

Phase Two Environmental Site Assessment Nouvelle École Élémentaire Catholique Avalon III

2666 Tenth Line Road, Ottawa, Ontario

Client:

Conseil des écoles catholiques du Centre-est (CECCE) 4000 rue Labelle Ottawa, Ontario K1S 3S1

Type of Document: Draft

Project Name: Phase Two Environmental Site Assessment

Project Number: OTT-22017859-A0

Prepared By: Leah Wells, P.Eng.

Reviewed By: Mark McCalla, P.Geo.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted: 2023-03-09

100-2650 Queensview Drive | Ottawa, Ontario K2B 8H6 | Canada t: +1.613.688.1899 | f: +1.613.225.7337 | exp.com

Legal Notification

This report was prepared by EXP Services Inc. for the account of Conseil des écoles catholiques du Centre-Est.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

EXP Services Inc. (EXP) was retained by the Conseil des écoles catholiques du Centre-est (CECCE) to conduct a Phase Two Environmental Site Assessment (ESA) for the east part of the property located 2666 Tenth Line Road in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was occupied by a sales office for Mattamy Homes and a vacant residence and associated garage.

The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. The most recent use of the property was as a storage yard for recreational vehicles, which is a type of commercial land use. It is proposed that a secondary school be constructed on the Phase Two property. As the proposed land use is more sensitive than the previous land use, a Record of Site Condition (RSC) will be required.

The Phase Two property consists of the east part of the property located at 2666 Tenth Line Road, located approximately 500 m north of the intersection of Wall Road and Tenth Line Road in Ottawa, Ontario. McKinnon Creek crosses 2666 Tenth Line Road approximately 180 m from the Phase Two property. The Phase Two property consists of the property between Tenth Line Road and 30 m from McKinnon Creek to the west. The Phase Two property is irregular in shape with an area of approximately 2.3 hectares.

A single-storey residence with a full basement was present on the south side of the site. The residence was vacant and the basement contained approximately 1 metre of standing water. A garage building was located on the north side of the residence. The garage was used as a storage area and workshop for Bergeret Exteriors. A temporary building, on concrete blocks, was present on the north side of the site. The building was occupied by the Mattamy Homes sales offices. Gravel parking lots were associated with the garage and the sales offices. Groundcover on the west part of the Phase Two property consisted of tall grass.

The Phase Two property is part of a larger property with the legal description Part of Lot 5, Concession 11, Being Parts 1, 3, and 4 on Plan 50R-2029, City of Ottawa. And the property identification number (PIN) 145630547.

The inferred groundwater flow direction in the Phase Two study area is to the southeast towards Bear Brook Creek. Based on the local topography, the inferred groundwater flow on and adjacent to the Phase Two property is to the southwest towards

EXP completed a draft Phase One ESA for the property in December 2022 and the following potentially contaminating activities (PCAs) were identified on the Phase One property:

- PCA #28 Gasoline and associated products storage in fixed tanks (fuel AST north of the garage and a heating oil AST in the basement of the residence)
- PCA #30 Importation of fill material of unknown quality (entire Phase One property)

The following PCAs were identified in the Phase One study area:

• PCA #49 – Salvage yards, including auto wrecking (former salvage yard 40 m southeast of the Phase One property)

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown in Table EX-1:

Table EX-1: Areas of Potentia	I Environmental Concern
--------------------------------------	--------------------------------

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
#1. Fuel AST	Area northeast of the garage	PCA #28 – Gasoline and associated products storage in fixed tanks	On-Site	Benzene, toluene, ethylbenzene, xylene (BTEX), petroleum hydrocarbons (PHC)	Soil and groundwater
#2. Heating oil AST	Area near the southwest corner of the vacant residence	PCA #28 – Gasoline and associated products storage in fixed tanks	On-Site	BTEX, PHC	Soil and groundwater
#3. Fill material of unknown quality	Entire Phase One property	PCA #30 – Importation of fill material of unknown quality	On-site	PHC, polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), metals	Soil
#4. Former salvage yard at 2727 Tenth Line Road	Area along the southeast property line	PCA #49 – Salvage yards, including auto wrecking	Off-site	PHC, PAH, VOC, metals	Groundwater

On December 8 and December 9, 2022, seventeen test pits (TP-1 to TP-17) were advanced at the Phase Two property. Test pits were excavated to termination depths of 1 to 2.6 m bgs. Grab soil samples from the excavator bucket were collected from the fill layer. All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified.

Between December 14 and December 23, 2022, thirteen boreholes (BH-1 to BH-3, BH-5 to BH-8 and BH-10 to BH-15) were advanced at the Phase Two property by George Downing Estate Drilling Ltd (Downing). The boreholes were advanced in the overburden to termination depths ranging from 4.9 m to 8.5 m below existing grade, with the exception of BH-1 which was cored into the bedrock. Bedrock was encountered 33 metres below ground surface (m bgs).

Eight soil samples and one duplicate were collected from the fill material and submitted for analysis of PHC, PAH, VOC and metals. Two soil samples were collected from the native silty clay (BH-10 and BH-11) and submitted for analysis of PHC, PAH, VOC and metals. Three groundwater samples, one field duplicate, one field blank, and one trip blank were submitted for chemical analysis of BTEX, PHC, PAH, VOC and/or metals parameters.

All of the fill samples had concentrations that were within the Table 2 site conditions standards (SCS) for all parameters that were analysed. The native soil samples had concentrations that were within the Table 2 SCS for all parameters that were analysed, with the exception of cobalt and vanadium. However, the measured concentrations of cobalt and vanadium in the native silty clay at the Phase Two property are within the typical range of concentrations in the Ottawa area and are not indicative of anthropogenic impact. There were no exceedances of the MECP 2 SCS for any of the parameters analysed in the groundwater samples.

It is EXP's opinion that none of the PCA that were identified in the Phase One ESA have adversely affected the property. No further environmental investigations are deemed to be warranted. The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

Table of Contents

Legal N	lotificatio	ion	i						
Execut	ive Sumn	mary	ii						
1.0	Introdu	luction	1						
	1.1	Site Description1							
	1.2	Property Ownership	2						
	1.3	Current and Proposed Future Use2							
	1.4	Applicable Site Condition Standards	2						
2.0	Backgr	round Information	4						
	2.1	Physical Setting	4						
	2.2	Past Investigations	4						
3.0	Scope	of the Investigation	6						
	3.1	Overview of Site Investigation	6						
	3.2	Scope of Work	6						
	3.3	Media Investigated	6						
	3.4	Phase One Conceptual Site Model	6						
		3.4.1 Buildings and Structures	7						
		3.4.2 Water Bodies and Groundwater Flow Direction	7						
		3.4.3 Areas of Natural Significance	7						
		3.4.4 Water Wells	7						
		3.4.5 Potentially Contaminating Activity	7						
		3.4.6 Areas of Potential Environmental Concern	7						
		3.4.7 Underground Utilities	8						
		3.4.8 Subsurface Stratigraphy	8						
		3.4.9 Uncertainty Analysis	8						
	3.5	Deviations from Sampling and Analysis Plan	9						
	3.6	Impediments	9						
4.0	Investi	igation Method	10						
	4.1	General							
	4.2	Test Pit Program							
	4.3	Drilling Program							
	4.4	Soil Sampling							
	4.5	Field Screening Measurements	11						
	4.6	Groundwater: Monitoring Well Installation	11						
	4.7	Groundwater: Field Measurement and Water Quality Parameters	12						

	4.8	Groundwater: Sampling	12
	4.9	Sediment: Sampling	13
	4.10	Analytical Testing	13
	4.11	Residue Management	13
	4.12	Elevation Surveying	13
	4.13	Quality Assurance and Quality Control Measures	
5.0	Review	v and Evaluation	
	5.1	Geology	
	5.2	Groundwater: Elevations and Flow Direction	
	5.3	Groundwater: Hydraulic Gradients	
	5.4	Fine-Medium Soil Texture	
	5.5	Soil: Field Screening	
	5.6	Soil: Quality	
	5.7	Groundwater: Quality	
	5.7	5.7.1 Chemical Transformation and Contaminant Sources	
		5.7.2 Evidence of Non-Aqueous Phase Liquid	
		5.7.3 Maximum Concentrations	
	5.8	Sediment: Quality	
	5.9	Quality Assurance and Quality Control Results	
	5.10	Phase Two Conceptual Site Model	
		5.10.1 Introduction	19
		5.10.2 Physical Site Description	20
		5.10.3 Geological and Hydrogeological	21
		5.10.4 Utilities and Impediments	21
		5.10.5 Potentially Contaminating Activities	21
		5.10.6 Areas of Potential Environmental Concern/Potential Contaminates of Conc	ern22
		5.10.7 Investigation	
		5.10.8 Soil Sampling	23 23
		5.10.9 Groundwater Sampling	23
		5.10.11 Contaminant Fate and Transport	
60	Conclus	sion	24
7.0	Doforo	ncos	
7.U 0.0	Concerte		
ð.U	Genera	ai Limitations	

EXP Services Inc. vi

Conseil des écoles catholiques du Centre-est Phase Two Environmental Site Assessment 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0 March 9, 2023

List of Figures

Figure 1 – Site Location Plan Figure 2 – Borehole/Monitoring Well Location Plan Figure 3 - Conceptual Site Model - Phase Two Study Area Figure 4 – Groundwater Contour Plan Figure 5 – Cross Section Plan Figure 6 – Cross Sections A-A' and B-B' Figure 7 – Soil Analytical Results – PHC & VOC Figure 8 – Soil Analytical Results – PAH Figure 9 – Soil Analytical Results – Inorganics Figure 10 – Soil Cross Sections A-A' and B-B' – PHC & VOC Figure 11 – Soil Cross Sections A-A' and B-B' – PAH Figure 12 – Soil Cross Sections A-A' and B-B' – Metals Figure 13 – Groundwater Analytical Results – PHC & VOC Figure 14 – Groundwater Analytical Results – PAH Figure 15 – Groundwater Analytical Results – Metals Figure 16 – Groundwater Cross Sections A-A' and B-B' – PHC & VOC Figure 17 – Groundwater Cross Sections A-A' and B-B' – PAH Figure 18 – Groundwater Cross Sections A-A' and B-B' – Metals

List of Appendices

Appendix A: Figures Appendix B: Survey Plan Appendix C: Sampling and Analysis Plan Appendix D: Borehole Logs Appendix E: Analytical Summary Tables Appendix F: Laboratory Certificates of Analysis

1.0 Introduction

EXP Services Inc. (EXP) was retained by the Conseil des écoles catholiques du Centre-est (CECCE) to conduct a Phase Two Environmental Site Assessment (ESA) for the east part of the property located 2666 Tenth Line Road in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was occupied by a sales office for Mattamy Homes and a vacant residence and associated garage.

The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. The most recent use of the property was as a storage yard for recreational vehicles, which is a type of commercial land use. It is proposed that a secondary school be constructed on the Phase Two property. As the proposed land use is more sensitive than the previous land use, a Record of Site Condition (RSC) will be required.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

1.1 Site Description

The Phase Two property consists of the east part of the property located at 2666 Tenth Line Road, located approximately 500 m north of the intersection of Wall Road and Tenth Line Road in Ottawa, Ontario. McKinnon Creek crosses 2666 Tenth Line Road approximately 180 m from the Phase Two property. The Phase Two property consists of the property between Tenth Line Road and a 30 m setback from McKinnon Creek to the west. The Phase Two property is irregular in shape with an area of approximately 2.3 hectares.

A single-storey residence with a full basement was present on the south side of the site. The residence was vacant, and the basement contained approximately 1 metre of standing water. A garage building was located on the north side of the residence. The garage was used as a storage area and workshop for Bergeret Exteriors. A temporary building, on concrete blocks, was present on the north side of the site. The building was occupied by the Mattamy Homes sales offices. Gravel parking lots were associated with the garage and the sales offices. Groundcover on the west part of the Phase Two property consisted of tall grass.

The site layout is shown on Figure 2 in Appendix A.

The Phase Two property is part of a larger property with the legal description Part of Lot 5, Concession 11, Being Parts 1, 3, and 4 on Plan 50R-2029, City of Ottawa. And the property identification number (PIN) 145630547.

The inferred groundwater flow direction in the Phase Two study area is to the southeast towards Bear Brook Creek. Based on the local topography, the inferred groundwater flow on and adjacent to the Phase Two property is to the southwest towards McKinnon Creek.

Refer to Table 1.1 for the Site identification information.

Civic Address	2666 Tenth Line Road, Ottawa, Ontario
Current Land Use	Commercial
Proposed Future Land Use	Institutional

Table 1.1: Site Identification Details

Property Identification Number	145630547
UTM Coordinates	Zone 18, 462735 m E and 5031890 m N
Site Area	2.3 hectares
Property Owner	Claridge Homes (Mer Bleue Phase 4 Inc.)

A survey plan of the Phase Two property was completed by Annis & O'Sullivan Ltd. in 2022. A copy of the survey plan is provided in Appendix B.

1.2 Property Ownership

The registered owner of the Phase One property is Claridge Homes (Mer Bleue Phase 4 Inc.). Authorization to proceed with this investigation was provided by Mr. Denis Chabot on behalf of the Conseil des écoles catholiques du Centre-est (CECCE). Contact information for Mr. Chabot is 4000, rue Labelle, Ottawa, Ontario, K1J 1A1.

1.3 Current and Proposed Future Use

The most recent use of the property was commercial. The proposed future use of the property is institutional. It is proposed that a secondary school be developed on the Phase Two property. Since the past use of the property was commercial land use, an RSC must be filed, per Ontario Regulation 153/04.

1.4 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- Table 2 applicable to sites with potable groundwater and full depth restoration;
- Table 3 applicable to sites with non-potable groundwater and full depth restoration;
- Table 4 applicable to sites with potable groundwater and stratified restoration;
- Table 5 applicable to sites with non-potable groundwater and stratified restoration;
- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site);
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body.

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 2 SCS for a potable groundwater condition and residential/parkland/ institutional property use.

The selection of these categories was based on the following factors:

- Bedrock is greater than 2 metres below grade across the subject property;
- The Phase Two property is not located within 30 metres of a waterbody;
- Based on laboratory testing conducted during the current investigation, more than 50 per cent of soil particles by mass were less than 75 micrometres in mean diameter, therefore the soil at the site is medium-fine textured;
- The soil at the Phase Two property has a pH value between 5 and 9 for surficial soils and between 5 and 11 for subsurface soils, as confirmed during the current investigation;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Although new developments in the Phase Two study area are provided potable water by the City of Ottawa through its water distribution system, select properties in the Phase Two study area are serviced by potable water wells;
- The Phase Two property is not located in an area designated in a municipal official plan as a well-head protection area;
- The proposed building is planned for institutional use; and,
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

2.0 Background Information

2.1 Physical Setting

The Phase Two property consists of the east part of the property located at 2666 Tenth Line Road, located approximately 500 m north of the intersection of Wall Road and Tenth Line Road in Ottawa, Ontario. The Phase Two property consists of the property between Tenth Line Road and a 30 m setback east of McKinnon Creek. The Phase Two property is irregular in shape with an area of approximately 2.3 hectares. A site plan showing the Phase Two property is presented as Figure 2 in Appendix A.

Although new developments in the Phase Two study area are provided potable water by the City of Ottawa through its water distribution system, select properties in the Phase Two study area are serviced by potable water wells. Thus, in accordance with Section 35 of Ontario Regulation 153/04, potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

The Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

Bedrock in the general area of the Phase Two property consists of limestone with shaley partings of the Ottawa Formation. Native surficial soil consists of Champlain Sea clay medium to fine textured glaciomarine deposits. The ground surface is approximately 87 metres above sea level (masl). Water well records indicate that the surficial geology in the area generally consists of clay overlying sand and gravel. Limestone bedrock was present approximately 45 metres below ground surface.

The inferred regional groundwater flow direction in the Phase Two study area is to the southeast towards Bear Brook Creek. Based on the local topography, the inferred groundwater flow on and adjacent to the Phase Two property is to the southwest towards McKinnon Creek.

2.2 Past Investigations

EXP prepared a report entitled *Phase One Environmental Site Assessment, Nouvelle École Élémentaire Catholique Avalon III, 2666 Tenth Line Road, Ottawa, Ontario,* dated December 16, 2022. The Phase One study area included the entire Phase Two property as well as properties within 250 m of the Phase Two property. Based on the results of the Phase One ESA, EXP identified four APECs on the Phase One property. A summary is provided in Table 2.1.

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
#1. Fuel above ground storage tank (AST)	Area northeast of the garage	PCA #28 – Gasoline and associated products storage in fixed tanks	On-Site	Benzene, toluene, ethylbenzene, xylene (BTEX), petroleum hydrocarbons (PHC)	Soil and groundwater
#2. Heating oil AST	Area near the southwest corner of the vacant residence	PCA #28 – Gasoline and associated products storage in fixed tanks	On-Site	ВТЕХ, РНС	Soil and groundwater

Table 2.1: Findings of Phase One ESA

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
#3. Fill material of unknown quality	Entire Phase One property	PCA #30 – Importation of fill material of unknown quality	On-site	PHC, polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), metals	Soil
#4. Former savage yard at 2727 Tenth Line Road	Area along the southeast property line	PCA #49 – Salvage yards, including auto wrecking	Off-site	PHC, PAH, VOC, metals	Groundwater

The locations of the APEC are shown on Figure 3 in Appendix A.

The Phase One ESA was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices. A copy of the Phase One conceptual site model is provided as Figure 3 in Appendix A.

3.0 Scope of the Investigation

3.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the quality of soil and groundwater quality on the Phase Two property.

The most recent use of the property was commercial. The proposed future use of the property is institutional. As the most proposed land use us more sensitive than the most recent land use, a Record of Site Condition (RSC) must be filed, per Ontario Regulation 153/04.

3.2 Scope of Work

The Phase ESA was conducted in conjunction with a geotechnical investigation. The scope of work for the Phase Two ESA was as follows:

- Drilling thirteen boreholes (BH-1 to BH-3, BH-5 to BH-8, BH-10 to BH-15) on the subject property and completing three of them as monitoring wells (BH-8, BH-10, BH-11), and three of them a piezometers (BH-5, BH-12, BH-14);
- Excavating 17 test pits on the subject property;
- Submitting select soil samples for laboratory analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), petroleum hydrocarbon (PHC) fractions F1 to F4, volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), and/or metals;
- Collecting groundwater samples from the three monitoring wells and submitting them for analysis of PHC, PAH, VOC and/or metals;
- Comparing the results of the soil and groundwater chemical analyses to applicable criteria, as set out by the Ontario Ministry of the Environment, Conservation and Parks (MECP);
- Conducting an elevation survey of the boreholes and test pits;
- Monitoring groundwater levels in the new monitors to determine groundwater elevations; and,
- Preparing a report summarizing the results of the assessment activities.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

3.3 Media Investigated

The Phase Two ESA included the investigation of soil and groundwater on the Phase Two property. There are no waterbodies on the Phase Two property, therefore sediment sampling was not required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

3.4 Phase One Conceptual Site Model

The Phase One conceptual site model (CSM) was developed by considering the following physical characteristics and pathways. The CSM showing the topography of the site, inferred groundwater flow, general site features, APEC, and PCA is shown in Figure 3 in Appendix A.

3.4.1 Buildings and Structures

A single-storey residence with a full basement was present on the south side of the site. The residence was vacant, and the basement contained approximately 1 m of standing water.

A garage building was located on the north side of the residence. The garage was used as a storage area and workshop for Bergeret Exteriors.

A temporary building, on concrete block foundations was present on the north side of the site. The building was occupied by the Mattamy Homes sales offices.

3.4.2 Water Bodies and Groundwater Flow Direction

McKinnon's Creek is 30 m from the west border the Phase Two property. McKinnon's Creek flows to the southeast towards Bear Brook Creek. The inferred regional groundwater flow direction in the Phase Two study area is to the southeast towards Bear Brook Creek. Based on the local topography, the inferred groundwater flow on and adjacent to the Phase Two property is to the southwest towards McKinnon Creek.

3.4.3 Areas of Natural Significance

There are no ANSI within the Phase Two study area.

3.4.4 Water Wells

A shallow dug well was present on the west side of the garage. There were three potable wells located in the study area. New developments in the Phase One study areas are serviced by municipal water. Older residences along Tenth Line Road are likely still supplied via private water wells.

3.4.5 Potentially Contaminating Activity

EXP completed a draft Phase One ESA for the property in December 2022 and the following potentially contaminating activities (PCAs) were identified on the Phase One property:

- PCA #28 Gasoline and associated products storage in fixed tanks (fuel AST north of the garage, heating oil AST in the basement of the residence); and,
- PCA #30 Importation of fill material of unknown quality (entire Phase One property).

The following PCAs were identified in the Phase One study area:

PCA #49 – Salvage yards, including auto wrecking (former salvage yard 40 m southeast of the Phase One property).

3.4.6 Areas of Potential Environmental Concern

The APEC identified are summarized in Table 3.1.

Table 3.1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
#1. Fuel AST	Area northeast of the garage	PCA #28 – Gasoline and associated products storage in fixed tanks	On-Site	Benzene, toluene, ethylbenzene, xylene (BTEX), petroleum hydrocarbons (PHC)	Soil and groundwater
#2. Heating oil AST	Area near the southwest corner of the vacant residence	PCA #28 – Gasoline and associated products storage in fixed tanks	On-Site	ВТЕХ, РНС	Soil and groundwater
#3. Fill material of unknown quality	Entire Phase One property	PCA #30 – Importation of fill material of unknown quality	On-site	PHC, polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), metals	Soil
#4. Former savage yard at 2727 Tenth Line Road	Area along the southeast property line	PCA #49 – Salvage yards, including auto wrecking	Off-site	PHC, PAH, VOC, metals	Groundwater

3.4.7 Underground Utilities

The vacant residence on the Phase One property is serviced by a well and septic. New developments in the Phase One study area are serviced by municipal water and sewer, and underground hydro.

3.4.8 Subsurface Stratigraphy

Bedrock in the general area of the Phase Two property consists of limestone with shaley partings of the Ottawa Formation. Native surficial soil consists of Champlain Sea clay medium to fine textured glaciomarine deposits. Ground surface is approximately 87 metres above sea level (masl).

Well records indicate that the surficial geology in the area generally consists of clay overlying sand and gravel. Limestone bedrock was present approximately 45 metres below ground surface.

3.4.9 Uncertainty Analysis

The CSM is a simplification of reality, which aims to provide a description and assessment of any areas where potentially contaminating activity that occurred within the Phase Two study area may have adversely affected the Phase Two property. All information collected during this investigation, including records, interviews, and site reconnaissance, has contributed to the formulation of the CSM.

Information was assessed for consistency, however EXP has confirmed neither the completeness nor the accuracy of any of the records that were obtained or of any of the statements made by others. All reasonable inquiries to obtain accessible information were made, as required by Schedule D, Table 1, Mandatory Requirements for Phase Two Environmental Site Assessment Reports. The CSM reflects our best interpretation of the information that was available during this investigation.

3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Phase Two property, as described in Section 4.

No significant deviations from the SAAP, as provided in Appendix C, were reported that affected the sampling and data quality objectives for the Phase Two property.

Two of the proposed fifteen geotechnical boreholes (BH-4 and BH-9) were not completed due to on-site constraints.

3.6 Impediments

No impediments were encountered during this investigation.

4.0 Investigation Method

4.1 General

The current investigation was performed following requirements given under Ontario Regulation 153/04 and in accordance with generally accepted professional practices.

The site investigative activities were conducted in conjunction with a geotechnical investigation and consisted of the excavating of test pits and the drilling of boreholes to facilitate the collection of soil samples for visual inspection and chemical analyses. Three boreholes were instrumented with monitoring wells to facilitate the collection of groundwater samples.

Prior to the commencement of drilling and excavating, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

4.2 Test Pit Program

On December 8 and 9, 2022, seventeen test pits (TP-1 to TP-17) were advanced at the Phase Two property. The test pits were excavated to termination depths of 1 to 2.6 m bgs. Dedicated nitrile gloves (one pair per sample) were used during sample handling. No petroleum-based greases or solvents were used during excavation activities. EXP staff continuously monitored the excavating activities to log the stratigraphy observed from the pits, to record the depth of the samples, to record total depths of excavation, and to screen the samples by recording visual or olfactory observations of potential impacts and measuring petroleum vapours.

Grab soil samples from the excavator bucket were collected from the fill layer. All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified.

The locations of the test pits are shown on Figure 2 in Appendix A.

4.3 Drilling Program

Between December 14 and 23, 2022, thirteen boreholes (BH-1 to BH-3, BH-5 to BH-8 and BH-10 to BH-15) were advanced at the Phase Two property by George Downing Estate Drilling Ltd (Downing). The boreholes were advanced in the overburden to termination depths ranging from 4.9 m to 8.5 m below existing grade, with the exception of BH-1 which was cored in bedrock. Bedrock was encountered 33 metres below ground surface (m bgs).

The boreholes were drilled with a CME-55LC track-mounted drill rig equipped with continuous flight hollow-stem auger equipment. Auger samples were obtained in some of the boreholes from the ground surface to a 0.6 m depth. Standard penetration tests (SPTs) were performed in all the boreholes on 0.75 m intervals to 1.5 m depth interval with the soil samples retrieved by the split-barrel sampler. All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified.

The bedrock was cored in BH-1 by conventional rock coring method using NQ core barrel. A careful record of any sudden drops of the core barrel, colour of the wash water and wash water return were recorded during the rock coring operations.

The locations and geodetic elevations of the boreholes were established by a survey crew from EXP and are shown in Figure 2.

4.4 Soil Sampling

The soil sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix C.

Soil samples were selected for laboratory analysis based on combustible vapour measurements and visual and olfactory evidence of impacts, where observed. Soil samples identified for possible laboratory analysis were placed directly into precleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Bureau Veritas Laboratories (BV Labs) of Ottawa, Ontario. The samples were transported/submitted within 24 hours of collection to the laboratory following chain of custody protocols for chemical analysis. Soil samples were submitted for laboratory analysis of PHC, VOC, PAH, and/or metals.

Soil samples for geologic characterization were collected on a continuous basis in the overburden materials using 5 cm diameter, 61 cm long, split spoon samplers advanced into the subsurface using the drill rig. A split spoon sample was collected approximately every 80 cm as drilling progressed. The split spoon samplers were decontaminated between sampling intervals by EXP staff using a potable water/phosphate-free detergent solution followed by rinses with potable water. EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered soil cores, to record the depth of soil sample collection, to record total depths of borings/excavation, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix D.

4.5 Field Screening Measurements

Soil samples were placed in a sealed Ziploc plastic bag and allowed to reach ambient temperature prior to field screening with a combustible and organic vapour meter calibrated to hexane gas prior to use. The field screening measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These 'headspace' readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of potential impacts and the selection of soil samples for analysis.

Readings of combustible and organic vapour concentrations in the soil samples collected during the drilling investigation were recorded using an RKI Eagle 2, where there was sufficient recovery. This instrument is designed to detect and measure concentrations of combustible gas in the atmosphere to within 5 parts per million by volume (ppmv) from 0 ppmv to 200 ppmv, 10 ppmv increments from 200 ppmv to 1,000 ppmv, 50 ppmv increments from 1,000 ppmv to 10,000 ppmv, and 250 ppmv increments above 10,000 ppmv. It is equipped with two ranges of measurement, reading concentrations in ppmv or in percentage lower explosive limit (% LEL). The RKI Eagle 2 instrument can determine combustible vapour concentrations in the range equivalent to 0 to 11,000 ppmv of hexane.

The instrument was configured to eliminate any response from methane for all sampling conducted at the subject property. Instrument calibration is checked on a daily basis in both the ppmv range and % LEL range using standard gases comprised of known concentrations of hexane (400 ppmv, 40% LEL) in air. If the instrument readings are within $\pm 10\%$ of the standard gas value, then the instrument is deemed to be calibrated, however if the readings are greater than $\pm 10\%$ of the standard gas value then the instrument is re-calibrated prior to use.

The field screening measurements, in parts per million by volume (ppmv), are presented in the test pit logs provided in Appendix D.

4.6 Groundwater: Monitoring Well Installation

A 19 mm diameter standpipe with slotted section was installed in three boreholes (BH-5, BH-12, and BH-14) and a 51 mm diameter monitoring well with screen section was installed in three boreholes (BH-8, BH-10, BH-11).

The standpipes and monitoring wells were installed in accordance with EXP standard practice, and the installation configuration is documented on the respective borehole log. All boreholes were backfilled upon completion of drilling and the installation of the standpipes and monitoring wells.

Monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 (as amended). The monitoring wells consisted of a 38 mm or 52 mm diameter Schedule 40 PVC screen that was no more than 3.0 m long and a 51 mm diameter Schedule 40 PVC riser pipe that was at least 0.8 m long. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface. The monitoring wells were completed with flushmount casings. Details of the monitoring well installations are shown on the borehole logs provided in Appendix D.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- The use of well pipe components (e.g., riser pipe and well screens) with factory machined threaded flush coupling joints;
- Construction of wells without the use of glues or adhesives;
- Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces; and,
- Cleaning or disposal of drilling equipment between sampling locations.

4.7 Groundwater: Field Measurement and Water Quality Parameters

Field measurement of water quality parameters is described in Section 4.7.

All measurements of petroleum vapours in the monitor riser were made with an RKI Eagle 2 in methane elimination mode. Immediately after removing the well cap, the collection tube of the Eagle was inserted into the riser and the peak instrument reading was recorded. EXP used a Heron water level tape to measure the static water level in each monitoring well. The measuring tape was cleaned with phosphate-free soap and tap water, rinsed with distilled water after each measurement.

4.8 Groundwater: Sampling

All groundwater samples were collected via a low flow sampling technique using a Horiba U-52 multi probe water quality meter. The U-52 probe was calibrated using in-house reference standards. Prior to collecting the groundwater samples, water quality field parameters (turbidity, dissolved oxygen, conductivity, temperature, pH, and oxidation reduction potential) were monitored until stable readings were achieved to ensure that the samples collected were representative of actual groundwater conditions. These parameters are considered to be stable when three consecutive readings meet the following conditions:

- Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
- Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than 0.5 mg/L;
- Conductivity: within 3%;
- Temperature: ± 1° C;
- pH: ± 0.1 unit; and,
- Oxidation reduction potential: ±10 millivolts.

When stabilization occurs, equilibrium between groundwater within a monitor and the surrounding formation water is attained. As such, samples collected when stabilization occurs are considered to be representative of formation water.

The groundwater sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix C. The groundwater samples were placed in clean coolers containing ice packs prior to and during

transportation to the laboratory. The samples were transported to the laboratory within 24 hours of collection with a chain of custody.

On January 10, 2023, groundwater samples were collected from the three monitoring wells (BH-8, BH-10, and BH-11) using the low flow sampling method described above. Three groundwater samples, one field duplicate, one field blank, and one trip blank were submitted for chemical analysis of PHC, PAH, VOC and/or metals parameters.

4.9 Sediment: Sampling

There are no waterbodies present on the Phase Two property, therefore sediment sampling was not required.

4.10 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all soil samples was BV Labs. BV Labs is an accredited laboratory under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- General Requirements for the Competence of Testing and Calibration Laboratories.

4.11 Residue Management

The drill cuttings from drilling activities and purged water from groundwater development and sampling were disposed of on-site. Fluids from cleaning drilling equipment were disposed of by the driller at their facility.

4.12 Elevation Surveying

An elevation survey was conducted by EXP. The top of casing and ground surface elevation of each monitoring well location was surveyed relative to a geodetic reference. The Universal Transverse Mercator (UTM) coordinates of each monitoring well were also recorded so that their locations could be plotted accurately.

4.13 Quality Assurance and Quality Control Measures

All soil and groundwater samples were placed in coolers containing ice packs prior to and during transportation to the contract laboratory, BV Labs. BV Labs is accredited to the ISO/IEC 17025:2005 standard - *General Requirements for the Competence of Testing and Calibration Laboratories*.

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Collecting and analysing field duplicate samples to ensure analytical precision;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document field activities; and,
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody, to ensure the integrity of the samples is maintained.

BV Labs' QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

5.0 Review and Evaluation

5.1 Geology

A surficial topsoil layer was contacted in BH-10, BH-12, and BH-15 as well as TP-1, TP-2, TP-8, TP-9, TP-11, TP-13, and TP-14. The topsoil ranged in thickness from 100 mm to 300 mm. A buried topsoil layer was encountered in BH-1, BH-2, BH-3, BH-5, BH-11, BH-12, and BH-13, as well as TP-1, TP-4 through TP-10, and TP-13 through TP-16. It was encountered at depths of 0.8 m to 2.0 m and extended to depths of 1.1 m to 2.3 m.

Granular fill consisting of crushed limestone, sand and gravel, sometimes containing topsoil inclusions, was encountered at the surface of BH-2, BH-3, and BH-8, as well as TP-4 to TP-6, and TP-10. Granular fill was buried in TP-13 at a depth of 0.7 m and extending to a depth of 1.0 m. Reclaimed asphalt pavement was encountered at the surface of BH-11 and TP-7 with a thickness of 130 mm to 150 mm.

Native silty clay was encountered below the topsoil and fill materials in all boreholes and test pits. The grey silty clay extended to inferred and observed depths of approximately 31.5 m and 33.0 m in BH-3 and BH-1, respectively. The remaining boreholes were terminated within the grey silty clay at 4.9 m to 8.5 m depths. The silty clay to clay is underlain by glacial till contacted in BH-1 and inferred in BH-3 at 33.0 m and 31.5 m depths, respectively. The glacial till contains cobbles and boulders.

Bedrock core sampling was completed in BH-1, where grey Limestone bedrock was contacted at 33.8 m depth and cored to a termination depth of 37.7 m.

A plan view showing cross-sections is provided as Figure 5 in Appendix A, while the Phase Two property geology is depicted in cross-sections on Figure 6 in Appendix A.

5.2 Groundwater: Elevations and Flow Direction

On January 6 and January 10, 2023, the monitoring wells were inspected for general physical condition, groundwater depth, the presence of light non-aqueous phase liquid (LNAPL).

Overburden groundwater monitoring and elevation data are provided below.

	Grada	Top of	Scroop	Coursen Doubh to		6, 2023	January	10, 2023
Monitoring Well ID	Elevation (masl)	Casing Elevation (masl)	Depth (mbgs)	LNAPL (mbgs)	Depth to Groundwater (mbTOC)	Groundwater Elevation (masl)	Depth to Groundwater (mbTOC)	Groundwater Elevation (masl)
BH-5	86.96	88.14	6.1 to 7.6	N/A	0.68	86.28	0.61	86.35
BH-8	87.39	87.31	1.5 to 4.6	N/A	0.57	86.82	0.83	86.56
BH-10	87.69	87.56	0.8 to 2.3	N/A	1.45	86.24	1.45	86.24
BH-11	86.95	86.76	2.4 to 5.5	N/A	0.75	86.20	0.93	86.02
BH-12	87.22	88.24	4.0 to 4.9	N/A	0.59	86.63	0.67	86.55
BH-14	86.67	87.64	4.0 to 4.9	N/A	0.41	86.26	0.47	86.20

Table 5.1: Monitoring and Elevation Data

Notes: Elevations were measured to a geodetic datum mbgs – metres below ground surface

masl – metres above sea level

mbTOC – metres below top of monitor casing

N/A – not applicable

Based on the groundwater elevations, a groundwater contour plan was prepared. The overburden groundwater flow direction was determined to be to the east. The groundwater contour plan is provided as Figure 4 in Appendix A.

5.3 Groundwater: Hydraulic Gradients

Horizontal hydraulic gradients were estimated for the groundwater flow components identified in the overburden aquifer based on the January 2023 groundwater elevations.

The horizontal hydraulic gradient is calculated across the using the following equation:

 $i = \Delta h / \Delta s$

Where,

i = horizontal hydraulic gradient; Δh (m) = groundwater elevation difference; and, Δs (m) = separation distance.

The horizontal hydraulic gradient was calculated to be 0.013 m/m.

5.4 Fine-Medium Soil Texture

Based on field observations and laboratory analysis of seven samples for grain size conducted in conjunction with the Phase Two ESA, the soil texture was determined to be fine-medium. Grain size results are shown below.

Sample	Depth (m bgs)	Soil Type	Particles Smaller than 75 microns by Mean Diameter	Ontario Regulation 153/04 Classification
BH1-SS4	2.3 to 2.9	Clay	96%	Fine-Medium
BH2-SS8	7.8 to 8.2	Clay	100%	Fine-Medium
BH5-SS7	6.1 to 6.7	Clay	100%	Fine-Medium
BH8-SS3	2.3 to 2.9	Clay	100%	Fine-Medium
BH8-SS4	3.8 to 4.4	Clay	100%	Fine-Medium
BH13-SS2	0.8 to 1.4	Silty Sand with Gravel	39%	Coarse
BH14-SS3	1.5 to 2.1	Clay	98%	Fine-Medium

Table 5.2: Grain Size Analysis Results

The clay unit is the dominant type of soil on the Phase Two property. Since more than 1/3 of the soil on the Phase Two property consisted of medium and fine textured soil, soil and groundwater results were compared to medium and fine textured SCS. The laboratory Certificates of Analysis are provided in Appendix F.

5.5 Soil: Field Screening

The methodology for the collection of soil vapour concentration measurements is described in Section 4.4.

Petroleum vapours ranged from non-detectable to 20 ppm in samples collected from the test pits. Field screening data is presented in the test pit logs in Appendix D.

5.6 Soil: Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes and from the north wall of the utility trench excavation. The selection of representative "worst case" soil samples from each borehole was based on field visual or olfactory evidence of impacts and/or presence of potential water bearing zones.

The MECP Table 2 SCS are applicable if soil pH is in the range of 5 to 9 for surficial soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). Three soil samples were collected at depths between 1.7 and 8.2 m bgs and submitted for analysis of pH. All samples were within the acceptable ranges for the application of MECP Table 2 SCS.

Eight soil samples and one duplicate were collected from the fill material and submitted for analysis of PHC, PAH, VOC and/metals. Two soil samples were collected from the native silty clay (BH-10 and BH-11) and submitted for analysis of PHC, PAH, VOC and metals.

All of the fill samples had concentrations that were within the Table 2 SCS for all parameters that were analysed. The native soil samples had concentrations that were within the Table 2 SCS for all parameters that were analysed, with the exception of cobalt and vanadium.

It is probable that the exceedances of cobalt and vanadium are due to naturally elevated concentrations in the native silty clays in the Ottawa area and are not due to anthropogenic impact. A technical paper entitled *"Elevated Background Metals Concentrations in Champlain Sea Clay – Ottawa Region"* written by two engineering firms and the City of Ottawa was presented at GEO Ottawa in 2017. The paper presented results from several studies in the Ottawa area that showed that the concentrations of several metals including cobalt and vanadium in the native silty clay are elevated above the MECP Table SCS. New background concentrations that are higher than the MECP Table 3 SCS were proposed for five metals for eastern Ontario. Based on the above technical paper, the range of concentrations of cobalt in 271 native soil samples in the Ottawa area ranged from 3.0 to 30.5 ug/g with a 98th percentile of 27.9 ug/g. The measured concentrations of cobalt in the silty clay at the Phase Two property ranged from 10.0 to 136 ug/g with a 98th percentile of 123 ug/g. The measured concentrations of vanadium in the silty clay at the subject site ranged from 87 to 90 ug/g. This indicates that the measured concentrations of cobalt and vanadium in the above technical paper and are not indicative of anthropogenic impact.

The soil results are provided in Tables 1 to 3 in Appendix E. They are shown in plan view on Figures 7 to 9 and on cross-sections on Figures 10 to 12 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix F.

5.7 Groundwater: Quality

All groundwater samples were collected via a low flow sampling technique. EXP monitored several water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) in order to ensure that the samples collected were representative of actual groundwater conditions.

Following their installation, the monitoring wells were developed by purging water with an inertial pump and foot valve until it became clear.

Three groundwater samples, one field duplicate, one field blank, and one trip blank were submitted for chemical analysis of BTEX, PHC, PAH, VOC and/or metals parameters. There were no exceedances of the MECP 2 SCS for any of the parameters analyzed.

The analytical results are included in Tables 4 to 6 in Appendix E and are shown in plan view on Figures 13 to 15 and on crosssections on Figures 16 to 18 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix F.

5.7.1 Chemical Transformation and Contaminant Sources

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e., sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

All soil samples met the applicable Table 2 residential SCS for all parameters that were analyzed with the exception of the native samples from BH-10 and BH-11, which exceeded the Table 2 residential SCS for cobalt and vanadium. However, the measured concentrations of cobalt and vanadium in the native silty clay at the Phase Two property are within the typical range of concentrations in the Ottawa area and are not indicative of anthropogenic impact. No additional soil quality investigation is recommended. Chemical transformations of contaminants in soil are not a significant concern at the Phase Two property.

There were no groundwater exceedances of the Table 2 SCS for any of the parameters analyzed.

Cross-sections that depict the geological, hydrogeological, and groundwater chemical data for the Phase Two property are provided as Figure 6 in Appendix A.

5.7.2 Evidence of Non-Aqueous Phase Liquid

Inspection of the groundwater monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL).

5.7.3 Maximum Concentrations

Contaminants that exceeded the applicable Table 2 residential standards included:

Soil: Cobalt and vanadium.

Groundwater: none.

Maximum soil and groundwater concentrations are provided in Tables 7 and 8 in Appendix E.

5.8 Sediment: Quality

There are no water bodies on the Phase Two property, therefore sediment sampling was not required.

5.9 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill materials and groundwater at the site. QA/QC measures, included:

- Collection and analysis of blind duplicate soil and groundwater samples to ensure sample collection precision;
- Analysis of a groundwater field blank for all parameters that were analysed to assess potential impact during sampling;
- Using dedicated and/or disposable sampling equipment;

- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and,
- Using only laboratory supplied sample containers and following prescribed sample protocols, including proper preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the samples.

BV Labs' QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificates of Analysis prepared by Caduceon. The QA/QC results are reported as percent recoveries for matrix spikes, spiked blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

Review of the laboratory QA/QC results reported indicated that they were mostly within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. The exceptions are summarized in the table below.

Table 5.3: Laboratory QA/QC Results

Job#	Matrix	Test Affected	Deviation	Interpretation
C2AG432	Soil	РАН	RPD for benzo(b/j)fluoranthene (51%), fluoranthene (61%), phenanthrene (62%), and pyrene (56%) exceeded the acceptance criteria (40%).	Since all PAHs were well below the standards, the deviation should have no effect on the interpretation of results.

For QA/QC purposes, the analytical sample results are quantitatively evaluated by calculating the relative percent difference (RPD) between the samples and their duplicates. To accurately calculate a statistically valid RPD, the concentration of the analytes found in both the original and duplicate sample must be greater than five times the reporting detection limit (RDL).

The results of the RPD calculations are provided in Appendix E in Tables 9 to 14. All of the RPD for soil and groundwater were either not calculable or within the applicable alert limits.

A field blank and trip blanks were prepared and submitted for laboratory analysis of BTEX, PHC, PAH, VOC and/or metals. The results of the trip blank and field blank analyses are provided in Tables 4 to 6 in Appendix E. The trip blank and field blank were below the detection limits for all parameters analysed, with the exception of chloroform and sodium in the field blank. As the concentrations were still below MECP 2 SCS, and there were no exceedances of the Table 2 SCS in the groundwater samples, the deviation should have no material effect on the conclusions presented in this report.

5.10 Phase Two Conceptual Site Model

A Conceptual Site Model (CSM) provides a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.10.1 Introduction

EXP Services Inc. (EXP) was retained by the Conseil des écoles catholiques du Centre-est (CECCE) to conduct a Phase Two Environmental Site Assessment (ESA) for the east part of the property located 2666 Tenth Line Road in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was occupied by a sales office for Mattamy Homes and a vacant residence and associated garage.

