

June 29, 2023

Jeremy Silburt 780 Baseline Inc. 1600 Lapierre Avenue, Suite 205 Ottawa, Ontario K1Z 1B7

Re: OTT-21011499-E0 Soil Quality Assessment,

7 & 9 Hilliard Avenue, Ottawa, Ontario

Dear Mr. Silburt,

1 Introduction

EXP was retained by the 780 Baseline Inc. to conduct a soil characterization program in support of future re-development of the properties located at 7 and 9 Hilliard Avenue (hereinafter referred to as the 'Site') shown in Figure 1 – Attachment 1.

The Site is located on the east side of Hilliard Avenue, approximately 50 m north of Malibu Terrace in Ottawa, Ontario. The Site is rectangular in shape and has an approximate area of 0.14 hectares (0.35 acres). The Site is currently occupied by two tenanted residences. The residence at 7 Hilliard Avenue is single storey with a full basement. The residence at 9 Hilliard Avenue is a split level with a full basement.

The most recent use of the property is residential use, and the proposed land use is parkland use. Therefore, as the proposed land use is the same sensitivity as the current land use, per Ontario Regulation 153/04, a Record of Site Condition (RSC) will not be required.

The objective of this assignment was to conduct in-situ characterization of the soil at the Site. As part of the proposed development, the two existing residences will be demolished, and the Site will be converted to a City of Ottawa park.

2 Scope of Work

The scope of work consisted of the following:

- Drill two boreholes (one per address) on the Site;
- Collect and submit two soil samples to an accredited laboratory for chemical analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), and metals; and,
- Preparation of a letter report (this report) documenting analytical findings of the collected samples.

3 Previous Environmental and Geotechnical Reports

The following reports were reviewed as part of this assessment:

• EXP Services Inc., Phase One Environmental Site Assessment, 7 & 9 Hilliard Avenue, June 29, 2023

Based on a review of historical aerial photographs, fire insurance plans and other records review, it appears the subject site was first developed for residential use in the 1950s, at which time the existing residences were constructed.

No potentially contaminating activities resulting in areas of potential environmental concern (APEC) were identified on the Site or in the study area.

780 Baseline Inc. Soil Quality Report 7 & 9 Hilliard Avenue, Ottawa, Ontario OTT-21011499-E0 June 29, 2023

4 Site Assessment Criteria

Analytical results obtained for soil samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

For assessment purposes, EXP selected the 2011 Table 3 SCS for a non-potable groundwater condition and residential/parkland/institutional property use.

The selection of these categories was based on the following factors:

- Bedrock is greater than 2 metres below grade across the Site;
- The Site is not located within 30 metres of a waterbody;
- The Site is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Potable water for the Site is provided by the City of Ottawa through its water distribution system;
- The Site is not located in an area designated in a municipal official plan as a well-head protection area;
- The proposed future property use is for a city park; and,
- It is the opinion of the Qualified Person who oversaw this work that the Site is not a sensitive site.

The soil quality was also compared to the MECP Table 1 SCS, which are based on background concentrations.

5 Borehole Drilling

Prior to the commencement of excavation, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

On June 9, 2023, two boreholes (BH-1 and BH-2) were advanced at the Site by Strata Drilling. The boreholes were terminated 1.5 metres below surface grade (bsg).

EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered soil cores, to record the depth of soil sample collection, to record total depths of borings/excavation, and to record visual or olfactory observations of potential impacts.

The locations of the boreholes are shown in Figure 2 (Attachment 1). Soil descriptions are presented in the borehole logs (Attachment 2).

5 Soil Sampling

Two soil samples, one from each borehole, were collected from the Site. Soil samples were placed directly into the jars provided by the analytical testing laboratory AGAT Laboratories (AGAT).

All samples were stored in a cooler prior to and during transportation to AGAT under Chain of Custody documentation for chemical analyses. Dedicated nitrile gloves (i.e., one pair per sample) were used during sampling and sample handling. The collected samples were field examined for visual and olfactory evidence of impacts prior to sampling.

780 Baseline Inc. Soil Quality Report 7 & 9 Hilliard Avenue, Ottawa, Ontario OTT-21011499-E0 June 29, 2023

6 Analytical Results

Both of the soil samples met the Table 1 SCS (background) and Table SCS (RPI) with the exception of vanadium, which exceeded the Table 1 and Table 3 SCS in both soil samples.

It is likely that the exceedances of vanadium are due to naturally elevated concentrations in the native silty clays in the Ottawa area and are not due to anthropogenic impact. A technical paper entitled "Elevated Background Metals Concentrations in Champlain Sea Clay – Ottawa Region" written by two engineering firms and the City of Ottawa was presented at GEO Ottawa in 2017. The paper presented results from several studies in the Ottawa area that showed that the concentrations of several metals including cobalt and vanadium in the native silty clay are elevated above the MECP Table SCS. New background concentrations that are higher than the MECP Table 3 SCS were proposed for five metals for eastern Ontario.

Based on the above technical paper, the range of concentrations of vanadium in 267 native soil samples in the Ottawa area ranged from 10.0 to 136 ug/g with a 98th percentile of 123 ug/g. The measured concentrations of vanadium in the silty clay at the subject site ranged from 88.4 to 102 ug/g. This indicates that the measured concentrations of vanadium in the native silty clay at the Site are within the typical range of concentrations cited in the above technical paper and are not indicative of anthropogenic impact.

The results of the current sampling program are summarized in Tables 1 to 3 in Attachment 3. The Certificates of Analysis are included in Attachment 4.

7 Recommendations

During the current investigation, the soil quality at the Site was investigated. Results were compared to Regulation 153/04 Table 3 SCS for residential/parkland/institutional property use and coarse textured soils in a non-potable groundwater condition.

All soil samples met the applicable Table 3 parkland SCS for all parameters that were analyzed with the exception of vanadium, which exceeded in both soil samples. However, the measured concentrations of vanadium in the native silty clay at the Site are within the typical range of concentrations in the Ottawa area and are not indicative of anthropogenic impact.

No further environmental investigations are deemed to be warranted.

780 Baseline Inc. Soil Quality Report 7 & 9 Hilliard Avenue, Ottawa, Ontario OTT-21011499-E0 June 29, 2023

8 General Limitations

The information presented in this letter report is based on a small-scale soil sampling program designed to provide information to support an assessment of the current soil conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

This letter report was prepared for 780 Baseline Inc. and may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. We trust that the information provided in this letter report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Sincerely,

EXP Services Inc.

Leah Wells, P.Eng.

Environmental Engineer Environmental Services

Attachments:

Attachment 1 - Figures

Attachment 2 - Borehole logs

Attachment 3 - Analytical Tables

Attachment 4 - Laboratory Certificates of Analysis

Mark McCalla., P. Geo.

Senior Project Manager Environmental Services

ON FARIO

MARK G. MCCALLA

PRACTISING MEMBER

EXP Services Inc.

780 Baseline Inc. Soil Quality Report 7 & 9 Hilliard Avenue, Ottawa, Ontario OTT-21011499-E0 June 29, 2023

Attachment 1 – Figures

EXP Services Inc.

