facility that will provide quality and quantity treatment for Summerside South Phase 1 subdivision, and including the school site. Quality control is not required on the school site, but quantity control is required to restrict the discharge for all events up to a 100 year event to the 2 year flow rate provided by DSEL.

Site access for vehicles will be provided from Sweetvalley Drive. The driveways being provided are two-way entrances at the centre north boundary.

1.9 ENVIRONMENTALLY SIGNIFICANT AREAS, WATERCOURSES AND MUNICIPAL DRAINS

The proposed development site is surrounded by residential and commercial lands. The west boundary is abutting the McKinnon's Creek Channel Block. Existing Runoff from the site is currently draining overland toward McKinnon's Creek. However, post development runoff toward the creek will be reduced significantly.

1.10 CONCEPT LEVEL MASTER GRADING PLAN

The existing and proposed grading are shown on Drawings CO2 - Grading Plan. Existing grading was identified in a topographic survey and is noted in the background of Drawings CO2. The proposed grading will be reviewed by the geotechnical engineer. The geotechnical investigation was completed in March 07, 2023 by Exp Service Inc. The site topographic survey, provides evidence of direction of overland flow of the site. Minor grade changes will be made to grades at the development perimeter for the proposed bus drop off lay-by and entrances location.

Grading will employ terraced slopes of 3H:1V to provide transitions from the new work areas to existing grades. No changes will be made to grades at the property perimeter other than the north boundary.

1.11 DEVELOPMENT PHASING

The proposed development includes future portable classrooms and building addition. The impervious area associated with the future development has been taken into account in the stormwater management calculations. The future hard surfaces take up a bit of the green space than the current condition, and therefore were conservatively used in the calculation of runoff.

1.12 GEOTECHNICAL SUTDY

A geotechnical investigation report has been prepared by Exp Services Inc. (Project OTT-22017859-A0, March 07, 2023), and its recommendations has been taken into account in developing the engineering specifications.

2 WATER DISTRIBUTION

2.1 CONSISTENCY WITH MASTER SERVICING STUDY AND AVAILABILITY OF PUBLIC INFRASTRUCTURE

The site is bounded to the Summerside South Subdivision Phase 1. SSS Phase 1 is located within Zone 2E of the City's water distribution system, which is fed by two booster pumping stations and the Innes Road elevated storage tank at Belcourt Boulevard, providing balancing, fire, and emergency storage. There is an existing 305mm diameter municipal watermain along Sweetvalley Drive providing water to the property. The new elementary school will be protected with a supervised automatic fire protection sprinkler system and will require a 203mm diameter water service. The fire department connection is located at the north side of the building at the main entrance fronting Sweetvalley Drive. It is 45m away from the existing municipal FH on Sweetvalley Drive. No changes are required to the existing City water distribution system to allow servicing for this property. A single 203mm water service and an isolation valve in between will be made to the existing 203mm diameter stub at the north boundary from Sweetvalley Drive for the proposed development site. The 203mm diameter private watermain services connecting the existing 305mm municipal watermain will provide redundancy for the school building. Water can be supplied from both side of Sweetvalley Drive and Pewee Place. The 203mm dia. water service will be extended to the building mechanical room.

2.2 SYSTEM CONSTRAINTS AND BOUNDARY CONDITIONS

Boundary conditions have been provided by the City of Ottawa at the connection at Sweetvally Drive. The fire flow of 133.3 l/s (8,000 l/min) was estimated for the proposed school with using the FUS calculation method and is included in Appendix B.

Table 2-1 Boundary Condition

BOUNDARY CONDITIONS AT COPE DRIVE						
SCENARIO	Head (m)	Pressure (psi)				
Basic Day (MAX HGL)	130.3	62.9				
Peak Hour (MIN HGL)	126.0	56.9				
Max Day + Fire Flow (ICI)	126.3	57.3				

2.3 CONFIRMATION OF ADEQUATE DOMESTIC SUPPLY AND PRESSURE

Water demands are based on Table 4.2 of the Ottawa Design Guidelines – Water Distribution. As previously noted, the development is considered as institutional development, consisting of classroom, gymnasium and kitchen. A water demand calculation sheet is included in Appendix B, and the total water demands are summarized as follows:

	WSP
Average Day	0.57 l/s
Maximum Day	0.86 l/s
Peak Hour	1.55 l/s

The 2010 City of Ottawa Water Distribution Guidelines stated that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows:

Minimum Pressure Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40

psi)

Fire Flow During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20

psi) during a fire flow event.

Maximum Pressure Maximum pressure at any point the distribution system shall not exceed 689 kPa (100 psi). In

accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls may be required for buildings where it is not

possible/feasible to maintain the system pressure below 552 kPa.

Water pressure at municipal connections check:

Min. HGL @ Connection 1 - Pavement elevation = 126.0m - 87.08m = 38.92m = 381.58 kPa

Water pressure at building connection (at average day) check:

Max. HGL @ Connection 1 - Finished floor elevation = 130.3m - 87.85 = 53.04m = 146.19 kPa

Water pressure at building connection (at max. hour demand) check:

Min. HGL @ Connection 1 - Finished floor elevation = 126.0m-87.85m = 38.15m = 374.03 kPa

Water pressure at building connection (at max. day + fire demand):

(Max Day + Fire) HGL @ Connection 1 - Finished floor elevation = 126.3m-87.85m = 38.45m = 376.97 kPa

The minimum water pressure inside the building at the connection is determined with the minimum HGL condition, resulting in a pressure of 374.03 kPa which exceed the minimum requirement of 276 kPa per the guidelines.

2.4 CONFIRMATION OF ADEQUATE FIRE FLOW PROTECTION

The fire flow rate has been calculated using the Fire Underwriters Survey (FUS) method. The method takes into account the type of building construction, the building occupancy, the use of sprinklers and the exposures to adjacent structures. Assuming fire resistive construction and a fully supervised sprinkler system, a fire flow demand of 8,000 l/min for the new high school. The fire flow rate of 6,000 l/min (100 l/s) is calculated for the future portable classrooms. Copy of the FUS calculations are included in Appendix D.

The demand of 8,000 l/min can be delivered through two fire hydrants. The existing two public hydrants are located at the northside of Sweetvalley Drive, one of them is within 45 m to the building Siamese, and is rated at 5,700 l/min., the other one is within 75 m to the building and is rated at 5,700 l/min. The two hydrants have a combined total of 11,400 l/min.

The demand of 6,000 l/min from the future portable classrooms can also be met through the combination of two fire hydrants from Sweetvalley Drive, they are within 100m to the future portable classrooms, and are rated at 3,800 l/min each. The combined total of 7,600 l/min. And there will be future fire hydrants along Tenth Line Road to the east when the watermain system, expansion is completed.

The proposed building on site will be serviced by a single 203 mm service off the existing 203 mm watermain extended from the Sweetvalley Drive and Pewee Place intersection. The service will run into the water entry room. The proposed building will be fully sprinklered and fire protection will be provided with the fire department Siamese connection within 45 m of the existing municipal fire hydrant at Sweetvalley Drive. The Siamese connection is located on the north side of the building.

The boundary condition for Maximum Day and Fire Flow results in a pressure of 376.97 kPa at the ground floor level. In the guidelines, a minimum residual pressure of 140 kPa must be maintained in the distribution system for a fire flow and maximum day event. As a pressure of 376.97 kPa is achieved, the fire flow requirement is exceeded.

2.5 CHECK OF HIGH PRESSURE

High pressure is not a concern. The maximum water pressure inside the building at the connection is determined with the maximum HGL condition, resulting in a pressure of 381.58 kPa which is less than the 552 kPa threshold in the guideline in which pressure control is required. Based on this result, pressure control is not required for this building.

2.6 PHASING CONSTRAINTS

No development phasing has been detailed for the site. The site plan does indicate possible future development of additional parking lots. The projected occupancy load has been taken into account in the fire demand and water demand calculations. No phasing constraints exist.

2.7 RELIABILITY REQUIREMENTS

One shut off valve is provided for the private watermain at the study boundary from Sweetvalley Drive. Water can be supplied from both sides of Sweetvalley Drive and Pewee Place, west, east and north can be isolated.

2.8 CAPABILITY OF MAJOR INFRASTRUCTURE TO SUPPLY SUFFICIENT WATER

The existing infrastructure for the Sumerside South Phase 1 Subdivision is capable of meeting the domestic demand based on City requirements and fire demand as determined by FUS requirements for the proposed residential units.

2.9 DESCRIPTION OF PROPOSED WATER DISTRIBUTION NETWORK

A 203 mm private water service is proposed to be extended into the proposed elementary school from the existing stub. The 203 mm private water service will be split inside the building, one branch will be connected to the water meter, the other branch will be connected to the fire suppression system. No private hydrant is required for this site.

2.10 OFF-SITE REQUIREMENTS

No off-site improvements to watermains, feedermains, pumping stations, or other water infrastructure are required to maintain existing conditions and service the adjacent buildings, other than the connection of the new private watermain to the City watermain in the south frontage of the site.

2.11 CALCULATION OF WATER DEMANDS

Water demands were calculated as described in Sections 2.3 and 2.4 above and is also attached in Appendix B.

2.12 MODEL SCHEMATIC

The water works consist single building service, a model schematic is not required for this development.

2.13 WATER SUPPLY CONCLUSION

The proposed school will be serviced internally by 203 mm water service, which will be connected to the existing 203 mm watermain stub from Sweetvally Drive. A detailed hydraulic calculation has been completed above to confirm that the proposed water network can deliver all domestic and fire flows as per the Ministry of the Environment, City of Ottawa and Fire Underwriters criteria.

The proposed water supply design conforms to all relevant City guidelines and policies.

3 WASTEWATER DISPOSAL

3.1 DESIGN CRITERIA

In accordance with the City of Ottawa's Sewer Design Guidelines, the following design criteria have been utilized in order to predict wastewater flows generated by the subject site and complete the sewer design;

•	Minimum Velocity	0.6 m/s
•	Maximum Velocity	3.0 m/s
•	Manning Roughness Coefficient	0.013
•	Total est. hectares institutional use	1.747

Average sanitary flow for institutional use
 28,000 L/Ha/day

• Commercial/Institutional Peaking Factor 1.5

Infiltration Allowance (Total)
 Minimum Sewer Slopes – 200 mm diameter
 0.33 L/Ha/s
 0.32%

The area of 1.747 ha represents the lot area of the new building and immediate surrounding area to the sides of the new building. This is the sanitary collection area that is being considered to contribute to the new 200mm sanitary service extending from the existing 200mm sanitary sewer from Sweetvalley Drive and Pewee Place intersection to the new building.

3.2 CONSISTENCY WITH MASTER SERVICING STUDY

The outlet for the sanitary service from the proposed building is the 200 mm diameter municipal sewer at Sweetvalley Drive and Pewee Place intersection. The Ottawa Sewer Design Guidelines provide estimates of sewage flows based on institutional development.

The criteria to determine anticipated actual peak flow based on site used as described in Ottawa Sewer Design Guidelines Appendix 4-A are as follows.

- Institutional
 28000 L/Ha/day = 0.324 L/Ha/s
- Peak flow = (0.324 L/Ha/s x 1.765 ha x 1.5 peaking factor) + 0.33 l/Ha/s x 1.765 ha = 1.01 L/s

The on-site sanitary sewer network has been designed in accordance with 5.35 L/s as described above.

3.3 DESCRIPTION OF EXISTING SANITARY SEWER

The existing sanitary outlet for Summerside South Phase 1 is the Tenth Line Road Pump Station (TLPS), which in turn outlets by forcemain to the Esprit Drive Collector. The TLPS is located above the north east corner of SSS Phase 1, at Tenth Line Road.

3.4 VERIFICATION OF AVAILABLE CAPACITY IN DOWNSTREAM SEWER

The capacity of the downstream 250 mm diameter sewer to existing sanitary manhole 110A has 34% left capacity base on DSEL sanitary sewer design sheet, which is adequate for the flow assumptions from the proposed site as noted above. The servicing pipe capacity is capable to handle the estimated peak sanitary flow rate of 1.01 L/s for the proposed development site. Please refer to sanitary sewer design sheet in Appendix C.

3.5 CALCULATIONS FOR NEW SANITARY SEWER

The 200 mm diameter sanitary service from the sanitary manhole 100 to the building will have a slope of 1.0 %, and a capacity of 32.80 l/s, with a velocity of 1.04 m/s. The 200 mm diameter sanitary service from the sanitary manhole 100 to sanitary manhole 101 have a slope of 0.50%, and a capacity of 23.19 l/s with a velocity of 0.74 m/s. And it will be the same from sanitary manhole to existing sanitary manhole 402A on Sweetvalley Drive. The servicing pipe capacity exceeds the estimated peak sanitary flow rate of 1.01 L/s for the proposed development site.

3.6 DESCRIPTION OF PROPOSED SEWER NETWORK

The proposed sanitary sewer network on site will consist of a 200 mm diameter building service, and two new 1200 mm diameter manholes.

4 SITE STORM SERVICING

4.1 EXISTING CONDITION

The subject site is located within the McKinnon's Creek Watershed and is subject to regulations of the South Nation Conservation (SNC).

The site is currently undeveloped, consisting of grass covered partially agricultural lands and storage warehouse with McKinnon's Creek to the west of the property. The site is sloping from north to south and slightly below the grade of Sweetvalley Drive.

The existing Avalon West SWM Facility, originally designed to service Avalon West Neighbourhood 5, north of Summerside Lands, was revised to accommodate SSW Phases 1, 2 and 3. An expansion of the existing Avalon West SWM Facility is proposed to service SSS Phase 1 and the subject site.

4.2 ANALYSIS OF AVAILABLE CAPACITY IN PUBLIC INFRASTRUCTURE

Using the Rational Method, with coefficient of 0.25 for pervious areas, 0.90 for asphalt and concrete pavement, and 1.0 for building roof, and a 10-minute time of concentration, results in an estimated 2-year flow of 186.51 l/s from this area. The receiving 900 mm diameter storm sewer has been designed with the capacity to accept 567 l/s from the school site. Capacity in the minor system is not a concern.

4.3 DRAINAGE DRAWING

Drawing C03 shows the detail site sewer network. Drawings C02 provides proposed grading and drainage, and include existing grading information. Drawing C05 and C06 provides a pre and post-construction drainage sub-area plan. Site subarea information is also provided on the storm sewer design sheet attached in Appendix C.

4.4 WATER QUANTITY CONTROL OBJECTIVE

The water quantity objective for the site is to limit the flow release to 186.51 l/s. Excess flows above this limit for the school site up to those generated by the 100 year storm event from drainage on the school site are temporarily stored on site.

No provision is required on the school's site to accommodate any flow from the adjacent lands. All flows exceeding the defined minor system capacity and on-site storage capability will enter the major system, with overflow to the City right of way, on the north boundaries of the site.

The maximum overland runoff spill elevation for this site is 87.25, and a 180 mm dia. circular plate ICDs are proposed to be used on the outlet inside CBMH108 to restrict the flow rate leaving the site to 119.27 l/s at 3.11 m head, based on the 100 year elevation of 87.20. In theory, the runoff water will be detained on site up to the 100-yr rainfall event, and for those scenarios exceeding 100-yr rainfall event, the runoff water will be discharged offsite once all the available storage areas have reached their maximum capacities. The school site can provide a total of 163.69m³ of surface storage volume, but the required storage for 100-yr will be only 124.26 m³. The ponded water will not reach the max spill elevation under 100 year and lesser events. The site has more storage capacity than required as a result of the grading design. This will allow extra detention of water on the site during extreme events, and will reduce stress on the downstream stormwater management pond. If rain falls at a rate higher than the soccer field soil can absorb, then there will be surface ponding at the designated locations shown on the drawings. If the soccer field and landscaped areas allow for infiltration, the available surface storage volume will be further increased. In theory, the use of lower runoff coefficients for landscaped surfaces already accounts for a certain degree of absorption in these areas.

4.5 WATER QUALITY CONTROL OBJECTIVE

The site is not required to achieve water quality objectives. Water quality objectives are achieved through downstream works as noted in the DSEL Design Brief.

4.6 DESIGN CRITERIA

The stormwater system was designed following the principles of dual drainage, making accommodation for both major and minor flow.

Some of the key criteria include the following:

Design Storm (minor system)
 1:2 year return (Ottawa)

• Rational Method Sewer Sizing

• Initial Time of Concentration 10 minutes

Runoff Coefficients

Pipe VelocitiesMinimum Pipe Size250 mm diameter

(200 mm CB Leads and service pipes)

4.7 PROPOSED MINOR SYSTEM

The detailed design for this site will maintain the existing storm sewer network to Sweetvalley Drive and Pewee Place intersection of the development site. The drainage system consists of a series of manholes, catchbasins and storm sewers leading to the outlet manhole STMH110 at the north of the site. All drainage areas on the site are collected in the site piped drainage system.

It is also customary for larger buildings to be provided with piped storm services for roof drainage. There are no downspouts proposed. Separate outlet pipes are provided for foundation drains and roof drains, and therefore roof drainage will not negatively impact the foundation. The storm services are connected to the storm sewer downstream of CBMH108 which is downstream of the controlled flow point, ensuring an unobstructed flow for these areas.

Using the above noted criteria, the existing on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated post development storm sewer drainage area plan are included in Appendix C.

4.8 STORMWATER MANAGEMENT

The subject site will be limited to a release rate of 186.51 l/s, this will be achieved through the inlet control devices at the downstream of CBMH108.

Flows generated that are in excess of the site's allowable release rate will be stored on site in surface storage areas or by the use of roof top storage and gradually released into the minor system so as not to exceed the site's allocation.

The maximum surface retention depth of the developed areas will be limited to 200mm during a 1:100 year event. Maximum ponding levels are 250mm prior to spill over. The maximum ponding elevation is 87.25m, which is well below the building ground floor level of 87.85m.

No surface ponding will occur during a 2 year event, and only minimal ponding will occur during a 5 year event.

Overland flow routes will be provided in the grading to permit emergency overland flow from the site. The overflow routes will eliminate any increase in ponding depth for events exceeding 100 years.

At certain locations within the site, the opportunity to store runoff is limited due to grading constraints and building geometry. These locations are located at the perimeter of the site where it is necessary to tie into public boulevards and existing property line elevation, and it is not always feasible to capture or store stormwater runoff.

The site grading and ponding has been designed to control water generated during the 1:100-year event, with no overflow leaving the site at this control level. Please refer to the SWM Calculations in Appendix C.

4.9 INLET CONTROLS

As noted in previous sections, the maximum allowable release rate for the 1.747 Ha site is 186.51 L/s.

As noted in Section 4.8, small portion of the site will be left to discharge to the right of way and existing property line at an uncontrolled rate.

```
Q (uncontrolled) = 2.78 \times C \times I_{100yr} \times A where:

C = 0.31 (Weighted average post-development C)

I 100yr = Intensity of 100-year storm event (mm/hr)

= 1735.688/((T_{C}+6.014)^{\Lambda}(0.82)); where T_{C} = 10 minutes

A = Area = 0.236 Ha
```

Therefore, the uncontrolled release to the right of way can be determined as:

```
= 43.30 L/s
```

The maximum allowable release rate from the remainder of the site can then be determined as:

```
Q \text{ (max allowable)} = Q \text{ (total allowable)} - Q \text{ (uncontrolled)}= 186.51 \text{ L/s} - 43.30 \text{ L/s}= 143.21 \text{ L/s}
```

Based on the flow allowance at the outlet location, CBMH108, inlet control devices (ICD) were chosen in the design. The design of the inlet control device is unique to the associated drainage areas and is determined based on a number of factors, including hydraulic head and allowable release rate. The inlet control device will be designed according to the manufacturer's design charts. The restrictions will cause the on-site catchbasins and manholes to surcharge, generating surface ponding in the parking and landscaped areas. Ponding locations and elevations are summarized on the drainage areas plan C06.

4.10 ON-SITE DETENTION

Any excess storm water up to the 100-year event is to be stored on-site in order to not surcharge the downstream municipal storm sewer system. Detention will be provided in parking and landscape areas and building rooftops, where feasible. As previously noted, the volume of storage is dependent on the characteristics of each individual drainage area. It should be

noted that greater than 0.30 m of vertical separation has been provided from all maximum ponding elevations to lowest building openings.

The following Table summarizes the on site storage requirements during the 1:100-year events.

Table 4-1: On-Site Storage Requirements

Total	Location	Controlled/	Runoff Co	oefficient	Outlet	Total	100-Year C	ontrolled
Area (Ha)		Uncontrolled	2 & 5 Year	100 Year	Location	Storage Provided (m³)	Restricted Flow (L/s)	Required Storage (m³)
1.297	Surface	Controlled	0.44	0.51	CBMH108	163.69	119.27	124.69
0.231	Building Roof	Controlled	1.00	1.00	STMH110	80.00	17.64	74.44
0.236	R.O.W./Property	Uncontrolled	0.31	0.37			43.30	0
TOTAL						243.69	180.21	198.17

In all instances the required storage is met with surface ponds which retain the stormwater and discharge at the restricted flow rate to the sewer system. Refer to the grading plan for storage information.

The following Table summarizes the inlet control devices to be utilized on the site. ICD pre-set flow curves can be found in Appendix C.

Table 4-2: ICD Type

Structure		PROPOSED ICD				
ID	100-YR Head	Flow (L/s)	OUTLET DIA.			
CBMH108	3.11	119.27	180 mm Dia. Circular ICD	450 mm Dia. CONC.		

As demonstrated above, the site uses new inlet control device to restrict the 100 year storm event to the criteria approved by the City of Ottawa. Restricted stormwater will be contained onsite by utilizing surface ponding storage. In the 100 year event, there will be no overflow off-site from restricted areas.

The sum of restrictions on the site is 180.21 L/s, which is less than the maximum allowable release of 186.51 L/s noted in Section 4.9.

4.11 WATERCOURSES

The major and minor system flows will be conveyed through the internal network, outletting to Sweetvalley Drive, and ultimately outlet to the Expanded Avalon SWM Pond Facility, where they are treated for an Enhanced Level of Protection (80% TSS removal) prior to release to McKinnon's Creek.

4.12 PRE AND POST DEVELOPMENT PEAK FLOW RATES

Pre and post development peak flow rates for the impacted areas of the site have been noted in storm sewer design sheet.

4.13 IMPACTS TO RECEIVING WATERCOURSES

No significant negative impact is anticipated to downstream receiving watercourses due to proposed quantity and quality control measures, the separation of the site from the eventual receiving watercourse as a result of discharge through City owned sewers, and the expanded Avalon SWM Pond Facility.

5 SEDIMENT AND EROSION CONTROL

5.1 GENERAL

During construction, existing storm sewer system can be exposed to sediment loadings. A number of construction techniques designed to reduce unnecessary construction sediment loadings will be used including the following.

- Silt sack will remain on open surface structures such as manholes and catchbasins until these structures are commissioned and put into use.
- Installation of silt fence, where applicable, around the perimeter of the proposed work area.
- The installation of straw bales within existing drainage features surrounds the site.
- Bulkhead barriers will be installed in the outlet pipes.

During construction of the services, any trench dewatering using pumps will be fitted with a "filter sock." Thus, any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filter sock as needed including sediment removal and disposal.

All catchbasins, and to a lesser degree, manholes, convey surface water to sewers. Consequently, until the surrounding surface has been completed, these structures will be covered to prevent sediment from entering the minor storm sewer system. These measures will stay in place and be maintained during construction and build-out until it is appropriate to remove them.

During construction of any development both imported and native soils are placed in stockpiles. Mitigative measures and proper management to prevent these materials entering the sewer system are needed.

During construction of the deeper watermains and sewers, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally placed before any catchbasins are installed.

Refer to the Erosion and Sedimentation Control Plan C04 provided in Appendix E.

6 APPROVAL AND PERMIT REQUIREMENTS

6.1 GENERAL

The proposed development is subject to site plan approval and building permit approval.

No approvals related to municipal drains are required.

No permits or approvals are anticipated to be required from the Ontario Ministry of Transportation, National Capital Commission, Parks Canada, Public Works and Government Services Canada, or any other provincial or federal regulatory agency.

7 CONCLUSION CHECKLIST

7.1 CONCLUSIONS AND RECOMMENDATIONS

WSP was retained by Edward J. Cuhaci and Associates Architects Inc. to provide this Servicing and SWM report in support of the Site Plan Application for the subject site Avalon III French Catholic Elementary School and planned two storey school building therein. The services investigated were water supply, wastewater servicing, and stormwater conveyance.