The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. The most recent use of the property was as a storage yard for recreational vehicles, which is a type of commercial land use. It is proposed that a secondary school be constructed on the Phase Two property. As the proposed land use is more sensitive than the previous land use, a Record of Site Condition (RSC) will be required.

5.10.2 Physical Site Description

The Phase Two property consists of the east part of the property located at 2666 Tenth Line Road, located approximately 500 m north of the intersection of Wall Road and Tenth Line Road in Ottawa, Ontario. McKinnon Creek crosses 2666 Tenth Line Road approximately 180 m from the Phase Two property. The Phase Two property consists of the property between Tenth Line Road and 30 m from McKinnon Creek to the west. The Phase Two property is irregular in shape with an area of approximately 2.3 hectares.

A single-storey residence with a full basement was present on the south side of the site. The residence was vacant, and the basement contained approximately 1 metre of standing water. A garage building was located on the north side of the residence. The garage was used as a storage area and workshop for Bergeret Exteriors. A temporary building, on concrete blocks, was present on the north side of the site. The building was occupied by the Mattamy Homes sales offices. Gravel parking lots were associated with the garage and the sales offices. Groundcover on the west part of the Phase Two property consisted of tall grass.

The Phase Two property is part of a larger property with the legal description Part of Lot 5, Concession 11, Being Parts 1, 3, and 4 on Plan 50R-2029, City of Ottawa. And the property identification number (PIN) 145630547.

Refer to Table 5.4 for the Site identification information.

Civic Address	2666 Tenth Line Road, Ottawa, Ontario		
Current Land Use	Commercial		
Proposed Future Land Use	Institutional		
Property Identification Number	145630547		
UTM Coordinates	Zone 18, 462735 m E and 5031890 m N		
Site Area	2.3 hectares		
Property Owner	Claridge Homes (Mer Bleue Phase 4 Inc.)		

Table 5.4: Site Identification Details

The Phase One Conceptual Site Model is provided as Figure 3.

Although new developments in the Phase Two study area are provided potable water by the City of Ottawa through its water distribution system, select properties in the Phase Two study area are serviced by potable water wells. Thus, in accordance with Section 35 of Ontario Regulation 153/04, potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

The Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

5.10.3 Geological and Hydrogeological

Bedrock in the general area of the Phase Two property consists of limestone with shaley partings of the Ottawa Formation. Native surficial soil consists of Champlain Sea clay to fine textured glaciomarine deposits. The ground surface is approximately 87 metres above sea level (masl). Water well records indicate that the surficial geology in the area generally consists of clay overlying sand and gravel. Limestone bedrock was present approximately 45 metres below ground surface.

The inferred groundwater flow direction in the Phase Two study area is to the southeast towards Bear Brook Creek. Based on the local topography, the inferred groundwater flow on and adjacent to the Phase Two property is to the southwest towards McKinnon Creek.

A plan view showing cross-sections is provided as Figure 6, while the Phase Two property geology is depicted in cross-sections on Figure 7.

A summary of factors that apply to the Phase Two property is provided in Table 5.5.

Characteristic	Description
Minimum Depth to Bedrock	50.5 masl (36.3 m bgs)
Minimum Depth to Groundwater	0.41 m bgs
Shallow Soil Property	No, bedrock is greater than 2.0 mbgs
Proximity to water body or ANSI	30 m west – McKinnon Creek
Soil pH	Clay – 8.19 to 9.43
Soil Texture	Fine-Medium
Current Property Use	Commercial
Future Property Use	Institutional
Proposed Future Building	Elementary School
Areas Containing Suspected Fill	Entire Phase Two property

Table 5.5: Site Characteristics

5.10.4 Utilities and Impediments

The vacant residence on the Phase One property is serviced by a well and septic. New developments in the Phase One study area are serviced by municipal water and sewer, and underground hydro.

5.10.5 Potentially Contaminating Activities

The following potentially contaminating activities (PCAs) were identified on the Phase One property:

- PCA #28 Gasoline and associated products storage in fixed tanks (fuel AST north of the garage, heating oil AST in the basement of the residence); and,
- PCA #30 Importation of fill material of unknown quality (entire Phase One property) .

The following PCAs were identified in the Phase One study area:

• PCA #49 – Salvage yards, including auto wrecking (former salvage yard 40 m southeast of the Phase One property).

5.10.6 Areas of Potential Environmental Concern/Potential Contaminates of Concern

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown on Figure 2 and Table 5.6 below:

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
#1. Fuel AST	Area northeast of the garage	PCA #28 – Gasoline and associated products storage in fixed tanks	On-Site	Benzene, toluene, ethylbenzene, xylene (BTEX), petroleum hydrocarbons (PHC)	Soil and groundwater
#2. Heating oil AST	Area near the southwest corner of the vacant residence	PCA #28 – Gasoline and associated products storage in fixed tanks	On-Site	BTEX, PHC	Soil and groundwater
#3. Fill material of unknown quality	Entire Phase One property	PCA #30 – Importation of fill material of unknown quality	On-site	PHC, polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), metals	Soil
#4. Former savage yard at 2727 Tenth Line Road	Area along the southeast property line	PCA #49 – Salvage yards, including auto wrecking	Off-site	PHC, PAH, VOC, metals	Groundwater

Table 5.6: Areas of Potential Environmental Concern

5.10.7 Investigation

The site investigative activities consisted of excavating test pits and drilling boreholes to facilitate the collection of soil samples for visual inspection and chemical analysis. The boreholes were instrumented with monitoring wells to facilitate the collection of groundwater samples.

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

On December 8 and 9, 2022, seventeen test pits (TP-1 to TP-17) were advanced at the Phase Two property. The test pits were excavated to termination depths of 1 m to 2.6 m bgs. Dedicated nitrile gloves (one pair per sample) were used during sample handling. No petroleum-based greases or solvents were used during excavation activities. EXP staff continuously monitored the excavating activities to log the stratigraphy observed from the pits, to record the depth of the samples, to record total depths of excavation, and to screen the samples by recording visual or olfactory observations of potential impacts and measuring petroleum vapours. Grab soil samples from the excavator bucket were collected from the fill layer. All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified.

Between December 14 and 23, 2022, thirteen boreholes (BH-1 to BH-3, BH-5 to BH-8 and BH-10 to BH-15) were advanced at the Phase Two property by George Downing Estate Drilling Ltd (Downing). The boreholes were advanced in the overburden to termination depths ranging from 4.9 m to 8.5 m below existing grade, with the exception of BH-1 which was cored in bedrock. Bedrock was encountered 33 metres below ground surface (m bgs). The boreholes were drilled with a CME-55LC track-mounted drill rig equipped with continuous flight hollow-stem auger equipment. Auger samples were obtained in some

of the boreholes from the ground surface to a 0.6 m depth. Standard penetration tests (SPTs) were performed in all the boreholes on 0.75 m intervals to 1.5 m depth interval with the soil samples retrieved by the split-barrel sampler. All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified.

The bedrock was cored in BH-1 by conventional rock coring method using NQ core barrel. A careful record of any sudden drops of the core barrel, colour of the wash water and wash water return were recorded during the rock coring operations.

5.10.8 Soil Sampling

Soil samples were selected for laboratory analysis based on combustible vapour measurements and visual and olfactory evidence of impacts, where observed. Soil samples identified for possible laboratory analysis were placed directly into precleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory.

Eight soil samples and one duplicate were collected from the fill material and submitted for analysis of PHC, PAH, VOC and/metals. Two soil samples were collected from the native silty clay (BH-10 and BH-11) and submitted for analysis of PHC, PAH, VOC and metals.

All of the fill samples had concentrations that were within the Table 2 SCS for all parameters that were analysed. The native soil samples had concentrations that were within the Table 2 SCS for all parameters that were analysed, with the exception of BH-10 and BH-11 which exceeded the Table 2 SCS for cobalt and vanadium.

It is probable that the exceedances of cobalt and vanadium are due to naturally elevated concentrations in the native silty clays in the Ottawa area and are not due to anthropogenic impact. A technical paper entitled "Elevated Background Metals Concentrations in Champlain Sea Clay – Ottawa Region" written by two engineering firms and the City of Ottawa was presented at GEO Ottawa in 2017. The paper presented results from several studies in the Ottawa area that showed that the concentrations of several metals including cobalt and vanadium in the native silty clay are elevated above the MECP Table SCS. New background concentrations that are higher than the MECP Table 3 SCS were proposed for five metals for eastern Ontario. Based on the above technical paper, the range of concentrations of cobalt in 271 native soil samples in the Ottawa area ranged from 3.0 to 30.5 ug/g with a 98th percentile of 27.9 ug/g. The measured concentrations of vanadium in 267 native soil samples in the Ottawa area ranged from 10.0 to 136 ug/g with a 98th percentile of 123 ug/g. The measured concentrations of vanadium in the silty clay at the subject site ranged from 87 to 90 ug/g. This indicates that the measured concentrations of cobalt and vanadium in the above technical paper and are not indicative of anthropogenic impact.

The soil results are provided in Tables 1 to 3 in Appendix E. They are shown in plan view on Figures 7 to 9 and on cross-sections on Figures 10 to 12 in Appendix A.

5.10.9 Groundwater Sampling

All groundwater samples were collected via a low flow sampling technique using a U-52 Horiba multi probe water quality meter. The U-52 probe was calibrated using in-house reference standards. Prior to collecting the groundwater samples, water quality field parameters (turbidity, dissolved oxygen, conductivity, temperature, pH, and oxidation reduction potential) were monitored until stable readings were achieved to ensure that the samples collected were representative of actual groundwater conditions.

The groundwater samples were placed in clean coolers containing ice packs prior to and during transportation to the laboratory. The samples were transported to the laboratory within 24 hours of collection with a chain of custody.

Three groundwater samples, one field duplicate, one field blank, and one trip blank were submitted for chemical analysis of BTEX, PHC, PAH, VOC and/or metals parameters. There were no exceedances of the MECP 2 SCS for any of the parameters analyzed.

The analytical results are included in Tables 4 to 6 in Appendix E and are shown in plan view on Figures 13 to 15 and on crosssections on Figures 16 to 18 in Appendix A.

5.10.10 Contaminants of Concern

Contaminants that exceeded the Table 2 residential standards included:

Soil: Cobalt and vanadium

Groundwater: none

5.10.11 Contaminant Fate and Transport

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e., sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

All soil samples met the applicable Table 2 residential SCS for all parameters that were analyzed with the exception of the native samples from BH-10 and BH-11, which exceeded the Table 2 residential SCS for cobalt and vanadium. However, the measured concentrations of cobalt and vanadium in the native silty clay at the Phase Two property are within the typical range of concentrations in the Ottawa area and are not indicative of anthropogenic impact. No additional soil quality investigation is recommended. Chemical transformations of contaminants in soil are not a significant concern at the Phase Two property.

There were no groundwater exceedances of the Table 2 SCS for any of the parameters analyzed.

Cross-sections that depict the geological, hydrogeological, and groundwater chemical data for the Phase Two property are provided as Figure 6 in Appendix A.

6.0 Conclusion

During the current investigation, the soil and groundwater quality at the Phase Two property were investigated. Results were compared to Regulation 153/04 Table 2 SCS for residential/parkland/institutional property use and coarse textured soils in a potable groundwater condition.

All soil samples met the applicable Table 2 residential SCS for all parameters that were analyzed with the exception of the native samples from BH-10 and BH-11, which exceeded the Table 2 residential SCS for cobalt and vanadium. However, the measured concentrations of cobalt and vanadium in the native silty clay at the Phase Two property are within the typical range of concentrations in the Ottawa area and are not indicative of anthropogenic impact. No additional soil quality investigation is recommended.

There were no exceedances of the MECP 2 SCS for any of the parameters analysed in the groundwater samples.

It is EXP's opinion that none of the PCA that were identified in the Phase One ESA have adversely affected the property. No further environmental investigations are deemed to be warranted.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

ROFESSIONA J. WELLS 100501933 eah Wells, P.Eng. Mark McCalla, P.Geo. Environmental Engineer Team Lead/Senior Project Manager Earth and Environment Earth and Environment OF ON

7.0 References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents.

- EXP Services Inc., Phase One Environmental Site Assessment, 2666 Tenth Line Road, Ottawa, Ontario, December 16, 2022.
- Ontario Ministry of the Environment, Conservation and Parks, *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, December 1996.
- Ontario Ministry of the Environment, Conservation and Parks, *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, April 15, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, *Guide for Completing Phase Two Environmental Site* Assessments under Ontario Regulation 153/04, June 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Management of Excess Soil A Guide for Best Management Practices, January 2014.
- Ontario Regulation 153/04, made under the *Environmental Protection Act*, as amended.
- Ontario R.R.O. 1990, Regulation 347, made under the *Environmental Protection Act*, as amended.
- Ontario R.R.O. 1990, Regulation 903, made under the *Water Resources Act*, as amended.

8.0 General Limitations

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require reevaluation. Where special concerns exist, or Conseil des écoles catholiques du Centre-est ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

Use of Report

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

Report Format

Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

EXP Services Inc.

Conseil des écoles catholiques du Centre-est Phase Two Environmental Site Assessment 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0 March 9, 2023

Appendix A: Figures

Contraction of the second seco			A MARINA		prom. Sv
	BH/MW-14 TP-17	₽ .16	TP BH	-15 -13	BH-1
TP-1	B T E X F1 F2 F3 F4 1,1-DCA 1,2-DCA 1,1-DCE 6-1,2-DCE t-1,2-DCE PCE TCE VC 0.5 b 0.8 <0.0050	BH-15	- Q ^{TI}	P-14	BH-4
TP-5 DUP	Depth (mbgs) B T E X F1 F2 F3 F4 1.1-DCA 1.2-DCA 1.1-DCE 0.1-DCE 0.1-DCE 0.1-DCE 0.1-DCA 0.0-DC			TP-1	3
TP-9	Depth (mbgs) B T E X F1 F2 F3 F4 1,1-DCA 1,2-DCA 1,1-DCE 6-1,2-DCE 1,2-DCE F2 F3 F4 1,1-DCA 1,2-DCA 0,1-DCE 6-1,2-DCE F1,2-DCE FCE TCE VC 0.3 b 0.6 <0.000				
TP-11	B T E X F1 F2 F3 F4 1,1-DCA 1,2-DCA 0,1-DCE 1,2-DCE		TP-12		TP-11
TP-12	Bepth (mbgs) T E X F1 F2 F3 F4 1,1-DCA 1,2-DCA 0,1-DCE 1,2-DCE 1,2-DC		BH/	MW-12 Low	
TP-15	B T E X F1 F2 F3 F4 1,1-DCA 1,2-DCA 0,100E 0-1,2-DCE 1,2-DCE			•	
TP-17	Depth (mbgs) B T E X F1 F2 F3 F4 1,1-DCA 1,2-DCA 1,1-DCE 6-1,2-DCE 1,2-DCE 1,2-DCE <td></td> <td></td> <td>He s</td> <td>TP-10</td>			He s	TP-10
8H-8 \$\$1	Depth (mbgs) B T E X F1 F2 F3 F4 1,1-DCA 1,2-DCA 1,1-DCE 61,2-DCE 1,2-DCE 1,2-DCE <td></td> <td></td> <td>REG 153/04</td> <td></td>			REG 153/04	
BH-10 \$\$3	B T E X F1 F2 F3 F4 1,1-DCA 1,2-DCA 1,1-DCE 6-1,2-DCE t-1,2-DCE FCE TCE VC 2.5 b 3.0 <0,0050	PARAMETER'S Benzene	ABBREVIATION	TABLE 2 SCS Institutional 0.17	
	29 Das 99	Toluene Bity benzene	F	6	
BH-11	Depth (mbgs) B T E X F1 F2 F3 F4 1,1-DCA 1,2-DCA 1,1-DCE o1,2-DCE t-1,2-DCE PCE TCE VC	Total Xylenes	x	25	TP-9
\$\$3	2.3 to 3.0 <0.0060 <0.020 <0.010 <0.020 <10 <10 <50 <50 <0.040 <0.049 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0	F1	F1 (C6-C10)	25	
1 7 K 104		F3	F3 (C16-C34)	240	
		F4	F4 (C34-C50)	120	A A A
	EIND	1,1-Dichbroethane	1,1-DCA	0.6	
		1,2-Dichlororethane	1,2-DCA	0.05	Contraction of the second
		Cis-1, 2-Dichloroethy lene	0-1,2-DCE	2.5	2.7
	- 🔶 SOIL MEETS MECP TABLE 2 SCS	Trans-1, 2, Dichlorothylene	M1,2-DCE	0.75	经 · · · · · · · · · · · · · · · · ·
		Trichbroethylene	TCE	0.52	a state of the man
	SUIL EXCEEDS MECP TABLE 2 SCS	Vinyl Chloride	VC	0.022	
	P- NOT SAMPLED				
BH	BOREHOLE NO. & LOCATION BH/MVV-8 MONITORING WELL NO. & LOCATION		exp Services Ir		
ТР	1 TEST PIT NO. & LOCATION BH/MW-5 A PM MONITORING WELL (WITH PIEZOMETER)		Ottawa, ON K2B 8H6		
	NO. & LOCATION		www.exp.com		JANUARY 2023

DATE JANUARY 2023 FILE NO OTT-22017859-A0

veetvalley Dr.	CALL IN
BH-2	BH-3
TP-5	TP-1
BH/MW-5	TP-2
	BH-6
BH/MW-8	BH-9
TP-7	
	BH/MW-10
	BH/MW-10 TP-8
BH/MW-11	BH/MW-10 TP-8
BH/MW-11	BH/MW-10
BH/MW-11	BH/MW-10
	BH/MW-10 TP-8 TP-
PHASE TWO ENVIRONMENTAL SIT NOUVELLE ÉCOLE ÉLÉMENTAIRE CATHO SWEETVALLEY DR. AT OLD TENTH LINE	BH/MW-10 TP-8 TP

	prom. Sv						
BH/MW-14 TP-17 TP-16	6 TP-15 BH-13						
B	BH-15 BH-4						
IP-1 Depth (mbg s) Ace Acl An B(a)A B(a)P B(b)F B(ghi)P B(k)F C DA FI F I(123)P 141N 241N N P Py 0.5 to 0.8 <0.0050	TP-13						
Dep th (mbg.s) Acce Acl An B(a)A B(a)P B(b)F B(gh)F B(h)F C DA FI F I(123)P TMIN N P Py 0.0 b-0.6 -0.0050 -0.0050 -0.0050 0.013 0.014 0.019 0.01 0.0071 0.013 -0.0050 0.0035 -0.0050 -0.0050 -0.0030 -0.0050							
TP-9 Depth (mbgs) Acce Acl An B(a)A B(a)P B(b)F B(ghi)P B(k)F C DA FI F I(123)P THIN N P Py 0.3 b 0.6 <0.0050	TP_12						
8-Deo 22 TP-11 Bepth (mbgs) 8-Deo 22 0.4 to 0.7 Subscription 8-Deo 22 0.4 to 0.7 Subscription Subscription <th colspan="6" subscrig="" subscription<="" td="" tht<=""><td></td></th>	<td></td>						
8-Depth (mbg.s) Ace Aci An B(a)A B(a)F B(b)F B(a)F C DA FI F I(123)P THIN N P Py 0.5 to 0.8 <0.050	BH/MW-12						
Depth (mbg s) Ace Acl An B(a)A B(a)F B(b)F B(b)F C DA FI F I(123)F T4IN N P Py 0.8 to 1.0 0.011 <0.0050	and the second second						
TP-17 Depth (mbgs) Acce Acl An B(a)A B(a)P B(b)F B(b)A/F B(a)P/F C DA FI F I(123)P THIN N P Py 0.2 to 0.5 -0.050 <t< td=""><td>REG 15 304</td></t<>	REG 15 304						
BH-5 Depth (mbg s) Ace Acl An B(a)A B(a)P B(b)F B(b)F B(b)F C DA FI F I(123)P THIN N P Py	PARAMETERS ABBREVIATION TABLE 2 SCS Institutional						
S81 0.8 to 40.050 40.05	Acenaphtrylene Acl 0.17 Anthracene An 0.74						
Ace Acl An B(a)A B(a)P B(b)F B(a)P B(b)F C DA FI F I(123)P T4IN N P Py BK SS3 2.5 to 3.0 <0.0050	Benzo(a)anthracene B(a)A 0.63 Benzo(a)pyrene B(a)P 0.3						
BH-11 Depth (mbg4) Acce Acl An B(a)A B(b)F B(b)F B(b)F C DA FI F I(123)P T4IN N P Py Bet \$53 2.3 b 3.0 -0.050 </td <td>senzo(o)+uordminene B((o)+ 0.78 Senzo(o),h, (perylene B((ghi))P 7.8 TP-9</td>	senzo(o)+uordminene B((o)+ 0.78 Senzo(o),h, (perylene B((ghi))P 7.8 TP-9						
	Chrysene C 7.8						
LEGEND	Denzola, njan Pracene DA 0.1 Fluoranthene FI 0.69						
	Fillofene F 69 Jeno(1,2,3,-cd)pyrene (123)P 0.48						
SOIL MEETS MECP TABLE 2 SCS	I-Metryinaphtalene 1-MN 3.4 2-Metryinaphtalene 2-MN 3.4						
	Naphtalene N 0.75 Phenanthrene P 7.8						
SUIL EACEEDS MECH TABLE 2 SCS	Pyrene Py 78						
- C NOT SAMPLED							
BOREHOLE NO. & LOCATION BH/MVV-8	exp Services Inc.						
TP-1 🛌 TEST PIT NO. & LOCATION BH/MW-5 🚽 PM MONITORING WELL (WITH PIEZOMETER)	100-2650 Queensview Drive Ottawa, ON K2B 8H6						
NO. & LOCATION	www.exp.com						
	File NO 0TT−22017859−A0						

veetvalley Dr.	
BH-2 TP-4 TP-5	TP-1
BH/MW-5 PM BH-6	
BH/MW-8 BH-9	
TP-7 BH/MW-10	
BH/MW-11	TP-8
0 5m 10m HORIZONTAL	30m
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT NOUVELLE ÉCOLE ÉLÉMENTAIRE CATHOLIQUE AVALON III SWEETVALLEY DR. AT OLD TENTH LINE RD., OTTAWA, ON	SCALE 1:750 SKETCH NO
SOIL ANALYTICAL RESULTS PAH	FIG 8

	Ø					A Contraction			260	9								prom. Sv
	and the second			K			in the second				TP	BH/M	N-14 (₽-16	BH-	13 •		BH-1
and the	ALC: NOT			N	a state		- And	# 95%			A State of the			BH-15	P	- <u>14</u>		BH-4
TP-1	Depth (mbgs) 0.5 to 0.8	Sb As -0.20 1.2	Ba Be 62 0.33	B <5.0	Cd Cr <0.10 28	Co 5.8	Cu Pb 11 6	Mo ⊲0.50	Ni 15	Se Aq <0.50 <0.20	TI 0.11	U N 0.62 2	9-Deo-22 / Zn 8 33				P-13	
TP-5 DUP	Depth (mbgs)	Sb As <0.20	Ba Be 190 0.56 240 0.69	B 6.9 7	Cd Cr 0.12 58 <0.10 97	Co 12 19	Cu Pb 28 13 42 12	No 0.92 1.00	Ni 35 55	Se Aq ⊲.50 ⊲.20 ⊲.50 ⊲.20	TI 0.24 0.37	U N 1 5 1 7	9-Deo 22 / Zn 0 66 8 100 8-Deo 22		ALL CAL	M. F. S.		
TP-9	Depth (mbgs) 0.3to 0.6 Depth (mbgs)	Sb As -0.20 2.5	Ba Be 180 1	B 9.3	Cd Cr 0.18 100	Co 22	Cu Pb 41 11	No 0.73	Ni 59	Se Aq =0.50 =0.20	TI 0.3	U N 1.6 8	5 90 8-Deo-22		TP-12		- C	P-11 F
P-11	0.4 to 0.7 Depth (mb.gs)	30 AS -0.20 1.8 	Da De 100 0.42 Ba Be	5.0 B	Cd Cr	Co	17 140 Cu Pb	0.6 Mo	21 Ni	Se Aq <0.50 <0.20 Se Aq	0.15 TI	0.92 4 U V	2 n 1 48 8-Deo 22 / Zn	S. C.	BH/M	W-12		1.
TP-15	0.5to 0.8 Depth (mb.gs) 0.8to 1.0	40.20 1.7 Sb As 40.20 2.1	100 0.38 Ba Be 63 0.33	54 B 5	0.11 32 Cd Cr <0.10 23	7.2 Co 6.6	17 11 Cu Pb 13 16	0.83 Mo 0.73	19 Ni 13	<0.50 < 0.20 Se Ag <0.50 < 0.20	0.15 TI 0.13	0.84 3 U N 0.57 2	3 49 8-Deo-22 / Zn 8 30					
TP-17	Depth (mbgs) 0.2 to 0.5	Sb As 0.24 1.3	Ba Be 150 0.27	87	Cd Cr 0.21 27	Co 5.8	Cu Pb 50 35	Mo 1.5	Ni 18	Se Aq ⊲0.50 0.41	Ti 0.14	U N 0.82 2	8-Deo 22 / Zn 3 120	DARAMETERS		REG 153/04		TP-10
BH-8 SS1	Depth (mbgs)	Sb As <0.20 1.1	Ba Be 68 0.31	В -5.0	Cd Cr ⊲0.10 33	Co 6.7	Cu Pb 15 7.4	Mo 0.68	Ni 18	Se Aq ⊲0.50 ⊲0.20	TI 0.099	U N 0.67 3	22-Deo-22 / Zn 0 33	Antimony	Sb	Institutional 7.5		
BH-10	Depth (mbgs)	Sb As	Ba Be	В	Cd Cr	Co	Cu Pb	Mo	Ni	Se Ag	TI	U N	22-Deo 22 / Zn	Arsenic Barium	As Ba	18 390		
\$\$3	2.5 to 3.0	⊲0.20 2.1	220 1.1	11	0.15 110	25*	48 11	0.73	65	-0.50 -0.20	0.38	1.1 90	* 100 22-Deo 22	Bery Ilium Boron	Be	5 120	一次	
BH-11 \$\$3	Depth (mbgs)	\$b As ⊲0.20 2.7	Ba Be 210 1	B 13	Cd Cr 0.13 100	Co 25*	Cu Pb 46 11	№ <0.50	Ni G3	Se Ag <0.50 <0.20	TI 0.33	U V 0.83 87	Zn 700	Cadmium Chromium	Cd Cr	1.2 160	TP-9	
ALC: NOTING	1.000	ALC: NO	1. 1. 1. 1. 1.	Corp. 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.30	12 10				No.	E SEE	and the	Cobait	Co Cu	22 180		IN T
LEGE	END												a let a	Lead Molvibdenum	Pb	120		
											100	Mart -		Nickel	NÎ	130	1.1.1	S ANS
											1	Che.		Silver	Aq	2.4		
		IL MEEIS N	IECP TABLE	. 2 365								17 and	Bergen .	Uranium	U	23	and the	al lan
	🔶 SO	IL EXCEEDS	MECP TAE	BLE 2 SC	S							+ frei	Park 1	Vanadium Zinc	V Zn	86 340		A PARA
		t sampled																
BH-1	BO	REHOLE NO.	& LOCATIO	N BH	/MW-8_(M	ONITORING	WELL I	NO. &	LOCATION								DESIGN
	Υ				(88)81 -	T									100-2650 Queensview E	prive	vn	DRAWN
IP-1		st pit NO.	& LOCATION	ВН	/11/11/11/15	PM MC	ONITORING D. & LOC	; WELL (ATION	(WITH P	PIEZOMETE	R)				Ottawa, ON K2B 8H6	U		DATE JANUARY 2023

Filename: E:\OTT\OTT-22017859-A0\60 Execution\65 Drawings_Envi\22017859-A0_Ph2-ESA.dwg Last Saved: Feb 3, 2023 3:40 PM Last Plotted: Feb 3, 2023 3:40 PM Plotted by: SeverA

prom. Sw	BH-2 TP-4 TP-4 TP-5 TP-5 TP-5 TP-5 BH/MW-5 TP-6 TP-6 TP-2 BH-7 C	
11 TP-10	BH/MW-8 BH-9 TP-7 BH/MW-10 BH/MW-11	P-8
D CONC TYPIC, IN T	E SOIL SAMPLES EXCEEDED THE TABLE 2 SCS FOR COBALT AND VANADIUM, HOWEVER THE EENTRATIONS WERE WITHIN THE AL RANGE OF CONCENTRATIONS HE OTTAWA AREA AND ARE NOT NDICATIVE OF ANTHROPOGENIC IMPACT	<i>30m</i> 1:750
DESIGN DRAWN AS DATE JANUARY 2023 FILE NO OTT-22017859-A0	PHASE TWO ENVIRONMENTAL SITE ASSESSMENT NOUVELLE ÉCOLE ÉLÉMENTAIRE CATHOLIQUE AVALON III SWEETVALLEY DR. AT OLD TENTH LINE RD., OTTAWA, ON SOIL ANALYTICAL RESULTS METALS	scale 1:750 sketch No FIG 9

										8-Dec-22
F2	F3	F4	1.1-DCA	1,2-DCA	1,1-DCE	C-1,2-DCE	H1,2-DCE	PCE	TCE	VC
<10	54	Ş	<0.040	<0.049	<0.040	<0.040	⊲0.040	<0.040	<0.010	<0.019
										8-Dec-22
F2	F3	F4	1,1-DCA	1,2-DCA	1,1-DCE	C-1,2-DCE	H1,2-DCE	PCE	TCE	VC
<10	71	PP.	<0.040	<0.049	<0.040	<0.040	<0.040	-0.040	<0.010	<0.019
										8-Dec-22
F2	F3	F4	1,1-DCA	1.2-DCA	1,1-DCE	6-1,2-DCE	H1,2-DCE	PCE	TCE	VC
<10	150	1700	<0.040	<0.049	<0.040	<0.040	<0.040	<0.040	<0.010	<0.019
	-									22 D
-	-	-		10001				-	707	20-0 60-20
12	F 5	14	1,1-DCA	1,2-UCA	1,1-002	6-1,2-DCE	F1,2-DCE	PUE	ICE	VC
<10	-50	-50	<0.040	<0.049	<0.040	<0.040	<0.040	<0.040	<0.010	<0.019
										22-D ec-2
F2	F3	F4	1,1-DCA	1,2-DCA	1,1-DCE	C-1,2-DCE	H12-DCE	PCE	TCE	VC
<10	-50	\$	<0.040	<0.049	<0.040	<0.040	<0.040	-0.040	<0.010	<0.019
										22-Dec-22
F2	F3	F4	1.1-DCA	1.2-D CA	1.1-DCE	-1.2-DCE	+1.2-DCE	PCE	TCE	VC
<10	-50	<50	<0.040	-0.049	<0.040	<0.040	<0.040	<0.040	<0.010	<0.019
				•	<u> </u>	•	ct	ıdary		•

EXP Services Inc.

Conseil des écoles catholiques du Centre-est Phase Two Environmental Site Assessment 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0 March 9, 2023

Appendix B: Survey Plan

EXP Services Inc.

Conseil des écoles catholiques du Centre-est Phase Two Environmental Site Assessment 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0 March 9, 2023

Appendix C: Sampling and Analysis Plan

OTT-22017859-A0 2666 Tenth Line Road, Ottawa Ontario

Objectives:

The objective of this project is to assess the soil and groundwater conditions on the site in the areas of potential environmental concern identified in the Phase One ESA completed by EXP to support a site plan application with the City of Ottawa.

Test Pits:

A total of 17 test pits will be excavated on the site.

- Log each sample, describing soil type, colour, staining, odour, petroleum vapour.
- Submit seven samples and one duplicate from the fill material. Sample locations selected with be based on field observations and to provide sit coverage.
- Soil samples to be submitted for analysis of PHC, PAH, VOC, and metals.
- Test pits to be backfilled upon completion.

Drilling:

A total of 15 boreholes will be drilled on the site, three of which will be completed at monitoring wells.

- All monitoring wells to be screened across water table.
- Make sure that no screens straddle bedrock-soil interface. In other words, MW must be installed completely within bedrock or completely within overburden (most, if not all, will be in bedrock).
- As drilling progresses, log each sample, describing soil type, colour, staining, odour, petroleum vapour.
- Submit one worst case soil samples from BH-8, BH-10, and BH-11 based on the following considerations:
 (1) presence of staining;
 (2) presence of odours;
 (3) petroleum vapour concentration. If the worst-case sample cannot be identified based on those factors, submit the sample at water table depth or the sample immediately above bedrock surface.
- Soil samples to be submitted for analysis of PHC, VOC, PAH and/or metals.

Monitor Development:

- Develop wells at least 3 x well volumes or until clear
- Do not purge if monitor contains LNAPL.
- Purged water to be stored in a drum to be collected by a third party

Low Flow Groundwater Sampling

- Monitor all monitoring wells and record petroleum vapours, depth to water, and depth to LNAPL, if any
- Be careful to sample from near top of water table and use low flow rate to avoid collecting any fine sediment
- Prior to sampling, ensure the following field parameters are stable (per the field measurement table): pH, conductivity, turbidity, DO, temperature and ORP
- The groundwater samples will be submitted for analysis of PHC, VOC, PAH and/or metals.
- EXP will survey ground elevations and top of pipe elevations, as well as UTM coordinates

EXP Services Inc.

Conseil des écoles catholiques du Centre-est Phase Two Environmental Site Assessment 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0 March 9, 2023

Appendix D: Borehole Logs

Explanation of Terms Used on Borehole Records SOIL DESCRIPTION

Terminology describing common soil genesis:

- *Topsoil:* Mixture of soil and humus capable of supporting good vegetative growth.
- *Peat:* Fibrous fragments of visible and invisible decayed organic matter.
- Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc.; none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the These readings are to advise of the presence of gas only, and a detailed study is gas. recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- *Till:* The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure:

Desiccated: having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.

- Stratified: alternating layers of varying material or color with the layers greater than 6 mm thick.
- Laminated: alternating layers of varying material or color with the layers less than 6 mm thick.
- *Fissured:* material breaks along plane of fracture.
- Varved: composed of regular alternating layers of silt and clay.
- *Slickensided:* fracture planes appear polished or glossy, sometimes striated.
- *Blocky:* cohesive soil that can be broken down into small angular lumps which resist further breakdown.

- Lensed: inclusion of small pockets of different soil, such as small lenses of sand scattered through a mass of clay; not thickness.
- Seam: a thin, confined layer of soil having different particle size, texture, or color from materials above and below.

Homogeneous: same color and appearance throughout.

Well Graded: having wide range in grain sized and substantial amounts of all predominantly on grain size.

Uniformly Graded: predominantly on grain size.

All soil sample descriptions included in this report follow the ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. The system provides a group symbol (e.g., SM) and group name (e.g., silty sand) for identification. The classification excludes particles larger than 76 mm. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually in accordance with ASTM D2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems. Others may use different classification systems; one such system is the ISSMFE Soil Classification.

					ISSMFE SO	IL CLASSIFICA	TION				
CLAY		SILT			SAND			GRAVEL	COBBLES	BOULDERS	
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
0.002	0.006	0.02	0.06	0.2	0.6	2.0	6.0	20	60	200	L
EQUIVALENT GRAIN DIAMETER IN MILLIMETRES											
	CLAY (PLA	ASTIC) TO		FINE MEDIUM			CRS.	FINE COARSE			
	SILT (NON	IPLASTIC)			SAND GRAVEL						

UNIFIED SOIL	CLASSIFICATION

Terminology describing materials outside the USCS, (e.g., particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present and as described below in accordance with Note 16 in ASTM D2488-09a:

Table a: Percent or Proportion of Soil, Pp						
	Criteria					
Trace	Particles are present but estimated to be less than 5%					
Few	5≤Pp≤10%					
Little	15≤Pp≤25%					
Some	30≤Pp≤45%					
Mostly	50≤Pp≤100%					

The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N' value:

Table b: Apparent Density of Cohesionless Soil						
	'N' Value (blows/0.3 m)					
Very Loose	N<5					
Loose	5≤N<10					
Compact	10≤N<30					
Dense	30≤N<50					
Very Dense	50≤N					

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis, Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils:

Table C: Consistency of Cohesive Soil					
Consistency	Vane Shear Measurement (kPa)	'N' Value			
Very Soft	<12.5	<2			
Soft	12.5-25	2-4			
Firm	25-50	4-8			
Stiff	50-100	8-15			
Very Stiff	100-200	15-30			
Hard	>200	>30			

Note: 'N' Value - The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in meters (e.g. 50/0.15).

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:

WATER LEVEL MEASUREMENT

Σ

Open Borehole or Test Pit

Monitoring Well, Piezometer or Standpipe

			Log	of Te	9	st l	Pit	B	-1-0	<u>)1</u>				*	axe	í.
Pı	rojec	t No:	OTT-22017859-A0							F	iaure	No.	3		mΡ	1
Pı	rojec	t:	Proposed Avalon III School								Pa		1 of	3		
Lo	ocatio	on:	2666 Tenth Line Road, Orleans, ON								14	90. <u> </u>				
Da	ate D	rilled:	'Dec. 19, 2022			Split Spo	oon Samp	le	\boxtimes		Combu	stible Vap	our Readii	ng		
Dr	ill Ty	pe:	CME-45 Track Mounted Drill Rig			Auger S	ample				Natural	Moisture (Content		×	
Da	atum		Depth Below Ground			Dynamic	Cone Te	st			Undrain	ed Triaxia	lat	Γ	—0 —	
Lc	ggeo	d by:	M.Z. Checked by: I.T.			Shelby T Shear S Vane Te	⁻ ube trength by st	/	■ + s		% Straii Shear S Penetro	n at Failure Strength by meter Tes	e / st		↓	
G W L	S Y M B		SOIL DESCRIPTION	Depth Below Ground	D e p t	Shear	andard Pe	netration T 40 6	est N Val	ue 30	Combu 2 Na Atter	stible Vap 250 5 tural Moist	our Readir 00 7: ure Conte s (% Dry W	ng (ppm) 50 nt % Veight)	S M D D Unit Wt.	
	Ľ			87.14	h 0		50 1	100 1	50 2	00		20 4	40 E	50	E KIN/III S	
	\bigotimes	Sanc	and gravel, with topsoil inclusions,									×			AS1	
		some	e clay, moist,													
		_		85.7	1	0						×			X ss2	
	<u>`````</u>	-TOP	SOIL m. wet (soft)	85.3		8			2	215 kPa						
			<u>í</u>	7	2	0									19.8	
		_hard)	n, moist, high plasticity (very sun to .	_		6		10	1 kPa					<u> </u>	V SS4	
			Y CLAY	84.3	3	29 kPa	a								↓ 18.2 Ξ	
		Grey	, wet (soft to firm)			4s=4 ⊙							×		SS5	
		_		-		29 kPa	1							V		
		_		-	4	s = 3									1	
		_		_												
		_		Ham	5	r Weight								×	SS6	
						19 kPa								¥		
		_				s = 4										
		_		Ham	6	r Weight									37/	
		_		_		P								×	x ss7	
		_		_	7	24 kPa									1	
						s - 5										

AVALON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23 7950 0 Ę

ON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT 1			8 9 10											
AVAL														
- 69	Continued Next Page		12	L'estre Pi				1	[1.7.0.0.7	1		.]	
201785	NOTES: 1. Borehole/Test Pit data requires Interpretation by exp.	WAT	ER L	EVEL REC	ORDS	3			CO	RE DRI	LLING R	ECOR	D	
1-2		Elapsed		Water		Hole Ope	en	Run	Dep	th	% Re	C.	R	2D %
Б	2. The borehole was backfilled upon completion.	Upon Completion	L	<u>.ever(iii)</u> 3.7		no cave	<u>`</u>	1	33 - 3	38	0			0
ΡΗ	3. Field work supervised by an EXP representative.	Contraction Completion		0		5476	-	2	33.8 -	34.5	88			Ŭ.
ST	4. See Notes on Sample Descriptions							3	34.5 -	36.2	97			
LOG OF TE	5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0							4	36.2 - 3	37.7	98			

Log of Test Pit BH-01

Project No: <u>OTT-22017859-A0</u>

Project: Proposed Avalon III School Figure No.

'	10	yeor.	FTOPOSED AVAION IN SCHOOL									Paę	ge.	2_of	3		
		S Y		Depth Below	N D	Sta	indaro	l Pen	etration T	est N Va	lue	Combus 2	stible Va 50	apour Readi 500 7	ng (ppn 50	n) S A M	Natural
Ì	Ý	B O	SOIL DESCRIPTION	Ground	p	Shear	20 Streng	4(gth) 6	0	80 kPa	Nat Atterb	ural Moi erg Lim	isture Conte iits (% Dry V	nt % Veight)	PL	Unit Wt. kN/m ³
-	-			75.14	12		50	10	0 1	50 2	200	2	0	40 6	50 	- S	
			Grey, wet (soft to firm) (continued)	_													
																··· •	
	l			—	13												
	l			_													
	l				14												
	l				14												
	l			_													
				_	15												
				_	16												
	l			_				<u>:::</u>						<u>} : : : : : : : : : : : : : : : : : : :</u>			
	l				47			:::: :::::::::::::::::::::::::::::::::						1			
					11												
				_											201	<u>.</u>	
				_	18												
								::::									
				_	19												
				_										······································			
	l			_	20	3313		0	2002						331		
				_													
				_	21			<u></u>		- 2 - 1 - 2 - 2 - 2 - 1 - 2 - 2				· · · · · · · · · · ·			
	l			_													
	l																
	l			_	22												
				_					<u></u>								
				4	23												
	l														30		
	l			-	24			<u></u>									
	l			_				:::	::::::	:::::				;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	301	····	
	l																
	l				25												
				-													
				4	26												
Ľ	l		Continued Next Page			13816		:::	2132	3343	<u> </u>				1381		
	IOT .Bo	ES: rehole/	Test Pit data requires Interpretation by exp	WATE	RL	EVEL R	ECO	RDS				CO	RE DR	RILLING R	ECOF	D	
	bet	fore use	e by others	Elapsed		Water		F	lole Ope	en	Run	Dep	th	% Re	с.	R	QD %
	. Th	e boreł	ole was backfilled upon completion.	Upon Completion	L	<u>evei (m)</u> 3.7)		no cave	•	1 1	<u>(m</u> 33 - 3) 3.8	0			0
	Se	e Note	s on Sample Descriptions								2	33.8 - 3	34.5	88			
í -	. Thi	is Fiau	e is to read with exp. Services Inc. report								4	36.2 - 3	37.7	97			
	OT	T-2201	7859-A0														

Log of Test Pit <u>BH-01</u>

Project No: <u>OTT-22017859-A0</u>

Project: Proposed Avalon III School

Figure No.