780 Baseline Inc. Soil Quality Report 7 & 9 Hilliard Avenue, Ottawa, Ontario OTT-21011499-E0 June 29, 2023

Attachment 2 – Borehole Logs

Explanation of Terms Used on Borehole Records

SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil: mixture of soil and humus capable of supporting good vegetative growth.

Peat: fibrous fragments of visible and invisible decayed organic matter.

Fill: where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc.; none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.

Till: the term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure:

Desiccated: having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.

Stratified: alternating layers of varying material or color with the layers greater than 6 mm thick.

Laminated: alternating layers of varying material or color with the layers less than 6 mm thick.

Fissured: material breaks along plane of fracture.

Varved: composed of regular alternating layers of silt and clay.

Slickensided: fracture planes appear polished or glossy, sometimes striated.

Blocky: cohesive soil that can be broken down into small angular lumps which resist further

breakdown.

Lensed: inclusion of small pockets of different soil, such as small lenses of sand scattered

through a mass of clay; not thickness.

Seam: a thin, confined layer of soil having different particle size, texture, or color from

materials above and below.

Homogeneous: same color and appearance throughout.

Well Graded: having wide range in grain sized and substantial amounts of all predominantly on grain

size.

Uniformly Graded: predominantly on grain size.

All soil sample descriptions included in this report follow the ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. The system provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification. The classification excludes particles larger than 76 mm. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually in accordance with ASTM D2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems. Others may use different classification systems; one such system is the ISSMFE Soil Classification.

ISSMFE SOIL CLASSIFICATION

	SILT			SAND	_		GRAVEL	_	COBBLES	BOULDERS
FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
0.00	6 0.02	0.06	0.2	0.6	2.0	6.0	20	60	200	
0.00	0.02	0.00	0.2	0.0	I 2.0	I 0.0	1	I	1	
			FINE MEDIUM COARSE	FINE MEDIUM COARSE FINE	FINE MEDIUM COARSE FINE MEDIUM	FINE MEDIUM COARSE FINE MEDIUM COARSE	FINE MEDIUM COARSE FINE MEDIUM COARSE FINE	FINE MEDIUM COARSE FINE MEDIUM COARSE FINE MEDIUM	FINE MEDIUM COARSE FINE MEDIUM COARSE FINE MEDIUM COARSE	FINE MEDIUM COARSE FINE MEDIUM COARSE FINE MEDIUM COARSE

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE		
SILT (NONPLASTIC)		SAND		GRAVEL			

UNIFIED SOIL CLASSIFICATION

Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present and as described below in accordance with Note 16 in ASTM D2488-09a:

Table a: Percent or Proportion of Soil, Pp

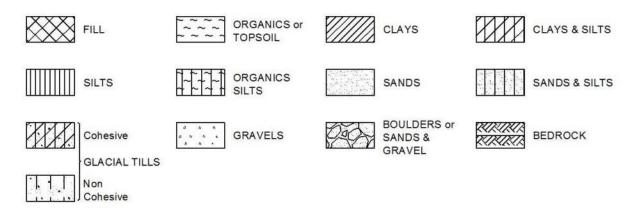
	Criteria					
Trace	Particles are present but estimated to be less than 5%					
Few	Few 5≤Pp≤10%					
Little	15≤Pp≤25%					
Some	30≤Pp≤45%					
Mostly 50≤Pp≤100%						

The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N' value:

Table b: Apparent Density of Cohesionless Soil

rabio bir ipparoni 2 onong or controllorinoso con								
	'N' Value (blows/0.3 m)							
Very Loose	N<5							
Loose	5≤N<10							
Compact	10≤N<30							
Dense	30≤N<50							
Very Dense	50≤N							

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis, Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils:


Table c: Consistency of Cohesive Soil

Consistency	Vane Shear Measurement (kPa)	'N' Value
Very Soft	<12.5	<2
Soft	12.5-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

Note: 'N' Value - The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in meters (e.g. 50/0.15).

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:

WATER LEVEL MEASUREMENT

 $ar{\Delta}$

Open Borehole or Test Pit Monitoring Well, Piezometer or Standpipe

Log of Borehole BH-1

	Log of B	orehole BH-1	*exn
Project No:	OTT-21011499-C0		
Project:	Proposed Multi-Use Towers		Figure No Page. 1 of 1
Location:	7 and 9 Hilliard Avenue, Ottawa, Ontario		rage. <u>I</u> oi <u>I</u>
Date Drilled:	6/9/23	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	Direct Push Drill Ria	Auger Sample	Natural Moisture Content
Dilli Type.	Direct Fush Drill Rig	SPT (N) Value	Atterberg Limits
Datum:	Geodetic Elevation	Dynamic Cone Test ———	Undrained Triaxial at
		Shelby Tube	% Strain at Failure
Logged by:	MR Checked by: MM	Shear Strength by + S	Shear Strength by Penetrometer Test

٦	S Y			Geodetic	Ď		Sta	ndard	Pen	etration	Test N Va	ue			stible Vap		Reading (ppm) S 750 A		
G W L	S M B O L	SOIL DESCRIPTION		Elevation	D e p t h	She	2 ear S	0 trengt	4	0	60	80 kPa		Natural Moisture Content % Atterberg Limits (% Dry Weight)				SAMPLES	Unit
				m	h o		5		10	0 1	50 2	200		20 40 60				E S	kN/
- 1) '''	TOPSOIL Silty sand, dark brown, moist	Д		Ĭ													://	1
	<u>, </u>	T Reworked Sand	/											190				3/	
ſ		Silty sand, trace gravel, grey, brown	Л				1.1.				1.5)
		SAND	—-/П				1				13333	1.000			3333			:: \/	Ί
		Brown, silty sand, moist, no odours or	П		1									200		1::::::		П Х	
		staining												200				::]/\	\
ľ	///4	SILTY CLAY	τ		+	1 : :	:::				1::::					 		+	1
		With sand seams, brown to grey, moist,	no													1::::			
		odours or staining Borehole Terminated at 1.5 m Dep				: :	: : :				:::::	1:::	: :				:::::		
		Borenoie Terminated at 1.5 in Dep	וואל																
						::													
							: : :						: :						
						1 : :	: : :				1::::	1:::					1::::		
						1 : :					1::::	1:::	: :				1::::		
													: :						
												1:::							
												1:::	; []						
						: :													
						1 : :	: : :				1::::	1:::					1::::		
						1 : :					1::::	1:::					1::::		
													: :						
						: :					1::::	1					1::::		
						: :						1:::	: :						
												1:::							
												1:::					1::::		
						: :	: : :				:::::	1:::	: :				:::::		
												1:::							
						1 : :	:::					1:::							
						1 : :						1:::							
							: : :				1::::	1:::					1::::		
												1:::							
													: :						
												1:::							
												1:::					1::::		
\perp					_	::	:::			::::	1::::	1:::	: :			1::::	1::::		
	ES:			WATE	RL	.EVEl	L RE	COR	DS					CC	RE DRI	LLING RI	ECORD		
1.E	Borehouse by	le data requires interpretation by EXP before others	Date			Wat evel	er			Hole Op To (m	en	Run No.		Dept	th	% Re			QD %
2.						_cvel	(111)			10 (11)		INO.	+	(III)	'		-+		
	ield w	ork was supervised by an EXP representative.																	
4.8		otes on Sample Descriptions																	
		be read with EXP Report No. 011499-C0		1													1		

