

# Geotechnical Design Report for Building Permit Application CHEO 1Door4care Parking Garage

Client Name: EllisDon Date: September 21, 2023 File: 36182

Suite 103, 2010 Winston Park Drive, Oakville, Ontario L6H 5R7 | Phone: (905) 829-8666



### **TABLE OF CONTENTS**

| 1. | INTRO                             | TRODUCTION1                                         |        |  |  |  |  |  |
|----|-----------------------------------|-----------------------------------------------------|--------|--|--|--|--|--|
| 2. | BACKGROUND1                       |                                                     |        |  |  |  |  |  |
| 3. | UNDE                              | DERSTANDING OF SUBSURFACE CONDITIONS                |        |  |  |  |  |  |
| 4. | FOUNDATION DESIGN RECOMMENDATIONS |                                                     |        |  |  |  |  |  |
|    | 4.1                               | Foundation Excavation and Temporary Dewatering5     | ;      |  |  |  |  |  |
|    | 4.2                               | Site Preparation                                    | ;      |  |  |  |  |  |
|    | 4.3                               | Protection of Expansive Shale                       | ,      |  |  |  |  |  |
|    | 4.4                               | Engineered Fill Pad for Building Footprint 8        | ;      |  |  |  |  |  |
|    | 4.5                               | Grade Raises and Controlled Fill                    | ;      |  |  |  |  |  |
|    | 4.6                               | Foundation Design                                   | ;      |  |  |  |  |  |
|    | 4.7                               | Frost Depth 9                                       | )      |  |  |  |  |  |
|    | 4.8                               | Slab-On-Grade and Raft Foundations10                | )      |  |  |  |  |  |
|    | 4.9                               | Backfill to Structures and Lateral Earth Pressure10 | )      |  |  |  |  |  |
|    | 4.10                              | Site Seismic Classification11                       |        |  |  |  |  |  |
|    | 4.11                              | Cement Type12                                       | )<br>- |  |  |  |  |  |
|    | 4.12                              | Site Servicing                                      | )      |  |  |  |  |  |
|    | 4.13                              | Pavement Structures14                               | ŀ      |  |  |  |  |  |
| 5. | CLOS                              | URE15                                               | ,      |  |  |  |  |  |
|    |                                   |                                                     |        |  |  |  |  |  |

# STATEMENT OF LIMITATIONS AND CONDITIONS

# **IN-TEXT TABLES**

| Table 3.1: Approximate Depth and Elevation of Bedrock          | 2   |
|----------------------------------------------------------------|-----|
| Table 3.2: Groundwater Level Readings at the Site              | 3   |
| Table 4.1: Foundation Design Options                           | 8   |
| Table 4.2: Recommended Geotechnical Resistances at ULS and SLS | 9   |
| Table 4.3: Lateral Earth Pressure Coefficients                 | .11 |

# APPENDICES

APPENDIX A

- Borehole Location Plan (from GHD's) Report
- Record of Boreholes and Laboratory Test Results



# 1. INTRODUCTION

Thurber Engineering Ltd. (Thurber) has been retained by EllisDon to provide geotechnical input to the design of foundations for the proposed parking structure at the Children's Hospital for Eastern Ontario (CHEO) Campus.

Geo-environmental (chemical) aspects of the project including disposal excess soil/groundwater off site, consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources, are outside our terms of reference for this project and are not addressed herein.

This report has been issued based on a review of the geotechnical investigations conducted by Infrastructure Ontario's engineer (GHD). The soil conditions may vary between and beyond the borehole locations, and accordingly geotechnical inspection during construction is important to assess any variation of subsurface conditions and to provide additional recommendations if necessitated by such variations.

The use of this report is contingent to ED obtaining a reliance letter from the owner (Infrastructure Ontario) for all the subsurface investigation report(s) provided by the owner and that the reliance letter will include Thurber in conjunction with ED.

It should be noted that Thurber accepts no responsibility for the accuracy and quality of the factual information presented by others.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

# 2. BACKGROUND

Geotechnical investigations were conducted at the Site by GHD (Infrastructure Ontario's Consultant), the results of which were presented in a report titled "1Door4Care: CHEO Integrated Treatment Centre – Geotechnical Investigation Report (Parking Garage)" dated October 25, 2022.

The geotechnical investigations took place in two stages between January 12, 2021 and July 19, 2022. The scope of geotechnical investigation included advancing a total of 23 boreholes and 6 monitoring wells and geophysical survey using Ground Penetration Radar (GPR).



# 3. UNDERSTANDING OF SUBSURFACE CONDITIONS

A plan showing the location of the proposed structure at the site as well as the location of the boreholes and monitoring wells advanced at the site has been included in Appendix B. The record of borehole sheets along with the laboratory test results have been included in Appendix B.

The inferred subsurface conditions outlined in this report, have been inferred based on the record of boreholes presented in the above GHD's report.

In general, the subsurface conditions at the site consisted of asphalt over non-cohesive fill (predominantly gravelly sand/gravel/sandy gravel/silty sand to sand and gravel) which is in turn underlain by non-cohesive native soil (predominantly compact to dense gravelly sand/sand/silty sand/sand and gravel/sand and silt) over shale bedrock. The thickness of the fill at the site varied between 0.3 m and 0.8 m. The silty native soil extended to depths ranging from 0.6 m to 1.2 m below existing ground surface, and shale bedrock was encountered or inferred at depths ranging from 0.4 m to 1.2 m below existing ground surface.

Due to the method of investigation and the presence of highly weathered shale below native soil, the top of the bedrock profile cannot be accurately determined. However, the estimated depths to the highly weathered shale bedrock surface as well as estimated elevation of the competent shale bedrock from augering and coring or auger refusal at the location of each borehole at the site have been presented in the following table:

| Borehole       | Estimated          | Estimated       |
|----------------|--------------------|-----------------|
| Identification | Depth/Elevation of | Elevation of    |
| Number         | Bedrock Surface    | Competent       |
|                | (mbgs/m)           | Bedrock Surface |
|                |                    | (m)             |
| BH1-21         | 0.9 / 80.5         | 3.2 / 78.2*     |
| BH2-21         | 1.1 / 80.2         | 2.8 / 78.6*     |
| MW3-21         | 0.6 / 80.8         | 4.6 / 76.8      |
| BH4-21         | 0.8 / 81.5         | 2.8 / 79.5*     |
| MW5-21         | 0.4 / 81.4         | -               |
| MW6-21         | 1.2 / 80.9         | 3.5 / 78.7      |
| BH7-21         | 0.8 / 81.5         | 2.5 / 79.7*     |
| MW8-21         | 0.9 / 81.3         | 2.2 / 80.0*     |
| B1-21          | 1.0 / 81.0         | 1.0 / 81.3*     |

### Table 3.1: Approximate Depth and Elevation of Bedrock



| Borehole<br>Identification<br>Number | Estimated<br>Depth/Elevation of<br>Bedrock Surface<br>(mbgs/m) | Estimated<br>Elevation of<br>Competent<br>Bedrock Surface<br>(m) |
|--------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|
| B2-21                                | 0.9 / 80.5                                                     | -                                                                |
| B3-21                                | 1.2 / 80.9                                                     | -                                                                |
| MW9-22                               | 0.8 / 81.2                                                     | 2.6 / 79.4                                                       |
| BH10-22                              | 0.7 / 81.5                                                     | 1.2 / 80.9*                                                      |
| BH11-22                              | 0.9 / 81.3                                                     | 2.5 / 79.6                                                       |
| BH12-22                              | 1.1 / 81.0                                                     | 1.8 / 80.2*                                                      |
| BH13-22                              | 1.0 / 81.2                                                     | 1.9 / 80.2                                                       |
| BH14-22                              | 0.7 / 81.5                                                     | 1.2 / 81.0*                                                      |
| BH15-22                              | 0.6 / 81.5                                                     | 1.1 / 81.1*                                                      |
| BH16-22                              | 0.9 / 81.2                                                     | 1.2 / 80.9*                                                      |
| BH17-22                              | 1.0 / 81.1                                                     | 1.1 / 81.0*                                                      |
| BH18-22                              | 0.8 / 81.3                                                     | 1.4 / 80.7                                                       |
| BH19-22                              | 0.9 / 80.2                                                     | -                                                                |
| MW20-22                              | 1.0 / 80.2                                                     | 1.6 / 79.6*                                                      |