The water demand was calculated as 1.55 L/s peak hour domestic demand and 133 L/s max day plus fire flow. Per coordination with the City for the supply watermain boundary conditions, a 203 mm watermain stub from Sweetvalley Drive, it was confirmed the existing system has sufficient capacity to supply the domestic and fire demands within system pressure limits.

The sanitary sewer demand was calculated as 0.86 L/s peak demand. A downstream capacity check has been completed; the downstream system has sufficient capacity to receive the proposed demand.

The site will be required by the city to limit the discharge rate of the stormwater to the pre-development 2yr storm rate, storing the stormwater up to the post-development 100yr storm. Estimates of the runoff rates lead to an approximate maximum site discharge rate of 180.21 L/s, with a required storage for approximately 198.17 m³.

Therefore, it is confirmed the existing infrastructure is sufficient to support the proposed development. It should be noted that all demand calculations are estimates based on conceptual architectural plans and are subject to change during the design phase.

7.2 COMMENTS RECEIVED FROM REVIEW AGENCIES

This is the first submission, no city comments.

APPENDIX

A

- PRE-CONSULTATION MEETING NOTES
- DSEL DRAWINGS FOR SSS PHASE 1
- ARCHITECTURAL SITE PLAN
- TOPO SURVEY

From: Murshid, Shoma

Sent: September 06, 2022 10:50 AM

To: Zofia Jurewicz <<u>zofiaj@cuhaci.com</u>>; Paquette Planning Associates Ltd.

<paquetteplanning@sympatico.ca>

Cc: Rasool, Rubina < Rubina.Rasool@ottawa.ca; Giampa, Mike < Mike.Giampa@ottawa.ca; McAlpine, Anissa < anissa.mcalpine@ottawa.ca; Ippersiel, Matthew < Matthew.lppersiel@ottawa.ca; Richardson,

Mark < Mark.Richardson@ottawa.ca>; James Holland < jholland@nation.on.ca>; Rehman, Sami

<Sami.Rehman@ottawa.ca>; Luc Poulin <Poulil@ecolecatholique.ca>; Denis Chabot

<<u>chabod@ecolecatholique.ca</u>>; Sclauzero, Cass <<u>cass.sclauzero@ottawa.ca</u>>

Subject: 2666 Tenth Line Road - CECCE Elementary School on Claridge Lands in Mer Bleue Expansion

Urban Expansion Area 10

Good morning Dan and Zofia,

Thank you for meeting with us on August 23, 2022 to review your concept plan (2 attachments) for a one-storey elementary school for CECCE.

This proposal triggers a Zoning By-law Amendment (Major) and a New, Complex Site Plan Control development review applications.

If you do end up submitting both development applications concurrently, there will be a 10% deduction in the planning fee component for both applications.

The **Zoning By-law Amendment** category being triggered is Major and is public-consultation based. The submission fee for this application is \$22,472.80 + an initial Conservation Authority Fee of \$400.00. For the Zoning By-law Amendment to be deemed complete at the time of submission, a complete application form, fees and the following plans, studies and documentation will be required (all in PDF format):

Concept Plan, showing proposed uses and landscaping and/or Site Plan

Planning Rationale, including Design Statement

Survey Plan

Topographical Survey Plan

Elevations

Geotechnical Report

Servicing & Stormwater Management Reports

Phase 1 ESA (Phase 2 ESA if required)
Tree Conservation Report
EIS
Transportation Impact Assessment

Noise Study

For the <u>Site Plan Control application</u>, the category being triggered is 'Complex (Manager Approval, Public Consultation) and the submission fee for this is \$49,964.88 + Initial Engineering Design Review and Inspection Fee (based on a sliding scale for the value of the Infrastructure and Landscaping) and an initial Conservation Authority Fee of \$1,065.00. For the Site Plan Control application to be deemed complete at the time of submission, a complete application form, fees and the following plans and studies will be required (all in PDF format):

Site Plan

Landscape Plan/Tree Conservation Report (can be combined)

Site Servicing Plan

Survey Plan

Topographical Survey Plan

Planning Rationale, including design statement

Erosion and Sediment Control Plan (can be combined with the Grade Control and Drainage Plan

Stormwater Management Report (can be combined with the Site Servicing Report)

Grade Control and Drainage Plan
Site Servicing Report
Stormwater Management Report
Geotechnical Report
Phase 1 ESA (Phase 2 if required)
TIA
Noise Study
EIS
Floor Plans

City's General Urban Planning Comments:

There is a Landowner's Agreement and Cost-Sharing Agreement in place, "Area 10 Funding Agreement & CSA". The trustee is Soloway Wright's Ursula Melinz. The landowners within this agreement must provide a clearance letter for this zoning by-law amendment application and site plan control application prior to their approvals.

Zoning By-law Amendments

Elevations

If a complete application is received by no later than the day before the new Official Plan is adopted (October 27, 2021), it will be processed on the basis of existing Official Plan policy provided it is consistent with the 2020 Provincial Policy Statement.

For complete applications received after the day before the new Official Plan is adopted on October 27, 2021), but before Ministry approval of the Official Plan, any reports going forward to Committee and Council under this circumstance must be evaluated against the

existing Official Plan and must also include an evaluation of the application against the Council approved new Official Plan (and the new Secondary Plan, where applicable). In the period between Council approval of the New OP and the Minister's approval of the New OP, City staff will apply whichever provision, as between the Current and New OP, is more restrictive.

Zoning By-law amendments that conform to the new Official Plan but not the current Official Plan

Council can pass the by-law after the new Official Plan is adopted but it only comes into force if the relevant policies authorizing it are approved by the Minister. Pursuant to the Planning Act, section 24, subsections (2) and (2.1) Council may pass a by-law that does not conform with the official plan but will conform to the new Official Plan once it comes into effect. If the new Official Plan does not come into effect the by-law has no force and effect.

Please note there is an approved Mer Bleue Urban Expansion Area 10 Community Design Plan (CDP). The Mer Bleue Urban Expansion Area 10 Community Design Plan (CDP) has been prepared by the Mer Bleue Land Owners Group (MBLOG), in collaboration with the City of Ottawa. The CDP is intended to demonstrate how development of the Mer Bleue Urban Expansion Area 10 (MBUEA) will achieve the requirements of the Official Plan. The CDP also provides a planning framework for the implementation of Official Plan policy through the subsequent development approvals process and will therefore be used as a guide for the preparation and review of future applications for development. N.B. There is also an EMP and MSS for this same area.

City Urban Design Comments:

- PRUD Staff support the decision to highlight the corner of the site with a prominent architectural feature.
- Explore the possibility of eliminating the need for the small parking lot on Sweet Valley Drive. This would reduce the amount of paving along the public frontage and would free up more space for landscaping adjacent to the main entrance.

- Please line the two public frontages with trees.
- Ensure that sidewalks are continuous and uninterrupted across vehicular apertures.
- If possible, please narrow the widths of the vehicular apertures and reduce the turning radii as much and possible. As designed, they may encourage higher speeds.
- If possible, please look to move the bicycle parking (4) closer to an entrance.
- Include a bicycle parking rack near the main entrance on Sweet Valley Drive.
- Please continue to study what the best approach for the interface between the schoolyard and McKinnon's Creek would be. Should the edge be fenced or not?
 Please be mindful of linking in to the community active transportation network and impacts on adjacencies to the soccer field.
- The full-size soccer field appears very tight where it is located. Consider that part of the game is played outside the boundaries (corner kicks, throw-ins), balls are often kicked out of bounds, and there is space needed for team benches and spectators. Whether fenced or not, consider a landscape buffer where the property abuts the creek to prevent balls from rolling away.
- Consider a formal pathway connecting to the gardens. Otherwise a goat trail will likely form, cutting across the soccer field.
- PRUD staff support the on-street laybys from an urban design perspective.
- An Urban Design Brief is required as a part of your submission. This may be combined with your Planning Rationale report. Please refer to the attached Urban Design Brief Terms of Reference to inform the content of the brief.
- Please reference any design direction in the CDP in the brief and demonstrate how the proposal conforms to its policies.
- This application is not subject to review by the Urban Design Review Panel.

City Engineering Comments:

As mentioned, the applicant may be required to pay into the N5 Pond separately as there are no SWM DC charges. Gary Baker has confirmed the site is not subject to SWM DC charges.

Otherwise, please see attached for engineering comments.

Note, there is a moratorium on newly paved roads. Check attached engineering comments for further information.

<u>City Transportation and Noise Comments:</u>

*A 0.5 metre conveyance from the northern perimeter of the lot line is required in order to add it to the already conveyed 2.5 metre MUP land obtained directly north from Mattamy.

A TIA is warranted- please proceed to scoping.

The application will not be deemed complete until the submission of the draft step 2-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable).

Although a full review of the TIA Strategy report (Step 4) is not required prior to an application, it is strongly recommended.

Synchro files are required at Step 4.

ROW protection on Tenth Line Road is 37.5 m.

A Noise Impact Study is required

Clear throat requirements as per TAC guidelines.

Please note that all new applications (pre-consultation meetings dated after March 3, 2021) must use the NEW TRANS Trip Generation Manual when forecasting site generated trips using this manual.

The TRANS committee (a joint transportation planning committee serving the National Capital region) finalized a new manual early in March 2021. The document will be available in French and English on the TRANS website http://www.ncr-trans-rcn.ca/surveys/2009-trip-generation.

The new manual has simplified the conversion from vehicle trips to person trips and then trips by modal share. The City has also developed a spreadsheet that will apply the factors of location and building type to quickly provide the existing trip numbers by mode share. This spreadsheet has been attached.

*Latest construction plans for ROW of Tenth Line Road and ROW of Sweet Valley Drive - Please contact Bill Harper, Program Manager (SAM) / City Surveyor at bill.harper@ottawa.ca, or call 613-580-2424, ext. 21083.

A layby on Sweet Valley is possible but I'll need a design (RMA report, design submission, municipal consent). A layby on Tenth Line will not be supported.

A MUP should be at least 3m will be required along Sweet Valley Drive.

City Forestry Comments:

Planning Forester - TCR requirements:

- 1. A Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City
 - a. an approved TCR is a requirement of Site Plan approval.
 - b. The TCR may be combined with the EIS provided all information is supplied
- 2. Any removal of privately-owned trees 10cm or larger in diameter, or city-owned trees of any diameter requires a tree permit issued under the Tree Protection Bylaw (Bylaw 2020 340); the permit will be based on an approved TCR and made available at or near plan approval.
- 3. The TCR must contain 2 separate plans:
 - a. Plan/Map 1 show existing conditions with tree cover information
 - b. Plan/Map 2 show proposed development with tree cover information
 - c. Please ensure retained trees are shown on the landscape plan

- 4. the TCR must list all trees on site, as well as off-site trees if the CRZ extends into the developed area, by species, diameter and health condition
- 5. please identify trees by ownership private onsite, private on adjoining site, city owned, co-owned (trees on a property line)
 - 6. If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained
 - 7. All retained trees must be shown, and all retained trees within the area impacted by the development process must be protected as per City guidelines available at Tree
 Protection Specification or by searching Ottawa.ca
 - a. the location of tree protection fencing must be shown on the plan
 - b. show the critical root zone of the retained trees
 - 8. the City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.
 - 9. For more information on the process or help with tree retention options, contact Mark Richardson <u>mark.richardson@ottawa.ca</u> or on <u>City of Ottawa</u>

LP tree planting requirements:

For additional information on the following please contact tracy.smith@Ottawa.ca

Minimum Setbacks

- Maintain 1.5m from sidewalk or MUP/cycle track or water service laterals.
- Maintain 2.5m from curb
- Coniferous species require a minimum 4.5m setback from curb, sidewalk or MUP/cycle track/pathway.
- Maintain 7.5m between large growing trees, and 4m between small growing trees. Park or open space planting should consider 10m spacing, except where otherwise approved in naturalization / afforestation areas. Adhere to Ottawa

Hydro's planting guidelines (species and setbacks) when planting around overhead primary conductors.

Tree specifications

- Minimum stock size: 50mm tree caliper for deciduous, 200cm height for coniferous.
- Maximize the use of large deciduous species wherever possible to maximize future canopy coverage
- Tree planting on city property shall be in accordance with the City of Ottawa's Tree Planting Specification; and include watering and warranty as described in the specification (can be provided by Forestry Services).
- Plant native trees whenever possible
- No root barriers, dead-man anchor systems, or planters are permitted.
- No tree stakes unless necessary (and only 1 on the prevailing winds side of the tree)

Hard surface planting

- Curb style planter is highly recommended
- No grates are to be used and if guards are required, City of Ottawa standard (which can be provided) shall be used.
- Trees are to be planted at grade

Soil Volume

• Please document on the LP that adequate soil volumes can be met:

Tree Type/Size	Single Tree Soil	Multiple Tree Soil
	Volume (m3)	Volume (m3/tree)
Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15

Please note that these soil volumes are not applicable in cases with Sensitive Marine Clay.

Sensitive Marine Clay

• Please follow the City's 2017 Tree Planting in Sensitive Marine Clay guidelines

Tree Canopy Cover

- The landscape plan shall show how the proposed tree planting will replace and increase canopy cover on the site over time, to support the City's 40% urban forest canopy cover target.
- At a site level, efforts shall be made to provide as much canopy cover as possible, through tree planting and tree retention, with an aim of 40% canopy cover at 40 years, as appropriate.
- Indicate on the plan the projected future canopy cover at 40 years for the site.

<u>City Environmental Policy Comments (these comments have not been updated since October 2021)</u>:

The proposed development should confirm the servicing requirements and development approvals established as part of the subdivision approval and the master servicing study to the north.

If the proposal is permitted to proceed (as part of the subdivision to the north), then an EIS will be required for either a zoning amendment or a site plan control application. This stretch of McKinnon's creek is identified as part of the NHS, as per OP Schedule L.

The EIS will address the following items:

-explore the hazard lands and floodplain required for that stretch of the McKinnon's Creek.

- -draw recommendations from the EMP (Mer Bleue Urban Expansion Study Area Environmental Management Plan, Morrison-Hershfield Ltd, Dec2017)
- -draw recommendations from the CDP (Mer Bleue Expansion Area Community Design Plan, IBI Group, Jun 2017)
- -provide recommendations for revegetation and enhancements to the riparian areas along McKinnon's Creek
- -potential significant habitat for threatened or endangered species
- -provide recommendations to increase energy and water efficiency based on landscaping and layout, as per OP 4.9
- -if there is substantial glass proposed on the design, recommend drawing design elements from the City's bird-safe design guidelines (Sept 2020)

I would encourage the applicant to consult with South Nation Conservation Authority to determine if any permits or approvals are required under their regulations.

I would also recommend consulting with the engineer's report for the municipal drain because there are concerns about how the stormwater management for this area will impact and potentially contribute to flooding downstream.

City Parks Comments:

- The applicant and land owners should be aware that parkland dedication will continue to be tracked through the development application process. Parkland dedication requirements remain unchanged from that detailed in the Community Design Plan.
- Please note, a school is exempted from parkland dedication as per our Parkland dedication bylaw (as approved by Council Aug 31, 2022) "where the school provides for the students' outdoor recreational needs on-site at the time of development and maintains sufficient outdoor recreational space on-site at the time of redevelopment"
- The Demonstration Plan in the Secondary plan, and the CDP show the Ecole Catholique being co-located with a neighbourhood park, south of Wall Road. It is unknow at this time, if there would be further opportunities to co-locate a school with the park block south of Wall Road. Please keep Park staff informed as development applications proceed in order for staff to comment on the location of the neighbourhood park block south of Wall Road.
- The opportunity to co-location school blocks and park blocks should continue to be sought by development applications within the Mer Bleue community expansion.

South Nation Conservation Authority Comments:

Here are my comments for the August 23rd meeting concerning the French Catholic school proposal. They should be read in conjunction with our previous comments from October 2021 (FOUND below this section).

Natural Heritage

- The Environmental Management Plan (EMP) indicates (8.1.2) that: For the protection of the common aquatic habitat observed in McKinnon's Creek, a setback consisting of the greater of 15 m from the top-of-slope or 30 m from the normal high water mark in the urban area (which may be refined through further study during preparation and review of the draft plan of subdivision), as recommended in the Official Plan, Section 4.7.3.2 and 4.7.3.6, and is identified on Figure 4.4.
- It is our understanding that this area will become a separate parcel (ie., separated from the school parcel) and placed in a restrictive Zone, as done for the subdivision to the north of this property. It is our understanding that the setback will include a Mixed Use Path (MUP) but that access to the creek will be limited to allow the riparian buffer to function.
- A landscaping plan for the full McKinnon's Creek corridor is required by the EMP; however, should this development proceed prior to the completion of this plan, a landscaping plan that meets the objectives of the EMP will be required for this property.
- An Environmental Impact Assessment is required for development adjacent to fish habitat. In addition, a headwater feature has been identified (Drain 14) along the north property boundary. The management recommendations for the headwater feature (outlined as an appendix to the EMP) should be addressed in the EIS. The Conservation Partners will provide a review of the EIS.
- The Conservation Partners support the development of a resource (similar to a Homeowner's Guide) that outlines the ecological significance, restoration and enhancement works and best management practices for the McKinnon's Creek Corridor. This could help to use raise awareness amongst school studies/staff in the future. The Conservation Partners can provide similar resources and background studies and can assist in the review of the resource.

Stormwater Management

- The Conservation Partners do not object to an additional outlet to McKinnon's Creek in place of
 directing stormwater into existing infrastructure and ultimately to the existing stormwater pond
 if it can be shown to not have negative impacts on flooding and erosion, upstream and
 downstream of the outlet.
- Should the option for a new outlet be pursued, it may necessitate a revision to the McKinnon's Creek 100-year floodplain study, which will require review and approval from South Nation Conservation. The applicant may submit a scaled site plan and request a preliminary review to assess whether the change in land use differs from the SNC model, requiring further analyses.

• Should the option for a new outlet be pursued, the applicant will be responsible for stormwater treatment of runoff quality and quantity. The design must demonstrate a 80% TSS removal. The quantity must meet City of Ottawa requirements. The design package should include at a minimum, a report demonstrating how the quality/quantity targets will be achieved, a grading and drainage plan, and a sediment and erosion control plan. The Conservation Partners will provide a technical review.

Conservation Authority Regulation 170/06

- Any interference with a watercourse/headwater feature, including an outlet to McKinnon's Creek, will require a permit and restrictions may apply.
- There is a 100-year floodplain contained within the banks of McKinnon's Creek. The elevation of
 the floodplain at the north end of the property is 84.38 meters above sea level. Any
 development within or 15m adjacent to this elevation will require a permit and restrictions may
 apply. It is anticipated that this area will fall within the McKinnon's Creek Corridor and a
 restrictive Zone.

SNCA – October 2021 follow-up notes:

 The development should implement the direction approved though the Councilapproved Master Servicing Study (MSS) and Environmental Impact Statement, prepared for the Mer Bleue Expansion Lands.

Environmental

- The EMP Section 8.1.1 requires a Planting Plan at the subdivision stage to enhance the woody vegetation cover in McKinnon's Creek corridor where needed. Section 8.1.1 (final point, pg98) also indicates that a detailed design of the McKinnon's Creek will be undertaken as a single integrated design from the Avalon South pond outlet to the downstream extent of the proposed lowering just upstream of Navan Road. The planting plan for the subject property should be integrated with the detail design for the corridor.
- For the protection of aquatic habitat in McKinnon's Creek, the EMP Section 8.1.2 recommends a setback consisting of 15m from the top-of-slope or 30m from the normal high water mark, as identified on Figure 4.4 of the EMP. This setback should be clearly delineated on all plans.
- Figure 3-6 and Table 3.3 identify the drainage features along the north boundary of the parcel as Drain 14, and provides a management recommendation of 'mitigation'. The

- feature should be discussed within the Environmental Impact statement, including how the management recommendation will be implemented.
- An Environmental Impact Statement and Landscaping Plan are recommended for the subject property to demonstrate how the recommendations of the EMP will be satisfied.

Stormwater Management

- Should stormwater be directed towards the Neighbourhood 5 stormwater pond, it must be demonstrated that the pond has capacity.
- The stormwater design should include at a minimum, a report demonstrating how water quality and quantity treatment standards will be achieved, a grading and drainage plan, and a sediment and erosion control plan.
- Note that when stormwater outlets to approved municipal infrastructure, the Conservation Partners do <u>not</u> undertake a technical review; however, we request to be included in the circulation of the stormwater design to confirm.
- o Any modifications to the stormwater pond, including an alteration to the outlet or a change in outflows, will require a technical review by South Nation Conservation.
- Any changes to the outflow may require a revision to the McKinnon's Creek 100year floodplain analysis, along with a technical review of the revision by South Nation Conservation.
- Likewise, should drainage be directed towards McKinnon's Creek directly via uncontrolled flow, a revision to the McKinnon's Creek 100-year analysis and a technical review by South Nation Conservation may be necessary.
- Any drainage from the subject site must demonstrate that there is legal and sufficient outlet for the additional flows. A Municipal Drain petition is currently underway to designate McKinnon's Creek a municipal drain.

Conservation Authority Regulations

Any interference with a watercourse, including a headwater drainage feature (Drain 14, noted above) and an alteration to a stormwater outlet, may require a permit under O.
 Reg. 170/06 and restrictions may apply.

Further items to consider for both site plan control and zoning amendment are:

Bird-safe safety design guidelines are now in effect.

https://ottawa.ca/en/city-hall/public-engagement/projects/bird-friendly-design-guidelines

https://ottawa.ca/en/city-hall/public-engagement/projects/bird-friendly-design-guidelines#bird-friendly-design-guidelines

- Consider the reduction of energy and water demands within your development proposal through lot layout and landscaping, as outlined in the OP Section 4.9.
- Plant locally appropriate native species along the southern and western boundaries of the property and along the parking lots. This will offer shaded parking spots and reduce the urban heat island effect.
- Staff would caution a reduction in the setbacks abutting the public realm. <u>It still</u> needs to be demonstrated that street tree planting of canopy shade trees can be accommodated through the site and particularly and along the public RoWs (Sweetvalley Drive and Tenth Line Road).

Minimum Drawing and File Requirements - All Plans:

Plans are to be submitted on standard **A1 size** (594mm x 841mm) sheets, utilizing an appropriate Metric scale (1:200, 1:250, 1:300, 1:400, or 1:500).

With all submitted hard copies provide <u>individual</u> PDF of the DWGs and for reports please provide one PDF file of each report. **All PDF documents are to be unlocked and flattened.**

Closing comments:

In order to sever the lands, please seek a pre-consultation with a Committee of Adjustment Planner, Cass Sclauzero at cass.slauzero@ottawa.ca or at 613-580-2424-27597.