WATER LEVEL RECORDS											
Date	Water Level (m)	Hole Open To (m)									

CORE DRILLING RECORD											
Run No.	Depth (m)	% Rec.	RQD %								

			Log o	f Bo	orehole	BH-2		exp
Pı	oject	No:	OTT-21011499-C0		•			
Pr	oject:		Proposed Multi-Use Towers				Figure No. Page. 1 of 1	ı
Lc	catio	n:	7 and 9 Hilliard Avenue, Ottawa, Ontario				1 ago 01	
Da	ate Dri	illed:	6/9/23		Split Spoon Sample		Combustible Vapour Reading	
Dr	ill Typ	e:	Direct Push Drill Rig		Auger Sample SPT (N) Value	O	Natural Moisture Content Atterberg Limits	× ⊷≎
Da	tum:		Geodetic Elevation		Dynamic Cone Test Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
Lo	gged	by:	MR Checked by: MM	_	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A
G W L	S Y MB		SOIL DESCRIPTION	Geodetic Elevation	Standard Penetrati	on Test N Value	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)	A M Natural P Unit Wt.

				11	Sta	ndard F	Pene	etration	Test N V	alue		Combi	stible Va	pour Read	ina (pnm)	s	
S Y M B O L	SOIL DESCRIPTION		Geodetic Elevation	D e p t	e p 20 40 60				80		Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)				M M	Natu P Unit V L KN/n	
- ŏ			m	h	Shear S	Strength i0				kPa 200		Atterberg Lir 20			Veight) 60	LES	kN/
o V	TOPSOIL Silty and dark brown majet	7		0													
0 (∖Silty sand, dark brown, moist — Reworked Sand	/			· · · · · · · · · · · · · · · · · · ·			2111	1335			170					
	Silty sand, some clay, grey, brown	/_						0.1.00								1	Ì
	SAND Brown, silty sand, moist, no odours or staining	Н		1				0-1-3-1 0-1-3-1 0-1-3-1				180					
	SILTY CLAY With sand seams, brown to grey, moist odours or staining	t, no										1 1 1 1 1				: / ·	\
	Borehole Terminated at 1.5 m De	pui															
IOTES:			\\\\		VEL DE	-COP	ne						DPE DE	ILLING R	ECOP		
1. Boreho	ole data requires interpretation by EXP before	Date		١	VEL RE Water	UORL		lole Op	en	Rı	un	Dep	th	ILLING R % Re			QD %
2. 3. Field v 4. See No	vork was supervised by an EXP representative. otes on Sample Descriptions be read with EXP Report No. 1011499-C0	Date	=		vel (m)			To (m)	N		<u>(m</u>)				

WATER LEVEL RECORDS										
Date	Water Level (m)	Hole Open To (m)								

CORE DRILLING RECORD									
Depth	% Rec.	RQD %							
(m)									
ı									
1									
ı									
1									
1									
ı									
ı									
		Depth % Rec.							

EXP Services Inc.

780 Baseline Inc. Soil Quality Report 7 & 9 Hilliard Avenue, Ottawa, Ontario OTT-21011499-E0 June 29, 2023

Attachment 3 – Analytical Tables

OTT-21011499-E0 **EXP Services Inc.**

Table 1 - Analytical Results in Soil - PHC and VOC 7 & 9 Hillard Avenue, Ottawa, Ontario OTT-21011499-E0

Parameter		MECP Table 3	MECP Table 1	BH-1	BH-2	
Sampling Date	Units	Residential ¹	Background ²	9-Jun-2023	9-Jun-2023	
Sample Depth (mbgs)		Orange	Italics	0.9 to 1.2	0.9 to 1.2	
Volatile Organic Compounds						
Acetone	ug/g dry	16	0.5	<0.50	< 0.50	
Benzene	ug/g dry	0.21	0.02	<0.02	<0.02	
Bromodichloromethane	ug/g dry	13	0.05	<0.05	< 0.05	
Bromoform	ug/g dry	0.27	0.05	<0.05	< 0.05	
Bromomethane	ug/g dry	0.05	0.05	<0.05	< 0.05	
Carbon Tetrachloride	ug/g dry	0.05	0.05	<0.05	< 0.05	
Chlorobenzene	ug/g dry	2.4	0.05	<0.05	< 0.05	
Chloroform	ug/g dry	0.05	0.05	<0.04	< 0.04	
Dibromochloromethane	ug/g dry	9.4	0.05	<0.05	< 0.05	
Dichlorodifluoromethane	ug/g dry	16	0.05	<0.05	< 0.05	
1,2-Dichlorobenzene	ug/g dry	3.4	0.05	<0.05	< 0.05	
L,3-Dichlorobenzene	ug/g dry	4.8	0.05	<0.05	< 0.05	
L,4-Dichlorobenzene	ug/g dry	0.083	0.05	<0.05	<0.05	
L,1-Dichloroethane	ug/g dry	3.5	0.05	<0.02	<0.02	
L,2-Dichloroethane	ug/g dry	0.05	0.05	<0.03	<0.03	
L,1-Dichloroethylene	ug/g dry	0.05	0.05	<0.05	<0.05	
cis-1,2-Dichloroethylene	ug/g dry	3.4	0.05	<0.02	<0.02	
rans-1,2-Dichloroethylene	ug/g dry	0.084	0.05	<0.05	<0.05	
.,2-Dichloropropane	ug/g dry	0.05	0.05	<0.03	<0.03	
,3-Dichloropropene, total	ug/g dry	0.05	0.05	<0.05	<0.05	
thylbenzene	ug/g dry	2	0.05	<0.05	<0.05	
thylene dibromide (dibromoethane, 1,2-)	ug/g dry	0.05	0.05	<0.04	<0.04	
Hexane	ug/g dry	2.8	0.05	<0.05	<0.05	
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	16	0.5	<0.50	<0.50	
Methyl Isobutyl Ketone	ug/g dry	1.7	0.5	<0.50	<0.50	
Methyl tert-butyl ether	ug/g dry	0.75	0.05	<0.05	< 0.05	
Methylene Chloride	ug/g dry	0.1	0.05	<0.05	<0.05	
Styrene	ug/g dry	0.7	0.05	<0.05	< 0.05	
L,1,1,2-Tetrachloroethane	ug/g dry	0.058	0.05	<0.04	<0.04	
L,1,2,2-Tetrachloroethane	ug/g dry	0.05	0.05	<0.05	< 0.05	
Tetrachloroethylene	ug/g dry	0.28	0.05	<0.05	< 0.05	
Toluene	ug/g dry	2.3	0.2	<0.05	< 0.05	
.,1,1-Trichloroethane	ug/g dry	0.38	0.05	<0.05	< 0.05	
.,1,2-Trichloroethane	ug/g dry	0.05	0.05	<0.04	<0.04	
richloroethylene	ug/g dry	0.061	0.05	<0.03	<0.03	
richlorofluoromethane	ug/g dry	4	0.25	<0.05	<0.05	
/inyl Chloride	ug/g dry	0.02	0.02	<0.02	<0.02	
n/p-Xylene	ug/g dry	NV	NV	<0.05	<0.05	
p-Xylene	ug/g dry	NV	NV	<0.05	< 0.05	
Kylenes, total	ug/g dry	3.1	0.05	<0.05	<0.05	
Petroleum Hydrocarbons	<u> </u>					
F1 PHC (C6 - C10) - BTEX	ug/g dry	55	25	<5	<5	
F2 PHC (C10-C16)	ug/g dry	98	10	<10	<10	
F3 PHC (C16-C34)	ug/g dry	300	240	<50	<50	
F4 PHC (C34-C50)	ug/g dry	2800	120	<50	<50	
NOTES:	-0/0 ~- 1					