\* Estimated Elevation due to Auger Refusal

The groundwater level measurements in the wells are summarized below:

| Table 5.2. Groundwater Level Readings at the Site |                |           |             |                                          |  |
|---------------------------------------------------|----------------|-----------|-------------|------------------------------------------|--|
| Borobolo                                          | Ground Surface | Depth to  | Groundwater | Main Screened                            |  |
| Borenoie                                          | Elev. (m)      | Water (m) | Elev. (m)   | Deposit                                  |  |
|                                                   |                | 2.7       | 78.7        |                                          |  |
| MW3-21                                            | 81.37          | 2.5       | 78.9        | Weathered Shale                          |  |
|                                                   |                | 2.6       | 78.8        |                                          |  |
| MW5-21                                            | 81.83          | Dry       | Dry         | Gravelly Sand<br>FILL/Weathered<br>Shale |  |
|                                                   |                | 3.0       | 79.2        |                                          |  |
| M\\//6-21                                         | 82.17          | 3.0       | 79.2        | Shala                                    |  |
| 111110 21                                         |                | 3.1       | 79.1        | Silale                                   |  |
|                                                   |                | 3.0       | 79.2        |                                          |  |
|                                                   |                | 2.0       | 80.2        | Shale                                    |  |

### Table 3.2: Groundwater Level Readings at the Site



| Borehole | Ground Surface<br>Elev. (m) | Depth to<br>Water (m) | Groundwater<br>Elev. (m) | Main Screened<br>Deposit |
|----------|-----------------------------|-----------------------|--------------------------|--------------------------|
| MW8-21   | 82.2                        | 2.1                   | 80.1                     |                          |
|          |                             | 1.7                   | 80.5                     |                          |
|          |                             | 1.7                   | 80.5                     |                          |

The groundwater level will be subject to seasonal fluctuations and precipitation events and should be expected to be higher during wet seasons. Perched water may be present at higher levels within the existing fills and/or directly above the bedrock surface.



# 4. FOUNDATION DESIGN RECOMMENDATIONS

The discussions and preliminary design recommendations presented in this report are based on the information provided to us and on the factual data obtained as part of the investigations completed by GHD. These preliminary recommendations are subject to changes and modifications subject to completion of a supplemental geotechnical investigation (to be carried out during execution).

It is understood that the proposed structure includes an 8-storey building with no below-grade levels. The average top of ground elevation within the proposed building footprint is about Elev. 82.1 m, based on boreholes MH6-21, B2-21, MW9-22, and BH11-22 to BH18-22. The final grades of the lowest level of the proposed structure will be at about Elev. 82.8 m, and the structure will be supported on spread/square footings founded at about Elev. 81.0 m (where bedrock was found at the site).

The reference geotechnical report indicated that bedrock at the site is Shale of Georgian Bay formation which is the dominant bedrock formation in the Greater Toronto Area (GTA). However, a review of bedrock geology maps for Ottawa (MAP 1508A published by Geological Survey of Canada) indicates that the site is located at the border of Carlsbad and Billings Shale formations.

Although the Georgian Bay Shale formation presents some long-term swelling potential associated with changes in salinity, changes in groundwater regime, changes in in-situ stresses, etc., the Carlsbad and Billings Shale formations of Ottawa have not shown such behavior. However, the shale from the Billings Formation (which is likely to be encountered at the site, and to be confirmed as part of the supplemental investigation during the execution) is susceptible to heaving if allowed to weather in the presence of oxygen and moisture. The general mechanism is that oxidation of pyrite within the shale produces sulfuric acid, which in turn reacts with calcite in the shale to form gypsum crystals, which occupy a larger volume than the original materials. A by-product of this chain of reactions also tends to increase sulphate levels which can attack buried concrete structures.

### 4.1 Foundation Excavation and Temporary Dewatering

It is anticipated that the finished floor of the building will be at about Elev. 82.7 m and that the excavations will be extended to about Elev. 81.0 m. In general, the open-cut excavations will extend through non-cohesive fill (predominantly gravelly sand/gravel/sandy gravel/silty sand to sand and gravel), non-cohesive native soil (predominantly compact to dense gravelly



sand/sand/silty sand/sand and gravel/sand and silt) and shale bedrock. Groundwater is expected to be at or below the base of excavation.

Use of a hydraulic excavator should be suitable for trench excavation within the overburden soils. Provision should be made for handling and removal of asphalt and possible obstructions (i.e., cobbles and boulders) within the fill/soils.

All temporary excavations must be carried out in accordance with the current Occupational Health and Safety Act (OHSA) of Ontario and local regulations. Provided that the excavations are adequately dewatered, the overburden soils are classified as Type 3 above the groundwater level in accordance with the OHSA. Accordingly, excavations in the overburden above the groundwater level can be inclined at 1H:1V, or flatter.

Soil must not be stockpiled beside the excavation within a horizontal distance from the excavation wall equal to the depth of excavation.

Depending on the final elevation of the footings, bedrock removal may be necessary. It will be possible to remove the upper highly weathered portion of shale, to about 0.5 to 1.0 m depth using large hydraulic excavating equipment. Further shale bedrock removal could be accomplished using mechanical methods (such as hoe ramming); however, it is unlikely that removal of competent shale would be necessary for excavations with their base at or above Elev. 81.0 m.

Provided that the base of excavation is kept at or above Elev. 81.0 m, groundwater seepage into the excavation is expected to be handled by filtered sumps and drains.

### 4.2 Site Preparation

The existing fill and loose native soils founded at the site are not suitable for the support of foundations, floor slabs, engineered fill and/or controlled fill. These unsuitable in-situ materials, along with all existing foundations, floor slabs and utilities associated with the current site development, will need to be removed from beneath proposed foundations and slabs and from within the influence zone of the foundations and slabs. The influence zone includes the area beneath an imaginary line extending downward and outward from the edges of the proposed foundations/slabs at a 45 degrees angle down to undisturbed native soil or bedrock.



# 4.3 **Protection of Expansive Shale**

The shale bedrock at this site has the potential to swell following exposure to oxygen. The general mechanism is considered to be that pyrite (FeS2) which is present at low concentrations in the shale, is weathered in the combined presence of oxygen and water to form sulphuric acid.

That sulphuric acid then reacts with calcite, which is also present within the shale either as an integral part of the rock or as filling within fractures, to form gypsum. The gypsum crystals tend to form within existing fractures and to be volumetrically larger than the materials that formed them, thus resulting in heaving.

For the above reactions to occur there must be both water and oxygen available. An increase in the ground temperature, such as due to the heat from the parking vehicle, heated areas, etc., is also considered to promote the above reactions.

It is also possible for the products of the above reactions to attack the concrete (i.e., sulphate attack).

To help prevent expansion of the shale and/or reaction with the concrete, the shale must be protected from exposure to oxygen both in the long term as well as temporarily during construction adjacent to the existing building.

The shale bedrock subgrade, when exposed during construction, should be covered as soon as practical (within 12 hours) following the first exposure with a lean concrete layer at least 100 millimetres thick.

Construction planning should ensure the shale is not left exposed and uncovered overnight. Where shale is exposed on the sides of the excavation, the mud slab (with sulphate resistant cement) or shotcrete should be placed such that the concrete covers the shale to at least 100 millimetres above the top of rock level.

Previous excavations or trenches within the proposed construction area should be re-excavated down to shale bedrock and approximately 150 millimetres of the previously exposed shale removed prior to the placement of the concrete skim coat.



# 4.4 Engineered Fill Pad for Building Footprint

The engineered fill, where and if required, should consist of Ontario Provincial Standard Specification (OPSS) Granular A or Granular B Type II placed in a maximum 300 mm thick loose lifts and compacted to 100 percent of the material's standard Proctor maximum dry density (SPMDD). The top of the engineered fill should be at least 1.0 m wider than foundations at the underside of the footing. Where engineered fill is placed to support the structure footings, its thickness should not be less than 1.0 m unless the engineered fill is placed on bedrock, in which case a lower thickness would be acceptable for the engineered fill.

### 4.5 Grade Raises and Controlled Fill

The placement of controlled fill for paved areas (parking lots and access roads) may be required at the site. The above geotechnical recommendations for engineered fill apply to the placement of controlled fill as well, except that the controlled fill should be compacted to at least 95 percent of SPMDD. However, the upper 300 mm of controlled fill must be compacted to 100 percent of SPMDD. The placement of the controlled fill should be monitored by geotechnical personnel on a regular basis.