	-)-	······································								Pa	ge	3_ of	3		
G	S Y		Depth Below	v D	Standa	rd Pe	enetration T	est N Va	lue	Combus 2	stible Va 50	pour Readir 500 7	ng (ppm 50	1) S A M	Natural
W L	м В О	SOIL DESCRIPTION	Ground	p t	20 Shear Stree	ngth	40 6	0	80 kPa	Nat Atterb	ural Moi berg Lim	sture Conte its (% Dry V	nt % Veight)	P	Unit Wt kN/m ³
	ī MM		60.74	ľ	50		100 15	50 2	200	2	20	40 6	30 I	Š	
		Grey, wet (soft to firm) <i>(continued)</i>													
			_	27	/										
			-	28	3	3 2 4									
			_												
			-	29		333	12122				1388			<u>.</u>	
			_												
				30											
		_	-			* * *		******						<u>.</u>	
				31											
ļ															
			-												
			_	32	2										
ļ															
			-		331311	:::	:::::	:::::		:::::			:::::	3	
			54.1	33	3										
	L)	Clayey, silty sand with gravel, cobbles and	ł												Run
	H)	boulders	53.3												
ł		<u>LIMESTONE BEDROCK</u>	_	34	1	<u></u>		• • • • • •						<u></u>	Run
ŀ															T Carr
		1 T	_	35	5										
	Т	4	_											<u>.</u>	Run
				36		333	:::::	::::::	:::::	:::::	13:35			<u>.</u>	
			_												
				27	7										Run
ŀ				3/				2222							T Carr
-		I	49.4			<u>.</u>	••••••	*****						÷ • •	
		Borehole Terminated at 37.7 m Depth		Γ								: T : : : :			
														:	
														:	
														:	
														:	
														:	
	TES:		WATE	RI		ORL	S			CO	RE DR		ECOR	D	
ı.B b	oreno efore	use by others	Elapsed		Water		Hole Ope	en	Run	Dep	th	% Re	c.	R	QD %
2.T	he bo	prehole was backfilled upon completion.	Time	L	<u>_evel (m)</u> 3.7	-	To (m)		No.	(m)	0			0
3.F	ield v	vork supervised by an EXP representative.	Completion		0.7				2	33.8 -	34.5	88			U
4.S	ee N	otes on Sample Descriptions							3	34.5 -	36.2	97			
5.T O	his F TT-2	igure is to read with exp. Services Inc. report 2017859-A0							4	36.2 -	31.7	98			

Project No:	OTT-22017859-A0		33	5 1	PI		DI	1-0	<u>2</u>				·**(Э	xp
Project:	Proposed Avalon III School								F	igure	No	4			1
_ocation:	2666 Tenth Line Road, Orleans, ON									Pa	ige	<u>1</u> of	1		
Date Drilled:	'Dec. 14, 2022			Split Sp	oon Sar	nple		X		Combu	stible Var	our Readi	na		
Drill Type:	CME-45 Track Mounted Drill Rig		•	Auger S	ample					Natural	Moisture	Content			×
Datum:	Depth Below Ground			SPT (N) Dynamie	Value Cone	Test		0		Atterbe Undrair	rg Limits ned Triaxi	al at	H		
ogged by:	M.Z. Checked by: I.T.		-	Shelby⊺ Shear S Vane Te	Tube trength est	by		■ + s		% Strai Shear S Penetro	n at Failu Strength b ometer Te	re 9y est			▲
S Y M B - O	SOIL DESCRIPTION	Depth Below Ground m	D e p t h	Stear	andard I 20 Strengtl	Pene 40	etration T	est N Valı 0 8	ue 60 kPa	Combu 2 Na Atter	istible Va 250 Itural Mois berg Limi	oour Readi 500 7 sture Conte ts (% Dry V	ng (ppm) 50 nt % Veight)	SAMPLE	Natural Unit Wt. kN/m ³
GRA	NULAR FILL and gravel, brown, moist	86.89 86.6	0		50	10	0 15	50 20	00	×	20	40 6	50	S ·	AS1
Sand	ا and gravel, with topsoil inclusions, e clay, moist,	85.9	1	10 O							×				SS2
Brow SILT	<u>SOIL</u> /n, wet (soft)	85.5		10 O			16	1 kPa			×			X	19.0 SS3
Brow CLA Grey	n, moist (very stiff to hard) ۲ ۲, wet, high plasticity (soft to firm)		2	_47 kPa ○▲ 24 kPa								*			SS4
	-	Ham	3 1me	Weight									x		SS5
	-	_	4	19 kPa ∔ s = 2.7_											
	-	_													
	-		5	4 kPa +											SH6
	-	Hom	6	Weight										90/	
	-	_		26 kPa										×X In	SS7
	-	_	ľ	s = 3.7											
	-	Ham	8	Weight								×	Ð		SS8
E	orehole Terminated at 8.5 m Depth	10.4		-s=2											

1/23/23	
TROW OTTAWA.GDT	
2023.GPJ	
IAN 5,	
BH LOGS	
AVALON III -	
859 -	N
-22017	1
оЩ-	2
ЪП	3
TEST	4
3 OF	5
ĕ	

NOTES: 1.Borehole/Test Pit data requires Interpretation by exp.	WAT	ER LEVEL RECO	ORDS		CORE DF	RILLING RECOR	RD
before use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
2. The borehole was backfilled upon completion.	Time	Level (m)	To (m)	No.	(m)		
3. Field work supervised by an EXP representative.	Upon Completion	4.6	no cave				
4. See Notes on Sample Descriptions							
5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0							

	Log	of Te)	st Pit BH-03)	*evr	h
Project No:	OTT-22017859-A0				•		٦.
Project:	Proposed Avalon III School				FI	igure No. <u>5</u>	
Location:	2666 Tenth Line Road, Orleans, ON					Page. <u>1</u> of <u>3</u>	
Date Drilled:	: 'Dec. 16, 2022			Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-45 Track Mounted Drill Rig			Auger Sample		Natural Moisture Content	
Datum:	Depth Below Ground			Dynamic Cone Test		Undrained Triaxial at	
Logged by:	M.Z. Checked by: I.T.			Shelby TubeShear Strength byVane TestS		% Strain at Failure Shear Strength by Penetrometer Test	
G Y W B U O L	SOIL DESCRIPTION	Depth Below Ground m	D e p t h	Standard Penetration Test N Value 20 40 60 80 Shear Strength 50 100 150 200	kPa -	Combustible Vapour Reading (ppm) 250 500 750 A Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	
GRA Sand brow	NULAR FILL d and gravel, with topsoil inclusions, /n, moist		0			AS1	
Brov	SOIL vn, wet (soft)	85.6	1	215 k	Pa_	ss2	
Brov	vn, moist (stiff to hard)	_	2	8	Pa	SS3 17.8	
	Y CLAY	84.2	3	2:		X SS4	
KKKK	.,	1	13				1

3 1s = 3.3 P

19 kPa s = 4

4

Hammer Weight

14 kPa

s = 3

34 kPa

; s = 3.5

29 kPa

s=4

Hammer Weight

78.3

1

85 Ŵ

ſ

 \square

Ø

X

SS5

SS6

SH7

SS8

Dynamic Cone Penetration Test (DCPT) Conducted from 9 m depth to cone refusal at 36.1 m depth

_	_	12					
Continued Next Page		12		, <u> </u>			
nole/Test Pit data requires Interpretation by exp.	WAT	ER LEVEL RECO	ORDS		CORE DR	RILLING RECOR	RD
e use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
work supervised by an EXP representative.	Upon Completion	3.0	no cave				
Notes on Sample Descriptions							
Figure is to read with exp. Services Inc. report 22017859-A0							

Log of Test Pit BH-03

Project No: OTT-22017859-A0

Project: Proposed Avalon III School

Figure No.

													Pa	ge.	<u>2</u> of	3		
		S		Depth Belo	w D		Sta	ndard	Pen	etration T	est N Va	lue	Combu	stible Va	apour Readir	ng (ppn	n) S A	Natural
	G W	м В	SOIL DESCRIPTION	Ground	e p		2	0	4	0 6	0	80	Na	tural Moi	isture Conte	nt %	-M P	Unit Wt.
	-	ē		m 74 01	h	Sh	near S	Strengt ∩	th 10	0 14	50 3	kPa 200	Atter	berg Lim 20	11ts (% Dry W 40 6	/eight)	LEG	kN/m ³
			Dynamic Cone Penetration Test (DCPT)	/4.01	12									1			:::	
			Conducted from 9 m depth to cone refus	al														
			at 36.1 m depth <i>(continued)</i>															
			_	_	13													
						Æ										221		
			_	_		1	<u></u>			*****	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1			<u> </u>		<u></u>	
										::::::				1333		331	3	
			_	_	14												÷.	
										$\langle \cdot \cdot \rangle \langle \cdot \rangle$				1333):::::::::::::::::::::::::::::::::::::	331	:::	
			_													13 (11		
			_	_	15	;												
										····								
			—	-				• • • • •		· · · · ·			· · · · · · · · ·		*****		····	
					16													
						liT												
			_	4			- : - : : : - : - : : :										··· -	
			_	-	17													
			_															
			_	_	18					·····								
										::::::								
			—	-			1			÷ ; ; ; ; ; ;								
			_		10					\$4.\$\$						331		
					13													
			_	_														
							1											
			_	-	20					2122						331		
			_															
			_	_	21		-						· · · · · · · · · · · · · · ·		<u>;</u>		÷	
3/23							÷ŧ											
1/2			_	-													÷	
GDT			_		22												÷	
WA.0																		
TTA			_	_		1.1.1					· · · · · · · · · · · · · · · · · · ·				1 - - (- 1 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4		<u></u>	
0 ∧								1.23								221	÷.	
IRO			_		23			1									÷	
2			_	_				1							<u>}::::::::::::::::::::::::::::::::::::</u>		<u></u>	
23.G								1		<u></u>				1333		1381	2	
, 20			_	-	24	1											<u>.</u>	
AN 5																1331		
IL SE			_			1313	:::::	1::		:::::	:::::	::::::	:::::::	1333	1::::::::::::::::::::::::::::::::::::::	333	:::	
ő			_	_	25	;			• • •							222		
ВН								/								1331		
į			_	_											· · · · · · · · · · · ·		··· ·	
LON LON								L										
AVA			_		26	, 		\sum										
129 -			Continued Next Page		_	1					L	T	.1	1.(: If 212 22 22		.:1	l
0178	NO 1.B	TES: orehol	e/Test Pit data requires Interpretation by exp.	WATE	RL	EVE	LR	COF	RDS	5			CC	RE DF	RILLING R	ECOF	RD	
1-22(b	efore ι	use by others	Elapsed		Wat	ter		ŀ	lole Ope	en	Run	De	oth	% Re	C.	R	QD %
E	2.T	he bor	whole was backfilled upon completion.	Time n Completion	L	evel.	<u>l (m)</u> 0	-+		To (m)		No.	(n	ו)				
Ħ	3.F	ield wo	ork supervised by an EXP representative.	- Completion		3.0	0			no cave								
EST	4.S	ee No	tes on Sample Descriptions															
ЦЦ	5. Ţ	his Fig	ure is to read with exp. Services Inc. report															
000	С	1 [-22	U17859-AU															
님								1				1	1		1			

Log of Test Pit BH-03

Project No: OTT-22017859-A0

Project: Proposed Avalon III School

Figure No.

												Page.	3	of _	3		
		S		Depth Below	D	Stand	lard	Pene	tration To	est N Va	lue	Combustibl	Vapou	ur Readir	ng (ppn	1) S A	Notural
	G	Ň	SOIL DESCRIPTION	Ground	e p	20		40	60)	80	250 Natural	Moistu	re Contei	50 nt %	- M	Unit Wt.
	니	ĕ		m	t h	Shear Stre	engt	n 			kPa	Atterberg	Limits ((% Dry W	/eight)	Ē	kN/m ³
ŀ	_	-	- Dynamic Cone Penetration Test (DCPT)	60.41		50	1	100) 15	0 2	200	20	40) 6		÷	
			Conducted from 9 m depth to cone refusal														
			at 36.1 m depth (continued)	_	27		1			· · · · · · · · · · · · · · · · · · ·	+ + + + + + + + + + + + + + + + + + + +		· · · · · ·	·····		<u></u>	
							1			::::::	11111			::::::::::::::::::::::::::::::::::::::	201		
			_ ·	-			\mathbf{X}			<u></u>							
							1									÷.	
			_	-	28		1			·····				<u></u>			
							1										
			—	-			1	::: 			<u></u>			<u></u>	<u></u>	÷.	
							1			::::::::::::::::::::::::::::::::::::::				<u></u>		3	
			-		29		\mathbf{X}							<u></u>			
)								÷.	
		ĺ															
			_		30		- {							<u></u>		<u></u>	
										2222				$\vdots \vdots \vdots \vdots \vdots$	221	:::	
				4							<u> </u>						
						138131	1					136336		<u>.</u>	1333		
			_	4	31												
				1				ľ		· · · · · · · · · · · · · · · · · · ·							
			_ ·	-					\rightarrow	<u></u>	+++++++++ ++++++++++++++++++++++++++++			<u></u>		<u></u>	
											1				221	÷:	
			-	-	32					<u> </u>	X			<u></u>		<u>.</u>	
										$\langle \rangle$						3	
			— ·							<u> </u>				·····			
			_		33					C.							
						221211	123		21.2 S I	\sim	1	1222212	::::	$\vdots \vdots \vdots \vdots \vdots$	221	÷:	
		ĺ				201001					X			<u></u>	201		
			_		34					/				<u> </u>		÷:	
					34					/							
									<u> </u>	· · · · · · · · · · · · · · · · · · ·				<u></u>			
										\mathbf{X}	11111						
				_	35				0 1 - 2 - C - I					<u></u>			
											N					2	
				_						· · · · · · · · · · · · · · · · · · ·				<u></u>	****	· · · ·	
23/2											>						
1			_ ·	-	36		· · · · ·			· · · · · · · · · · · · · · · · · · ·	+	· · · · · · · · · · · · · · · · · · ·		········		<u></u>	
191	⊦		Cono Pofusal at 36.3 m Donth	50.5			1 · 2 · 4 			······································	· · · · · · · · · · · · · · · · · · ·			<u></u>		··· -	
VA.0			Cone Refusal at 56.5 In Depth				: : :	-		::::				::::		-	
₹																-	
히							: : :	:		::::			:::	::::	:::	:	
§																-	
Ĕ							: : :	:		:::::			: : :	:::::	:::	:	
<u> </u>																-	
23.6							:::	-		::::			: : :	::::	:::	:	
202																-	
N 5,							: : :	:		\vdots \vdots \vdots \vdots			:::	\vdots \vdots \vdots \vdots	:::	:	
AL S																-	
g										::::				::::		:	
Ĭ				1									:::			:	
ē				1			: : :									:	
≣							:::						: : : 			:	
LO				1				:		::::			:::	::::		:	
AVA								1								:	
- 65				1	I			:			1::::					:	
1785	NO.	TES:						20				COPE	י וופח			חי	
2201	1.B	orehol efore i	e/ I est Pit data requires Interpretation by exp.	VVAIE				.us									
Ë	2 T		zaholo waa baakfillad unan completien Elaj	ne	I.	vvater evel (m)		н	ule Ope To (m)	n	Kun No	Depth (m)		% Re	J.	R	QU %
0	2.1		Upon Co	mpletion		3.0		1	no cave								
티	3.Fi	ield wo	ork supervised by an EXP representative.														
EST	4.S	ee No	tes on Sample Descriptions														
Ē	5. T	his Fic	jure is to read with exp. Services Inc. report														
00	0	TT-2Ž	017859-A0														
ĕ																	

Log of	f Te	Ņ	st F	Pit	B	H-C) <u>5</u>				%		xn
Project No: <u>OTT-22017859-A0</u>							,	- - iaure I	No	6		-	·γγ·
Project: Proposed Avalon III School								igure i	NU	0	1		
Location: 2666 Tenth Line Road, Orleans, ON								Ра	ge	OT	<u> </u>		
Date Drilled: 'Dec. 15, 2022			Split Spo	on Sampl	e	\boxtimes		Combus	tible Vapo	ur Readii	ng		
Drill Type: CME-45 Track Mounted Drill Rig			Auger Sa SPT (N) \	mple /alue				Natural Atterber	Moisture C g Limits	Content	F		× −⊖
Datum: Depth Below Ground			Dynamic	Cone Tes	st			Undrain % Strain	ed Triaxial	at	_		\oplus
Logged by: M.Z. Checked by: I.T.	_		Shelby To Shear Str Vane Tes	ube rength by st		+ s		Shear S Penetro	trength by meter Test	t			
G S Y SOIL DESCRIPTION	Depth Below Ground	D e p	Sta 2	ndard Per	etration	Fest N Va	lue 80	Combu 2 Nat	stible Vapo 50 50 tural Moistu	our Readir 007	ng (ppm) 50 nt %	S A M P	Natural Unit Wt.
	m 37.24	t h	Shear S	Strength 0 10	00 1	50 2	kPa 200	Atter	perg Limits 20 4	(% Dry W 0 6	Veight) 60	LES	kN/m ³
Sand and gravel, with topsoil inclusions,	-	U						>	• • • • • • • • • • • • • • • • • • •				AS1
	36.0	1	6 O						×			X	SS2
Brown wet (soft)	35.7											₿	
SILTY CLAY Brown, moist (very stiff to hard)		2	9 O				215 KPa		×			X	SS3 19.2
	34.6		.6. 0. 24 kBa	_80 kPa					>	C		$\frac{1}{2}$	SS4
Grey, wet, high plasticity (soft to firm)		3	24 KFa 									:/ :	СЦБ
			14 kPa										5115
		4	s = 3									<u>–</u> 	
	Ham	me	r Weight								×	\mathbb{N}	SS6
		5	I4 kPa										
			s = 3			1.1.1.1.1.1	+ : : : : :		1			٣	

Hammer Weight

Φ

₈Φ:

Har

78.7

19 kPa s = 2.7

Weight

ROW OTTAWA.GDT 1/23/23			
- AVALON III - BH LOGS JAN 5, 2023.GPJ			
359 -			
ОТТ-220178	NC 1.E 2.A	TES Boreh Defore A 19 I	: iole e u mn

TES: 3orehole/Test Pit data requires Interpretation by exp. before use by others 19 mm diameter standpipe was installed as shown. 3. Field work supervised by an EXP representative.

Borehole Terminated at 8.5 m Depth

LOG OF TEST PIT 4. See Notes on Sample Descriptions

5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0

	WAT	ER LEVEL RECC	RDS		CORE DR	LILING RECOF	RD
	Elapsed	Water	Hole Open	Run	Depth (m)	% Rec.	RQD %
	Upon Completion	4.6	no cave	110.	(iii)		
						1	1

SS7

SS8

ſ

ΘX

X

		Log c	of Te	29	st Pit	Bŀ	1-06				%	2	vn		
Projec	t No:	OTT-22017859-A0								7		-	P		
Projec	t:	Proposed Avalon III School						Figure N	0	1					
Locatio	on:	2666 Tenth Line Road, Orleans, ON						Pag	e. <u>1</u>	of	1				
Date D	Drilled: 'Dec. 14, 2022				Split Spoon Sample	е	\boxtimes	Combustible Vapour Reading							
Drill Ty	vpe:	CME-45 Track Mounted Drill Rig			Auger Sample SPT (N) Value			Natural M Atterberg	loisture Con Limits	tent	⊢		X €)		
Datum	:	Depth Below Ground			Dynamic Cone Tes	.t –		Undraine % Strain	d Triaxial at at Failure		-		⊕		
Logged	d by:	M.Z. Checked by: I.T.			Shear Strength by Vane Test		+ s	Shear Str Penetrom	ength by leter Test						
GWL SYMBOL		SOIL DESCRIPTION	Depth Below Ground m 86 94	D e p t h	Standard Per 20 4 Shear Strength 50 10	etration Te <u>0 60</u> 00 150	st N Value 80 kPa 0 200	Combust 25 Natu Atterbe	ible Vapour 0 500 ral Moisture erg Limits (% 0 40	Readin 75 Conter Dry W	g (ppm) 60 nt % eight) 0	SAMP LES	Natural Jnit Wt. kN/m ³		
	FILL Sanc some	l and gravel, with topsoil inclusions, e clay, moist,		1					*				AS1		
	Brow	→ Y CLAY m, moist (very stiff to hard)	85.7	2	7 		188 kPa		×				SS3 19.8 SS3 19.0		

47 kPa ○▲ 29 kPa

2 s=4

Hammer Weight

6

Hammer Weight

14 kPa

s = 6

14 kPa

+ s = 3

nmer Weight 8 10 kPa s = 2

На

78.4

SS4

SS5

SS6

SS7

SS8

 \mathbb{V}

ſ

83/

Ø

86 X

'n

X

×

84.5

LOG OF TEST PIT OTT-22017859 - AVALON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23

SILTY CLAY

Grey, wet (very soft to firm)

Borehole Terminated at 8.5 m Depth

NOTEO											
1.Borehole/Test Pit data requires Interpretation by exp.	WAT	ER LEVEL RECO	ORDS		CORE DRILLING RECORD						
before use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %				
2. The borehole was backfilled upon completion.	Time	Level (m)	<u>To (m)</u>	No.	<u>(m)</u>						
3. Field work supervised by an EXP representative.	Upon Completion	3.0	no cave								
4. See Notes on Sample Descriptions											
5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0											

	Loa d	of Te){	st Pit	Bl	H-0	7				10		vn
Project No:	OTT-22017859-A0						_			0	(-	ΛP.
Project:	Proposed Avalon III School						F	igure N	o	8			
Location:	2666 Tenth Line Road, Orleans, ON						_	Pag	e. <u>1</u>	_ of	1		
Date Drilled:	'Dec. 14, 2022			Split Spoon Samp	ble	\boxtimes		Combustil	ole Vapou	ır Readir	ng		
Drill Type:	CME-45 Track Mounted Drill Rig			Auger Sample SPT (N) Value				Natural M Atterberg	oisture Co Limits	ontent	⊢		× ⊕
Datum:	Depth Below Ground			Dynamic Cone Te	est			Undrained % Strain a	l Triaxial a at Failure	at	_		\oplus
Logged by:	M.Z. Checked by: I.T.			Shear Strength by Vane Test	ý	■ + s		Shear Stre Penetrom	ength by eter Test				
G Y W B L O	SOIL DESCRIPTION	Depth Below Ground m	D e p t h	Standard Pe 20 Shear Strength	enetration 1 40 6	Fest N Valu	e) kPa	Combusti 250 Natur Atterbe	ble Vapou) 500 al Moistur rg Limits (ur Readir 0 7: re Conter (% Dry W	ng (ppm) 50 nt % /eight)	SAMPLE	Natural Unit Wt. kN/m ³
FILL San	d and gravel, with topsoil inclusions,	86.94	0	50	100 1	50 20	0	20	40 X) 6	0	s	AS1
	- ciay, moist,	_	1						×				SS2
	-			9 O					×			X	SS3

_____84.8

- 84.3

<u>SILTY CLAY</u> Brown, moist (firm to stiff) <u>SILTY CLAY</u> Grey, wet (soft to firm)

Borehole Terminated at 8.5 m Depth

2

3 2 s=4

4 s = 3.3

₅₽

6 Hammer Weight

Φ

19 kPa

s=4

29 kPa

nmer Weight

8Φ

Har

78.4

19 kPa

s=4

0 29 kPa

24 kPa

X

SS4

SS5

SS6

SS7

SS8

1

Ø

86 X

X

									•			
NOTES: 1. Borehole/Test Pit data requires Interpretation by exp. before use by others		e/Test Pit data requires Interpretation by exp.	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD						
belor	e u	ise by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %			
2. The b	bor	ehole was backfilled upon completion.	Time	Level (m)	To (m)	No.	(m)					
			Upon Completion	3.0	no cave							
3. Field	wc	ork supervised by an EXP representative.										
4.See N	Not	es on Sample Descriptions										
5. This I OTT-	Fig -22	ure is to read with exp. Services Inc. report 017859-A0										
							1					

	Loa of	Те	st Pit BH	1-08	1	ovn
Project No:	OTT-22017859-A0				0	Crp.
Project:	Proposed Avalon III School				Figure No. 9	
Location:	2666 Tenth Line Road, Orleans, ON				Page. <u>1</u> of <u>1</u>	
Date Drilled:	'Dec. 22, 2022		Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-75 Track Mounted Drill Rig		Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	× ────
Datum:	Depth Below Ground		Dynamic Cone Test		Undrained Triaxial at % Strain at Failure	Ð
Logged by:	M.Z. Checked by: I.T.		Shear Strength by Vane Test	■ + s	Shear Strength by Penetrometer Test	A
G Y W B	SOIL DESCRIPTION	pth Below [Ground]	Standard Penetration Te	st N Value 80	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content %) S A M P Unit Wt.

	G Y M B O L	SOIL DESCRIPTION		Ground	ow D e I p t h	Shear	<u>20</u> Strenç	4 gth	<u>0 6</u>	<u>0</u>	80 kPa	2 Nat Atter	:50 tural Moi perg Lim 20	500 7 sture Conte its (% Dry V	750 ent % Veight) 60		Natural Unit Wt. kN/m ³
		GRANULAR FILL Sand and gravel, brown, moist		87.1	0							×					AS1
		Sand and gravel, with topsoil inclusi some clay, moist,	ons, _		1				48 O				×			X	SS1
			_			8. O							×			X	SS2
			very _	85.3	2	9 0		1	14 kPa					×	0		SS3
	CLAY Grey, wet, high plasticity (soft to firm)	.)	84.5	3	50 s	kPa. 										18.0	
			_	Ha	amme	r Weight											894
		_	_			34 kP	2a										004
			_	Ha	5 amme	s = 7 r Weight	7										
			_		6	24 kPa									X	Å	555
23		Borehole Terminated at 6.4 m D	epth	81.0													
A.GDT 1/23/																•	
N OTTAW																•	
SPJ TROV																•	
N 5, 2023.0																•	
LOGS JAN																•	
ON III - BH																	
9-AVAL																	
-2201785	NOTES: I.Boreho before	e/Test Pit data requires Interpretation by exp. use by others	Elaps	WAT ed	ER LI	EVEL R Water	ECO	RDS	S Hole Ope	en	Run	CO	RE DF	RILLING R		D R	QD %
	2.A 50 m shown.	m diameter monitoring well was installed as	Time Upon Corr	e 1pletion	<u>L</u>	evel (m io water)		To (m) no cave	;	No.	(m)				
TEST P	3.Field w 1.See No	ork supervised by an EXP representative. otes on Sample Descriptions															
OG OF	5. This Fig OTT-22	gure is to read with exp. Services Inc. report 2017859-A0															
Lo	g of Te	est Pit BH-10 🌼 🖗 🌾	2														
---	----------------------------	---	----------														
Project No: OTT-22017859-A0	U		J.														
Project: Proposed Avalon III School																	
Location: 2666 Tenth Line Road, Orleans	, ON	Page. <u>1</u> of <u>1</u>															
Date Drilled: 'Dec. 22, 2022		Split Spoon Sample 🛛 Combustible Vapour Reading 🗌															
Drill Type: CME-75 Track Mounted Drill Ric]	Auger Sample III Natural Moisture Content X SPT (N) Value O Atterberg Limits O															
Datum: Depth Below Ground		Dynamic Cone Test Undrained Triaxial at															
Logged by: M.Z. Checked by: I.	<u>T.</u>	Shelby Tube % Suran at Particle Shear Strength by + Vane Test S															
G S Y M SOIL DESCRIPTION	Depth Below Ground m	D Standard Penetration Test N Value Combustible Vapour Reading (ppm) SA M Natural 0 20 40 60 80 Natural Moisture Content % Atterberg Limits (% Dry Weight) P Unit W	ıl t.														
TOPSOIL ~150 mm thick FILL Sand, trace gravel, brown, damp to w	et 87.69 87.5	0 50 100 150 200 20 40 60 S															
	_	1 0 SS1															
SILTY CLAY Brown, moist (stiff)	85.6	2 3 552 552 552 552 552 552 552 552 552															
	_	3 100 kPa															
Grey, wet (soft to firm)	04.3 Ham	$\mathbf{s} = 6 \cdot 7$															
		□ Φ															

nmer Weight.

5

6 _29 kPa +

Ha

81.3

Borehole Terminated at 6.4 m Depth

95/ X

SS5

1/23/23	
TROW OTTAWA.GDT	
023.GPJ	
AN 5, 2(
IBH LOGS J	
AVALON III -	
TT-22017859 -	
TEST PIT OT	
Ч	

NON CI

- 1								•			
20								,			
20178	NOTES: 1. Borehole/Test Pit data requires Interpretation by exp.	WAT	ER LEVEL RECO	RDS		CORE DRILLING RECORD					
ΡĖ		Elapsed	Water	Hole Open	Run	Depth (m)	% Rec.	RQD %			
'o ⊢	2. A 50 mm diameter monitoring well was installed as shown.	Time	Lever(III)	<u>10 (iii)</u>	110.	(11)					
ST PI	3. Field work supervised by an EXP representative.										
ЩЦ	4. See Notes on Sample Descriptions										
LOG OF	5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0										

	Logo	of Te	est Pit B	H-11	1	exp
Project No:	OTT-22017859-A0				Figure 11	CAP.
Project:	Proposed Avalon III School					
Location:	2666 Tenth Line Road, Orleans, ON				Page. I of I	
Date Drilled:	'Dec. 22, 2022		Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-75 Track Mounted Drill Rig		Auger Sample		Natural Moisture Content	×
Datum:	Depth Below Ground		Dynamic Cone Test		Undrained Triaxial at % Strain at Failure	•
Logged by:	M.Z. Checked by: I.T.		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	
G Y W B L O L	SOIL DESCRIPTION	Depth Below Ground m 86.95	D Standard Penetratio	n Test N Value 60 80 kPa 150 200	Combustible Vapour Reading (ppr 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	n) S M P Unit Wt. E S

-	Ľ			m n n	1	t t h	Shear Str	ength	10 1	50 4	kPa	Atter	perg Limi	ts (% Dry \ 40	Neight)	Ę	kN/m³
	\bigotimes		CYCLED ASPHALT PAVEMENT ~150 thick	86.95	0	0					200			+0			451
	\bigotimes		L clay with gravel and topsoil inclusion:	_/ 5.													AUT
	\bigotimes	dark	k brown, moist, no odours or stains	85.6		1	11 O						×			X	SS1
	×, ×, ,	TOF	PSOIL wn. wet (soft)	85.2			7									M	SS2
		-SILT Blac	TY CLAY ck to brown moist (stiff to very stiff)			2	<u></u>									Α	19.9
				_		-	5	94 k	Pa					×		\mathbb{N}	SS3
		SIL	TY CLAY	84.0		3	60	kPa									10.4
		Gre	y, wet (soft to firm)	_			s =	12									
				_	Hamr	mer V	Veight										994
				_			4 kPa									Δ	334
				_		5	+									Ø	
					Hamr	mer V	Veiaht										
						0										×X	SS5
						6											SH1
3			Borehole Terminated at 6.7 m Depth	80.3													
6			•										1 1 1 1 1		1 1 1 1 1		
99 - AVALON III - BH LUGS JAN 5, 2023.GPJ I ROW OLLAWA.GDT 1/2																	
2017899 - AVALON III - BH LUGS JAN 9, 2023.GPJ TROW UTTAWA.GDT 172	DTES	S: nole/Test I	Pit data requires Interpretation by exp.		ATER		ÆL REC	CORDS	6			со	REDR	ILLING F	RECOR	D	
011-2201/859 - AVALON III - BH LOGS JAN 9, 2023.GPJ I KOW 011 AWA.GD1 1/2	DTES Boreto A 50	S: hole/Test f e use by c mm diame	Pit data requires Interpretation by exp. thers eter monitoring well was installed as	W/ Elapsed Time	ATER	Lev	/EL REC /ater /el (m)		s To (m	en	Run No.	CO Dep (m	RE DR	ILLING F % Re	RECOR	D R0	QD %
- 1 PIL 011-22017899 - AVALON III - BH LOGS JAN 5, 2023.6PJ 1KOW 011 AWA.6DL 1/2 양	DTES Borel Defor A 50 show	S: hole/Test If e use by c mm diame m. work supe	Pit data requires Interpretation by exp. others eter monitoring well was installed as ervised by an EXP representative.	W/	ATER	R LEV	/EL REC /ater /el (m)		s Hole Op To (m	en	Run	CO Dep (m	RE DR	ILLING F	RECOR	D	QD %
PF TEST PTI 011-2207/899 - AVALON III - BH LOGS JAN 5, 2023/6PJ TRUW 011 AWA/GDT 1/2 - P. S	DTES Boref befor A 50 Show Field See 1	S: hole/Test f e use by c mm diame n. work supe Notes on S	Pit data requires Interpretation by exp. thers eter monitoring well was installed as ervised by an EXP representative. Sample Descriptions	W/ ilapsed Time		LEV	/EL REC /ater /el (m)		S Hole Op To (m	en)	Run No.	CO Dep (m	RE DR	ILLING F % Re	RECOR	D R(QD %

	Log c	of Te)(st Pit B	H-1	2	\$	avn
Project No:	OTT-22017859-A0							JAD.
Project:	Proposed Avalon III School						Figure No. <u>12</u>	
Location:	2666 Tenth Line Road, Orleans, ON						Page. I of I	
Date Drilled:	'Dec. 21, 2022			Split Spoon Sample			Combustible Vapour Reading	
Drill Type:	CME-55LC Track Mounted Drill Rig			Auger Sample SPT (N) Value			Natural Moisture Content Atterberg Limits	× —⊖
Datum:	Depth Below Ground			Dynamic Cone Test Shelby Tube			Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.Z. Checked by: I.T.			Shear Strength by Vane Test	+ s		Shear Strength by Penetrometer Test	A
G Y M W B U D L	SOIL DESCRIPTION	Depth Below Ground	D e p t h	Standard Penetration 20 40 Shear Strength 50 100	n Test N Valu 60 8	ue 0 kPa	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	A M P Unit Wt. kN/m ³

	L	ÕL		m 87.22	h t	Shear S	Streng	gth 10	00 1	50 2	kPa	7 ′	Atterb	erg Limi	ts (% Di 40	ry Weig 60	ght)	L E S	kN/m ³
		<u>× 1,,</u>	▼ TOPSOIL ~300 mm thick With plastic and asphalt scrap	86.9	0	3 O							X					X	SS1
			FILL Silty clay with topsoil inclusions, brown and grey, moist,	-	1	11 0								×					SS2 18.5
			TOPSOIL	85.4 85.2		8 O			1	61 kPa ▲				×				X	SS3
		Ī	Dark brown, wet (soft)		2														
			Brown, moist (very stiff to hard)			0		94 KI	-a						X			X	SS4 18.3
				83.8	3			<	120 kPa +										
			- SILTY CLAY Grev wet (soft to firm)															•	
.			-	Ha	Imme	r Weight_ P										×		N	SS5
				-		⊇4 kPa													
ŀ	<u>Н</u>		Borehole Terminated at 4.9 m Depth	82.3	+													Ш	
1/23/23																			
59 - AVALON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT																			
22017859 - AVALON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT	NO 1.B	TES: Torehocefore	Die/Test Pit data requires Interpretation by exp.	WATI		EVEL RE Water	ECO	RDS			Run			REDR) REC	CORD		
OTT-22017859 - AVALON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT	NO 1.B b 2.A	TES: oreho efore 19 m	ble/Test Pit data requires Interpretation by exp. use by others m diameter standpipe was installed as shown.	WATI		EVEL RE Water evel (m)	ECO	RDS	s Hole Op To (m)	en	Run No.		COP (m)	RE DR	LLING %	→ REC Rec.		R	QD %
PIT OTT-22017859 - AVALON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT	NO 1. B 2. A 3. F	TES: orehoc efore 19 m ield w	De/Test Pit data requires Interpretation by exp. use by others Im diameter standpipe was installed as shown.	WATI		EVEL RB Water evel (m)		RDS F	s Hole Op To (m)	en	Run No.		COF Dept	RE DR	LLING %	GREC.		R	QD %
DG OF TEST PIT OTT-22017859 - AVALON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT	NO 1.B 2.A 3.F 4.S 5.T	TES: oreho efore 19 m ield w ee No his Fi his Fi	ble/Test Pit data requires Interpretation by exp. use by others Elar Interpretation by exp. use by others am diameter standpipe was installed as shown. vork supervised by an EXP representative. betes on Sample Descriptions gure is to read with exp. Services Inc. report 2017859-A0	WATI		EVEL RE Water evel (m)	ECO	RDS F	s Hole Op To (m)	en	RunNo.		COF (m)	RE DR	LLING %	→ REC Rec.		R	QD %

Log	of	Test	Pit	BH13
U				

		4	ex	p.
	13			
1	of	1	_	

 \square

Ð

 \oplus

Figure No.

Project:	Proposed Avalon III School			D	1
Location:	2666 Tenth Line Road, Orleans, ON			Page.	or
Date Drilled:	'Dec. 21, 2022	Split Spoon Sample		Combustible V	apour Reading
Drill Type:	CME-55LC Track Mounted Drill Rig	Auger Sample — SPT (N) Value		Natural Moistu Atterberg Limit	re Content s
Datum:	Depth Below Ground	Dynamic Cone Test Shelby Tube		Undrained Tria % Strain at Fa	axial at ilure
Logged by:	M.Z. Checked by: I.T.	Shear Strength by Vane Test	+ s	Shear Strengtl Penetrometer	n by Test

l V	G W L	SY MBOL	SOIL DESCRIPTION	Depth Belor Ground m 86.97	w D e p t h o	Sta 2 Shear S	indaro 20 Strenç 50	1 Pen 4 gth 10	0 6	est N Va 0 8 50 2	30 kPa 00	Na Atter	250 250 tural Mois berg Limi 20	500 Read 500 sture Cont ts (% Dry 40	n) SAM PLES	Natural Unit Wt. kN/m ³	
			FILL Silty sand with gravel, some clay, tops [–] inclusions, brown and grey, moist,	soil		13. O						×				<u> </u>	SS1
			-	85.5	1	15 O						×				X	SS2
			TOPSOIL Dark brown, wet (soft)	85.2	2	9 O		10	7 kPa				×			<u> </u>	SS3 19.7
			Brown, moist (very stiff)	_		6 0		10	7 kPa <u>:</u>					×		X	SS4 18.2
				83.6	3		72 k + s =	Pa 7.5								ĺ	
			– <u>SILTY CLAY</u> Grey, wet (soft to firm) –	Har	mme	r Weight											995
			_	_		24 kPa											
	ŕ	22222	Borehole Terminated at 4.9 m Dep	82.1 oth		s = 20		<u></u>									
N III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23																	
59 - AVAI																	
220178	NO 1.B	TES: orehole	e/Test Pit data requires Interpretation by exp.	WATE	RL	EVEL R	ECO	RDS	3			cc	RE DR		RECOF	RD _	
i Lo	2. T	he bor	ehole was backfilled upon completion.	Elapsed Time	L	vvater evel (m))	ŀ	To (m)) (1)	No.	Dep (m	лп 1)	% R	eC.	ĸ	.QU %
LOG OF TEST PIT	3. Fi 4. S 5. Tl O	ield wo ee Not his Fig /TT-22	ork supervised by an EXP representative. es on Sample Descriptions ure is to read with exp. Services Inc. report 017859-A0														

Project No: OTT-22017859-A0

	Log of T	est Pit BH14	*evn
Project No:	OTT-22017859-A0		CAP
Project:	Proposed Avalon III School		Figure No. <u>14</u>
Location:	2666 Tenth Line Road, Orleans, ON		
Date Drilled:	'Dec. 21, 2022	_ Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME-55LC Track Mounted Drill Rig	Auger Sample - SPT (N) Value O	Natural Moisture Content X Atterberg Limits -
Datum:	Depth Below Ground	Dynamic Cone Test	Undrained Triaxial at \oplus Strain at Failure
Logged by:	M.Z. Checked by: I.T.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test
S	Depth Belo	w D Standard Penetration Test N Value	Combustible Vapour Reading (ppm) S

	G W L	Y B O L	SOIL DESCRIPTION	Grou 86.67	und p	Shear	20 Streng 50	4 jth 10	<u>0 6</u> 00 15	<u>) 8</u> 60 2	30 kPa 00	2 Atterl	50 ural Mois perg Limi 20	500 sture C ts (% I 40	75 Conter Dry W 6	50 nt % /eight) 0	PLES	Natural Unit Wt. kN/m ³
			FILL Silty clay with topsoil inclusions, asp scraps, brown, moist,	halt	0		19 0					×					X	SS1
			-		1	8 							×				X	SS2
			<u>CLAY</u> Brown, moist, high plasticity (very sti 	ff)	2	9 O	80	kPa ▲					۲×			Ð	X	SS3 19.3
			_	_		454 O	4 kPa	·····						×			X	SS4 19.1
			- <u>SILTY CLAY</u>	83.3	3	s	= 8.8										I	
			Grey, wet (soft) _	_	Hamme	er Weight										×	X	SS5
			_	- 01 0		⊇4 kPa												1
9 - AVALON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23			Borehole Terminated at 4.9 m De	epth														
-220176	NO 1.Be	TES: orehole efore u	e/Test Pit data requires Interpretation by exp. se by others	Elapsed	ATER L	.EVEL R Water	ECO	RDS	iole One	en	Run	CO Der	RE DR	ILLIN %	IG RI		D R	QD %
μ	2.A	19 mn	n diameter standpipe was installed as shown.	Time	L	_evel (m)		To (m)	<u> </u>	No.	(m)					
LOG OF TEST PIT	3.Fi 4.So 5.TI O	ield wo ee Not his Fig TT-220	rk supervised by an EXP representative. es on Sample Descriptions ure is to read with exp. Services Inc. report 017859-A0															

	Log of	Test Pit BH15	÷.	exn
Project No:	OTT-22017859-A0			CNP
Project:	Proposed Avalon III School		Figure No. 15	1
Location:	2666 Tenth Line Road, Orleans, ON		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'Dec. 21, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME-55LC Track Mounted Drill Rig	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊷
Datum:	Depth Below Ground	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.Z. Checked by: I.T.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A

	G W L	SY MBOL	SOIL DESCRIPTION	Depth Below Ground m 86.92	v D e p t h	SI	5 hea	20 r St 50	daro) reng	gth	netra 10 00	ation (1 est 60 150	N Va	80 200	kPa	Na Atter	1stible 250 tural berg 20	Vap 5 Moist Limit	00r F 00 ure C 3 (% I 40	Conte Dry V	ng (pp 50 nt % Veight 50	t)	SAMPLES	Natural Unit Wt. kN/m ³
			TOPSOIL ~300 mm thick Clayey, with wood scraps	86.6	0			21 C	1								×							X	SS1
			Silty clay with topsoil inclusions, brown and grey, moist,	-	1														· · · · · ·						
				-		7	7																	Χ	SS2
				84.6	2	5		54 k	ĸРа																SS3
			Brown, moist (stiff) 	_	3			56	kPa ⊭																18.4
			- <u>SILTY CLAY</u> - Grev, wet (soft to firm)	83.5				s =	7.8																
				_ Han	nme	er We	eigh	nt											<u></u>			×		Д	SS4
				82.0		26	3 kP +	a.																Ø	
59 - AVALON III - BH LOGS JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23																									
220178.	NO 1.B b	TES: orehole efore u	e/Test Pit data requires Interpretation by exp.	WATE	RL	EVE	EL F	RE	со	RD	S	- O:-				Dure	CC	RE	DRII	LIN	IG R	ECO	RD		0/
0TT-2	2.T	he bore	ehole was backfilled upon completion.	ne	L	vva _eve	ater el (n	n)				e Op o (m))			kun No.	Del (n) 1)	+		> Ke	J.	\perp		χU %
LOG OF TEST PIT	3.F 4.S 5.T C	ield wo ee Not his Fig TT-220	rk supervised by an EXP representative. es on Sample Descriptions ure is to read with exp. Services Inc. report)17859-A0																						

	Log of	Test Pit TP-01	1	evn
Project No:	OTT-22017859-A0			unp.
Project:	Proposed Avalon III School		Figure No. 10	
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'Dec 9, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ──⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A
S	Ger	Standard Penetration Test N Value	Combustible Vapour Reading (ppm)	S

G V L	Ŷ	Y B O I	SOIL DESCRIPTION	Ele	evation m	e p. t	20 Shear S	0 treng	4(Ith	<u>) (</u>	<u>50 8</u>	30 kPa	At	250 Natural M terberg Li	500 oisture Cor mits (% Dry	750 ntent % Weight)	PLE	Natural Unit Wt. kN/m ³
		<u>, 1, .</u>	TOPSOIL ~200 mm thick	86.	.84	0	50		10	<u>0 1</u>	50 2	00		20	40	60	- s	
			FILL Clayey, silty sand with gravel, cobble boulders (measured up to 1 m diame topsoil inclusions, brown, moist	s, eter),86.	.0							1) ppm ⁻	*				GS1
			TOPSOIL 	85.	.7	1 -												
				84.1	.8	2						0	ppm		×			GS2
2017859 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23			Note: 1) Water seeping in from base of tes 2.0 m depth.	t pit at														
- S901	IOT .Bo be	TES: orehole efore u	e/Test Pit data requires Interpretation by exp. se by others	V Elapsed	NATER	LE	EVEL RE Water	co	RDS F	lole Op	en	Run		CORE D	RILLING	RECOF Rec.	RD R	QD %
2 3 4 5 5	. Te op . Fi . Se . Th O	est pit l beratio eld wo ee Note his Fig TT-220	backfilled upon completion of excavating n. rk supervised by an EXP representative. es on Sample Descriptions ure is to read with exp. Services Inc. report 017859-A0	Time		Le	evel (m)			<u>To (m</u>))	No.		<u>(m)</u>				