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use 1 (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection 2 Act, April 2011, Table 1 Full Depth Background Site Condition Standards for All Types of Property Use (coarse textured soils)

Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit. ND

No Value NV N/A Not Applicable Parameter not analyzed Metres below ground surface m bgs

Indicates soil exceedance of MECP Table 3 SCS for parkland property use Italics Indicates soil exceedance of MECP Table 1 SCS for all types of property use

EXP Services Inc. OTT-21011499-E0

Table 2 - Analytical Results in Soil - PAH 7 & 9 Hillard Avenue, Ottawa, Ontario OTT-21011499-E0

Parameter	11ta	MECP Table 3	MECP Table 1	BH-1	BH-2
Sampling Date	Units	Residential ¹	Background ²	9-Jun-2023	9-Jun-2023
Sample Depth (mbgs)		Orange	Italics	0.9 to 1.2	0.9 to 1.2
Semi-Volatiles					
Acenaphthene	ug/g dry	7.9	0.072	<0.05	<0.05
Acenaphthylene	ug/g dry	0.15	0.093	<0.05	<0.05
Anthracene	ug/g dry	0.67	0.16	<0.05	<0.05
Benzo[a]anthracene	ug/g dry	0.5	0.36	<0.05	<0.05
Benzo[a]pyrene	ug/g dry	0.3	0.3	<0.05	<0.05
Benzo[b]fluoranthene	ug/g dry	0.78	0.47	<0.05	<0.05
Benzo[g,h,i]perylene	ug/g dry	6.6	0.68	<0.05	<0.05
Benzo[k]fluoranthene	ug/g dry	0.78	0.48	<0.05	<0.05
Chrysene	ug/g dry	7	2.8	<0.05	<0.05
Dibenzo[a,h]anthracene	ug/g dry	0.1	0.1	<0.05	<0.05
Fluoranthene	ug/g dry	0.69	0.56	<0.05	<0.05
Fluorene	ug/g dry	62	0.12	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g dry	0.38	0.23	<0.05	<0.05
Methylnaphthalene (1&2)	ug/g dry	0.99	0.59	<0.05	<0.05
Naphthalene	ug/g dry	0.6	0.09	<0.05	<0.05
Phenanthrene	ug/g dry	6.2	0.69	<0.05	<0.05
Pyrene	ug/g dry	78	1	<0.05	<0.05

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part

XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable
Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part

XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards for All Types of Property Use (coarse textured soils)

ND Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting detection limit.

NV No Value
 N/A Not Applicable
 Parameter not analyzed
 m bgs Metres below ground surface

Orange Indicates soil exceedance of MECP Table 3 SCS for parkland property use Italics Indicates soil exceedance of MECP Table 1 SCS for all types of property use

EXP Services Inc. OTT-21011499-E0

Table 3 - Analytical Results in Soil - Metals 7 & 9 Hillard Avenue, Ottawa, Ontario

OTT-21011499-E0

Parameter	11.76	MECP Table 3	MECP Table 1	BH-1	BH-2	
Sampling Date	Units	Residential ¹	Background ²	9-Jun-2023	9-Jun-2023	
Sample Depth (mbgs)		Orange	Italics	0.9 to 1.2	0.9 to 1.2	
Metals						
Antimony	ug/g dry	7.5	7.5	<0.8	<0.8	
Arsenic	ug/g dry	18	18	2	2	
Barium	ug/g dry	390	390	319	260	
Beryllium	ug/g dry	4	4	0.9	0.6	
Boron	ug/g dry	120	120	5	<5	
Cadmium	ug/g dry	1.2	1.2	<0.5	<0.5	
Chromium	ug/g dry	160	160	121	104	
Cobalt	ug/g dry	22	22	19.7	18.3	
Copper	ug/g dry	140	140	43	37.3	
Lead	ug/g dry	120	120	8	11	
Molybdenum	ug/g dry	6.9	6.9	<0.5	<0.5	
Nickel	ug/g dry	100	100	60	51.0	
Selenium	ug/g dry	2.4	2.4	<0.8	<0.8	
Silver	ug/g dry	20	20	<0.5	<0.5	
Thallium	ug/g dry	1	1	<0.5	<0.5	
Uranium	ug/g dry	23	23	0.86	1.18	
Vanadium	ug/g dry	86	86	102	88.4	
Zinc	ug/g dry	340	340	101	110	

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (coarse textured soils)

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards for All Types of Property Use 2 (coarse textured soils)

Non-detectable results are shown as "ND (RDL)" where RDL represents the reporting ND

detection limit. NV No Value N/A Not Applicable Parameter not analyzed m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 3 SCS for parkland property use Italics Indicates soil exceedance of MECP Table 1 SCS for all types of property use

EXP Services Inc.

780 Baseline Inc. Soil Quality Report 7 & 9 Hilliard Avenue, Ottawa, Ontario OTT-21011499-E0 June 29, 2023

Attachment 4 – Laboratory Certificates of Analysis

CLIENT NAME: EXP SERVICES INC

2650 QUEENSVIEW DRIVE, UNIT 100

OTTAWA, ON K2B8H6

(613) 688-1899

ATTENTION TO: Mark McCalla

PROJECT: OTT-2104499-E0

AGAT WORK ORDER: 23Z034844

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jun 19, 2023

PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 17

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 23Z034844

PROJECT: OTT-2104499-E0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:780 Basline