### 4.6 Foundation Design

The following options are considered feasible for support of the building structure:

| Foundation Options                                                                        | Advantages                                                                      | Disadvantages                                                 |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|
| Spread/Square Footings on<br>Competent Bedrock                                            | Allows for relatively high<br>geotechnical bearing capacities<br>at ULS and SLS | May require deeper excavations and lower founding elevations  |
| Spread/Square Footings on at<br>least 0.2 m thick engineered fill<br>on Weathered Bedrock | Allows shallower excavations                                                    | Will provide moderate geotechnical resistances at ULS and SLS |

### Table 4.1: Foundation Design Options

The following Table may be used for the design of shallow foundations bearing on a maximum 1 m thick engineered fill pad over weathered shale or directly supported on competent bedrock:



| Founding Stratum     | Footing Size<br>(m)/Type | Factored<br>Geotechnical<br>Resistance at<br>ULS (kPa) | Geotechnical Resistance at<br>SLS (kPa) for 20 mm of<br>Settlement |
|----------------------|--------------------------|--------------------------------------------------------|--------------------------------------------------------------------|
|                      | 2 m wide strip           | 600                                                    | 500                                                                |
|                      | 3 m wide strip           | 650                                                    | 480                                                                |
| Engineered Fill Pad  | 4 m wide strip           | 700                                                    | 400                                                                |
| over Weathered Shale | 2 m Square               | 850                                                    | 800                                                                |
|                      | 3 m Square               | 880                                                    | 550                                                                |
|                      | 4 m Square               | 900                                                    | 400                                                                |
|                      | 2 m wide strip           | 1,100                                                  | 1,100                                                              |
|                      | 3 m wide strip           | 1,200                                                  | 1,100                                                              |
| Compotent Shale      | 4 m wide strip           | 1,300                                                  | 1,200                                                              |
| Competent Shale      | 2 m Square               | 1 000                                                  | 1,500                                                              |
|                      | 3 m Square               | 1,600                                                  | 1,200                                                              |
|                      | 4 m Square               |                                                        | 1,000                                                              |

### Table 4.2: Recommended Geotechnical Resistances at ULS and SLS

The resistance values provided above are for vertical, concentric loads. Where eccentric or inclined loads are applied, the resistance values used in the design must be reduced accordingly.

The sliding resistance of a cast-in-place footing on bedrock or engineered fill may be computed using the unfactored friction coefficient of 0.7 or 0.55, respectively.

Due to potential swelling of Billings Shale, the final prepared bedrock surface shall be covered by shotcrete or lean concrete within 12 hours of exposure.

Where previous excavations or trenches are present within about 1 m from the closest edge of each proposed foundation or within the footprint of the slab-on-grade, those utilities (including their bedding and backfill) should be fully removed (abandoned) and backfilled with lean concrete (to the top of the adjacent shale bedrock) after removal of about 150 millimetres of the previously exposed shale (the shale which was exposed during construction of the existing trenches).

### 4.7 Frost Depth

The design frost depth in Ottawa is 1.8 m below the ground surface. The base of all footings should be founded at a minimum depth of 1.8 m, both vertically and horizontally or be provided



with an equivalent thickness of insulation such as expanded polystyrene (EPS) for frost protection. Typically, 25 mm of EPS can be considered equivalent to 300 mm of earth cover for frost protection.

Perimeter footings and interior footings within 1.5 m of perimeter walls of heated structures should be protected by a minimum soil cover of 1.5 m or equivalent insulations. For interior foundations with a horizontal distance greater than 1.5 m from the perimeter of a heated building, frost protection is not required.

### 4.8 Slab-On-Grade and Raft Foundations

A conventional slab-on-grade is suitable for this project after completion of the site preparation and protection of the swelling shale as described in previous sections. The design of slabs-ongrade may be based on a modulus of subgrade reaction of 25 MPa/m, based on a loaded area of 0.3 m by 0.3 m. A layer of free draining granular material such as OPSS Granular A at least 200 mm thick compacted to 100% of SPMDD should be placed below the floor slab to create a level construction pad and to provide drainage and support. Any bulk fill required to raise the grade to the underside of the Granular A should consist of OPSS Granular B Type II.

Perimeter drains and under slab drains are not required in areas where the Finished Floor Elevation is at least 200 mm above the exterior grades and surface water is directed away from the building.

In building areas that include below grade structures (e.g., elevator pits), the walls and floors should be designed as water-tight and to resist hydrostatic pressures unless perimeter and under slab drainage is provided. The decision on whether to provide drainage for the below grade structures should consider factors such as the quality and quantity of water that will be removed from the site and the need to prevent the underlying shale bedrock from drying out which could lead to heave.

### 4.9 Backfill to Structures and Lateral Earth Pressure

Backfilling the structures should be conducted with free draining non frost susceptible granular material such as OPSS Granular A or Granular B Type I, II or III conforming to the requirements of OPSS.MUNI 1010. Small vibratory compaction equipment should be used within about 0.5 m of the wall to minimize compaction induced stresses. Compaction of the backfill materials should be conducted as per OPSS.MUNI 501.



Lateral earth pressures acting on the structure may be assumed to be triangular and to be governed by the characteristics of the backfill. For a fully drained condition, the pressures should be computed in accordance with the CHBDC but generally are given by the expression:

$$P_{h}(d) = K^{*}(\gamma d + q)$$

where:  $P_h(d)$  = lateral earth pressure at depth d (kPa);

K = static earth pressure coefficient (see table);

 $\gamma$  = unit weight of retained soil (kN/m<sup>3</sup>), adjusted for groundwater level;

- d = depth below top of fill where pressure is computed (m); and
- q = value of any surcharge (kPa).

A compaction surcharge should be applied in the design. The magnitude of the lateral pressure representing the compaction surcharge should be 12 kPa at the top of fill which linearly decreases to zero at a depth of 1.7 m (for OPSS Granular B Type I) or at a depth of 2.0 m (for OPSS Granular A or Granular B Type II).

Earth pressure coefficients for backfill to the structure walls are dependent on properties of the granular fill used as the backfill. Typical earth pressure coefficients are shown in the table below, assuming the ground surface behind the wall is flat.

| Loading<br>Condition    | OPSS Granular A or<br>Granular B Type II<br>$\Phi$ = 35°, $\gamma$ = 22.0 kN/m <sup>3</sup> | OPSS Granular B Type I<br>or Type III<br>Φ = 32°, γ = 21.0 kN/m <sup>3</sup> |
|-------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Active, Ka              | 0.27                                                                                        | 0.31                                                                         |
| At-Rest, K <sub>o</sub> | 0.43                                                                                        | 0.47                                                                         |
| Passive, K <sub>p</sub> | 3.7                                                                                         | 3.3                                                                          |

### Table 4.3: Lateral Earth Pressure Coefficients

### 4.10 Site Seismic Classification

Based on the results of the MASW survey conducted in the vicinity of the proposed structure, described in a report by GHD titled "1Door4Care: CHEO Integrated Treatment Centre – Geotechnical Investigation Report (1Door4Care)" dated October 25, 2022, the average shear wave velocity at the site is greater than 760 m/s, and less than 1500 m/s, therefore, a Site Class B



designation should be used in the design of the proposed structure provided that the thickness of soil between underside of the foundations and the top of bedrock does not exceed 3 m.

# 4.11 Cement Type

The results of corrosivity assessment of the in-situ soil and/or bedrock samples have been included in GHD's report. The test results indicate that the in-situ soil/bedrock have a negligible to severe (predominantly negligible with the exception of one bedrock sample) potential for sulphate attack as per CSA A23.1.

However, the foundations of the building will be found on at least 200 mm thick engineered fill (as per Section 4.6 and Table 4.1 of this report) and the exterior retaining walls will be backfilled with OPSS Granular A or Granular B Type II. Design of the foundations and below grade walls of the proposed structure may consider CSA Type MS or MH cements provided that the imported materials to be in direct contact with concrete are tested for sulphate content to verify that the above-stated recommendations for the cement type remain valid. Where the foundations and/or exterior walls are poured directly in contact with shale, consideration should be given to the use of CSA Type MS or HS cements.

### 4.12 Site Servicing

Bedding requirements for the sewers and watermains are summarized as follows:

- Where the subgrade consists of native soil, a bedding thickness of 150 mm can be used in accordance with City of Ottawa Standard Detail Drawing, S6, S7 and W17; or
- Where the subgrade consists of bedrock, the bedding thickness should be increased to 300 mm in accordance with City of Ottawa Standard Detail Drawing S6, S7, and W17 to reduce the potential for point loads from a potentially irregular bedrock surface.

In all cases the bedding material and pipe cover (to at least 300 mm above the top of pipe) should consist of Granular A (S.P. F-3147) that is compacted using suitable vibratory compaction equipment in accordance with S.P. D-029.

The lateral clearance from the outside edge of the pipe to the trench wall should be a minimum of 450 mm for a pipe diameter less than or equal to 900 mm. For pipes with a diameter larger than 900 mm, the minimum lateral clearance should be increased to 500 mm.



The use of clear crushed stone as a bedding layer should not be permitted since fine particles of the overlying backfill soils could potentially migrate into the voids in the clear crushed stone and cause settlement of the pipe and/or the road surface.