Best wishes,

Shoma Murshid, MCIP, RPP

(she/ her/ elle)

File Lead, Planner II

Responsable de dossier, urbaniste II City of Ottawa/ Ville d'Ottawa Development Review (Suburban Services, East)/ Examen des projets d'aménagement (Services suburbains Est) Planning, Real Estate and Economic Development Department / Direction générale de la planification, des biens immobiliers et du développement économique

110 Laurier Avenue West, 4th Floor, Ottawa ON K1P 1J1/ 110, avenue Laurier Ouest, 4e étage, Ottawa (Ontario) K1P 1J1 Mail Code/ Code de courrier : 01-14

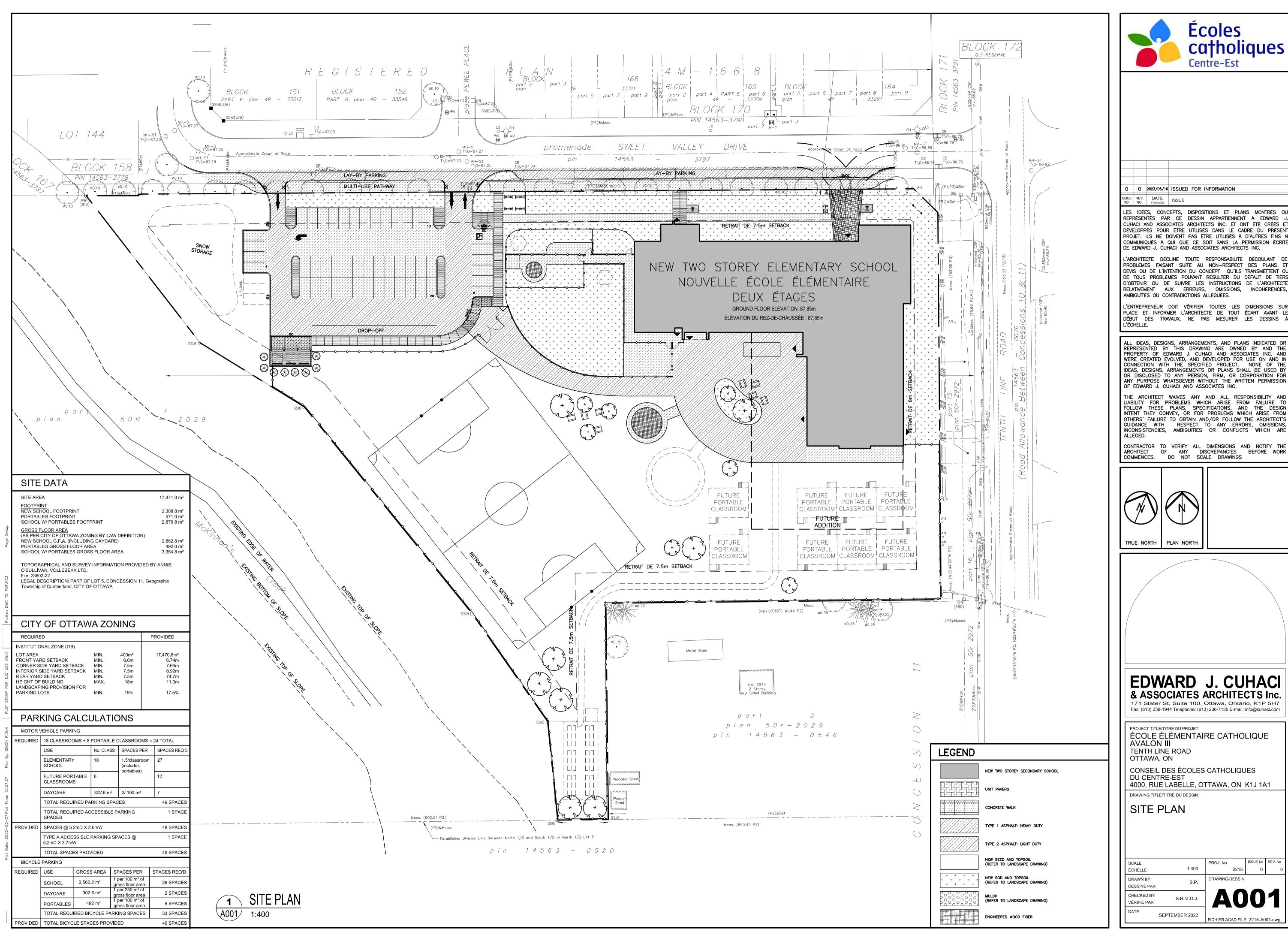
Tel/ Tél: (613) 580-2424 ext. 15430 Fax/ Télèc. : (613) 580-4751

e-mail/courriel: shoma.murshid@ottawa.ca

www.ottawa.ca

elevation of some topographical data that is otherwise visible.

confirmation. 2. Only visible surface utilities were located. 3. A field location of underground plant by the pertinent utility authority is mandatory before any work involving breaking ground, probing, excavating etc.

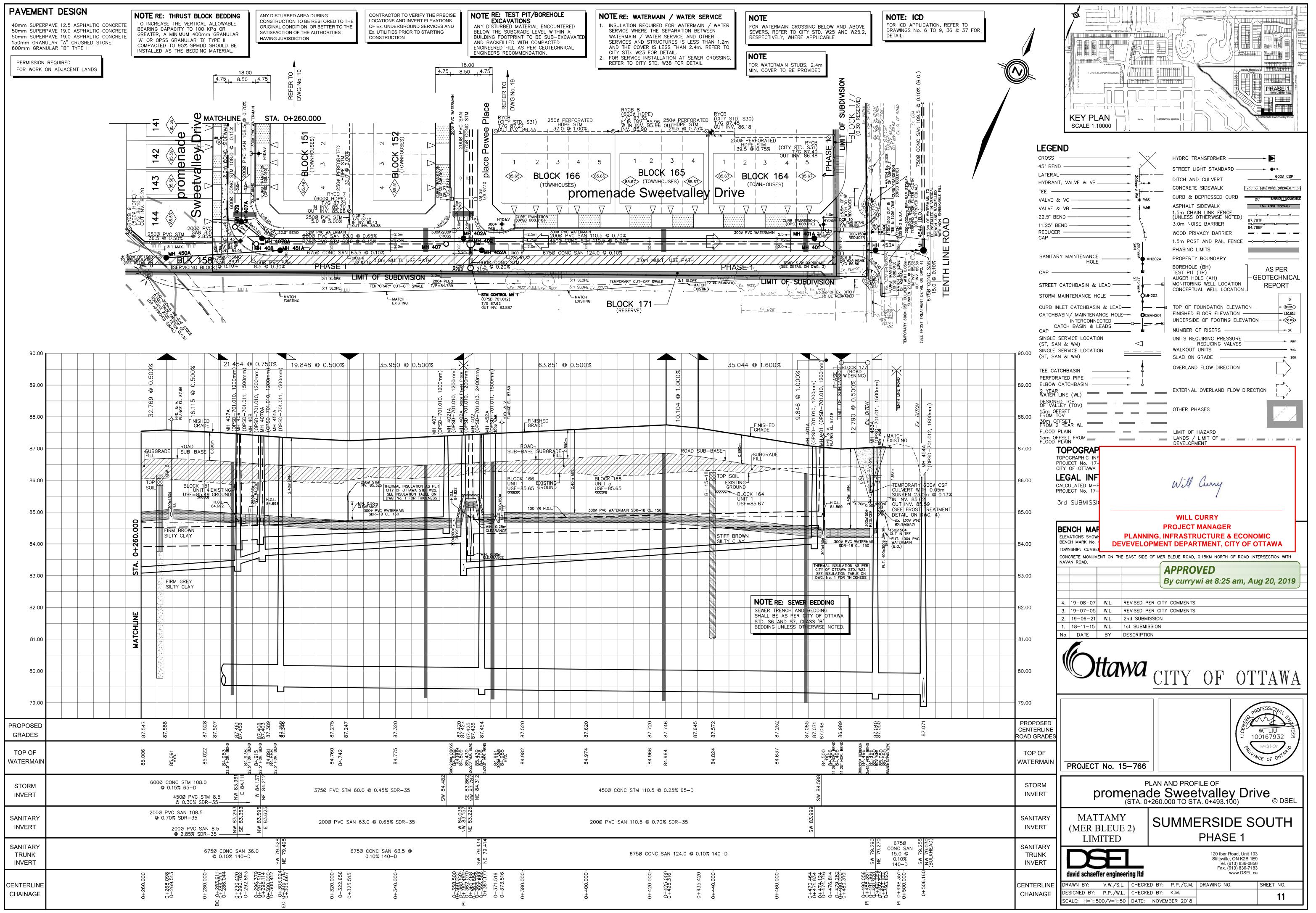

1. Elevations shown are geodetic and are referred to the CGVD28 geodetic datum.

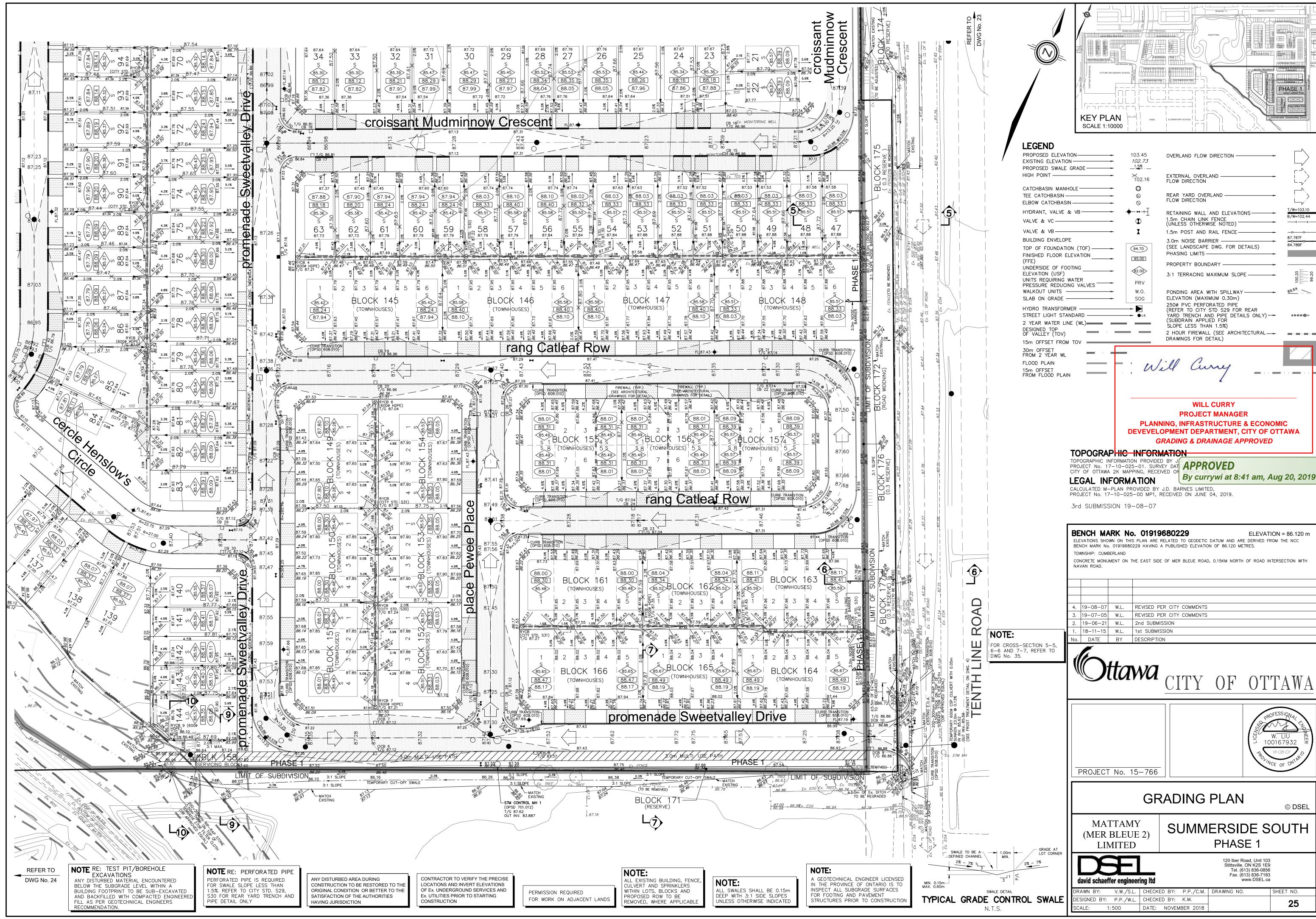
2. It is the responsibility of the user of this information to verify that the job benchmark

has not been altered or disturbed and that it's relative elevation and description

agrees with the information shown on this drawing.

ANNIS, O'SULLIVAN, VOLLEBEKK LTD. Nepean, Ont. K2E 7S6 Phone: (613) 727-0850 / Fax: (613) 727-1079 Email: Nepean@aovitd.com Job No. 23602-22 ECCE PILIS CII CU T DO


REPRÉSENTÉS PAR CE DESSIN APPARTIENNENT À EDWARD CUHACI AND ASSOCIATES ARCHITECTS INC. ET ONT ÉTÉ CRÉÉS I DÉVELOPPÉS POUR ÊTRE UTILISÉS DANS LE CADRE DU PRÉSENT PROJET. ILS NE DOIVENT PAS ÊTRE UTILISÉS À D'AUTRES FINS N COMMUNIQUÉS À QUI QUE CE SOIT SANS LA PERMISSION ÉCRITE


DEVIS OU DE L'INTENTION DU CONCEPT QU'ILS TRANSMETTENT OU DE TOUS PROBLÈMES POUVANT RÉSULTER DU DÉFAUT DE TIERS D'OBTENIR OU DE SUIVRE LES INSTRUCTIONS DE L'ARCHITECTE RELATIVEMENT AUX ERREURS, OMISSIONS, INCOHÉRENCES, AMBIGUÏTÉS OU CONTRADICTIONS ALLÉGUÉES.

PLACE ET INFORMER L'ARCHITECTE DE TOUT ÉCART AVANT LE DÉBUT DES TRAVAUX. NE PAS MESURER LES DESSINS /

WERE CREATED EVOLVED, AND DEVELOPED FOR USE ON AND IN CONNECTION WITH THE SPECIFIED PROJECT. NONE OF THE IDEAS, DESIGNS, ARRANGEMENTS OR PLANS SHALL BE USED BY

LIABILITY FOR PROBLEMS WHICH ARISE FROM FAILURE TO FOLLOW THESE PLANS, SPECIFICATIONS, AND THE DESIGN INTENT THEY CONVEY, OR FOR PROBLEMS WHICH ARISE FROM OTHERS' FAILURE TO OBTAIN AND/OR FOLLOW THE ARCHITECT'S GUIDANCE WITH RESPECT TO ANY ERRORS, OMISSIONS INCONSISTENCIES, AMBIGUITIES OR CONFLICTS WHICH ARE

APPENDIX

B

- FIRE UNDERWRITERS SURVEY FIRE FLOW
 CALCULATION FOR BUILDING
- FIRE UNDERWRITERS SURVEY FIRE FLOW
 CALCULATION FOR PORTABLE CLASSROOM
- WATER DEMAND CALCULATION
- BOUNDARY CONDITION

Fire Flow Design Sheet (FUS) 2666 Tenth Line Road, City of Ottawa, Ontario City of Ottawa WSP Project No. 221-12984-00

16-Mar-23 Date:

Proposed Avalon III (2-Storey school block) Elementary school Fire Flow Requirements Based on Fire Underwriters Survey (FUS) 2020

1. An estimate of the Fire Flow required for a given fire area may be estimated by: $F = 220 \text{ C}_{VV}$ A

F = required fire flow in litres per minute C = coefficient related to the type of construction 1.5 for Type V Wood Frame Construction 0.8 for Type IV-A Mass Timber Construction 0.9 for Type IV-B Mass Timber Construction 1.0 for Type IV-C Mass Timber Construction 1.5 for Type IV-D Mass Timber Construction 1.0 for Type III Ordinary Construction 0.8 for Type II Noncombustible Construction 0.6 for Type I Fire resistive Construction

A =2-b) The single largest Floor Area plus 25% of each of the two immediately adjoining floors

A = C = 0.8 F= 9500.3 L/min

rounded off to 10,000 L/min (min value of 2000 L/min)

2. The value obtained in 1. may be reduced by as much as 25% for occupancies having a low contents fire hazard.

Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25%

-15% x 10,000 = Reduction due to low occupancy hazard 8,500 L/min

3. The value obtained in 2. may be reduced by as much as 50% for buildings equipped with automatic sprinkler protection.

Adequate Sprinkler confirms to NFPA13 -30% Water supply common for sprinklers & fire hoses -10% Fully supervised system -10% No Automatic Sprinkler System 0%

Reduction due to Sprinkler System -40% x 8,500 -3,400 L/min

4. The value obtained in 2. is increased for structures exposed within 45 metres by the fire area under consideration.

C	Charre
<u>Separation</u>	<u>Charge</u>
0 to 3 m	25%
3.1 to 10 m	20%
10.1 to 20 m	15%
20.1 to 30 m	10%
30.1 to 45 m	0%
Side 1 30	10% north side

Side 2 0% east side 75 Side 3 7.5 20% south side 0% west side Side 4 30% (Total shall not exceed 75%)

 $30\% \times 8,500 =$ 2,550 L/min Increase due to separation

5. The flow requirement is the value obtained in 2., minus the reduction in 3., plus the addition in 4.

The fire flow requirement is 8,000 L/min 133 L/sec or or 2,113 gpm (us) 1,760 gpm (uk) or

(Rounded to nearest 1000 L/min)

Fire Flow Design Sheet (FUS) 2666 Tenth Line Road, City of Ottawa, Ontario City of Ottawa WSP Project No. 221-12984-00

Date: 16-Mar-23

Proposed Avalon III (Portable Building) **Elementary school** Fire Flow Requirements Based on Fire Underwriters Survey (FUS) 2020

1. An estimate of the Fire Flow required for a given fire area may be estimated by: $F = 220 \text{ C}_{VV}$ A F = required fire flow in litres per minute C = coefficient related to the type of construction 1.5 for Type V Wood Frame Construction 0.8 for Type IV-A Mass Timber Construction 0.9 for Type IV-B Mass Timber Construction 1.0 for Type IV-C Mass Timber Construction 1.5 for Type IV-D Mass Timber Construction 1.0 for Type III Ordinary Construction 0.8 for Type II Noncombustible Construction 0.6 for Type I Fire resistive Construction A =2-b) The single largest Floor Area plus 25% of each of the two immediately adjoining floors A = 1.5 C = 4828.7 L/min

5,000 L/min (min value of 2000 L/min) rounded off to

2. The value obtained in 1. may be reduced by as much as 25% for occupancies having a low contents fire hazard.

Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25%

Reduction due to low occupancy hazard $-15\% \times 5,000 =$ 4,250 L/min

3. The value obtained in 2. may be reduced by as much as 50% for buildings equipped with automatic sprinkler protection.

Adequate Sprinkler confirms to NFPA13 -30% Water supply common for sprinklers & fire hoses -10% Fully supervised system -10% No Automatic Sprinkler System 0%

Reduction due to Sprinkler System -425 L/min -10% x 4,250

4. The value obtained in 2. is increased for structures exposed within 45 metres by the fire area under consideration.

	Congretion	Chargo	
	<u>Separation</u>	<u>Charge</u>	
	0 to 3 m	25%	
	3.1 to 10 m	20%	
	10.1 to 20 m	15%	
	20.1 to 30 m	10%	
	30.1 to 45 m	0%	
Side '	l 6	20% north side	
Side 2	2 75	0% east side	
Side 3	3.6	20% south side	
Side 4	99	0% west side	
	[40%	(Total shall not exceed 75%)
Ind	crease due to	separation 40% x	4,250 = 1,700 L/min

5. The flow requirement is the value obtained in 2., minus the reduction in 3., plus the addition in 4.

The fire flow requirement is 6,000 L/min (Rounded to nearest 1000 L/min) 100 L/sec or 1,585 gpm (us) or

1,320 gpm (uk) or

Water Demand Calculation Sheet

Project: Avalon III Elementary school

Location: 2666 Tenth Line Road, City of Ottawa, ON

WSP Project No. 221-12984-00

Date: 2023-03-16

Design: N.N. Checked: D.B.Y Page: 1 of 1

		Resi	dential			Non-Resident	ial	Avera	ge Daily		N	√aximum Dail	у	Ma	ximum Hou	·ly	Fire
Proposed Buildings		Units		Beds	Industrial	Institutional	Commercial	Dema	ınd (I/s)			Demand (I/s)			emand (I/s)		Demand
	SF	APT	ST	Deus	(ha)	(ha)	(ha)	Res.	Non-Res.	Total	Res.	Non-Res.	Total	Res.	Non-Res.	Total	(I/min)
Proposed Two Storey Elementary Schoool Bldg.						1.77			0.57	0.57		0.86	0.86		1.55	1.55	8,000

Population Densities	
Single Family	3.4 person/unit
Semi-Detached	2.7 person/unit
Duplex	2.3 person/unit
Townhome (Row)	2.7 person/unit
Bachelor Apartment	1.4 person/unit
1 Bedroom Apartment	1.4 person/unit
2 Bedroom Apartment	2.1 person/unit
3 Bedroom Apartment	3.1 person/unit
4 Bedroom Apartment	4.1 person/unit
Avg. Apartment	1.8 person/unit

Average Daily D	emand	
Residential	280 I/cap/day	
Industrial	35000 I/ha/day	
Institutional	28000 I/ha/day	
Commercial	28000 I/ha/day	

Maximum Daily Deman	d	Maximum Hour	ly Demand
Residential	2.5 x avg. day	Residential	2.2 x max. day
Industrial	1.5 x avg. day	Industrial	1.8 x max. day
Institutional	1.5 x avg. day	Institutional	1.8 x max. day
Commercial	1.5 x avg. day	Commercial	1.8 x max. day

Boundary Conditions 2666 Tenth Line Rd

Provided Information

Scenario	De	mand
Scenario	L/min	L/s
Average Daily Demand	34	0.57
Maximum Daily Demand	52	0.86
Peak Hour	93	1.55
Fire Flow Demand #1	8.000	133.33

Location

Results

Connection 1 – Sweetvalley Dr.

¹ Ground Elevation =

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.3	62.9
Peak Hour	126.0	56.9
Max Day plus Fire 1	126.3	57.3

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the

m

86.1

water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Yang, Winston

From: Rasool, Rubina < Rubina.Rasool@ottawa.ca>

Sent: March 22, 2023 8:04 AM

To: Yang, Winston; Murshid, Shoma **Cc:** Zofia Jurewicz; Nwanise, Nwanise

Subject: RE: Boundary condition request for 2666 Tenth Line Rd - CECCE Elementary School on

Claridge Lands in Mer Bleue Expansion Urban Expansion Area 10

Attachments: 2666 Tenth Line Rd_Boundary_Condition(17March2023).docx

Hello Winston,

Please find attached the water boundary conditions,

Best.

Rubina

.....

Rubina Rasool

Project Manager

Planning, Infrastructure and Economic Development Department

Development Review - East Branch

City of Ottawa

110 Laurier Avenue West Ottawa, ON K1P 1J1

rubina.rasool@ottawa.ca

From: Yang, Winston < Winston. Yang@wsp.com>

Sent: March 17, 2023 12:49 AM

To: Murshid, Shoma <Shoma.Murshid@ottawa.ca>; Rasool, Rubina <Rubina.Rasool@ottawa.ca>

Cc: Zofia Jurewicz <zofiaj@cuhaci.com>; Nwanise, Nwanise <Nwanise.Nwanise@wsp.com>; Baird, Natasha

<Natasha.Baird@ottawa.ca>

Subject: Re: Boundary condition request for 2666 Tenth Line Rd - CECCE Elementary School on Claridge Lands in Mer

Bleue Expansion Urban Expansion Area 10

Importance: High

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hi Shoma.

As per the pre-consultation meeting direction, here is the water supply boundary condition request for the proposed Avalon III Elementary School Development at 2666 Tenth Line Road in Orleans.

The site is proposed to be serviced from the existing 203mm diameter watermain stub from Sweetvalley Drive.

The proposed 2- storey elementary school block has the highest fire flow demand on the site and has been adopted as the worst case scenario. This building will be equipped with an automatic fire protection sprinkler system that complies with NFPA 13. There are two existing public fire hydrants on Sweetvalley Drive next to the subject site, both of which are within 45m of the building.

The domestic water demands were calculated using the City of Ottawa's Water Design Guidelines while fire demands were calculated using FUS 2020.

The results are summarized below:

Proposed Building	Average Daily	Maximum Daily Demand	Maximum Hourly	Fire Demand
	Demand (I/s)	(I/s)	Demand (I/s)	(l/min)
Elementary School	0.57	0.86	1.55	8000

I have attached the Water demand, FUS calculation spreadsheet and Map showing conceptual water service connection for your review.

Thank you,

Winston Ding Bang Yang, P.Eng., PMP

Senior Civil Engineer Land Development and Municipal Engineering - Ottawa

T+ 1 613-690-0538 M+ 1 647-628-8108

WSP Canada Inc.

2611 Queensview Drive Suite 300

Ottawa, Ontario K2B 8K2

wsp.com

NOTICE: This communication and any attachments ("this message") may contain information which is privileged, confidential, proprietary or otherwise subject to restricted disclosure under applicable law. This message is for the sole use of the intended recipient(s). Any unauthorized use, disclosure, viewing, copying, alteration, dissemination or distribution of, or reliance on, this message is strictly prohibited. If you have received this message in error, or you are not an authorized or intended recipient, please notify the sender immediately by replying to this message, delete this message and all copies from your e-mail system and destroy any printed copies. You are receiving this communication because you are listed as a current WSP contact. Should you have any questions regarding WSP's electronic communications policy, please consult our Anti-Spam Commitment at www.wsp.com/casl. For any concern or if you believe you should not be receiving this message, please forward this message to caslcompliance@wsp.com so that we can promptly address your request. Note that not all messages sent by WSP qualify as commercial electronic messages.