ATTENTION TO: Mark McCalla

SAMPLED BY:Mackenzie Russell

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

DATE RECEIVED: 2023-06-12							DATE REPORTED: 2023-06-19
		SAMPLE DES	CRIPTION:	BH1	BH2		
		SAM	PLE TYPE:	Soil	Soil		
		DATE	SAMPLED:	2023-06-09 12:40	2023-06-09 12:50		
Parameter	Unit	G/S	RDL	5061775	5061777		
Antimony	μg/g	7.5	0.8	<0.8	<0.8		
Arsenic	μg/g	18	1	2	2		
Barium	μg/g	390	2.0	319	260		
Beryllium	μg/g	5	0.5	0.9	0.6		
Boron	μg/g	120	5	5	<5		
Cadmium	μg/g	1.2	0.5	<0.5	<0.5		
Chromium	μg/g	160	5	121	104		
Cobalt	μg/g	22	0.8	19.7	18.3		
Copper	μg/g	180	1.0	43.0	37.3		
∟ead	μg/g	120	1	8	11		
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5		
Nickel	μg/g	130	1	60	51		
Selenium	μg/g	2.4	8.0	<0.8	<0.8		
Silver	μg/g	25	0.5	<0.5	<0.5		
Гhallium	μg/g	1	0.5	<0.5	<0.5		
Jranium	μg/g	23	0.50	0.86	1.18		
/anadium	μg/g	86	2.0	102	88.4		
Zinc	μg/g	340	5	101	110		

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Junayot Bhell AMMIOTHERED STANDARD OF THE MIST OF

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:780 Basline

Certificate of Analysis

AGAT WORK ORDER: 23Z034844

PROJECT: OTT-2104499-E0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Mark McCalla
SAMPLED BY:Mackenzie Russell

O. Reg. 153(511)	- PAHs	(Soil))
------------------	--------	--------	---

DATE RECEIVED: 2023-06-12						DATE REPORTED: 2023-06-19
	•	SAMPLE DES	CRIPTION:	BH1	BH2	
		SAM	PLE TYPE:	Soil	Soil	
		DATE	SAMPLED:	2023-06-09 12:40	2023-06-09 12:50	
Parameter	Unit	G/S	RDL	5061775	5061777	
Naphthalene	µg/g	0.75	0.05	<0.05	<0.05	
Acenaphthylene	μg/g	0.17	0.05	< 0.05	<0.05	
Acenaphthene	μg/g	58	0.05	< 0.05	< 0.05	
Fluorene	μg/g	69	0.05	< 0.05	< 0.05	
Phenanthrene	μg/g	7.8	0.05	< 0.05	< 0.05	
Anthracene	μg/g	0.74	0.05	< 0.05	<0.05	
Fluoranthene	μg/g	0.69	0.05	< 0.05	<0.05	
Pyrene	μg/g	78	0.05	< 0.05	< 0.05	
Benz(a)anthracene	μg/g	0.63	0.05	< 0.05	< 0.05	
Chrysene	μg/g	7.8	0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	<0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.48	0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	7.8	0.05	< 0.05	< 0.05	
1 and 2 Methlynaphthalene	μg/g	3.4	0.05	<0.05	<0.05	
Moisture Content	%		0.1	26.8	27.2	
Surrogate	Unit	Acceptab	le Limits			
Naphthalene-d8	%	50-	140	105	95	
Acridine-d9	%	50-	140	90	75	
Terphenyl-d14	%	50-	140	90	95	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5061775-5061777 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:780 Basline

Certificate of Analysis

AGAT WORK ORDER: 23Z034844

PROJECT: OTT-2104499-E0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Mark McCalla SAMPLED BY: Mackenzie Russell

DATE RECEIVED: 2023-06-12						DATE REPORTED: 2023-06-19
		SAMPLE DESC	RIPTION:	BH1	BH2	
		SAMPI	LE TYPE:	Soil	Soil	
		DATE SA	AMPLED:	2023-06-09 12:40	2023-06-09 12:50	
Parameter	Unit	G/S	RDL	5061775	5061777	
F1 (C6 - C10)	μg/g	65	5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	65	5	<5	<5	
F2 (C10 to C16)	μg/g	150	10	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	
F3 (C16 to C34)	μg/g	1300	50	<50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50	
F4 (C34 to C50)	μg/g	5600	50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	5600	50	NA	NA	
Moisture Content	%		0.1	26.8	27.2	
Surrogate	Unit	Acceptable	Limits			
Toluene-d8	%	50-14	10	80	81	
Terphenyl	%	60-14	10	63	67	

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5061775-5061777 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH; sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(k)fluoranthene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(b)f Fluoranthene. Dibenzo(a,h)anthracene. Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukoly

Certificate of Analysis

AGAT WORK ORDER: 23Z034844

PROJECT: OTT-2104499-E0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC SAMPLING SITE:780 Basline

ATTENTION TO: Mark McCalla SAMPLED BY: Mackenzie Russell

SAMPLING SITE:780 Basline						SAMPLED BY: Mackenzie Russell
			C	D. Reg. 153	(511) - VOCs (w	rith PHC) (Soil)
DATE RECEIVED: 2023-06-12						DATE REPORTED: 2023-06-19
			CRIPTION: PLE TYPE: SAMPLED:	BH1 Soil 2023-06-09 12:40	BH2 Soil 2023-06-09 12:50	
Parameter	Unit	G/S	RDL	5061775	5061777	
Dichlorodifluoromethane	µg/g	25	0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.022	0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	<0.05	
Trichlorofluoromethane	ug/g	5.8	0.05	< 0.05	< 0.05	
Acetone	ug/g	28	0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.96	0.05	< 0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.75	0.05	< 0.05	<0.05	
Methyl tert-butyl Ether	ug/g	1.4	0.05	< 0.05	<0.05	
1,1-Dichloroethane	ug/g	11	0.02	< 0.02	<0.02	
Methyl Ethyl Ketone	ug/g	44	0.50	< 0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	30	0.02	< 0.02	<0.02	
Chloroform	ug/g	0.18	0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	3.4	0.05	< 0.05	<0.05	
Carbon Tetrachloride	ug/g	0.12	0.05	< 0.05	<0.05	
Benzene	ug/g	0.17	0.02	< 0.02	<0.02	
1,2-Dichloropropane	ug/g	0.085	0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.52	0.03	< 0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	4.3	0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	
Toluene	ug/g	6	0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	2.3	0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.7	0.05	<0.05	<0.05	
Ethylbenzene	ug/g	15	0.05	< 0.05	<0.05	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 23Z034844

PROJECT: OTT-2104499-E0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:780 Basline

CLIENT NAME: EXP SERVICES INC

ATTENTION TO: Mark McCalla SAMPLED BY: Mackenzie Russell

O. Reg. 153(511) - VOCs (with PHC) (Soil)								
DATE RECEIVED: 2023-06-12						DATE REPORTED: 2023-06-19		
	SA	_	CRIPTION: PLE TYPE: SAMPLED:	BH1 Soil 2023-06-09 12:40	BH2 Soil 2023-06-09 12:50			
Parameter	Unit	G/S	RDL	5061775	5061777			
m & p-Xylene	ug/g		0.05	<0.05	<0.05			
Bromoform	ug/g	0.26	0.05	<0.05	< 0.05			
Styrene	ug/g	2.2	0.05	<0.05	< 0.05			
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	< 0.05			
o-Xylene	ug/g		0.05	<0.05	< 0.05			
1,3-Dichlorobenzene	ug/g	6	0.05	<0.05	< 0.05			
1,4-Dichlorobenzene	ug/g	0.097	0.05	< 0.05	< 0.05			
1,2-Dichlorobenzene	ug/g	4.3	0.05	<0.05	< 0.05			
Xylenes (Total)	ug/g	25	0.05	< 0.05	< 0.05			
1,3-Dichloropropene (Cis + Trans)	μg/g	0.083	0.05	< 0.05	< 0.05			
n-Hexane	μg/g	34	0.05	<0.05	<0.05			
Moisture Content	%		0.1	26.8	27.2			
Surrogate	Unit	Acceptab	le Limits					
Toluene-d8	% Recovery	50-1	40	80	81			
4-Bromofluorobenzene	% Recovery	50-1	40	82	77			

