MEMORANDUM

то:	Dr. Ranjit Perera President Humanics Institute	FROM:	Noah Chauvin, EIT. and James Fookes, P.Eng.
		PROJECT No.:	210647100
Subject:	Humanics Sanctuary & Sculpture Park- Ottawa Site Plan Development Stormwater Management Design Brief	DATE:	November 22, 2021 R1: April 28, 2023 R2: August 16, 2023 R3: September 28, 2023 R4: October 03, 2023
X:\Proj\2021\210	647100-Humanics Sanctuary Civil\08. Working\2. SWM		

1 Introduction

This memorandum is part of the Site Plan application amendment for D07-12-16-0081, the memo gives an overview of the new stormwater management/drainage approach and measures for the development of 3400 Old Montreal Road, East of Ottawa. The proposed site development includes the 3 buildings, a pavilion and a lodge as well as an access route and parking areas. A site plan agreement based on an old Site Plan has been previously submitted and signed by the City of Ottawa.

Figure 2 shows the proposed development and access roads/parking area locations and layout. Proposed stormwater management/drainage measures for the new development consists of a Low Impact Development (LID) Treatment Train Approach which includes a series of grass swales, vegetated filter strips, and a bioretention feature.

To provide a complete overview of the servicing of the new development, other new components include water servicing from an existing privately operated water well and a septic system, in addition to the enhanced grass swales.

2 Site Description

2.1 Existing Conditions

The site is located on the south side of Old Montreal Road, approximately 440 m west of Beckett's Creek Road as shown on **Figure 1**. The site is zoned Rural Residential 1. The municipal address of the proposed site is 3468 Old Montreal Road (PIN 145340141) and a portion of 3400 Old Montreal Road (PIN 145340140) in the City of Ottawa.

The site is primarily undeveloped with stone dust covered pathways and a number of stone sculptures. There are no permanent buildings on the site, however the owner is using a metal storage container for some landscaping equipment. The owner of the site has also constructed temporary gravel access roads to connect the site to Nirmala Drive and Old Montreal Road. These gravel roads were considered in the existing catchment runoff coefficients. The proposed site is bisected by a hydro corridor with overhead transmission lines mounted on wooden hydro poles which are found at two locations on the subject site. Surrounding properties consist of Old Montreal Road to the north of the property, vacant land to the south (which will become Cumberland Estates Phase 2), a residential property to the east, and vacant woodlots to the west.

3 Proposed Stormwater Management (SWM)

The overarching stormwater management strategy for the development of this site will maintain the existing drainage patterns to minimize the impacts to the Ravines which the site drains to today. To mitigate impact on these Ravines, Low Impact Development (LID) solutions such as enhanced grass swales and bioretention facilities for stormwater quality and quantity control are proposed.

The principles and methodologies of the Ministry of the Environment, Conservation and Parks (MECP) Stormwater Management Planning and Design Guidelines (2003) and Toronto Region Conservation Authority/Credit Valley Conservation Authority (TRCA/CVC) Low Impact Development Stormwater Management Planning and Design Guide (2010) were applied for the analysis and design of the drainage and SWM system.

4 Stormwater Approach and Criteria

4.1 Quantity Control

For quantity control, the proposed stormwater management system will reduce the post-development peak flow to the pre-development runoff during storm events up to and including the 100-year event. This approach is consistent with the previous Stormwater Management study completed by EXP and was approved by the City of Ottawa. The required quantity control will be achieved by means of stormwater detention within the Bioretention Pond.

4.2 Pre-Development Flows

A review of the topographic contours based on 2015 City of Ottawa LIDAR data was performed. LIDAR, or Light Detection and Ranging, is a remote sensing method of measuring distances (or ground surface elevation in this case) using lasers. The vertical accuracy of the LIDAR data provided by the City is reported as 8.6 centimeters. The topography of the site reveals that the natural ground slopes northerly towards a ravine located though the middle of the property with a watercourse running west to east. The southern section of the property is divided in two. The southernmost portion slopes towards the south boundary of the property to a smaller ravine located immediately to the south of the hydro corridor. The middle section flows towards the ravine running through the property. The larger deeper ravine has an approximate depth of 13.5m (49m - 62.5m), whereas the smaller shallower ravine is only 7.5m in depth (55m - 62.5m).

In its current condition, the site plan consists of both open fields and wooded areas. Stormwater runoff from the northern portion of the property currently drains in a southerly direction to the deeper ravine which flows from west to east and ultimately flows north to the Ottawa River. The flow path for the southern portion of the property is divided in two. The southernmost section flows down towards the shallower ravine which ultimately flows to Beckett's Creek. The mid-section flows to the north towards the deeper ravine. Both ravines are deeply incised in the landscape, with runoff from the development area being conveyed to two possible outlets denoted as North Outlet and South Outlet. The site is fairly self-contained and does not receive flows from the surrounding properties. Pre-development and post-development drainage conditions are illustrated in **Figures 1 and 2**.

As control of runoff to pre-development conditions is required, an estimation of peak flows prior to development was necessary. Although the Sanctuary Lands area is 7.52 hectares, only approximately 1.59 hectares is being developed. In order to compare the same pre-development and post-development drainage areas, the northern limit of drainage area was taken as the centre of the ravine, making the total area under consideration to be **3.85 hectares**. In accordance with the City of Ottawa's

Sewer Design Guidelines, the Rational Method was utilized for calculations of the pre-development runoff rates from drainage catchments. **Figure 2** illustrates the pre-development boundaries.

Catchment area OUT1 flow to the north ravine designated as the North Outlet. Catchment areas OUT2.1 and OUT2.2 flow to the south ravine designated as South Outlet.

Using rational method analysis of the existing catchment areas, the pre-development runoff coefficients as well as the pre-development flows during the 5-year and 100-year storm events were determined. Catchment area plans, which illustrate the existing drainage patterns, are included on **Figure 1**.

Total allowable release rate for the site will be **223.3 L/s for 5-year** and **478.4 L/s for 100-year**, this allowable rate is divided between the northern (OUT1) and southern (OUT2.1 & 2.2) outlets as per the below table.

Pre-development catchment parameters and peak flows are summarized in the table below with additional details in **Appendix A.2.**

Drainaga Araa	Existing Condition	5-year		100-year	
Drainage Area	Area, A (ha)	Runoff Coefficient, R	Q (L/s)	Runoff Coefficient, R	Q (L/s)
OUT1	3.17	0.20	183.68	0.25	393.47
North Outlet 1 Sub-Total	3.17		183.68		393.47
OUT2.1	0.3248	0.20	18.82	0.25	40.31
OUT2.2	0.3594	0.20	20.82	0.25	44.60
South Outlet 2 Sub-Total	0.68		39.64		84.91
Total	3.85		223.31		478.37

Table 1 - Pre-Development Peak Flows

5 Proposed Stormwater System

The proposed stormwater system consists of roadside swales, and culverts as a means to conveying stormwater to the bioretention pond, the flows to the ravines will be controlled to meet pre-development rates. The overall drainage patterns have remained wholly the same as shown on the proposed catchment area plan.

5.1 Post-Development Flows

The post-development catchment areas are illustrated in Figure 2.

Most of the North catchment area (A1.1 and A1.2) will stay draining uncontrolled to the existing north ravine, no significant changes in the northern pervious area are proposed as most of the development will be within the southern catchment area.

The South Catchment will include the proposed development (A2.1-A2.5) and the Hydro One easement (A2.6) which will be undisturbed. Runoff from the undisturbed area (A2.6) will be released uncontrolled to the southern existing ravine following the existing draining pattern. As for the development (A2.1-A2.5), it will be controlled through proposed swales adjacent to the access route conveying the captured storm water to the proposed Bioretention Pond.

The following table shows the post-development catchments areas, imperviousness and uncontrolled peak flows:

	Sub Area	Proposed Conditions	5-уе	ear	100-y	ear
Drainage Area		Area, A (ha)	Runoff Coefficient, R	Q (L/s)	Runoff Coefficient, R	Q (L/s)
	A1.1	2.22	0.20	129.4	0.25	277.3
	A1.2	0.23	0.45	30.6	0.57	65.6
North Outfall 1 Sub-Total		2.45		160.1		342.9
	A2.1	0.29	0.39	32.0	0.48	68.5
	A2.2	0.14	0.46	18.7	0.58	40.0
	A2.3	0.27	0.38	29.6	0.48	63.5
	A2.4	0.13	0.40	14.6	0.50	31.2
	A2.5	0.06	0.20	3.5	0.25	7.4
	A2.6	0.52	0.22	32.5	0.28	70.5
South Outfall 2 Sub-Total		1.40		131.2		281.1
Total		3.85		291.3		624.0

Complete post-development calculations are provided in **Appendix A.3.**

5.2 Post-Development Peak Flow Reduction and Storage

Considering the existing topography conditions, the site will be discharging to 2 outlets. The north of the site including most of the pre-development north catchment will drain to the same outlet as predevelopment conditions. The south of site will include the development area and the rest of the south areas of the site. Table 2 Impact on Deals Flows I Incontrolled

Drainage Area	5-year Pre- Development Flow	5-year Post- Development Flow	Difference	Percent Change	100-year Pre- Development Flow	100-year Post- Development Flow	Difference
	(L/s)	(L/s)	(L/s)	(%)	(L/s)	(L/s)	(L/s)
North Outlet	183.7	160.1	-23.6	-12.9%	393.5	342.9	-50.6
South Outlet	39.6	131.2	91.6	231.1%	84.9	281.1	196.2
Total	223.3	291.3	68.0	30.4%	478.4	624.0	145.6

According to the above table, the north outlet post-development calculated flows are 160.1 L/s for 5year and 342.9 L/s for 100-year. These flows are reduced when compared to pre-development conditions, accordingly no stormwater management solution is needed.