AVIS : Ce message, incluant tout fichier l'accompagnant (« le message »), peut contenir des renseignements ou de l'information privilégiés, confidentiels, propriétaires ou à divulgation restreinte en vertu de la loi. Ce message est destiné à l'usage exclusif du/des destinataire(s) voulu(s). Toute utilisation non permise, divulgation, lecture, reproduction, modification, diffusion ou distribution est interdite. Si vous avez reçu ce message par erreur, ou que vous n'êtes pas un destinataire autorisé ou voulu, veuillez en aviser l'expéditeur immédiatement et détruire le message et toute copie électronique ou imprimée. Vous recevez cette communication car vous faites partie des contacts de WSP. Si vous avez des questions concernant la politique de communications électroniques de WSP, veuillez consulter notre Engagement anti-pourriel au www.wsp.com/lcap. Pour toute question ou si vous croyez que vous ne devriez pas recevoir ce message, prière de le transférer au conformitelcap@wsp.com afin que nous puissions rapidement traiter votre demande. Notez que ce ne sont pas tous les messages transmis par WSP qui constituent des messages electroniques commerciaux.

-LAEmHhHzdJzBITWfa4Hgs7pbKl

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

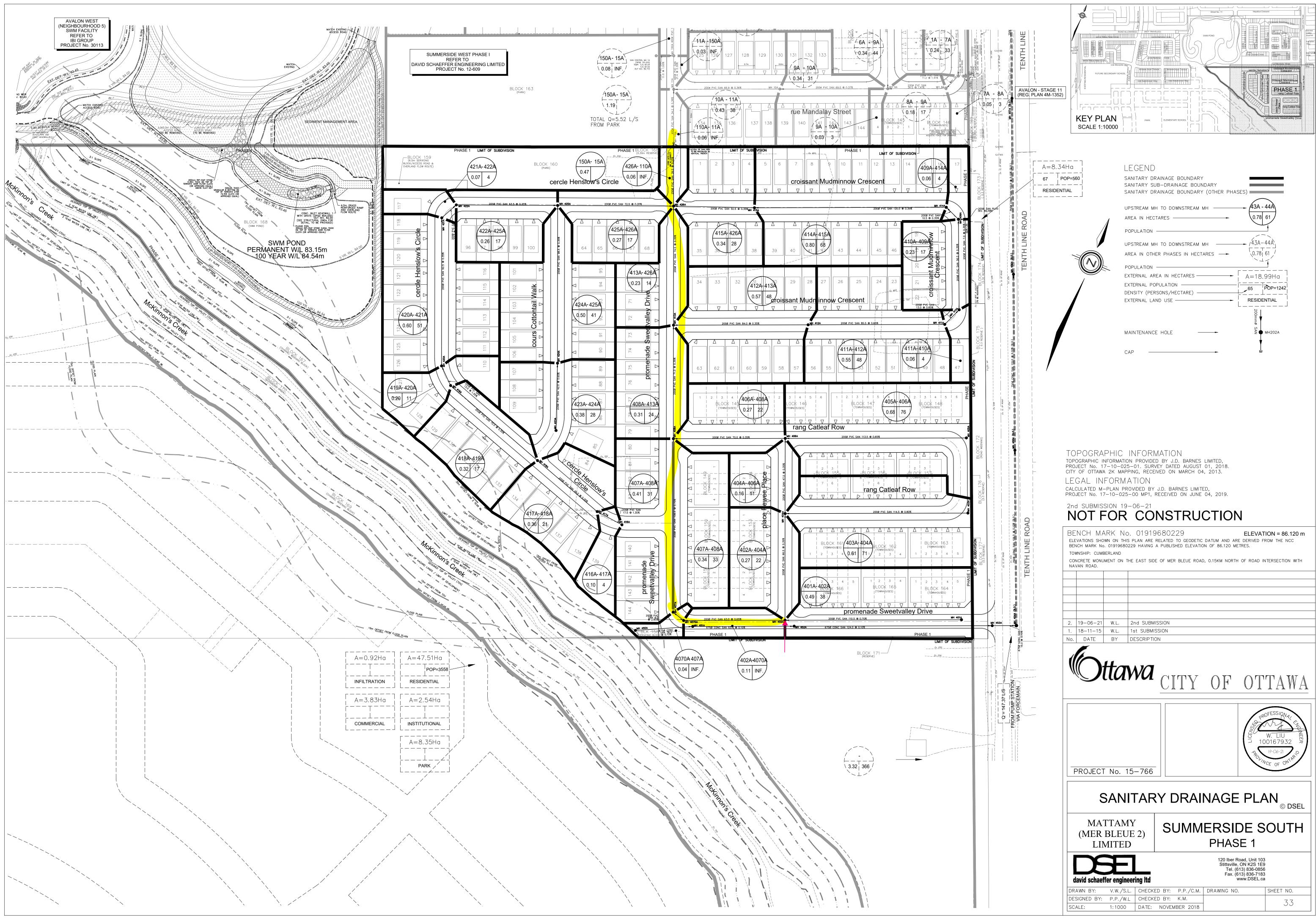
Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

3

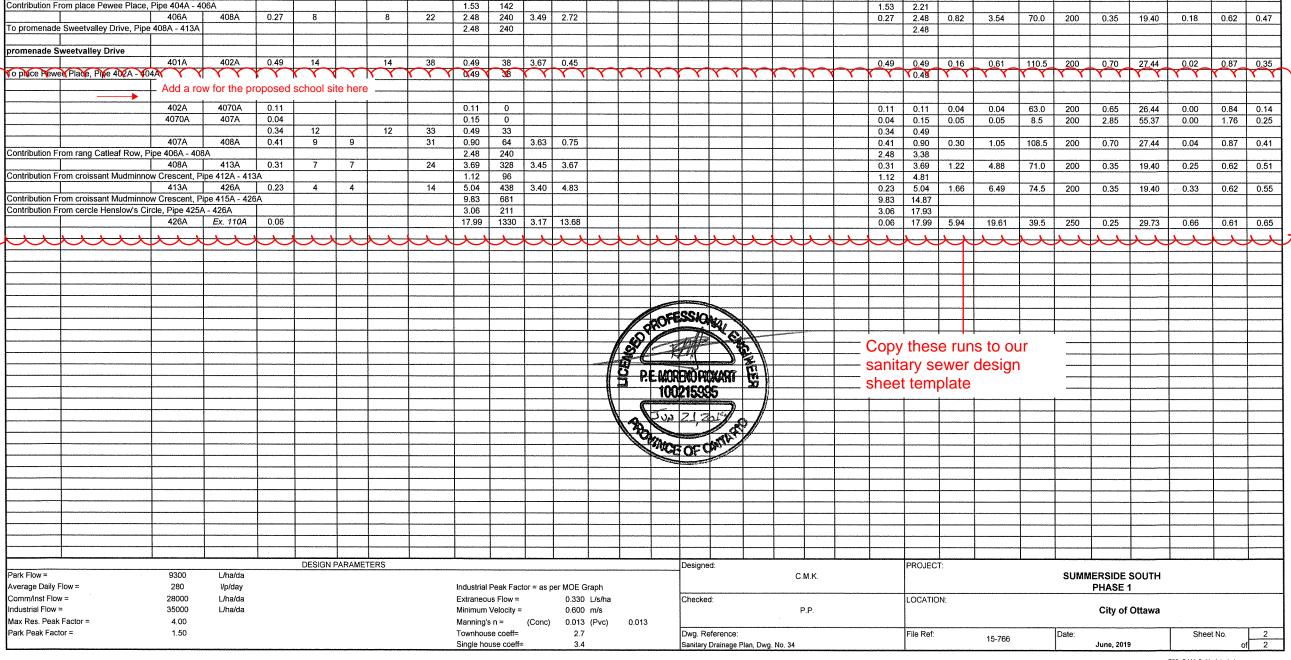
APPENDIX

C

- SANITARY SEWER DESIGN SHEET
- EXISTING SANITARY SEWER DESIGN SHEET BY DSEL


SANITARY SEWER DESIGN SHEET New Orleans Catholic ES

Avalon III - Institutional Development


Ottawa, ON
Project: 221-12984-00
Date: June 02, 2023

LOCA	ATION					RESIDENT	AL AREA AND POPU	ATION						II	IDUSTRIAL	-	СОМ	MERCIAL	INSTITUT	IONAL	I+C+I	IN	FILTRATIO	N		Т	PIPE			
LOCATION	FROM	то	INDV	ACCU	N	NUMBER OF U	INITS		POPULA	ATION		PEAK	GROSS	DEVEL.	ACCU.	PEAK	INDIV	ACCU.	INDIV	ACCU.	PEAK	INDIV	ACCU.	INFILT.	TOTAL	LENGTH	DIA. SLOPE	E CAP.	VEL.	AVAIL.
LOGATION	M.H.	M.H.	AREA	ΔRFΔ	1	AVG	STACKED 2-BED	3-BED	INDIV	ACCU	PEAK FACT.	FLOW	AREA		AREA	FACTOR	AREA	AREA	AREA		FLOW	AREA	AREA	FLOW	FLOW	LENGIII	DIA. SLOT	(FULL)		
			(ha)	(ha) SINGLES	SEMIS	TOWNS	TOWNS APT.	APT.	POP.	POP.	17.01.	(l/s)	(ha)	(ha)	(ha)		(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(I/s)	(m)	(mm) (%)		(m/s)	(%)
			(/	(-9																						 		+-	†	
CONTRIBUTION From place P	ewee Place, Pip	ne 404A - 406 A																												
CONTRIBUTION From place P	Pewee Place, Pip	e 404A - 406 A		1.530						142		0.00										1.530	2.21							
	EX.406A	EX.408A	0.270			8.00			22	240	+	2.72										0.270	2.48	†	3.54	70.00	200 0.35	5 19.40	0 0.62	2 81.78 9
·	eetvalley Drive			2.480					1	240			-										2.48				 	+-	+	
To promenade Sweetvalle	EX.401A	8A - 413A EX.402A	0.490	0.490		14.00			38	38	3.67	0.45		1								0.490	0.49	0.16	0.61	1 110.50	200 0.70	0 27.44	4 0.87	7 97.779
Contribution From Proposed			0.430	0.490		14.00	+		30	- 30	3.07	0.43										0.430	0.43	0.10	0.0	110.50	200 0.70	27.44	0.07	91.11
	School	SANMH100																	1.75	1.75	0.85	1.747	0.46	0.15	1.00	9.70	200 1.00	0 32.80	0 1.04	4 96.959
	SANMH100	SANMH101																		1.75	0.85	0.000	0.46	0.15	1.00	65.50	200 0.50	0 23.19	9 0.74	4 95.689
	SANMH101	EX.402A																		1.75	0.85	0.000	0.46	0.15	1.00	11.70	200 1.50	0 40.17	7 1.28	97.519
	EX.402A	EX.4070A	0.110							0	1									1.75	0.85	0.110	0.57							
	EX.4070A	EX.407A	0.040						-	0	+			1						1.75	0.85	0.040	0.61	†	1.05	5 <i>8.50</i>	200 2.85	5 55.37	7 1.76	98.109
	EX.407A	EX.408A	0.340			12.00	+ +		33	33 64	1	0.75					1		1	1.75	0.85	0.340	0.95	†	2.05	5 108.50	200 0.70	0 27.44	4 0.87	7 92.529
Contribution From rang Catl			2.480				† †		31	240	+	0.75	1	1			<u> </u>			1.75	0.85	2.480			2.00	100.50	200 0.70	21.44	0.87	92.32
and the same of th	EX.408A	EX.413A	0.310						24	328	+	3.67		1			Ì			1.75	0.85	0.310	4.15		5.89	9 71.00	200 0.35	5 19.40	0 0.62	2 69.679
Contribution From croissant Mudm	ninnow Crescent,	Pipe 412A - 413A	1.120	1.120						96										1.75	0.85	1.120	5.27							
	EX.413A	EX.426A	0.230	5.040 4					14	438	3.40	4.83								1.75	0.85	0.230	5.50	1.82	7.49	74.50	200 0.35	5 19.40	0.62	2 61.389
Contribution From croissant Mudm			9.830							681	1									1.75	0.85	9.830					++-	+	 	
Contribution From cercle Hens			3.060						1	211	1		-							1.75	0.85	3.060						-	+	
	EX.426A	EX.110A	0.06	17.99					1	1330	3.17	13.68	1	1					1	1.75	0.85	0.060	18.45	6.09	20.62	2 39.50	250 0.25	5 29.73	3 0.61	1 30.679
													1				1									+	+	+	+	
																												+-	+	
																										1			1	
																										↓	 	+		
									1				-														 	+-	+	
							+ +		+								1		1								 	+	+	1
							+																					+-	+	
																										1			1	
											ļ																	\bot	\bot	
							 				<u> </u>		1	 			<u> </u>		\vdash							₩		+	+-	-
							+ +					1	1	1			1	1		-+				1	1	+	+	+-	+-	1
							+ + +		+ +				1	1			†	-		-+				-		+	+	+	+-	
							† †						†	1			†									t		+	+	
				<u>'</u>			DESIGN PARAMETI	RS						•																
																							DESIGNED	:		NO.	REVISIO	ON		DATE
RESIDENTIAL AVG. D		280		COMMERC	IAL PEAK FACTOR =			(WHEN AF				PULATION			P*q*M/86	6400		UNIT TYPE	ļ	PERSONS	S/UNIT		M.S.			1.	City Submiss	ion No.1	202	23-06-02
COMMERCIAL AVG. D	DAILY FLOW =	28,000					1.0	(WHEN AF	REA < 20%)			TRANEOUS			I*Ac			SINGLES		3.4			CHECKED:	:		-				
INICTITUTIONIAL AVC. D	All V ELOW	0.324		INICTITUTIO	NAL DEAK FACTOR		1.5	(MULTIN AT	NEA . 000()			NTIAL PEAK		OR, M =	1+(14/(4+P	^0.5))*K		SEMI-DETAC		2.7 2.7			D.B.Y			-				
INSTITUTIONAL AVG. D	AILY FLOW =	28,000 0.324		INSTITUTIO	ONAL PEAK FACTOR	=	1.5					MULATIVE A ULATION (T		181				TOWNHOME WALK UP TO		1.8			PROJECT:	lementary Sc	hool	4				
LIGHT INDUST	ΓRIAL FLOW =						1.0	(*** ILIV AF	20/0)		, -1 OF	CENTION (II	OOOAINL	,				2-BED APT.		2.1				Developmen						
	-	0.405		RESIDENTI	IAL CORRECTION FA	CTOR, K =	0.80				SEWER	CAPACITY,	Qcap (I/s)	=	1/N S^(1	/2) R^(2/3) Ac		3-BED APT.		3.1			LOCATION]				
HEAVY INDUST	ΓRIAL FLOW =	55,000		MANNING N			0.013					IG'S EQUAT			4	. ,							Ottawa, Ont			<u> </u>			<u></u>	
		0.637		PEAK EXTE	RANEOUS FLOW, I (I/	's/ha) =	0.33																PAGE NO:				/G. REFERENCE:			
																							1 of 1			C03				

SANITARY SEWER CALCULATION SHEET Manning's n=0.013 LOCATION RESIDENTIAL AREA AND POPULATION STREET CUMULATIVE FROM TO AREA UNITS UNITS UNITS PEAK PEAK AREA AREA ACCU. ACCU AREA ACCU. PEAK TOTAL ACCU. TOTAL DIST ICI DIA SLOPE M.H. AREA POP. FACT. FLOW AREA AREA AREA Singles Peaking FLOW AREA AREA FLOW FLOW (FULL) Q act/Q cap (FULL) (ACT.) (ha) (ha) (l/s) (ha) (ha) (ha) (ha) (ha) Factor (ha) (I/s) (ha) (ha) (I/s) (l/s) (m) (mm) (%) (l/s) (m/s) (m/s) Contribution From place Pewee Place, Pipe 404A - 406A 1.53 142 1.53 2.21 408A 0.27 22 240 3.49 2.72 8 2.48 8 0.27 2.48 0.82 3.54 70.0 200 0.35 19.40 0.18 0.62 0.47 To promenade Sweetvalley Drive, Pipe 408A - 413A 2.48 240 2.48 promenade Sweetvalley Drive 401A 402A 0.49 14 14 38 0.49 38 3.67 0.45 0.49 0.49 0.16 0.61 110.5 200 0.70 27.44 0.02 0.87 0.35 o price Pewer Place, Pine 402A - 404A 0.49 38 YYYY Y Y 0.49 Y Y Add a row for the proposed school site here 402A 4070A 0.11 0.11 0 0.11 0.11 0.04 0.04 63.0 200 0.65 26.44 0.00 0.84 0.14 4070A 407A 0.04 0.15 0 0.04 0.15 0.05 0.05 8.5 200 2.85 55.37 0.00 1.76 0.25 0.34 12 12 33 0.49 33 0.34 0.49 407A 408A 0.41 9 9 31 64 3.63 0.75 0.90 0.41 0.90 0.30 1.05 108.5 200 0.70 27.44 0.04 0.87 0.41 Contribution From rang Catleaf Row, Pipe 406A - 408A 2.48 240 2.48 3.38 408A 0.31 24 3.69 328 3,45 3.67 3.69 1.22 0.51 0.31 4.88 71.0 200 0.35 19.40 0.25 0.62 Contribution From croissant Mudminnow Crescent, Pipe 412A - 413A 1.12 96 1.12 4.81 413A 426A 0.23 4 14 5.04 438 3.40 4.83 0.23 5.04 1.66 6.49 74.5 200 0.35 19.40 0.33 0.62 0.55 Contribution From croissant Mudminnow Crescent, Pipe 415A - 426A 9.83 681 9.83 14.87 Contribution From cercle Henslow's Circle, Pipe 425A - 426A 3.06 211 3.06 17.93 426A Ex. 110A 0.06 17.99 1330 3.17 13.68 0.06 17.99 5.94 19.61 39.5 250 0.25 29.73 0.66 0.61 0.65

SANITARY SEWER CALCULATION SHEET

Manning's n≂0.0)13																													LLLAY	VV	
	LOCATION				7	RESIDENT	IAL AREA AND	POPULATION					CO	MMC	INS	STIT	PA	RK			I+C+I+P	I	VFILTRATIO	N					PIPE			
	STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.		JLATIVE T	PEAK	PEAK	AREA	ACCU.	AREA	1	AREA	ACCU.	ICI	ICI	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VI	
		M.H.	M.H.	(ha)		Singles	Townhouse		AREA (ha)	POP.	FACT.	FLOW (I/s)	(ha)	AREA (ha)	(ha)	AREA (ha)	(ha)	AREA (ha)	Ratio	Peaking Factor	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/s)	(m)	(mm)	(%)	(FULL) (I/s)	Q act/Q cap	(FULL) (m/s)	(ACT.) (m/s)
cours Cottonta	il Walk																															
cours Cottonia	III FFGIR	423A	424A	0.38	8	8		28	0.38	28	3.69	0.33		ļ	 	<u> </u>				+		0.38	0.38	0.13	0.46	42.0	200	0.65	26.44	0.02	0.84	0.32
		424A	425A	0.50	12	12		41	0.88	69	3.63	0.81										0.50	0.88	0.29	1.10	98.5	200	0.35	19.40	0.06	0.62	0.33
To cercle Henslo	ow's Circle, Pipe 425A -	426A		ļ		ļ			0.88	69	ļ	**********				ļ							0.88									
cercle Henslow	v's Circle			 		 	 		<u> </u>	 	 									 								ļ		ſ		
		416A	417A	0.10	1	1		4	0.10	4	3.76	0.05	<u> </u>							<u> </u>		0.10	0.10	0.03	0.08	17.5	200	1.30	37.40	0.00	1.19	0.22
		417A	418A	0.36	6	6		21	0.46	25	3.69	0.30										0.36	0.46	0.15	0.45	49.0	200	0.35	19.40	0.02	0.62	0.26
		418A	419A	0.32	5	5	ļ	17	0.78	42	3.66	0.50	ļ	ļ	<u> </u>	ļ				ļ		0.32	0.78	0.26	0.76	72.0	200	0.35	19.40	0.04	0.62	0.29
		419A 420A	420A 421A	0.20	3 15	3 15	 	11 51	0.98 1.58	53 104	3.65	0.63 1.21	 	-	├ ──	ļ				 		0.20	0.98	0.32	0.95	13.5	200	1.55	40.83	0.02	1.30	0.54
		421A	422A	0.07	1 1	1 1	 	4	1.65	108	3.59	1.26		-	 	 			 		 	0.60	1.58 1.65	0.52 0.54	1.73 1.80	92.5 12.0	200	0.35	19.40 19.40	0.09	0.62	0.38
		422A	425A	0.26	5	5	-	17	1.91	125	3.57	1.45			 	 	 	 		 	 	0.26	1.91	0.63	2.08	63.5	200	0.35	19.40	0.03	0.62	0.40
Contribution Fro	m cours Cottontail Walk	, Pipe 424A -					1		0.88	69	1			<u> </u>	 	†	 	 		†	 	0.88	2.79	5.00		1	1	1 0.00	70.10		1	1
		425A	426A	0.27	5	5		17	3.06	211	3.51	2.40										0.27	3.06	1.01	3.41	72.5	200	0.35	19.40	0.18	0.62	0.46
To promenade S	Sweetvalley Drive, Pipe	426A - 110A			ļ	ļ	<u> </u>		3.06	211	 			 			<u> </u>	<u> </u>	ļ				3.06				ļ	 		 	 	ļ
croissant Mudr	minnow Crescent				<u> </u>	 	 		 	 				 	 		 	 		-	 			ļ		 	 	 	 	l	 	
		411A	412A	0.55	14	14	1	48	0.55	48	3.65	0.57		1	 	1	 			1		0.55	0.55	0.18	0.75	85.5	200	0.65	26.44	0.03	0.84	0.37
		412A	413A	0.57	14	14		48	1.12	96	3.60	1.12										0.57	1.12	0.37	1.49	84.0	200	0.35	19.40	0.08	0.62	0.36
To promenade S	Sweetvalley Drive, Pipe	413A - 426A							1.12	96					ļ		ļ						1.12									
		411A	410A	0.06	1	1	-	4	0.06	 	3.76	0.05	ļ	 	ļ		ļ			ļ	 	0.06	0.00	0.00	0.07	42.0	200	0.05	00.44	0.000	0.04	0.47
		410A	409A	0.00	5	5	+	17	0.00	21	3.70		 	 		 		 				0.06	0.06	0.02	0.07 0.35	13.0 56.5	200	0.65	26.44 19.40	0.003	0.84	0.17
Contribution Fro	m External	1,071	100/1	8.34	1	1 1		560	8.63	581	0.70	0.23	 	 		 	-	 			<u> </u>	8.34	8.63	0.10	0.55	30.3	200	1 0.33	13.40	0.02	0.02	0.23
		409A	414A	0.06	1	1	-	4	8.69	585	3.35	6,35		 		†	 			1	†	0.06	8.69	2.87	9.22	10.5	200	0.35	19.40	0.48	0.62	0.61
		414A	415A	0.80	20	20		68	9.49	653	3.33	7.05						 				0.80	9.49	3.13	10.18	120.0	200	0.35	19.40	0.52	0.62	0.62
		415A	426A	0.34	8	8	<u> </u>	28	9.83	681	3.32	7.33			ļ							0.34	9.83	3.24	10.57	50.5	200	0.35	19.40	0.54	0.62	0.63
To promenade S	Sweetvalley Drive, Pipe	426A - 110A						 	9.83	681	ļ			ļ	 	-			ļ		ļ		9.83			ļ	-	ļ			 	<u> </u>
place Pewee Pl	lace					1	-				┪			 		253	SSIO	September 1			 			 			 			 	 	
Contribution Fro	m promenade Sweetval	lley Drive, Pipe	401A - 402A	4					0.49	38	1				1	Poor		14	-	 		0.49	0.49			·	·	†	 			
		402A	404A	0.27	8		8	22	0.76	60	3.64	0.71			10	1	E		1	-		0.27	0.76	0.25	0.96	66.5	200	0.35	19.40	0.05	0.62	0.32
Contribution Fro	m rang Catleaf Row, Pi	·		ļ					0.61	71					82		W/E	14.4				0.61	1.37									
To soon Cottons	Dav. Diag 4004 4004	404A	406A	0.16	4	 _	4	11	1.53	142	3.56	1.64	ļ		W				21			0.16	1.53	0.50	2.14	47.0	200	0.35	19.40	0.11	0.62	0.40
To rang Callear	Row, Pipe 406A - 408A	·		-	 		 	 	1.53	142	 		 	1 1	g P	EMOS	ENO PIC	KAHT	100	 	ļ		1.53	 		 	 	 	 	 	 	
rang Catleaf Ro	ow				 				 	 	-		 	-	-	100	21599	5	30		 		 	 		 	 	 	 		 	
		403A	404A	0.61	26		26	71	0.61	71	3.63	0.83	<u> </u>	#	(THE PARTY	Aller Sand		1		0.61	0.61	0.20	1.04	114.5	200	0.80	29.34	0.04	0.93	0.43
To place Pewee	Place, Pipe 404A - 406	SA .							0.61	71					10	JUN	21,2	17					0.61									
			1001		ļ	_	ļ			<u> </u>			ļ		N20						ļ					<u> </u>	<u> </u>	1	ļ		ļ	
		405A	406A	0.68	28	-	28	76	0.68	76	3.62	0.89	ļ	 	1	Mac	21,2 0F0	KIN.	1			0.68	0.68	0.22	1.12	113.5	200	0.65	26.44	0.04	0.84	0.42
				<u> </u>	 	+			 	-	-		 	 	 `	1	000	The state of the s	 	 	ļ			ļ		 	<u> </u>	-			-	┼
				 	†	 		<u> </u>	 	-	1			 	+	1		-	 	+		 				<u> </u>		1	1		 	+
																				<u> </u>			<u></u>						<u> </u>			
				-							-																					
				 	 	-	-	_	 	-	 	 	 	-	-	 	 	 	 	 	ļ	<u> </u>	 	 		 	+	 	-	 		
				· · · · · · · · · · · · · · · · · · ·	DESIGN	PARAME	TERS	<u> </u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		l		1		Designe	ed:	4			1	L	PROJEC	т:	I	.1	<u></u>		1	<u> </u>		
Park Flow =		9300	L/ha/da		,					······································									C	C.M.K.							SUMN	MERSIDE				
Average Daily Flo		280	l/p/day							Peak Fac	tor = as p												ļ					PHASE	1			
Comm/inst Flow = Industrial Flow =	=	28000 35000	L/ha/da L/ha/da						Extraneo				L/s/ha			Checke	d:			D.D.			LOCATIO	DN:				Cit. ct	04			
Industrial Flow = Max Res. Peak Fa	actor =	4.00	L/na/da						Minimum Manning	Velocity =	(Conc)	0.600 0.013		0.013						P.P.								City of	Ottawa			
Park Peak Factor		1.50							Townhou		(COHC)	2.7		0.013		Dwa R	eference:	·····					File Ref:				Date:			Shee	et No	T 1
1										ouse coeff	= '	3.4					Drainage I	Plan. Dwo.	. No. 34				" " " " " " " " " " " " " " " " " " "		15-766		Duic.	June, 201	9	1		of 2