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Medium and Fine Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

5061775-5061777 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Exceedance Summary

AGAT WORK ORDER: 23Z034844

PROJECT: OTT-2104499-E0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

ATTENTION TO: Mark McCalla

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
5061775	BH1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Vanadium	µg/g	86	102
5061777	BH2	ON T3 S RPI MFT	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Vanadium	μg/g	86	88.4

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-2104499-E0

SAMPLING SITE:780 Basline

AGAT WORK ORDER: 23Z034844
ATTENTION TO: Mark McCalla
SAMPLED BY:Mackenzie Russell

				Soi	I Ana	alysis	3								
RPT Date: Jun 19, 2023			[UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery		eptable mits	Recovery		eptable mits
I ANAMETER	Baton	ld			5		Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Inc	luding Hydride:	s) (Soil)					'								
Antimony	5056638	, , ,	<0.8	<0.8	NA	< 0.8	130%	70%	130%	102%	80%	120%	84%	70%	130%
Arsenic	5056638		3	3	NA	< 1	121%	70%	130%	99%	80%	120%	101%	70%	130%
Barium	5056638		30.2	29.0	4.1%	< 2.0	106%	70%	130%	102%	80%	120%	106%	70%	130%
Beryllium	5056638		<0.5	<0.5	NA	< 0.5	110%	70%	130%	106%	80%	120%	116%	70%	130%
Boron	5056638		9	9	NA	< 5	87%	70%	130%	100%	80%	120%	106%	70%	130%
Cadmium	5056638		<0.5	<0.5	NA	< 0.5	104%	70%	130%	101%	80%	120%	101%	70%	130%
Chromium	5056638		13	14	NA	< 5	95%	70%	130%	91%	80%	120%	85%	70%	130%
Cobalt	5056638		4.0	4.0	0.0%	< 0.8	90%	70%	130%	102%	80%	120%	101%	70%	130%
Copper	5056638		10.0	10.8	7.7%	< 1.0	93%	70%	130%	97%	80%	120%	89%	70%	130%
Lead	5056638		4	4	NA	< 1	102%	70%	130%	93%	80%	120%	90%	70%	130%
Molybdenum	5056638		0.6	0.7	NA	< 0.5	111%	70%	130%	104%	80%	120%	112%	70%	130%
Nickel	5056638		5	5	0.0%	< 1	87%	70%	130%	94%	80%	120%	86%	70%	130%
Selenium	5056638		<0.8	<0.8	NA	< 0.8	73%	70%	130%	105%	80%	120%	100%	70%	130%
Silver	5056638		<0.5	<0.5	NA	< 0.5	94%	70%	130%	101%	80%	120%	93%	70%	130%
Thallium	5056638		<0.5	<0.5	NA	< 0.5	105%	70%	130%	102%	80%	120%	98%	70%	130%
Uranium	5056638		0.62	0.65	NA	< 0.50	97%	70%	130%	91%	80%	120%	95%	70%	130%
Vanadium	5056638		14.8	14.6	1.4%	< 2.0	95%	70%	130%	96%	80%	120%	105%	70%	130%
Zinc	5056638		24	24	NA	< 5	98%	70%	130%	105%	80%	120%	90%	70%	130%
Comments: NA Signifies Not Ap Duplicate NA: results are under		will not be	calculated	i.											
O. Reg. 153(511) - Metals (Inc	luding Hydride:	s) (Soil)													
Antimony	5065864		<0.8	<0.8	NA	< 0.8	135%	70%	130%	97%	80%	120%	102%	70%	130%
Arsenic	5065864		6	6	2.5%	< 1	116%	70%	130%	98%	80%	120%	102%	70%	130%
Barium	5065864		116	115	0.5%	< 2.0	110%	70%	130%	102%	80%	120%	105%	70%	130%
Beryllium	5065864		0.7	0.7	NA	< 0.5	100%	70%	130%	100%	80%	120%	90%	70%	130%
Boron	5065864		9	9	NA	< 5	86%	70%	130%	103%	80%	120%	84%	70%	130%
Cadmium	5065864		<0.5	<0.5	NA	< 0.5	105%	70%	130%	98%	80%	120%	102%	70%	130%
Chromium	5065864		25	25	2.9%	< 5	103%	70%	130%	107%	80%	120%	112%	70%	130%
Cobalt	5065864		11.1	11.1	0.3%	< 0.8	106%	70%	130%	101%	80%	120%	102%	70%	130%
Copper	5065864		34.2	34.1	0.4%	< 1.0	100%	70%	130%	107%	80%	120%	103%	70%	130%
Lead	5065864		23	22	2.2%	< 1	111%	70%	130%	106%	80%	120%	111%	70%	130%
Molybdenum	5065864		0.6	0.6	NA	< 0.5	109%	70%	130%	104%	80%	120%	106%	70%	130%
Nickel	5065864		23	23	0.8%	< 1	102%	70%	130%	99%	80%	120%	100%	70%	130%
Selenium	5065864		<0.8	0.9	NA	< 0.8	92%	70%	130%	97%		120%	99%		130%
Silver	5065864		2.3	<0.5	NA	< 0.5	101%		130%	97%		120%	112%	70%	
Thallium	5065864		<0.5	<0.5	NA	< 0.5	115%		130%	98%		120%	104%		130%
Uranium	5065864		0.79	0.78	NA	< 0.50	124%	70%	130%	107%	80%	120%	117%	70%	130%
Vanadium	5065864		36.3	36.6	1.0%	< 2.0	114%	70%		104%		120%	104%		130%
7	500001			-0.0	4.00/		1000/	700/	40004	1000/	22,3	4000/	4400/		1000/

AGAT QUALITY ASSURANCE REPORT (V1)

5065864

82

83

Zinc

70% 130% Page 8 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

1.3%

< 5

108% 70% 130%

106%

80% 120% 113%

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-2104499-E0

SAMPLING SITE:780 Basline

AGAT WORK ORDER: 23Z034844
ATTENTION TO: Mark McCalla
SAMPLED BY:Mackenzie Russell