For the south outfall, calculated uncontrolled post-development flows would be 131.2 L/s for 5-year and 281.1 L/s for 100-year, due to the site development. To control peak flows within this catchment area a Bioretention Pond is proposed. Catchments A2.1 to A2.5 will drain to the Pond. Due to site topography, Catchment A2.6 will drain uncontrolled. Catchment A2.6 has an area of 0.52 hectares

resulting in an uncontrolled flow of **32.9 L/s for 5-year** and **70.5 L/s for 100-yr**. As such, the maximum allowable release rate from the Bioretention Pond is **6.7 L/s for 5-year** and **14.4 l/s for 100-year**.

Analysis of the pre- and post-development flows shows that the different in flows for different return periods (5-year & 100-year) requires a storage of 91.8 cubic meters for 5 years and 199.0 cubic meters for 100 years. (Note that slight over-control of the 100-year event was found to be necessary to maintain the peak 5-year run-off within the allowable release rate, using a single orifice). The full storage analysis can be found in Appendix A.4.

With the proposed storage, peak flows to the South Outlet will be reduced as follows:

Drainage Area	5-year Pre- Development Flow	5-year Post- Development Flow	Difference	Percent Change	100-year Pre- Development Flow	100-year Post- Development Flow	Difference
	(L/s)	(L/s)	(L/s)	(%)	(L/s)	(L/s)	(L/s)
North Outlet	183.7	160.1	-23.6	-12.9%	393.5	342.9	-50.6
South Outlet	39.6	38.8	-0.8	-2.0%	84.9	82.1	-2.8
Total	223.3	198.9	-24.4	-10.9%	478.4	425.0	-53.4

Table 4 - Impact on Peak Flows - Controlled

6 Stormwater Quality Control

Stormwater quality protection has been designed to meet the MECP's "Enhanced" standard of 80% Total Suspended Solids (TSS) removal rate prior to discharge to the Ravines.

6.1 Infiltration

A Low Impact Development approach will be taken for this development due to the nature of the site and soil conditions. The SWM design will rely on infiltration to achieve the required quality criteria for this design. To have the information to proceed with this approach an infiltration test was done in site and report was prepared, this report includes design infiltration rates to be used specifically for this site. Refer to the Memo in Appendix for Infiltration Testing. The report used the 2800K1 Guelph Permeameter to provide the design infiltration rate that varies from 52 to 29 mm/hr can be used. Complete results of the infiltration testing are provided in **Appendix B**.

The design of the Bio-retention Pond is to be as per MECP requirements, and the bottom of pond will be minimum 1m above the high groundwater. The bottom of Pond is **61.60 m**. Based on the geotechnical report prepared by EXP, the current **groundwater** in the area is approximately **58.0 m** which meets the requirements for MECP.

In accordance with TRCA SWM Criteria (2010), Section 7.4: "As a minimum, to achieve the enhance level of water quality control, the LID practice must be sized to provide storage for a minimum 5mm of rainfall."

As mentioned previously the site presented very suitable conditions for LID approach, this was done through proposing side swales that conveys water to a proposed Bioretention pond, this pond will provide the enhanced treatment required for this site. The proposed Bioretention pond will be designed

to retain a minimum of the first **10mm** of stormwater, this is equivalent to **35.4** cubic meters of water that will need to be infiltrated to the soil.

The proposed Bioretention cross section has a **2.60m** wide flat bottom with **3H:1V** side slopes, the elevation of the bottom is at **61.60m** and the spill elevation is at **62.15m**. The 100-year water level in the pond is **62.15m** with a freeboard of **0.3m** between the 100-yr / spill elevation and the adjacent roadway/parking lot. The swale has a length of **90m**. The proposed Bioretention swale can capture a volume up to **210 cubic meters**. To provide the required retention, a **200 mm** diameter outlet pipe equipped with a **102 mm** orifice ICD is proposed at an upstream invert elevation of **61.77m**. A volume of **47.6 cubic meters** will be retained in the Bioretention pond below the orifice invert, and an expected time of infiltration will be **4.4 hrs** with a rate of **39 mm/hr**. For more detailed calculation refer to **Appendix A.5 and A.6.** A detailed cross section of the proposed bioretention pond is presented in **Figure 3**.

Analysis for the entire site was done based on the drainage area and hourly precipitation data (excluding winter months) to establish overflow volume based on measured historical data. Infiltration at source (through runoff coefficient) and in the bioretention facility were calculated at hourly intervals, with the volume of water in the bioretention facility tracked to enable the volume of water lost to overflows to be calculated. The following tables provide summaries for each year analyzed. **Table 5** indicates that the bioretention facility can be expected to infiltrate a minimum of 89% (and potentially 90%+ depending on rainfall patterns) of run-off that reaches it. **Table 6** demonstrates that over 82% of all rain falling on the overall site is expected to infiltrate into the soil, either at source or from the bioretention facility, meeting the requirement for 'enhanced' quality control.

Year	Total rain (mm)	Runoff from catchments draining to bioretention (m ³)	Infiltration in bioretention (m ³)	Released Volume (m³)	Infiltration of runoff reaching bioretention %
2016	614	2083	1859	224	89%
2017	925	3140	2952	188	94%
2018	659	2236	2016	220	90%
2019	627	2130	2081	49	98%
2020	586	1990	1946	44	98%

Table 5 - Anticipated Infiltration Volumes for Controlled Catchments based on Historical Rainfall Data

Note: Analysis excludes winter months (Jan - Apr). Winter conditions were excluded from the calculation as it is not possible to identify and model snow, winter rainfall and snow melt with accuracy. Instead, as is common practice, the analysis was completed for the spring, summer and fall period to provide a more accurate representation of the expected percentage of rainfall that will be infiltrated.

-	7	-
	-	

		Rain Infiltrated at Source - Run-off Coefficient			Rain	Total Rain	Percentage of	
Year	Total rain (mm) OUT1 OUT2 A2.6 OUT2 (uncontrolled) (bioretention)		Infiltrated in Bioretention	Infiltrated	Rain Infiltrated on Site			
	(mm)	(cu.m)	(cu.m)	(cu.m)	(cu.m)	(cu.m)	(cu.m)	(%)
2016	614	23627	11393	2441	3712	1859	19405	82%
2017	925	35609	17170	3679	5594	2952	29395	83%
2018	659	25360	12228	2620	3984	2016	20849	82%
2019	627	24155	11647	2496	3795	2081	20018	83%
2020	586	22573	10884	2332	3546	1946	18708	83%

7 Erosion and Sediment Control during Construction

The contractor shall implement best management practices to provide for protection of the area drainage system and the receiving watercourses during construction activities, as per the Erosion and Sediment Control Plans included on the design drawings. Refer to Drawing ESC-PH1B prepared by EXP for proposed ESC measures for the site.

8 Conclusions

In conclusion the stormwater management design meets all required servicing constraints and associated design criteria/requirements.

Sincerely,

Morrison Hershfield Limited

James Fookes, P.Eng.

Civil Engineer

Figures

Figure 1	Existing Catchments
Figure 2	Proposed Catchments
Figure 3	Stormwater Management Details

Attachments

Appendix A	Stormwater Management Calculations
Appendix B	Infiltration Testing Memorandum

NTS

HUMANICS SANCTUARY STORMWATER MANAGEMENT DETAILS

OVERFLOW SPILL POINT ELEV. 62.15

RIP-RAP EMERGENCY OVERFLOW AS PER OPSD 810.010. REFER TO PLAN FOR DETAILS.

FIGURE 3

DATE: 2023-09-28

SCALE: N.T.S.