Trench backfill above the pipe cover/embedment material should conform to City of Ottawa specification S.P. F-2120 and/or OPSD 802.030 to 803.034 whichever is governing. Backfill should consist of approved excavated material, such as heterogeneous fill (provided that it is fee of organic matter and other deleterious materials), or native inorganic overburden that has a suitable moisture content for compaction.

As noted previously, the shale bedrock at this site is potentially expansive following exposure to oxygen. Due to the risk for expansion, the excavated shale bedrock is not recommended for reuse as trench backfill. The excavated shale, as well as any fill that contains organic and/or deleterious materials, should be transferred off-site in accordance with the Soil Characterization Report prepared for this project, which is provided under separate cover.

If imported fill is required to make up the balance of trench backfill, it should consist of compactable and inorganic earth borrow (OPSS.MUNI 206/212) or Select Subgrade Material (OSSS.MUNI 1010).

All trench backfill, including re-used soils and imported fill, should be compacted in accordance with City S.P. D-029. If the trench backfill material is too wet to achieve the required compaction requirements, it should be stockpiled and allowed to dry, or wasted and replaced with more suitable fill.

The trench backfill above the bedrock surface and within the frost zone (i.e., between the pavement subgrade level and 1.8 m depth, or the bedrock surface, whichever is shallower) should match the soil exposed on the trench walls for frost heave compatibility. This will require some separation of materials upon excavation. Qualified geotechnical personnel should approve the backfill materials for frost compatibility and review the requirements for frost tapers at the time of construction based on the soils exposed in the trench walls. Watermains with less than 2.4 m of cover should be insulated in accordance with City of Ottawa Standard Detail Drawing W22.

Backfilling operations during cold weather must avoid frozen lumps of material, snow, and ice; otherwise, settlement should be expected.

Seepage barriers should be constructed at periodic intervals along the trench to reduce the potential for groundwater level lowering in the surrounding area due to the "French drain" effect on the granular bedding and surround. Otherwise, long-term groundwater level lowering could



result in heaving of the shale beneath the new service pipes or adjacent structures. Seepage barriers also act as cut-offs to prevent migration of contaminants along the relatively permeable backfill in the trenches, as well as a mitigation method during construction to limit groundwater inflow along the trench.

It is important that the seepage barriers extend from trench wall to trench wall and that they fully penetrate the granular surround materials to the trench bottom. The seepage barriers should be at least 1.5 m long. Construction of the seepage barriers should be in accordance with the City of Ottawa's Standard Detail Drawing No. S8. Seepage barriers should be placed at a maximum spacing of 75 m along the trench and on either side of crossing roadways to limit hydraulic connections with intersecting services.

### 4.13 Pavement Structures

References should be made to the GHD's Geotechnical Investigation Report (Parking Garage) for design and construction of Pavement structures at the site.



# 5. CLOSURE

This report was issued before any final design or construction details had been prepared or issued. Therefore, differences may exist between the report recommendations and the final design, the project specifications, or conditions during construction. In such instances, Thurber Engineering Ltd. should be contacted immediately to address these differences. Designers and contractors undertaking or bidding the work should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for design and construction, and make their own interpretation of the data as it may affect their proposed scope of work, cost, schedules, safety, and equipment capabilities.

We trust this information meets your present needs. If you have any questions, please contact the undersigned at your convenience.



Review Engineer

Date: September 21, 2023 File: 36182



### STATEMENT OF LIMITATIONS AND CONDITIONS

#### 1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

#### 2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

#### 3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

#### 4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

#### 5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

#### 6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

#### 7. INDEPENDENT JUDGEMENTS OF CLIENT

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.



# APPENDIX A

Borehole Location Plan (from GHD's) Report Record of Boreholes and Laboratory Test Results



Data Sources: SURVEY BY J.D. BARNES LIMITED, DECEMBER 19, 2019. (UTM18-NAD83). CHEO, 1DOORFOR4CARE (1D4C), SITE PLAN - PHASE 1A, Solic. No: 2111095, Date: 02/20/22. Image ©2022 Google (Imagery Date 6/8/2018).



# **Notes on Borehole and Test Pit Reports**

#### Soil description :

GHD PS-020.01 - Notes on Borehole and Test Pit Reports - Rev.0 - 07/01/2015

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

|                                                            | Classification                  | (Unified sys                                   | stem)                                        |                       |                                  | Terminolo                | ogy                   |                   |
|------------------------------------------------------------|---------------------------------|------------------------------------------------|----------------------------------------------|-----------------------|----------------------------------|--------------------------|-----------------------|-------------------|
| Clay                                                       | < 0.002 mm                      | . ,                                            |                                              |                       |                                  |                          |                       |                   |
| Silt                                                       | 0.002 to 0.075 mm               |                                                |                                              |                       | 81                               | oo"                      | 4 4 0 0 /             |                   |
| Sand                                                       | 0.075 to 4.75 mm                | fine                                           | 0.075 to 4.25 mm                             |                       | "tra<br>"sor                     | ce"<br>ne"               | 1-10%<br>10-20%       |                   |
| Gand                                                       | 0.075 10 4.75 mm                | medium                                         | 0.425 to 2.0 mm                              |                       | adie                             | ective (silty_sandy)     | 20-35%                |                   |
|                                                            |                                 | coarse                                         | 2.0 to 4.75 mm                               |                       | "and                             | d"                       | 35-50%                |                   |
| Gravel                                                     | 4.75 to 75 mm                   | fine                                           | 4.75 to 19 mm                                |                       |                                  |                          |                       |                   |
| Cobbles<br>Boulders                                        | 75 to 300 mm<br>>300 mm         | course                                         | 10 10 10 1111                                |                       |                                  |                          |                       |                   |
| Relativ<br>grai                                            | ve density of<br>nular soils    | Standa<br>inde                                 | ard penetration<br>ex "N" value              |                       | Consi<br>cohe                    | istency of<br>sive soils | Undraine<br>strengt   | d shear<br>h (Cu) |
|                                                            |                                 | (BLOV                                          | NS/ft – 300 mm)                              |                       |                                  |                          | (P.S.F)               | (kPa)             |
|                                                            |                                 |                                                |                                              |                       | Ve                               | ery soft                 | <250                  | <12               |
| V                                                          | ery loose                       |                                                | 0-4                                          |                       |                                  | Soft                     | 250-500               | 12-25             |
|                                                            | Loose                           |                                                | 4-10                                         |                       |                                  | Firm                     | 500-1000              | 25-50             |
| C                                                          | Compact                         |                                                | 10-30                                        |                       |                                  | Stiff                    | 1000-2000             | 50-100            |
|                                                            | Dense                           |                                                | 30-50                                        |                       | Ve                               | ery stiff                | 2000-4000             | 100-200           |
| Ve                                                         | ery dense                       |                                                | >50                                          |                       | I                                | Hard                     | >4000                 | >200              |
|                                                            | Rock quality                    | designatio                                     | 'n                                           |                       |                                  | STRATIGRAPH              | C LEGEND              |                   |
| "RQE                                                       | 0" (%) Value                    |                                                | Quality                                      |                       |                                  | 00                       | •                     |                   |
|                                                            | <25                             | ·                                              | Very poor                                    |                       |                                  | 00                       | •••                   |                   |
|                                                            | 25-50                           |                                                | Poor                                         |                       | Sand                             | Gravel C                 | obbles& boulders      | Bedrock           |
|                                                            | 50-75                           |                                                | Fair                                         |                       |                                  |                          |                       | Bourook           |
|                                                            | 75-90                           |                                                | Good                                         |                       |                                  |                          |                       |                   |
|                                                            | >90                             |                                                | Excellent                                    |                       | Silt                             | Clay                     | Organic soil          | Fill              |
| Samples:<br>Type and Numl<br>The type of sam               | ber<br>ple recovered is shown o | n the log by t                                 | the abbreviation listed he                   | ereafter. The num     | bering of samples is             | sequential for each t    | type of sample.       |                   |
| SS: Split spoon                                            | . Environmentel compline        |                                                | ST: S                                        | Shelby tube           | arbara)                          | AG                       | : Auger               |                   |
| SSE, GSE, AGE                                              | . Environmental sampling        | 1                                              | P3. F                                        | riston sample (Ost    | GS: Grab sample                  |                          |                       |                   |
| Recovery<br>The recovery, sh                               | nown as a percentage, is        | the ratio of le                                | ength of the sample obta                     | ined to the distanc   | e the sampler was d              | Iriven/pushed into the   | e soil                |                   |
| RQD                                                        |                                 |                                                |                                              |                       |                                  |                          |                       |                   |
| The "Rock Quali<br>the run.                                | ity Designation" or "RQD"       | value, expre                                   | essed as percentage, is t                    | the ratio of the tota | I length of all core fr          | agments of 4 inches      | (10 cm) or more to th | ie total length o |
| IN-SITU TEST                                               | rs:                             |                                                |                                              |                       |                                  |                          |                       |                   |
| N: Standard penetration index<br>R: Refusal to penetration |                                 | N <sub>c</sub> : Dynamic<br>Cu: Undra<br>Pr: F | cone penetration ind<br>ained shear strength | dex                   | k: Permeab<br>ABS: Absorption (F | ility<br>Packer test)    |                       |                   |
| LABORATOR                                                  | Y TESTS:                        |                                                |                                              |                       |                                  |                          |                       |                   |
|                                                            |                                 |                                                |                                              |                       |                                  |                          |                       | O.V.: Organic     |
| I <sub>p</sub> : Plasticity inde                           | ex                              | H: Hy                                          | drometer analysis                            | A: Atterberg          | g limits                         | C: Consolidatio          | n                     | vapor             |
| W <sub>I</sub> : Liquid limit                              |                                 | GSA:                                           | Grain size analysis                          | w: Water co           | ontent                           | CS: Swedish fa           | Il cone               |                   |
| Wp: Plastic limit                                          |                                 |                                                |                                              | γ: Unit weig          | pht                              | CHEM: Chemic             | al analysis           |                   |