SANITARY SEWER CALCULATION SHEET

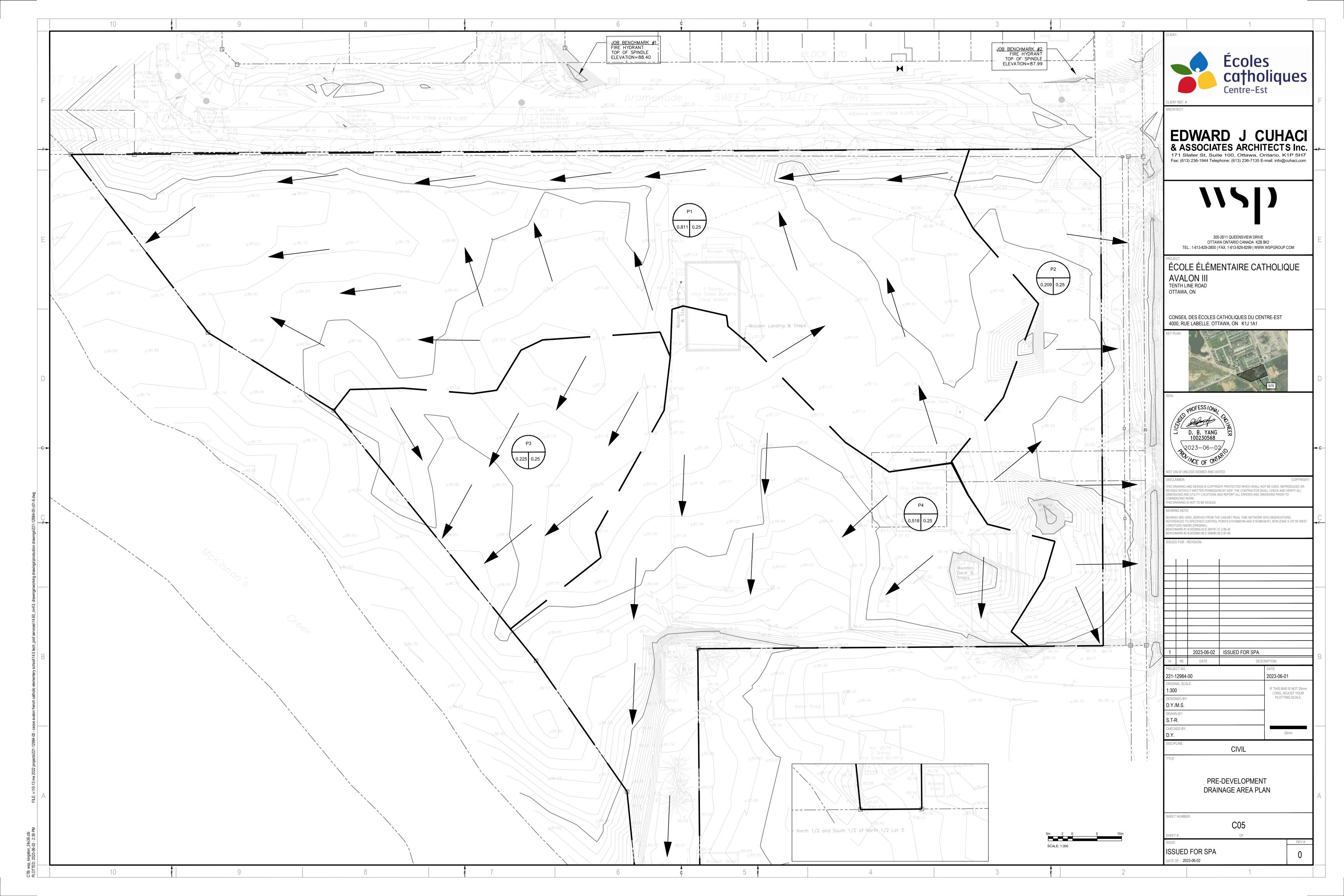
## 1962 To 10 AA5 MIT	g's n=0.01			····	y							···																			LLUW	И	
Set 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LOCATION				,	·							co	ММ	INS	STIT	PAI	RK			I+C+I+P	II.	NFILTRATIO	N					PIPE	-		
Part	ST	TREET			AREA	UNITS	1		POP.					AREA		AREA	3	AREA	1	ICI	ICI	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO		ÆL.
## CASA			M.H.	М.Н.	(ha)		Singles	Townhouse			POP.	FACT.		(ha)		(ha)		(ha)		Ratio							(m)	(mm)	(%)		Q act/Q cap	(FULL) (m/s)	(A) (II)
Property			D' 1011	004						1.50	110								ļ														
Processed Support State Place See 4-154 1	ution From	i piace rewee riace,			0.27	<u> </u>		Ω	22			2.40	2 72						 	 	 				0.00	254	70.0	200	0.05	10.40	0.10	0.62	0
Comparison Com	menade Sv	weetvallev Drive Pine		400/1	0.21		 		- 22			3.45	2.12			-			 	 	 		0.27		0.62	3.04	70.0	200	0.30	19.40	0.10	0.02	+
See Peace Pipe	THE REAL PROPERTY.	receivancy Brive, 1 ipe	400/(410/(<u> </u>	2.40	240					 					 			2.40			 						+
## Process Flower Flowe	nade Swee	etvalley Drive					1			┪	 					 					 						 	 		 	 	 	+
Part Prince Prin			401A	402A	0.49	14	1	14	38	0.49	38	3.67	0.45			†					 		0.49	0.49	0.16	0.61	110.5	200	0.70	27.44	0.02	0.87	1
## ADVINCE 1970 1964 1	e Pewee F	Place, Pipe 402A - 404	4A							0.49	38		***************************************														1	 					T
MODIA 1979																																	
MODIA 1979																																	
1						ļ															ļ											0.84	(
MITTALE MATERIAL			4070A	407A		40					+								ļ	ļ	ļ				0.05	0.05	8.5	200	2.85	55.37	0.00	1.76	(
A CONTROL OF THE PROPERTY OF T			4074	409.0			+	12				2.62	0.75			-	ļ			ļ	ļ				0.00	4.05	400.5	000	0.70	107.44	0.04	0.07	Ψ,
Second Continue	ution From	n rang Catleaf Row Pi			0.41		+-		- 31			3.03	0.73		 	 	 			 	ļ				0.30	1.00	100.5	200	0.70	21.44	0.04	0.87	10
ontification Final register (Page 4154 - 415		rang oatioa ron, r			0.31	7	7		24			3.45	3.67			 				 	 				1 22	4.88	71.0	200	0.35	19.40	0.25	0.62	+
Marriage	ution From	n croissant Mudminnov														 	<u> </u>		 	 	1					1.00	1 71.0	1 200		10.10		0.02	+
Official Personal Four Circle Healthow's Circle, Pipe 4254-4264 4264 62 x 1704 0.00			413A	426A	0.23	4	4		14			3.40	4.83		İ					 					1.66	6.49	74.5	200	0.35	19.40	- 0.33	0.62	1
## PROFESSION LINEAR SECTION CONTINUE C	ution From	n croissant Mudminno	w Crescent, P	ipe 415A - 426	iΑ						681												9.83	14.87									
DESIGN PARAMETERS A	ution From	n cercle Henslow's Cir																															I
DESIGN PARAMETERS		·	426A	Ex. 110A	0.06	ļ				17.99	1330	3.17	13.68						ļ		ļ		0.06	17.99	5.94	19.61	39.5	250	0.25	29.73	0.66	0.61	
DESIGN PARAMETERS							ļ		ļ	<u> </u>	<u> </u>				ļ	ļ				ļ	ļ		ļ		ļ			ļ	ļ			ļ	4
DESIGN PARAMETERS DESIGN PARAME							 	<u> </u>	ļ		 					ļ			ļ	ļ	 		ļ						ļ				+
DESIGN PARAMETERS						 	 	ļ		 	 				<u> </u>	 			 	 	 	ļ	ļ		 			-			-	ļ	+-
DESIGN PARAMETERS					 				 	-	 					-			ļ	-					 		-	 	ļ	 	 		
DESIGN PARAMETERS						 	-			 	 					 		 	 								 	 	 	+	 	 	╁
DESIGN PARAMETERS					<u> </u>		1				<u> </u>								 	 	 	 								 	-	1	+
DESIGN PARAMETERS										1	 	İ				- 25	6610	· Williams		·					1				†	 		†	十
DESIGN PARAMETERS															110	WO.		10			†	<u> </u>											†
DESIGN PARAMETERS															(Q)	1	-nH	1.6	-	and the second second second second													
DESIGN PARAMETERS						ļ									8/	1	FIN	13	1 3														
DESIGN PARAMETERS						ļ					ļ				SS				2								<u> </u>	<u> </u>				<u> </u>	_
DESIGN PARAMETERS						<u> </u>	 		ļ		<u> </u>	ļ		1 !!	<u>u</u> p	EMAR	FRING	XXX	Fri 1	 								ļ		ļ		ļ	
DESIGN PARAMETERS					 	 	-}		 	 	ļ	 				100	21500	6	20	ļ	ļ							 		_		 	+
DESIGN PARAMETERS					 	 				-	 	 		- 1	æ	IVU	LION	<u> </u>	 	 	ļ			ļ			 	 	 	-		 	+
DESIGN PARAMETERS						 					 	 				1333	210	150	-	 	 	 	 				 	-	 	-			+-
Checket: Checket:					 	 	 			 	 	 		V	18	No.	2,0		₽#	-	 			 			 		 	·	 	 	+-
Control Cont						<u> </u>									10	7700		AV		1	1	<u> </u>			 		 	 	1		 	 	十
Control Cont															1	T'VCE	OFC												1	1		1	\top
gark Flow = 9300 L/ha/da C.M.K. SUMMERSIDE SOUTH PLASE 1 yerage Daily Flow = 280 I/p/day Industrial Peak Factor = as per MOE Graph Checked: LOCATION: dustrial Flow = 35000 L/ha/da Minimum Velocity = 0.600 m/s P.P. City of Ottawa ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013																-	CHARGE HER																I
gark Flow = 9300 Plank Flow = L/ha/da C.M.K. SUMMERSIDE SOUTH PLANK Flow ENDER SOUTH PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow F					<u> </u>			ļ	ļ							<u> </u>				<u> </u>												1	1
Interference 9300 L/ha/da C.M.K. SUMMERSIDE SOUTH perage Daily Flow = 280 l/p/day Industrial Peak Factor = as per MOE Graph Checked: DHASE 1 pmm/Inst Flow = 28000 L/ha/da Extraneous Flow = 0.330 L/s/ha Checked: LOCATION: dustrial Flow = 35000 L/ha/da Minimum Velocity = 0.600 m/s P.P. City of Ottawa ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013					ļ	ļ	ļ	ļ		_		<u> </u>				ļ			↓				ļ	ļ	ļ			ļ			<u> </u>		4
Brit Flow = 9300 Plad Ada C.M.K. SUMMERSIDE SOUTH SUMMERSIDE SOUTH PLASE 1 verage Daily Flow = 280 I/p/day Industrial Peak Factor = as per MOE Graph Checked: LOCATION: chund/last Flow = 35000 L/ha/da Minimum Velocity = 0.600 m/s P.P. City of Ottawa ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013						1					ļ				ļ				 	ļ	 	ļ		ļ	ļ		-	ļ	ļ	 	 		+
Brit Flow = 9300 Plad Ada C.M.K. SUMMERSIDE SOUTH SUMMERSIDE SOUTH PLASE 1 verage Daily Flow = 280 I/p/day Industrial Peak Factor = as per MOE Graph Checked: LOCATION: chund/last Flow = 35000 L/ha/da Minimum Velocity = 0.600 m/s P.P. City of Ottawa ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013		······································					-			 	 	ļ			ļ	 		ļ	 	ļ		ļ	ļ	 					-			ļ	+-
Interference 9300 L/ha/da C.M.K. SUMMERSIDE SOUTH perage Daily Flow = 280 l/p/day Industrial Peak Factor = as per MOE Graph Checked: DHASE 1 pmm/Inst Flow = 28000 L/ha/da Extraneous Flow = 0.330 L/s/ha Checked: LOCATION: dustrial Flow = 35000 L/ha/da Minimum Velocity = 0.600 m/s P.P. City of Ottawa ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013							+	 				 			 	 -		 	 	 	╁	 	 	 					 			 	+
Interference 9300 L/ha/da C.M.K. SUMMERSIDE SOUTH perage Daily Flow = 280 l/p/day Industrial Peak Factor = as per MOE Graph Checked: DHASE 1 pmm/Inst Flow = 28000 L/ha/da Extraneous Flow = 0.330 L/s/ha Checked: LOCATION: dustrial Flow = 35000 L/ha/da Minimum Velocity = 0.600 m/s P.P. City of Ottawa ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013							+	<u> </u>	 		 	 			 	 	 		 	 	+	 	 	-	-		-	 	 		+	 	+
gark Flow = 9300 Plank Flow = L/ha/da C.M.K. SUMMERSIDE SOUTH PLANK Flow ENDER SOUTH PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH PLANK Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow = PLANK Flow = SUMMERSIDE SOUTH Flow = PLANK Flow F			†	 		 	1	 	†	 	†	 	†	 	 	+	 		 	 	 	 			 		 	†	 	 	 	 	+
gark Flow = 9300 Plade L/ha/da C.M.K. SUMMERSIDE SOUTH yerage Daily Flow = 280 I/p/day Industrial Peak Factor = as per MOE Graph Checked: DHASE 1 pmm/Inst Flow = 28000 L/ha/da L/ha/da Extraneous Flow = 0.330 L/s/ha Checked: LOCATION: dustrial Flow = 35000 L/ha/da Minimum Velocity = 0.600 m/s P.P. City of Ottawa ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013			•			DESIGN	PARAME	TERS	·····				····	1		***************************************	Designe	d:	<u></u>	<u></u>		·		PROJEC	T:	L		<u> </u>					
omm/Inst Flow = 28000 L/ha/da Extraneous Flow = 0.330 L/s/ha Checked: LOCATION: dustrial Flow = 35000 L/ha/da Minimum Velocity = 0.600 m/s P.P. City of Ottawa ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013]			С	.M.K.							SUM	MERSIDE	SOUTH			
dustrial Flow = 35000 L/ha/da Minimum Velocity = 0.600 m/s P.P. City of Ottawa ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013												or = as p																	PHASE	1			
ax Res. Peak Factor = 4.00 Manning's n = (Conc) 0.013 (Pvc) 0.013																	Checke	d:						LOCATIO	ON:				_				
				L/ha/da																	P.P.								City of	Ottawa			
TOURNOUS COOPER 9.7 I Due Defended 9.7 I Due Defended 1 Due Defended 1 Due 1 DUE 1 D												(Conc)			0.013									<u> </u>				T					
Single house coeff= 3.4 Sanitary Drainage Plan, Dwg. No. 34 File Ref. 15-766 June, 2019	eak +actor =	=	1.50										2.7						.					File Ref:		15-766		Date:			Shee		of -

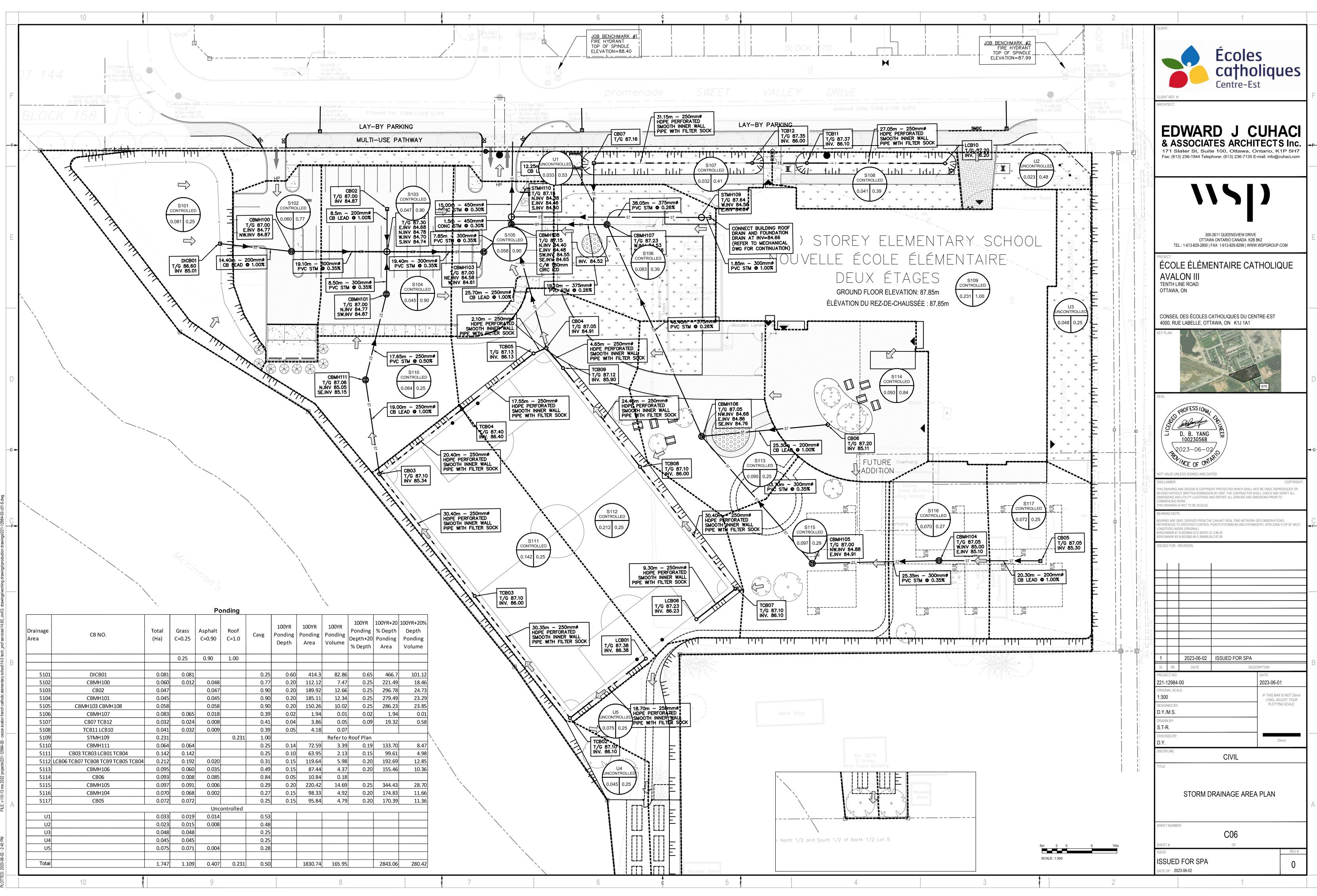
SANITARY SEWER CALCULATION SHEET

Manning's n=0.0										- WING CO.	WW.W.	,																		law	И	
	LOCATION		T		,		,	POPULATION	·		<u> </u>	,	co	мм		STIT	PAF	₹K			I+C+I+P	Ì	NFILTRATIO	ON				•	PIPE		-	
	STREET	FROM M.H.	TO M.H.	AREA (ha)	UNITS	UNITS	UNITS Townhouse	POP.	AREA (ha)	POP.	PEAK FACT.	PEAK FLOW (I/s)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	ICI Ratio	ICI Peaking Factor	PEAK FLOW (I/s)	TOTAL AREA (ha)	ACCU. AREA (ha)	INFILT. FLOW (I/s)	TOTAL FLOW (I/s)	DIST (m)	DIA (mm)	SLOPE (%)	CAP. (FULL) (I/s)	RATIO Q act/Q cap		EL. (ACT. (m/s)
Sanitary Trunk Contribution Fro				ļ					 	 	 															ļ					ļ	<u> </u>
JOHITHURION Fro	om External		 	-	ļ	ļ	 		47.51	3558				3.83		2.54		8.35				62.23				ļ		ļ				
		450A	4544			-	ļ		0.92	0550	1000	00.47										0.92	63.15	ļ								<u> </u>
		450A 451A	451A			 	 		48.43	3558	2.90			3.83		2.54			0.10		3.41	0.00	63.15		57.72	36.0	675	0.10	265.82	0.22	0.74	0.59
			452A			 		-	48.43	3558	2.90	33.47		3.83		2.54		8.35	0.10	1.00	3.41	0.00	63.15	20.84	57.72	63.5	675	0.10	265.82	0.22	0.74	0.59
		452A 453A	453A	ļ	ļ	 	ļ	ļ	48.43	3558	2.90	33.47		3.83		2.54			0.10	1.00	3.41	0.00	63.15	20.84	57.72	124.0	675	0,10	265.82	0.22	0.74	0.59
T- TENTILLING	5 DOAD Dire 4544		454A				 	-	48.43	3558	2.90	33.47		3.83		2.54		8.35	0.10	1.00	3.41	0.00	63.15	20.84	57.72	15.0	675	0.10	265.82	0.22	0.74	0.59
O LENTH LINE	E ROAD, Pipe 454A -	455A							48.43	3558		ļ		3.83		2.54		8.35					63.15	ļ				ļ				
<u> </u>	10.45	ļ	 	ļ	<u> </u>			 		<u> </u>		<u> </u>														1					ļ	
TENTH LINE R		<u> </u>	J		<u> </u>	<u> </u>		 	 														ļ						<u> </u>			
Contribution Fro	om promenade Sweet				454A (B.O	·.)	<u> </u>	ļ	48.43	3558				3.83		2.54		8.35				63.15	63.15		147.37				Forcemain			
		454A (B.O)	455A (B.O.)	3.32			ļ	366	51.75	3924	2.87	36.53		3.83		2.54		8.35	0.10	1.00	3.41	3.32	66.47	21.94	209.25	109.5	750	0.10	352.05	0.59	0.80	0.83
		_	_	ļ	ļ	ļ			ļ																*******						<u> </u>	
		_		<u> </u>	ļ	↓		ļ			_			and the same									<u> </u>	ļ								
				ļ		ļ	ļ						-	ESSK To T																		
				ļ				1					COL		Ma,																	
			<u> </u>	ļ			ļ					1.5	Y	17	7.6	11																
				ļ								1 8				1 6																
											6000	13	U	111		6																
												1 2 1	AF 040	20100	6448 PM	m	\															
												15	FEINO	RENOR	LAAM	833																
					<u> </u>								100	02159	95																	
												1	Section 1	The second															1			1
											T	1	J.J.	212	219/																	
						T						13	10		1	0/		***************************************							*****		l		<u> </u>		†	T
											1	13	Draw	E OF	20					 	T			<u> </u>					·			1
												1	MA	EOE (Magaz				l		 						 	 			1	
					T	1					-												†	 			 	 	 	<u> </u>	1	
				Monte on the second	DESIGN	PARAME	TERS	-			***************************************		···			Designe	d:						PROJEC	T:		<u> </u>	<u> </u>	da anno		L		
Park Flow =		9300	L/ha/da													1			C.	M.K.							SUMN	IERSIDE	SOUTH			
Average Daily Flo	ow =	280	l/p/day						Industrial	Peak Fac	tor = as r	er MOE G	raph															PHASE				
Comm/Inst Flow	==	28000	L/ha/da						Extraneo				L/s/ha			Checked							LOCATIO	JN:					-			
ndustrial Flow =		35000	L/ha/da						Minimum			0.600					••		F	P.P.				J. 1.				City of	Ottawa			
Max Res. Peak F		4.00							Manning'	•	(Conc)			0.013														Jily Of	Junu			
Park Peak Facto		1.50							Townhou		(00,10)	2.7	(, 40)	0.010		Dwg. Re	ference:						File Ref:				Date:			Shee	t No	T 1
	•	1.00							Single ho		-	3.4				Sanitary I							li lie Kel.		15-766		Date.	June, 201	•	l snee	LINU.	f 1