Figures

Figure 1	Existing Catchments
Figure 2	Proposed Catchments
Figure 3	Stormwater Management Details

Attachments

Appendix A	Stormwater Management Calculations
Appendix B	Infiltration Testing Memorandum

Appendix A

Stormwater Management Calculations

A.1. Stormwater Management Summary

Humanics Centre, Ottawa, Ontario

Impact of Development on Drainge Areas

Project No.	210647100
Date:	03/10/2023
Prepared By:	N Chauvin
Check By:	J Fookes

	Pre-development				Post-development			
Drainage Area	Area (ha)	Imp.	Imp Area (ha)	Runoff Coefficient, R	Area (ha)	Imp.	Imp. Area (ha)	Runoff Coefficient, R
North Outlet (OUT1)	3.17	0%	0.00	0.20	2.45	6%	0.15	0.23
South Outlet (OUT2)	0.68	0%	0.00	0.22	1.40	24%	0.33	0.32
Total	3.85	0%	0.00	0.20	3.85	13%	0.49	0.26

Impact on Peak Flows (Uncontrolled)

Drainage Area	5-year Pre- Development Flow	5-year Post- Development Flow	Difference	Percent Change	100-year Pre- Development Flow	100-year Post- Development Flow	Difference	Percent Change
	(L/s)	(L/s)	(L/s)	(%)	(L/s)	(L/s)	(L/s)	(%)
North Outlet (OUT1)	183.7	160.1	-23.6	-12.9%	393.5	342.9	-50.6	-12.9%
South Outlet (OUT2)	39.6	131.2	91.6	231.1%	84.9	281.1	196.2	231.1%
Total	223.3	291.3	68.0	30.4%	478.4	624.0	145.6	30.4%

Impact on Peak Flows (With Proposed Controls)

Drainage Area	5-year Pre-	5-year Post-	Difforence	Percent	100-year Pre-	100-year Post-	Difforonco	Percent
Drainage Area	Development Flow	Development Flow	Difference	Change	Development Flow	Development Flow	Difference	Change
	(L/s)	(L/s)	(L/s)	(%)	(L/s)	(L/s)	(L/s)	(%)
North Outlet (OUT1)	183.7	160.1	-23.6	-12.9%	393.5	342.9	-50.6	-12.9%
South Outlet (OUT2)	39.6	38.8	-0.8	-2.0%	84.9	82.1	-2.8	-3.3%
Total	223.3	198.9	-24.4	-10.9%	478.4	425.0	-53.4	-11.2%

A.2. Pre Development Peak Flows

Humanics Centre, Ottawa, Ontario

Project No.	210647100
Date:	03/10/2023
Prepared By:	N Chauvin
Check By:	J Fookes

Rational Method			
Q = RAIN, where			
	Q = Peak runoff flow (L/s)	Woodland Area:	R = 0.30
	R = Runoff coefficient	Lawn Area:	R = 0.20
	A = Area (ha)	Building Area:	R = 0.90
	I = Rainfall intensity (mm/hr)	Gravel Area:	R = 0.60
	N = 2.78	Water Area:	R = 1.00

Existing Drainage Area Characteristics

		Existing Conditions								
Drainage Area	Area, A (ha)	Pervious Area (ha)	Impervious Area (ha)	Imp.	Runoff Coefficent, R					
OUT1	3.17	3.17		0%	0.20					
OUT2.1	0.32	0.32		0%	0.20					
OUT2.2	0.36	0.36		0%	0.20					
Total	3.85	3.85	0.00	0%	0.20					

Existing Peak Flows

Where

$$i = \frac{A}{(T_d + C)^B}$$

Calculation of Time of Concentration, using the Uplands Method (SCS National Engineering Handbook, 1971)

Drainage Area	Runoff Coefficent, R	Length, L (m)	Average Slope, S _w (%)	Velocity (m/s)	Time of Concentration, T_c
OUT1	0.20	143	9.5	0.47	5.07
OUT2.1	0.20	22.6	3.00	0.42	0.90
OUT2.2	0.20	24.8	7.2	0.27	1.53

Existi	ng Conditions	5-year		100-year	

Drainage Area	Area, A (ha)	Time of Concentration (Note 1)	l (mm/hr)	Runoff Coefficent, R	Q (L/s)	l (mm/hr)	Runoff Coefficent, R (Note 2)	Q (L/s)
OUT1	3.17	10.00	104.2	0.20	183.68	178.6	0.25	393.47
Outlet 1 Sub-Total	3.17				183.68	178.6		393.47
OUT2.1	0.3248	10.00	104.2	0.20	18.82	178.6	0.25	40.31
OUT2.2	0.3594	10.00	104.2	0.20	20.82	178.6	0.25	44.60
Outlet 2 Sub-Total	0.68				39.64			84.91
Total	3.85				223.31			478.37

Note 1: A minimum time of concentration of 10 mins was taken

Note 2: For 100-year event, Runoff Coefficient is increased by 25% to a maximum of 1.0.

A.3. Post Development Peak Flows

Humanics Centre, Ottawa, Ontario

Project No.	210647100
Date:	03/10/2023
Prepared By:	N Chauvin
Check By:	J Fookes

Rational Method			
Q = RAIN, where			
Q =	Peak runoff flow (L/s)	Woodland Area:	R = 0.30
R =	Runoff coefficient	Lawn Area:	R = 0.20
A =	Area (ha)	Building Area:	R = 0.90
I =	Rainfall intensity (mm/hr)	Gravel Area:	R = 0.60
N =	2.78	Water Area:	R = 1.00

Proposed Drainage Area Characteristics

			Proposed Conditions									
Drainage Area	Sub Area	Area, A (ha)	Pervious Area (ha)	Gravel	Building	Impervious Area (ha)	Imp.	Runoff Coefficent, R				
OUT1		2.45	2.30			0.15	6%	0.23				
	A1.1	2.22	2.22		0.01	0.01	0%	0.20				
	A1.2	0.23	0.08	0.12	0.03	0.15	64%	0.45				
OUT2		1.40	1.06			0.33	24%	0.32				
	A2.1	0.29	0.18	0.07	0.04	0.10	36%	0.39				
	A2.2	0.14	0.08	0.03	0.04	0.06	46%	0.46				
	A2.3	0.27	0.16	0.08	0.02	0.11	39%	0.38				
	A2.4	0.13	0.09		0.04	0.04	28%	0.40				
	A2.5	0.06	0.06			0.00	0%	0.20				
	A2.6	0.52	0.49	0.03		0.03	5%	0.22				
Total		3.85	3.37			0.49	13%	0.26				

Proposed Peak Flows (Uncontrolled)

Where
$$i = \underline{A}$$

 $(T_d + C)^B$

Calculation of Time of Concentration, using the Uplands Method (SCS National Engineering Handbook, 1971)

А

Draii	inage Area	Runoff	Length, L (m)	Average Slope, S _w (%)	Area, A	Velocity (m/s)	Time of
-------	------------	--------	---------------	-----------------------------------	---------	----------------	---------

	Coenicent, R					
A1.1	0.20	83.00	17.00	2.22	0.6	2.31
A1.2	0.45	175.00	2.70	0.23	0.75	3.89
A2.1	0.39	93.00	1.30	0.29	0.7	2.21
A2.2	0.46	32.00	2.00	0.14	0.88	0.61
A2.3	0.38	30.00	1.50	0.27	0.75	0.67
A2.4	0.40	60.00	1.00	0.13	0.6	1.67
A2.5	0.20	60.00	0.50	0.06	0.38	2.63
A2.6	0.22	23.00	1.60	0.52	0.75	0.51

	Proposed	Conditions		5-year (Uncontrolle	d)	100-year (Uncontrolled)		
Drainage Area Sub Area	Area, A (ha)	Time of Concentration (Note 1)	l (mm/hr)	Runoff Coefficent, R	Q (L/s)	l (mm/hr)	Runoff Coefficent, R (Note 2)	Q (L/s)
A1.1	2.22	10.00	104.19	0.20	129.4	178.56	0.25	277.3
A1.2	0.23	10.00	104.19	0.45	30.6	178.6	0.57	65.6
Outlet 1 Sub-Total	2.45				160.1			342.9
A2.1	0.29	10.00	104.19	0.39	32.0	178.6	0.48	68.5
A2.2	0.14	10.00	104.19	0.46	18.7	178.6	0.58	40.0
A2.3	0.27	10.00	104.19	0.38	29.6	178.6	0.48	63.5
A2.4	0.13	10.00	104.19	0.40	14.6	178.6	0.50	31.2
A2.5	0.06	10.00	104.19	0.20	3.5	178.6	0.25	7.4
A2.6	0.52	10.00	104.19	0.22	32.9	178.6	0.28	70.5
Outlet 2 Sub-Total	1.40				131.2			281.1
Total	3.85				291.3			624.0

Note 1: A minimum time of concentration of 10 mins was taken

Note 2: For 100-year event, Runoff Coefficient is increased by 25% to a maximum of 1.0.