	Log of	Test Pit TP-02	*ovn
Project No:	OTT-22017859-A0		
Project:	Proposed Avalon III School		Figure No. <u>I7</u>
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>
Date Drilled:	'Dec 9, 2022	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content X Atterberg Limits ————————————————————————————————————
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at \oplus Strain at Failure
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test
S	G	eodetic D Standard Penetration Test N Value	Combustible Vapour Reading (ppm)

\$	G N L	У М В О L	SOIL DESCRIPTION	Geod Eleva m 87.03	tetic D ation p t h h	Shea	20 Ir Streng 50	40 Jth 10) 61 0 15	0 8	30 kPa 00	Att	250 latural Mo erberg Lin 20	500 isture Con nits (% Dr 40	750 ntent % Weight) 60	AMPLES	Natural Unit Wt. kN/m ³
		<u>`\^ //</u> ` .	TOPSOIL ~100 mm thick	86.9				11			TIII						
			FILL Silty sand with gravel, clay clumps, c and boulders, asphalt scrap, brown,	cobbles moist							10) ppm	×			E STA	GS1
					1												
			Brown, moist	_							0	ppm	*				GS2
			_		2												
- 22017859 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23	ŇŌ.	TES:	Note: 1) Water seeping into test pit at 1.0 r depth. 2) cave-in of fill material above 1m d	m lepth													
, OGS	1.B be	orehole efore u	e/Test Pit data requires Interpretation by exp. lse by others	Flansed		.EVEL I	RECO	KDS	lole Onc	n	Run			≺ILLING ⊺ % ⊑			<u>00 %</u>
IT TP L(2. T 0	est pit peratio	backfilled upon completion of excavating n.	Time	L	_evel (n	<u>n)</u>		<u>To (m)</u>	ə I	No.		m)	70 F	100.	л 	0/ تاي

a. Field work supervised by an EXP representative.
a. See Notes on Sample Descriptions
5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0 5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0

	Log of	f Test Pit TP-03	1	evn
Project No:	OTT-22017859-A0		- 10	CAP.
Project:	Proposed Avalon III School		Figure No. 18	- 1
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'Dec 8, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	
s		Standard Penetration Test N Value	Combustible Vapour Reading (p	pm) S

[G	S Y		Geodeti	ic D	2	S	Stan	dard	Pen	etration ⁻	Test	N Va	ue		Comb	ustibl 250	e Vap 5	our F 00	Readii 7	ng (ppr 50	n)	S A	Vatural
	Ŵ	M B O	SOIL DESCRIPTION	Elevatio	on p		Shea	20 ar St	rengt	4 th	0 0	60		30 kPa	-	Na Atte	atural rberg	Moist Limits	ure (3 (%	Conte Dry V	nt % Veight)			Jnit Wt. kN/m ³
		Ĺ	FILL	86.68	0			50		10	00 1 :::::	50	2	00	<u>.</u>		20		10	6	60 : : :		S	
			Silty sand with gravel, cobbles, red b	orick				31																
			tragments, brown, moist					÷				. <u>.</u> .			:									
			_	_										2	20 p	pm							~	
							÷	÷ŀ			• • • • • •				F] >			÷				"	GS1
				85.9				::		•		Ľ.										:		
			SILTY CLAY Brown and red to grey, moist					÷ŀ			• • • • • •											÷.		
				_	1										÷t							:		
									: : : : :				:::: :::::			: : : : : : : :			Ę.	: ::::::::::::::::::::::::::::::::::::				
										• • •														
			_	_										0) pp	m							m_	662
							· · · · ·	÷.		•		. <u>.</u> .			:44				- :- :			÷	1	632
							•	÷ŀ		• • •					÷.				÷					
			_		2								: : : : ;											
				84.4				÷+							· ·									
			Test Pit Terminated at 2.3 m De	pth				1	:::						1				I			÷		
							::	-														:		
								:																
																						-		
							::	:														:		
							÷÷															-		
							::															:		
23/23							::	:	:::						:				÷			:		
1//																						:		
A.GD							::	:											÷			:		
TAW,																								
VOT			Note:				::																	
L ROV			Note.				÷÷	:				1:			:				E			:		
- L			1) No water seepage or cave-in					:														:		
023.6							::															:		
15, 2							::	:											÷			:		
APL -																								
7859							÷÷	-														-		
2201						Ŀ		:				1:	<u>: : :</u>	1:::	:1	:::	: 1 :	:::	1:	:	1:::	:		
GS -	NO 1.E	IES: lorehole	e/Test Pit data requires Interpretation by exp.	WAT	ERL	.EV	/EL	RE	COF	RDS	6					C	ORE	DRII		IG R	ECOF	RD		
PLO	и 2 т	est nit	backfilled upon completion of excavating	Elapsed Time	L	W Lev	/atei /el (r	r m)		F	lole Op To (m	en)		Run No.		De (r	pth n)		9	6 Re	с.		RQ	D %
Ξ	0	peratio	n.									-												
STF	3.F	ield wo	rk supervised by an EXP representative.																					
E E	4.8	ee Not	es on Sample Descriptions																					
900	5. T C	nis ⊢igi)TT-220	ure is to read with exp. Services Inc. report 017859-A0																					
					I										1									

ble/Test Pit data requires Interpretation by exp.	WAT	ER LEVEL RECO	ORDS		CORE DF	RILLING RECOF	RD
use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
it backfilled upon completion of excavating	Time	Level (m)	To (m)	No.	(m)		
ion.							
vork supervised by an EXP representative.							
otes on Sample Descriptions							
igure is to read with exp. Services Inc. report 2017859-A0							

	Log c	of Test Pit TP-04	*e	avn
Project No:	OTT-22017859-A0		Figure No. 10	~p.
Project:	Proposed Avalon III School			
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'Dec 8, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊸⊙
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	
S		Geodetic D Standard Penetration Test N Value	Combustible Vapour Reading (ppm) A	Natural

Ň	G W L	Ь В О	SOIL DESCRIPTION		Elevation	p t	20 Shear Stre	40 hath) 6	8 0	80 kPa	Na Atter	tural Moi	sture Content % its (% Dry Weigl	t) L	
		Ľ			,86.98	h 0	50	10	0 15	i0 <u>2</u>	00		20	40 60	<u></u> E	KIN/III
			50 mm Crushed Limestone, sand and gravel, grey, moist over geotextile at 0.2 m depth	d	86.8											
			_ FILL Silty clay with gravel, red brick fragme moist	ents,		1					0	ppm	*			GS1
	k	\bigotimes			85.9	l'										
		······································			85.7											
			_ CLAY _Reddish brown, moist	_												
					85.0						0	ppm:	×			GS2
	f	////	Test Pit Terminated at 2.0 m Dep	oth	00.0	2			÷ ÷ ÷ ÷ †							
22017859 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23			Note: 1) No water seepage or cave-in													
- SOOI	1.B	efore u	e/Test Pit data requires Interpretation by exp. se by others	Elaps	WATE ed	RL	EVEL REC	DRDS	lole Ope	n	Run	CC Dep	RE DR	ILLING RECO % Rec.	DRD	RQD %
I II I	2. T 0	est pit l peratio	backfilled upon completion of excavating n.	Tim	e	L	<u>evel (m)</u>		<u>To (m)</u>		No.	(m	I <u>)</u>			
OG OF TEST PIT	3.Fi 4.S 5.TI 0	ield wo iee Not his Fig DTT-220	rk supervised by an EXP representative. es on Sample Descriptions ure is to read with exp. Services Inc. report)17859-A0													

		Log c	of Test Pit TP-05	1	evn
Project No:	OTT-22017859-A	0		F: N 20	CNP
Project:	Proposed Avalon	III School		Figure No. 20	1
Location:	2666 Tenth Line I	Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'Dec 8, 2022		Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber	Tire Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢⊸
Datum:	Geodetic Elevatio	n	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	MZ C	hecked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A
S			Geodetic D Standard Penetration Test N Value	Combustible Vapour Reading (ppm	1) S Netural

V		SOIL DESCRIPTION	Elevatio	n p	20 Shear Strend	40 ath	60	80	kPa	250 Natural Mo Atterberg Lir	500 750 isture Content % nits (% Dry Weight)	M P L	Unit Wt.
	Ĕ		87.1 ^m	h C	50 50	100	150	200		20	40 60	E S	KIN/III
		50 mm Crushed Limestone, sand and	d						5 p [opm K	• • • • • • • • • • • • • • • • • • • •	m	GS1
		FILL Silty clay with gravel and sand, concr boulders, moist	86.8										
								• • • • • • • • • • • • • • • • • • • •	0 p	ppm □ X		1	GS2
			_	1							· · · · · · · · · · · · · · · · · · ·	: 	
			85.7					• • • • • • •			••••		
	<u>7, 1</u>	TOPSOIL											
		CLAY	85.5										
		Brown and red to grey, moist							0 p	pm:	×	B	GS3
			_	2	2								
		Test Pit Terminated at 2.2 m Dep	84.9 oth	-								+	
2017859 - JAN 5, 2023.GPJ I KOW OTTAWA.GDT 1/23/23		Note: 1) No water seepage or cave-in											
ง ผู้ 1	IOTES: .Boreho	le/Test Pit data requires Interpretation by exp.	WAT	ERL	EVEL RECO	RDS				CORE D	RILLING RECOF	RD	
วั 1 2	.Test pi	t backfilled upon completion of excavating	Elapsed Time		Water Level (m)	Hol T	le Open o (m)	Ru	un o.	Depth (m)	% Rec.	R	QD %
	operati	on.											
	. See No	tes on Sample Descriptions											
	. This Fi OTT-2	gure is to read with exp. Services Inc. report 2017859-A0											

5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0

		Log c	of Te	est Pit T	P-06	1		vn
Project No:	OTT-2201785	9-A0				Einen Nu 21	C,	·Ρ
Project:	Proposed Ava	Ion III School					-	
Location:	2666 Tenth Li	ne Road, Ottawa, ON				Page. 1 of 1	-	
Date Drilled:	'Dec 8, 2022			Split Spoon Sample		Combustible Vapour Reading	I	
Drill Type:	Case 580 Rub	ber Tire Backhoe		Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	; —	X €
Datum:	Geodetic Elev	ation		Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	-	⊕
Logged by:	MZ	Checked by: SMP		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	ć	
S			Geodetic	D Standard Penetration	Test N Value	Combustible Vapour Reading (pp	m) S	Natural

V L	À V	M B O L	SOIL DESCRIPTION	Eleva m 87.04	ation 1	e p t h	2 Shear S	20 Streng 50	40 gth 10) 6 0 15	0 50 2	80 kPa 200	Att	250 latural Mo erberg Lin 20	500 histure Co hits (% Dr 40	750 ntent % y Weight) 60	MP-LES	Unit Wt. kN/m ³
			GRANULAR FILL 50 mm Crushed Limestone, sand and gravel, grey, moist	3 86.8	T	0												
			FILE Sand and gravel, with boulders, shale fragments, steel reinforcing bar, wood brick scraps, moist	e d, and 86.2			•••••••••••••••••••••••••••••••••••••••					C	ppm X		• • • • • • • • • •			GS1
			FILL Silty clay with gravel, moist			1 -						0	ppm	*	C			GS2
	X-1	<u>, 1 1</u>	TOPSOIL	85.5			•••••••••••••••••••••••••••••••••••••••						ppm		×		P	GS3
			CLAY Grey, moist	85.0									ppm.	×	• • • • • • • • • •		1	GS4
5 - 22017859 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23 → ZI		ES:	Note: 1) Test pit is wet at base 2) No cave-in	vth			VFI R		RDS							BFCOE		
- S90	1. Borehole/Test Pit data requires Interpretation by exp. before use by others				WATER LE			ECO	RDS H	lole Ope	ən	CORE D			RILLING	RECOF	RD R	QD %
	. Tes ope	st pit b eratior	packfilled upon completion of excavating	Time		Le	vel (m)			To (m)		No.		m)				
L 3. Field work supervised by an EXP representative.																		

 3. Field work supervised by an EXP report of the superv 5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0

	Log c	of Test Pit TP-07		evn
Project No:	OTT-22017859-A0		F: N 00	Crp.
Project:	Proposed Avalon III School			
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'Dec 9, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample	Natural Moisture Content	×
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	•
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	
C Y		Geodetic D Standard Penetration Test N Value	Combustible Vapour Reading (ppm 250 500 750) S A Natural

	G W	M B	SOIL DESCRIPTION		Elevation	e p t	She	2(0 treng	4	0	60	8	30 kP	_	Na	250 tural N berg I	50 Noistu imits	Ire Conte	50 Int % Veight)	– M P	Unit Wt.
	_	Ľ		8	m 86.89	h 0		50 50	0 	10	0	150	2				20	4	0	50	Ē	KIN/III
		***	<u>RECYCLED ASPHALT PAVEMENT</u> ~	الر	86.8		÷÷		•			• • • •	• • • •	1		om		÷				
			FILL		86.6										Ŧ) X		: :			Ľ	GS1
		\otimes	Silty sand with gravel, moist	ck /					•	: : 		• • • •			÷.			:::			:	
			at 0.3 m depth) pp	m						1
		\otimes	FILL Silty clay, with gravel, cobbles, asphalt							: : . : .					Щ. Ф		×	: : :-:-			. M	GS2
		\bigotimes	scrap, moist					: : :		:- : - : : :					÷			:			÷⊨	-
			_	_		1		<u></u>														
		<u></u>	TOPSOIL		85.8				•			• • • • •									: -	
		1/ 1/								· · ·												
		1111	CLAY		85.5				•			• • • • •			÷.						: -	
			Brown, moist	_) pp	m						GS3
									•	: : . : .		• • • •			<u>:</u> Щ						: . :	19.8
		$\parallel ho$								· · ·								:::: :::::				1
			_	_		2				<u></u>		+			<u>.</u>	÷ ÷ ÷ ÷		÷ ; ;			-	
										:- : - : : :					÷			:			:	
			Test Dit Termineted at 2.2 m Denth	1	84.6											<u></u>					-	
			rest Fit Terminated at 2.5 m Depth					::	::	:::		÷			:			:::			:	
									::													
								::	:::	:::		÷			:			:::			:	
															-						:	
								::	:::	:::		÷			:			:::			:	
															-						:	
_									::									:::			:	
23/23									:::	: :		÷			:			:::			:	
T 1/																						
A.GD								::	::	:::		÷			:			:::			:	
LAW/									::						:						-	
Fo			Net						::						-			:::			:	
ROV			Note:						::						-							
Γ			1) Water seeping into test pit at 1.4 m						::									:::			:	
23.GF			deptn. 2) No cave-in					::	:::	:::		÷			:			:::			:	
5, 202			,						::												:	
AN 5								::	::	:::		÷			:			::: :::			:	
۲ - 6 <u>5</u>									::						:						-	
0178								::	::	::					:		::	::			:	
1.22	NO	TES:				RII		PF	00	RDG	\$		וך			<u> </u>		וופר		FCOP	<u>п</u>	
SOGS	ı.B b	orenol efore u	er rest Pit data requires interpretation by exp.	Elapse	ed		Wate	er		- F	- Hole Oi	pen		Run		Der	oth		% Re	c.	R	QD %
ШЦ	2.T	est pit	backfilled upon completion of excavating	Time		L	evel	<u>(m)</u>	-		To (n	<u>1)</u>		No.	_	(n	1)					
ЫЦ	3 F	ield wo	we supervised by an EXP representative																			
EST	4.9	ee Not	es on Sample Descriptions																			
OF T	5.T	his Fin	ure is to read with exp. Services Inc. report																			
ЮG	Ċ	TT-22	017859-A0																			

	Log d	of Te	9	st Pit <u>TP-0</u>	<u>)8</u>	1	e	XD.
Project No: Project: Location:	OTT-22017859-A0 Proposed Avalon III School 2666 Tenth Line Road, Ottawa, ON				F 	Figure No Page1_ of _1	-	
Date Drilled: Drill Type: Datum: Logged by:	'Dec 9, 2022 Case 580 Rubber Tire Backhoe Geodetic Elevation MZ Checked by: SMP			Split Spoon Sample Auger Sample SPT (N) Value C Dynamic Cone Test Shelby Tube Shear Strength by H Vane Test S		Combustible Vapour Reading Natural Moisture Content Atterberg Limits Undrained Triaxial at % Strain at Failure Shear Strength by Penetrometer Test		□ ×
G S Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m 87 71	D e p t h	Standard Penetration Test N Va 20 40 60 Shear Strength 50 100 150	alue 80 kPa 200	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	SAZP-LES	Natural Unit Wt. kN/m³
<u> </u>	<u>SOIL</u> ~ 130 mm thick n sand, brown, damp TEXTILE	87.6 87.3 87.3	0		0 p	ppm. ⊒ X		GS1

.

. . .

1 87.1

86.0

85.7

85.4

85.1

0 ppm

0 ppm

X

X

m GS2

m GS3

359 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23

1/ 1/

TOPSOIL

CLAY Brown, moist

Note:

excavation

GEOTEXTILE CLEAR STONE 19 mm size limestone

FILL Clean sand, brown, damp

FILL Silty clay, with cobbles, moist

Test Pit Terminated at 2.6 m Depth

No water seepage
 Fighting cave-in of sand for entire

178							1 : : : :		: : : : : : : :	:
220										
- SB	NC	DTES: Boreho	le/Test Pit data requires Interpretation by exp.	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
2	'	Delote	use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
ТТР	2.	Test pi operati	t backfilled upon completion of excavating on.	lime	Level (m)	<u>lo (m)</u>	No.	<u>(m)</u>		
ST PI	3.1	Field w	ork supervised by an EXP representative.							
Ĕ	4.8	See No	otes on Sample Descriptions							
LOG OF	5.7	This Fi OTT-2	gure is to read with exp. Services Inc. report 2017859-A0							

	Loa d	of Test Pit TP-09	[%] ⊖yr	2
Project No:	OTT-22017859-A0),
Project:	Proposed Avalon III School		Figure No. <u>24</u>	
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'Dec 8, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample I	Natural Moisture Content X Atterberg Limits	
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at \oplus Strain at Failure	
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	
G Y		Geodetic D Standard Penetration Test N Value	Combustible Vapour Reading (ppm) S 250 500 750 M Natural	

G W	B	SOIL DESCRIPTION	Elevatio	n p		boor	20 Stro	4	0	60) (80 kBo		Nat Atterb	ural Moi	sture Conte	ent %		Unit Wt.
	L			F	i	near	50	10	00	15	0 2	200		2	20	40	60	Ē	KIN/M
	<u>x 1</u> /	TOPSOIL ~200 mm thick					: : : : .	:::: :::::::		÷								:	
	××	FILL	86.2							÷									
		Silty clay with topsoil inclusions, brow	/n,					::::		-		0	nom					:	
		moist	_										Щ.		X			<u> </u>	GS1
						÷		: : : : : : :		÷								÷–	
					1	÷÷		÷÷÷		÷	· · · · · · · · · · · · · · · · · · ·			÷÷÷	li i i i i			-	
			85.4	1	1													<u> </u>	
	<u></u>	TOPSOIL						::::		$\left \right $:	
	1. 7.		85 1					::::::::::::::::::::::::::::::::::::::		\pm	· · · · · · · · · · · · · · · · · · ·	1.1.1			li i i i			-	
		SILTY CLAY	0011							1									
		Brown, moist	_					÷ ÷ ÷			÷ ÷ ÷ ÷							:	
								::::		$\frac{1}{2}$		0	ppm		Y			: : : : : : : : : : : : : : : : : : : :	652
										÷									002
					12			::::::::::::::::::::::::::::::::::::::		1									
				2	2	÷ ; ; ;		:::: ::::			÷÷÷÷			:::: :-:-:-			+	:	
	pini	Test Pit Terminated at 2.1 m Der	oth							+	++++							:	
						:::													
					:	:::												:	
						:::				-								:	
						:::												-	
										-	::::							:	
						:::				-								:	
						:::				-								:	
					:	::::				-								:	
																		:	
\$/23						:::													
1/23																			
E E																			
9.9																		:	
TA					:	:::				-								:	
5		N1-4-				:::				-								:	
٥ ۵		Note:				:::				-	::::							:	
Ë		1) No water seepage or cave-in.			÷	:::				-								:	
G.						:::				-								:	
2023						:::				-								:	
20,						::::												:	
IAL						:::				-								:	
859						:::				-								:	
2017	1				Ŀ			: : :		:	::::			: : :			1:::	:	
	OTES:	le/Test Bit data requires Interpretation by ave	WAT	ERI	LEVI	ELF	RECO	ORD	S					co	RE DR		ECOR	D	
ő '.	before	use by others	Elapsed		Wa	ater	0		- Hole (Ope	n	Run		Dep	th 1	% Re	ec.	R	QD %
<u> </u> 2.	Test pi	t backfilled upon completion of excavating	Time		Leve	el (m	ו)	<u> </u>	To (<u>m)</u>		No.	<u> </u>	(m)				
Ë	operati	on.																	
1 LS	Field w	ork supervised by an EXP representative.																	
"[4.	See No	otes on Sample Descriptions																	
ວັ ເງ	This Fi	gure is to read with exp. Services Inc. report																	
٩Ľ	511-24	2011 000 710																	

	Log of	Test Pit TP-10	*evn
Project No:	OTT-22017859-A0		
Project:	Proposed Avalon III School		
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>
Date Drilled:	'Dec 9, 2022	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at \oplus Strain at Failure
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test
S	G	eodetic D Standard Penetration Test N Value	Combustible Vapour Reading (ppm) S

	G W L	м В	SOIL DESCRIPTION		Elevation	e p t	20 Shear Stre	40	60	8	,0 kPa	Nat	ural Moi	sture Content %		Unit Wt.
		Ľ			m 86.62	ĥ	50	100	150	20	20		20	40 60	Ē	KIN/ITI
			GRANULAR FILL 50 mm Crushed Limestone, sand and gravel, grey, moist FILL	d/	86.4											
			_Silty clay with topsoil inclusions, cobb _garden hose, moist	oles, _								ppm	×		E	GS1
			-	_	85.5	1									 	
		<u>x 1,</u> 1, <u>x 1</u>			85.2					••••						
			Brown, moist									ppm	×		8	GS2 19.9
	ł		Test Pit Terminated at 2.0 m Der	oth	84.6	2						+	+		÷	
017859 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23			Note: 1) No water seepage or cave-in													
0GS - 2:	NO 1.B	TES: orehole efore u	e/Test Pit data requires Interpretation by exp. se by others	Flans	WATE	RL	EVEL REC	ORDS	ole Open		Run	CO	RE DR		 D۶	
T TP L	2.T	est pit l peratio	backfilled upon completion of excavating n.	Time	e	L	evel (m)		<u>To (m)</u>	$\left\{ \right\}$	No.	(m)			
TEST PIT	3.Fi 4.S	ield wo ee Note	rk supervised by an EXP representative. es on Sample Descriptions													
OG OF	5.T 0	his Figi TT-220	017859-A0									1			l	

	Log o	f Test Pit TP-11	1	ovn
Project No:	OTT-22017859-A0			Crp.
Project:	Proposed Avalon III School		Figure No. 20	1
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'Dec 8, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	
S		Condetia D Standard Penetration Test N Value	Combustible Vapour Reading (ppn	1) <u>S</u>

	G	Ŷ		Geodetic	D e					~~	2	250	500 7	50	_ A	Natural
	Ľ	B	SOIL DESCRIPTION	Elevation	p t	Shear Stren	gth	0 6	0	kPa	Atter	tural Moi berg Lim	sture Conte its (% Dry V	ent % Veight)	Ľ	kN/m ³
L		Ľ			n 0	50	1	0 1	50 2	200		20	40	60	Š	
	ľ.	<u>, 1,</u> .	TOPSOIL ~200 mm thick		ľ											
	1	· · · · · ·		87.1												
	ß	\otimes	FILL													
	Ŕ	XXX	Silty sand with asphalt, concrete and	d red											:	
	K	\bigotimes	brick fragments, hub cap, topsoil	_						10) ppm				:	
	ß	\otimes	inclusions, brown, moist								\square	\$: N ³	GS1
	Ŕ	XXX													:	
	Ľ	\bigotimes		86.5												
	ĺ		SILTY CLAY							5	ppm					
	ľ		Grey, moist		1		: :				ф::::	×			m	GS2
	ł				1		: :	::::	::::			1 : : :		:::		
	ł															
	ł															
	Ĩ															
	E															
	ĺ		_	_											-	
	ľ															
	ł						• • • • •									
	ł						111	1111 I I I I I I I I I I I I I I I I I	12 21 21 2	11111	12222	1222	111111	1:1:1	2	
	ł			95.3		1222212	: : : : :	****	12222	111111	12222	1222	1 1 1 1 1 1 1	1::::	2	
	f	reen	Test Pit Terminated at 2.0 m De	nth	2					+ : : : :	+ * * * * *	+ * * * *	++++++	+ : : :	÷	
9 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23			Note: 1) Water seepage from 0.4 m depth 2) Slight cave-in of fill layer													
					_										:	
اړ.	NOT	ES: prehol	e/Test Pit data requires Interpretation by exp.	WATE	RL	EVEL RECO	RDS	3			CC	REDR		ECOR	D	
j	be o T	efore u	use by others	Elapsed Time	,	Water		Hole Op	en	Run	Dep	oth	% Re	C.	R	QD %
=	2. Test pit backfilled upon completion of excavating operation.								1.0.		4					
-	3.Fi	eld wo	ork supervised by an EXP representative.				1						1			

LOG OF TES 4. See Notes on Sample Descriptions

5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0

	Logo	f Test Pit TP-12	1	avn
Project No:	OTT-22017859-A0		5° N 07	JVD.
Project:	Proposed Avalon III School			
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'Dec 8, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ──⊖
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	MZ Checked by: SMP		Shear Strength by Penetrometer Test	•
S		Geodetic D Standard Penetration Test N Value	Combustible Vapour Reading (ppm)	SAN

Γ		S		Geod	Geodetic D Standard Penetration Test N Valu				lue Combustible Vapour Reading (ppm			
	G W L	В	SOIL DESCRIPTION	Eleva	tion p	20 Shear Strep	40 60	80 kPa	Natural Mo	isture Content %	- M P L	Unit Wt.
	_	L			ĥ	50	100 150	200	20	40 60	Ē	KIN/M
	k	\bigotimes	FILL Pile of silty sand with gravel and tons	soil	-							
	K	\bigotimes	inclusions, dark brown								÷	
	K	\bigotimes										
		\otimes	_	_			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		-
		\otimes							ppm∷	4 4 4 4 4 4 4 4 4	:: . 	GS1
	k	\bigotimes										
	k	\otimes										
	K	\bigotimes	_	_	1		······································			<u>- </u>	:	
	K	\bigotimes									÷	
		\bigotimes		86.4								
	k	\bigotimes	FILL Silty alow with groups briefs, vipyl aid	ing							÷ –	-
	k	\bigotimes	and other scrap materials				<u> </u>	5	ppm	+++++++++++++++++++++++++++++++++++++++	: : (m)	GS2
	k	\otimes									: V	002
	K	\bigotimes										1
	K	\bigotimes									÷.	
	Ŕ	\bigotimes	_		2		<u>+++++++++++++++++++++++++++++++++++++</u>		+	+++++++++++++++++++++++++++++++++++++++	÷	
		M	SILTY CLAY	05.0				2	0 nnm		÷ 🕇	
	ł	$\parallel ho$	grey, moist						 X			GS3
	F		Test Pit Terminated at 2.4 m De	85.3								
			rest i it reminated at 2.4 in De									
											-	
											-	
											-	
											:	
											:	
212											-	
											:	
١											:	
MA.											:	
₹												
S ≥			Note:								-	
P											:	
2			 No water seepage in test pit 								:	
5											:	
202											:	
											:	
5											:	
185												
	1				I	L::::!::			1::::	<u></u>	:	
200	NO 1.B	TES: orehol	e/Test Pit data requires Interpretation by exp.	WA	TER L	EVEL RECO	RDS		CORE DI	RILLING RECOR	D	
<u>S</u>	before use by others 2 Test pit backfilled upon completion of executing		Elapsed Time	1	Water _evel (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	R	QD %	
=	2. Lest pit backfilled upon completion of excavating operation.				`							
3. Field work supervised by an EXP representative.												
4. See Notes on Sample Descriptions												
L				1	1		1 1		1	1		

5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0 LOG O

	Log of T	est Pit T	P-13	1	^k eyn
Project No:	OTT-22017859-A0				CAP.
Project:	Proposed Avalon III School			Figure No. 28	I
Location:	2666 Tenth Line Road, Ottawa, ON			Page. I of	<u> </u>
Date Drilled:	'Dec 8, 2022	_ Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample – SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation	Dynamic Cone Test		Undrained Triaxial at	\oplus

Datum: Logged by: MZ

Checked by: SMP

\boxtimes	C
	Ν
0	A
	ι
	9
+ s	F

Page1_01 _1_	-
combustible Vapour Reading latural Moisture Content	\mathbf{x}
tterberg Limits	Ь
Indrained Triaxial at 6 Strain at Failure	\oplus
hear Strength by enetrometer Test	