APPENDIX

D


- STORM SEWER DESIGN SHEET
- EXISTING SEWER DESIGN SHEET BY DSEL
- DWG C05 PRE-DEVELOPMENT DRAINAGE
 PLAN
- DWG C06 POST-DEVELOPMENT DRAINAGE
 PLAN
- STORMWATER MANAGEMENT CALCULATIONS


STORM SEWER DESIGN SHEET
New Orleans Catholic ES
Avalon III - Institutional Development
Ottawa, ON
Project: 221-12984-00

Date: JUNE 02, 2023

		LOCATION				ARE	A (Ha)										RATIONAL I	DESIGN FLOW	I								PROPSOF	ED SEWER D	ATA			
LOCATION	AREA ID	FROM	то	C= 0.25	C= 0.50	C= 0.70	C= 0.80	C= 0.90	C= 1.00	IND 2.78AC	CUM 2.78 AC		T TOTA			i (5) (mm/hr)	i (100) (mm/hr)			5yr PEAK s) FLOW (L/s)	100yr PEAK ICD FIXED FLOW (L/s) FLOW (L/s)		MODIFIED DESIGN FLOW (L/s	MATERIAL s) PIPE	SIZE (mm)	SLOPE LE	NGTH C (m)	CAPACITY \ (I/s)	VELOCITY 1 (m/s) IN		AVAIL C	
														То	Sweetval	Illey Drive									1	\vdash			_			
SCHOOL SITE	S101	DICB01	CBMH100	0.081						0.056	0.056	20.0	0 20.2	3 52	.03	70.25	119.95		2.93			2.93		PVC DR-35	200.0	1.00 1	4.40	32.83	1.04	0.23	29.90	91.08%
	S102	CBMH100	STMH102	0.012				0.048		0.128	0.185	20.2	3 20.6	2 51	.66	69.75	119.09		9.54			9.54		PVC DR-35	300.0	0.35	9.10	57.27	0.81	0.39	47.72	83.33%
	S111	CB03	CBMH111	0.142						0.099	0.099	20.0	0 20.2	6 52	.03	70.25	119.95		5.13			5.13		PVC DR-35	250.0	1.00	9.00	59.53	1.21 (0.26	54.39	91.37%
	8112	0.001																														
	S110	CBMH111	CBMH101	0.640						0.445	0.445	20.20	5 20.6	0 51	.61	69.68	118.97		22.96			22.96		PVC DR-35	250.0	0.50 1	7.65	42.09	0.86	0.34	19.13	45.46%
	S104	CBMH101	STMH102					0.045		0.113	0.557	20.6	0 20.7	8 51	.08	68.95	117.71		28.47			28.47		PVC DR-35	300.0	0.35	3.50	57.27	0.81	0.18	28.80	50.28%
	S103	CB02	STMH102					0.047		0.118	0.118	10.0	0 10.1	4 76	.81	104.19	178.56		9.03			9.03		PVC DR-35	200.0	1.00	8.50	32.83	1.04	0.14	23.80	72.49%
		STMH102	CBMH103							0.000	0.860	20.7	R 21.1	8 50	Ω1	68.58	117.08		43.68			43.68		PVC DR-35	300.0	0.35 1	19.40	57.27	0.81	0.40	13.58	23 72%
			ODIMITIOS																			43.00										
	S105	CBMH103	CBMH108					0.058		0.145	1.005	21.18	8 21.3	4 50	.21	67.76	115.67		50.45			50.45		PVC DR-35	300.0	0.35	7.85	57.27	0.81	0.16	6.82	11.90%
	S112	CB04	CBMH108	0.212						0.147	0.147	20.0	0 20.4	1 52	.03	70.25	119.95		7.67			7.67		PVC DR-35	200.0	1.00	25.70	32.83	1.04	0.41	25.17	76.65%
	S117	CB05	CBMH104		0.072					0.100	0.100	10.0	0 10.3	2 76	.81	104.19	178.56		7.69			7.69		PVC DR-35	200.0	1.00	20.30	32.83	1.04	0.32	25.14	76.59%
	0.112	0001	0018114																I													== ====
	S116	CBMH104	CBMH105	0.068				0.002		0.052	0.152	10.3	2 10.8	5 75	.58	102.51	175.65		11.51			11.51		PVC DR-35	300.0	0.35 2	5.35	57.27	0.81	0.52	45.75	79.89%
	S115	CBMH105	CBMH106		0.091			0.006		0.142	0.294	10.8	5 11.5	4 73	.70	99.93	171.18		21.66			21.66		PVC DR-35	300.0	0.35	3.70	57.27	0.81	0.69	35.61	62.18%
	S114	CB06	CBMH106	0.008				0.093		0.238	0.238	10.0	0 10.4	0 76	.81	104.19	178.56		18.30			18.30		PVC DR-35	200.0	1.00	25.30	32.83	1.04	0.40	14.53	44.27%
	S113	CBMH106	CBMH107	0.060				0.035		0.120	0.661	11.5	1 125	0 71	36	96.71	165.61		47.19			47.19		PVC DR-35	375.0	0.26	16.40	80.40	0.81 (0.06	42.30	47 27%
	S107, S108	CB07	CBMH107	0.056				0.017		0.081	0.081	20.0	0 20.2	0 52	.03	70.25	119.95		4.24			4.24		PVC DR-35	200.0	1.00 1	2.25	32.83	1.04	0.20	28.59	87.09%
	S106	CBMH107	CBMH108	0.065				0.018		0.090	0.833	20.2	0 20.5	9 51	.72	69.82	119.22		43.08			43.08		PVC DR-35	375.0	0.26	9.10	89.49	0.81	0.39	46.41	51.86%
		CBMH108	STMH110							0.000	1.985	21.3	4 21.3	7 49	.97	67.44	115.11		99.20			99.20		PVC DR-35	450.0	0.30	1.50	156.32	0.98 (0.03	57.12	36.54%
		BLDG	STMH109						0.001	0.640	0.642	10.0	100	0 70	0.1	104.10	170 FC		40.22			40.22		PVC DR-35					1.37 (0.00	47.48	40.0Ec/
									0.231							104.19	178.56		49.32			49.32										
		STMH109	STMH110		-					0.000	0.642	10.0	2 10.8	1 76	.72	104.07	178.35		49.27			49.27		PVC DR-35	375.0	0.26	8.05	89.49	0.81	0.78	40.22	44.95%
		STMH110	EX. STM CONTROL MH1							0.000	2.627	21.3	7 21.6	2 49	.93	67.39	115.02		131.19			131.19		PVC DR-35	450.0	0.30	5.00	156.32	0.98 (0.25	25.13	16.07%
WEETVALLEY DRIVE		EX. STM CONTROL MH1	EX.STMH402A							0.000	2 627	21.6	2 217	2 49	56	66.88	114.15		130.22			130.22		CONC	900.0	0.20	7 50	810.41	1.27 (0.10	680.20	83 93%

Definition:		Notes:		Designed:	M.S.	No.		Revision	Date
Q=2.78CiA, where:		 Mannings coefficient (n) = 0.013 	Time-of-Concentration in the Swale			1.	Cit	y Submission No. 1	2023-06-02
Q = Peak Flow in Litres per Second (L/s)			FAA Equation: t (min) = 3.258 [(1.1 - C) L^0.5 / S^.33]						
A = Area in Hectares (Ha)			Where: Longest Watercourse Length, L (m). S (%)	Checked:	D.Y.				
i = Rainfall Intensity in millimeters per hour (mm/hr)			Runoff Coef.C = Impervious						
i = 732.951/(TC+6.199)^0.810	2 Year		No. L (m) S % Tc (min)						
i = 1174.184/(TC+6.014)^0.816	5 Year		#DIV/0!	Dwg. Reference:	C06				
i = 1735.688/(TC+6.014)^0.820	100 Year						File Reference:	Date:	Sheet No:
							221-12984-00	2023-06-02	1 of 1

New Orleans Catholic ES Avalon III - Institutional Development Ottawa, ON Project: 221-12984-00

Stormwater Management Summary

Drainage Area I.D.	Location	Sub Area (ha)	Avg. Composite 'C' 5 yr	Avg. Composite 'C' 100 yr	Outlet Location	5 Year Uncontrolled/ Controlled Release (L/s)	5 year Storage Required (m³)	100 Year Uncontrolled/ Controlled Release (L/s)	100 year Storage Required (m³)	Total Storage Provided (m³)
			1	1	Total Allowable Release Rate	1		186.51		1
CONTROLLED										
S1 - S18	CB01	1.297	0.44	0.51	Sweet Valley Drive	118.30	27.82	119.27	124.69	163.69
S6	STMH01	0.231	1.00	1.00	Sweet Valley Drive	17.64	32.97	17.64	73.48	80.00
UNCONTROLLED		1								
UC (S5,S6 S15)		0.236	0.310	0.37		21.20		43.30		
					Maximum Release Rate (WSP, 2023)			180.21		
Total		1.764				157.14	60.79	180.21	198.17	243.69

Project: 221-12984-00

Table 1a - Allowable Release Rate (Pre-Development)

Runoff Coefficient Equation

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.25)/A_{tot}$

2 Year Event

	С	Intensity	Area
5 Year	0.50	76.81	1.747
2.78CIA=	186.51		
	186.51	L/s	

^{*}Use a 10.00 minute time of concentration for 5 year

Design Parameters (DSEL & JFSA, June 2019)

Area ID	Area (HA)	МН	D/S Segment	IMP Ratio	Storage Use (m³)	2 Year Simulated Flow (L/s)
402 - 404	3.32	CTRL MH1	402	0.80	447.13	567

Note: *Assumed ponding volume.

Assumes that on-site storage will be provided up to the 100 year 3 hour Chicago event

Equations:

Flow Equation

 $Q = 2.78 \times C \times I \times A$

Where:

C is the runoff coefficient

I is the intensity of rainfall, City of Ottawa IDF

Rainfall Intensity = $732.951/(T+6.199)^{-0.810}$ T= time in minutes

A is the total drainage area

Project: 221-12984-00

TABLE 2 - Uncontrolled Flow

Post Dev run-off Coefficient "C"

			2 & 5	Year Event	100 Year E	vent
Area	Surface	Ha	"C"	C_{avg}	"C"+25%	*C _{avg}
Total	Asphalt	0.026	0.90	0.31	0.99	0.37
0.236	Roof	0.000	1.00		1.00	
	Grass	0.198	0.25		0.31	

Post Dev Free Flow

2 Year Event

Z TEAT LVE	ΙL								
Pre Dev.	С	Intensity	Area						
5 Year	0.31	104.19	0.236						
2.78CIA= 21.19									
21.20 L/S									

^{**}Use a 10 minute time of concentration for 5 year

100 Year Event

Pre Dev.	С	Intensity	Area
100 Year 2.78CIA= 4 43.30		178.56	0.236

^{**}Use a 10 minute time of concentration for 100 year

Equations:

Flow Equation
Q = 2.78 x C x I x A
Where:
C is the runoff coefficient
I is the intensity of rainfall, City of Ottawa IDF
A is the total drainage area

*Runoff coefficients increased by 25% up to a maximum value

Runoff Coefficient Equation

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$

of 0.99 for the 100-Year event

 $*C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot}$

Project: 221-12984-00

TABLE 3 - Storage Required for New Avalon III ES

Maximum Allowable Release Rate to Ex. CTRL MH1:

186.51 l/s

Post Dev run-off Coefficient "C"

			2 & 5	Year Event	100 Year E	vent
Area	Surface	Ha	"C"	C _{avg}	"C" x 1.25	C _{100 avg}
Total	Asphalt	0.381	0.90	0.44	0.99	0.51
1.292	Roof		1.00		1.00	
	Grass	0.911	0.25		0.31	

^{*}Areas are approximate based on Architectural site plan and Storm Draiange Area Plan

QUANTITY STORAGE REQUIREMENTS - 5 Year

1.292 = Area(ha)

0.44 = C

186.5 I/s = max allowable release rate

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Controlled Runoff (L/s)	Net Runoff To Be Stored (L/s)	Storage Req'd m ³	Storage Avail m ³
	10	104.19	164.66	118.30	46.36	27.82	163.69
	20	70.25	111.02	118.30	-7.28	-8.74	163.69
	30	53.93	85.23	118.30	-33.08	-59.54	163.69
5 YEAR	40	44.18	69.83	118.30	-48.48	-116.34	163.69
	50	37.65	59.51	118.30	-58.80	-176.39	163.69
	60	32.94	52.06	118.30	-66.24	-238.46	163.69

QUANTITY STORAGE REQUIREMENTS - 100 Year

1.292 = Area(ha)

0.51 = *C

186.5 I/s = max allowable release rate

Return Period	Time (min)	Intensity (mm/hr)	Flow Q (L/s)	Controlled Runoff (L/s)	Net Runoff To Be Stored (L/s)	Storage Reg'd m ³	Storage Avail m ³
	10	178.56	327.08	119.27	207.82	124.69	163.69
	20	119.95	219.72	119.27	100.46	120.55	163.69
100 YEAR	30	91.87	168.28	119.27	49.02	88.23	163.69
	40	75.15	137.65	119.27	18.39	44.12	163.69
	50	63.95	117.15	119.27	-2.11	-6.34	163.69
	60	55.89	102.39	119.27	-16.88	-60.76	163.69
	70	49.79	91.20	119.27	-28.06	-117.86	163.69

Equations:

Flow Equation

Q = 2.78 x C x I x A

Where:

C is the runoff coefficient

I is the intensity of rainfall, City of Ottawa IDF

A is the total drainage area

Runoff Coefficient Equation

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$

 $*C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot}$

*Runoff coefficients increased by 25% up to a maximum value of 0.99 for the 100-

Orifice #1 Sizing

CBMH108

Event	Flow (L/s)	Head (m)	ORIFICE AREA(m ²)	SQUARE (1-side mm)	CIRC (mmØ)
5 Year	118.30	3.06	0.025	160	180
100 Year	119.27	3.11	0.025	160	180

Orifice Control Sizing

 $Q = 0.6 \times A \times (2gh)1/2$

Where:

Q is the release rate in $\rm m^3/s$

A is the orifice area in $\ensuremath{\text{m}}^2$

g is the acceleration due to gravity, 9.81m/s^2 h is the head of water above the orifice centre in m

d is the diameter of the orifice in m

Orifice Invert = 84.000 m

Ponding Elevation = 87.200 m

Top of CB Elevation = 87.150 m

Note: Orifice #1 is located on the downstream invert of CBMH108

Project: 221-12984-00

TABLE 4 - Proposed Roof Drains

Roof Drains Release Rate

 $\begin{array}{cccc} Total \ Roof \ Area = & 0.231 & Ha \\ Total \ Roof \ Ponding \ Area = & 0.185 & Ha \\ Ponding \ Depth = & 0.07 \,^{\sim} \, 0.15 & m \end{array}$

The flow rate through each Roof Drain will be = $5 \sim 25.0$ gpm

0.32 ~ 1.58 L/s

Estimated Number of Roof Drains = 14.00 Estimated Total flow rate = 17.64

TABLE 1. Adjustable Accutrol Flow Rate Settings

9-								
W-i- Oi	1"	2"	3"	4"	5"	6"		
Weir Opening Exposed	Flow Rate (gallons per minute)							
Fully Exposed	5	10	15	20	25	30		
3/4	5	10	13.75	17.5	21.25	25		
1/2	5	10	12.5	15	17.5	20		
1/4	5	10	11.25	12.5	13.75	15		
Closed	5	5	5	5	5	5		

Post Dev run-off Coefficient "C"

			2 & 5	Year Event	100 Year Event	
Area	Surface	Ha	"C"	C_{avg}	"C" x 1.25	C _{100 avg}
Total	Asphalt		0.90	1.00	0.99	1.00
0.231	Roof	0.231	1.00		1.00	
	Grass		0.25		0.31	

^{*}Areas are approximate based on Architectural site plan

Runoff Coefficient Equation

 $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$ *C = (A_{hard} × 1.0 + A_{soft} × 0.25)/A_{tot}

*Runoff coefficients increased by 25% up to a maximum value of 0.99 for the 100-Year event

QUANTITY STORAGE REQUIREMENTS - 5 Year

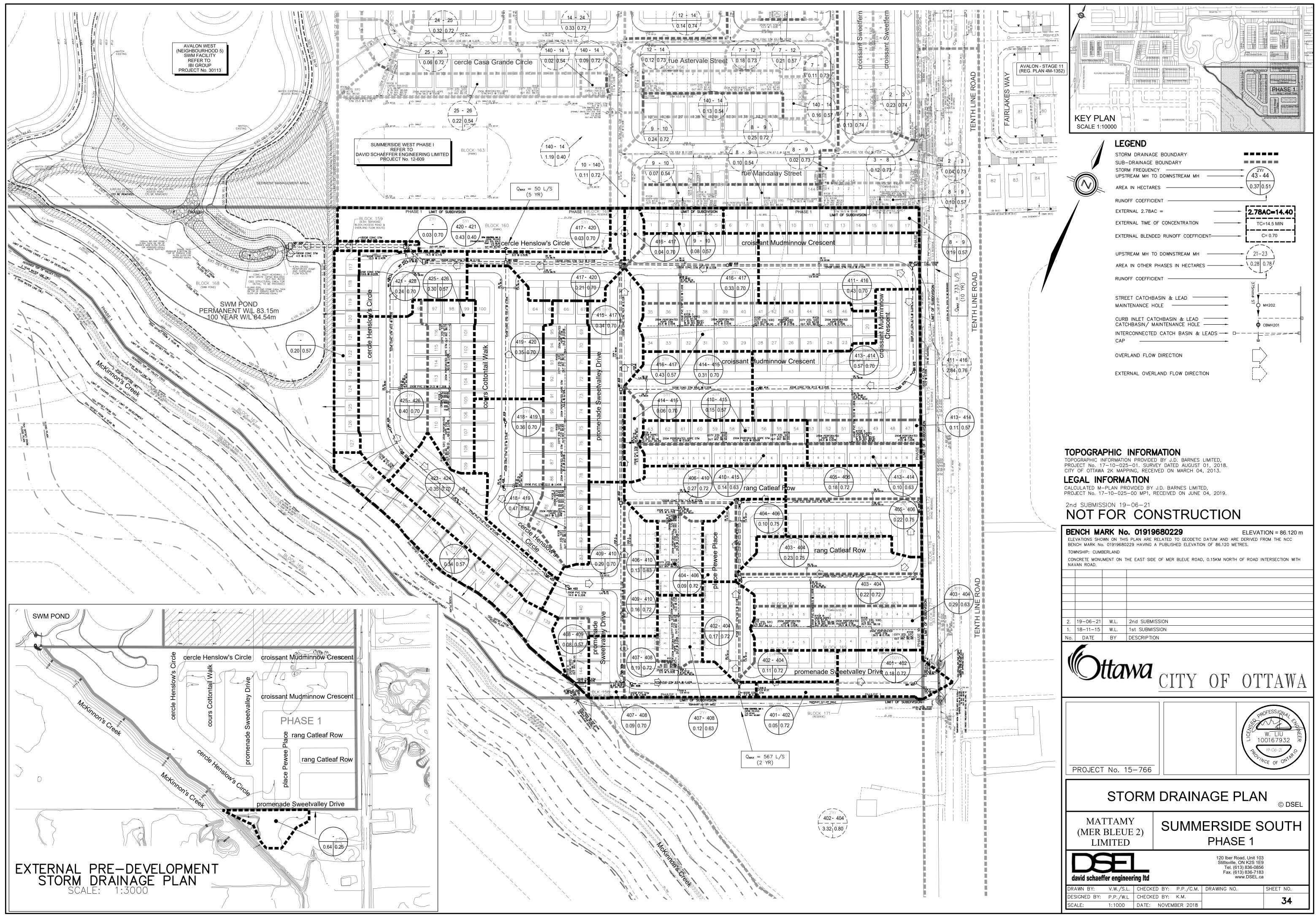
0.231 = Area(ha) 1.00 = C

Return Period	Time (min)	(mm/hr)	Q (L/s)	Allowable Runoff (L/s)	Net Runoff To Be Stored (L/s)	Storage Req'd (m³)	Storage Available* (m³)
	10	104.19	66.91	17.64	49.27	29.56	80.00
	20	70.25	45.11	17.64	27.47	32.97	80.00
5 YEAR	30	53.93	34.63	17.64	16.99	30.58	80.00
	40	44.18	28.37	17.64	10.73	25.76	80.00
	50	37.65	24.18	17.64	6.54	19.62	80.00

257.340 40 345 54.1752

QUANTITY STORAGE REQUIREMENTS - 100 Year

0.231 = Area(ha) 1.00 = *C


1.00	= 0						
Return	Time	Intensity	Flow	Allowable	Net Runoff To	Storage	Storage
Period	(min)	(mm/hr)	Q (L/s)	Runoff (L/s)	Be Stored (L/s)	Req'd (m ³)	Available (m ³)
	10	178.56	114.67	17.64	97.03	58.22	80.00
	20	119.95	77.03	17.64	59.39	71.27	80.00
100 YEAR	30	91.87	59.00	17.64	41.36	74.44	80.00
	40	75.15	48.26	17.64	30.62	73.48	80.00
	50	63.95	41.07	17.64	23.43	70.29	80.00
	60	55.89	35.89	17.64	18.25	65.72	80.00
	70	49.79	31.97	17.64	14.33	60.20	80.00
	•						

^{*}Storage available is calculated using roof ponding area mulitplied by the maximum ponding depth, and divided by 3 for a conical pond.