A.4. Proposed Storage

Humanics Centre, Ottawa, Ontario

Project No.	210647100
Date:	03/10/2023
Prepared By:	N Chauvin
Check By:	J Fookes

4a. Outlet 2 Storage

Summary of all Drainage Areas:

		Proposed Conditions								
Drainage Area	Sub Area	Area, A (ha)	Pervious Area (ha)	Impervious Area (ha)	Imp.	Runoff Coefficent, R	Runoff Coefficent, 100-year Event (Note 1)			
OUT2		1.40	1.06	0.33	24%	0.32	0.41			
	A2.1	0.29	0.18	0.10	36%	0.39	0.48			
	A2.2	0.14	0.08	0.06	46%	0.46	0.58			
	A2.3	0.27	0.16	0.11	39%	0.38	0.48			
	A2.4	0.13	0.09	0.04	28%	0.40	0.50			
	A2.5	0.06	0.06	0.00	0%	0.20	0.25			
	A2.6	0.52	0.49	0.03	5%	0.22	0.28			
Note 1: For 100-year ev	ent, Runoff Coeff	icient is increase	ed by 25% to a m	aximum of 1.0).					

Summary of Uncontrolled Drainage Areas:

			Pro	posed Conditi	ons		Runoff	Rate
Drainage Area	Sub Area	Area, A (ha)	Pervious Area (ha)	Impervious Area (ha)	lmp.	Runoff Coefficent, R	5-year (L/s)	100-year (L/s)
OUT2	A2.6	0.52	0.49	0.03	5%	0.22	32.89	70.46

100-year Pre-Development Flow (L/s)= 84.9 100-year Uncontrolled Runoff (L/s)= 70.5 100-year Allowable Release Rate (L/s)= 14.4

5-year Pre-Development Flow (L/s)= 39.6 5-year Uncontrolled Runoff (L/s)= 32.9

5-year Allowable Release Rate (L/s)= 6.7

Orifice Sizing Q	= CA(2gH)^0.5		
C	= 0.61		
Design Flow Rate	= 14.4	(L/s)	
Proposed 100-year pond depth	= 0.55	(m)	
Proposed 100-year head above centreline of orifice	= 0.28	(m)	
Orifice Area	= 10140	(mm2)	
Orifice diameter	= 114	(mm) (if	<75mm then vortex ICD required)
Standard orifice diameter	= 102	(mm)	
Standard orifice area	= 8171	(mm2)	
Maximum release rate during 100-year event	= 11.64	(L/s)	
Total maximum release rate during 100-year event	= 82.1	(L/s)	(uncontrolled portion + controlled portion)
Release Rates during 5-year event			
Water depth during 5-year event	= 0.29	(m)	(based on result of Req. Storage Vol. calc below)
Water elevation during 5-year event	= 61.89	(m)	
Proposed 5-year head above invert of orifice	= 0.123	(m)	
Proposed 5-year head above centreline of orifice	= 0.072	(m)	
Maximum release rate during 5-year event	= 5.93	(L/s)	
Total maximum release rate during 5-year event	= 38.8	(L/s)	(uncontrolled portion + controlled portion)

Summary of Controlled Areas:

		Proposed Conditions							
Drainage Area	Sub Area	Area, A (ha)	Pervious Area	Impervious	Imp	Runoff	Runoff Coefficent,		
			(ha)	Area (ha)	imp.	Coefficent, R	100-year Event		
	A2.1	0.29	0.18	0.10	36%	0.39	0.48		
	A2.2	0.14	0.08	0.06	46%	0.46	0.58		
	A2.3	0.27	0.16	0.11	39%	0.38	0.48		
	A2.4	0.13	0.09	0.04	28%	0.40	0.50		
	A2.5	0.06	0.06	0.00	0%	0.20	0.25		
Total		0.88	0.57	0.31		0.39	0.48		

where i = Rainfall Intensity (mm/hr) $T_d = Time of Concentration (m$

 T_d = Time of Concentration (min)

Required Storage Volume (using Modified Rational Method)

 $i = \frac{A}{(T_d + C)^B}$

Q = RAIN

Q = runoff rate (L/s)

R = runoff coefficient

i = rainfall intensity (mm/hr)

A = drainage area (ha)

N = 2.78

		5-Year Event			100-Year Event			
Time Td	Interneity (Peak	Release	Storage	Intensity (Peak	Release	Storage
rime, ru	intensity	Flow	Rate	Volume	intensity	Flow	Rate	Volume
(min)	(mm/hr)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(m ³)
10	104.19	98.3	5.93	55.4	178.56	210.7	11.64	119.4
20	70.25	66.3	5.93	72.4	119.95	141.5	11.64	155.8
30	53.93	50.9	5.93	80.9	91.87	108.4	11.64	174.1
40	44.18	41.7	5.93	85.8	75.15	88.7	11.64	184.8
50	37.65	35.5	5.93	88.8	63.95	75.4	11.64	191.4
60	32.94	31.1	5.93	90.6	55.89	65.9	11.64	195.5
70	29.37	27.7	5.93	91.5	49.79	58.7	11.64	197.8
80	26.56	25.1	5.93	91.8	44.99	53.1	11.64	198.9
90	24.29	22.9	5.93	91.7	41.11	48.5	11.64	199.0
100	22.41	21.1	5.93	91.3	37.90	44.7	11.64	198.4
110	20.82	19.7	5.93	90.5	35.20	41.5	11.64	197.3
120	19.47	18.4	5.93	89.6	32.89	38.8	11.64	195.6
130	18.29	17.3	5.93	88.4	30.90	36.5	11.64	193.5
140	17.27	16.3	5.93	87.0	29.15	34.4	11.64	191.1
150	16.36	15.4	5.93	85.6	27.61	32.6	11.64	188.4
160	15.56	14.7	5.93	84.0	26.24	31.0	11.64	185.4
170	14.83	14.0	5.93	82.2	25.01	29.5	11.64	182.2
180	14.18	13.4	5.93	80.4	23.90	28.2	11.64	178.8
minimum time = time o	of concentration							
	Storage volume u	ised	91.8	m ³	Storage volume	e used	199.0	m ³

Morrison Hershfield

A.5. Bioretention Pond Sizing

Humanics Centre, Ottawa, Ontario

Project No.	210647100
Date:	03/10/2023
Prepared By:	N Chauvin
Check By:	J Fookes

The bioretention pond was sized in accordance with the LID Stormwater Management Planning and Design Guide. TRCA, 2010

In accordance with TRCA SWM Criteria (2021), Section 7.4:

"As a minimum, to achieve the enhance level of water quality control, the LID practice must be sized to provide storage for a minimum 5mm of rainfall."

Bioretention Sizing Characteristics

Contributing Drainage Area, $A_c =$	8808.00 m ²	(Catchments A1.1-A1.5)	
Catchment Runoff Coefficient, C =	0.39		
Catchment Impervious Area, $A_i =$	3088.00 m ²		
Infiltration Volume Target, $V_i =$	33.949 m ³	(10mm rainfall retention was used	for this design)
Field Measured Infiltration Rate, f =	97 mm/hr	(Median of field measured infiltration	on rates)
Safety Factor, z =	2.5		
Design Infiltration Rate, f' =	39 mm/hr	(Median of field measured infiltration	n rates, f divided by z)
Filter Media Depth, d _f =	100 mm	(To support shrubs, flowering pere	nnial and deeply rooting decorative grasses)
Filter Media Porosity, n _f =	0.35	(for more loamy Blend B, water qua	ality treatment priority)
Side Slopes, m:1 =	3.0 max	Side Width=	2.55 m
Bottom Width. B =	2.60 m (min)	Total Top Width=	7.7 m
Total Pond Height, H=	0.85	·	
100-year Height, h =	0.55 m		
Base Length, L =	90 m		
Elevation of Base of Pond=	61.60 m		
Lowest Edge of Pond =	62.45 m	(freeboard measured to this point)	
Freeboard=	0.3 m		
Pond Spill Elevation=	62.15 m		
100-year Water Level=	62.15 m		
100-vear Volume=	210.4 cu.m		

1. Decide if an underdrain will be included:

If the median field measured or estimated infiltration rate of the underlying native soil (f) is less than 15 mm/h, include an underdrain.