	S		Geodetic	D	Standar	d Per	netration	Test N Va	lue	Combus	stible Va	pour Read	ing (ppm) S A	Netwol
G	M	SOIL DESCRIPTION	Elevation	í e n p	20	4	0	60	80	2 Nat	50 ural Moi	sture Conte	250 ent %	_M P	Unit Wt.
	ÕL		m	h	Shear Stren	gth 1	20	150 7	kPa	Atterb	erg Lim	its (% Dry \	Veight)	Ę	kN/m ³
	<u>x 1./.</u> · .	TOPSOIL ~ 100mm thick	87.20	0					<u> </u>		Î : : :			: 3	
		FILL													
		Silty sand with topsoil inclusions, as	phalt												
		chunks and brick fragments												: :	
		-	_			<u></u>		+ • • • • •	5	ppm:				: : : : : : : : : : : : : : : : : : : :	CS1
			86.6			÷÷÷		· [·] ·] ·]		۲ . ۲	li i i i				001
		GRANULAR FILL	00.0							nnm				: H	
		50 mm Crushed Limestone, sand ar	nd							Щ Х				: M	GS2
		gravel, grey, wet	86.3	1		::								:	
		FILL												: :	-
		Silly clay, grey, moist				÷÷÷	- : : : : : : : : : : : : : : : : : : :		- : : : : : :		-: -: -: -: -: -: -: -: -: -: -: -: -: -	¥		: .m	GS3
						÷÷								-	
														2	
			-			:::									
														:]	
		70000	85.5											: 	
	<u></u>	dark brown wat soft	05.0			÷÷÷	÷ : - : - :				×			:m	GS4
	1.1.1		85.3	2		÷÷		+		++++++			+++++		
		Grev. wet	85 1											2	
	~~~~	Test Pit Terminated at 2.2 m De	pth											-	
						::								:	
						::						:   : : : :		:	
						::					:::	: : : : : :	1 : : :	:	
						::								:	
						::								:	
														-	
						::								:	
						::	: : : :		1 : : : :		:::	:   : : : :		:	
_						÷÷								-	
3/23						::								:	
12						::						: : : : : :		:	
БЦ														:	
A.O.						::								:	
₹						::								:	
G						÷÷								:	
§		NOTE:				::								:	
۴		1) No water seepage or cave-in				: :								:	
G						::								:	
123.0						::	: : : :					: : : : : :		:	
20,20														-	
AN						::								:	
- -						::						: : : : :	1 : : :	:	
785															
2201			I							1::::		: 1 : : : :	1:::	: 1	I
- N 00 1.	OTES: Boreho	le/Test Pit data requires Interpretation by exp.	WATE	ERL	EVEL RECO	RDS	3			CO	RE DR	RILLING F	RECOR	D	
٩ ١	before use by others Ela		Elapsed Time	Water Hole Open Run			Run	Depth % Rec.			R	QD %			
É 2.	2. Test pit backfilled upon completion of excavating operation.			ne Level (m) To (m)			.,	1.0.	<u>o. (m)                                      </u>						

LOG OF TEST PIT 3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0

	Log d	of Te	est Pi	t T	P-14			1	eyn
Project No:	OTT-22017859-A0							20	unp
Project:	Proposed Avalon III School					Εlζ		29	
Location:	2666 Tenth Line Road, Ottawa, ON			Page. <u>1</u>	_ of _1_				
Date Drilled:	'Dec 8, 2022		Split Spoon Sa	nple	$\boxtimes$	c	Combustible Vapou	r Reading	
Drill Type:	Case 580 Rubber Tire Backhoe		Auger Sample			Ν	latural Moisture Co	ntent	×
Dim Type.			SPT (N) Value		0	A	Atterberg Limits	F	——Ð
Datum:	Geodetic Elevation		Dynamic Cone	Test		L	Indrained Triaxial a	ıt	Ð
			Shelby Tube			9	6 Strain at Failure		•
Logged by:	MZ Checked by: SMP		Shear Strength Vane Test	by	+ s	S	Shear Strength by Penetrometer Test		
			Standard	Ponotration	Tost N Value		Combustible Vapou	r Pooding (nom)	
C Y		Geodetic C	Standard	eneration	rest in value		250 500	750	A Natural
W M	SOIL DESCRIPTION Ele		20	40	60 80		Natural Moisture	e Content %	Unit Wt.
ļ L ļ Ā		m h	Shear Strengt	n		kPa Atterberg Lim		% Dry Weight)	E kN/m ³
		87 01	50	100 *	150 200		20 40	60	S

		Ĺ		m 87 01	ŀ	50	100 150	200 KPa	20	40 60	Ē	N <b>N</b> /111
		<u>\ 1,'</u> .	TOPSOIL ~ 100 mm thick	86.9								
	Ķ	$\otimes$	FILL									
	Ķ	$\otimes$	Silty sand, brown, moist								÷.	
	Ķ	$\otimes$									÷ –	
	K	⋙	_	_			******	<u>; ; ; ; ;</u> ;	ppm □::X: ::::	+++++++++++++++++++++++++++++++++++++++	: m	GS1
	K	$\bigotimes$		86.3							÷. 🗸	
	X	$\otimes$	<u>FILL</u>									
	k	XXI.	Silty clay with cobbles, moist									
	k	***	_	_	1	<u>  : : : :   : :</u>		0	ppm	· · · · · · · · · · · · · · · · · · ·	: 	GS2
	Ŕ	$\otimes$							₩:		÷ M	19.0
	Ŕ	$\bigotimes$									÷ 🕂	
	Ŕ	$\bigotimes$										
	Ŕ	XXI.	_	_								
	Ŕ	$\otimes$										
	K	X	TORSOIL	85.3					ppm · · · · · · · · · · · ·		÷.	
		<u>.</u>	TOPSOIL	85.1					₽	• • • • • • • • • • • • • • • • • • •		GS3
	ť		CLAY								: H	
	ľ		Grey, moist	-1	2	2						
			-	84.8							<u> </u>	
			Test Pit Terminated at 2.2 m De	pth				: : : : :			:	
											:	
											:	
											:	
											:	
10								: : : : : :		:   : : :   : : :	:	
2								:   : : : :			:	
2											:	
Z Z											•	
21											•••••	
ζ											•	
											· · · · · · · · · · · · · · · · · · ·	
			Note:									
			Note:	h								
			Note: 1) Water seeping in from 0.7 m depti 2) No cave-in	h								
			Note: 1) Water seeping in from 0.7 m depti 2) No cave-in	h								
			Note: 1) Water seeping in from 0.7 m depti 2) No cave-in	h								
			Note: 1) Water seeping in from 0.7 m depti 2) No cave-in	h								
			Note: 1) Water seeping in from 0.7 m depti 2) No cave-in	h								
			Note: 1) Water seeping in from 0.7 m depti 2) No cave-in	h								
			Note: 1) Water seeping in from 0.7 m depti 2) No cave-in	h								
	IOT	TES:	Note: 1) Water seeping in from 0.7 m depti 2) No cave-in	h								
N 1	IOT .Bo	TES: preholo	Note: 1) Water seeping in from 0.7 m depth 2) No cave-in e/Test Pit data requires Interpretation by exp.	h	TERL	EVEL RECC	RDS			RILLING RECOF	D	
	IOT .Bo be	TES: prehologiere u	Note: 1) Water seeping in from 0.7 m depth 2) No cave-in s/Test Pit data requires Interpretation by exp. se by others	h Elapsed Time		EVEL RECC Water Level (m)	RDS Hole Open To (m)	Run	CORE DI Depth (m)	RILLING RECOF	2D	2D %
	IOT .Bo be .Te	TES: prehological prehological	Note: 1) Water seeping in from 0.7 m depth 2) No cave-in e/Test Pit data requires Interpretation by exp. se by others backfilled upon completion of excavating n.	h Elapsed Time		EVEL RECC Water Level (m)	RDS Hole Open To (m)	Run No.	CORE DI Depth (m)	RILLING RECOF	2D R(	QD %
	IOT .Bo be .Te op	ES: orehold fore u est pit veratio	Note: 1) Water seeping in from 0.7 m depth 2) No cave-in e/Test Pit data requires Interpretation by exp. se by others backfilled upon completion of excavating n. rk supervised by an EXP representative.	h Elapsed Time		EVEL RECC Water Level (m)	RDS Hole Open To (m)	Run No.	CORE DI Depth (m)	RILLING RECOR	2D R(	2D %
	IOT .Fie Sc	TES: prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehological prehologic	Note: 1) Water seeping in from 0.7 m depth 2) No cave-in e/Test Pit data requires Interpretation by exp. se by others backfilled upon completion of excavating n. rk supervised by an EXP representative. es on Sample Descriptions	h Elapsed Time		EVEL RECC Water Level (m)	RDS Hole Open To (m)	Run No.	CORE DI Depth (m)	RILLING RECOR	2D R(	2D %
	IOT Bobe .Te op .Fie .Se	TES: preholo fore u est pit leeratio eeld wo ee Not	Note: 1) Water seeping in from 0.7 m depth 2) No cave-in e/Test Pit data requires Interpretation by exp. se by others backfilled upon completion of excavating n. rk supervised by an EXP representative. es on Sample Descriptions	h Elapsed Time		EVEL RECC Water Level (m)	RDS Hole Open To (m)	Run No.	CORE DI Depth (m)	RILLING RECOR	2D R	2D %
	IOT .Bo be .Te op .Fie .Se .Th OT	TES: orehold efore u est pit veratio eld wo ee Not nis Fig Tr-22	Note: 1) Water seeping in from 0.7 m depth 2) No cave-in e/Test Pit data requires Interpretation by exp. se by others backfilled upon completion of excavating n. rk supervised by an EXP representative. es on Sample Descriptions ure is to read with exp. Services Inc. report 1/7859-40	h Elapsed Time		EVEL RECC Water Level (m)	RDS Hole Open To (m)	Run No.	CORE DI Depth (m)	RILLING RECOR	2D R(	2D %

	Log o	f Test Pit TP-15	*eyn
Project No:	OTT-22017859-A0		
Project:	Proposed Avalon III School		
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>1</u> of <u>1</u>
Date Drilled:	'Dec 8, 2022	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample  SPT (N) Value  O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at $\oplus$ Strain at Failure
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Arenetrometer Test
S		Condetia D Standard Penetration Test N Value	Combustible Vapour Reading (ppm)

	G₩L	9 Y MBOL	SOIL DESCRIPTION	Geodetio Elevation m 86.61	c D e n p t	20 Shear St 50	) rength )	<u>40 60</u> 100 150	80 kF 200	Pa	25 Natu Atterbe	0 5 ral Mois erg Limit	500 7 ture Conte s (% Dry W 40 6	50 nt % /eight) 60	AMPLES	Natural Unit Wt. kN/m ³
			FILL Silty sand with boulder size asphalt and concrete scrap, wood and brick fragments, brown, wet	_	1					5 pp	m. X					GS1
			TOPSOIL	85.4												
			CLAY	85.2												
			Brown, moist		2					5 pp	<b>m</b> .		×			GS2
			Test Pit Terminated at 2.3 m Depth	84.3												
22017859 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23			Note: 1) Water seeping in from 1.2 m depth 2) Slight cave-in from fill layer													
- SBO-	NO 1.B b	TES: Borehol efore u	e/Test Pit data requires Interpretation by exp.	WAT	ER L	EVEL RE Water		S Hole Open	Rur	1	COF Deptl	RE DRI	LLING R % Re	ECOR	D R	QD %
TTPL	2.T 0	est pit peratic	backfilled upon completion of excavatingT	ïme	L	.evel (m)		<u>To (m)</u>	No.	+	(m)					
LOG OF TEST PI	3.F 4.S 5.T C	ield wo See Not his Fig DTT-22	ork supervised by an EXP representative. tes on Sample Descriptions jure is to read with exp. Services Inc. report 017859-A0													

h a fama suga has a flag and				1 1		
before use by others	Elapsed	Water	Hole Open	Run	Depth	Γ
2. Test pit backfilled upon completion of excavating operation.	Time	Level (m)	To (m)	No.	(m)	-
3. Field work supervised by an EXP representative.						
4. See Notes on Sample Descriptions						
5. This Figure is to read with exp. Services Inc. report OTT-22017859-A0						

	Log	of Test Pit TP-16	1	ovn
Project No:	OTT-22017859-A0		5	Crp.
Project:	Proposed Avalon III School			. 1
Location:	2666 Tenth Line Road, Ottawa, ON		Page. <u>I</u> of <u>I</u>	
Date Drilled:	'Dec 8, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample II	Natural Moisture Content Atterberg Limits	× ⊢⊸
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure	$\oplus$
Logged by:	MZ Checked by: SMP	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	<b></b>
S		Geodetic D Standard Penetration Test N Value	Combustible Vapour Reading (ppr	n) S A Natural

	G W L	Y B O L	SOIL DESCRIPTION	Elevati m 86.73	on p	e p t S	hear s	20 Stren 50	4 gth 1(	0	60 150	80 kP	a	2 Nat Attert	50 tural Mo berg Lim 20	500 sture Cont its (% Dry 40	750 ent % Weight) 60	PLES	Natural Unit Wt. kN/m ³
			FILL Silty clay with topsoil inclusions, cobb and boulders measured up to 1 m diameter, brown, moist –	les									0 pp	m	×				GS1
		<u>x x x</u> . <u></u>	TOPSOIL Saturdated	00.7	1	1							15 p	pm ]	×			m	GS2
			CLAY	85.4									10 p	pm				son2	GS3
17859 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23			Note: 1) Water gushing in from 1.0 m depth test pit to 1 m depth	th filling															19.5
GS - 220	NO 1.B	TES: orehole	e/Test Pit data requires Interpretation by exp.	WAT	rer L	LEVE	ELR	ECC	RDS	3				CO	RE DF		RECOR	D	
TP LC	2.T	est pit	backfilled upon completion of excavating	Elapsed Time	<u> </u>	Wa Leve	ater el (m)	)		Hole Op To (m	pen I)	Run No.	_	Dep (m	) )	% R	ec.	R	QD %
LOG OF TEST PIT	3.F 4.S 5.T 0	ield wo ee Not his Fig	rk supervised by an EXP representative. es on Sample Descriptions ure is to read with exp. Services Inc. report 017859-A0																

	Log	of Test Pit TP-17		evn
Project No:	OTT-22017859-A0			CAP.
Project:	Proposed Avalon III School		Figure No. <u>32</u>	- 1
Location:	2666 Tenth Line Road, Ottawa, ON		Page I of _ I	-
Date Drilled:	'Dec 8, 2022	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	Case 580 Rubber Tire Backhoe	Auger Sample  SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at	$\oplus$
Logged by:	MZ Checked by: SMP	Shelby Tube Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	▲
S		Geodetic D Standard Penetration Test N Value	Combustible Vapour Reading (pp 250 500 750	m) S A Natural

	G W L	Y B O L	SOIL DESCRIPTION		Elevation m	e p t h	2 Shear S	20 Streng	4( gth 10	) 6 0 1!	<u>0 8</u> 50 2	30 kPa	-	23 Nati Atterb	50 ural Mo erg Lim	500 isture Cor iits (% Dry 40	750 itent % Weight)	PLES	Unit Wt. kN/m ³
			FILL Clayey silt sand with gravel, topsoil inclusions, household scrap, brown, saturated	_	854	0							5 ppr	n	×				- GS1
	ł		CLAY		85.3								ppr :	n:.;	×				GS2
7859 - JAN 5, 2023.GPJ TROW OTTAWA.GDT 1/23/23			Brown, wet         Test Pit Terminated at 1.0 m Dep         Note:         1) Water level above ground surface         Samples observed from excavator but	jucket															19.9
- 220	NO	TES:			WATE	-' 		=	PDS			[		<u> </u>			RECO	חכ	
P LOGS	1.В be	orenole efore u	er lest rit data requires interpretation by exp. se by others	Elapso		L	Water evel (m)			lole Ope To (m)	en	Run No.		Dep (m	th	% F	Rec.	F	QD %
LOG OF TEST PIT TI	2. Fi 3. Fi 4. Si 5. Ti O	ield wo ee Note his Figi TT-220	rk supervised by an EXP representative. es on Sample Descriptions ure is to read with exp. Services Inc. report 017859-A0																

EXP Services Inc.

Conseil des écoles catholiques du Centre-est Phase Two Environmental Site Assessment 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0 March 9, 2023

**Appendix E: Analytical Summary Tables** 



## Table 1 - Analytical Results in Soil - PHC and VOC2666 Tenth Line Road, Ottawa, Ontario

#### OTT-22017859-A0

		Prov	vincial						Samples					
Sample ID	UNITS	MECP Table 2 Institutional ¹	MECP Table 1 Institutional ²	TP-1	TP-5	DUP 1 (Duplicate TP-5)	TP-9	TP-11	TP-12	TP-15	TP-17	BH-8 SS1	BH-10 SS3	BH-11 SS3
Sampling Date	4			9-Dec-22	9-Dec-22	9-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	22-Dec-22	22-Dec-22	22-Dec-22
Sample Depth (mbgs)	-		Bold	0.5 to 0.8	0.0 to 0.6	0.0 to 0.6	03 to 0.6	0.4 to 0.7	05 to 0.8	0.8 to 1.0	0.2 to 0.5	0.8 to 0.6	2.5 to 3.0	2.5 to 3.0
Petroleum Hydrocarbons				0.5 10 0.5	0.0 10 0.0	0.0 10 0.0	0.5 10 0.0	0.4 10 0.7	0.5 10 0.0	0.0 to 1.0	0.2 10 0.5	0.0 10 0.0	2.5 to 5.0	2.5 to 5.0
F1 PHC (C6-C10)	110/0	65	25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F2 PHC (C10-C16)	µ6/6	150	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F3 PHC (C16-C34)	µ6/6	300	240	<50	<50	<50	<50	64	54	71	150	<50	<50	<50
F4 PHC (C34-C50)	µ6/6	2800	120	<50	<50	<50	<50	78	<50	71	1700	<50	<50	<50
Volatile Organic Compounds	P6/8	2000	120	100		100	100	70	100	70	1,00	50	100	100
Acetone	110/0	28	0.5	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49	<0.49
Benzene	µ6/6	0.17	0.02	<0.00	<0.060	<0.45	<0.0060	<0.060	<0.060	<0.060	<0.45	<0.45	<0.060	<0.0060
Bromodichloromethane	μ <u>6/6</u> μσ/σ	19	0.02	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000
Bromoform	µ6/6	0.26	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Bromomethane	µ6/6	0.05	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Carbon Tetrachloride	118/8	0.12	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Chlorobenzene	ug/g	2.7	0.05	<0.040	<0.040	<0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040
Chloroform	ug/g	0.18	0.05	<0.040	< 0.040	<0.040	< 0.040	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Dibromochloromethane	ug/g	2.9	0.05	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
1,2-Dichlorobenzene	μg/g	1.7	0.05	<0.040	<0.040	<0.040	< 0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
1,3-Dichlorobenzene	μg/g	6	0.05	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040	<0.040	< 0.040	< 0.040	<0.040	< 0.040
1,4-Dichlorobenzene	μg/g	0.097	0.05	<0.040	< 0.040	<0.040	< 0.040	<0.040	<0.040	< 0.040	<0.040	< 0.040	<0.040	<0.040
Dichlorodifluoromethane	μg/g	25	0.05	< 0.040	< 0.040	<0.040	< 0.040	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040
1,1-Dichloroethane	μg/g	0.6	0.05	< 0.040	<0.040	<0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040
1,2-Dichloroethane	μg/g	0.05	0.05	< 0.049	< 0.049	< 0.049	< 0.049	< 0.049	< 0.049	< 0.049	<0.049	< 0.049	< 0.049	<0.049
1,1-Dichloroethylene	μg/g	0.05	0.05	<0.040	<0.040	<0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040	<0.040	<0.040	<0.040
Cis-1,2-Dichloroethylene	μg/g	2.5	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	< 0.040
Trans-1,2-Dichloroethylene	μg/g	0.75	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
1,2-Dichloropropane	μg/g	0.085	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Cis-1,3-Dichloropropylene	μg/g	NV	NV	<0.030	< 0.030	<0.030	<0.030	<0.030	<0.030	<0.030	< 0.030	< 0.030	<0.030	<0.030
Trans-1,3-Dichloropropylene	μg/g	NV	NV	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
1,3-Dichloropropylene, Total	μg/g	0.081	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050
Ethylbenzene	μg/g	1.6	0.05	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Ethylene Dibromide	μg/g	0.05	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Hexane(n)	μg/g	34	0.05	<0.040	0.064	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Methylene Chloride	μg/g	0.96	0.05	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049	<0.049
Methyl Ethyl Ketone	μg/g	44	0.5	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Methyl Isobutyl Ketone	μg/g	4.3	0.5	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Methyl-t-Butyl Ether	μg/g	1.4	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Styrene	μg/g	2.2	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Tetrachloroethylene	μg/g	2.3	0.05	< 0.040	<0.040	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	<0.040	< 0.040	<0.040
Toluene	μg/g	6	0.2	<0.020	0.023	<0.020	< 0.020	<0.020	< 0.020	< 0.020	<0.020	<0.020	< 0.020	<0.020
1,1,1-Trichloroethane	μg/g	3.4	0.05	< 0.040	<0.040	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040
1,1,2-Trichloroethane	μg/g	0.05	0.05	< 0.040	<0.040	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	<0.040	< 0.040	<0.040
Trichloroethylene	μg/g	0.52	0.05	<0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010
Trichlorofluoromethane	μg/g	5.8	0.25	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	<0.040
Vinyl Chloride	μg/g	0.022	0.02	<0.019	<0.019	<0.019	< 0.019	< 0.019	< 0.019	< 0.019	<0.019	<0.019	< 0.019	<0.019
Total Xylenes	μg/g	25	0.05	<0.020	0.024	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020

NOTES:

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional Use (fine-medium textured soils)

2 Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for Parkland/Residential/Institutional/Industrial/Community Property Use

<RDL Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

- Parameter not analyzed

Indicates soil exceedance of MECP Table 2 SCS

Bold Indicates soil exceedance of MECP Table 1 SCS



#### Table 2 - Analytical Results in Soil - PAH 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

		Prov	incial						Samples					
Sample ID	UNITS	MECP Table 2 Institutional ¹	MECP Table 1 Commercial ²	TP-1	TP-5	DUP 1 (Duplicate TP-5)	TP-9	TP-11	TP-12	TP-15	TP-17	BH-8 SS1	BH-10 SS3	BH-11 SS3
Sampling Date			Pold	9-Dec-22	9-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	22-Dec-22	22-Dec-22	22-Dec-22
Sample Depth (mbgs)			Bolu	0.5 to 0.8	0.0 to 0.6	0.0 to 0.6	0.3 to 0.6	0.4 to 0.7	0.5 to 0.8	0.8 to 1.0	0.2 to 0.5	0.8 to 0.6	2.5 to 3.0	2.5 to 3.0
Polycyclic Aromatic Hydroc	arbons													
Acenaphthene	μg/g	29	0.072	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.011	<0.050	<0.0050	<0.0050	<0.0050
Acenaphthylene	µg/g	0.17	0.093	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050
Anthracene	µg/g	0.74	0.16	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.022	<0.050	<0.0050	<0.0050	<0.0050
Benzo[a]anthracene	μg/g	0.63	0.36	0.009	0.013	0.0059	<0.0050	0.14	<0.050	0.046	<0.050	<0.0050	<0.0050	<0.0050
Benzo[a]pyrene	µg/g	0.3	0.3	0.011	0.014	0.0058	<0.0050	0.15	<0.050	0.042	<0.050	<0.0050	<0.0050	<0.0050
Benzo[b/j]fluoranthene	µg/g	0.78	0.47	0.016	0.019	0.0081	<0.0050	0.2	<0.050	0.052	<0.050	<0.0050	<0.0050	<0.0050
Benzo[g,h,i]perylene	μg/g	7.8	0.68	0.009	0.01	<0.0050	<0.0050	0.13	<0.050	0.024	<0.050	<0.0050	<0.0050	<0.0050
Benzo[k]fluoranthene	µg/g	0.78	0.48	0.006	0.0071	<0.0050	<0.0050	0.079	<0.050	0.021	<0.050	<0.0050	<0.0050	<0.0050
Chrysene	µg/g	7.8	2.8	0.009	0.013	0.0054	<0.0050	0.13	<0.050	0.036	<0.050	<0.0050	<0.0050	<0.0050
Dibenzo[a,h]anthracene	µg/g	0.1	0.1	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.0068	<0.050	<0.0050	<0.0050	<0.0050
Fluoranthene	µg/g	0.69	0.56	0.025	0.035	0.014	<0.0050	0.34	<0.050	0.1	0.054	<0.0050	<0.0050	<0.0050
Fluorene	μg/g	69	0.12	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.014	<0.050	<0.0050	<0.0050	<0.0050
Indeno[1,2,3-cd]pyrene	µg/g	0.48	0.23	0.0085	0.0094	<0.0050	<0.0050	0.1	<0.050	0.024	<0.050	<0.0050	<0.0050	<0.0050
1-Methylnaphthalene	µg/g	3.4	0.59	<0.0050	< 0.0050	<0.0050	<0.0050	<0.050	<0.050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050
2-Methylnaphthalene	µg/g	3.4	0.59	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	<0.0050	<0.050	<0.0050	<0.0050	<0.0050
Naphthalene	μg/g	0.75	0.09	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.050	0.0066	<0.050	<0.0050	<0.0050	<0.0050
Phenanthrene	μg/g	7.8	0.69	0.0088	0.018	0.0089	<0.0050	0.170	<0.050	0.082	<0.050	<0.0050	<0.0050	<0.0050
Pyrene	μg/g	78	1	0.02	0.026	0.011	<0.0050	0.27	<0.050	0.1	<0.050	<0.0050	<0.0050	<0.0050

#### NOTES:

1 Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (fine-medium textured soils)

2 Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for Parkland/Residential/Institutional/Industrial/Community Property Use

<RDL Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

Parameter not analyzed

Indicates soil exceedance of MECP Table 2 SCS

Bold Indicates soil exceedance of MECP Table 1 SCS



#### Table 3 - Analytical Results in Soil - Inorganic Parameters 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

		Prov	vincial						Samples					
Sample ID	UNITS	MECP Table 2 Institutional ¹	MECP Table 1 Commercial ²	TP-1	TP-5	DUP 1 (Duplicate TP-5)	TP-9	TP-11	TP-12	TP-15	TP-17	BH-8 SS1	BH-10 SS3	BH-11 SS3
Sampling Date				9-Dec-22	9-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	8-Dec-22	22-Dec-22	22-Dec-22	22-Dec-22
Sample Depth (mbgs)			Bold	0.5 to 0.8	0.0 to 0.6	0.0 to 0.6	0.3 to 0.6	0.4 to 0.7	0.5 to 0.8	0.8 to 1.0	0.2 to 0.5	0.8 to 0.6	2.5 to 3.0	2.5 to 3.0
Metals	•					•								<u>.</u>
Antimony	μg/g	7.5	1.3	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.24	<0.20	<0.20	<0.20
Arsenic	μg/g	18	18	1.2	2.4	1.8	2.5	1.8	1.7	2.1	1.3	1.1	2.1	2.7
Barium	μg/g	390	220	62	190	240	180	100	100	63	150	68	220	210
Beryllium	μg/g	5	2.5	0.33	0.56	0.69	1	0.42	0.38	0.33	0.27	0.31	1.1	1
Boron (Total)	μg/g	120	36	<5.0	6.9	7	9.3	<5.0	5.4	5	8.7	<5.0	11	13
Cadmium	μg/g	1.2	1.2	<0.10	0.12	<0.10	0.18	0.15	0.11	<0.10	0.21	<0.10	0.15	0.13
Chromium (Total)	μg/g	160	70	28	58	97	100	38	32	23	27	33	110	100
Cobalt	μg/g	22	21	5.8	12	19	22	8.6	7.2	6.6	5.8	6.7	26	25
Copper	μg/g	180	92	11	28	42	41	17	17	13	50	15	48	46
Lead	μg/g	120	120	6	13	12	11	14.0	11	16	35	7.4	11	11
Molybdenum	μg/g	6.9	2	<0.50	0.92	1.00	0.73	0.8	0.83	0.73	1.5	0.68	0.73	<0.50
Nickel	μg/g	130	82	15	35	56	59	21	19	13	18	18	65	63
Selenium	μg/g	2.4	1.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver	μg/g	25	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.41	<0.20	<0.20	<0.20
Thallium	μg/g	1	1	0.11	0.24	0.37	0.3	0.15	0.15	0.13	0.14	0.099	0.38	0.33
Uranium	μg/g	23	2.5	0.62	1	1	1.6	0.92	0.84	0.57	0.82	0.67	1.1	0.83
Vanadium	μg/g	86	86	28	50	78	86	41	33	28	23	30	90	87
Zinc	μg/g	340	290	33	66	100	90	48	49	30	120	33	100	100

NOTES:

1 Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (fine-medium textured soils)

2 Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for Parkland/Residential/Institutional/Industrial/Community Property Use

<RDL Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

Parameter not analyzed

Indicates soil exceedance of MECP Table 2 SCS

Bold Indicates soil exceedance of MECP Table 1 SCS



### Table 4 - Analytical Results in Groundwater - PHC and VOC

#### 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

		Provincial			Sam	ples		
Sample ID	UNITS	MECP Table 2 Institutional ¹	BH-8	BH-11	BH-10	DUP 1	Field Blank	Trip Blank
Sampling Date			10-Jan-2023	10-Jan-2023	10-Jan-2023	20-Jan-2023	10-Jan-2023	10-Jan-2023
Sceen Depth			1.5 to 4.6	2.4 to 5.5	0.8 to 2.3	0.8 to 2.3	N/A	N/A
Petroleum Hydrocarbons								
E1 PHC (C6-C10)*	uø/l	750	<25	<25	<25	<25	<25	<25
F2 PHC (C10-C16)	ug/L	150	<100	<100	<100	<100	<100	<100
F3 PHC (C16-C34)	ug/L	500	<200	<200	<200	<200	<200	<200
F4 PHC (C34-C50)	11g/l	500	<200	<200	<200	<200	<200	<200
Volatilo Organic Compounds	μ6/ L	500	\$200	1200	1200	1200	1200	1200
Acotona (2 Dronanana)		2700			<10	<10	<10	
	μg/L	2700	-		<10	<10	<10	
Bromodichloromothano	μg/L	16	<b>N0.20</b>	<0.20	<0.17	<0.17	<0.17	<0.20
Bromoform	μg/L	25	-	-	<0.50	<0.50	<0.30	-
Bromomothano	μg/L	23	-	-	<0.50	<0.50	<1.0	-
Carbon Totrachlorido	μg/L	0.69	-	-	<0.30	<0.30	<0.30	-
Chlorobonzono	μg/L	20	-	-	<0.20	<0.20	<0.20	-
Chloroform	μg/L	30	-	-	<0.20	<0.20	<0.20 2.1	-
Dibromoshloromothana	μg/L	22	-	-	<0.20	<0.20	2.1	-
	μg/L	25	-	-	<0.50	<0.50	<0.50	-
1,2-Dichlorobenzene	μg/L	5	-	-	<0.50	<0.50	<0.50	-
1,3-Dichlorobenzene	μg/L	59	-	-	<0.50	<0.50	<0.50	-
1,4-Dichlorobenzene Disblorodifluoromothono (EREON 12)	μg/L	1	-	-	<0.50	<0.50	<0.50	-
	μg/L	590	-	-	<1.0	<1.0	<1.0	-
1,1-Dichloroethane	μg/L	5	-	-	<0.20	<0.20	<0.20	-
1,2-Dichloroethane	μg/L	5	-	-	<0.50	<0.50	<0.50	-
	μg/L	14	-	-	<0.20	<0.20	<0.20	-
cis-1,2-Dichloroethylene	μg/L	17	-	-	<0.50	<0.50	<0.50	-
trans-1,2-Dichloroethylene	μg/L	1/	-	-	<0.50	<0.50	<0.50	-
	μg/L	5	-	-	<0.20	<0.20	<0.20	-
cis-1,3-Dichloropropene	μg/L	NV NV	-	-	<0.30	<0.30	<0.30	-
1.2 Dishlaranzanana (sisutrans)	μg/L		-	-	<0.40	<0.40	<0.40	-
	μg/L	0.5	-	-	<0.50	<0.50	<0.50	-
Ethylbenzene	μg/L	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	μg/L	0.2	-	-	<0.20	<0.20	<0.20	-
Nexterior of Chlorida (Disklass methods)	μg/L	520	-	-	<1.0	<1.0	<1.0	-
Methylene Chloride(Dichloromethane)	μg/L	50	-	-	<2.0	<2.0	<2.0	-
Methyl Echyl Ketone (2-Bulanone)	μg/L	1800	-	-	<10	<10	<10	-
Methyl t butyl etber (MTRE)	μg/L	15	-	-	<0.50	<0.50	<0.50	-
Methyl t-butyl ether (MTBE)	μg/L	15	-	-	<0.50	<0.50	<0.50	-
1 1 1 2 Totrachlaraothana	μg/L	5.4	-	-	<0.50	<0.50	<0.50	-
1,1,1,2-Tetrachloroothano	μg/L	1.1	-	-	<0.50	<0.50	<0.50	-
	μg/L	17	-	-	<0.50	<0.50	<0.30	-
Toluono	μg/L	1/			<0.20	<0.20	<0.20	-
1 1 1 Trichloroothana	μg/L	24	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1 ⁻ Trichloroothana	μg/ L	200 F		-	<0.20	<0.20	<0.20	-
1,1,2-michloroethylene	μg/L	С С		-	<0.50	<0.00	<0.00	-
Trichlorofluoromothano (EREON 11)	μg/L	5 0 0	-	-	<0.20	<0.20	<0.20	-
	μg/L	0.9	-	-	<0.50	<0.50	<0.30	-
	μg/L	1./	-	-	<0.20	<0.20	<0.20	-
	μg/L	INV	<0.40	<0.40	<0.20	<0.20	<0.20	<0.40
	μg/L	INV 200	<0.20	<0.20	<0.20	<0.20 +0.20	<0.20	<0.20
rotar Aylenes	μg/L	300	<0.40	<0.40	<0.20	<0.20	<0.20	<0.40

NOTES

1

*

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residenital/Parkland/Institutional Property Use (finemedium textured soils) F1 fraction does not include BTEX; however, the proponent has the choice as to whether or not to subtract BTEX from the analytical result

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

<RDL NV

No Value Parameter not analyzed

Indicates groundwater exceedance of MECP Table 2 SCS



# Table 5 - Analytical Results in Groundwater - PAH 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

		Provincial			
Sample ID	UNITS	MECP Table 2 Institutional ¹	BH-10	DUP 1	Field Blank
Sampling Date			10-Jan-2023	20-Jan-2023	10-Jan-2023
Sceen Depth			0.8 to 2.3	0.8 to 2.3	N/A
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	μg/L	4.1	<0.050	<0.050	<0.050
Acenaphthylene	μg/L	1	< 0.050	<0.050	<0.050
Anthracene	μg/L	2.4	<0.050	<0.050	<0.050
Benzo(a)anthracene	μg/L	1	< 0.050	<0.050	<0.050
Benzo(a)pyrene	μg/L	0.01	<0.0090	< 0.0090	<0.0090
Benzo(b/j)fluoranthene	μg/L	0.1	<0.050	<0.050	<0.050
Benzo(ghi)perylene	μg/L	0.2	< 0.050	<0.050	<0.050
Benzo(k)fluoranthene	μg/L	0.1	<0.050	<0.050	<0.050
Chrysene	μg/L	0.1	< 0.050	<0.050	<0.050
Dibenzo(a,h)anthracene	μg/L	0.2	< 0.050	<0.050	<0.050
Fluoranthene	μg/L	0.41	<0.050	<0.050	<0.050
Fluorene	μg/L	120	< 0.050	<0.050	<0.050
Indeno(1,2,3-cd)pyrene	μg/L	0.2	< 0.050	<0.050	<0.050
1-Methylnaphthalene	μg/L	NV	< 0.050	<0.050	<0.050
2-Methylnaphthalene	μg/L	NV	< 0.050	<0.050	<0.050
Methylnaphthalene, 2-(1-)	μg/L	3.2	<0.071	<0.071	<0.071
Naphthalene	μg/L	11	<0.050	< 0.050	< 0.050
Phenanthrene	μg/L	1	0.05	0.047	< 0.030
Pyrene	μg/L	4.1	0.073	0.071	<0.050

NOTES:

1	Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residenital/Parkland/Institutional Property Use (fine-medium textured soils)
<rdl< td=""><td>Non-detectable results are shown as "&lt; (RDL)" where RDL represents the reporting detection limit.</td></rdl<>	Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.
NV	No Value
-	Parameter not analyzed
	Indicates groundwater exceedance of MECP Table 2 SCS



#### Table 6 - Analytical Results in Groundwater - Inorganic Parameters 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

		Provincial		Sample	
Sample ID	UNITS	MECP Table 2 Instituional ¹	BH-10	DUP 1	Field Blank
Sampling Date			10-Jan-2023	20-Jan-2023	10-Jan-2023
Screen Depth			0.8 to 2.3	0.8 to 2.3	N/A
Metals	-		-		
Antimony	μg/L	6	<0.50	0.64	<0.50
Arsenic	μg/L	25	2.4	2.5	<1.0
Barium	μg/L	1000	65	50	<2.0
Beryllium	μg/L	4	<0.40	<0.40	<0.40
Boron	μg/L	5000	120	120	<10
Cadmium	μg/L	2.7	<0.090	< 0.090	< 0.090
Chromium	μg/L	50	<5.0	<5.0	<5.0
Cobalt	μg/L	3.8	0.79	0.75	<0.50
Copper	μg/L	87	5.5	2.9	<0.90
Lead	μg/L	10	<0.50	<0.50	<0.50
Molybdenum	μg/L	70	7.8	7.7	<0.50
Nickel	μg/L	100	4.6	4.4	<1.0
Sodium	μg/L	490000	210000	210000	360
Selenium	μg/L	10	<2.0	<2.0	<2.0
Silver	μg/L	1.5	<0.090	<0.090	<0.090
Thallium	μg/L	2	<0.050	<0.050	<0.050
Uranium	μg/L	20	5.80	5.5	<0.10
Vanadium	μg/L	6.2	2.3	2.5	<0.50
Zinc	ug/L	1100	<5.0	<5.0	<5.0

#### NOTES:

 

 2
 Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (fine-medium textured soils)

 <RDL</td>
 Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.</td>

 NV
 No Value

Parameter not analyzed

Indicates groundwater exceedance of MECP Table 2 SCS





#### Table 7 - Maximum Concentrations in Soil 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

Parameter	Sample Location	Sample Depth (m bgs)	Sampling Date	Maximum Concentration	MECP Table 2 Institutional
Petroleum Hydrocarbons					
F1 PHC (C6-C10)	All sample locations	0.0 to 3.0	All December 2022 dates	< 10	65
F2 PHC (C10-C16)	All sample locations	0.0 to 3.0	All December 2022 dates	< 6	150
F3 PHC (C16-C34)	TP-17	0.2 to 0.5	8-Dec-22	150	300
F4 PHC (C34-C50)	19-17	0.2 to 0.5	8-Dec-22	1700	2800
	All sample locations	0.0 to 3.0	All December 2022 dates	<0.49	28
Benzene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.060	0 170
Bromodichloromethane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	1.9
Bromoform	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.26
Bromomethane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.05
Carbon Tetrachloride	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.12
Chlorobenzene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	2.7
Chloroform	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.18
Dibromochloromethane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	2.9
1,2-Dichlorobenzene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	1.7
1,3-Dichlorobenzene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	6
1,4-Dichlorobenzene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.097
Dichlorodifiuoromethane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	25
1,1-Dichloroethane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.6
1,2-Dichloroethylene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.049	0.05
Cis-1.2-Dichloroethylene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	25
Trans-1,2-Dichloroethylene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.75
1,2-Dichloropropane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.085
Cis-1,3-Dichloropropylene	All sample locations	0.0 to 3.0	All December 2022 dates	< 0.030	NV
Trans-1,3-Dichloropropylene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	NV
1,3-Dichloropropylene, Total	All sample locations	0.0 to 3.0	All December 2022 dates	<0.050	0.081
Ethylbenzene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.010	1.6
Ethylene Dibromide	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.05
Hexane(n)	TP-5	0.0 to 0.6	9-Dec-22	0.064	34
Methylene Chloride	All sample locations	0.0 to 3.0	All December 2022 dates	<0.049	0.96
Methyl Ethyl Ketone	All sample locations	0.0 to 3.0	All December 2022 dates	<0.40	44
Methyl Isobutyl Ketone	All sample locations	0.0 to 3.0	All December 2022 dates	<0.40	4.3
Methyl-t-Butyl Ether	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	1.4
Styrene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	2.2
1,1,1,2-Tetrachloroethane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.05
1,1,2,2-Tetrachioroethane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.05
Toluene		0.0 to 3.0	All December 2022 dates	0.040	2.5
1 1 1-Trichloroethane	All sample locations	0.0 to 0.0	All December 2022 dates	<0.023	3.4
1 1 2-Trichloroethane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	0.05
Trichloroethylene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.010	0.52
Trichlorofluoromethane	All sample locations	0.0 to 3.0	All December 2022 dates	<0.040	5.8
Vinyl Chloride	All sample locations	0.0 to 3.0	All December 2022 dates	<0.019	0.022
Total Xylenes	TP-5	0.0 to 0.6	9-Dec-22	0.024	25
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	TP-15	0.8 to 1.0	8-Dec-22	0.011	29
Acenaphthylene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.0050	0.17
Anthracene	TP-15	0.8 to 1.0	8-Dec-22	0.022	0.74
Benzo[a]anthracene	TP-11	0.4 to 0.7	8-Dec-22	0.14	0.63
Benzolajpyrene	TP-11	0.4 to 0.7	8-Dec-22	0.15	0.3
Benzo[b/j]fluoranthene	TP-11	0.4 to 0.7	8-Dec-22	0.2	0.78
Benzo[k]fluoranthana	1P-11 TD 11	0.4 to 0.7	8 Doc 22	0.13	/.ð
Chrysone	18-11 TD 11	0.4 10 0.7	0-DHC-22	0.079	U./8 7 0
Dibenzo[a h]anthracene	TP-15	0.4 to 0.7	8-Dec-22	0.12	7.0 0.1
Fluoranthene	TP-11	0.4 to 0.7	8-Dec-22	0.34	0.69
Fluorene	TP-15	0.8 to 1.0	8-Dec-22	0.014	69
Indeno[1,2,3-cd]pyrene	TP-11	0.4 to 0.7	8-Dec-22	0.1	0.48
1-Methylnaphthalene	All sample locations	0.0 to 3.0	All December 2022 dates	<0.0050	3.4
2-Methylnaphthalene	All sample locations	0.0 to 3.0	All December 2022 dates	< 0.0050	3.4
Naphthalene	TP-15	0.8 to 1.0	8-Dec-22	0.0066	0.75
Phenanthrene	TP-11	0.4 to 0.7	8-Dec-22	0.17	7.8
Pyrene	TP-11	0.4 to 0.7	8-Dec-22	0.27	78
Metals					
Antimony	TP-17	0.2 to 0.5	8-Dec-22	0.24	7.5
Arsenic	BH-11	2.5 to 3.0	22-Dec-22	2.7	18
Barium	TP-5 (DUP)	0.0 to 0.6	8-Dec-22	240	390
Berglium	BH-10	2.5 to 3.0	22-Dec-22	1.1	5
boron (rotal)	BH-11 TD 17	2.5 to 3.0	22-Dec-22	13	120
Caumium Chromium (Total)	1P-17	0.2 to 0.5	8-Dec-22	0.21	1.2
Cobalt	BH-10	2.5 to 3.0	22-Dec-22 22-Dec-22	26	200
Copper	TP-17	0.2 to 0.5	8-Dec-22	50	120
Lead	TP-17	0.2 to 0.5	8-Dec-22	35	120
Molybdenum	TP-17	0.2 to 0.5	8-Dec-22	1.5	6.9
Nickel	BH-10	2.5 to 3.0	22-Dec-22	65	130
Selenium	All sample locations	0.0 to 3.0	All December 2022 dates	<0.50	2.4
Silver	TP-17	0.2 to 0.5	8-Dec-22	0.41	25
Thallium	BH-10	2.5 to 3.0	22-Dec-22	0.38	1
Uranium	TP-9	0.3 to 0.6	8-Dec-22	1.6	23
Vanadium	BH-10	2.5 to 3.0	22-Dec-22	90	86
Zinc	TP-17	0.2 to 0.5	8-Dec-22	120	340

#### NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (fine-medium textured soils)

NV No Value

- Parameter not analyzed

m bgs Metres below ground surface



#### Table 8 - Maximum Concentrations in Groundwater 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

Parameter	Sample Location	Sample Depth (m bgs)	Sampling Date	Maximum Concentration	MECP Table 2 Institutional
Petroleum Hydrocarbons	All	0.01.55	10.4	-25	750
F1 PHC (C6-C10) F2 PHC (C10-C16)	All sample locations	0.8 to 5.5	19-Apr-22	<25	150
F3 PHC (C16-C34)	All sample locations	0.8 to 5.5	19-Apr-22	<200	500
F4 PHC (C34-C50)	All sample locations	0.8 to 5.5	19-Apr-22	<200	500
Volatile Organic Compounds			•		
Acetone (2-Propanone)	BH-10	0.8 to 2.3	10-Jan-23	<10	2700
Benzene	BH-10	0.8 to 2.3	10-Jan-23	<0.17	5.000
Bromodichloromethane	All sample locations	0.8 to 5.5	10-Jan-23	<0.50	16
Bromomethane	BH-10 BH-10	0.8 to 2.3	10-Jan-23	<0.50	0.89
Carbon Tetrachloride	BH-10	0.8 to 2.3	10-Jan-23	<0.20	5
Chlorobenzene	BH-10	0.8 to 2.3	10-Jan-23	<0.20	30
Chloroform	BH-10	0.8 to 2.3	10-Jan-23	<0.20	22
Dibromochloromethane	BH-10	0.8 to 2.3	10-Jan-23	<0.50	25
1,2-Dichlorobenzene	BH-10	0.8 to 2.3	10-Jan-23	<0.50	3
1,3-Dichlorobenzene	BH-10 BH-10	0.8 to 2.3	10-Jan-23	<0.50	1
Dichlorodifluoromethane (FREON 12)	BH-10 BH-10	0.8 to 2.3	10-Jan-23	<1.0	590
1,1-Dichloroethane	BH-10	0.8 to 2.3	10-Jan-23	<0.20	5
1,2-Dichloroethane	BH-10	0.8 to 2.3	10-Jan-23	<0.50	5
1,1-Dichloroethylene	BH-10	0.8 to 2.3	10-Jan-23	<0.20	14
cis-1,2-Dichloroethylene	BH-10	0.8 to 2.3	10-Jan-23	<0.50	17
trans-1,2-Dichloroethylene	BH-10	U.8 to 2.3	10-Jan-23	<0.50	17 F
1,2-Dichloropropene	BH-10	0.8 to 2.3	10-Jan-23	<0.20	5 NIV
trans-1.3-Dichloropropene	BH-10	0.8 to 2.3	10-Jan-23	<0.30	NV
1,3-Dichloropropene (cis+trans)	BH-10	0.8 to 2.3	10-Jan-23	<0.50	0.5
Ethylbenzene	All sample locations	0.8 to 5.5	10-Jan-23	<0.20	2.4
Ethylene Dibromide	BH-10	0.8 to 2.3	10-Jan-23	<0.20	0.2
Hexane	BH-10	0.8 to 2.3	10-Jan-23	<1.0	520
Methylene Chloride(Dichloromethane)	BH-10	0.8 to 2.3	10-Jan-23	<2.0	50
Methyl Ethyl Ketone (2-Butanone)	BH-10	0.8 to 2.3	10-Jan-23	<10	1800
Methyl t-butyl ether (MTBE)	BH-10 BH-10	0.8 to 2.3	10-Jan-23	<0.50	15
Styrene	BH-10 BH-10	0.8 to 2.3	10-Jan-23	<0.50	5.4
1,1,1,2-Tetrachloroethane	BH-10	0.8 to 2.3	10-Jan-23	<0.50	1.1
1,1,2,2-Tetrachloroethane	BH-10	0.8 to 2.3	10-Jan-23	<0.50	1
Tetrachloroethylene	BH-10	0.8 to 2.3	10-Jan-23	<0.20	17
Toluene	All sample locations	0.8 to 5.5	10-Jan-23	<0.20	24
1,1,1-Trichloroethane	BH-10	0.8 to 2.3	10-Jan-23	<0.20	200
1,1,2-Trichloroethane	BH-10	0.8 to 2.3	10-Jan-23	<0.50	5
Trichlorofluoromethane (FREON 11)	BH-10	0.8 to 2.3	10-Jan-23	<0.20	89
Vinyl Chloride	BH-10	0.8 to 2.3	10-Jan-23	<0.20	1.7
p+m-Xylene	All sample locations	0.8 to 5.5	10-Jan-23	<0.20	NV
o-Xylene	All sample locations	0.8 to 5.5	10-Jan-23	<0.20	NV
Total Xylenes	All sample locations	0.8 to 5.5	10-Jan-23	<0.20	300
Polycyclic Aromatic Hydrocarbons	811.40			0.050	
Acenaphthene	BH-10	0.8 to 2.3	10-Jan-23	<0.050	4.1
Anthracene	BH-10	0.8 to 2.3	10-Jan-23	<0.050	2.4
Benzo(a)anthracene	BH-10	0.8 to 2.3	10-Jan-23	< 0.050	1
Benzo(a)pyrene	BH-10	0.8 to 2.3	10-Jan-23	<0.0090	0.01
Benzo(b/j)fluoranthene	BH-10	0.8 to 2.3	10-Jan-23	<0.050	0.1
Benzo(ghi)perylene	BH-10	0.8 to 2.3	10-Jan-23	<0.050	0.2
Benzo(k)fluoranthene	BH-10	0.8 to 2.3	10-Jan-23	< 0.050	0.1
Ciliysene Dibenzo(a b)anthracene	BH-10 RH-10	0.8 to 2.3	10-Jan-23	<0.050	0.1
Fluoranthene	BH-10	0.8 to 2.3	10-Jan-23	<0.050	0.41
Fluorene	BH-10	0.8 to 2.3	10-Jan-23	<0.050	120
Indeno(1,2,3-cd)pyrene	BH-10	0.8 to 2.3	10-Jan-23	< 0.050	0.2
1-Methylnaphthalene	BH-10	0.8 to 2.3	10-Jan-23	<0.050	NV
2-Methylnaphthalene	BH-10	0.8 to 2.3	10-Jan-23	<0.050	NV
ivietriyinaphthalene, 2-(1-)	BH-10	0.8 to 2.3	10-Jan-23	<0.0/1	3.2
Phenanthrene	вп-10 ВН-10	0.0 10 2.3	10-JdI-23	0.050	1
Pyrene	BH-10	0.8 to 2.3	10-Jan-23	0.073	4.1
Metals					
Antimony	BH-10	0.8 to 2.3	10-Jan-23	0.64	6
Arsenic	BH-10	0.8 to 2.3	10-Jan-23	2.5	25
Barium	BH-10	0.8 to 2.3	10-Jan-23	65	1000
Beryllium	BH-10	0.8 to 2.3	10-Jan-23	<0.40	4
DUIU() Cadmium	BH-10	0.8 to 2.3	10-Jan-23	120	5000
Chromium	BH-10	0.8 to 2.3	10-Jail-23	<5.0	<u>2.7</u> 50
Cobalt	BH-10	0.8 to 2.3	10-Jan-23	0.79	3.8
Copper	BH-10	0.8 to 2.3	10-Jan-23	5.5	87
Lead	BH-10	0.8 to 2.3	10-Jan-23	<0.50	10
Molybdenum	BH-10	0.8 to 2.3	10-Jan-23	7.8	70
Nickel	BH-10	0.8 to 2.3	10-Jan-23	4.6	100
Solanium	BH-10	U.8 to 2.3	10-Jan-23	210000	490000
Silver	BH-10	0.8 to 2.3	10-Jan-23	<2.U	10
Thallium	BH-10	0.8 to 2.3	10-Jan-23	<0.050	2
Uranium	BH-10	0.8 to 2.3	10-Jan-23	5.8	20
Vanadium	BH-10	0.8 to 2.3	10-Jan-23	2.5	6.2