### Explanation of Terms Used in the Bedrock Core Log

### Strength (ISRM)

| Terms                    | Grade | Description                                                                                                                       | Uncon<br>Compressive S<br>(MPa) | fined<br>Strength<br>(psf) |
|--------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|
| Extremely<br>Weak Rock   | RQ    | Indented by thumbnail                                                                                                             | 0.25-1.0                        | 36-145                     |
| Very Weak                | R1    | Crumbles under firm<br>blows with point of<br>geological hammer, can<br>be peeled by a pocket knife.                              | 1.0-5.0                         | 145-725                    |
| Weak Rock                | R2    | Can be peeled by a pocket<br>knife with difficulty, shallow<br>indentations made by firm blow<br>with point of geological hammer. | 5.0-25                          | 725-3625                   |
| Medium<br>Strong         | R3    | Cannot be scraped or peeled<br>with a pocket knife, specimen<br>can be fractured with single firm<br>blow of geological hammer.   | 25-50                           | 3625-7250                  |
| Strong Rock              | R4    | Specimen requires more than<br>one blow of geological hammer<br>to fracture it.                                                   | 50-100                          | 7250-14500                 |
| Very strong<br>Rock      | R5    | Specimen requires many<br>blows of geological hammer<br>to fracture it.                                                           | 100-250                         | 14500-36250                |
| Extremely<br>Strong Rock | R6    | Specimen can only be chipped with geological hammer.                                                                              | >250                            | >36250                     |

### Bedding (Geological Society Eng. Group Working Party, 1970, Q.J. of Eng. Geol. Vol 3)

| Term                | Bed Thickness |               |  |
|---------------------|---------------|---------------|--|
| Very thickly bedded | >2 m          | >6.5 ft.      |  |
| Thickly bedded      | 600 mm-2 m    | 2.00-6.50 ft. |  |
| Medium bedded       | 200 mm-600 mm | 0.65-2.00 ft. |  |
| Thinly bedded       | 60 mm-200 mm  | 0.20-0.65 ft. |  |
| Very thinly bedded  | 20 mm-60 mm   | 0.06-0.20 ft. |  |
| Laminated           | 6 mm-20 mm    | 0.02-0.06 ft. |  |
| Thinly laminated    | <6 mm         | <0.02 ft.     |  |

### **TCR (Total Core Recovery)**

Sum of lengths of rock core recovered from a core run, divided by the length of the core rum and expressed as a percentage

#### SCR (Solid Core Recover)

Sum length of solid full diameter drill core recovered expressed as a percentage of the total length of the core run.



### Explanation of Terms Used in the Bedrock Core Log

#### Weathering (ISRM)

| Terms                   | Grade | Description                                                                                                                                                                                               |
|-------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fresh                   | W1    | No visible sign of rock material weathering.                                                                                                                                                              |
| Slightly                | W2    | Discolouration indicates weathering of rock weathered material and discontinuity surfaces. All the rock material may be discoloured by weathering and may be somewhat weaker than in its fresh condition. |
| Moderately              | W3    | Less than half of the rock material is weathered decomposed and/or disintegrated a soil. Fresh or discoloured rock is present either as a corestone.                                                      |
| Highly<br>Weathered     | W4    | More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.                                 |
| Completely<br>Weathered | W5    | All rock material is decomposed and/or disintegrated to a soil. The original mass structure is still largely intact.                                                                                      |
| Residual Soil           | W6    | All rock material is converted to soil. The mass structure and material fabric are destroyed There is a large change in volume, but the soil has been significantly transported.                          |

#### **ROD (Rock Quality Designation, after Deere, 1968)**

Sum of lengths of pieces of rock core measured along centerline of core equal to or greater than 100 mm from a core run, divided by the length of the core run and expressed as a percentage. Core fractured by drilling is considered intact. RQD normally quoted for N-Size core.

| RQD (%) | Rock Quality |
|---------|--------------|
| 90-100  | Excellent    |
| 75-90   | Good         |
| 50-75   | Fair         |
| 25-50   | Poor         |
| 0-25    | Very Poor    |

#### (FI) Fracture Index

Expressed as the number of discontinuities per 300 mm (1 ft.) Excluded drill-induced fractures and fragmented zones. Reported as ">>25" if frequency exceeds 25 fractures/0.3 m.

#### **Broken Zone**

Zone where core diameter core of very low RQD which may include some drill-induced fractures.

#### **Fragmented Zone**

Zone where core is less than full diameter and RQD = 0.

### **Discontinuity Spacing (ISRM)**

| Term                              | Average Spa                | acing          |
|-----------------------------------|----------------------------|----------------|
| Extremely widely spaced           | >6 m                       | >20.00 ft.     |
| Very widely spaced                | 2 m-6 m                    | 6.50-20.00 ft. |
| Widely spaced                     | 600 mm-2 m                 | 2.00-6.50 ft.  |
| Moderately spaced                 | 200 mm-600 mm              | 0.65-2.00 ft.  |
| Closely spaced                    | 60 mm-200 mm               | 0.20-0.65 ft.  |
| Very closely spaced               | 20 mm-60 mm                | 0.06-0.20 ft.  |
| Extremely closely spaced          | <20 mm                     | >0.06 ft.      |
| Note: Excludes drill-induced frac | ctures and fragmented rocl | κ.             |

### Discontinuity Orientation

Discontinuity, fracture, and bedding plane orientations are cited as the acute angle measured with respect to the core axis. Fractures perpendicular to the core axis are at 90 degrees and those parallel to the core axis are at 0 degrees.