Field Measured Infiltration Rate, f = 97 mm/hr

Include underdrain = No

2. Select a surface ponding depth to begin sizing with

For practices without underdrain: $d_{p,max} = f' \times 48$

Where:f' = Design infiltration rate (mm/h), and48 = Maximum permissible drainage time for surface ponded water (h)

d_{p,max} = 1.87 m

3. Select a design surface ponding depth

For practices with soft (i.e. landscaped) edges and bowl-shaped ponding areas calculate the mean surface ponding depth:

 $d'_p = d_{p,max} \times 0.5$

d'_p = 0.94 m

Infiltration Volume Target, $V_i = 33.95 \text{ m}^3$ (10mm rainfall retention was used for this design)

Water Depth,y =	0.17 m
Cross Sectional Area, A =	0.53 m ²
Volume Provided, V _{i,actual} =	47.58 m ³

Invert Elevation of Overflow = 61.77 m (orifice invert)

5. Determine Water Depth in 5-Year Event

Water Depth,y =	0.29 m	(use this value in Proposed Storage calculation)
Cross Sectional Area, A =	1.02 m ²	
5-year Volume Used =	91.84 m³	(provide required volume as per Proposed Storage sheet)

A.6. Pond Draindown Time

Humanics Centre, Ottawa, Ontario

Release Rate from Pond

Equation 4.10 from MOE Stormwater Design Guidelines:

$$t = \frac{2A_P}{CA_o(2g)^{0.5}} \left(h_1^{0.5} - h_2^{0.5}\right)$$

where:

Pond Volume	199.0 cu.m	Side Slopes, m:1 =	3
Water depth when full, h1	0.55 m	Bottom Width. B =	2.6
Water depth when empty, h2	0.0 m	Length, L =	90
Orifice coefficient, C	0.61	Orifice diameter =	102
Acceleration due to gravity, g	9.81 m/s²		

Incremental draindown calculation (100-year event), based proposed orifice:

The drawdown when the water level is above the overflow will be governed by the orifice:

Water Depth at start of step, h1 (m)	Water depth at end of step, h2 (m)	Pond Surface Area, Ap (m2)	Duration of Step, t (s)	Realease Rate (L/s)
0.55	0.50	531	1660.12	32.63
0.50	0.45	504	1656.67	31.03
0.45	0.40	477	1657.72	29.35
0.40	0.35	450	1665.09	27.57
0.35	0.30	423	1681.59	25.66
0.30	0.17	396	4857.50	8.32
	Total	draindown duration	13178.69	seconds

3.7 hours

Draindown Calculation (100-year event), based of infiltration rate of native soil:

The drawdown when the water level is below the overflow will be governed by the infilitration rate of the soil:

Depth of ponding, h (m)	Infiltration Rate of Soil, f (mm/hr)	Duration, t (hr)
0.17	39	4.4

Total draindown duration =

8.0 hours

Project No.	210647100
Date:	03/10/2023
Prepared By:	N Chauvin
Check By:	J Fookes

Appendix B

Infiltration Testing Memorandum

MEMORANDUM

TO:	Ahmed Elsayed, P.Eng Project Manager / Engineer (Municipal)	FROM:	Mitchell Dawley and Ant West
		PROJECT No.:	210647100
RE:	Infiltration Testing for Stormwater Management Design at the Humanics Sanctuary	DATE:	10/25/2021

\EGNYTEDRIVE\MH CLOUD\PROJ\2021\210647100-HUMANICS SANCTUARY CIVIL\08. WORKING\1. INFILTRATION TESTING\210647100 INFILTRATION TEST MEMO_REV0.DOCX

1. Introduction

Morrison Hershfield Ltd. (MH) was retained by Humanics Universal Inc. (the Client) to perform civil engineering design services associated with proposed improvements to the Humanics Sanctuary at 3400/3468 Old Montreal Road, Ottawa.

Specifically, MH is completing the Stormwater Management and Drainage Design as part of future development of the site. The Stormwater Management design will make use of Low Impact Development (LID) solutions that encourage infiltration.

Prior to design, MH's scope of services included infiltration testing to assist in selecting the LID solutions. The infiltration testing consisted of Guelph Permeameter testing at five (5) locations. This memorandum presents the methods findings and results of this testing.

2. Methodology

Infiltration testing was performed at five (5) locations using a 2800K1 Guelph Permeameter (GP) in accordance with ASTM D5126. The GP is an in-hole constant-head Permeameter that measures the steady-state rate of water recharge into unsaturated soil from a cylindrical borehole.

The locations of the infiltration testing are shown on Figure 1 in Attachment A.

The field procedures used with the GP were as follows:

- A 6 cm diameter borehole was hand augured to depths between 0.24 to 0.36 m. Basic soil characteristics were observed and recorded during augering.
- The GP reservoir was filled with water and the instrument was lowered into the borehole.
- A well head height (H) was established in the open borehole by adjusting the Air Tube.
- The water level in the instrument reservoir was recorded at regular time intervals and the rate of fall (of water) was determined for each interval.
- Operation of the GP continued until the "Steady-State Rate of Fall" was attained. This occurred when the rate of fall did not significantly change over three (3) consecutive time intervals.
- For each borehole, the above procedure was repeated by establishing a different well head height (H).

3. Results

Soil Conditions

The soil conditions observed in each borehole augured for the GP testing was noted and is the results are summarized in Table 1 below.

Borehole ID	Depth of Borehole (mbgs)	Observed Soil Conditions	
IN-1	0.24	Med to Fine Sand (SP) (0 – 0.17 m); Clayey Sand (SC) (0.17 – 0.24 m)	
IN-2	0.27	Silty Sand (SM) (0.09 – 0.22 m); Med to Fine Sand (SP) (0.22 – 0.27 m)	
IN-3	0.36	Silty Sand to Sand (SM-SP) (0.08 – 0.20); Med to Fine Sand (SP) (0.20 – 0.36 m)	
IN-4	0.30	Silty Sand (SM) (0.08 – 0.14 m); Med to Fine Sand (SP) (0.14 – 0.30 m)	
IN-5	0.26	Silty Sand (SM) (0.08 – 0.16 m); Med to Fine Sand (SP) (0.16 – 0.26 m)	

Table 1: Observed	Soil	Conditions
-------------------	------	------------

Infiltration Testing

Hydraulic properties of the subgrade soils in the unsaturated zone were determined using a Guelph Permeameter (GP), by applying the single head method and averaging results of two (2) tests.

The GP instrument maintains a constant head of water in a borehole, causing water to infiltrate into the surrounding unsaturated soil. As water infiltrates, a "bulb" of saturated soil of specific dimensions develops around the borehole. Once the bulb develops, the steady-state flow rate of water out of the borehole is established and combined saturated-unsaturated flow occurs in the soil (Soilmoisture Corp., 2012).

For conditions of saturated-unsaturated flow, hydrostatic pressure, gravity and capillarity all contribute to the steady-state flow rate. Matric flux potential (Φ_m) is a measure of the capillarity/capillary pull that the unsaturated soil exerts on infiltrating water while the field-saturated hydraulic conductivity (K_{fs}) represents the hydrostatic pressure and gravity contributions to flow (Elrick & Reynolds, 1992).

Hydraulic conductivity is a function of water content in the soil and the maximum hydraulic conductivity value for a given soil unit occurs under conditions of saturation. With that said, the measured K_{fs} from infiltration testing is always slightly less than the saturated hydraulic conductivity (K_{sat}) for the same soil type due to the fact that the infiltration process often does not expel all air from the voids in the unsaturated soil, leaving some air entrapped. This entrapped air results in a smaller available surface area for water to flow through resulting in K_{fs} being less than K_{sat} .

The calculations of these hydraulic parameters from the GP field results are provided in Attachment B.

For the design of LID stormwater infiltration systems, the measured K_{fs} values must be converted to an infiltration rate (*f*) using the approximate relationship provided below (Ontario Ministry of Municipal Affairs and Housing, 1997):

$$f = (\frac{K_{fs}}{6x10^{-11}})^{\frac{1}{3.7363}}$$

A factor of safety of 2.5 was applied to this calculated infiltration rate to account for soil variability, potential reductions in soil permeability due to compaction or smearing during construction and gradual accumulation of fine sediments over the lifespan of the facility (Credit Valley and the Toronto and Region Conservation Authority, 2010)

Infiltration Location ID	Soil Type	Φ _m (cm²/min)	K _{fs} (cm/s)	Infiltration Rate, <i>f</i> , (mm/hr)	Design Infiltration Rate (mm/hr)
IN-1	Sand (SP) and Clayey Sand (SC)	4.29x10 ⁻³	5.15x10 ⁻⁴	72	29
IN-2	Silty Sand (SM) and Sand (SP)	5.60x10 ⁻³	6.72x10 ⁻⁴	77	31
IN-3	Silty Sand (SM) and Sand (SP)	3.82x10 ⁻²	4.58x10 ⁻³	129	52
IN-4	Silty Sand (SM) and Sand (SP)	2.76x10 ⁻²	3.32x10 ⁻³	118	47
IN-5	Silty Sand (SM) and Sand (SP)	1.34x10 ⁻²	1.61x10 ⁻³	97	39

Table 2: Infiltration Rates and Hydraulic Properties of Soils in Unsaturated Zone

4. References

Credit Valley and the Toronto and Region Conservation Authority. (2010). Low Impact Development Stormwater Management Planning and Design Guide. Appendix C.