Zinc	BH-10	0.8 to 2.3	10-Jan-23	<5.0	1100

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (fine-medium textured soils)

NV No Value

- Parameter not analyzed

m bgs Metres below ground surface

÷.

#### Table 9 - Relative Percent Differences - PHC and VOC in Soil 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

Parameter	Units	RDL	TP-5	DUP 1	RPD (%)	Alert Limit (%)
			9-Dec-2022	9-Dec-2022		
Petroleum Hydrocarbons						
F1 PHC (C6 - C10) - BTEX	ug/g dry	10	<10	<10	nc	60
F2 PHC (C10-C16)	ug/g dry	10	<10	<10	nc	60
F3 PHC (C16-C34)	ug/g dry	50	<50	<50	nc	60
F4 PHC (C34-C50)	ug/g dry	50	<50	<50	nc	60
Volatiles						
Acetone	ug/g dry	0.50	<0.49	<0.49	nc	100
Benzene	ug/g dry	0.0060	<0.0060	<0.0060	nc	100
Bromodichloromethane	ug/g dry	0.050	<0.040	<0.040	nc	100
Bromoform	ug/g dry	0.050	<0.040	<0.040	nc	100
Bromomethane	ug/g dry	0.050	<0.040	<0.040	nc	100
Carbon Tetrachloride	ug/g dry	0.050	<0.040	<0.040	nc	100
Chlorobenzene	ug/g dry	0.050	<0.040	<0.040	nc	100
Chloroform	ug/g dry	0.050	<0.040	<0.040	nc	100
Dibromochloromethane	ug/g dry	0.050	<0.040	<0.040	nc	100
Dichlorodifluoromethane	ug/g dry	0.050	<0.040	<0.040	nc	100
1,2-Dichlorobenzene	ug/g dry	0.050	<0.040	<0.040	nc	100
1,3-Dichlorobenzene	ug/g dry	0.050	<0.040	<0.040	nc	100
1,4-Dichlorobenzene	ug/g dry	0.050	<0.040	<0.040	nc	100
1,1-Dichloroethane	ug/g dry	0.050	<0.040	<0.040	nc	100
1,2-Dichloroethane	ug/g dry	0.050	<0.049	<0.049	nc	100
1,1-Dichloroethylene	ug/g dry	0.050	<0.040	<0.040	nc	100
cis-1,2-Dichloroethylene	ug/g dry	0.050	<0.040	<0.040	nc	100
trans-1,2-Dichloroethylene	ug/g dry	0.050	<0.040	<0.040	nc	100
1,2-Dichloropropane	ug/g dry	0.050	<0.040	<0.040	nc	100
cis-1,3-Dichloropropylene	ug/g dry	0.030	<0.030	<0.030	nc	100
trans-1,3-Dichloropropylene	ug/g dry	0.040	<0.040	<0.040	nc	100
1,3-Dichloropropene, total	ug/g dry	0.050	<0.050	<0.050	nc	100
Ethylbenzene	ug/g dry	0.010	<0.010	<0.010	nc	100
Ethylene dibromide (dibromoethane, 1,2-	ug/g dry	0.050	<0.040	<0.040	nc	100
Hexane	ug/g dry	0.050	0.064	<0.040	nc	100
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	0.50	<0.049	<0.049	nc	100
Methyl Isobutyl Ketone	ug/g dry	0.50	<0.40	<0.40	nc	100
Methyl tert-butyl ether	ug/g dry	0.50	<0.40	<0.40	nc	100
Methylene Chloride	ug/g dry	0.050	<0.040	<0.040	nc	100
Styrene	ug/g dry	0.050	<0.040	<0.040	nc	100
1,1,1,2-Tetrachloroethane	ug/g dry	0.050	<0.040	<0.040	nc	100
1,1,2,2-Tetrachloroethane	ug/g dry	0.050	<0.040	<0.040	nc	100
Tetrachloroethylene	ug/g dry	0.050	<0.040	<0.040	nc	100
Toluene	ug/g dry	0.020	0.023	<0.020	nc	100
1,1,1-Trichloroethane	ug/g dry	0.050	<0.040	<0.040	nc	100
1,1,2-Trichloroethane	ug/g dry	0.050	<0.040	<0.040	nc	100
Trichloroethylene	ug/g dry	0.010	<0.010	<0.010	nc	100
Trichlorofluoromethane	ug/g dry	0.050	<0.040	<0.040	nc	100
Vinyl Chloride	ug/g dry	0.020	<0.019	<0.019	nc	100
Xylenes, total	ug/g dry	0.020	0.024	<0.020	nc	100

#### NOTES:

Analysis by Bureau Veritas Labratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL



1

#### Table 10 - Relative Percent Differences - PAH in Soil 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

Parameter	Units	RDL	TP-5	DUP 1	RPD (%)	Alert Limit (%)
			9-Dec-2022	9-Dec-2022		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	ug/g dry	0.0050	<0.0050	<0.0050	nc	80
Acenaphthylene	ug/g dry	0.0050	<0.0050	<0.0050	nc	80
Anthracene	ug/g dry	0.010	<0.0050	<0.0050	nc	80
Benzo[a]anthracene	ug/g dry	0.0050	0.013	0.0059	nc	80
Benzo[a]pyrene	ug/g dry	0.0050	0.014	0.0058	nc	80
Benzo[b/j]fluoranthene	ug/g dry	0.0050	0.019	0.0081	nc	80
Benzo[g,h,i]perylene	ug/g dry	0.0050	0.01	<0.0050	nc	80
Benzo[k]fluoranthene	ug/g dry	0.0050	0.0071	<0.0050	nc	80
Chrysene	ug/g dry	0.0050	0.013	0.0054	nc	80
Dibenzo[a,h]anthracene	ug/g dry	0.0050	<0.0050	<0.0050	nc	80
Fluoranthene	ug/g dry	0.0050	0.035	0.014	nc	80
Fluorene	ug/g dry	0.0050	<0.0050	<0.0050	nc	80
Indeno[1,2,3-cd]pyrene	ug/g dry	0.0050	0.0094	<0.0050	nc	80
1-Methylnaphthalene	ug/g dry	0.0050	<0.0050	<0.0050	nc	80
2-Methylnaphthalene	ug/g dry	0.0050	<0.0050	<0.0050	nc	80
Naphthalene	ug/g dry	0.0050	<0.0050	<0.0050	nc	80
Phenanthrene	ug/g dry	0.0050	0.018	0.0089	nc	80
Pyrene	ug/g dry	0.0050	0.026	0.011	nc	80

#### NOTES:

Analysis by Bureau Veritas Labratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL



i.

#### Table 11 - Relative Percent Differences - Inorganics in Soil 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

Parameter	Units	RDL	TP-5	DUP 1	RPD (%)	Alert Limit (%)
			9-Dec-2022	9-Dec-2022		
Inorganic Parameters						
Antimony	ug/g dry	0.20	<0.20	<0.20	nc	60
Arsenic	ug/g dry	1.0	2.4	1.8	nc	60
Barium	ug/g dry	0.50	190	240	23	60
Beryllium	ug/g dry	0.20	0.56	0.69	nc	60
Boron	ug/g dry	5.0	6.9	7	nc	60
Cadmium	ug/g dry	0.10	0.12	<0.10	nc	60
Chromium	ug/g dry	1.0	58	97	50	60
Cobalt	ug/g dry	0.10	12	19	45	60
Copper	ug/g dry	0.50	28	42	40	60
Lead	ug/g dry	1.0	13	12	8	60
Molybdenum	ug/g dry	0.50	0.92	1	nc	60
Nickel	ug/g dry	0.50	35	56	46	60
Selenium	ug/g dry	0.50	<0.50	<0.50	nc	60
Silver	ug/g dry	0.20	<0.20	<0.20	nc	60
Thallium	ug/g dry	0.050	0.24	0.37	nc	60
Uranium	ug/g dry	0.050	1	1	0	60
Vanadium	ug/g dry	5.0	50	78	44	60
Zinc	ug/g dry	5.0	66	100	41	60

NOTES:

Analysis by Bureau Veritas Labratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL



#### Table 12 - Relative Percent Differences - PHC and VOC in Groundwater 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

Parameter			BH-10	DUP 1	()	Alert Limit (%)
	Units	RDL	10-Jan-2023	10-lan-2023	RPD (%)	
Petroleum Hvdrocarbons			10 7011 1010	10 3011 1010		
F1 PHC (C6 - C10) - BTEX	ug/L	25	<25	<25	nc	60
F2 PHC (C10-C16)	ug/L	100	<100	<100	nc	60
F3 PHC (C16-C34)	ug/L	100	<200	<200	nc	60
F4 PHC (C34-C50)	ug/L	100	<200	<200	nc	60
Volatiles	. 0,					
Acetone	ug/L	5.0	<10	<10	nc	60
Benzene	ug/L	0.5	<0.17	<0.17	nc	60
Bromodichloromethane	ug/I	0.5	<0.50	<0.50	nc	60
Bromoform	ug/L	0.5	<1.0	<1.0	nc	60
Bromomethane	ug/L	0.5	<0.50	<0.50	nc	60
Carbon Tetrachloride	ug/L	0.2	<0.20	<0.20	nc	60
Chlorobenzene	ug/L	0.5	<0.20	<0.20	nc	60
Chloroform	ug/L	0.5	<0.20	<0.20	nc	60
Dibromochloromethane	ug/I	0.5	<0.50	<0.50	nc	60
Dichlorodifluoromethane	ug/L	1.0	<0.50	<0.50	nc	60
1 2-Dichlorobenzene	ug/I	0.5	<0.50	<0.50	nc	60
1 3-Dichlorobenzene	ug/L	0.5	<0.50	<0.50	nc	60
1.4-Dichlorobenzene	ug/L	0.5	<1.0	<1.0	nc	60
1 1-Dichloroethane	ug/I	0.5	<0.20	<0.20	nc	60
1 2-Dichloroethane	ug/L	0.5	<0.50	<0.50	nc	60
1 1-Dichloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
cis-1 2-Dichloroethylene	ug/L	0.5	<0.50	<0.50	nc	60
trans-1 2-Dichloroethylene	ug/L	0.5	<0.50	<0.50	nc	60
1.2-Dichloropropane	ug/L	0.5	<0.20	<0.20	nc	60
cis-1 3-Dichloropropylene	ug/I	0.5	<0.30	<0.30	nc	60
trans-1 3-Dichloropropylene	ug/L	0.5	<0.40	<0.40	nc	60
1.3-Dichloropropene, total	ug/L	0.5	<0.50	<0.50	nc	60
Ethylbenzene	ug/I	0.5	<0.20	<0.20	nc	60
Ethylene dibromide (dibromoethane, 1.2-)	ug/L	0.2	<0.20	<0.20	nc	60
,	ug/I	1.0	<1.0	<1.0	nc	60
Methyl Ethyl Ketone (2-Butanone)	ug/L	5.0	<2.0	<2.0	nc	60
Methyl Isobutyl Ketone	ug/L	5.0	<10	<10	nc	60
Methyl tert-butyl ether	ug/I	2.0	<5.0	<5.0	nc	60
Methylene Chloride	ug/L	5.0	<0.50	<0.50	nc	60
Styrene	ug/L	0.5	<0.50	<0.50	nc	60
1.1.1.2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	nc	60
1.1.2.2-Tetrachloroethane	ug/L	0.5	<0.50	<0.50	nc	60
Tetrachloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
Toluene	ug/L	0.5	<0.20	<0.20	nc	60
1,1,1-Trichloroethane	ug/L	0.5	<0.20	<0.20	nc	60
1,1,2-Trichloroethane	ug/L	0.5	<0.50	<0.50	nc	60
Trichloroethylene	ug/L	0.5	<0.20	<0.20	nc	60
Trichlorofluoromethane	ug/L	1.0	<0.50	<0.50	nc	60
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	nc	60
m/p-Xylene	ug/L	0.5	<0.20	<0.20	nc	60
o-Xylene	ug/L	0.5	<0.20	<0.20	nc	60
Xylenes, total	ug/L	0.5	<0.20	<0.20	nc	60

#### NOTES:

Analysis by Bureau Veritas Labratories

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL


#### Table 13 - Relative Percent Differences - PAH in Groundwater 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0

Parameter	Units	RDL	BH-10	DUP 1	RPD (%)	Alert Limit (%)	
			10-Jan-2023	10-Jan-2023			
Polycylic Aromatic Hydrocarbons							
Acenaphthene	ug/L	0.050	<0.050	<0.050	nc	60	
Acenaphthylene	ug/L	0.050	<0.050	<0.050	nc	60	
Anthracene	ug/L	0.050	<0.050	<0.050	nc	60	
Benzo(a)anthracene	ug/L	0.050	<0.050	<0.050	nc	60	
Benzo(a)pyrene	ug/L	0.050	<0.0090	< 0.0090	nc	60	
Benzo(b/j)fluoranthene	ug/L	0.050	<0.050	<0.050	nc	60	
Benzo(ghi)perylene	ug/L	0.050	<0.050	<0.050	nc	60	
Benzo(k)fluoranthene	ug/L	0.050	<0.050	<0.050	nc	60	
Chrysene	ug/L	0.050	<0.050	<0.050	nc	60	
Dibenzo(a,h)anthracene	ug/L	0.050	<0.050	<0.050	nc	60	
Fluoranthene	ug/L	0.050	<0.050	<0.050	nc	60	
Fluorene	ug/L	0.050	<0.050	<0.050	nc	60	
Indeno(1,2,3-cd)pyrene	ug/L	0.050	<0.050	<0.050	nc	60	
1-Methylnaphthalene	ug/L	0.050	<0.050	<0.050	nc	60	
2-Methylnaphthalene	ug/L	0.050	<0.050	<0.050	nc	60	
Methylnaphthalene, 2-(1-)	ug/L	0.050	<0.071	<0.071	nc	60	
Naphthalene	ug/L	0.050	<0.050	<0.050	nc	60	
Phenanthrene	ug/L	0.050	0.05	0.047	nc	60	
Pyrene	ug/L	0.050	0.073	0.071	nc	60	

#### NOTES:

Analysis by Bureau Veritas Labratories

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in **bold** 



#### Table 14 - Relative Percent Differences - Metals in Groundwater 2666 Tenth Line Road, Ottawa, Ontario

OTT-22017859-A0

Parameter	Units	RDL	BH-10	DUP 1	RPD (%)	Alert Limit (%)
			10-Jan-2023	10-Jan-2023		
Inorganics						
Antimony	ug/L	0.50	<0.50	0.64	nc	40
Arsenic	ug/L	0.10	2.4	2.5	4	40
Barium	ug/L	1.0	65	50	26	40
Beryllium	ug/L	0.10	<0.40	<0.40	nc	40
Boron	ug/L	50	120	120	nc	40
Cadmium	ug/L	0.010	<0.090	<0.090	nc	40
Chromium	ug/L	1.0	<5.0	<5.0	nc	40
Cobalt	ug/L	0.20	0.79	0.75	nc	40
Copper	ug/L	0.20	5.5	2.9	62	40
Lead	ug/L	0.1	<0.50	<0.50	nc	40
Molybdenum	ug/L	1.0	7.8	7.7	1	40
Nickel	ug/L	1.0	4.6	4.4	nc	40
Sodium	ug/L	100.0	210000	210000	0	40
Selenium	ug/L	0.10	<2.0	<2.0	nc	40
Silver	ug/L	0.020	<0.090	<0.090	nc	40
Thallium	ug/L	0.010	<0.050	<0.050	nc	40
Uranium	ug/L	0.10	5.8	5.5	5	40
Vanadium	ug/L	5.0	2.3	2.5	nc	40
Zinc	ug/L	5.0	<5.0	<5.0	nc	40

#### NOTES:

Analysis by Bureau Veritas Labratories

Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in  $\underline{\textit{bold}}$ 

EXP Services Inc.

Conseil des écoles catholiques du Centre-est Phase Two Environmental Site Assessment 2666 Tenth Line Road, Ottawa, Ontario OTT-22017859-A0 March 9, 2023

**Appendix F: Laboratory Certificates of Analysis** 





Your Project #: OTT-22017859-A0 Your C.O.C. #: 910457-03-01

#### Attention: Leah Wells

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2022/12/21 Report #: R7439426 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

### BUREAU VERITAS JOB #: C2AG432

### Received: 2022/12/13, 14:50

Sample Matrix: Soil # Samples Received: 8

		Date	Date		
Analyses 0	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	8	N/A	2022/12/20	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	8	N/A	2022/12/19		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	8	2022/12/19	2022/12/20	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	1	2022/12/21	2022/12/21	CAM SOP-00316	CCME PHC-CWS m
Acid Extractable Metals by ICPMS (1)	6	2022/12/16	2022/12/16	CAM SOP-00447	EPA 6020B m
Acid Extractable Metals by ICPMS (1)	2	2022/12/16	2022/12/19	CAM SOP-00447	EPA 6020B m
Moisture (1)	8	N/A	2022/12/15	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM) (1)	2	2022/12/19	2022/12/19	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM) (1)	6	2022/12/19	2022/12/20	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs (1)	8	N/A	2022/12/19	CAM SOP-00230	EPA 8260C m

### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

Page 1 of 32



Your Project #: OTT-22017859-A0 Your C.O.C. #: 910457-03-01

#### Attention: Leah Wells

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2022/12/21 Report #: R7439426 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

### **BUREAU VERITAS JOB #: C2AG432**

### Received: 2022/12/13. 14:50

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.



21 Dec 2022 13:25:14

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633 -----

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



# **O.REG 153 ICPMS METALS (SOIL)**

Bureau Veritas ID		UOT853	UOT854		UOT855		UOT856		
Sampling Date		2022/12/09	2022/12/08		2022/12/08		2022/12/08		
		08:30	13:30		09:30		10:00		
COC Number		910457-03-01	910457-03-01		910457-03-01		910457-03-01		
	UNITS	TP-1	TP-5	QC Batch	TP-9	QC Batch	TP-11	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	8408509	<0.20	8409125	<0.20	0.20	8408509
Acid Extractable Arsenic (As)	ug/g	1.2	2.4	8408509	2.5	8409125	1.8	1.0	8408509
Acid Extractable Barium (Ba)	ug/g	62	190	8408509	180	8409125	100	0.50	8408509
Acid Extractable Beryllium (Be)	ug/g	0.33	0.56	8408509	1.0	8409125	0.42	0.20	8408509
Acid Extractable Boron (B)	ug/g	<5.0	6.9	8408509	9.3	8409125	<5.0	5.0	8408509
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.12	8408509	0.18	8409125	0.15	0.10	8408509
Acid Extractable Chromium (Cr)	ug/g	28	58	8408509	100	8409125	38	1.0	8408509
Acid Extractable Cobalt (Co)	ug/g	5.8	12	8408509	22	8409125	8.6	0.10	8408509
Acid Extractable Copper (Cu)	ug/g	11	28	8408509	41	8409125	17	0.50	8408509
Acid Extractable Lead (Pb)	ug/g	6.0	13	8408509	11	8409125	14	1.0	8408509
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.92	8408509	0.73	8409125	0.76	0.50	8408509
Acid Extractable Nickel (Ni)	ug/g	15	35	8408509	59	8409125	21	0.50	8408509
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	8408509	<0.50	8409125	<0.50	0.50	8408509
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	8408509	<0.20	8409125	<0.20	0.20	8408509
Acid Extractable Thallium (Tl)	ug/g	0.11	0.24	8408509	0.30	8409125	0.15	0.050	8408509
Acid Extractable Uranium (U)	ug/g	0.62	1.0	8408509	1.6	8409125	0.92	0.050	8408509
Acid Extractable Vanadium (V)	ug/g	28	50	8408509	86	8409125	41	5.0	8408509
Acid Extractable Zinc (Zn)	ug/g	33	66	8408509	90	8409125	48	5.0	8408509
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									



# **O.REG 153 ICPMS METALS (SOIL)**

Bureau Veritas ID		UOT857		UOT858	UOT859		UOT860		
Sampling Date		2022/12/08 09:10		2022/12/08 11:30	2022/12/08 09:00		2022/12/08		
COC Number		910457-03-01		910457-03-01	910457-03-01		910457-03-01		
	UNITS	TP-12	QC Batch	TP-15	TP-17	QC Batch	DUP 1	RDL	QC Batch
Metals									
Acid Extractable Antimony (Sb)	ug/g	<0.20	8408515	<0.20	0.24	8408509	<0.20	0.20	8409125
Acid Extractable Arsenic (As)	ug/g	1.7	8408515	2.1	1.3	8408509	1.8	1.0	8409125
Acid Extractable Barium (Ba)	ug/g	100	8408515	63	150	8408509	240	0.50	8409125
Acid Extractable Beryllium (Be)	ug/g	0.38	8408515	0.33	0.27	8408509	0.69	0.20	8409125
Acid Extractable Boron (B)	ug/g	5.4	8408515	5.0	8.7	8408509	7.0	5.0	8409125
Acid Extractable Cadmium (Cd)	ug/g	0.11	8408515	<0.10	0.21	8408509	<0.10	0.10	8409125
Acid Extractable Chromium (Cr)	ug/g	32	8408515	23	27	8408509	97	1.0	8409125
Acid Extractable Cobalt (Co)	ug/g	7.2	8408515	6.6	5.8	8408509	19	0.10	8409125
Acid Extractable Copper (Cu)	ug/g	17	8408515	13	50	8408509	42	0.50	8409125
Acid Extractable Lead (Pb)	ug/g	11	8408515	16	35	8408509	12	1.0	8409125
Acid Extractable Molybdenum (Mo)	ug/g	0.83	8408515	0.73	1.5	8408509	1.0	0.50	8409125
Acid Extractable Nickel (Ni)	ug/g	19	8408515	13	18	8408509	56	0.50	8409125
Acid Extractable Selenium (Se)	ug/g	<0.50	8408515	<0.50	<0.50	8408509	<0.50	0.50	8409125
Acid Extractable Silver (Ag)	ug/g	<0.20	8408515	<0.20	0.41	8408509	<0.20	0.20	8409125
Acid Extractable Thallium (Tl)	ug/g	0.15	8408515	0.13	0.14	8408509	0.37	0.050	8409125
Acid Extractable Uranium (U)	ug/g	0.84	8408515	0.57	0.82	8408509	1.0	0.050	8409125
Acid Extractable Vanadium (V)	ug/g	33	8408515	28	23	8408509	78	5.0	8409125
Acid Extractable Zinc (Zn)	ug/g	49	8408515	30	120	8408509	100	5.0	8409125
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									



# O.REG 153 PAHS (SOIL)

Bureau Veritas ID		UOT853	UOT854	UOT855		UOT856	UOT857		
Sampling Date		2022/12/09 08:30	2022/12/08 13:30	2022/12/08 09:30		2022/12/08 10:00	2022/12/08 09:10		
COC Number		910457-03-01	910457-03-01	910457-03-01		910457-03-01	910457-03-01		
	UNITS	TP-1	TP-5	TP-9	RDL	TP-11	TP-12	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	<0.0071	0.0071	<0.071	<0.071	0.071	8402929
Polyaromatic Hydrocarbons		•		•	•		•		
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	<0.050	<0.050	0.050	8411121
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	<0.050	<0.050	0.050	8411121
Anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	<0.050	<0.050	0.050	8411121
Benzo(a)anthracene	ug/g	0.0092	0.013	<0.0050	0.0050	0.14	<0.050	0.050	8411121
Benzo(a)pyrene	ug/g	0.011	0.014	<0.0050	0.0050	0.15	<0.050	0.050	8411121
Benzo(b/j)fluoranthene	ug/g	0.016	0.019	<0.0050	0.0050	0.20	<0.050	0.050	8411121
Benzo(g,h,i)perylene	ug/g	0.0094	0.010	<0.0050	0.0050	0.13	<0.050	0.050	8411121
Benzo(k)fluoranthene	ug/g	0.0061	0.0071	<0.0050	0.0050	0.079	<0.050	0.050	8411121
Chrysene	ug/g	0.0094	0.013	<0.0050	0.0050	0.13	<0.050	0.050	8411121
Dibenzo(a,h)anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	<0.050	<0.050	0.050	8411121
Fluoranthene	ug/g	0.025	0.035	<0.0050	0.0050	0.34	<0.050	0.050	8411121
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	<0.050	<0.050	0.050	8411121
Indeno(1,2,3-cd)pyrene	ug/g	0.0085	0.0094	<0.0050	0.0050	0.10	<0.050	0.050	8411121
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	<0.050	<0.050	0.050	8411121
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	<0.050	<0.050	0.050	8411121
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	<0.050	<0.050	0.050	8411121
Phenanthrene	ug/g	0.0088	0.018	<0.0050	0.0050	0.17	<0.050	0.050	8411121
Pyrene	ug/g	0.020	0.026	<0.0050	0.0050	0.27	<0.050	0.050	8411121
Surrogate Recovery (%)					-				
D10-Anthracene	%	92	94	90		121	118		8411121
D14-Terphenyl (FS)	%	102	104	100		112	111		8411121
D8-Acenaphthylene	%	83	87	81		92	90		8411121
RDL = Reportable Detection L	imit								
QC Batch = Quality Control Ba	atch								



# O.REG 153 PAHS (SOIL)

Bureau Veritas ID		UOT858		UOT859		UOT860		
Sampling Date		2022/12/08 11:30		2022/12/08 09:00		2022/12/08		
COC Number		910457-03-01		910457-03-01		910457-03-01		
	UNITS	TP-15	RDL	TP-17	RDL	DUP 1	RDL	QC Batch
Calculated Parameters								
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	<0.071	0.071	<0.0071	0.0071	8402929
Polyaromatic Hydrocarbons								
Acenaphthene	ug/g	0.011	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
Acenaphthylene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
Anthracene	ug/g	0.022	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
Benzo(a)anthracene	ug/g	0.046	0.0050	<0.050	0.050	0.0059	0.0050	8411121
Benzo(a)pyrene	ug/g	0.042	0.0050	<0.050	0.050	0.0058	0.0050	8411121
Benzo(b/j)fluoranthene	ug/g	0.052	0.0050	<0.050	0.050	0.0081	0.0050	8411121
Benzo(g,h,i)perylene	ug/g	0.024	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
Benzo(k)fluoranthene	ug/g	0.021	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
Chrysene	ug/g	0.036	0.0050	<0.050	0.050	0.0054	0.0050	8411121
Dibenzo(a,h)anthracene	ug/g	0.0068	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
Fluoranthene	ug/g	0.10	0.0050	0.054	0.050	0.014	0.0050	8411121
Fluorene	ug/g	0.014	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
Indeno(1,2,3-cd)pyrene	ug/g	0.024	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
1-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
2-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
Naphthalene	ug/g	0.0066	0.0050	<0.050	0.050	<0.0050	0.0050	8411121
Phenanthrene	ug/g	0.082	0.0050	<0.050	0.050	0.0089	0.0050	8411121
Pyrene	ug/g	0.075	0.0050	<0.050	0.050	0.011	0.0050	8411121
Surrogate Recovery (%)			-					
D10-Anthracene	%	88		104		94		8411121
D14-Terphenyl (FS)	%	95		113		103		8411121
D8-Acenaphthylene	%	72		92		80		8411121
RDL = Reportable Detection L	imit							
QC Batch = Quality Control Ba	atch							



## O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		UOT853			UOT853			UOT854		
Sampling Date		2022/12/09			2022/12/09			2022/12/08		
		08:30			08:30			13:30		
COC Number		910457-03-01			910457-03-01			910457-03-01		
	UNITS	TP-1	RDL	QC Batch	TP-1 Lab-Dup	RDL	QC Batch	TP-5	RDL	QC Batch
Inorganics										
Moisture	%	18	1.0	8406980	17	1.0	8406980	26	1.0	8406980
Calculated Parameters		•								
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	8402933				<0.050	0.050	8402933
Volatile Organics		•								
Acetone (2-Propanone)	ug/g	<0.49	0.49	8409042				<0.49	0.49	8409042
Benzene	ug/g	<0.0060	0.0060	8409042				<0.0060	0.0060	8409042
Bromodichloromethane	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Bromoform	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Bromomethane	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Carbon Tetrachloride	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Chlorobenzene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Chloroform	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Dibromochloromethane	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
1,2-Dichlorobenzene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
1,3-Dichlorobenzene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
1,4-Dichlorobenzene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
1,1-Dichloroethane	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
1,2-Dichloroethane	ug/g	<0.049	0.049	8409042				<0.049	0.049	8409042
1,1-Dichloroethylene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
cis-1,2-Dichloroethylene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
trans-1,2-Dichloroethylene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
1,2-Dichloropropane	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	8409042				<0.030	0.030	8409042
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Ethylbenzene	ug/g	<0.010	0.010	8409042				<0.010	0.010	8409042
Ethylene Dibromide	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Hexane	ug/g	<0.040	0.040	8409042				0.064	0.040	8409042
Methylene Chloride(Dichloromethane)	ug/g	<0.049	0.049	8409042				<0.049	0.049	8409042
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	0.40	8409042				<0.40	0.40	8409042
Methyl Isobutyl Ketone	ug/g	<0.40	0.40	8409042				<0.40	0.40	8409042
Methyl t-butyl ether (MTBE)	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Styrene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
1,1,1,2-Tetrachloroethane	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

Lab-Dup = Laboratory Initiated Duplicate



## O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		UOT853			UOT853			UOT854		
Sampling Date		2022/12/09 08:30			2022/12/09 08:30			2022/12/08 13:30		
COC Number		910457-03-01			910457-03-01			910457-03-01		
	UNITS	TP-1	RDL	QC Batch	TP-1 Lab-Dup	RDL	QC Batch	TP-5	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Tetrachloroethylene	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Toluene	ug/g	<0.020	0.020	8409042				0.023	0.020	8409042
1,1,1-Trichloroethane	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
1,1,2-Trichloroethane	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Trichloroethylene	ug/g	<0.010	0.010	8409042				<0.010	0.010	8409042
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	0.040	8409042				<0.040	0.040	8409042
Vinyl Chloride	ug/g	<0.019	0.019	8409042				<0.019	0.019	8409042
p+m-Xylene	ug/g	<0.020	0.020	8409042				0.024	0.020	8409042
o-Xylene	ug/g	<0.020	0.020	8409042				<0.020	0.020	8409042
Total Xylenes	ug/g	<0.020	0.020	8409042				0.024	0.020	8409042
F1 (C6-C10)	ug/g	<10	10	8409042				<10	10	8409042
F1 (C6-C10) - BTEX	ug/g	<10	10	8409042				<10	10	8409042
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	8411098				<10	10	8411098
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	8411098				<50	50	8411098
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	8411098				<50	50	8411098
Reached Baseline at C50	ug/g	Yes		8411098				Yes		8411098
Surrogate Recovery (%)		•								
o-Terphenyl	%	94		8411098				96		8411098
4-Bromofluorobenzene	%	91		8409042				92		8409042
D10-o-Xylene	%	88		8409042				103		8409042
D4-1,2-Dichloroethane	%	96		8409042				95		8409042
D8-Toluene	%	93		8409042				93		8409042
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

Lab-Dup = Laboratory Initiated Duplicate



Bureau Veritas ID		UOT855	UOT856	UOT857	UOT858	UOT859		
Sampling Date		2022/12/08	2022/12/08	2022/12/08	2022/12/08	2022/12/08		
		09:30	10:00	09:10	11:30	09:00		
COC Number		910457-03-01	910457-03-01	910457-03-01	910457-03-01	910457-03-01		
	UNITS	TP-9	TP-11	TP-12	TP-15	TP-17	RDL	QC Batch
Inorganics								
Moisture	%	23	19	14	19	24	1.0	8406980
Calculated Parameters	•		•	•	•	•		
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	8402933
Volatile Organics			•	•	•	•		
Acetone (2-Propanone)	ug/g	<0.49	<0.49	<0.49	<0.49	<0.49	0.49	8409042
Benzene	ug/g	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	8409042
Bromodichloromethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Bromoform	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Bromomethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Carbon Tetrachloride	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Chlorobenzene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Chloroform	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Dibromochloromethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
1,2-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
1,3-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
1,4-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
1,1-Dichloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
1,2-Dichloroethane	ug/g	<0.049	<0.049	<0.049	<0.049	<0.049	0.049	8409042
1,1-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
cis-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
trans-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
1,2-Dichloropropane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	8409042
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	8409042
Ethylene Dibromide	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Hexane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Methylene Chloride(Dichloromethane)	ug/g	<0.049	<0.049	<0.049	<0.049	<0.049	0.049	8409042
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	8409042
Methyl Isobutyl Ketone	ug/g	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	8409042
Methyl t-butyl ether (MTBE)	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Styrene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
1,1,1,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
1,1,2,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								



Bureau Veritas ID		UOT855	UOT856	UOT857	UOT858	UOT859		
Sampling Date		2022/12/08	2022/12/08	2022/12/08	2022/12/08	2022/12/08		
		09:30	10:00	09:10	11:30	09:00		
COC Number		910457-03-01	910457-03-01	910457-03-01	910457-03-01	910457-03-01		
	UNITS	TP-9	TP-11	TP-12	TP-15	TP-17	RDL	QC Batch
Tetrachloroethylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	8409042
1,1,1-Trichloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
1,1,2-Trichloroethane	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Trichloroethylene	ug/g	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	8409042
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	8409042
Vinyl Chloride	ug/g	<0.019	<0.019	<0.019	<0.019	<0.019	0.019	8409042
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	8409042
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	8409042
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	8409042
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	10	8409042
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	10	8409042
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	10	8411098
F3 (C16-C34 Hydrocarbons)	ug/g	<50	64	54	71	150	50	8411098
F4 (C34-C50 Hydrocarbons)	ug/g	<50	78	<50	78	390	50	8411098
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	No		8411098
Surrogate Recovery (%)								
o-Terphenyl	%	96	96	100	96	100		8411098
4-Bromofluorobenzene	%	90	91	91	92	91		8409042
D10-o-Xylene	%	91	93	93	100	80		8409042
D4-1,2-Dichloroethane	%	96	94	98	96	96		8409042
D8-Toluene	%	93	93	92	93	93		8409042
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								



Bureau Veritas ID		UOT860		
Sampling Date		2022/12/08		
COC Number		910457-03-01		
	UNITS	DUP 1	RDL	QC Batch
Inorganics				
Moisture	%	26	1.0	8406980
Calculated Parameters	11			
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	8402933
Volatile Organics				
Acetone (2-Propanone)	ug/g	<0.49	0.49	8409042
Benzene	ug/g	<0.0060	0.0060	8409042
Bromodichloromethane	ug/g	<0.040	0.040	8409042
Bromoform	ug/g	<0.040	0.040	8409042
Bromomethane	ug/g	<0.040	0.040	8409042
Carbon Tetrachloride	ug/g	<0.040	0.040	8409042
Chlorobenzene	ug/g	<0.040	0.040	8409042
Chloroform	ug/g	<0.040	0.040	8409042
Dibromochloromethane	ug/g	<0.040	0.040	8409042
1,2-Dichlorobenzene	ug/g	<0.040	0.040	8409042
1,3-Dichlorobenzene	ug/g	<0.040	0.040	8409042
1,4-Dichlorobenzene	ug/g	<0.040	0.040	8409042
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	0.040	8409042
1,1-Dichloroethane	ug/g	<0.040	0.040	8409042
1,2-Dichloroethane	ug/g	<0.049	0.049	8409042
1,1-Dichloroethylene	ug/g	<0.040	0.040	8409042
cis-1,2-Dichloroethylene	ug/g	<0.040	0.040	8409042
trans-1,2-Dichloroethylene	ug/g	<0.040	0.040	8409042
1,2-Dichloropropane	ug/g	<0.040	0.040	8409042
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	8409042
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	8409042
Ethylbenzene	ug/g	<0.010	0.010	8409042
Ethylene Dibromide	ug/g	<0.040	0.040	8409042
Hexane	ug/g	<0.040	0.040	8409042
Methylene Chloride(Dichloromethane)	ug/g	<0.049	0.049	8409042
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	0.40	8409042
Methyl Isobutyl Ketone	ug/g	<0.40	0.40	8409042
Methyl t-butyl ether (MTBE)	ug/g	<0.040	0.040	8409042
Styrene	ug/g	<0.040	0.040	8409042
1,1,1,2-Tetrachloroethane	ug/g	<0.040	0.040	8409042
1,1,2,2-Tetrachloroethane	ug/g	<0.040	0.040	8409042
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				



Bureau Veritas ID		UOT860		
Sampling Date		2022/12/08		
COC Number		910457-03-01		
	UNITS	DUP 1	RDL	QC Batch
Tetrachloroethylene	ug/g	<0.040	0.040	8409042
Toluene	ug/g	<0.020	0.020	8409042
1,1,1-Trichloroethane	ug/g	<0.040	0.040	8409042
1,1,2-Trichloroethane	ug/g	<0.040	0.040	8409042
Trichloroethylene	ug/g	<0.010	0.010	8409042
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	0.040	8409042
Vinyl Chloride	ug/g	<0.019	0.019	8409042
p+m-Xylene	ug/g	<0.020	0.020	8409042
o-Xylene	ug/g	<0.020	0.020	8409042
Total Xylenes	ug/g	<0.020	0.020	8409042
F1 (C6-C10)	ug/g	<10	10	8409042
F1 (C6-C10) - BTEX	ug/g	<10	10	8409042
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	8411098
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	8411098
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	8411098
Reached Baseline at C50	ug/g	Yes		8411098
Surrogate Recovery (%)				
o-Terphenyl	%	94		8411098
4-Bromofluorobenzene	%	92		8409042
D10-o-Xylene	%	98		8409042
D4-1,2-Dichloroethane	%	96		8409042
D8-Toluene	%	92		8409042
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				



# PETROLEUM HYDROCARBONS (CCME)

Bureau Veritas ID		UOT859		
Sampling Date		2022/12/08		
		09:00		
COC Number		910457-03-01		
	UNITS	TP-17	RDL	QC Batch
F2-F4 Hydrocarbons				
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	1700	100	8415487
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				



### **TEST SUMMARY**

Bureau Veritas ID: UOT853 Sample ID: TP-1 Matrix: Soil					Collected: 2022/12/09 Shipped: Received: 2022/12/13	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	8402929	N/A	2022/12/20	Automated Statchk	
1,3-Dichloropropene Sum	CALC	8402933	N/A	2022/12/19	Automated Statchk	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8411098	2022/12/19	2022/12/20	Jeevaraj Jeevaratrnam	
Acid Extractable Metals by ICPMS	ICP/MS	8408509	2022/12/16	2022/12/16	Rupinder Gill	
Moisture	BAL	8406980	N/A	2022/12/15	Simrat Bhathal	
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8411121	2022/12/19	2022/12/19	Mitesh Raj	
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8409042	N/A	2022/12/19	Denis Reid	
Bureau Veritas ID: UOT853 Dup Sample ID: TP-1 Matrix: Soil					Collected: 2022/12/09 Shipped: Received: 2022/12/13	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture	BAL	8406980	N/A	2022/12/15	Simrat Bhathal	
Bureau Veritas ID: UOT854 Sample ID: TP-5 Matrix: Soil					Collected: 2022/12/08 Shipped: Received: 2022/12/13	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	8402929	N/A	2022/12/20	Automated Statchk	
1,3-Dichloropropene Sum	CALC	8402933	N/A	2022/12/19	Automated Statchk	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8411098	2022/12/19	2022/12/20	Jeevaraj Jeevaratrnam	
Acid Extractable Metals by ICPMS	ICP/MS	8408509	2022/12/16	2022/12/16	Rupinder Gill	
Moisture	BAL	8406980	N/A	2022/12/15	Simrat Bhathal	
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8411121	2022/12/19	2022/12/19	Mitesh Raj	
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8409042	N/A	2022/12/19	Denis Reid	
Bureau Veritas ID: UOT855 Sample ID: TP-9 Matrix: Soil					Collected: 2022/12/08 Shipped: Received: 2022/12/13	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	8402929	N/A	2022/12/20	Automated Statchk	
1,3-Dichloropropene Sum	CALC	8402933	N/A	2022/12/19	Automated Statchk	
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8411098	2022/12/19	2022/12/20	Jeevaraj Jeevaratrnam	
Acid Extractable Metals by ICPMS	ICP/MS	8409125	2022/12/16	2022/12/19	Viviana Canzonieri	
Moisture	BAL	8406980	N/A	2022/12/15	Simrat Bhathal	
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8411121	2022/12/19	2022/12/20	Mitesh Raj	
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8409042	N/A	2022/12/19	Denis Reid	
Bureau Veritas ID: UOT856 Sample ID: TP-11 Matrix: Soil					Collected: 2022/12/08 Shipped: Received: 2022/12/13	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	8402929	N/A	2022/12/20	Automated Statchk	

Bureau Veritas 100 – 36 Antares Dr. Nepean, ON, K2E 7W5 Phone: 613-274-0573 Website: www.bvna.com



### **TEST SUMMARY**

Bureau Veritas ID: Sample ID:	UOT856 TP-11					Collected: Shipped:	2022/12/08
Matrix:	Soil					Received:	2022/12/13
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	1	CALC	8402933	N/A	2022/12/19	Automated	d Statchk
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	8411098	2022/12/19	2022/12/20	Jeevaraj Je	evaratrnam

T ett ole ann my al bear bons t 2 T T in bon	86/118	0111050	2022/12/13	2022/12/20	seevalajseevalatinain
Acid Extractable Metals by ICPMS	ICP/MS	8408509	2022/12/16	2022/12/16	Rupinder Gill
Moisture	BAL	8406980	N/A	2022/12/15	Simrat Bhathal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8411121	2022/12/19	2022/12/20	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8409042	N/A	2022/12/19	Denis Reid

Bureau Veritas ID:	UOT857
Sample ID:	TP-12
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8402929	N/A	2022/12/20	Automated Statchk
1,3-Dichloropropene Sum	CALC	8402933	N/A	2022/12/19	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8411098	2022/12/19	2022/12/20	Jeevaraj Jeevaratrnam
Acid Extractable Metals by ICPMS	ICP/MS	8408515	2022/12/16	2022/12/16	Daniel Teclu
Moisture	BAL	8406980	N/A	2022/12/15	Simrat Bhathal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8411121	2022/12/19	2022/12/20	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8409042	N/A	2022/12/19	Denis Reid

Bureau Veritas ID:	UOT858
Sample ID:	TP-15
Matrix:	Soil

Collected:	2022/12/08
Shipped:	
Received:	2022/12/13

Collected: 2022/12/08 Shipped: Received: 2022/12/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8402929	N/A	2022/12/20	Automated Statchk
1,3-Dichloropropene Sum	CALC	8402933	N/A	2022/12/19	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8411098	2022/12/19	2022/12/20	Jeevaraj Jeevaratrnam
Acid Extractable Metals by ICPMS	ICP/MS	8408509	2022/12/16	2022/12/16	Rupinder Gill
Moisture	BAL	8406980	N/A	2022/12/15	Simrat Bhathal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8411121	2022/12/19	2022/12/20	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8409042	N/A	2022/12/19	Denis Reid

Bureau Veritas ID:	UOT859
Sample ID:	TP-17
Matrix:	Soil

Collected: 2022/12/08 Shipped: Received: 2022/12/13

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8402929	N/A	2022/12/20	Automated Statchk
1,3-Dichloropropene Sum	CALC	8402933	N/A	2022/12/19	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8411098	2022/12/19	2022/12/20	Jeevaraj Jeevaratrnam
F4G (CCME Hydrocarbons Gravimetric)	BAL	8415487	2022/12/21	2022/12/21	Alketa Vrapi
Acid Extractable Metals by ICPMS	ICP/MS	8408509	2022/12/16	2022/12/16	Rupinder Gill
Moisture	BAL	8406980	N/A	2022/12/15	Simrat Bhathal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8411121	2022/12/19	2022/12/20	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8409042	N/A	2022/12/19	Denis Reid



## **TEST SUMMARY**

Bureau Veritas ID: UOT860 Sample ID: DUP 1 Matrix: Soil					Collected: 2022/12/08 Shipped: Beceived: 2022/12/13
Test Description		Datah	Every store	Data Analyzad	Analyst
Test Description	Instrumentation	Бассп	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8402929	N/A	2022/12/20	Automated Statchk
1,3-Dichloropropene Sum	CALC	8402933	N/A	2022/12/19	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8411098	2022/12/19	2022/12/20	Jeevaraj Jeevaratrnam
Acid Extractable Metals by ICPMS	ICP/MS	8409125	2022/12/16	2022/12/19	Viviana Canzonieri
Moisture	BAL	8406980	N/A	2022/12/15	Simrat Bhathal
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8411121	2022/12/19	2022/12/20	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSED	8409042	N/A	2022/12/19	Denis Reid



## **GENERAL COMMENTS**

Each te	mperature is the a	overage of up to	three cooler temperatures taken at receipt
[	Package 1	1.7°C	
Sample	UOT856 [TP-11] :	PAH ANALYSIS:	Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
Sample	UOT857 [TP-12] :	PAH ANALYSIS:	Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
Sample	UOT859 [TP-17] :	PAH ANALYSIS:	Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
Results	relate only to the	items tested.	



## QUALITY ASSURANCE REPORT

_				Matrix Spike		SPIKED BLANK		Method Blank		D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8409042	4-Bromofluorobenzene	2022/12/19	102	60 - 140	102	60 - 140	92	%		
8409042	D10-o-Xylene	2022/12/19	109	60 - 130	94	60 - 130	89	%		
8409042	D4-1,2-Dichloroethane	2022/12/19	94	60 - 140	96	60 - 140	94	%		
8409042	D8-Toluene	2022/12/19	100	60 - 140	100	60 - 140	92	%		
8411098	o-Terphenyl	2022/12/20	85	60 - 130	91	60 - 130	93	%		
8411121	D10-Anthracene	2022/12/19	97	50 - 130	100	50 - 130	100	%		
8411121	D14-Terphenyl (FS)	2022/12/19	107	50 - 130	107	50 - 130	109	%		
8411121	D8-Acenaphthylene	2022/12/19	90	50 - 130	86	50 - 130	84	%		
8406980	Moisture	2022/12/15							6.5	20
8408509	Acid Extractable Antimony (Sb)	2022/12/16	103	75 - 125	106	80 - 120	<0.20	ug/g	NC	30
8408509	Acid Extractable Arsenic (As)	2022/12/16	99	75 - 125	102	80 - 120	<1.0	ug/g	NC	30
8408509	Acid Extractable Barium (Ba)	2022/12/16	101	75 - 125	106	80 - 120	<0.50	ug/g	3.0	30
8408509	Acid Extractable Beryllium (Be)	2022/12/16	93	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
8408509	Acid Extractable Boron (B)	2022/12/16	93	75 - 125	99	80 - 120	<5.0	ug/g	NC	30
8408509	Acid Extractable Cadmium (Cd)	2022/12/16	98	75 - 125	102	80 - 120	<0.10	ug/g	NC	30
8408509	Acid Extractable Chromium (Cr)	2022/12/16	98	75 - 125	102	80 - 120	<1.0	ug/g	3.7	30
8408509	Acid Extractable Cobalt (Co)	2022/12/16	97	75 - 125	101	80 - 120	<0.10	ug/g	1.4	30
8408509	Acid Extractable Copper (Cu)	2022/12/16	98	75 - 125	104	80 - 120	<0.50	ug/g	0.23	30
8408509	Acid Extractable Lead (Pb)	2022/12/16	92	75 - 125	101	80 - 120	<1.0	ug/g	1.6	30
8408509	Acid Extractable Molybdenum (Mo)	2022/12/16	100	75 - 125	101	80 - 120	<0.50	ug/g	NC	30