|                   | REFEREN                                                   | ICE No.              | :                      | 11205379-90                                                                            |                                                                            |              |                    |                     |                     |                               |                      | ENCL                                          | .OSUI                                                              | RE N                                       | o.: _             |          | 1            |    |
|-------------------|-----------------------------------------------------------|----------------------|------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|--------------------|---------------------|---------------------|-------------------------------|----------------------|-----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|-------------------|----------|--------------|----|
|                   |                                                           |                      |                        |                                                                                        | BOREHOLE No.:                                                              | _            |                    | BH1-                | 21                  |                               | B                    | OR                                            | FHO                                                                |                                            | FF                | REE      | <b>N</b>     | RT |
|                   |                                                           | 0                    | iHD                    |                                                                                        | ELEVATION:                                                                 |              | 81.                | 39 m                |                     |                               | 5                    | P                                             | age:                                                               | _1                                         |                   | <u>1</u> | _            |    |
|                   | CLIENT:                                                   |                      | Infra                  | astructure Ontario (I.0                                                                | D.)                                                                        |              |                    |                     |                     |                               | LEC                  | GEND                                          | )                                                                  |                                            |                   |          |              |    |
|                   | PROJECT<br>LOCATION                                       | ::<br>N:             | Preli<br>Chile<br>Otta | iminary Geotechnica<br>dren's Hospital of Ea<br>wa, Ontario                            | l Investigation - Proposi<br>stern Ontario Campus -                        | ed  <br>• 40 | Parking<br>)1 Smyt | Struc<br>n Roa      | ture<br>d,          |                               |                      | SS<br>ST                                      | - SP<br>- SH                                                       |                                            |                   | DN<br>BE |              |    |
| 12/97             | DESCRIBE                                                  | ED BY:               | <u>K.</u> S            | challer                                                                                | CHECKED BY:                                                                |              | S. Sha             | hangia              | an                  |                               | ⊥⊔<br>Ţ              | RU                                            | - RC<br>- WA                                                       |                                            | CORI              | =<br>/EL |              |    |
| ate: 2/           | DATE (ST                                                  | ART):                | Janı                   | uary 15, 2021                                                                          | DATE (FINISH):                                                             | _            | Januar             | y 15, :             | 2021                |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
|                   | NORTHIN                                                   | G:                   | 5027                   | 7575.049                                                                               | EASTING:                                                                   |              | 449073             | 3.301               |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| עווא פגאישאווא טע | Depth                                                     | Elevation<br>(m) BGS | Stratigraphy           | DESCR<br>SOIL ANI                                                                      | IPTION OF<br>D BEDROCK                                                     | State        | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Shea<br>Sens<br>W <sub>p</sub> W <sub>1</sub> | ar test (<br>sitivity (<br>Water<br>Atterbe<br>"N" Valu<br>/s / 12 | Cu)<br>S)<br>conte<br>rg lim<br>Je<br>in30 | nt (%)<br>hits (% |          | Field<br>Lab |    |
|                   | Feet Metres                                               | 81.39                |                        | GROUNI                                                                                 | O SURFACE                                                                  |              |                    | %                   |                     |                               | Ν                    | 10 2                                          | 20 30 4                                                            | 40 50                                      | 60 7              | 0 80     | 90           |    |
| ы. эс             | 0 <u>-</u> 0.13                                           | 81.26                | $\bigotimes$           | ASPHALT : 125 mi                                                                       | m                                                                          | ×            | GS1                |                     | 4                   |                               |                      | 0                                             |                                                                    |                                            |                   |          |              |    |
| GLB Repo          | 2 - <u>+</u><br>2 - <u>+</u><br>3 _ <u>+</u> 0.91         | 80.48                |                        | SAND and GRAVE<br>moist, loose to very<br>Gravel : 48%, Sand                           | EL, trace clay, brown,<br>/ dense<br>d : 41%, Clay : 3%, Silt <sub>/</sub> | X            | SS1                | 25                  | 5                   | 10-5-4-6                      | 9                    |                                               |                                                                    |                                            |                   |          |              |    |
| ECH_VUZ           | <sup>3</sup> <u>-</u> 1.0<br>4 <u>-</u>                   | 00.40                |                        | : 8%<br>Gravel : 39%, Sano<br>: 15%                                                    | d : 39%, Clay : 7%, Silt                                                   | Д            | SS2                | 88                  | 10                  | 12-30-50/<br>100mm            | 50+                  | 0                                             |                                                                    |                                            |                   |          |              |    |
| HU_GEUI           | $5 - \frac{1}{2}$<br>$6 - \frac{1}{2}$<br>$- \frac{1}{2}$ |                      |                        | BEDROCK (inferre greyish brown, very                                                   | d), shale fragments,<br>y dense                                            | X            | SS3                | 100                 | 4                   | 50/<br>100mm                  | 50+                  | o<br>                                         |                                                                    | •                                          |                   |          |              |    |
| ry File: G        | 7 2.0                                                     |                      |                        |                                                                                        |                                                                            | X            | SS4                | 100                 | 4                   | 50/<br>75mm                   | 50+                  | o                                             |                                                                    | •                                          |                   |          |              |    |
| PJ LIDIA          | 9 –<br>10 – 3.0                                           |                      |                        | auger refusal                                                                          |                                                                            | M            | SS5                | 100                 | 4                   | 50/<br>75mm                   | 50+                  | 0                                             |                                                                    | •                                          |                   |          |              |    |
| 19.08 - 80.G      | + 3.20<br>11                                              | 78.19                |                        | END OF BOREHOL                                                                         | <u>E:</u>                                                                  |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| 9/112053          | 12 —<br>13 — 4.0                                          |                      |                        | <b>NOTE :</b><br>- End of Borehole a                                                   | at 3.20 m bgs                                                              |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| \112053/          |                                                           |                      |                        | <ul> <li>Borehole was bac<br/>holeplug and seale</li> <li>bgs donates 'belo</li> </ul> | ckfilled with bentonite<br>ed with cold patch<br>w ground surface'         |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| 112053            | 16 - 50                                                   |                      |                        |                                                                                        | -                                                                          |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| 0711              |                                                           |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| ۲/۱۲              | 18 —<br><br>19 —                                          |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| V8-CHA            | 20 - 6.0                                                  |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| ABASE             | 21 <u>+</u><br>22 <del>-</del>                            |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| UG DA I           | 23 - 7.0                                                  |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| BACY/L            | 24                                                        |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| EL/LEG            | 25                                                        |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| 1 BKUN            | <sup>20</sup> – 8.0<br>27 –                               |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            | +                 |          |              |    |
| GA - 11           | 28 —                                                      |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |
| SISSAU            | 29 <u>+</u><br>9.0                                        |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    | $\square$                                  | +                 |          |              |    |
| SIMIS:            | 30<br><br>31                                              |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            | +                 |          |              |    |
| IIE: N://         | 32 —                                                      |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            | +                 |          |              |    |
| L)                |                                                           |                      |                        |                                                                                        |                                                                            |              |                    |                     |                     |                               |                      |                                               |                                                                    |                                            |                   |          |              |    |

| REFERENCE No.: 112                                            | 05379-90                                                                            |              |                    |                     |                     |                               |                      | ENCLOSURE No.: 2                                                                                                                                                                                                                                            |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|--------------------|---------------------|---------------------|-------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | BOREHOLE No.:                                                                       |              |                    | BH2-                | 21                  |                               | B                    | ORFHOLE REPORT                                                                                                                                                                                                                                              |
| GHD                                                           | ELEVATION:                                                                          |              | 81.                | 36 m                |                     |                               |                      | Page: <u>1</u> of <u>1</u>                                                                                                                                                                                                                                  |
| CLIENT: Infrastructur                                         | e Ontario (I.O.)                                                                    |              |                    |                     |                     |                               | LEC                  | GEND                                                                                                                                                                                                                                                        |
| PROJECT: Preliminary<br>Children's H<br>LOCATION: Ottawa, Ont | Geotechnical Investigation - Propose<br>ospital of Eastern Ontario Campus -<br>ario | ed P<br>401  | arking<br>Smytł    | Struct<br>n Roa     | ture<br>d,          |                               |                      | SS - SPLIT SPOON<br>ST - SHELBY TUBE                                                                                                                                                                                                                        |
| DESCRIBED BY: <u>K. Schaller</u>                              | CHECKED BY:                                                                         |              | S. Shal            | nangia              | an                  |                               | ⊥⊔<br>Ţ              | - WATER LEVEL                                                                                                                                                                                                                                               |
| DATE (START): <u>January 18,</u>                              | 2021 DATE (FINISH):                                                                 |              | Januar             | y 18, 2             | 2021                |                               |                      |                                                                                                                                                                                                                                                             |
| 법<br>                                                         | 1 EASTING:                                                                          | 2            | 449071             | .365                |                     |                               |                      |                                                                                                                                                                                                                                                             |
| G WITH GRAPHHW<br>Depth<br>(m) BGS<br>Stratigraphy            | DESCRIPTION OF<br>SOIL AND BEDROCK                                                  | State        | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Shear test (Cu) $\bigtriangleup$ Field<br>Sensitivity (S) $\Box$ Lab<br>$\bigcirc$ Water content (%)<br>$\stackrel{\bullet}{\longrightarrow}_{V_{p}} W_{i}$ Atterberg limits (%)<br>$\stackrel{\bullet}{\longrightarrow}$ "N" Value<br>(blows / 12 in30 cm) |
| Feet Metres 81.36                                             | GROUND SURFACE                                                                      | $\square$    |                    | %                   |                     |                               | N                    | 10 20 30 40 50 60 70 80 90                                                                                                                                                                                                                                  |
| ASPH                                                          | ALT : 100 mm                                                                        |              | GS1                |                     | 4                   |                               |                      | 0                                                                                                                                                                                                                                                           |
| 2 - 0.61 80.75 SAND<br>3 - 0.61 80.75 Norst,<br>1 Grave       | and GRAVEL, trace silt, brown,<br>compact<br>I : 42%, Sand : 50%, Clay : 2%, Silt   | $\mathbb{N}$ | SS1                | 71                  | 19                  | 9-7-3-4                       | 10                   | •                                                                                                                                                                                                                                                           |
| S 1.0<br>4 - 1.14<br>80.22 SAND<br>dark b                     | , some silt, trace clay and gravel, rown, moist, very dense                         | A            | SS2                | 87                  | 7                   | 10-22-42/<br>100mm            | 50+                  |                                                                                                                                                                                                                                                             |
| Grave<br>6 - 2.0 Grave<br>18%<br>BEDR                         | I : 15%, Sand : 61%, Clay : 6%, Silt<br>OCK (inferred), shale fragments,            | $\boxtimes$  | SS3                | 83                  | 4                   | 50/<br>125mm                  | 50+                  |                                                                                                                                                                                                                                                             |
| grey, r                                                       | noist, very dense                                                                   | M            | SS4                | 100                 | 4                   | 50/<br>75mm                   | 50+                  | •                                                                                                                                                                                                                                                           |
| 9 - 2.77 78.59 auger                                          | refusal                                                                             | -            | SS5                | 100                 | 9                   | 50/<br>25mm                   | 50+                  |                                                                                                                                                                                                                                                             |
|                                                               | OF BOREHOLE :                                                                       |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
| NOTE                                                          | :<br>of Borebole at 2.77 m bos                                                      |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
| 13 – 4.0 - Bore<br>holepi                                     | hole was backfilled with bentonite<br>ug and sealed with cold patch                 |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
| 67 14                                                         | ionates 'below ground surface'                                                      |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |
|                                                               |                                                                                     |              |                    |                     |                     |                               |                      |                                                                                                                                                                                                                                                             |