Equations:

C is the runoff coefficient
I is the intensity of rainfall, City of Ottawa IDF
A is the total drainage area

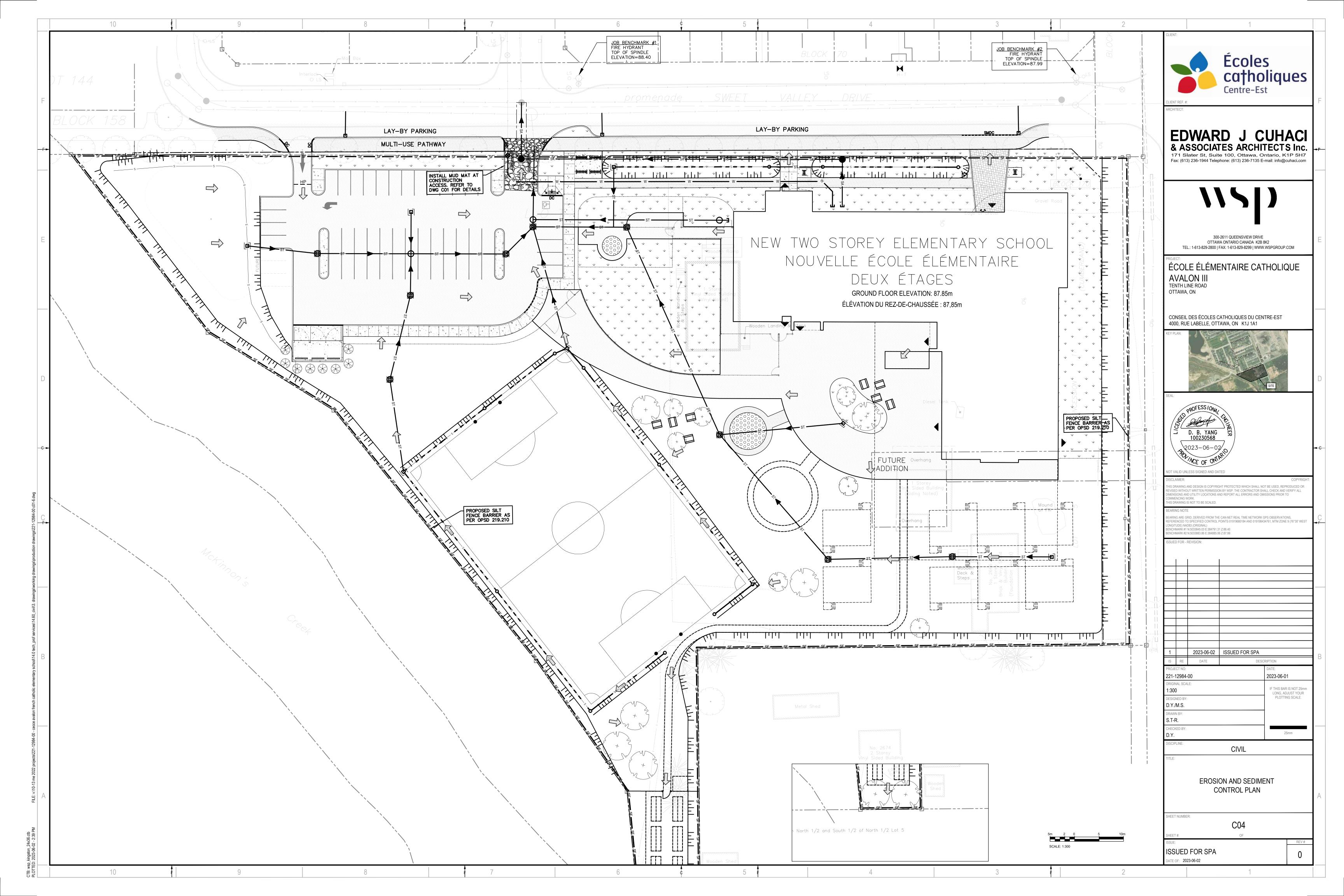
Manning	0.013		Arterial R	oads Retu	ırn Frequency	≈ 10 years	S			ADEA	11-1											EL OW	************************					 					
	LOC	ATION	 		YEAR		Т	5 Y	EAR	AREA (Ha)	10 `	YEAR		T	100 \	YEAR		Time of	Intensity		FLOW	Intensity	Peak Flow	DIA (mm)	DIA (mm)	TYPE	LSLOPE	SEWER DA	ATA CAPACITY	TVFLOCITY	T TIME OF	TRA
	CN-d-	T- N-3-	AREA (Ha)	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	Conc.	2 Year	5 Year	10 Year	100 Year									FLOW	
ation	From Node	To Node	(ria)	 	2.78 AC	2.78 AC	(Ha)	1	2.78 AC	2.78 AC	(Ha)	-	2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (l/s)	(actual)	(nominal)	+	(%)	(m)	(l/s)	(m/s)	(min.)	10
ırs Cotto	ntail Walk								l				<u> </u>							1							 	 				†	t
	Ctrl MH 2	420	101		0.00	0.00	0.43	0.40	0.48	0.48			0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	50	300	300	PVC	0.50	9.0	68	0.97	0.16	Į
ercie me	nslow's Circle	, Pipe 420 - 4	121		ļ	0.00	+		 	0.48			 	0.00	 		ļ	0.00	10.16	 	 	ļ	 		ļ	 	ļ				 		╀
			0.36	0.70	0.70	0.70	+		0.00	0.00			0.00	0.00	·		0.00	0.00	 	 		 	 		 	 	+	 	 	 	+	+	t
	418	419	0.47	0.57	0.74	1.45			0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.81	104.19			111	450	450	CONC		42.0	156	0.98	0.71	İ
	419	420	0.35	0.70	0.68	2.13	 	_	0.00	0.00			0.00	0.00	ļ		0.00	0.00	10.71	74.17	100.57	117.88	172.29	158	525	525	CONC	0.35	100.0	254	1.18	1.42	Į
cercle He	enslow's Circle	e, Pipe 420 - 4	421	-	<u> </u>	2.13	+	-	 	0.00			ļ	0.00				0.00	12.13	ļ			 		 	 	 	ļ					4
issant M	udminnow C	rescent	 	 			+	1	 		 		 	 	 			 	<u> </u>	 	 	 	 		 	 	 			+	+	+	t
			0.10	0.63	0.18	0.18			0.00	0.00			0.00	0.00			0.00	0.00															1
	415		0.11	0.57	0.17	0.35			0.00	0.00			0.00	0.00	ļ		0.00	0.00															1
	413	414	0.57	0.70	1.11 0.00	1.46		0.70	0.00	0.00			0.00	0.00	 	 	0.00	0.00	10.00	76.81	104.19	122.14	178.56	112	450	450	CONC	0.25	87.5	143	0.90	1.63	+
	414	415	0.31	0.70	0.60	2.06	1 0.00	1 0.70	0.00	0.12	 		0.00	0.00	1		0.00	0.00	11.63	71.08	96.32	112.87	164.94	158	525	525	CONC	0.25	85.5	215	0.99	1,43	+
promena	de Sweetvalle	y Drive, Pipe	415 - 417			2.06				0.12				0.00				0.00	13.06														İ
	140	440		ļ	2.00			ļ					L					L	<u> </u>	ļ <u></u>													1
	413 412	412 411	 	 	0.00	0.00	 	 	0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.81 75.68	104.19	122.14 120.31		0	300	300	PVC		14.5 67.0	57	0.81	0.30 1.38	+
	 		 	 	0.00	0.00	 	 	0.00	0.00	2.84	0.76	6.00	6.00	 		0.00	0.00	10.50	75.00	102.04	120.01	175.67		300	1 300	+-	1 0.33	- 07.0	 	1 0.01	1.30	t
	411	416	0.43	0.70	0.84	0.84			0.00	0.00			0.00	6.00			0.00	0.00	11.68	70.91	96.09	112.60	164.55	735	1050	1050	CONC	0.15	116.0	1058	1.22	1.58	1
	<u> </u>				0.00	0.84	0.04	0.70	0.08	0.08			0.00	6.00			0.00	0.00										1					1
····	416	417	0.33	0.70	0.64	1.48 2.16	+	 	0.00	0.08			0.00	6.00	 	ļ	0.00	0.00	13.26	66.20	89.63	105.00	153.38	780	1050	1050	CONC	0.15	67.0	1058	1.22	0.91	4
cercle He	enslow's Circle			0.57	0.00	2.16		 	0.00	0.08	 		0.00	6.00	 		0.00	0.00	14.18	00.20	09.03	105.00	155.56	700	1050	1030	CONC	0.15	67.0	1056	1.22	0.91	+
																																	1
ce Pewe		400						ļ								ļ																	Į
ntribution	Ctrl MH 1 From promer	402	3.32	0.80 Pine 401	7.38	7.38	-	 	0.00	0.00	 		0.00	0.00	 	 	0.00	0.00	10.00	76.81	104.19	122.14	178.56	567	900	900	CONC	0.20	7.5	810	1.27	0.10	Į
, in botton	Trompromer	lude Officere	I Dive,	1 100 401	0.00	7.38	0.11	0.72	0.22	0.32			0.00	0.00			0.00	0.36	12.03		 	 	1		 	 	+	+	 	+		+	$^{+}$
	402	404	0.17	0.72	0.34	7.72			0.00	0.32			0.00	0.00			0.00	0.36	12.05	69.72	94.46	110.68	161.73	627	975	975	CONC	0.15	66.5	868	1.16	0.95	İ
ontribution	From rang Ca	atleaf Row, P			1 245	1.43				0.00	ļ			0.00	 	ļ		0.00	11.87														1
	404	406	0.09	0.72	0.18	9.33 9.54	┪		0.00	0.32	 		0.00	0.00	 	 	0.00	0.36	13.01	66.91	90.60	106.14	155,05	723	975	975	CONC	0.20	47.0	1002	1.34	0.58	+
rang Cat	leaf Row, Pipe		1	1	† -	9.54	+		1	0.32	 		1	0.00	·	 	0.00	0.36	13.59	00.01	00.00	100.14	100.00	720	1 3/3	3,3	100110	0.20	47.0	1002	1.54	0.00	†
																										***************************************							1
ng Catlea	f Row		0.22	0.72	0.44	0.44		 	0.00	0.00	ļ		0.00	0.00		ļ	0.00	1 000	<u> </u>	 	ļ	 	 		ļ	ļ	-	 	ļ		_		4
	<u> </u>	 	0.22	0.72	0.44	0.44	 	 	0.00	0.00	 	ļ	0.00	0.00		 	0.00	0.00	 	-		┼	 		 	 	 		 	+			+
	403	404	0.29	0.63	0.51	1.43	1	 	0.00	0.00	 		0.00	0.00	-	 	0.00	0.00	10.00	76.81	104.19	122.14	178.56	110	450	450	CONC	0.30	110.0	156	0.98	1.87	†
place Pe	wee Place, Pi	pe 404 - 406				1.43				0.00				0.00				0.00	11.87														1
		ļ	0.10	0.72	0.36	0.36			0.00	0.00		ļ	0.00		 	<u> </u>		 		ļ		ļ	 		<u> </u>	<u> </u>	4	ļ	ļ				4
	405	406	0.18		0.46	0.82		 	0.00	0.00	 	 	0.00	0.00		 	0.00	0.00	10.00	76.81	104.19	122 14	178.56	63	375	375	PVC	0.30	112.0	96	0.87	2.15	+
ontribution	From place F					9.54			1	0.32			1	0.00		 	0.00	0.36	13.59	10.01	104.10	122,14	170.00		1 0,0	1 3,5	1.40	1 0.00	112.0	+	1 0.07	2.10	†
			0.13		0.23	10.59			0.00	0.32			0.00	0.00			0.00	0.36															1
	de Sweetvalle	410	0.27	0.72	0.54	11.13		 	0.00	0.32		ļ	0.00	0.00	 	_	0.00	0.36	13.59	65.30	88.40	103.55	151,26	809	1050	1050	CONC	0.20	74.5	1221	1.41	0.88	4
promena	T Sweetvalle	Julive, Pipe	1410-415	 		11.13		 	 	0.32	-	 	 	0.00	 	 		0.36	14.47	-	 	+	· · · · · · · · · · · · · · · · · · ·	 	 	 		 	 		+	+	+
omenade	Sweetvalley	Drive	1	†				†	 	 	<u> </u>			 	1	 	 		 		 	 	 			-		 	 		+	+	+
				Ţ	0.00	0.00	0.05	0.72		0.10			0.00	0.00			0.00	0.00]
nlaca Pa	401 wee Place, Pi	402	 	 	0.00	0.00			0.00	0.10			0.00	0.00	0.18	0.72	0.36	0.36	10.00	76.81	104.19	122.14	178.56	75	450	450	CONC	0.25	110.5	143	0.90	2.05	4
place Pe	wee Flace, Fl	pe 402 - 404	+	 		0.00	-	+	 	0.10	 	 	 	0.00	-//			0.36	12.05	-	 	-	 		+				 	 	+	+	+
				·							1		†	 	00	FESS	OM.	1	 	<u> </u>	 	†	+		 	-	 	 	 	+	+	+	1
														A	BALL		N.V.						1								1		
			 	 			+	 	<u> </u>	_		 		-	W/L			Ye V	-	-		_	-	ļ			4			4	4		4
efinitions:		L								1	L	l		1 // 3	2 f	10/1/	1	15/	L	Д		1		Designed:	Т	M.K.	PROJE	L	L	CHMI	MERSIDE SC)UTH	لـ
= 2.78 AIF	R, where									Notes:				H				二海	\					Dangined.	U.		1, ,,,,,,,			JOHIN	PHASE 1		
	ow in Litres p		s)							1) Ottaw	a Rainfall-I		Curve	3	Y.E.W	ORBIO	PICKAR	T bi						Checked:	F	P.P	LOCAT	TION:					
	hectares (ha									2) Min. V	elocity = 0	.80 m/s			1	00215	005	20													f Ottawa		
	ntensity (mm/	n)												N	ALTERNA S									Dwg. Refere	ence:		File Re			Date:		Sheet No).

I = Rainfall Intensity (mm/h) R = Runoff Coefficient

Manning	0.013		Апепаі К	oads Retur	n Frequency	= 10 years	5			WWW.																							
İ	LOCA	ATION			YEAR		1	5 YE		AREA (Ha)	40.	FAD		1		\		Į., ,	T		FLOW	T		I			T = = = =	SEWER D.				,
	·····		AREA		Indiv.	Accum.	AREA		Indiv.	Accum.	AREA	10 Y	Indiv.	Accum.	AREA		YEAR L Indiv	Accum.	Time of	Intensity	Intensity	Intensity		Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY		RATIO
Location	From Node	To Node	(Ha)	R	2.78 AC	2.78 AC		R	2.78 AC	2.78 AC	(Ha)	R		2.78 AC	(Ha)	R	Indiv. 2.78 AC	2.78 AC	Conc. (min)	2 Year (mm/h)	5 Year (mm/h)	10 Year (mm/h)	100 Year (mm/h)	Q (I/s)	(actual)	(nominal)	 	(%)	(m)	(l/s)	(m/s)	FLOW (min.)	Q/Q fi
					***************************************	1									<u> </u>		1		(, , , , , , , , , , , , , , , , , , ,		(1.11/2/19	(11111)	G (#3)	(dottadi)	(Horring)		1 (/3)	+ ("")	(1/3)	(1123)	(11111.)	1000
													***************************************										İ			†	·	†	 	 	 	 	+
					0.00	0.00	0.09	0.70	0.18	0.18			0.00	0.00			0.00	0.00									1					1	
			0.12	0.63	0.21	0.21	 		0.00	0.18			0.00	0.00			0.00	0.00															
	407 408	408 409	0.00	0.57	0.00	0.21	0.19	0.72	0.38	0.56			0.00	0.00	ļ		0.00	0.00	10.00	76.81	104.19	122.14	178.56	74	375	375	PVC		67.5	118	1.06	1.06	0.63
	400	409	0.08	0.57	0.13	0.34			0.00	0.56 0.56			0.00	0.00	ļ		0.00	0.00	11.06	72.97	98.93	115.94	169.45	80	450	450	CONC	0.30	8.5	156	0.98	0.14	0.51
			!		0.00	0.34	0.16	0.72	0.32	0.88			0.00	0.00			0.00	0.00	·			 	ļ	!			 	 	 		ļ	 	
	409	410			0.00	0.34	0.29	0.70	0.56	1.44			0.00	0.00	 		0.00	0.00	·11.20	72.48	98.25	115.14	168.28	166	600	600	CONC	0.15	108.0	238	0.84	2.14	0.70
Contribution F	rom rang Ca	tleaf Row, Pi	pe 406 - 41	10		11.13				0.32				0.00				0.36	14.47	1	1	1111111	700.20		 	1	100,10	1 0.10	100.0	1 200	0.0-4	2.17	1 0.70
			0.14		0.25	11.71			0.00	1.76			0.00	0.00			0.00	0.36								1		<u> </u>					1
	410	415	0.15	0.57	0.24	11.95			0.00	1.76			0.00	0.00			0.00	0.36	14.47	63.04	85.30	99.90	145.91	956	1200	1200	CONC	0.15	71.0	1510	1.34	0.89	0.63
Contribution F	rom croissar 415		v Crescent	Pipe 414		2.06	1 004	0.70		0.12				0.00				0.00	13.06	<u> </u>		<u> </u>	ļ										
To cercle Her		417 , Pipe 417 - 4	120		0.00	14.01	0.34	0.70	0.66	2.54	ļ		0.00	0.00			0.00	0.36	15.36	60.93	82.42	96.51	140.93	1114	1200	1200	CONC	0.15	78.5	1510	1.34	0.98	0.74
TO CEICIE TIEI	ISIOW S CITCIE	, ripe 417 - 4	1			14.01				2.54	 			0.00				0.36	16.34	 	ļ	ļ	 	ļ	ļ			 			ļ		
cercle Hensi	w's Circle		 		T	 	 	 			 				 		 	 	 	+	 	 	 	 	 	 	 	 	 		 	 	
	422	423			0.00	0.00	~		0.00	0.00	 		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	0.35	16.0	57	0.81	0.33	0.00
	423	424	0.35	0.70	0.68	0.68			0.00	0.00			0.00	0.00			0.00	0.00	10.33	75.56	102.48	120.13	175.60	51	375	375	PVC		119.0	124	1.12	1.77	0.42
	424	425			0.00	0.68			0.00	0.00			0.00	0.00			0.00	0.00	12.10	69.60	94.29	110.48	161.43	47	375	375	PVC		15.0	96	0.87	0.29	0.49
	405	463	0.30	0.57	0.48	1.16	ļ		0.00	0.00			0.00	0.00			0.00	0.00															
	425 426	426	0.40	0.70	0.78	1.93	 	ļ	0.00	0.00			0.00	0.00			0.00	0.00	12.38	68.72	93.09	109.07	159.35	133	525	525	CONC		95.5	192	0.89	1.79	0.69
To Servicino I	3lock, Pipe 4	427 27 - 428	 		0.00	1.93	 	 	0.00	0.00			0.00	0.00	╂	<u> </u>	0.00	0.00	14.18	63.78	86.32	101.10	147.66	123	525	525	CONC	0.20	13.5	192	0.89	0.25	0.64
TO OCIVICING I	Jiock, Fipe 4.	21-420				1.53	+			0.00				0.00			 	0.00	14.43	ļ					 			 	<u> </u>	-		_	
Contribution F	rom promen	ade Sweetva	lley Drive.	Pipe 415 -	417	14.01	 	 		2.54		<u> </u>		0.00	-		 	0.36	16.34			 	 	 	ļ	ļ	·	 	 	 	 	 	
Contribution F						2.16	1			0.08				6.00	 		 	0.00	14.18			 	 		 		·	 	 	 	 		
					0.00	16.17		0.70	0.06	2.67			0.00	6.00	1		0.00	0.36		<u> </u>					 		†	 	 	†	 	 	
	417	420		0.70	0.41	16.58			0.00	2.67			0.00	6.00			0.00	0.36	16.34	58.78	79.47	93.04	135.84	1794	1500	1500	CONC	0.15	72.0	2738	1.55	0.77	0.66
Contribution F				- 420		2.13				0.00				0.00				0.00	12.13														
Contribution F		·	- 420		0.00	0.00			0.00	0.48				0.00				0.00	10.16				<u> </u>										
	420 421	421 428	0.24	0.70	0.00 0.47	18.70		 	0.00	3.15			0.00	6.00			0.00	0.36	17.11			90.49	132.10	1904	1500	1500	CONC		51.5	2344	1.33	0.65	0.81
To Servicina I	Block, Pipe 4		0.24	0.70	0,47	19.17	 	-	0.00	3.15 3.15	 		0,00	6.00	 		0.00	0.36	17.76 17.94	55.94	75.59	88.48	129.14	1888	1500	1500	CONC	0.11	14.5	2344	1.33	0.18	0.81
I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					10.11	+			0.10	 			0.00	+		 	0.30	17.54	 	 		 				┿	 	 		 	+	
Servicing Blo	ck					1									†		 	 	+	 		 	 			 	+	 	 	 	 		
Contribution F			de, Pipe 42	26 - 427		1.93				0.00				0.00				0.00	14.43		 		†		†	 	 	 	 	 	 	 	
	427	428			0.00	1.93			0.00	0.00			0.00	0.00			0.00	0.00	14.43	63.15	85.45	100.08	146.16	122	600	600	CONC	0.40	10.0	388	1.37	0.12	0.31
Contribution F			cle, Pipe 42	21 - 428		19.17		ļ		3.15				6.00				0.36	17.94														
	428 429	429 Headwall	ļ		0.00	21.11		ļ	0.00	3.15			0.00	6.00			0.00	0.36	17.94	55.60		87.93	128.34	1984	1800	1800	CONC		73.0	3812	1.50	0.81	0.52
To SWM Pon		rieauwaii	 		0.00	21.11		 	0.00	3.15 3.15	 		0.00	6.00	-		0.00	0.36	18.75	54.13	73.11	85.57	124.88	1931	1800	1800	CONC	0.11	4.5	3812	1.50	0.05	0.51
			 			+ = ! ! ! !	ļ	†		0.10	 	 		0.00	-			0.36	18.80		 		 	 	 	 	+	 	 	 	_		
			1.			1	†	1			l	l				6330 K		*	 	 	 	 			 	 	+	+	+	+	 	+	+
															100		No.	J			 	1			 	 	†	1	 	1	†		
														110	V	-11/1	P. 10	6								1	1			T			
			 			_		ļ			ļ	ļ		115	15	441		(C)															
			 	ļ		+	+					ļ		10	Concession			2	 		 				ļ		 	ļ		ļ			
			 	 		-	+	 		ļ	 	 		16	REMO	DEMO	THY NOT	+ 121 +	+	 	 	 	 			 			↓	4	 		
			 	 		+	+	 	 		 	 			V- 5-191	THU P	HANNIN F	1 35	 	+	 	 	+	 	 	 	+	 	-		+	 	
			†			1	 	1			 			1	 10	02159	W	1	H	 	 	 	+	 	 	 	+	+			+	+	+
			1			1								1	-	EC. 200 (200 (200 (200 (200 (200 (200 (200			+	 	 	 	 		 	 	 	 	 	+	 	+	+
														1	N. Tu	1212	DIN			1	1	1	<u> </u>	1	1	1	1	1	 	 	1	1	+
														13	DI	7	1	\mathcal{Q}_{\parallel}	<u> </u>				<u> </u>				1		1			1	1
			 	ļ		 	-	 		ļ	ļ			1	OMAC		- ADV		1														
			 			+	 	 	ļ	ļ	 			<u> </u>	TAM:		OM.			ļ		ļ		<u> </u>	ļ	<u> </u>		ļ					
			 	ļ		 	+	 					ļ	<u> </u>		- UT		 		 	 		 			ļ		ļ	ļ				
Definitions:		L	1	L			4	J	L	L	L	L	L	L		Contract of the last of the la	T	<u> </u>			<u></u>	L	<u> </u>	Docionad	<u> </u>	l M.K.	PROJE	I.		<u> </u>	AEDOIDE CO	VITU	
Q = 2.78 AIR,	where									Notes:														Designed:	U.I	IVI.T.	PROJE	.UI.		SUMI	MERSIDE SO PHASE 1	MID	
Q = Peak Flor		r second (L/s	i)								a Rainfall-Ir	ntensity Cı	ırve											Checked:	c	P.P	LOCAT	ION:			FRASE 1		
A = Areas in h			•								elocity $= 0$.													J. S. S. S. S. S. S. S. S. S. S. S. S. S.	r		LOUAT			City o	f Ottawa		
l ≈ Rainfall Inf	ensity (mm/h										•													Dwg. Refere	nce:	······	File Re	f:		Date:		Sheet No	D.
R = Runoff Co	pefficient																							Storm Drainag		No. 35	15-766				2019		T 2 OF 2
																		NAME OF TAXABLE PARTY.				*******		4									