Soil Analysis (Continued)															
RPT Date: Jun 19, 2023		С	UPLICAT	E		REFEREN	ICE MAT	TERIAL	METHOD	BLANK	SPIKE	MAT	KE		
PARAMETER	Batch		Dup #1	Dup #2	RPD	Method Blank	Measured	Accep Lim		Recovery	Acceptable Limits		Recovery	Lin	ptable nits
	PARAMETER Batch Id Bup#1 Bup#2 RFB						Value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Amayot Bhells Amanor BHEAR O

Certified By:

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-2104499-E0

SAMPLING SITE:780 Basline

AGAT WORK ORDER: 23Z034844
ATTENTION TO: Mark McCalla
SAMPLED BY:Mackenzie Russell

			Trac	ce Or	gani	cs Ar	nalys	is							
RPT Date: Jun 19, 2023			[DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery		ptable nits	Recovery	1 1:	eptable mits
		IG.					Value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs	and VOC)	(Soil)												
F1 (C6 - C10)	5065779		<5	<5	NA	< 5	113%	60%	140%	97%	60%	140%	91%	60%	140%
F2 (C10 to C16)	5061775 5	061775	< 10	< 10	NA	< 10	112%	60%	140%	110%	60%	140%	99%	60%	140%
F3 (C16 to C34)	5061775 5	061775	< 50	< 50	NA	< 50	97%	60%	140%	109%	60%	140%	96%	60%	140%
F4 (C34 to C50)	5061775 5	5061775	< 50	< 50	NA	< 50	82%	60%	140%	103%	60%	140%	87%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Soil)														
Dichlorodifluoromethane	5065779		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	111%	50%	140%	84%	50%	140%
Vinyl Chloride	5065779		<0.02	< 0.02	NA	< 0.02	99%	50%	140%	110%	50%	140%	115%	50%	140%
Bromomethane	5065779		<0.05	<0.05	NA	< 0.05	87%	50%	140%	93%	50%	140%	81%	50%	140%
Trichlorofluoromethane	5065779		<0.05	<0.05	NA	< 0.05	106%	50%	140%	109%	50%	140%	106%	50%	140%
Acetone	5065779		<0.50	<0.50	NA	< 0.50	86%	50%	140%	107%	50%	140%	92%	50%	140%
1,1-Dichloroethylene	5065779		<0.05	<0.05	NA	< 0.05	94%	50%	140%	97%	60%	130%	117%	50%	140%
Methylene Chloride	5065779		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	99%	60%	130%	109%	50%	140%
Trans- 1,2-Dichloroethylene	5065779		< 0.05	< 0.05	NA	< 0.05	74%	50%	140%	75%	60%	130%	105%	50%	140%
Methyl tert-butyl Ether	5065779		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	89%	60%	130%	102%	50%	140%
1,1-Dichloroethane	5065779		<0.02	<0.02	NA	< 0.02	79%	50%	140%	80%	60%	130%	112%	50%	140%
Methyl Ethyl Ketone	5065779		<0.50	<0.50	NA	< 0.50	79%	50%	140%	119%	50%	140%	87%	50%	140%
Cis- 1,2-Dichloroethylene	5065779		< 0.02	< 0.02	NA	< 0.02	77%	50%	140%	79%	60%	130%	107%	50%	140%
Chloroform	5065779		< 0.04	< 0.04	NA	< 0.04	93%	50%	140%	97%	60%	130%	102%	50%	140%
1,2-Dichloroethane	5065779		< 0.03	< 0.03	NA	< 0.03	104%	50%	140%	102%	60%	130%	81%	50%	140%
1,1,1-Trichloroethane	5065779		<0.05	<0.05	NA	< 0.05	86%	50%	140%	86%	60%	130%	111%	50%	140%
Carbon Tetrachloride	5065779		<0.05	<0.05	NA	< 0.05	94%	50%	140%	93%	60%	130%	104%	50%	140%
Benzene	5065779		< 0.02	< 0.02	NA	< 0.02	76%	50%	140%	77%	60%	130%	99%	50%	140%
1,2-Dichloropropane	5065779		< 0.03	< 0.03	NA	< 0.03	70%	50%	140%	74%	60%	130%	92%	50%	140%
Trichloroethylene	5065779		< 0.03	< 0.03	NA	< 0.03	79%	50%	140%	81%	60%	130%	115%	50%	140%
Bromodichloromethane	5065779		<0.05	<0.05	NA	< 0.05	78%	50%	140%	79%	60%	130%	93%	50%	140%
Methyl Isobutyl Ketone	5065779		<0.50	<0.50	NA	< 0.50	93%	50%	140%	107%	50%	140%	98%	50%	140%
1,1,2-Trichloroethane	5065779		< 0.04	< 0.04	NA	< 0.04	80%	50%	140%	74%	60%	130%	83%	50%	140%
Toluene	5065779		< 0.05	< 0.05	NA	< 0.05	73%	50%	140%	73%	60%	130%	82%	50%	140%
Dibromochloromethane	5065779		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	86%	60%	130%	112%	50%	140%
Ethylene Dibromide	5065779		<0.04	<0.04	NA	< 0.04	72%	50%	140%	94%	60%	130%	74%	50%	140%
Tetrachloroethylene	5065779		<0.05	<0.05	NA	< 0.05	85%	50%	140%	84%	60%	130%	93%	50%	140%
1,1,1,2-Tetrachloroethane	5065779		< 0.04	< 0.04	NA	< 0.04	71%	50%	140%	80%	60%	130%	87%	50%	140%
Chlorobenzene	5065779		<0.05	<0.05	NA	< 0.05	78%	50%	140%	77%	60%	130%	80%	50%	140%
Ethylbenzene	5065779		<0.05	<0.05	NA	< 0.05	73%	50%	140%	74%	60%	130%	74%	50%	140%
m & p-Xylene	5065779		<0.05	<0.05	NA	< 0.05	113%	50%	140%	85%	60%	130%	82%	50%	140%
Bromoform	5065779		<0.05	<0.05	NA	< 0.05	82%	50%	140%	85%	60%	130%	103%	50%	140%
Styrene	5065779		<0.05	<0.05	NA	< 0.05	72%	50%	140%	71%	60%	130%	76%	50%	140%
1,1,2,2-Tetrachloroethane	5065779		<0.05	<0.05	NA	< 0.05	86%	50%	140%	81%	60%	130%	80%	50%	140%
o-Xylene	5065779		< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	77%	60%	130%	83%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: EXP SERVICES INC
PROJECT: OTT-2104499-E0
SAMPLING SITE: 780 Basling

AGAT WORK ORDER: 23Z034844
ATTENTION TO: Mark McCalla
SAMPLED BY:Mackenzia Russell