| REFERENCE No.: 11205379-90                             |                            |                     |               |              |       |              |              | ENCLOSU                   | RE No                | .:             | 3                     | \$                                      |
|--------------------------------------------------------|----------------------------|---------------------|---------------|--------------|-------|--------------|--------------|---------------------------|----------------------|----------------|-----------------------|-----------------------------------------|
|                                                        | BOREHOLE No.:              |                     |               | MW3          | -21   |              | B            | ORFH                      | OI F                 | R              | FP(                   | )RT                                     |
| GHD                                                    | ELEVATION:                 |                     | 81.           | 37 m         |       |              | -            | Page:                     | _1_                  | of             | _2_                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| CLIENT: Infrastructure Ontario (I.                     | 0.)                        |                     |               |              |       |              | I FO         | GEND                      |                      |                |                       |                                         |
| PROJECT: Preliminary Geotechnica                       | al Investigation - Propose | ed F                | Parking       | Struc        | ture  |              |              | SS - SI                   | PI IT SP             | 2001           | J                     |                                         |
| Children's Hospital of Ea<br>LOCATION: Ottawa, Ontario | astern Ontario Campus -    | 40                  | 1 Smytl       | h Roa        | d,    |              |              | ST - SI                   | HELBY                | TUB            | E                     |                                         |
| DESCRIBED BY: <u>K. Schaller</u>                       | CHECKED BY:                |                     | S. Sha        | hangia       | an    |              | LLI<br>▼     | RC - R<br>- W             | JCK C<br>ATER        | ORE<br>LEVE    | L                     |                                         |
| DATE (START):                                          | DATE (FINISH):             |                     | Januar        | y 15, :      | 2021  |              |              |                           |                      |                |                       |                                         |
| NORTHING: 5027638.113                                  | EASTING:                   |                     | 449119        | 9.449        |       |              |              |                           |                      |                |                       |                                         |
| Ξω λ                                                   |                            |                     | br re         | <u>ک</u>     | e t   | Diauranan    | e/<br>%      | Shear test<br>Sensitivity | (Cu)<br>(S)          |                | ∆ Fie                 | ld<br>b                                 |
|                                                        | IPTION OF<br>D BEDROCK     | State               | pe at<br>umbe | cove<br>CR(% | onter | 15 cm/       | Valu<br>CR(9 | O Water                   | content<br>erg limit | t (%)<br>s (%) |                       |                                         |
| Stra 3 H                                               |                            |                     | ₽ź            | ЪĘ           | ĕŏ    | RQD(%)       | žŌ           | • "N" Va<br>(blows / 12   | lue<br>? in30 c      | :m)            |                       |                                         |
| Feet Metres 81.37 GROUN                                | D SURFACE                  |                     |               | %            |       |              | N            | 10 20 30                  | 40 50 6              | 50 70          | 80 90                 |                                         |
| ASPHALT : 175 m                                        | m                          | Х                   | SS1           | 100          | 8     | 17-22-50/    | 72           | 4+                        |                      | 0.3            | 1 m-                  |                                         |
| 2 - 0.61 80.76 FILL :<br>SAND/SILTY SAN                | D. some gravel, trace      | $\square$           | SS2           | 100          | q     | 42-50/       | 50+          |                           |                      | $\vdash$       |                       |                                         |
| organics, shale fra                                    | gments, brown,             |                     | 002           | 100          |       | 75mm         |              |                           | ļ.                   |                |                       |                                         |
| 4 BEDROCK (inferre                                     | ed), shale fragments,      | $\boxtimes$         | SS3           | 100          | 4     | 50/<br>125mm | 50+          | 8                         |                      |                | $\pm$                 |                                         |
| 5 5                                                    | d : 50%, Clay : 14%,       | $\boxtimes$         | SS5           | 100          | 4     | 50/          | 50+          | •                         | •                    | Bento          | onite                 |                                         |
|                                                        |                            |                     | 226           | 100          | 1     | 50/<br>100mm | 50+          |                           |                      |                | ++                    |                                         |
|                                                        |                            |                     | 330           | 100          | 4     | 50/<br>75mm  | 50+          |                           |                      | 0/4            | 0/000                 | -<br>-<br>-                             |
|                                                        |                            |                     | SS7           | 83           | 4     | 50/          | 50+          |                           |                      | 2,7            | 07202<br>4 m <u>−</u> |                                         |
|                                                        |                            |                     |               |              |       | 150mm        |              |                           |                      | #2 8           | and                   |                                         |
|                                                        |                            | $\overline{\wedge}$ | SS8<br>SS8A   | 100          | 17    | <br>50/      |              |                           |                      |                |                       |                                         |
|                                                        |                            |                     | 000/1         |              |       | 50mm         |              |                           |                      | Sci            | reen                  |                                         |
|                                                        |                            | X                   | SS9           | 100          | 5     | 50/<br>50mm  | 50+          |                           |                      |                | ++                    |                                         |
| 15 - 4.57 76.80                                        | _                          | ×                   | SS10          | 100          | 4     | 50/          | 50+          |                           |                      | 4.5            | 7 m=                  |                                         |
| 16 - 5 0 SHALE-BEDROCI                                 | K, laminated, interbeds    |                     | RC1           | 100          |       | 50mm<br>100  |              |                           |                      | 4.8            | and<br>8 m−           | -                                       |
| 17 – 5.0 highly weathered t                            | o fresh, weak to           |                     |               |              |       |              |              |                           |                      |                |                       |                                         |
|                                                        | , groy                     |                     |               |              |       |              |              |                           |                      |                |                       |                                         |
|                                                        |                            |                     | RC2           | 100          |       | 78           |              |                           |                      |                |                       |                                         |
|                                                        |                            |                     |               |              |       |              |              |                           |                      |                | $\pm$                 | _                                       |
|                                                        |                            |                     |               |              |       |              |              |                           |                      |                |                       |                                         |
| 23 - 7.0                                               |                            |                     |               |              |       |              |              |                           |                      |                |                       |                                         |
| 24 –                                                   |                            |                     | RC3           | 98           |       | 85           |              |                           |                      |                |                       |                                         |
| 25                                                     |                            |                     |               |              |       |              |              |                           | Benic                |                |                       | _                                       |
|                                                        |                            |                     |               |              |       |              |              |                           |                      |                |                       |                                         |
|                                                        |                            |                     |               |              |       |              |              |                           |                      |                | $\mp$                 | _                                       |
|                                                        |                            |                     | RC4           | 100          |       | 03           |              |                           |                      |                | $\pm$                 |                                         |
|                                                        |                            |                     | 1.04          |              |       | 30           |              | $\vdash + +$              |                      | +              | $\pm$                 |                                         |
|                                                        |                            |                     |               |              |       |              |              |                           |                      | $\square$      | +                     |                                         |
|                                                        |                            |                     | RC5           | 83           |       | 61           |              |                           |                      |                | $\mp$                 |                                         |
|                                                        |                            |                     | -             |              |       |              |              |                           |                      |                |                       |                                         |