8408509	Acid Extractable Nickel (Ni)	2022/12/16	93	75 - 125	102	80 - 120	<0.50	ug/g	1.2	30
8408509	Acid Extractable Selenium (Se)	2022/12/16	99	75 - 125	103	80 - 120	<0.50	ug/g	NC	30
8408509	Acid Extractable Silver (Ag)	2022/12/16	97	75 - 125	101	80 - 120	<0.20	ug/g	NC	30
8408509	Acid Extractable Thallium (TI)	2022/12/16	94	75 - 125	103	80 - 120	<0.050	ug/g	NC	30
8408509	Acid Extractable Uranium (U)	2022/12/16	93	75 - 125	100	80 - 120	<0.050	ug/g	1.7	30
8408509	Acid Extractable Vanadium (V)	2022/12/16	96	75 - 125	100	80 - 120	<5.0	ug/g	4.0	30
8408509	Acid Extractable Zinc (Zn)	2022/12/16	NC	75 - 125	99	80 - 120	<5.0	ug/g	0.76	30
8408515	Acid Extractable Antimony (Sb)	2022/12/16	104	75 - 125	103	80 - 120	<0.20	ug/g	NC	30
8408515	Acid Extractable Arsenic (As)	2022/12/16	102	75 - 125	101	80 - 120	<1.0	ug/g	6.5	30
8408515	Acid Extractable Barium (Ba)	2022/12/16	NC	75 - 125	96	80 - 120	<0.50	ug/g	2.8	30
8408515	Acid Extractable Beryllium (Be)	2022/12/16	106	75 - 125	100	80 - 120	<0.20	ug/g	3.8	30
8408515	Acid Extractable Boron (B)	2022/12/16	101	75 - 125	102	80 - 120	<5.0	ug/g	2.4	30



_			Matrix Spike SPIKI		SPIKED	SPIKED BLANK		Method Blank		2
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8408515	Acid Extractable Cadmium (Cd)	2022/12/16	105	75 - 125	99	80 - 120	<0.10	ug/g	NC	30
8408515	Acid Extractable Chromium (Cr)	2022/12/16	104	75 - 125	97	80 - 120	<1.0	ug/g	1.3	30
8408515	Acid Extractable Cobalt (Co)	2022/12/16	101	75 - 125	97	80 - 120	<0.10	ug/g	0.28	30
8408515	Acid Extractable Copper (Cu)	2022/12/16	101	75 - 125	102	80 - 120	<0.50	ug/g	4.3	30
8408515	Acid Extractable Lead (Pb)	2022/12/16	102	75 - 125	102	80 - 120	<1.0	ug/g	5.9	30
8408515	Acid Extractable Molybdenum (Mo)	2022/12/16	107	75 - 125	98	80 - 120	<0.50	ug/g	NC	30
8408515	Acid Extractable Nickel (Ni)	2022/12/16	101	75 - 125	97	80 - 120	<0.50	ug/g	0.50	30
8408515	Acid Extractable Selenium (Se)	2022/12/16	105	75 - 125	103	80 - 120	<0.50	ug/g	NC	30
8408515	Acid Extractable Silver (Ag)	2022/12/16	106	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
8408515	Acid Extractable Thallium (TI)	2022/12/16	105	75 - 125	103	80 - 120	<0.050	ug/g	10	30
8408515	Acid Extractable Uranium (U)	2022/12/16	104	75 - 125	99	80 - 120	<0.050	ug/g	0.50	30
8408515	Acid Extractable Vanadium (V)	2022/12/16	NC	75 - 125	94	80 - 120	<5.0	ug/g	1.4	30
8408515	Acid Extractable Zinc (Zn)	2022/12/16	NC	75 - 125	95	80 - 120	<5.0	ug/g	0.31	30
8409042	1,1,1,2-Tetrachloroethane	2022/12/19	100	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
8409042	1,1,1-Trichloroethane	2022/12/19	96	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8409042	1,1,2,2-Tetrachloroethane	2022/12/19	103	60 - 140	108	60 - 130	<0.040	ug/g	NC	50
8409042	1,1,2-Trichloroethane	2022/12/19	93	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8409042	1,1-Dichloroethane	2022/12/19	93	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8409042	1,1-Dichloroethylene	2022/12/19	94	60 - 140	93	60 - 130	<0.040	ug/g	NC	50
8409042	1,2-Dichlorobenzene	2022/12/19	90	60 - 140	90	60 - 130	<0.040	ug/g	NC	50
8409042	1,2-Dichloroethane	2022/12/19	88	60 - 140	89	60 - 130	<0.049	ug/g	NC	50
8409042	1,2-Dichloropropane	2022/12/19	95	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8409042	1,3-Dichlorobenzene	2022/12/19	94	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8409042	1,4-Dichlorobenzene	2022/12/19	106	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
8409042	Acetone (2-Propanone)	2022/12/19	98	60 - 140	95	60 - 140	<0.49	ug/g	NC	50
8409042	Benzene	2022/12/19	92	60 - 140	92	60 - 130	<0.0060	ug/g	NC	50
8409042	Bromodichloromethane	2022/12/19	101	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
8409042	Bromoform	2022/12/19	109	60 - 140	112	60 - 130	<0.040	ug/g	NC	50
8409042	Bromomethane	2022/12/19	101	60 - 140	103	60 - 140	<0.040	ug/g	NC	50
8409042	Carbon Tetrachloride	2022/12/19	102	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
8409042	Chlorobenzene	2022/12/19	94	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8409042	Chloroform	2022/12/19	99	60 - 140	99	60 - 130	<0.040	ug/g	NC	50



_		Matrix Spike		SPIKED	SPIKED BLANK		Method Blank		2	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8409042	cis-1,2-Dichloroethylene	2022/12/19	103	60 - 140	104	60 - 130	<0.040	ug/g	NC	50
8409042	cis-1,3-Dichloropropene	2022/12/19	87	60 - 140	87	60 - 130	<0.030	ug/g	NC	50
8409042	Dibromochloromethane	2022/12/19	103	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
8409042	Dichlorodifluoromethane (FREON 12)	2022/12/19	112	60 - 140	113	60 - 140	<0.040	ug/g	NC	50
8409042	Ethylbenzene	2022/12/19	82	60 - 140	80	60 - 130	<0.010	ug/g	NC	50
8409042	Ethylene Dibromide	2022/12/19	95	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8409042	F1 (C6-C10) - BTEX	2022/12/19					<10	ug/g	NC	30
8409042	F1 (C6-C10)	2022/12/19	109	60 - 140	99	80 - 120	<10	ug/g	NC	30
8409042	Hexane	2022/12/19	97	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8409042	Methyl Ethyl Ketone (2-Butanone)	2022/12/19	100	60 - 140	100	60 - 140	<0.40	ug/g	NC	50
8409042	Methyl Isobutyl Ketone	2022/12/19	88	60 - 140	91	60 - 130	<0.40	ug/g	NC	50
8409042	Methyl t-butyl ether (MTBE)	2022/12/19	81	60 - 140	79	60 - 130	<0.040	ug/g	NC	50
8409042	Methylene Chloride(Dichloromethane)	2022/12/19	105	60 - 140	106	60 - 130	<0.049	ug/g	NC	50
8409042	o-Xylene	2022/12/19	83	60 - 140	81	60 - 130	<0.020	ug/g	NC	50
8409042	p+m-Xylene	2022/12/19	83	60 - 140	81	60 - 130	<0.020	ug/g	NC	50
8409042	Styrene	2022/12/19	94	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8409042	Tetrachloroethylene	2022/12/19	96	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8409042	Toluene	2022/12/19	92	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
8409042	Total Xylenes	2022/12/19					<0.020	ug/g	NC	50
8409042	trans-1,2-Dichloroethylene	2022/12/19	103	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8409042	trans-1,3-Dichloropropene	2022/12/19	89	60 - 140	89	60 - 130	<0.040	ug/g	NC	50
8409042	Trichloroethylene	2022/12/19	107	60 - 140	106	60 - 130	<0.010	ug/g	NC	50
8409042	Trichlorofluoromethane (FREON 11)	2022/12/19	98	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
8409042	Vinyl Chloride	2022/12/19	93	60 - 140	93	60 - 130	<0.019	ug/g	NC	50
8409125	Acid Extractable Antimony (Sb)	2022/12/20	100	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
8409125	Acid Extractable Arsenic (As)	2022/12/20	100	75 - 125	97	80 - 120	<1.0	ug/g	13	30
8409125	Acid Extractable Barium (Ba)	2022/12/20	NC	75 - 125	92	80 - 120	<0.50	ug/g	3.0	30
8409125	Acid Extractable Beryllium (Be)	2022/12/20	105	75 - 125	96	80 - 120	<0.20	ug/g	3.5	30
8409125	Acid Extractable Boron (B)	2022/12/20	104	75 - 125	100	80 - 120	<5.0	ug/g	1.3	30
8409125	Acid Extractable Cadmium (Cd)	2022/12/20	101	75 - 125	96	80 - 120	<0.10	ug/g	NC	30
8409125	Acid Extractable Chromium (Cr)	2022/12/20	107	75 - 125	102	80 - 120	<1.0	ug/g	3.6	30
8409125	Acid Extractable Cobalt (Co)	2022/12/20	104	75 - 125	100	80 - 120	<0.10	ug/g	2.9	30



			Matrix Spike		SPIKED BLANK		Method Blank		RPE	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8409125	Acid Extractable Copper (Cu)	2022/12/20	99	75 - 125	98	80 - 120	<0.50	ug/g	26	30
8409125	Acid Extractable Lead (Pb)	2022/12/20	102	75 - 125	98	80 - 120	<1.0	ug/g	9.5	30
8409125	Acid Extractable Molybdenum (Mo)	2022/12/20	105	75 - 125	97	80 - 120	<0.50	ug/g	3.7	30
8409125	Acid Extractable Nickel (Ni)	2022/12/20	99	75 - 125	101	80 - 120	<0.50	ug/g	12	30
8409125	Acid Extractable Selenium (Se)	2022/12/20	105	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
8409125	Acid Extractable Silver (Ag)	2022/12/20	104	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
8409125	Acid Extractable Thallium (TI)	2022/12/20	104	75 - 125	100	80 - 120	<0.050	ug/g	13	30
8409125	Acid Extractable Uranium (U)	2022/12/20	106	75 - 125	98	80 - 120	<0.050	ug/g	9.7	30
8409125	Acid Extractable Vanadium (V)	2022/12/20	105	75 - 125	98	80 - 120	<5.0	ug/g	5.5	30
8409125	Acid Extractable Zinc (Zn)	2022/12/20	NC	75 - 125	99	80 - 120	<5.0	ug/g	12	30
8411098	F2 (C10-C16 Hydrocarbons)	2022/12/20	89	60 - 130	94	80 - 120	<10	ug/g	NC	30
8411098	F3 (C16-C34 Hydrocarbons)	2022/12/20	89	60 - 130	94	80 - 120	<50	ug/g	NC	30
8411098	F4 (C34-C50 Hydrocarbons)	2022/12/20	94	60 - 130	100	80 - 120	<50	ug/g	NC	30
8411121	1-Methylnaphthalene	2022/12/19	107	50 - 130	110	50 - 130	<0.0050	ug/g	NC	40
8411121	2-Methylnaphthalene	2022/12/19	102	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
8411121	Acenaphthene	2022/12/19	98	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
8411121	Acenaphthylene	2022/12/19	95	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
8411121	Anthracene	2022/12/19	96	50 - 130	99	50 - 130	<0.0050	ug/g	12	40
8411121	Benzo(a)anthracene	2022/12/19	101	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
8411121	Benzo(a)pyrene	2022/12/19	94	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
8411121	Benzo(b/j)fluoranthene	2022/12/19	90	50 - 130	96	50 - 130	<0.0050	ug/g	51 (1)	40
8411121	Benzo(g,h,i)perylene	2022/12/19	123	50 - 130	111	50 - 130	<0.0050	ug/g	NC	40
8411121	Benzo(k)fluoranthene	2022/12/19	100	50 - 130	110	50 - 130	<0.0050	ug/g	NC	40
8411121	Chrysene	2022/12/19	97	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
8411121	Dibenzo(a,h)anthracene	2022/12/19	106	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
8411121	Fluoranthene	2022/12/19	104	50 - 130	105	50 - 130	<0.0050	ug/g	61 (1)	40
8411121	Fluorene	2022/12/19	98	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
8411121	Indeno(1,2,3-cd)pyrene	2022/12/19	95	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
8411121	Naphthalene	2022/12/19	91	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
8411121	Phenanthrene	2022/12/19	97	50 - 130	100	50 - 130	<0.0050	ug/g	62 (1)	40
8411121	Pyrene	2022/12/19	103	50 - 130	103	50 - 130	<0.0050	ug/g	56 (1)	40



			Matrix	Spike	SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8415487	F4G-sg (Grav. Heavy Hydrocarbons)	2022/12/21	105	65 - 135	101	65 - 135	<100	ug/g	0	50
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.										
Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.										
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.										
Method Blank	: A blank matrix containing all reagents used in the ana	lytical procedure.	Used to identify	y laboratory co	ontamination.					
Surrogate: A	pure or isotopically labeled compound whose behavior	mirrors the analyte	es of interest. U	Ised to evalua	te extraction ef	ficiency.				
NC (Matrix Sp recovery calcu	ike): The recovery in the matrix spike was not calculated Ilation (matrix spike concentration was less than the nat	l. The relative diffe ive sample concer	erence betweer ntration)	n the concentr	ation in the par	ent sample an	d the spike amo	unt was too	small to permit	a reliable
NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).										
(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.										



### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist



Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

ary Name #174 on Acco is 100-2 Ottav (613) APC Class Column Regulation 1558 fr 1 Iss Band Band Band Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Agrident Ag	A Solice Services Sounts Payable 2650 Queensview wa ON K2B 8H6 (Constrained on the services services services services services services (Constrained on the services	Inc Prive Fax (613 Burke@exp.com TER'OR WATER JREAUVERITAS OR CCME Reg 556 MISA Mu MISA Mu PWOC Other	3) 225-7337 INTENDED FOR I DRINKING WATE her Regulations Samtary Sower Bylaw ancipality Heg 406 Table	Company Na Attention: Address Tel Email HUMAN CON R CHAIN OF	Leah W Leah W Ieah.we ISUMPTION I F CUSTODY Special In	ells Ils@exp.com	Fax		_		Quotation # P.O. # Project Project Nam		020328	859-A0		C2AG4	32	Only: Bottle Order #
Imp Name           on         Acco           ss         100-2           Ottav         Ottav           (613)         AP@           Ioteax         Ottav           Ioteax         SUBM           Regulation         153.5           In         Description           In         Description           Mail         April 000           Mail         April 000           Semple Earcold         Incolder	Junts Payable 2650 Queensview wa ON K2B 8H6 ) 685-1899 @exp.com; Karen, J ED DRINKING WA AITTED ON THE 8 (2011) as Meducations (2011) as Meducations (2011) as Meducations (2011) as Fer RSC	Prive Fax (613 Surke@exp.com TER OR WATER IRE OVERTAS OU CCME Reg 556 MitsA Mu PWQO OTHER	3) 225-7337 INTENDED FOR I DRINKING WATE her Regulations Storm Sover Bylaw storm Sover Bylaw micipality Heg 406 Table	Tet Email HUMAN CON	Leah W leah.we ISUMPTION I F CUSTODY Special Int	ells Ils@exp.com MUST BE	Fax.		_		Quotation # P.O. # Project Project Nam		DTT-22017	859-A0		C2AG4	32	Bottle Order #.
ss. 100-: Ottav (613) APQ 612 st. column (613) APQ 612 st. column (613) APQ 612 st. column (613) APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 613 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 614 APQ 6	2650 Queensview wa ON K2B 8H6 ) 683-1899 @exp.com; Karen. ED DRINKING WA AITTED ON THE 8 (2011) as Meducof Fro Meducof Fro Resc include Colleria on C	Fax (613 Surke@exp.com TER'OR WATER UREAUVERITAS CCME Reg 556. MitSA Mu PWQC Other	3) 225-7337 INTENDED FOR H DRINKING WATE her Regulations Storm Sover Bylaw storm Sover Bylaw micipality Reg 406 Table	Address Tet Email HUMAN CON R CHAIN OF	leah.we ISUMPTION I F CUSTODY Special Int	IIs@exp.com MUST BE	Fax				Project Nam	-	DTT-22017	859 AD	_			
Ottav (613) AP@ (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612) (612	wa ON K28 8H6 ) 683-1899 gexp.com; Karen, I ED DRINKING WA AITTED ON THE 8 (2011) at Meducof Fro mm Coarse the Fer RSC nelude Colleria on C	Fax (613 Burke@exp.com TER'OR WATER UREAUVERITAS OR CCME Reg 556. MitsA Mu PWQC Other	3) 225-7337 INTENDED FOR 1 DRINKING WATE her Regulations Sanitary Sower Bylaw ancipality Heg 406 Table	Tet Email HUMAN CON ER CHAIN OF	leah.we ISUMPTION I F CUSTODY Special Int	lls@exp.com MUST BE	Fax	-	-		Project Name				100	f Parts seen		910457
(013) APC APC IdeaseCount IdeaseCount Reputition 1938 Idea Reputition 1938 Idease In Counter Idease In Counter Idease In Counter Idease Idease IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseCount IdeaseC	1) 055-1559 Bexp. com; Karon, J. ED DRINKING WA MITTED ON THE 8 (2011) ark Medium/Fing mm Goarse Inner For RSC melude Criteria on C	Fax: (013 Surke@exp.com TER OR WATER JREAU VERITAS Oti CCM# Reg 556. MISA Mu PWOO Other	INTENDED FOR I DRINKING WATE her Regulations Santary Sower Bylaw Incipality Reg 406 Table	Tet Email HUMAN CON	leah.we ISUMPTION I F CUSTODY Special Int	IIS@exp.com	Fax	-							MUN	I EN	V-1602	Project Manager:
Regulation 1525 de 1 Campa de 2 Campa de 3 Agrifon hi Sengris Europa	ED DRINKING WA AITTED ON THE 8 (2011) ath Medium/Find ath Gaarse there Field neludo Colleria on C	TER OR WATER JREAU VERITAS ON CCME Reg 556. MISA MISA MISA Other	INTENDED FOR H DRINKING WATE her Regulations Saridary Sower Bylaw Storm Sower Bylaw micipality Reg 405 Table	HUMAN CON	SUMPTION I F CUSTODY Special In	NUST BE				-	Site # Sampled By	-	MZ	-		181	C#910457.03.01	Katherine Szozula
Regulation 1833 de 1 Decembra de 2 Indition de 3 Agril Ott de 3	(2011) ask Medium/Fing mm Coarse the Fer RSC nclude Criteria on C	Otti CCME   Reg 555.   MISA Mu PWQC   Other	her Regulations Sanitary Sower Bylaw Storm Sower Bylaw uncipality Reg 406 Table		Special In			-		AN	ALYSIS RECK	JESTED (PLE	ASE BE SPE	CIFIC)			Turnaround Time (TAT	Required
Regulation 1931 de 1 See/Pa de 2 Indiffer de 3 Agri/Ot bis Semple Europa	izenn) ark Medium/Frio mm Goerse Inne Fer RSC nclude Critteria an C	CCME	Servitary Sower Bylaw Storm Sewer Bylaw anicipality Reg 406 Table		Special In		(iii	(Soil								Regular	Please provide advance notic (Standard) TAT:	e for rush projects
nin 2 Inditton de 3 Agrifte de Securio Europa	mm Goorse Ithin Fer RSC Include Critteria on C	Reg 555.	Storm Sewer Bylaw inicipality			structions	2 S	61.64		Sot						fwit be app	Hed if Rush TAT is not specified)	D
aka 3Agrid Ch aka Im- Saetucha Evanciat	nthin FerRSC	PWQ0	Reg 406 Table				/Cr	12.5		dials (						Standord I	AT = 5-7 Working days for most tests.	-
In Seculo Executo	nclude Criteria an C	Domer	Hang 40% Table	_			d) pa	140	Sail	IS No		1				days - con	<ul> <li>Standard TAT for certain tests such a act your Project Manager for details.</li> </ul>	BOD and Discons Furans are > 1
In Sengle Europa	nclude Criteria on C						itten	NON	Passie	ICPN						Job Spec	ific Rush TAT (if applies to entire so	lamission)
Securie Exercise		Certificate of Anely	815 (Y/10)7				a pie	5 12	0.153	119				1		Rush Cont	imation Number	Intel Required
and the second se	ste Lab -	Semate (Lecanon) Idea	whitetion 5at	sampled	Time Samplad	Mathix	112	Cl Free	0.80	10						# of Eatle	Cut	Registre Bot Ma
	TP	-1	22	12/09		5		V	X	V						4		
4)	ITO	-5	22	111/2	******	5		5	1	A			-	1-		+		
	TO	0		100		2		12	T	F				+				
		-9				2		X	X	1.				1	_	1		
	1TP	-11		11		5		X	×	+		_				15		
	TP	-12		4		5	i.	×	×	+						1.		
	TP	-15		1.		5		×	+	+						4.		
	TP	-17		6		5		X	+	4		-				in		
	D	100		11		5		×	4	X			-					
		-11					1	1		1	-	-	-					
				+				-					+				The comment	CTINA -
			L Data ANALINA			Part Party	1						1.					
- 11 au	1 -21/ 21		27/12/1	2 2.14	4 An	ALLICCI	Contra	Printip	-0-	DD //	112	Time	no	t submitted	Time Toresto	Latio	atory Use Only	
	- I the work		repeti	- Pin	A Press	TI	216 /h	afe-	54	21	in The	na	Can			57	Preser	Yes No
ISS OTHERWISE AG OWLEDGMENT AND THE RESPONSIBILI	GREED TO IN WRITING D ACCEPTANCE OF OU JITY OF THE RELINGUIS	WORK SUBMITTED D R TERMS WHICH ARE HEN TO ENSURE THE	AUGURACY OF THE	STODY IS SUBJE VING AT WWW.P CHAIN OF CUST	ECT TO BUREAU WHA COM ENVIR	WERITAS SETAN ONMEATAL LAS	DAND TENMS DOPATORIES/REI	NO CONDI SOURCESH ODY MAY F	HONS BI	GNING OF	HAS CHAIN OF NORTHONS.	F CUSTOD" :	OCUVENT IS	SAMPLES	MUST BE KEP	CONCLATION C	FROM TIME OF SAMPLING	Bureau Ventas Velicar C

14

### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



exp Services Inc Client Project #: OTT-22017859-A0 Client ID: TP-12 Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

#### FID1 - A:Flame Ionization Detector Signal #1 Translated from ChemStation FID1A CH Signal File 049F5901 D (8411098:UOT857-02 1*) astrona 1.9-1.85-1.85-F3 (C16-C34) 1.8 1,75 1.65 1.6 1.55 1.5 1.45 1.4 1.35 1.3 1.25 1.2 1.15 11 1.05 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 (C22-C34 0.25 (C10-C16] FA (C34-C50 0.2 0.15 0.1 38 E2 0.05 0 10 11 9 2 ģ ŝ Acquisition Time (min)

#### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



exp Services Inc Client Project #: OTT-22017859-A0 Client ID: DUP 1 Petroleum Hydrocarbons F2-F4 in Soil Chromatogram





Your Project #: OTT-22017859-A0 Your C.O.C. #: 910457-01-01

#### Attention: Leah Wells

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2023/01/05 Report #: R7455518 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

## BUREAU VERITAS JOB #: C2AS120

Received: 2022/12/28, 08:54

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	3	N/A	2023/01/05	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	3	N/A	2023/01/04		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Soil (1)	3	2023/01/03	2023/01/04	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	3	2023/01/03	2023/01/03	CAM SOP-00447	EPA 6020B m
Moisture	3	N/A	2022/12/29	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	3	2023/01/03	2023/01/05	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs	3	N/A	2023/01/03	CAM SOP-00230	EPA 8260C m

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003".

Page 1 of 17

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com


Your Project #: OTT-22017859-A0 Your C.O.C. #: 910457-01-01

#### Attention: Leah Wells

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2023/01/05 Report #: R7455518 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

### **BUREAU VERITAS JOB #: C2AS120**

### Received: 2022/12/28, 08:54

Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.



Bureau Veritas 05 Jan 2023 17:35:00

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



## O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID		URK168	URK169	URK170		
Sampling Date		2022/12/22	2022/12/22	2022/12/22		
COC Number		910457-01-01	910457-01-01	910457-01-01		
	UNITS	BH8 SS1	BH10 SS3	BH11 SS3	RDL	QC Batch
Metals						
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	<0.20	0.20	8429983
Acid Extractable Arsenic (As)	ug/g	1.1	2.1	2.7	1.0	8429983
Acid Extractable Barium (Ba)	ug/g	68	220	210	0.50	8429983
Acid Extractable Beryllium (Be)	ug/g	0.31	1.1	1.0	0.20	8429983
Acid Extractable Boron (B)	ug/g	<5.0	11	13	5.0	8429983
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.15	0.13	0.10	8429983
Acid Extractable Chromium (Cr)	ug/g	33	110	100	1.0	8429983
Acid Extractable Cobalt (Co)	ug/g	6.7	26	25	0.10	8429983
Acid Extractable Copper (Cu)	ug/g	15	48	46	0.50	8429983
Acid Extractable Lead (Pb)	ug/g	7.4	11	11	1.0	8429983
Acid Extractable Molybdenum (Mo)	ug/g	0.68	0.73	<0.50	0.50	8429983
Acid Extractable Nickel (Ni)	ug/g	18	65	63	0.50	8429983
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	0.50	8429983
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	0.20	8429983
Acid Extractable Thallium (Tl)	ug/g	0.099	0.38	0.33	0.050	8429983
Acid Extractable Uranium (U)	ug/g	0.67	1.1	0.83	0.050	8429983
Acid Extractable Vanadium (V)	ug/g	30	90	87	5.0	8429983
Acid Extractable Zinc (Zn)	ug/g	33	100	100	5.0	8429983
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						



# O.REG 153 PAHS (SOIL)

Bureau Veritas ID		URK168	URK169	URK170		
Sampling Date		2022/12/22	2022/12/22	2022/12/22		
COC Number		910457-01-01	910457-01-01	910457-01-01		
	UNITS	BH8 SS1	BH10 SS3	BH11 SS3	RDL	QC Batch
Calculated Parameters						
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	<0.0071	0.0071	8423835
Polyaromatic Hydrocarbons						
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Chrysene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Dibenzo(a,h)anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Phenanthrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Pyrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	8430721
Surrogate Recovery (%)						
D10-Anthracene	%	98	101	100		8430721
D14-Terphenyl (FS)	%	98	101	99		8430721
D8-Acenaphthylene	%	87	87	85		8430721
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	atch					



## O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		URK168	URK169	URK170			URK170		
Sampling Date		2022/12/22	2022/12/22	2022/12/22			2022/12/22		
COC Number		910457-01-01	910457-01-01	910457-01-01			910457-01-01		
	UNITS	BH8 SS1	BH10 SS3	BH11 SS3	RDL	QC Batch	BH11 SS3 Lab-Dup	RDL	QC Batch
Inorganics									
Moisture	%	18	25	30	1.0	8427332	29	1.0	8427332
Calculated Parameters	•		•	•					
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	0.050	8423907			
Volatile Organics			•	•	•				
Acetone (2-Propanone)	ug/g	<0.49	<0.49	<0.49	0.49	8427065			
Benzene	ug/g	<0.0060	<0.0060	<0.0060	0.0060	8427065			
Bromodichloromethane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Bromoform	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Bromomethane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Carbon Tetrachloride	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Chlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Chloroform	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Dibromochloromethane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
1,2-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
1,3-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
1,4-Dichlorobenzene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Dichlorodifluoromethane (FREON 12)	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
1,1-Dichloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
1,2-Dichloroethane	ug/g	<0.049	<0.049	<0.049	0.049	8427065			
1,1-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
cis-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
trans-1,2-Dichloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
1,2-Dichloropropane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	0.030	8427065			
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	0.010	8427065			
Ethylene Dibromide	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Hexane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Methylene Chloride(Dichloromethane)	ug/g	<0.049	<0.049	<0.049	0.049	8427065			
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.40	<0.40	<0.40	0.40	8427065			
Methyl Isobutyl Ketone	ug/g	<0.40	<0.40	<0.40	0.40	8427065			
Methyl t-butyl ether (MTBE)	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Styrene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
1,1,1,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
RDL = Reportable Detection Limit			·	·	-			•	

Lab-Dup = Laboratory Initiated Duplicate



## O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID		URK168	URK169	URK170			URK170		
Sampling Date		2022/12/22	2022/12/22	2022/12/22			2022/12/22		
COC Number		910457-01-01	910457-01-01	910457-01-01			910457-01-01		
	UNITS	BH8 SS1	BH10 SS3	BH11 SS3	RDL	QC Batch	BH11 SS3 Lab-Dup	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Tetrachloroethylene	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Toluene	ug/g	<0.020	<0.020	<0.020	0.020	8427065			
1,1,1-Trichloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
1,1,2-Trichloroethane	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Trichloroethylene	ug/g	<0.010	<0.010	<0.010	0.010	8427065			
Trichlorofluoromethane (FREON 11)	ug/g	<0.040	<0.040	<0.040	0.040	8427065			
Vinyl Chloride	ug/g	<0.019	<0.019	<0.019	0.019	8427065			
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	8427065			
o-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	8427065			
Total Xylenes	ug/g	<0.020	<0.020	<0.020	0.020	8427065			
F1 (C6-C10)	ug/g	<10	<10	<10	10	8427065			
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	10	8427065			
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	10	8430861			
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	50	8430861			
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	50	8430861			
Reached Baseline at C50	ug/g	Yes	Yes	Yes		8430861			
Surrogate Recovery (%)									
o-Terphenyl	%	95	95	95		8430861			
4-Bromofluorobenzene	%	95	94	93		8427065			
D10-o-Xylene	%	88	92	88		8427065			
D4-1,2-Dichloroethane	%	88	90	90		8427065			
D8-Toluene	%	94	93	93		8427065			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicat	e								



## **TEST SUMMARY**

Bureau Veritas ID: URK168 Sample ID: BH8 SS1 Matrix: Soil					Collected: 2022/12/22 Shipped: Received: 2022/12/28
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8423835	N/A	2023/01/05	Automated Statchk
1,3-Dichloropropene Sum	CALC	8423907	N/A	2023/01/04	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8430861	2023/01/03	2023/01/04	Emir Danisman
Acid Extractable Metals by ICPMS	ICP/MS	8429983	2023/01/03	2023/01/03	Daniel Teclu
Moisture	BAL	8427332	N/A	2022/12/29	Shivani Desai
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8430721	2023/01/03	2023/01/05	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8427065	N/A	2023/01/03	Juan Pangilinan

Bureau Veritas ID: URK169 Sample ID: BH10 SS3 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8423835	N/A	2023/01/05	Automated Statchk
1,3-Dichloropropene Sum	CALC	8423907	N/A	2023/01/04	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8430861	2023/01/03	2023/01/04	Emir Danisman
Acid Extractable Metals by ICPMS	ICP/MS	8429983	2023/01/03	2023/01/03	Daniel Teclu
Moisture	BAL	8427332	N/A	2022/12/29	Shivani Desai
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8430721	2023/01/03	2023/01/05	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8427065	N/A	2023/01/03	Juan Pangilinan

Bureau Veritas ID:	URK170
Sample ID:	BH11 SS3
Matrix:	Soil

Collected: 2022/12/22 Shipped: Received: 2022/12/28

Collected: 2022/12/22 Shipped:

Received: 2022/12/28

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8423835	N/A	2023/01/05	Automated Statchk
1,3-Dichloropropene Sum	CALC	8423907	N/A	2023/01/04	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8430861	2023/01/03	2023/01/04	Emir Danisman
Acid Extractable Metals by ICPMS	ICP/MS	8429983	2023/01/03	2023/01/03	Daniel Teclu
Moisture	BAL	8427332	N/A	2022/12/29	Shivani Desai
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8430721	2023/01/03	2023/01/05	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8427065	N/A	2023/01/03	Juan Pangilinan

Bureau Veritas ID: Sample ID: Matrix:	URK170 Dup BH11 SS3 Soil					Collected: 2022/12/22 Shipped: Received: 2022/12/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture		BAL	8427332	N/A	2022/12/29	Shivani Desai

Page 7 of 17 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



## **GENERAL COMMENTS**

Each temperature	e is the average of up to th	iree cooler temperatures taken at receipt
Package	1 4.0°C	]
	ļ	-
Desults valate av		

Page 8 of 17 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



## QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-22017859-A0 Sampler Initials: AM

_			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8427065	4-Bromofluorobenzene	2023/01/03	104	60 - 140	104	60 - 140	95	%		
8427065	D10-o-Xylene	2023/01/03	103	60 - 130	101	60 - 130	86	%		
8427065	D4-1,2-Dichloroethane	2023/01/03	87	60 - 140	89	60 - 140	89	%		
8427065	D8-Toluene	2023/01/03	101	60 - 140	101	60 - 140	93	%		
8430721	D10-Anthracene	2023/01/04	99	50 - 130	103	50 - 130	101	%		
8430721	D14-Terphenyl (FS)	2023/01/04	102	50 - 130	103	50 - 130	101	%		
8430721	D8-Acenaphthylene	2023/01/04	98	50 - 130	100	50 - 130	96	%		
8430861	o-Terphenyl	2023/01/03	96	60 - 130	97	60 - 130	99	%		
8427065	1,1,1,2-Tetrachloroethane	2023/01/03	105	60 - 140	107	60 - 130	<0.040	ug/g	NC	50
8427065	1,1,1-Trichloroethane	2023/01/03	95	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8427065	1,1,2,2-Tetrachloroethane	2023/01/03	103	60 - 140	109	60 - 130	<0.040	ug/g	NC	50
8427065	1,1,2-Trichloroethane	2023/01/03	89	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8427065	1,1-Dichloroethane	2023/01/03	90	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
8427065	1,1-Dichloroethylene	2023/01/03	90	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
8427065	1,2-Dichlorobenzene	2023/01/03	93	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8427065	1,2-Dichloroethane	2023/01/03	82	60 - 140	85	60 - 130	<0.049	ug/g	NC	50
8427065	1,2-Dichloropropane	2023/01/03	92	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8427065	1,3-Dichlorobenzene	2023/01/03	97	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
8427065	1,4-Dichlorobenzene	2023/01/03	110	60 - 140	109	60 - 130	<0.040	ug/g	NC	50
8427065	Acetone (2-Propanone)	2023/01/03	81	60 - 140	92	60 - 140	<0.49	ug/g	NC	50
8427065	Benzene	2023/01/03	91	60 - 140	92	60 - 130	<0.0060	ug/g	NC	50
8427065	Bromodichloromethane	2023/01/03	99	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
8427065	Bromoform	2023/01/03	113	60 - 140	119	60 - 130	<0.040	ug/g	NC	50
8427065	Bromomethane	2023/01/03	99	60 - 140	101	60 - 140	<0.040	ug/g	NC	50
8427065	Carbon Tetrachloride	2023/01/03	102	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8427065	Chlorobenzene	2023/01/03	97	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
8427065	Chloroform	2023/01/03	97	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
8427065	cis-1,2-Dichloroethylene	2023/01/03	103	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
8427065	cis-1,3-Dichloropropene	2023/01/03	80	60 - 140	83	60 - 130	< 0.030	ug/g	NC	50
8427065	Dibromochloromethane	2023/01/03	107	60 - 140	111	60 - 130	<0.040	ug/g	NC	50
8427065	Dichlorodifluoromethane (FREON 12)	2023/01/03	98	60 - 140	99	60 - 140	<0.040	ug/g	NC	50

Page 9 of 17

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



exp Services Inc Client Project #: OTT-22017859-A0 Sampler Initials: AM

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPE	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8427065	Ethylbenzene	2023/01/03	83	60 - 140	85	60 - 130	<0.010	ug/g	NC	50
8427065	Ethylene Dibromide	2023/01/03	96	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
8427065	F1 (C6-C10) - BTEX	2023/01/03					<10	ug/g	NC	30
8427065	F1 (C6-C10)	2023/01/03	89	60 - 140	85	80 - 120	<10	ug/g	NC	30
8427065	Hexane	2023/01/03	93	60 - 140	94	60 - 130	<0.040	ug/g	NC	50
8427065	Methyl Ethyl Ketone (2-Butanone)	2023/01/03	84	60 - 140	95	60 - 140	<0.40	ug/g	NC	50
8427065	Methyl Isobutyl Ketone	2023/01/03	78	60 - 140	84	60 - 130	<0.40	ug/g	NC	50
8427065	Methyl t-butyl ether (MTBE)	2023/01/03	78	60 - 140	80	60 - 130	<0.040	ug/g	NC	50
8427065	Methylene Chloride(Dichloromethane)	2023/01/03	103	60 - 140	105	60 - 130	<0.049	ug/g	NC	50
8427065	o-Xylene	2023/01/03	85	60 - 140	86	60 - 130	<0.020	ug/g	NC	50
8427065	p+m-Xylene	2023/01/03	85	60 - 140	86	60 - 130	<0.020	ug/g	NC	50
8427065	Styrene	2023/01/03	96	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
8427065	Tetrachloroethylene	2023/01/03	102	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
8427065	Toluene	2023/01/03	95	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
8427065	Total Xylenes	2023/01/03					<0.020	ug/g	NC	50
8427065	trans-1,2-Dichloroethylene	2023/01/03	103	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8427065	trans-1,3-Dichloropropene	2023/01/03	85	60 - 140	89	60 - 130	<0.040	ug/g	NC	50
8427065	Trichloroethylene	2023/01/03	109	60 - 140	109	60 - 130	<0.010	ug/g	NC	50
8427065	Trichlorofluoromethane (FREON 11)	2023/01/03	96	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8427065	Vinyl Chloride	2023/01/03	88	60 - 140	88	60 - 130	<0.019	ug/g	NC	50
8427332	Moisture	2022/12/29							1.0	20
8429983	Acid Extractable Antimony (Sb)	2023/01/03	89	75 - 125	98	80 - 120	<0.20	ug/g	3.1	30
8429983	Acid Extractable Arsenic (As)	2023/01/03	109	75 - 125	99	80 - 120	<1.0	ug/g	0.21	30
8429983	Acid Extractable Barium (Ba)	2023/01/03	NC	75 - 125	97	80 - 120	<0.50	ug/g	2.8	30
8429983	Acid Extractable Beryllium (Be)	2023/01/03	108	75 - 125	99	80 - 120	<0.20	ug/g	1.1	30
8429983	Acid Extractable Boron (B)	2023/01/03	95	75 - 125	96	80 - 120	<5.0	ug/g	5.8	30
8429983	Acid Extractable Cadmium (Cd)	2023/01/03	108	75 - 125	98	80 - 120	<0.10	ug/g	1.6	30
8429983	Acid Extractable Chromium (Cr)	2023/01/03	NC	75 - 125	100	80 - 120	<1.0	ug/g	2.2	30
8429983	Acid Extractable Cobalt (Co)	2023/01/03	111	75 - 125	100	80 - 120	<0.10	ug/g	2.4	30
8429983	Acid Extractable Copper (Cu)	2023/01/03	110	75 - 125	99	80 - 120	<0.50	ug/g	2.6	30
8429983	Acid Extractable Lead (Pb)	2023/01/03	110	75 - 125	102	80 - 120	<1.0	ug/g	0.43	30

Page 10 of 17

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



exp Services Inc Client Project #: OTT-22017859-A0 Sampler Initials: AM

			Matrix	Spike	SPIKED BLANK		Method Blank		RPI	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8429983	Acid Extractable Molybdenum (Mo)	2023/01/03	105	75 - 125	97	80 - 120	<0.50	ug/g	0.48	30
8429983	Acid Extractable Nickel (Ni)	2023/01/03	NC	75 - 125	106	80 - 120	<0.50	ug/g	2.0	30
8429983	Acid Extractable Selenium (Se)	2023/01/03	107	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
8429983	Acid Extractable Silver (Ag)	2023/01/03	109	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
8429983	Acid Extractable Thallium (TI)	2023/01/03	110	75 - 125	105	80 - 120	<0.050	ug/g	1.1	30
8429983	Acid Extractable Uranium (U)	2023/01/03	110	75 - 125	102	80 - 120	<0.050	ug/g	1.7	30
8429983	Acid Extractable Vanadium (V)	2023/01/03	NC	75 - 125	98	80 - 120	<5.0	ug/g	0.091	30
8429983	Acid Extractable Zinc (Zn)	2023/01/03	NC	75 - 125	100	80 - 120	<5.0	ug/g	3.5	30
8430721	1-Methylnaphthalene	2023/01/04	99	50 - 130	109	50 - 130	<0.0050	ug/g	NC	40
8430721	2-Methylnaphthalene	2023/01/04	89	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
8430721	Acenaphthene	2023/01/04	95	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
8430721	Acenaphthylene	2023/01/04	95	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8430721	Anthracene	2023/01/04	98	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8430721	Benzo(a)anthracene	2023/01/04	105	50 - 130	108	50 - 130	<0.0050	ug/g	NC	40
8430721	Benzo(a)pyrene	2023/01/04	95	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
8430721	Benzo(b/j)fluoranthene	2023/01/04	91	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
8430721	Benzo(g,h,i)perylene	2023/01/04	99	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
8430721	Benzo(k)fluoranthene	2023/01/04	96	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
8430721	Chrysene	2023/01/04	99	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8430721	Dibenzo(a,h)anthracene	2023/01/04	91	50 - 130	87	50 - 130	<0.0050	ug/g	NC	40
8430721	Fluoranthene	2023/01/04	106	50 - 130	110	50 - 130	<0.0050	ug/g	NC	40
8430721	Fluorene	2023/01/04	97	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
8430721	Indeno(1,2,3-cd)pyrene	2023/01/04	96	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
8430721	Naphthalene	2023/01/04	82	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
8430721	Phenanthrene	2023/01/04	93	50 - 130	98	50 - 130	<0.0050	ug/g	NC	40
8430721	Pyrene	2023/01/04	105	50 - 130	108	50 - 130	<0.0050	ug/g	NC	40
8430861	F2 (C10-C16 Hydrocarbons)	2023/01/03	97	60 - 130	98	80 - 120	<10	ug/g	NC	30
8430861	F3 (C16-C34 Hydrocarbons)	2023/01/03	97	60 - 130	99	80 - 120	<50	ug/g	NC	30

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



exp Services Inc Client Project #: OTT-22017859-A0 Sampler Initials: AM

			Matrix	Matrix Spike SPIKED BLANK Method Blank		RPC	2			
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8430861	F4 (C34-C50 Hydrocarbons)	2023/01/03	98	60 - 130	99	80 - 120	<50	ug/g	NC	30
Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.										

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



## VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

		INVOICE TO:			1		_	REPO	RT TO:			-	-		PROJECT	INFORMA	TION:	-	IIII				_	_
pany Na	#17498 exp Se	ervices Inc				Company Name	0				-	-	Oustation		C2032	8				C2AS	5120		Bot	tie Order
ntion	Accounts Payal	ble	_			Attention	Leah W	ells					POU										100	
ress	Ottawa ON K2E	nsview Drive	-		-	Address	-			_			Project		OTT-2	2017859	AO		MI	M	ENV-/13		Proie	910457 ect Manag
	(613) 688-1899	F UT ID	. (613	) 225-7337	-	Ter	-		Em	-		-	Project Nar	ne:		-								
iit	AP@exp.com;	Karen Burke@	exp.com			Enait	leah.we	lis@exp.com	Pax.	-	_		Sampled B	Y	_					R SEINIR RA	C#910457-01-01		Kalh	erine Szoz
MOER	REGULATED DRINKI	NG WATER OR	WATER I	NTENDED F	OR HU	MANCONSI	UMPTION I	MUST BE		-	_	AN	ALYSIS REC	UESTED	PLEASE B	E SPECIFIC	1	- 1	_		Tumaround	Time (TAT) Re	quired:	dis
-	SUBMITTED ON	THE BUREAU	VERITAS	DRINKING V	VATER	CHAIN OF C	CUSTODY			Sol						100				Regular (St	andard) TAT:	Brice House to	- usin projes	
aple 1	Realized Mitania		Oth	er Regulations	-	-	Special In	structions	ord	1-74		1	1 1							(will be applied	if Rush TAT is not spec	aliech		
ible 2			558	Sanitary Sewer Storm Sewer By	Bytaw				Cr	3.8.2	1.1	ats (5								Standard TAT	= 5.7 Working days fit's	most tests.	D and Dices	
tie 3	AprilOmes For F		A Ma	nicipiality		_			Hg/	14	(Soil)	S Met					- 1			days - contact (	your Project Manager in	r details		
-		Dewo		Reg 406 Table	-				als /	/OCs	SHW	CPM								Job Specific	Rush TAT (if applies	to entire subm	e Remired	
	In cloudes College			7- 0000	_	_			Met	1531	153	B							-	Rush Confirma	tion Number:			-
Sa	mpie Barcode Label	Sample (Lo	calioni Ident	Misation	Date S	amelad Tal	ne Samplad	Minures	e.	Reg	Reg	Reg					_	1	t	and gatties		Comme	entes entes	
		Dug	11	-		22		1	1	1	-	1												
		prio	22	1	Der	22		2	-	T	1	7		_	-	-	-		_					
		BH10	55	53	- 11			5		+	+	×												