SAMPLING SITE:780 Basline	MPLING SITE:780 Basline							SAMP	LED B	Y:Macke	enzie	Russe	II		
	٦	Trace	Org	anics	Ana	lysis	(Co	ntin	ued)					
RPT Date: Jun 19, 2023			Г	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1 11	eptable mits	Recovery		eptable mits
		IG					value	Lower	Upper	,	Lower	Upper	_	Lower	Upper
1,3-Dichlorobenzene	5065779		<0.05	<0.05	NA	< 0.05	99%	50%	140%	95%	60%	130%	98%	50%	140%
1,4-Dichlorobenzene	5065779		<0.05	<0.05	NA	< 0.05	98%	50%	140%	96%	60%	130%	98%	50%	140%
1,2-Dichlorobenzene	5065779		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	91%	60%	130%	92%	50%	140%
n-Hexane	5065779		<0.05	<0.05	NA	< 0.05	116%	50%	140%	95%	60%	130%	85%	50%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	5064595		3.14	3.39	7.7%	< 0.05	101%	50%	140%	98%	50%	140%	85%	50%	140%
Acenaphthylene	5064595		0.80	0.84	4.8%	< 0.05	106%	50%	140%	75%	50%	140%	97%	50%	140%
Acenaphthene	5064595		0.36	0.37	2.0%	< 0.05	115%	50%	140%	98%	50%	140%	96%	50%	140%
Fluorene	5064595		0.53	0.58	10.5%	< 0.05	95%	50%	140%	88%	50%	140%	80%	50%	140%
Phenanthrene	5064595		0.73	0.97	29.2%	< 0.05	104%	50%	140%	98%	50%	140%	122%	50%	140%
Anthracene	5064595		0.13	0.18	NA	< 0.05	113%	50%	140%	80%	50%	140%	84%	50%	140%
Fluoranthene	5064595		0.22	0.28	NA	< 0.05	108%	50%	140%	100%	50%	140%	77%	50%	140%
Pyrene	5064595		0.34	0.40	16.2%	< 0.05	106%	50%	140%	88%	50%	140%	106%	50%	140%
Benz(a)anthracene	5064595		< 0.05	< 0.05	NA	< 0.05	74%	50%	140%	90%	50%	140%	93%	50%	140%
Chrysene	5064595		<0.05	<0.05	NA	< 0.05	93%	50%	140%	78%	50%	140%	78%	50%	140%
Benzo(b)fluoranthene	5064595		<0.05	<0.05	NA	< 0.05	78%	50%	140%	85%	50%	140%	93%	50%	140%
Benzo(k)fluoranthene	5064595		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	88%	50%	140%	115%	50%	140%
Benzo(a)pyrene	5064595		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	73%	50%	140%	75%	50%	140%
Indeno(1,2,3-cd)pyrene	5064595		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	80%	50%	140%	103%	50%	140%
Dibenz(a,h)anthracene	5064595		<0.05	<0.05	NA	< 0.05	95%	50%	140%	88%	50%	140%	80%	50%	140%
Benzo(g,h,i)perylene	5064595		<0.05	<0.05	NA	< 0.05	105%	50%	140%	73%	50%	140%	108%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

QC Exceedance

CLIENT NAME: EXP SERVICES INC

AGAT WORK ORDER: 23Z034844

PROJECT: OTT-2104499-E0

ATTENTION TO: Mark McCalla

RPT Date: Jun 19, 2023	REFERENC	E MATERIA	метно	BLANK	SPIKE	МАТ	KE		
PARAMETER	Sample Id	Measured	Acceptab Limits	le Recovery	Lir	ptable nits	Recovery	Lin	ptable nits
		Value	Lower Upp			Upper	7		Upper

O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

Antimony 135% 70% 130% 97% 80% 120% 102% 70% 130%

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-2104499-E0

SAMPLING SITE:780 Basline

SAMI LING SITE. 700 Dasilile		SAMI LED DT.MI	dokenizie reassen				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Soil Analysis	<u>'</u>						
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS				

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-2104499-E0

SAMPLING SITE:780 Basline

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	·	·	
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-2104499-E0

SAMPLING SITE:780 Basline

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA	(P&T)GC/MS				
Bromomethane	VOL-91-5002	8260D modified from EPA 5035A and EPA	(P&T)GC/MS				
Trichlorofluoromethane	VOL-91-5002	8260D modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: OTT-2104499-E0

SAMPLING SITE:780 Basline

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webcarth agatlabs com

Laboratory Use Only

Work Order #: 2370.34844

Cooler Quantity:	e-no 1	@ 10a	CKS -
Arrival Temperatures:	4.6	145	14.5
LT	14.4	1514	19.8/
Custody Seal Intact: Notes:	□Yes	□No	"EJK/A

hain of Custody Record If this is a Drinking Water sample, plea					king Water Chain of	Custody Form (pota	ble water	consum	ed by h	umans)			A	rrival T	empera	tures:	4	14	14.		4.5	_
Report Information: Company: EXP Services Contact: Mark McCall Address: 2650 Queens				R	gulatory Requestions of the control		6	□ Se	wer Us		torm			lotes:	Seal In		YO (TA)			No	BW	/A
Phone: Reports to be sent to: 1. Email: 1.	Fax:			Soil T	able	Table Indicate One Regulation 55	8	Pro Obj	ective				Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days Days Days							ext Busine	es	
2. Email:				- 11]Fine		(Indicat	е Опе			OR Date Required (Rush Surcharges May Apply):									
Project Information: Project: OTT-2101499- Site Location: 780 Basclin				Re	s this submission cord of Site Co		Ce	Report Guideline on Certificate of Analysis					Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holiday For 'Same Day' analysis, please contact your AGAT CF							holidays		
Sampled By: Mackenzoz R AGAT Quote #:				-			10	0	. Reg 1	53	T	T		O. Reg 558		eg 406	, Joio, p				E	- 2
Please note: If quotation number is a Invoice Information: Company: Contact: Address: Email:		be billed full price for a		GW	nple Matrix Leg Ground Water Oil Paint Soil Sediment Surface Water	gend .	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	- □ crVI, □ Hg, □ HWSB	BNEX, F1-F4 PHCs			PCBs: Aroclors 🗆	Landfill Disposal Characterization TCLP: TCLP: ☐M&I ☐VOCs ☐ABNs ☐B(a)P☐PCBs	Regulation 406 SPLP Rainwater Leach SPLP: ☐ Metals ☐ VOCs ☐ SVOCs	tion 406 Characterization Package MS Metals, BTEX, F1-F4	□ Moisture					ally Hazardous or High Concentration (Y
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		ments/ nstructions	Y/N	Metals	Metals -	XX	VOC	PCBs	PCBs:	Landfil TCLP: [Regula SPLP: [Regulation pH, ICPMS	Corros					Potentia
1. BH (06/09/23	1Z:40 8		50,1					V	V	V v						E					
2. BHZ	V	12:50 AM	V	50.1					1	1	//											
3. 4. 5.		AM PM AM PM AM PM																				
6.		AM PM													χĒ				Ē			
7.		AM PM																				
8.		AM PM															-11					
9.		AM PM									-							\perp				_
10.		AM PM																				_
11.		AM PM																				_
Samples Relinquished By (Print Name and Sign): Macking Co. Runch! Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	h.L	Date OG 112 12 Date		h30	Samples Received By IP Samples Received By IP Samples Received By IP	rint Name and Sign):	Mil	0			10	ate (0) ate Voe l	-		79h		Nº;	Pag	e <u>1</u>	_ of	<u>l</u>	