Elrick, D. E., & Reynolds, W. D. (1992). Methods for Analyzing Constant Head Well Permeameter Data. *Soil Science*, 320-323.

Ontario Ministry of Municipal Affairs and Housing. (1997). Supplementary Guidelines to the Ontario Building Code 1997. SG-6 Percolation Time and Soil Descriptions. Toronto.

Soilmoisture Corp. (2012). *Guelph Permeameter 2800 Operating Instructions.* Santa Barbara: Soilmoisture Corp.

Attachments:

Attachment A: Site Plan

Appendix B: GP Results

ITAL SERVICES DE

	LEG
and the second sec	
Mar al	
- 2 -	
and	
A CALLER	
and the second	
	ID
Contra and	IN1
	IN3
	IN4
and the second	IN5
60-	L
	1:81,21
Sale Property	
	Gumbertan
	1D
	10
	1-5
	2.4
	201
	Coordinat
	n
	SCALE:
	0
The second	
	TITLE:
Salar Salar	
	1 NOJECT
Distribution Airbus D.S	DATE:

<u>END</u>

- Infiltration Test Locations
- Topographic Contour (mASL)

ID	Easting	Northing
IN1	471533.9	5040209.08
IN2	471486.27	5040170.11
IN3	471403.14	5040155.07
IN4	471346.51	5040134.53
IN5	471510.42	5040142.8

igle Head Method (1)		Single Head Method (2)			Average
Reservo (enter "35.22" for Combined an Enter wa Enter the	r Cross-sectional area in cm ² d "2.16" for Inner reservoir): 35.22 ter Head Height ("H" in cm): 7 Borehole Radius ("a" in cm): 3	Reservoir (enter "35.22" for Combined and Enter wat Enter the B	Cross-sectional area in cm ² "2.16" for Inner reservoir): er Head Height ("H" in cm): orehole Radius ("a" in cm):	35.22 15 3	K _{fs} = 5.15E-04 cm/: 3.09E-02 cm/ 5.15E-06 m/s 1.22E-02 inch 2.03E-04 inch
 texture-structure category (enter Compacted, Structure-less, clayey landfill (asp and liners, lacustrine or n Soils which are both fine textured unstructured; may also include some Most structured soils from clays t unstructured medium and fine sands. applicable for agricultural soils. Coarse and gravely sands/may and/or nur 	one of the below numbers): 3 ror silty materials such as narine sediments, etc. (clayey or silty) and fine sands. hrough loams; also includes The category most frequently so include some highly nerous cracks, macropors, etc	Enter the soil texture-structure category (enter o 1. Compacted, Structure-less, clayey or landfill caps and liners, lacustrine or mari 2. Soils which are both fine textured (cli unstructured; may also include some fine 3. Most structured soils from clays thro unstructured medium and fine sands. Th applicable for agricultural soils. 4. Coarse and gravely sands; may also i structured exit whit hares and for pumper	ine of the below numbers): sitty materials such as ine sediments, etc. ayey or sitty) and e sands. sugh loams; also includes e category most frequently nclude some highly ous cracks macronous at	3	Φ _m = 4.29E-03 cm ²
Steady State Rate of Water Le	vel Change ("R" in cm/min): 0.6000	Steady State Rate of Water Lev Res Type 35.22	el Change ("R" in cm/min):	1.2000	
H 7 a 3	$\alpha^{*} = \frac{0.12}{cm^{-1}}$	H 15 a 3	α*=	0.12 cm ⁻¹	• ••
H/a 2.333 a* 0.12 C0.01 0.991	C = 1.0139 Q = 0.3522	n/a 5 a* 0.12 C0.01 1.51827	C = Q =	1.66689 0.7044	
C0.04 1.04 C0.12 1.014 C0.36 1.014 C 1.014	K _{fs} = <mark>5.08E-04</mark> cm/sec 3.05E-02 cm/min 5.08E-06 m/sec	C0.12 1.66689 C0.36 1.66689 C 1.66689	K _{fs} =	5.23E-04 cm/sec 3.14E-02 cm/min 5.23E-06 m/ses	
R 0.600 Q 0.352 pi 3.142	<mark>1.20E-02</mark> inch/min <mark>2.00E-04</mark> inch/sec	R 1.200 Q 0.7044 p) 3.1415		1.23E-02 2.06E-04 inch/sec	
	$\Phi_{\rm m} = \frac{4.23E-03}{4.23E-03} cm^2 /min$		Φ _m =	4.36E-03 cm ² /min	

Calculation formulas related to shape factor (C). Where H_i is the first water head height (cm), H₂ is the second water established in borehole (cm), H₂ is the second water established in borehole (cm), H₂ is the first head of water established in borehole (cm), H₂ is the second h

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor	second head of water establis	sned in borehole (cm) and
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine	0.01	$C_1 = \left(\frac{H_2/a}{a}\right)^{0.672}$	One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$
sediments, etc.		(2.081 + 0.121(12/a))	One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$C_{1} = \left(\frac{H_{1/\alpha}}{1.992 + 0.091(H_{1/\alpha})}\right)^{0.683}$ $C_{2} = \left(\frac{H_{2/\alpha}}{1.992 + 0.091(H_{2/\alpha})}\right)^{0.683}$	Two Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093 (H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093 (H_{2/a})}\right)^{0.754}$		$Q_2 = R_2 \times 35.22$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093 \langle H_{1/a} \rangle}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093 \langle H_{2/a} \rangle}\right)^{0.754}$	Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{c_1 \wedge c_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$\begin{split} G_1 &= \frac{H_2 C_1}{\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \\ G_2 &= \frac{H_1 C_2}{\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \\ K_{fg} &= G_2 Q_2 - G_1 Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2 C_2) C_1}{\pi (2H_1 H_1 (H_1 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \end{split}$
Two Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$	$\begin{aligned} G_4 &= \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ \phi_m &= G_3Q_1 - G_4Q_2 \end{aligned}$

gle Head Method (1)		Single Head Method (2)		Average
Reservoi (enter "35.22" for Combined and Enter wa Enter the l	r Cross-sectional area in cm ² "2.16" for Inner reservoir): 35.22 ter Head Height ("H" in cm): 5 Borehole Radius ("a" in cm): 3	Reservo (enter "35.22" for Combined a Enter w Enter th	ir Cross-sectional area in cm ² d "2.16" for Inner reservoir): 35.22 ater Head Height ("H" in cm): 12 Borehole Radius ("a" in cm): 3	K _{fs} = 6.72E-04 cm/se 4.03E-02 cm/m 6.72E-06 m/s 1.59E-02 inch/ 2.65E-04 inch/:
 r the soil texture-structure category (enter 1. Compacted, Structure-less, clayey landfill caps and liners, lacustrine or m 2. Soils which are both fine textured 	one of the below numbers): 3 or silty materials such as arine sediments, etc. (clavev or silty) and	Enter the soil texture-structure category (ente 1. Compacted, Structure-less, clayey landfill caps and liners, lacustrine or m 2. Seils which are heat for texture.	one of the below numbers): 3 or silty materials such as arine sediments, etc.	$\Phi_{\rm m} = \frac{5.60\text{E-03}}{5.60\text{E-03}} cm^2 / cm^2$
unstructured; may also include some f	ine sands.	 Soils which are both fine textured unstructured; may also include some f 	ne sands.	
Most structured soils from clays the second from clays the second from clays the second from s	nrough loams; also includes	3. Most structured soils from clays the	rough loams; also includes	rh.
applicable for agricultural soils.	The category most frequently	unstructured medium and fine sands.	he category most frequently	e
4. Coarse and gravely sands; may als	o include some highly	 Coarse and gravely sands; may als 	o include some highly	
structured soils with large and/or num	erous cracks, macropors, etc	structured soils with large and/or num	erous cracks, macropors, etc	
Steady State Rate of Water Le	vel Change ("R" in cm/min): 0.5000	Steady State Rate of Water L	evel Change ("R" in cm/min): 1.5000	
Res Type 35.22		Res Type 35.22		
n 5 a 3	$\alpha^{*} = 0.12 \ cm^{-1}$	a 3	$\alpha^{*} = 0.12$ cm ⁻¹	
H/a 1.667	-	H/a 4	-	
a* 0.12	C = 0.80315	a* 0.12	C = 1.44896	
C0.01 0.809	Q = 0.2935	C0.01 1.34796	Q = 0.8805	
C0.04 0.842 C0.12 0.803	$K_{fc} = 5.34F_{00} cm/sec$	C0.04 1.43553 C0.12 1.44896	$K_{c} = \frac{8115.04}{15.04}$ cm/s	sec
C0.36 0.803	3.20E-02 cm/min	C0.36 1.44896	4.86E-02 cm/r	min and a second
C 0.803	5.34E-06 m/sec	C 1.44896	8.11E-06 m/se	25
R 0.500	1.26E-02 inch/min	R 1.500	1.91E-02 inch/	/min
Q 0.294	2.10E-04 inch/sec	Q 0.8805	3.19E-04 inch/	/sec
		01 3 1415		