Manning	0.013		Arterial R	oads Retu	ırn Frequency	≈ 10 years	S			ADEA	11-1											EL OW	******************************					 					
	LOC	ATION	 		YEAR		Т	5 Y	EAR	AREA (Ha)	10 `	YEAR		T	100 \	YEAR		Time of	Intensity		FLOW	Intensity	Peak Flow	DIA (mm)	DIA (mm)	TYPE	LSLOPE	SEWER DA	ATA CAPACITY	TVFLOCITY	T TIME OF	TRA
	CN-d-	T- N-3-	AREA (Ha)	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	Conc.	2 Year	5 Year	10 Year	100 Year									FLOW	
ation	From Node	To Node	(ria)	 	2.78 AC	2.78 AC	(Ha)	1	2.78 AC	2.78 AC	(Ha)	-	2.78 AC	2.78 AC	(Ha)		2.78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (l/s)	(actual)	(nominal)	+	(%)	(m)	(l/s)	(m/s)	(min.)	10
ırs Cotto	ntail Walk								l				<u> </u>							1							 	 				†	t
	Ctrl MH 2	420	101		0.00	0.00	0.43	0.40	0.48	0.48			0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	50	300	300	PVC	0.50	9.0	68	0.97	0.16	Į
ercie me	nslow's Circle	, Pipe 420 - 4	121		ļ	0.00	+		 	0.48			 	0.00	 		ļ	0.00	10.16	 	 	ļ	 		ļ	 	ļ				 		╀
			0.36	0.70	0.70	0.70	+		0.00	0.00			0.00	0.00	·		0.00	0.00	 	 		 	 		 	 	+	 	 	 	+	+	t
	418	419	0.47	0.57	0.74	1.45			0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.81	104.19			111	450	450	CONC		42.0	156	0.98	0.71	İ
	419	420	0.35	0.70	0.68	2.13	 	_	0.00	0.00			0.00	0.00	ļ		0.00	0.00	10.71	74.17	100.57	117.88	172.29	158	525	525	CONC	0.35	100.0	254	1.18	1.42	Į
cercle He	enslow's Circle	e, Pipe 420 - 4	421	-	<u> </u>	2.13	+	-	 	0.00			ļ	0.00				0.00	12.13	ļ			 		 	 	 	ļ					4
issant M	udminnow C	rescent	 	 			+	1	 		 		 	 	 			 	<u> </u>	 	 	 	 		 	 	 			+	+	+	t
			0.10	0.63	0.18	0.18			0.00	0.00			0.00	0.00			0.00	0.00															1
	415		0.11	0.57	0.17	0.35			0.00	0.00			0.00	0.00	ļ		0.00	0.00															1
	413	414	0.57	0.70	1.11 0.00	1.46		0.70	0.00	0.00			0.00	0.00	 	 	0.00	0.00	10.00	76.81	104.19	122.14	178.56	112	450	450	CONC	0.25	87.5	143	0.90	1.63	+
	414	415	0.31	0.70	0.60	2.06	1 0.00	1 0.70	0.00	0.12	 		0.00	0.00	1		0.00	0.00	11.63	71.08	96.32	112.87	164.94	158	525	525	CONC	0.25	85.5	215	0.99	1,43	+
promena	de Sweetvalle	y Drive, Pipe	415 - 417			2.06				0.12				0.00				0.00	13.06														İ
	140	440		ļ	2.00			ļ					L					L	<u> </u>	ļ <u></u>													1
	413 412	412 411	 	 	0.00	0.00	 	 	0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.81 75.68	104.19	122.14 120.31		0	300	300	PVC		14.5 67.0	57	0.81	0.30 1.38	+
	 		 	 	0.00	0.00	 	 	0.00	0.00	2.84	0.76	6.00	6.00	 		0.00	0.00	10.50	75.00	102.04	120.01	175.67		300	1 300	+-	1 0.33	- 07.0	 	1 0.01	1.30	t
	411	416	0.43	0.70	0.84	0.84			0.00	0.00			0.00	6.00			0.00	0.00	11.68	70.91	96.09	112.60	164.55	735	1050	1050	CONC	0.15	116.0	1058	1.22	1.58	1
	<u> </u>				0.00	0.84	0.04	0.70	0.08	0.08			0.00	6.00			0.00	0.00										1					1
····	416	417	0.33	0.70	0.64	1.48 2.16	+	 	0.00	0.08	ļ		0.00	6.00	 	ļ	0.00	0.00	13.26	66.20	89.63	105.00	153.38	780	1050	1050	CONC	0.15	67.0	1058	1.22	0.91	4
cercle He	enslow's Circle			0.57	0.00	2.16		 	0.00	0.08	 		0.00	6.00	 		0.00	0.00	14.18	00.20	09.03	105.00	155.56	700	1050	1030	CONC	0.15	67.0	1056	1.22	0.91	+
																																	1
ce Pewe		400						ļ								ļ																	Į
ntribution	Ctrl MH 1 From promer	402	3.32	0.80 Pine 401	7.38	7.38	-	 	0.00	0.00	ļ		0.00	0.00	 	 	0.00	0.00	10.00	76.81	104.19	122.14	178.56	567	900	900	CONC	0.20	7.5	810	1.27	0.10	Į
, in botton	Trompromer	lude Officere	I Dive,	1 100 401	0.00	7.38	0.11	0.72	0.22	0.32			0.00	0.00			0.00	0.36	12.03		 	 	1		 	 	+	+	 	+		+	$^{+}$
	402	404	0.17	0.72	0.34	7.72			0.00	0.32			0.00	0.00			0.00	0.36	12.05	69.72	94.46	110.68	161.73	627	975	975	CONC	0.15	66.5	868	1.16	0.95	İ
ontribution	From rang Ca	atleaf Row, P			1 245	1.43				0.00	ļ			0.00	 	ļ		0.00	11.87														1
	404	406	0.09	0.72	0.18	9.33 9.54	┪		0.00	0.32	 		0.00	0.00	 	 	0.00	0.36	13.01	66.91	90.60	106.14	155,05	723	975	975	CONC	0.20	47.0	1002	1.34	0.58	+
rang Cat	leaf Row, Pipe		1	1	† -	9.54	+		1	0.32	 		1	0.00	·	 	0.00	0.36	13.59	00.01	00.00	100.14	100.00	720	1 3/3	3,3	100110	0.20	47.0	1002	1.54	0.00	†
																										***************************************							1
ng Catlea	f Row		0.22	0.72	0.44	0.44		 	0.00	0.00	ļ		0.00	0.00		ļ	0.00	1 000	<u> </u>	 	ļ	 	 		ļ	ļ	-	 	ļ		_		4
	<u> </u>	 	0.22	0.72	0.44	0.44	 	 	0.00	0.00	 	ļ	0.00	0.00		 	0.00	0.00	 	-		┼	 		 	 	 		 	+			+
	403	404	0.29	0.63	0.51	1.43	1	 	0.00	0.00	 		0.00	0.00	-	 	0.00	0.00	10.00	76.81	104.19	122.14	178.56	110	450	450	CONC	0.30	110.0	156	0.98	1.87	†
place Pe	wee Place, Pi	pe 404 - 406				1.43				0.00				0.00				0.00	11.87														1
		ļ	0.10	0.72	0.36	0.36			0.00	0.00		ļ	0.00		 	<u> </u>		 		ļ		ļ	 		<u> </u>	<u> </u>	4	ļ	ļ				4
	405	406	0.18		0.46	0.82		 	0.00	0.00	 	 	0.00	0.00		 	0.00	0.00	10.00	76.81	104.19	122 14	178.56	63	375	375	PVC	0.30	112.0	96	0.87	2.15	+
ontribution	From place F					9.54			1	0.32			1	0.00		 	0.00	0.36	13.59	10.01	104.10	122,14	170.00		1 0,0	1 3,5	1.40	1 0.00	112.0	+	1 0.07	2.10	†
			0.13		0.23	10.59			0.00	0.32			0.00	0.00			0.00	0.36															1
	de Sweetvalle	410	0.27	0.72	0.54	11.13		 	0.00	0.32		ļ	0.00	0.00		_	0.00	0.36	13.59	65.30	88.40	103.55	151,26	809	1050	1050	CONC	0.20	74.5	1221	1.41	0.88	4
promena	T Sweetvalle	Julive, Pipe	1410-415	 		11.13		 	 	0.32	-	 	 	0.00	 	 		0.36	14.47	-	 	+	· · · · · · · · · · · · · · · · · · ·	 	 	 		 	 		+	+	+
omenade	Sweetvalley	Drive	1	†				†	 	 	<u> </u>			 	1	 	 		 		 	 	 			-		 	 		+	+	+
				Ţ	0.00	0.00	0.05	0.72		0.10			0.00	0.00			0.00	0.00]
nlaca Pa	401 wee Place, Pi	402	 	 	0.00	0.00			0.00	0.10			0.00	0.00	0.18	0.72	0.36	0.36	10.00	76.81	104.19	122.14	178.56	75	450	450	CONC	0.25	110.5	143	0.90	2.05	4
place Pe	wee Flace, Fl	pe 402 - 404	+	 		0.00	-	+	 	0.10	 	 	 	0.00	-//			0.36	12.05	-	 	-	 		+				 	 	+	+	+
				·							1		†	 	00	FESS	OM.	1	 	<u> </u>	 	†	+		 	-	 	 	 	+	+	+	1
														A	BALL		N.V.						1								1		
			 	 			+	 	<u> </u>	_		 		-	W/L			Ye V	-	-		_	-	ļ			4			4	4		4
efinitions:		L								1	L	l		1 // 3	2 f	10/1/	1	15/	L	Д		1		Designed:	Т	M.K.	PROJE	L	L	CHMI	MERSIDE SC)UTH	لـ
= 2.78 AIF	R, where									Notes:				H				二海	\					Dangined.	U.		1, ,,,,,,,			JOHIN	PHASE 1		
	ow in Litres p		s)							1) Ottaw	a Rainfall-I		Curve	3	Y.E.W	ORBIO	PICKAR	T bi						Checked:	F	P.P	LOCAT	TION:					
	hectares (ha									2) Min. V	elocity = 0	.80 m/s			1	00215	005	20													f Ottawa		
	ntensity (mm/	n)												N	ALTERNA S									Dwg. Refere	ence:		File Re			Date:		Sheet No).

I = Rainfall Intensity (mm/h) R = Runoff Coefficient



Manning	0.013		Апепаі К	oads Retur	n Frequency	= 10 years	5			WWW.																							
İ	LOCA	ATION			YEAR		1	5 YE		AREA (Ha)	40.	FAD		1		\		Į., ,	T		FLOW	T		I		T == :==	T = = = =	SEWER D.				,
	·····		AREA		Indiv.	Accum.	AREA		Indiv.	Accum.	AREA	10 Y	Indiv.	Accum.	AREA		YEAR L Indiv	Accum.	Time of	Intensity	Intensity	Intensity		Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE	LENGTH	CAPACITY	VELOCITY		RATIO
Location	From Node	To Node	(Ha)	R	2.78 AC	2.78 AC		R	2.78 AC	2.78 AC	(Ha)	R		2.78 AC	(Ha)	R	Indiv. 2.78 AC	2.78 AC	Conc. (min)	2 Year (mm/h)	5 Year (mm/h)	10 Year (mm/h)	100 Year (mm/h)	Q (I/s)	(actual)	(nominal)	 	(%)	(m)	(l/s)	(m/s)	FLOW (min.)	Q/Q fi
					***************************************	1									<u> </u>		1		(, V		(1.11/2/19	(11111)	G (#3)	(dottadi)	(Horring)		1 (/3)	+ ("")	(1/3)	(1123)	(11111.)	1000
													***************************************										İ			†	·	†	†	 	 	 	+
					0.00	0.00	0.09	0.70	0.18	0.18			0.00	0.00			0.00	0.00									1					1	
			0.12	0.63	0.21	0.21	 		0.00	0.18			0.00	0.00			0.00	0.00															
	407 408	408 409	0.00	0.57	0.00	0.21	0.19	0.72	0.38	0.56			0.00	0.00	ļ		0.00	0.00	10.00	76.81	104.19	122.14	178.56	74	375	375	PVC		67.5	118	1.06	1.06	0.63
	400	409	0.08	0.57	0.13	0.34			0.00	0.56			0.00	0.00	ļ		0.00	0.00	11.06	72.97	98.93	115.94	169.45	80	450	450	CONC	0.30	8.5	156	0.98	0.14	0.51
			!		0.00	0.34	0.16	0.72	0.32	0.88			0.00	0.00			0.00	0.00	·			 	ļ				 	 	 		ļ	 	
	409	410			0.00	0.34	0.29	0.70	0.56	1.44			0.00	0.00	 		0.00	0.00	·11.20	72.48	98.25	115.14	168.28	166	600	600	CONC	0.15	108.0	238	0.84	2.14	0.70
Contribution F	rom rang Ca	tleaf Row, Pi	pe 406 - 41	10		11.13				0.32				0.00				0.36	14.47	1	1	1111111	700.20		 	1	100,10	1 0.10	100.0	1 200	0.0-4	2.17	1 0.70
			0.14		0.25	11.71			0.00	1.76			0.00	0.00			0.00	0.36							<u> </u>	1		<u> </u>					1
	410	415	0.15	0.57	0.24	11.95			0.00	1.76			0.00	0.00			0.00	0.36	14.47	63.04	85.30	99.90	145.91	956	1200	1200	CONC	0.15	71.0	1510	1.34	0.89	0.63
Contribution F	rom croissar 415		v Crescent	Pipe 414		2.06	1 004	0.70		0.12				0.00				0.00	13.06	<u> </u>		<u> </u>	ļ										
To cercle Her		417 , Pipe 417 - 4	120		0.00	14.01	0.34	0.70	0.66	2.54	ļ		0.00	0.00			0.00	0.36	15.36	60.93	82.42	96.51	140.93	1114	1200	1200	CONC	0.15	78.5	1510	1.34	0.98	0.74
TO CEICIE TIEI	ISIOW S CITCIE	, ripe 417 - 4	1			14.01				2.54	 			0.00				0.36	16.34	 	ļ	ļ	 	ļ	ļ			 	↓		ļ		
cercle Hensi	w's Circle		 		T	 	 	 			 				 		 	 	 	+	 	 	 	 	 	 	 	 	 		 	 	
	422	423			0.00	0.00	~		0.00	0.00	 		0.00	0.00			0.00	0.00	10.00	76.81	104.19	122.14	178.56	0	300	300	PVC	0.35	16.0	57	0.81	0.33	0.00
	423	424	0.35	0.70	0.68	0.68			0.00	0.00			0.00	0.00			0.00	0.00	10.33	75.56	102.48	120.13	175.60	51	375	375	PVC		119.0	124	1.12	1.77	0.42
	424	425			0.00	0.68			0.00	0.00			0.00	0.00			0.00	0.00	12.10	69.60	94.29	110.48	161.43	47	375	375	PVC		15.0	96	0.87	0.29	0.49
	405	463	0.30	0.57	0.48	1.16	ļ		0.00	0.00			0.00	0.00			0.00	0.00															
	425 426	426	0.40	0.70	0.78	1.93		ļ	0.00	0.00			0.00	0.00			0.00	0.00	12.38	68.72	93.09	109.07	159.35	133	525	525	CONC		95.5	192	0.89	1.79	0.69
To Servicino I	3lock, Pipe 4	427 27 - 428	 		0.00	1.93	 	 	0.00	0.00			0.00	0.00	╂	<u> </u>	0.00	0.00	14.18	63.78	86.32	101.10	147.66	123	525	525	CONC	0.20	13.5	192	0.89	0.25	0.64
TO OCIVICING I	Jiock, Fipe 4.	21-420				1.53	+			0.00				0.00			 	0.00	14.43	ļ					 			 	<u> </u>	-		_	
Contribution F	rom promen	ade Sweetva	lley Drive.	Pipe 415 -	417	14.01	 	 		2.54		<u> </u>		0.00	-		 	0.36	16.34			 	 	 	ļ	ļ	·	 	 	 	 	 	
Contribution F						2.16	1			0.08				6.00	 		 	0.00	14.18			 	 		 		·	 	 	 	 		
					0.00	16.17		0.70	0.06	2.67			0.00	6.00	1		0.00	0.36		<u> </u>		 			 		†	 	 	1	 	 	
	417	420		0.70	0.41	16.58			0.00	2.67			0.00	6.00			0.00	0.36	16.34	58.78	79.47	93.04	135.84	1794	1500	1500	CONC	0.15	72.0	2738	1.55	0.77	0.66
Contribution F				- 420		2.13				0.00				0.00				0.00	12.13														
Contribution F		·	- 420		0.00	0.00			0.00	0.48				0.00				0.00	10.16				<u> </u>										
	420 421	421 428	0.24	0.70	0.00 0.47	18.70		 	0.00	3.15			0.00	6.00			0.00	0.36	17.11			90.49	132.10	1904	1500	1500	CONC		51.5	2344	1.33	0.65	0.81
To Servicina I	Block, Pipe 4		0.24	0.70	0,47	19.17	 	-	0.00	3.15 3.15	 		0,00	6.00	 		0.00	0.36	17.76 17.94	55.94	75.59	88.48	129.14	1888	1500	1500	CONC	0.11	14.5	2344	1.33	0.18	0.81
I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					10.11	+			0.10	 			0.00	+		+	0.30	17.54	 	 		 				┿	 	 		 	+	
Servicing Blo	ck					1									†		 	 	+	 		 	 			 	+	 	 	 	 		
Contribution F			de, Pipe 42	26 - 427		1.93				0.00				0.00				0.00	14.43		 		†		†	 	 	 	 	 	 	 	
	427	428			0.00	1.93			0.00	0.00			0.00	0.00			0.00	0.00	14.43	63.15	85.45	100.08	146.16	122	600	600	CONC	0.40	10.0	388	1.37	0.12	0.31
Contribution F			cle, Pipe 42	21 - 428		19.17		ļ		3.15				6.00				0.36	17.94														
	428 429	429 Headwall	ļ		0.00	21.11		ļ	0.00	3.15			0.00	6.00			0.00	0.36	17.94	55.60		87.93	128.34	1984	1800	1800	CONC		73.0	3812	1.50	0.81	0.52
To SWM Pon		rieauwaii	 		0.00	21.11		 	0.00	3.15 3.15	 		0.00	6.00	-		0.00	0.36	18.75	54.13	73.11	85.57	124.88	1931	1800	1800	CONC	0.11	4.5	3812	1.50	0.05	0.51
			 			+ = ! ! ! !	ļ	†		0.10	 	 		0.00	-			0.36	18.80		 		 	 	 	 	+	 	 	 	_		
			1.			1	†	1			l	l				6330 K		*	 	 	 	 			 	 	+	+	+	+	 	+	+
															100		No.	J			 	1			 	 	†	1	 	1	†		
														110	V	-11/1	P. 10	6								1	1			T			
			 			_		ļ			ļ	ļ		115	15	441		(C)															
			 	ļ		+	+					ļ		10	Concession			2	 		 				ļ	ļ	 	ļ		ļ			
			 	 		-	+	 		ļ	 	 		16	REMO	DEMO	THY NOT	+ 121 +	+	 	 	 	 			 			↓	4	 		
			 	 		+	+	 	 		 	 			V- 5-191	THU P	HANNIN F	1 35	 	+	 	 	+	 	 	 	+	 	-		+	 	
			†			1	 	1			 			1	 10	02159	W	1	H	 	 	 	+	 	 	 	+	+			+	+	+
			1			1								1	-	EC. 200 (200 (200 (200 (200 (200 (200 (200			+	 	 	 	 		 	 	 	 	 	+	 	+	+
														1	N. Tu	1212	DIN			1	1	1	<u> </u>	1	1	1	1	1	 	 	1	1	+
														13	DI	7	1	\mathcal{Q}_{\parallel}	<u> </u>				<u> </u>				1		1			1	1
			 	ļ		 	-	 		ļ	ļ			1	OMAC		- ADV		1														
			 	ļ		+	 	 	ļ	ļ	 			<u> </u>	TAM:		OM.			ļ		ļ	ļ	<u> </u>	ļ	<u> </u>		ļ					
			 	ļ		 	+	 					ļ	<u> </u>		- UT		 		 	 		 			ļ		ļ	ļ				
Definitions:		L	1	L			4	J	L	L	L	L	L	L		Contract of the last of the la	T	<u> </u>			<u></u>	L	<u> </u>	Docionad	<u> </u>	l M.K.	PROJE	I.		<u> </u>	AEDOIDE CO	VITU	
Q = 2.78 AIR,	where									Notes:														Designed:	U.I	IVI.T\.	PROJE	.UI.		SUMI	MERSIDE SO PHASE 1	MID	
Q = Peak Flor		r second (L/s	i)								a Rainfall-Ir	ntensity Cı	ırve											Checked:	c	P.P	LOCAT	ION:			FRASE 1		
A = Areas in h			•								elocity $= 0$.													J. S. S. S. S. S. S. S. S. S. S. S. S. S.	r		LOUAT			City o	f Ottawa		
l ≈ Rainfall Inf	ensity (mm/h										•													Dwg. Refere	nce:	······	File Re	f:		Date:		Sheet No	D.
R = Runoff Co	pefficient																							Storm Drainag		No. 35	15-766				2019		T 2 OF 2
																		NAME OF TAXABLE PARTY.				*******		4									

APPENDIX

Ε

DWG C04 - EROSION AND SEDIMENT CONTROL
 PLAN

APPENDIX

F

SUBMISSION CHECK LIST

4.1 General Content

Executive Summary (for larger reports only).
Comments:
Date and revision number of the report.
Comments:
Location map and plan showing municipal address, boundary, and layout of proposed development.
Comments:
Plan showing the site and location of all existing services.
Comments:
Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.
Comments:
Summary of Pre-consultation Meetings with City and other approval agencies.
Comments:
Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.
Comments:
Statement of objectives and servicing criteria.
Comments:
Identification of existing and proposed infrastructure available in the immediate area.
Comments:

1

Drains pote	on of Environmentally Significant Areas, watercourses and Municipal entially impacted by the proposed development (Reference can be made ral Heritage Studies, if available).
Comments:	
developme managemen neighbourin	vel master grading plan to confirm existing and proposed grades in the nt. This is required to confirm the feasibility of proposed stormwater nt and drainage, soil removal and fill constraints, and potential impacts to ng properties. This is also required to confirm that the proposed grading pede existing major system flow paths.
Comments:	
	on of potential impacts of proposed piped services on private services ells and septic fields on adjacent lands) and mitigation required to address apacts.
Comments:	
Proposed p	hasing of the development, if applicable.
Comments:	
Reference to	o geotechnical studies and recommendations concerning servicing.
Comments:	
All preliming information	nary and formal site plan submissions should have the following
☐ Key pla☐ Name a☐ Propert☐ Existing☐ Easeme	rrow (including construction North)
Comments:	

4.2 Development Servicing Report: Water

Confirm consistency with Master Servicing Study, if available
Comments:
Availability of public infrastructure to service proposed development
Comments:
Identification of system constraints
Comments:
Identify boundary conditions
Comments:
Confirmation of adequate domestic supply and pressure
Comments:
Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.
Comments:
Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.
Comments:
Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design
Comments:
Address reliability requirements such as appropriate location of shut-off valves
Comments:
Check on the necessity of a pressure zone boundary modification.
Comments:

proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions. Comments: Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation. Comments:	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range
proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions. **Comments:** Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation. **Comments:** Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines. **Comments:** Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	Comments:
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation. **Comments:** Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines. **Comments:** Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.
water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation. Comments: Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines. Comments: Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	Comments:
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines. Comments: Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	water infrastructure that will be ultimately required to service proposed
Guidelines. Comments: Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	Comments:
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.
parcels, and building locations for reference.	Comments:
Comments:	
	Comments:

4.3 Development Servicing Report: Wastewater

deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).
Comments:
Confirm consistency with Master Servicing Study and/or justifications for deviations.
Comments:
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.
Comments:
Description of existing sanitary sewer available for discharge of wastewater from proposed development.
Comments:
Verify available capacity in downstream sanitary sewer and/or identification o upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)
Comments:
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.
Comments:
Special considerations such as contamination, corrosive environment etc.
Comments:

4.4 Development Servicing Report: Stormwater

Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)
Comments:
Analysis of available capacity in existing public infrastructure.
Comments:
A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.
Comments:
Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.
Comments:
Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.
Comments:
Description of the stormwater management concept with facility locations and descriptions with references and supporting information.
Comments:
Set-back from private sewage disposal systems.
Comments:
Watercourse and hazard lands setbacks.
Comments:
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.
Comments:

Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.
Comments:
Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).
Comments:
Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.
Comments:
Calculate pre and post development peak flow rates including a description o existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.
Comments:
Any proposed diversion of drainage catchment areas from one outlet to another.
Comments:
Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.
Comments:
If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.
Comments:
Identification of potential impacts to receiving watercourses
Comments:
Identification of municipal drains and related approval requirements.
Comments:

Descriptions of how the conveyance and storage capacity will be achieved for development.				
	Comments:			
		ood levels and major flow routing to protect proposed development from restablishing minimum building elevations (MBE) and overall grading.		
	Comments:			
	Inclusion o	f hydraulic analysis including hydraulic grade line elevations.		
	Comments:			
		of approach to erosion and sediment control during construction for the of receiving watercourse or drainage corridors.		
	Comments:			
	Identification of floodplains - proponent to obtain relevant floodplain information the appropriate Conservation Authority. The proponent may be require delineate floodplain elevations to the satisfaction of the Conservation Authority such information is not available or if information does not match current conditions.			
	Comments:			
	Identificati	on of fill constraints related to floodplain and geotechnical investigation.		
	Comments:			

4.5 Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

	Conservation Authority as the designated approval agency for modification of loodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.			
	Comments:			
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.			
	Comments:			
	Changes to Municipal Drains.			
	Comments:			
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)			
	Comments:			
4.6	Conclusion Checklist			
	Clearly stated conclusions and recommendations			
	Comments:			
	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the esponsible reviewing agency.			
	Comments:			
	All draft and final reports shall be signed and stamped by a professional Engineer egistered in Ontario			
	Comments:			