		2.111	Cr	7	1			E		~	1	1												
		DHU	22	2				2		1	1	7				-	-	-	-			_		
									1															
												-												_
-					-0				-			-				_	-	-	-					+
						1																		
											-	-				-	-	-	-					-
-			-	1	_		-		-	-									_					
		-									-	-				-	-	-	-	-				
						_	-																	
	RELINQUISHED BY	Sqnature/Print		Date: (YY/M	100	Time	-	RECEIVED	BY: (Simpatura)	Print)	-	Date: 00	AMAIDDI			1 1 1000 10	and and	-	_	Laborat	ory Use Only			_
11	n Mila	the		22/12/	23	11:33	0	n	Myde	n		20121	12/24	ni	54	not sul	mitted	Time Ser	sine	Temperatu	re ("C) on Rece	Custody Se	al	Yes
. 1				port	-	1112			Provident and		1	Par of	1	sea		1		8		3	14/5	Intact		

Bureau Veritas Canada (2019) Inc.

exp Services Inc Client Project #: OTT-22017859-A0 Client ID: BH8 SS1

#### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



exp Services Inc Client Project #: OTT-22017859-A0 Client ID: BH10 SS3

#### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



exp Services Inc Client Project #: OTT-22017859-A0 Client ID: BH11 SS3

#### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram





Your Project #: OTT-22017859-A0 Your C.O.C. #: 914241-01-01

#### Attention: Leah Wells

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2023/01/17 Report #: R7473948 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

### BUREAU VERITAS JOB #: C308753

Received: 2023/01/10, 16:40

Sample Matrix: Water # Samples Received: 6

	D	Date	Date		
Analyses Quant	tity E	xtracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1) 3	N	I/A	2023/01/17	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1) 3	N	I/A	2023/01/17		EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Water (1) 3	N	I/A	2023/01/12	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2) 2	2	023/01/13	2023/01/13	CAM SOP-00316	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2) 3	2	023/01/13	2023/01/15	CAM SOP-00316	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2) 1	2	023/01/13	2023/01/16	CAM SOP-00316	CCME PHC-CWS m
Dissolved Metals by ICPMS (1) 3	N	I/A	2023/01/13	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM) (1) 3	2	023/01/16	2023/01/17	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs (1) 3	N	I/A	2023/01/14	CAM SOP-00230	EPA 8260C m

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the

Page 1 of 25



Your Project #: OTT-22017859-A0 Your C.O.C. #: 914241-01-01

#### **Attention: Leah Wells**

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

> Report Date: 2023/01/17 Report #: R7473948 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

#### BUREAU VERITAS JOB #: C308753

### Received: 2023/01/10, 16:40

reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.





Bureau Veritas 17 Jan 2023 17:00:30

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

-----

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



# O.REG 153 METALS PACKAGE (WATER)

Bureau Veritas ID		UTU939	UTU940	UTU941							
Sampling Date		2023/01/10	2023/01/10	2023/01/10							
COC Number		14:15	14:15	14:15							
		914241-01-01	914241-01-01	914241-01-01							
	UNITS	BH-10	DUP-1	FIELD BLANK	RDL	QC Batch					
Metals											
Dissolved Antimony (Sb)	ug/L	<0.50	0.64	<0.50	0.50	8447980					
Dissolved Arsenic (As)	ug/L	2.4	2.5	<1.0	1.0	8447980					
Dissolved Barium (Ba)	ug/L	65	50	<2.0	2.0	8447980					
Dissolved Beryllium (Be)	ug/L	<0.40	<0.40	<0.40	0.40	8447980					
Dissolved Boron (B)	ug/L	120	120	<10	10	8447980					
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	<0.090	0.090	8447980					
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	5.0	8447980					
Dissolved Cobalt (Co)	ug/L	0.79	0.75	<0.50	0.50	8447980					
Dissolved Copper (Cu)	ug/L	5.5	2.9	<0.90	0.90	8447980					
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	0.50	8447980					
Dissolved Molybdenum (Mo)	ug/L	7.8	7.7	<0.50	0.50	8447980					
Dissolved Nickel (Ni)	ug/L	4.6	4.4	<1.0	1.0	8447980					
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	<2.0	2.0	8447980					
Dissolved Silver (Ag)	ug/L	<0.090	<0.090	<0.090	0.090	8447980					
Dissolved Sodium (Na)	ug/L	210000	210000	360	100	8447980					
Dissolved Thallium (Tl)	ug/L	<0.050	<0.050	<0.050	0.050	8447980					
Dissolved Uranium (U)	ug/L	5.8	5.5	<0.10	0.10	8447980					
Dissolved Vanadium (V)	ug/L	2.3	2.5	<0.50	0.50	8447980					
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	5.0	8447980					
RDL = Reportable Detection Li	RDL = Reportable Detection Limit										
QC Batch = Quality Control Bat	tch										



# **O.REG 153 PAHS (WATER)**

Bureau Veritas ID		UTU939	UTU940	UTU941		
Sampling Date		2023/01/10 14:15	2023/01/10 14:15	2023/01/10 14:15		
COC Number		914241-01-01	914241-01-01	914241-01-01		
	UNITS	BH-10	DUP-1	FIELD BLANK	RDL	QC Batch
Calculated Parameters						
Methylnaphthalene, 2-(1-)	ug/L	<0.071	<0.071	<0.071	0.071	8444073
Polyaromatic Hydrocarbons						
Acenaphthene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Anthracene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Benzo(a)anthracene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Benzo(a)pyrene	ug/L	<0.0090	<0.0090	<0.0090	0.0090	8451511
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Chrysene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Dibenzo(a,h)anthracene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Fluorene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
2-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Naphthalene	ug/L	<0.050	<0.050	<0.050	0.050	8451511
Phenanthrene	ug/L	0.050	0.047	<0.030	0.030	8451511
Pyrene	ug/L	0.073	0.071	<0.050	0.050	8451511
Surrogate Recovery (%)					-	
D10-Anthracene	%	98	99	100		8451511
D14-Terphenyl (FS)	%	75	75	101		8451511
D8-Acenaphthylene	%	89	91	93		8451511
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	atch					



# O.REG 153 PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID		UTU937	UTU938	UTU942		
Sampling Date		2023/01/10	2023/01/10	2023/01/10		
COC Number		12:00	13:00	14:15		
COC Number		914241-01-01	914241-01-01	914241-01-01		
	UNITS	BH-8	BH-11	TRIP BLANK	RDL	QC Batch
BTEX & F1 Hydrocarbons						
Benzene	ug/L	<0.20	<0.20	<0.20	0.20	8445860
Toluene	ug/L	<0.20	<0.20	<0.20	0.20	8445860
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	0.20	8445860
o-Xylene	ug/L	<0.20	<0.20	<0.20	0.20	8445860
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	0.40	8445860
Total Xylenes	ug/L	<0.40	<0.40	<0.40	0.40	8445860
F1 (C6-C10)	ug/L	<25	<25	<25	25	8445860
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	25	8445860
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	100	8448469
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	200	8448469
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	200	8448469
Reached Baseline at C50	ug/L	Yes	Yes	Yes		8448469
Surrogate Recovery (%)						
1,4-Difluorobenzene	%	100	102	102		8445860
4-Bromofluorobenzene	%	98	97	97		8445860
D10-o-Xylene	%	86	86	85		8445860
D4-1,2-Dichloroethane	%	102	101	103		8445860
o-Terphenyl	%	102	99	103		8448469
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	atch					



## O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		UTU939			UTU939			UTU940		
Sampling Date		2023/01/10			2023/01/10			2023/01/10		
		14:15			14:15			14:15		
COC Number		914241-01-01			914241-01-01			914241-01-01		
	UNITS	BH-10	RDL	QC Batch	BH-10 Lab-Dup	RDL	QC Batch	DUP-1	RDL	QC Batch
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	8444074				<0.50	0.50	8444074
Volatile Organics								•		
Acetone (2-Propanone)	ug/L	<10	10	8445520	<10	10	8445520	<10	10	8445520
Benzene	ug/L	<0.17	0.17	8445520	<0.17	0.17	8445520	<0.17	0.17	8445520
Bromodichloromethane	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
Bromoform	ug/L	<1.0	1.0	8445520	<1.0	1.0	8445520	<1.0	1.0	8445520
Bromomethane	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
Carbon Tetrachloride	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
Chlorobenzene	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
Chloroform	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
Dibromochloromethane	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
1,2-Dichlorobenzene	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
1,3-Dichlorobenzene	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
1,4-Dichlorobenzene	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	8445520	<1.0	1.0	8445520	<1.0	1.0	8445520
1,1-Dichloroethane	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
1,2-Dichloroethane	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
1,1-Dichloroethylene	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
1,2-Dichloropropane	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	8445520	<0.30	0.30	8445520	<0.30	0.30	8445520
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	8445520	<0.40	0.40	8445520	<0.40	0.40	8445520
Ethylbenzene	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
Ethylene Dibromide	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
Hexane	ug/L	<1.0	1.0	8445520	<1.0	1.0	8445520	<1.0	1.0	8445520
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	8445520	<2.0	2.0	8445520	<2.0	2.0	8445520
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	8445520	<10	10	8445520	<10	10	8445520
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	8445520	<5.0	5.0	8445520	<5.0	5.0	8445520
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
Styrene	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
Tetrachloroethylene	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
RDL = Reportable Detection Limit										•

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



## O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID		UTU939			UTU939			UTU940		
Sampling Date		2023/01/10			2023/01/10			2023/01/10		
		14:15			14:15			14:15		
COC Number		914241-01-01			914241-01-01			914241-01-01		
	UNITS	BH-10	RDL	QC Batch	BH-10 Lab-Dup	RDL	QC Batch	DUP-1	RDL	QC Batch
Toluene	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
1,1,1-Trichloroethane	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
1,1,2-Trichloroethane	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
Trichloroethylene	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	8445520	<0.50	0.50	8445520	<0.50	0.50	8445520
Vinyl Chloride	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
p+m-Xylene	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
o-Xylene	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
Total Xylenes	ug/L	<0.20	0.20	8445520	<0.20	0.20	8445520	<0.20	0.20	8445520
F1 (C6-C10)	ug/L	<25	25	8445520	<25	25	8445520	<25	25	8445520
F1 (C6-C10) - BTEX	ug/L	<25	25	8445520	<25	25	8445520	<25	25	8445520
F2-F4 Hydrocarbons			•							
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	8447505				<100	100	8447505
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	8447505				<200	200	8447505
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	8447505				<200	200	8447505
Reached Baseline at C50	ug/L	Yes		8447505				Yes		8447505
Surrogate Recovery (%)										
o-Terphenyl	%	91		8447505				99		8447505
4-Bromofluorobenzene	%	96		8445520	96		8445520	96		8445520
D4-1,2-Dichloroethane	%	103		8445520	101		8445520	105		8445520
D8-Toluene	%	96		8445520	96		8445520	95		8445520
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



#### UTU941 Bureau Veritas ID 2023/01/10 Sampling Date 14:15 COC Number 914241-01-01 UNITS FIELD BLANK RDL QC Batch **Calculated Parameters** 1,3-Dichloropropene (cis+trans) ug/L <0.50 0.50 8444074 Volatile Organics Acetone (2-Propanone) ug/L <10 10 8445520 Benzene ug/L <0.17 0.17 8445520 Bromodichloromethane <0.50 0.50 8445520 ug/L Bromoform <1.0 1.0 8445520 ug/L Bromomethane <0.50 0.50 8445520 ug/L Carbon Tetrachloride <0.20 0.20 8445520 ug/L Chlorobenzene ug/L <0.20 0.20 8445520

## O.REG 153 VOCS BY HS & F1-F4 (WATER)

Chloroform	ug/L	2.1	0.20	8445520
Dibromochloromethane	ug/L	<0.50	0.50	8445520
1,2-Dichlorobenzene	ug/L	<0.50	0.50	8445520
1,3-Dichlorobenzene	ug/L	<0.50	0.50	8445520
1,4-Dichlorobenzene	ug/L	<0.50	0.50	8445520
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	8445520
1,1-Dichloroethane	ug/L	<0.20	0.20	8445520
1,2-Dichloroethane	ug/L	<0.50	0.50	8445520
1,1-Dichloroethylene	ug/L	<0.20	0.20	8445520
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	8445520
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	8445520
1,2-Dichloropropane	ug/L	<0.20	0.20	8445520
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	8445520
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	8445520
Ethylbenzene	ug/L	<0.20	0.20	8445520
Ethylene Dibromide	ug/L	<0.20	0.20	8445520
Hexane	ug/L	<1.0	1.0	8445520
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	8445520
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	8445520
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	8445520
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	8445520
Styrene	ug/L	<0.50	0.50	8445520
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	8445520
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	8445520
Tetrachloroethylene	ug/L	<0.20	0.20	8445520
Toluene	ug/L	<0.20	0.20	8445520
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				



Bureau Veritas ID		UTU941		
Compling Data		2023/01/10		
		14:15		
COC Number		914241-01-01		
	UNITS	FIELD BLANK	RDL	QC Batch
1,1,1-Trichloroethane	ug/L	<0.20	0.20	8445520
1,1,2-Trichloroethane	ug/L	<0.50	0.50	8445520
Trichloroethylene	ug/L	<0.20	0.20	8445520
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	8445520
Vinyl Chloride	ug/L	<0.20	0.20	8445520
p+m-Xylene	ug/L	<0.20	0.20	8445520
o-Xylene	ug/L	<0.20	0.20	8445520
Total Xylenes	ug/L	<0.20	0.20	8445520
F1 (C6-C10)	ug/L	<25	25	8445520
F1 (C6-C10) - BTEX	ug/L	<25	25	8445520
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	8447505
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	8447505
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	8447505
Reached Baseline at C50	ug/L	Yes		8447505
Surrogate Recovery (%)				
o-Terphenyl	%	95		8447505
4-Bromofluorobenzene	%	95		8445520
D4-1,2-Dichloroethane	%	102		8445520
D8-Toluene	%	95		8445520
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

# O.REG 153 VOCS BY HS & F1-F4 (WATER)



# **TEST SUMMARY**

Bureau Veritas ID: Sample ID:	UTU937 BH-8					Collected: Shipped:	2023/01/10
Matrix:	Water					Received:	2023/01/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	8445860	N/A	2023/01/12	Anca Gane	a
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	8448469	2023/01/13	2023/01/15	Emir Danis	man
Bureau Veritas ID: Sample ID: Matrix:	UTU938 BH-11 Water					Collected: Shipped: Received:	2023/01/10 2023/01/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	8445860	N/A	2023/01/12	Anca Gane	a
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	8448469	2023/01/13	2023/01/15	Emir Danis	man
Bureau Veritas ID: Sample ID: Matrix:	UTU939 BH-10 Water					Collected: Shipped: Received:	2023/01/10 2023/01/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	8444073	N/A	2023/01/17	Automated	d Statchk
1,3-Dichloropropene Sum	ı	CALC	8444074	N/A	2023/01/17	Automated	d Statchk
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	8447505	2023/01/13	2023/01/13	Ksenia Tro	fimova
Dissolved Metals by ICPN	1S	ICP/MS	8447980	N/A	2023/01/13	Azita Fazae	eli
PAH Compounds in Wate	r by GC/MS (SIM)	GC/MS	8451511	2023/01/16	2023/01/17	Mitesh Raj	
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	8445520	N/A	2023/01/14	Xueming Ji	ang
Bureau Veritas ID: Sample ID: Matrix:	UTU939 Dup BH-10 Water					Collected: Shipped: Received:	2023/01/10 2023/01/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	8445520	N/A	2023/01/14	Xueming Ji	ang
Bureau Veritas ID: Sample ID: Matrix:	UTU940 DUP-1 Water					Collected: Shipped: Received:	2023/01/10 2023/01/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	8444073	N/A	2023/01/17	Automated	d Statchk
1,3-Dichloropropene Sum	1	CALC	8444074	N/A	2023/01/17	Automated	d Statchk
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	8447505	2023/01/13	2023/01/13	Ksenia Tro	fimova
Dissolved Metals by ICPN	15	ICP/MS	8447980	N/A	2023/01/13	Azita Fazae	eli
PAH Compounds in Wate	r by GC/MS (SIM)	GC/MS	8451511	2023/01/16	2023/01/17	Mitesh Raj	
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	8445520	N/A	2023/01/14	Xueming Ji	ang



## **TEST SUMMARY**

Bureau Veritas ID: UTU941 Sample ID: FIELD BLANK Matrix: Water					Collected: 2023/01/10 Shipped: Received: 2023/01/10
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8444073	N/A	2023/01/17	Automated Statchk
1,3-Dichloropropene Sum	CALC	8444074	N/A	2023/01/17	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8447505	2023/01/13	2023/01/16	Ksenia Trofimova
Dissolved Metals by ICPMS	ICP/MS	8447980	N/A	2023/01/13	Azita Fazaeli
PAH Compounds in Water by GC/MS (SIM)	GC/MS	8451511	2023/01/16	2023/01/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8445520	N/A	2023/01/14	Xueming Jiang

Bureau Veritas ID: Sample ID: Matrix:	UTU942 TRIP BLANK Water				(	Collected: Shipped: Received:	2023/01/10 2023/01/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	8445860	N/A	2023/01/12	Anca Ganea	3
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	8448469	2023/01/13	2023/01/15	Emir Danisr	nan



## **GENERAL COMMENTS**

Each te	mperature is the ave	rage of up to th	ree cooler temperatures taken at receipt
[	Package 1	6.3°C	
		-	
Results	relate only to the ite	ems tested.	



# QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: OTT-22017859-A0 Sampler Initials: PO

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8445520	4-Bromofluorobenzene	2023/01/13	101	70 - 130	100	70 - 130	95	%		
8445520	D4-1,2-Dichloroethane	2023/01/13	103	70 - 130	101	70 - 130	103	%		
8445520	D8-Toluene	2023/01/13	100	70 - 130	102	70 - 130	95	%		
8445860	1,4-Difluorobenzene	2023/01/12	101	70 - 130	103	70 - 130	103	%		
8445860	4-Bromofluorobenzene	2023/01/12	98	70 - 130	98	70 - 130	97	%		
8445860	D10-o-Xylene	2023/01/12	92	70 - 130	92	70 - 130	86	%		
8445860	D4-1,2-Dichloroethane	2023/01/12	103	70 - 130	99	70 - 130	99	%		
8447505	o-Terphenyl	2023/01/16	102	60 - 130	110	60 - 130	94	%		
8448469	o-Terphenyl	2023/01/15	109	60 - 130	107	60 - 130	108	%		
8451511	D10-Anthracene	2023/01/17	102	50 - 130	102	50 - 130	105	%		
8451511	D14-Terphenyl (FS)	2023/01/17	104	50 - 130	104	50 - 130	103	%		
8451511	D8-Acenaphthylene	2023/01/17	95	50 - 130	95	50 - 130	96	%		
8445520	1,1,1,2-Tetrachloroethane	2023/01/14	90	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
8445520	1,1,1-Trichloroethane	2023/01/14	95	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
8445520	1,1,2,2-Tetrachloroethane	2023/01/14	91	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
8445520	1,1,2-Trichloroethane	2023/01/14	99	70 - 130	104	70 - 130	<0.50	ug/L	NC	30
8445520	1,1-Dichloroethane	2023/01/14	96	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
8445520	1,1-Dichloroethylene	2023/01/14	98	70 - 130	109	70 - 130	<0.20	ug/L	NC	30
8445520	1,2-Dichlorobenzene	2023/01/14	87	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
8445520	1,2-Dichloroethane	2023/01/14	95	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
8445520	1,2-Dichloropropane	2023/01/14	95	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
8445520	1,3-Dichlorobenzene	2023/01/14	86	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
8445520	1,4-Dichlorobenzene	2023/01/14	98	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
8445520	Acetone (2-Propanone)	2023/01/14	102	60 - 140	102	60 - 140	<10	ug/L	NC	30
8445520	Benzene	2023/01/14	92	70 - 130	100	70 - 130	<0.17	ug/L	NC	30
8445520	Bromodichloromethane	2023/01/14	95	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
8445520	Bromoform	2023/01/14	88	70 - 130	93	70 - 130	<1.0	ug/L	NC	30
8445520	Bromomethane	2023/01/14	103	60 - 140	112	60 - 140	<0.50	ug/L	NC	30
8445520	Carbon Tetrachloride	2023/01/14	94	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
8445520	Chlorobenzene	2023/01/14	89	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
8445520	Chloroform	2023/01/14	97	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
8445520	cis-1,2-Dichloroethylene	2023/01/14	101	70 - 130	110	70 - 130	<0.50	ug/L	NC	30



exp Services Inc Client Project #: OTT-22017859-A0 Sampler Initials: PO

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPE	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8445520	cis-1,3-Dichloropropene	2023/01/14	77	70 - 130	79	70 - 130	<0.30	ug/L	NC	30
8445520	Dibromochloromethane	2023/01/14	89	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
8445520	Dichlorodifluoromethane (FREON 12)	2023/01/14	117	60 - 140	136	60 - 140	<1.0	ug/L	NC	30
8445520	Ethylbenzene	2023/01/14	78	70 - 130	87	70 - 130	<0.20	ug/L	NC	30
8445520	Ethylene Dibromide	2023/01/14	92	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
8445520	F1 (C6-C10) - BTEX	2023/01/14					<25	ug/L	NC	30
8445520	F1 (C6-C10)	2023/01/14	98	60 - 140	93	60 - 140	<25	ug/L	NC	30
8445520	Hexane	2023/01/14	94	70 - 130	109	70 - 130	<1.0	ug/L	NC	30
8445520	Methyl Ethyl Ketone (2-Butanone)	2023/01/14	99	60 - 140	100	60 - 140	<10	ug/L	NC	30
8445520	Methyl Isobutyl Ketone	2023/01/14	84	70 - 130	86	70 - 130	<5.0	ug/L	NC	30
8445520	Methyl t-butyl ether (MTBE)	2023/01/14	85	70 - 130	90	70 - 130	<0.50	ug/L	NC	30
8445520	Methylene Chloride(Dichloromethane)	2023/01/14	107	70 - 130	115	70 - 130	<2.0	ug/L	NC	30
8445520	o-Xylene	2023/01/14	78	70 - 130	86	70 - 130	<0.20	ug/L	NC	30
8445520	p+m-Xylene	2023/01/14	78	70 - 130	86	70 - 130	<0.20	ug/L	NC	30
8445520	Styrene	2023/01/14	84	70 - 130	92	70 - 130	<0.50	ug/L	NC	30
8445520	Tetrachloroethylene	2023/01/14	92	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
8445520	Toluene	2023/01/14	86	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
8445520	Total Xylenes	2023/01/14					<0.20	ug/L	NC	30
8445520	trans-1,2-Dichloroethylene	2023/01/14	98	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
8445520	trans-1,3-Dichloropropene	2023/01/14	79	70 - 130	80	70 - 130	<0.40	ug/L	NC	30
8445520	Trichloroethylene	2023/01/14	101	70 - 130	111	70 - 130	<0.20	ug/L	NC	30
8445520	Trichlorofluoromethane (FREON 11)	2023/01/14	101	70 - 130	114	70 - 130	<0.50	ug/L	NC	30
8445520	Vinyl Chloride	2023/01/14	93	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
8445860	Benzene	2023/01/12	95	50 - 140	96	50 - 140	<0.20	ug/L	NC	30
8445860	Ethylbenzene	2023/01/12	102	50 - 140	105	50 - 140	<0.20	ug/L	NC	30
8445860	F1 (C6-C10) - BTEX	2023/01/12					<25	ug/L	NC	30
8445860	F1 (C6-C10)	2023/01/12	105	60 - 140	105	60 - 140	<25	ug/L	NC	30
8445860	o-Xylene	2023/01/12	101	50 - 140	101	50 - 140	<0.20	ug/L	NC	30
8445860	p+m-Xylene	2023/01/12	98	50 - 140	100	50 - 140	<0.40	ug/L	NC	30
8445860	Toluene	2023/01/12	91	50 - 140	92	50 - 140	<0.20	ug/L	NC	30
8445860	Total Xylenes	2023/01/12					<0.40	ug/L	NC	30
8447505	F2 (C10-C16 Hydrocarbons)	2023/01/13	120	60 - 130	108	60 - 130	<100	ug/L	0	30



exp Services Inc Client Project #: OTT-22017859-A0 Sampler Initials: PO

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPI	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8447505	F3 (C16-C34 Hydrocarbons)	2023/01/13	121	60 - 130	111	60 - 130	<200	ug/L	3.7	30
8447505	F4 (C34-C50 Hydrocarbons)	2023/01/13	123	60 - 130	114	60 - 130	<200	ug/L	NC	30
8447980	Dissolved Antimony (Sb)	2023/01/13	102	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
8447980	Dissolved Arsenic (As)	2023/01/13	101	80 - 120	98	80 - 120	<1.0	ug/L	NC	20
8447980	Dissolved Barium (Ba)	2023/01/13	99	80 - 120	98	80 - 120	<2.0	ug/L	2.6	20
8447980	Dissolved Beryllium (Be)	2023/01/13	102	80 - 120	100	80 - 120	<0.40	ug/L	NC	20
8447980	Dissolved Boron (B)	2023/01/13	98	80 - 120	99	80 - 120	<10	ug/L	2.7	20
8447980	Dissolved Cadmium (Cd)	2023/01/13	98	80 - 120	97	80 - 120	<0.090	ug/L	NC	20
8447980	Dissolved Chromium (Cr)	2023/01/13	99	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
8447980	Dissolved Cobalt (Co)	2023/01/13	98	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
8447980	Dissolved Copper (Cu)	2023/01/13	99	80 - 120	98	80 - 120	<0.90	ug/L	NC	20
8447980	Dissolved Lead (Pb)	2023/01/13	95	80 - 120	94	80 - 120	<0.50	ug/L	NC	20
8447980	Dissolved Molybdenum (Mo)	2023/01/13	103	80 - 120	100	80 - 120	<0.50	ug/L	1.7	20
8447980	Dissolved Nickel (Ni)	2023/01/13	99	80 - 120	98	80 - 120	<1.0	ug/L	NC	20
8447980	Dissolved Selenium (Se)	2023/01/13	102	80 - 120	100	80 - 120	<2.0	ug/L	NC	20
8447980	Dissolved Silver (Ag)	2023/01/13	100	80 - 120	98	80 - 120	<0.090	ug/L	NC	20
8447980	Dissolved Sodium (Na)	2023/01/13	96	80 - 120	100	80 - 120	<100	ug/L	0.25	20
8447980	Dissolved Thallium (Tl)	2023/01/13	97	80 - 120	96	80 - 120	<0.050	ug/L	NC	20
8447980	Dissolved Uranium (U)	2023/01/13	105	80 - 120	102	80 - 120	<0.10	ug/L	3.3	20
8447980	Dissolved Vanadium (V)	2023/01/13	100	80 - 120	99	80 - 120	<0.50	ug/L	19	20
8447980	Dissolved Zinc (Zn)	2023/01/13	99	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
8448469	F2 (C10-C16 Hydrocarbons)	2023/01/15	98	60 - 130	100	60 - 130	<100	ug/L	NC	30
8448469	F3 (C16-C34 Hydrocarbons)	2023/01/15	99	60 - 130	103	60 - 130	<200	ug/L	NC	30
8448469	F4 (C34-C50 Hydrocarbons)	2023/01/15	97	60 - 130	101	60 - 130	<200	ug/L	NC	30
8451511	1-Methylnaphthalene	2023/01/17	98	50 - 130	96	50 - 130	<0.050	ug/L	NC	30
8451511	2-Methylnaphthalene	2023/01/17	99	50 - 130	96	50 - 130	<0.050	ug/L	NC	30
8451511	Acenaphthene	2023/01/17	97	50 - 130	94	50 - 130	<0.050	ug/L	NC	30
8451511	Acenaphthylene	2023/01/17	97	50 - 130	95	50 - 130	<0.050	ug/L	NC	30
8451511	Anthracene	2023/01/17	95	50 - 130	93	50 - 130	<0.050	ug/L	NC	30
8451511	Benzo(a)anthracene	2023/01/17	97	50 - 130	94	50 - 130	<0.050	ug/L	NC	30
8451511	Benzo(a)pyrene	2023/01/17	93	50 - 130	92	50 - 130	<0.0090	ug/L	NC	30
8451511	Benzo(b/j)fluoranthene	2023/01/17	93	50 - 130	91	50 - 130	<0.050	ug/L		



exp Services Inc Client Project #: OTT-22017859-A0 Sampler Initials: PO

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8451511	Benzo(g,h,i)perylene	2023/01/17	92	50 - 130	90	50 - 130	<0.050	ug/L	NC	30
8451511	Benzo(k)fluoranthene	2023/01/17	93	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
8451511	Chrysene	2023/01/17	93	50 - 130	92	50 - 130	<0.050	ug/L	NC	30
8451511	Dibenzo(a,h)anthracene	2023/01/17	97	50 - 130	93	50 - 130	<0.050	ug/L	NC	30
8451511	Fluoranthene	2023/01/17	95	50 - 130	95	50 - 130	<0.050	ug/L	NC	30
8451511	Fluorene	2023/01/17	96	50 - 130	94	50 - 130	<0.050	ug/L	NC	30
8451511	Indeno(1,2,3-cd)pyrene	2023/01/17	89	50 - 130	89	50 - 130	<0.050	ug/L	NC	30
8451511	Naphthalene	2023/01/17	101	50 - 130	98	50 - 130	<0.050	ug/L	NC	30
8451511	Phenanthrene	2023/01/17	95	50 - 130	92	50 - 130	<0.030	ug/L	NC	30
8451511	Pyrene	2023/01/17	95	50 - 130	94	50 - 130	<0.050	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



## VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

(	C3:08753						0	When	there	is >1c	P	rese	ence part	of \	/isib	le Pa	artic	amou	e/Se	dim	ent	led in	the f	ield b	elow	N CA	laxxam M FCC P	Analy 0-0101 age 1 (	tics 3/5 of 1	
								_							B	ottle	Types													
-		-		Ir	norgan	ics						0	rgani	cs			_				Hyd	rocar	bons		_		Vol	atiles	_	Other
	Sample ID	All	GVI	CN	General	Hg	Metals (Diss.)	Organic 1 of 2	Organic 2 of 2	PCB 1 of 2	PCB 2 of 2	Pest/ Herb 1 of 2	Pest/ Herb 2 of 2	ABN 1 of 2	ABN 2 of 2	PAH 1 of 2	PAH 2 of 2	Dioxin /Furan	F1 Vial 1	F1 Vial 2	F1 Vial 3	F1 Vial 4	F2-F4	F2-F4 2 of 2	F4G	VOC Vial 1	VOC Vial 2	voc vial 3	voc Vial 4	
1	BH-8.	-09																												
2	BH-11 .	le																												
3	BH - 10	-13																												
4	Dup. 1	S																												
5																										1				
6			-	-																			-							
7																														
8																									T	1				1
9																						-				1	1		1	
10																							1			1				
[	Comments:	-																											-	]
		P	Susper	nded P	articulate						-	-	-			eror	lad P	d' Island	tureter	int		-0		1.	1	1	0_	1 .	-	٦.
		TS	Trace	Settled	Sedimer	it (just o	overs b	ottom o	f contair	er or le	255)		-			ccon	icu b	A. Isigna	une/pr	my	154	OP	5	hu	e l	R (	VCO	lal		
		s	Sedim	ient gre	ater than	n (>) Tra	ce, but	less that	n (<) 1 cr	n				1																

ny Name	#17498 exp Serv	DICE TO: ICES INC		Compar	y Name	REP	ORT TO:				Guotation		PROJEC C2032	TINFORMAT	TON		7	10-Jan-23	16:40		rder #
an S	Accounts Payable 1 00-2650 Queens Ottawa ON K2B 8	view Drive H6		Altention Address	Lean V	Vells	1		-		POR Project Project Nat	me	OTT-2	22017859-	A0		Kath	anne Szozd	a     51		d) anager:
OF REC	(613) 688-1899 A.P@exp.com, Kar	Fax (6 en Burke@exp.co	513) 225-7337 om E-INTENDED	Tel Email	leah.w	ells@exp cor	Fax .			APU	Site # Sampled B	y westers	IN CASE B	Philip	01	Velva	WP	ENV-10	522		Tuenzo
Seguren e1 [ e3 ] e3 ]	SUBMITTED OR TH na 153, 2014 RestPari Stotumi Instruction Sofra Agn/Omer For RSC Instruct Contents	E BUREAU VERITA	AS DRINKING Other Regulation Sanitary Sewe Storm Sewer I Municipality Reg 406 Tab	WATER CHAIN ns er Bylaw dylaw He	OF CUSTODY Special In	structions	eld Fillered (please circle) Metals Hg / Cr VI	163 PHCs STEXIF1-F4	and the finally Million Red 2	Voc's	PHC						Regular (will be app Standard T Please not- days - com Job Spino Date Kequi Rush Confi	(Standard; TAT: (Standard; TAT: Ard If Fouth TAT is not AT + 5-7 Working day is Standard TAT for ce- icd your Project Manus fire Rush TAT (if app red. methor Number	und unite (TAT) read advance notice for ro sporties for most reas: tain tess such as Brig- er for details tes to entite submise Tune F	eventives	Potins a
Larry	arretes	Sample (Locarion) is	Gentification	Date Sampled	Time Sampled	Matrix GW/	E	CRe	-1-	-		-	-		+	-	Fri Buttes		Correnarita	bitor #	_
		<u> SH-1</u>	8	2023 DI-1	12600	CON	*	X	-						-+-		A	-	-		
		BH-	<u>  </u>	-+-	13/100	GWY		×		-		-	-+		-+-	-	2				_
		BH-	10		14h15	GW	X		×	×	×	_				_	5		_		
-		Dup	1		14/15	GW	×		X	×	X		_				5				
_		FIELD	Blan/1		14415	GW			×	×	X					_	5				
		TRIP B	lank	V	14his	GW		X	2								3				-
																					-
													-			Receiv	d in C	tawa			-
A	ELINQUISHED BY: (Sign	ature/Print)	Date: (YY/M	M/00) Ti	me	RECEIVED	BY. (Signature/P	mnt)	1	Date: (YY/N	AM/DD)	Tin	ne	# jars use	d and		Labor	atory Use Only		-	-
TA,	Philo Olive	in	1023-	-01-10 1	2 Au	VITE	LINTI	po-	202	3/51	14	16:4	00.			Time Sensitive	Templera GrG	ture (°C) on Rece 7 10 pm	Custody Seal Presont Intact	Ye	6

Survey Veritas Canada (2019) Inc.

exp Services Inc Client Project #: OTT-22017859-A0 Client ID: BH-8

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram


exp Services Inc Client Project #: OTT-22017859-A0 Client ID: BH-11

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram



exp Services Inc Client Project #: OTT-22017859-A0 Client ID: BH-10

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram



exp Services Inc Client Project #: OTT-22017859-A0 Client ID: DUP-1

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram



#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram



exp Services Inc Client Project #: OTT-22017859-A0 Client ID: TRIP BLANK

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram





### CLIENT NAME: EXP SERVICES INC 2650 QUEENSVIEW DRIVE, UNIT 100 OTTAWA, ON K2B8H6 (613) 688-1899 **ATTENTION TO: Matthew Zammit** PROJECT: OTT-22017859-AO AGAT WORK ORDER: 23Z986235 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Jan 13, 2023 **PAGES (INCLUDING COVER): 5** VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

otes	
iclaimer:	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

**AGAT** Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.



# **Certificate of Analysis**

AGAT WORK ORDER: 23Z986235 PROJECT: OTT-22017859-AO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: EXP SERVICES INC

#### SAMPLING SITE:2666 Tenth Line Rd., Ottawa

#### ATTENTION TO: Matthew Zammit

SAMPLED BY:EXP

				(Soi	I) Inorganio	c Chemistry	
DATE RECEIVED: 2023-01-09							DATE REPORTED: 2023-01-13
	5	SAMPLE DES	CRIPTION:	BH1 SS5 10'-12'	BH6 SS3 5'-7'	BH7 SS8 25'-27'	
		SAM	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:	2022-12-19	2022-12-14	2022-12-14	
Parameter	Unit	G/S	RDL	4669537	4669539	4669540	
Chloride (2:1)	µg/g		2	456	22	1500	
Sulphate (2:1)	µg/g		2	108	89	84	
pH (2:1)	pH Units		NA	9.24	8.19	9.43	
Resistivity (2:1) (Calculated)	ohm.cm		1	1040	5050	256	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

**4669537-4669540** pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter. Analysis performed at AGAT Toronto (unless marked by *)



# Certified By:



5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

# **Quality Assurance**

.

#### CLIENT NAME: EXP SERVICES INC

#### PROJECT: OTT-22017859-AO

#### AGAT WORK ORDER: 23Z986235

#### ATTENTION TO: Matthew Zammit

#### SAMPLING SITE:2666 Tenth Line Rd., Ottawa

SAMPLED BY:EXP

				201	I Ana	alysis	5								
RPT Date: Jan 13, 2023			0	UPLICAT	E		REFEREN		TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accep Lim	otable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
		Ia					value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
(Soil) Inorganic Chemistry															
Chloride (2:1)	4663797		35	35	0.0%	< 2	93%	70%	130%	97%	80%	120%	96%	70%	130%
Sulphate (2:1)	4663797		257	255	0.8%	< 2	97%	70%	130%	100%	80%	120%	NA	70%	130%
pH (2:1)	4671172		10.3	10.3	0.0%	NA	94%	80%	120%						

.. .

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.





#### AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

# **Method Summary**

## CLIENT NAME: EXP SERVICES INC

#### PROJECT: OTT-22017859-AO

### AGAT WORK ORDER: 23Z986235

**ATTENTION TO: Matthew Zammit** 

## SAMPLING SITE:2666 Tenth Line Rd., Ottawa

SAMPLED BY:EXP

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			1
Chloride (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
рН (2:1)	INOR 93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION

Chain of Custody Pocord	Laborato	ories Ph	5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 : 905.712.5100 Fax: 905.712.5122 webearth agatlabs.com	Laboratory Use Only Work Order #: 23-2986235 Cooler Quantity: 010-000-000000000000000000000000000000				
Report Information:	Water sample, please u	use Drinking Water Chain of Custody Form (potable Regulatory Requirements: (Please check all applicable boxes)	le water consumed by humans)	LT <u>6.0162163</u> Custody Seal Intact: <u>Yes</u> <u>No</u> <u>N/A</u> Notes:				
Contact: Matthew Zammit Address: 7650 Queensview Ar Suit Ottawa, ON, K2B B Phone: 613-628-1879 Fax: Reports to be sent to: 1. Email: Matthew. Zamait QCyp. 2. Email:	100 144 100	Regulation 153/04     Excess Soils R4       Table     Indicate One       Ind/Com     Table       Res/Park     Regulation 558       Soil Texture (Check One)     CCME       Coarse     Fine	406     Sewer Use       Sanitary     Storm       Region     Region       3     Prov. Water Quality       Objectives (PWQ0)     Other       Indicate One     Indicate One	Turnaround Time (TAT) Required:       Regular TAT (Most Analysis)       Rush TAT (Rush Surcharges Apply)       Image: State S				
Project Information: Project: 07T - 22.017859 - AO Site Location: 2666 teath Line Rod, off	s-24	Is this submission for a <b>Record of Site Condition</b> ?	Report Guideline onCertificate of AnaiysisYesNo	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM				
AGAT ID #:PO: Please note: If quotation number is not provided, client will be billed ful Invoice Information: Bill To Sar Company: Contact: Address: Email:	Il price for analysis. ne: Yes 📐 No 🗆	Sample Matrix LegendBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	ield Filtered - Metals, Hg, CrVI, DOC & Inorganics CrVI, DHg, DHWSB F4G if required DYes DNo BS DAroclor BS Aroclor	isposal Characterization TCLP: at a Dvocs Datws Diapp DPcos biap DPcos Biap DPcos metals Dvocs Dsvocs Metals, BTEX, F1-F4 SAR /SAR /SAR				
Sample Identification Date Tim Sampled Sampled	ne # of Sa pled Containers M	Sample Comments/ Matrix Special Instructions	Metals Metals BTEX, F Analyze PAHs Total PC	Potential				
BH 1   SS 5   10'-12'   Dec.19     BH 6   SS 3   S'-7'   Dec.14     BH 7   SS 8   25'-27'   Dec.14	AM I   AM I							
Samples Rolingulated By (Print Name and Sign): Date	AM PM AM PM AM PM AM PM Time	Samples Received By (Print Name and Sign):						
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Date JAN Date	9 2023 Time Jehoo	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):		10 Time Pageof 10 Time №: T122988				





EXP Project No.:	OTT-22017859-A0	Project Name :	oject Name : Geotechnical Investigation - Proposed New Avalon III Elementary School									
Client :	CECCE	Project Location	ect Location : Sweet Valley Drive between Mer Bleu & Tenth Line Rd, Ottawa									
Date Sampled :	December 19, 2023	Borehole No:	ehole No: BH1 Sample No.: SS4 Depth (i									
Sample Description :		% Silt and Clay	96	% Sand	4	% Gravel	0	Figure :	~~~~			
Sample Description :	ion : Fat Clay (CH)								****			





EXP Project No.:	OTT-22017859-A0	Project Name :	oject Name : Geotechnical Investigation - Proposed New Avalon III Elementary School								
Client :	CECCE	Project Location	ect Location : Sweet Valley Drive between Mer Bleu & Tenth Line Rd, Ottawa								
Date Sampled :	December 15, 2023	Borehole No:	orehole No: BH2 Sample No.: SS8 D							7.6-8.2	
Sample Description :		% Silt and Clay	100	% Sand	0	% Gravel		0	Figuro :	****	
Sample Description :	Fat Clay (CH)								riguie.	****	





EXP Project No.:	OTT-22017859-A0	Project Name :	oject Name : Geotechnical Investigation - Proposed New Avalon III Elementary School									
Client :	CECCE	Project Location	ect Location : Sweet Valley Drive between Mer Bleu & Tenth Line Rd, Ott									
Date Sampled :	December 15, 2023	Borehole No:	orehole No: BH5 Sample No.: SS7 D							6.1-6.7		
Sample Description :		% Silt and Clay	100	% Sand	0	% Gravel		0	Figuro :	****		
Sample Description :		Fat Clay (CH)										





EXP Project No.:	OTT-22017859-A0	Project Name :		Geotechnical In	vestigati	ion - Propose	d Ne	ew Avalo	on III Elementary	School		
Client :	CECCE	Project Location	Project Location : Sweet Valley Drive between Mer Bleu & Tenth Line Rd, Ottawa									
Date Sampled :	December 22, 2023	Borehole No:		BH8	Sam	nple No.:	S	S3	Depth (m) :	2.3-2.9		
Sample Description :		% Silt and Clay	100	% Sand	0	% Gravel		0	Figure :	~~~~		
Sample Description :		Fat	Clay (C	CH)					Figure .	****		





EXP Project No.:	OTT-22017859-A0	Project Name :	oject Name : Geotechnical Investigation - Proposed New Avalon III Elementary School								
Client :	CECCE	Project Location	ect Location : Sweet Valley Drive between Mer Bleu & Tenth Line Rd, Ottawa								
Date Sampled :	December 22, 2023	Borehole No:	rehole No: BH8 Sample No.: SS4 D							3.8-4.4	
Sample Description :		% Silt and Clay	100	% Sand	0	% Gravel		0	Figure :	~~~~	
Sample Description :	Fat Clay (CH)								riguie .	****	





EXP Project No.:	OTT-22017859-A0	Project Name :	ject Name : Geotechnical Investigation - Proposed New Avalon III Elementary School									
Client :	CECCE	Project Location	ct Location : Sweet Valley Drive between Mer Bleu & Tenth Line Rd, Ottaw									
Date Sampled :	December 21, 2023	Borehole No:	hole No: BH13 Sample No.: SS2 Depth (m)									
Sample Description :		% Silt and Clay	39	% Sand	40	% Gravel	21	Eiguro :	~~~~			
Sample Description :		Silty Sand	d with G	iravel (SM)				Figure .	****			





EXP Project No.:	OTT-22017859-A0	Project Name :		Geotechnical Investigation - Proposed New Avalon III Elementary School					
Client :	CECCE	Project Location :		Sweet Valley Drive between Mer Bleu & Tenth Line Rd, Ottawa					
Date Sampled :	December 21, 2023	Borehole No:		BH14	Sample No.:		SS3	Depth (m) :	1.5-2.1
Sample Description :		% Silt and Clay	98	% Sand	2	% Gravel	0	Figure :	~~~~
Sample Description : Fat Clay (CH)								rigule .	****