Calculation formulas related to shape factor (C). Where H_i is the first water head height (cm), H₂ is the second water established in borehole (cm), H₂ is the second water established in borehole (cm), H₂ is the first head of water established in borehole (cm), H₂ is the second h

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor	second head of water establis	ned in t
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine	0.01	$C_1 = \left(\frac{H_2/a}{(H_2/a)}\right)^{0.672}$	One Head, Combined Reservoir	<i>Q</i> 1 :
sediments, etc.		$(2.081 + 0.121(^{-2}/a))$	One Head, Inner Reservoir	<i>Q</i> ₁
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/_a}{(1.992 + 0.091(H_1/_a))}\right)^{0.683} \\ C_2 &= \left(\frac{H_2/_a}{(1.992 + 0.091(H_2/_a))}\right)^{0.663} \end{split}$	Two Head, Combined Reservoir	Q1 -
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/_a}{2.074 + 0.093 \left(\frac{H_1}{a}\right)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/_a}{2.074 + 0.093 \left(\frac{H_2}{a}\right)}\right)^{0.754} \end{split}$		Q ₂ :
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/_a}{2.074 + 0.093(H_1/_a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/_a}{2.074 + 0.093(H_2/_a)}\right)^{0.754} \end{split}$	Two Head, Inner Reservoir	Q1 Q2

cond head of water establi	shed in borehole (cm) and	C is Shape factor (from Table 2).	
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fz} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$	
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \wedge Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$	
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{1}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2(-(2H_{2}^{2} + a^{2}C_{2})C_{1} - (2H_{2}^{2} - H_{2}C_{1}))}$	
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} & G_4 = \frac{(2H_2^2 + a^2 C_1)C_2}{2\pi (2H_1 + H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ & G_4 = \frac{(2H_1^2 + a^2 C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ & \Phi_m = G_3Q_1 - G_4Q_2 \end{split}$	

		Simple Hand Mathed (2)	. <u></u>	A
gle Head Method (1)		Single Head Method (2)]	Average
Reservo	ir Cross-sectional area in cm ²	Reservoir Cross-sectional area	in cm ²	$K_{fs} = \frac{4.58E-03}{cm/s}$
(enter "35.22" for Combined an Enter wa Enter the	d "2.16" for Inner reservoir): 35.22 ater Head Height ("H" in cm): 5 Borehole Radius ("a" in cm): 3	(enter "35.22" for Combined and "2.16" for Inner rese Enter water Head Height ("H" Enter the Borehole Radius ("a" i	rvoir): 35.22 n cm): 17 n cm): 3	2.75E-01 cm/r 4.58E-05 m/s 1.08E-01 inch,
the soil texture-structure category (enter	one of the below numbers): 3	Enter the soil texture-structure category (enter one of the below num	abers): 3	1.002-05 Inchy
1. Compacted, Structure-less, claye	y or silty materials such as	1. Compacted, Structure-less, clayey or silty materials such	as	$\Phi_{\rm m} = \frac{3.82 \text{E-} 02}{\text{cm}^2}$
landfill caps and liners, lacustrine or r	narine sediments, etc.	landfill caps and liners, lacustrine or marine sediments, etc.		
 Solis which are both the textured upstructured: may also include some 	fine sands	2. Soils which are both fine textured (clayey or silty) and		П
 Most structured soils from claus 	through loome: also includes	unstructured; may also include some fine sands.		
unstructured medium and fine sands	The category most frequently	Most structured soils from clays through loams; also incl	udes	dh .
applicable for agricultural soils.	the category most nequency	unstructured medium and fine sands. The category most free	quentiy	0
4. Coarse and gravely sands; may al	so include some highly	 Coarse and gravely sands: may also include some highly. 		
structured soils with large and/or nur	merous cracks, macropors, etc	structured soils with large and/or numerous cracks, macropo	ors, etc	
Steady State Rate of Water L	evel Change ("R" in cm/min): 5.0000	Steady State Rate of Water Level Change ("R" in cm	/min): 10.0000	
H 5		H 17		
a 3	$\alpha^{*} = 0.12 \ cm^{-1}$	a 3	$\alpha^* = 0.12$ cm ⁻¹	
H/a 1.667	-	H/a 5.66667	-	
a* 0.12	C = 0.80315	a* 0.12	C = 1.79884	
C0.01 0.809	Q = 2.935	CO.01 1.61898	Q = 5.87	
C0.04 0.842 C0.12 0.803	$K_{f_{c}} = 5.34F_{-0.3}$ cm/sec	CU.U4 1.7451 CO.12 1.79884	Ke = 3 835.03 cm/sec	
C0.36 0.803	3.20E-01 cm/min	C0.36 1.79884	2.30E-01 cm/min	
C 0.803	5.34E-05 m/sec	C 1.79884	3.83E-05 m/ses	
R 5.000	1.26E-01 inch/min	R 10.000	9.05E-02 inch/min	ÎH
ni 3.142	2.10E-03 Inch/sec	ni 3.1415	1.51E-03 mch/sec	₹2a
hi nirir	$\Phi = 4.455.02 \text{ cm}^2/\text{min}$	b. graden	$\Phi = 2 \cos \alpha cm^2 / min$	

Soil Texture-Structure Category

Calculation formulas related to shape factor (C). Where H_i is the first water head height (cm), H_i is the second water head height (cm), a is borehole radius (cm) and a^* is microscopic capillary length factor which is decided according to the soil texture-structure category. For one-head method, only C_i needs to be calculated while for two-head method, C_i and C_i are calculated (Z_{ing} et al. (1995). For one-head method, C_i needs to be calculated while for two-head method, C_i and C_i are calculated Z_{ing} et al. (1995). For one-head method, C_i needs to be calculated while for two-head method, C_i and C_i are calculated Z_{ing} et al. (1995). For one-head method, C_i needs to be calculated while for two-head method, C_i is C_i and C_i is C_i and

			. second	d head of water establis	shed in borehole (cm) and (Lis Shape factor (from Table 2).
Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor				C × O
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine	0.01	$C_1 = \left(\frac{H_2/a}{(H_2/a)}\right)^{0.672}$	Co	One Head, ombined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fz} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
sediments, etc.		(2.081 + 0.121(12/a))		One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{c_1 \wedge c_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi h}$
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091 (H_1/a)}\right)^{0.663} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091 (H_2/a)}\right)^{0.663} \end{split}$	Cc	Two Head, ombined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$\begin{split} G_1 &= \frac{H_2 C_1}{\pi \big(2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1) \big)} \\ G_2 &= \frac{H_1 C_2}{\pi \big(2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1) \big)} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754} \end{split}$			$Q_2 = R_2 \times 35.22$	$\begin{split} K_{fs} &= G_2 Q_2 - G_1 Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2 C_2) C_1}{2\pi \big(2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1) \big)} \\ (2H^2 + a^2 C_1) C_1 \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_1 = \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754}$ $C_2 = \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754}$		Two Head, Inner Reservoir	$Q_1 = R_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{1}{2\pi \left(2H_2H_2(H_2-H_1)+a^2(H_1C_2-H_2C_1)\right)} \\ \phi_m &= G_3Q_1-G_4Q_2 \end{split}$

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fz} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$	$\Phi_m = \frac{c_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
		$G_1 = \frac{H_2 C_1}{\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))}$

gle Head Method (1)		Single Head Method (2)			Average
Reservoir Cross-sectional arr (enter "35.22" for Combined and "2.16" for Inner re there water Head Height ("H Enter the Borehole Radius ("a	ea in cm ² servoir): 35.22 4" in cm): 6 3" in cm): 3	Reservoir (enter "35.22" for Combined and Enter wat Enter the B-	Cross-sectional area in cm ² "2.16" for Inner reservoir): er Head Height ("H" in cm): lorehole Radius ("a" in cm):	35.22 14 3	K _{fs} = 3.32E-03 cm/ 1.99E-01 cm/ 3.32E-05 m/s 7.83E-02 inch
 the soil texture structure category (enter one of the below nu Compacted, Structure-less, clayery or silty materials s landfill caps and liners, lacustrine or marine sediments, e. Soils which are both fine textured (clayery or silty) an unstructured; may also include some fine sands. Most structured soils from clays through loams; also unstructured medium and fine sands. The category most applicable for agricultural soils. Coarse and gravely sands; may also include some hig structured soils with large and/or numerous cracks, mac 	umbers): 3 such as trc. d o includes t frequently ghly cropors, etc	 Enter the soil texture-structure category (enter o Compacted, Structure-less, clayey or landfill caps and liners, lacustrine or mari Soils which are both fine textured (cla unstructured; may also include some fine 3. Most structured soils from clays thro unstructured medium and fine sands. The applicable for agricultural soils. 4. Coarse and gravely sands; may also in structured soils with large and/or numerer 	one of the below numbers): silty materials such as ine sediments, etc. ayey or silty) and e sands. ugh loams; also includes e category most frequently include some highly ous cracks, macropors, etc	3	Φ _m = 2.766-02 cm ²
Steady State Rate of Water Level Change ("R" in o Res Type 35.22	cm/min): 4.2000	Steady State Rate of Water Lev Res Type 35.22	vel Change ("R" in cm/min):	5.7000	
H 6 a 3 H/a 2 a* 0.12	$\alpha^{*} = 0.12 cm^{-1}$	H 14 a 3 H/a 4.66667 a* 0.12	α*= C =	0.12 cm ⁻¹	T .
C0.01 0.904 C0.04 0.945	Q = 2.4654	C0.01 1.4643 C0.04 1.56745	Q =	3.3459	
C0.12 0.912 C0.36 0.912 C 0.912 R 4.200 Q 2.465	K _{fs} = <u>3.97E-03</u> cm/sec 2.38E-01 cm/min <u>3.97E-05</u> m/sec <u>9.38E-02</u> inch/min <u>1.56E-03</u> inch/sec	C0.12 1.59712 C0.36 1.59712 C 1.59712 R 5.700 Q 3.3459	K _{fs} =	2.66E-03 cm/sec 1.60E-01 cm/min 2.66E-05 m/ses 6.28E-02 inch/min 1.05E-03 inch/sec	
pi 3.142	$\Phi = \frac{2}{2} \frac{2}{2} \frac{1}{5} $	pi 3.1415	φ -	2 225 02 cm ² /min	2a

Calculation formulas related to shape factor (C). Where H_j is the first water bash height (cm), H₂ is the second water head height (cm), H₂ is the second head of water established in borehole (cm), H₂ is the second head of water established in borehole (cm), H₂ is the second head of water established in borehole (cm), H₂ is the second head of water established in borehole (cm) and C is Shape factor (from Table 2).

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor	second head of water establish	160
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine	0.01	$C_1 = \left(\frac{H_2/a}{1-2(1-2)^{0.672}}\right)^{0.672}$	One Head, Combined Reservoir	
sediments, etc.		$(2.081 + 0.121(\frac{12}{a}))$	One Head, Inner Reservoir	
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.683} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091(H_2/a)}\right)^{0.683} \end{split}$	Two Head, Combined Reservoir	
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754}$		
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754} \end{split}$	Two Head, Inner Reservoir	

cond head of water establi	shed in borehole (cm) and (Cis Shape factor (from Table 2).
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{c_1 \wedge q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_1 = \frac{H_2C_1}{\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $G_2 = \frac{H_1C_2}{\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $K_{fs} = G_2Q_2 - G_1Q_1$ $G_3 = \frac{(2H_2^2 + a^2C_2)C_1}{2\pi (2H_2^2 + a^2C_2)C_1 - H_2C_1)}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} & G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_2^4 + a^2C_1)C_2} & H_2(2_2)) \\ & G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_2H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ & \Phi_m = G_3Q_1 - G_4Q_2 \end{split}$

ngle Head Method (1)		Single Head Method (2)			Average
Reservo (enter "35.22" for Combined an Enter wi Enter the	ir Cross-sectional area in cm ² d "2.16" for inner reservoir): 35.22 iter Head Height ("H" in cm): 5 Borehole Radius ("a" in cm): 3	Reservoir (enter "35.22" for Combined and Enter wat Enter the B	Cross-sectional area in cm ² "2.16" for Inner reservoir): er Head Height ("H" in cm): orehole Radius ("a" in cm):	35.22 12 3	K _{fs} = 1.61E-03 cm/s 9.67E-02 cm/r 1.61E-05 m/s 3.81E-02 inch, 6.34E-04 inch,
 compacted, Structure category (enter 1. Compacted, Structure-less, claye landfill caps and liners, lacustrine or n 2. Soils which are both fine textured unstructured; may also include some 3. Most structured soils from clays to unstructured medium and fine sands applicable for agricultural soils. Coarse and gravely sands; may al structured soils with large and/or nur 	one of the below numbers): 3 r or silty materials such as anine sediments, etc. (claye or silty) and fine sands. hrough loams; also includes The category most frequently so include some highly nerous cracks, macropors, etc	Enter the soil texture-structure category (enter o 1. Compacted, Structure-less, clayey or landfill caps and liners, lacustrine or mari 2. Soils which are both fine textured (cl unstructured, may also include some fine 3. Most structured soils from clays thro unstructured medium and fine sands. Th applicable for agricultural soils. 4. Coarse and gravely sands; may also i structured soils with large and/or numer	ne of the below numbers): silty materials such as ne sediments, etc. ayey or silty) and s sands. ugh loams; also includes e category most frequently nclude some highly ous cracks, macropors, etc	3	Φ _m = 1.34E-02 cm ²
Steady State Rate of Water Lo Res Type 35.22	evel Change ("R" in cm/min): 1.5000	Steady State Rate of Water Lev Res Type 35.22	el Change ("R" in cm/min):	3.0000	
H 5 a 3	$\alpha^{*}=\frac{0.12}{cm^{-1}}$	H 12 a 3	α*=	0.12 cm ⁻¹	• ••
a* 0.12 C0.01 0.809	C = 0.80315 Q = 0.8805	a* 0.12 C0.01 1.34796	C = Q =	1.44896 1.761	
C0.12 0.803 C0.36 0.803 C 0.803	K _{fs} = <u>1.60E-03</u> cm/sec 9.61E-02 cm/min <mark>1.60E-05</mark> m/sec	C0.04 1.43553 C0.12 1.44896 C0.36 1.44896 C 1.44896	K _{fs} =	1.62E-03 cm/sec 9.73E-02 cm/min 1.62E-05 m/ses	
R 1.500 Q 0.881 pi 3.142	3.78E-02 inch/min 6.31E-04 inch/sec	R 3.000 Q 1.761 pi 3.1415		3.83E-02 inch/min 6.38E-04 inch/sec	
	$\Phi_m = \frac{1.33E-02}{1.33E-02} cm^2 / min$		Φ _m =	1.35E-02 cm 2 /min	

Calculation formulas related to shape factor (C). Where H_i is the first water head height (cm), H₂ is the second water established in borehole (cm), H₂ is the second water established in borehole (cm), H₂ is the first head of water established in borehole (cm), H₂ is the second h

Soil Texture-Structure Category	α*(cm ⁻¹)	Shape Factor	second head of water established in	
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine	0.01	$C_1 = \left(\frac{H_2/a}{2.081 + 0.121 \left(\frac{H_2}{a}\right)}\right)^{0.672}$	One Head, Combined Reservoir	<i>Q</i> ₁
sediments, etc.			One Head, Inner Reservoir	<i>Q</i> 1
Soils which are both fine textured (clayey or silty) and unstructured; may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091 \left(\frac{H_1}{a}\right)}\right)^{0.603} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091 \left(\frac{H_2}{a}\right)}\right)^{0.603} \end{split}$	Two Head, Combined Reservoir	
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093 \left(\frac{H_{1/a}}{2}\right)^{0.754}}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093 \left(\frac{H_{2/a}}{2}\right)^{0.754}}\right)^{0.754}$		
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093 (H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093 (H_{2/a})}\right)^{0.754}$	Two Head, Inner Reservoir	Q1 Q2

cond head of water establi	shed in borehole (cm) and	C is Shape factor (from Table 2).	
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fx} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$	
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \wedge Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$	
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$\begin{aligned} G_1 &= \frac{H_2C_1}{\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ G_2 &= \frac{H_1C_2}{\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ K_{fs} &= G_2Q_2 - G_1Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2C_2)C_1}{2-(2H_1H_1(H_2 - H_1) + a^2(H_1C_2 - H_1C_1))} \end{aligned}$	
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} & G_4 = \frac{(2H_2^2 + a^2 C_1)C_2}{2\pi (2H_1 + H_2(H_2 - H_4) + a^2(H_1 C_2 - H_2 C_1))} \\ & G_4 = \frac{(2H_2^2 + a^2 C_1)C_2}{2\pi (2H_1 H_2(H_2 - H_4) + a^2(H_1 C_2 - H_2 C_1))} \\ & \Phi_m = G_3 Q_1 - G_4 Q_2 \end{split}$	