|           | REFEREN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CE No.:              |                      | 11205379-90                                                                                                                                                                                                                                   |                                                                                                                                                          |                     |                    |                       |                     |                               |                      | EN                                       | CLOS                                                    | SURI                                                    | E No                         | .:                    |              | 3         |   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-----------------------|---------------------|-------------------------------|----------------------|------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------|-----------------------|--------------|-----------|---|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G                    |                      |                                                                                                                                                                                                                                               | BOREHOLE No.:                                                                                                                                            | _                   |                    | MW3                   | -21                 |                               | B                    | OF                                       | RE                                                      | HO                                                      | LE                           | R                     | EP           | OR        | Т |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                      |                                                                                                                                                                                                                                               | ELEVATION:                                                                                                                                               |                     | 81.                | .37 m                 |                     |                               |                      |                                          | Pag                                                     | e: _                                                    | 2                            | of                    | 2            |           |   |
|           | CLIENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | Infra                | astructure Ontario (I.                                                                                                                                                                                                                        | 0.)                                                                                                                                                      |                     |                    |                       |                     |                               | LEC                  | GEN                                      | <u>ID</u>                                               |                                                         |                              |                       |              |           |   |
|           | PROJECT:<br>LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l:                   | Prel<br>Chil<br>Otta | iminary Geotechnica<br>dren's Hospital of Ea<br>wa, Ontario                                                                                                                                                                                   | al Investigation - Propos<br>astern Ontario Campus                                                                                                       | <u>ed  </u><br>- 40 | Parking<br>)1 Smyt | <u>Struc</u><br>h Roa | ture<br>id,         |                               |                      | SS<br>ST                                 | -                                                       | SPL<br>SHE                                              | IT SF                        |                       | N<br>E       |           |   |
| 17/07     | DESCRIBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ED BY:               | <u>K.</u> S          | challer                                                                                                                                                                                                                                       | CHECKED BY:                                                                                                                                              |                     | S. Sha             | hangi                 | an                  |                               | ⊥⊔<br>Ţ              | RC                                       | -                                                       | WA                                                      | FER I                        | JRE<br>LEVE           | L            |           |   |
| ate: 2/   | DATE (STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ART):                | Janu                 | uary 14, 2021                                                                                                                                                                                                                                 | DATE (FINISH)                                                                                                                                            | :                   | Januar             | y 15,                 | 2021                |                               |                      |                                          |                                                         |                                                         |                              |                       |              |           |   |
|           | NORTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G:                   | 502                  | 7638.113                                                                                                                                                                                                                                      | EASTING:                                                                                                                                                 |                     | 449119             | 9.449                 |                     |                               |                      |                                          |                                                         |                                                         |                              |                       |              |           |   |
| ע+HAPBH+V | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elevation<br>(m) BGS | Stratigraphy         | DESCR<br>SOIL AN                                                                                                                                                                                                                              | IPTION OF<br>D BEDROCK                                                                                                                                   | State               | Type and<br>Number | Recovery/<br>TCR(%)   | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Sh<br>Se<br>O<br>w <sub>p</sub> V<br>(bl | near te<br>ensitiv<br>Wa<br>Ma<br>Atte<br>"N"<br>lows / | est (C<br>ity (S<br>ater co<br>erbero<br>Value<br>12 in | u)<br>)<br>ontent<br>g limit | : (%)<br>s (%)<br>:m) | ∆ Fi<br>□ La | eld<br>ab |   |
|           | Feet Metres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81.37                |                      | GROUN                                                                                                                                                                                                                                         | D SURFACE                                                                                                                                                |                     |                    | %                     |                     |                               | Ν                    | 10                                       | 20                                                      | 30 40                                                   | 50 6                         | 60 70                 | 80 90        | )         |   |
| מ         | 33 - 10.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71.31                | ×7772                |                                                                                                                                                                                                                                               |                                                                                                                                                          |                     |                    |                       |                     |                               |                      |                                          |                                                         |                                                         |                              | 10.0                  | 6 m          |           |   |
|           | 33 - 10.06<br>34 - 10.06<br>34 - 10.06<br>35 - 10.06<br>36 - 10.06<br>37 - 10.06<br>37 - 10.06<br>37 - 10.06<br>37 - 10.06<br>41 - 10.06<br>41 - 10.06<br>41 - 10.06<br>41 - 10.06<br>41 - 10.06<br>51 - 10.06 | 71.31                |                      | END OF BOREHO<br>NOTE :<br>- End of Borehole<br>- Borehole was dry<br>- Rock coring from<br>- 50 mm diameter<br>installed at 7.47 m<br>- Groundwater fou<br>January 28, 2021<br>- Groundwater fou<br>February 10, 2021<br>- bgs donates 'belo | LE:<br>at 10.06 m bgs<br>(*upon completion<br>4.57 m bgs<br>monitoring well<br>bgs<br>and at 2.69 m bgs on<br>and at 2.49 m bgs on<br>aw ground surface' |                     |                    |                       |                     |                               |                      |                                          |                                                         |                                                         |                              |                       |              |           |   |
| IN SUCAN  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                      |                                                                                                                                                                                                                                               |                                                                                                                                                          |                     |                    |                       |                     |                               |                      |                                          |                                                         |                                                         |                              |                       |              |           |   |
| ≝l        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                      |                                                                                                                                                                                                                                               |                                                                                                                                                          |                     |                    |                       |                     |                               |                      |                                          |                                                         |                                                         |                              |                       |              |           |   |

| REFERENCE No.:                | 11205379-90                                                           |                                                                  |            |                    |                     |                     |                               |                      | ENC                                                 | LOSL                                                        | IRE I                                              | No.:                          |              | 4            |    |
|-------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|------------|--------------------|---------------------|---------------------|-------------------------------|----------------------|-----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------|--------------|--------------|----|
| GH                            |                                                                       | BOREHOLE No.:                                                    |            |                    | BH4-                | 21                  |                               | B                    | OR                                                  | EH                                                          | OL                                                 | E I                           | REF          | POF          | ۲۶ |
|                               |                                                                       | ELEVATION:                                                       |            | 82.                | 23 m                |                     |                               |                      |                                                     | Page:                                                       | _1                                                 | _ (                           | of <u>1</u>  | _            |    |
| CLIENT:Ir                     | nfrastructure Ontario (I                                              | 0.)                                                              |            |                    |                     |                     |                               | LEC                  | GEN                                                 | D                                                           |                                                    |                               |              |              |    |
| PROJECT: PROJECT: PROJECT: C  | Preliminary Geotechnic<br>Children's Hospital of E<br>Ottawa, Ontario | al Investigation - Propose<br>astern Ontario Campus -            | ed F<br>40 | Parking<br>1 Smytl | Struc<br>1 Roa      | ture<br>d,          |                               |                      | SS<br>ST                                            | - SI<br>- SI                                                | PLIT                                               | SPO<br>BY TU                  | ON<br>JBE    |              |    |
| DESCRIBED BY: K               | . Schaller                                                            | CHECKED BY:                                                      |            | S. Sha             | nangia              | an                  |                               | LL<br>Ţ              | RU                                                  | - N                                                         | ATE                                                | R LE                          | VEL          |              |    |
| DATE (START):                 | anuary 18, 2021                                                       | DATE (FINISH):                                                   |            | Januar             | y 18, 2             | 2021                |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
| NORTHING: 5                   | 027621.207                                                            | EASTING:                                                         |            | 449159             | .803                |                     | 1                             |                      |                                                     |                                                             |                                                    |                               |              |              |    |
| Depth<br>Elevation<br>(m) BGS | DESCF<br>SOIL AN                                                      | RIPTION OF<br>D BEDROCK                                          | State      | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | She<br>Ser<br>W <sub>p</sub> W <sub>1</sub><br>(blo | ear test<br>sitivity<br>Wate<br>Atterb<br>"N" Va<br>ws / 12 | : (Cu)<br>(S)<br>r cont<br>berg li<br>lue<br>2 in3 | ent (%<br>mits ( <sup>6</sup> | △<br>□<br>%) | Field<br>Lab |    |
| Feet Metres 82.23             | GROUN                                                                 | D SURFACE                                                        |            |                    | %                   |                     |                               | Ν                    | 10                                                  | 20 30                                                       | 40 5                                               | 0 60                          | 70 80        | 90           |    |
|                               | FILL :<br>SAND and GRAV<br>brown, moist to we<br>Gravel : 46% Sar     | EL, trace clay and silt,<br>et, dense<br>id · 41% Clay · 3% Silt | M          | SS1                | 75                  |                     | 15-27-21-10                   | 48                   |                                                     |                                                             | ٩                                                  |                               |              |              |    |
|                               | : 10%<br>BEDROCK (inferr                                              |                                                                  | X          | SS2                | 91                  | 7                   | 6-19-34-50/<br>50mm           | 53                   | 0                                                   |                                                             |                                                    | •                             |              |              |    |
|                               |                                                                       |                                                                  | М          | SS3                | 90                  | 8                   | 21-50/<br>100mm               | 50+                  | 0                                                   |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  | ×          | SS4                | 100                 | 4                   | 50/<br>75mm                   | 50+                  | 0                                                   |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  | ×          | SS5                | 100                 | 5                   | 50/<br>75mm                   | 50+                  | 0                                                   |                                                             |                                                    |                               |              |              |    |
| 10 - 3.0                      | auger refusal                                                         | /<br>Le :                                                        |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               | NOTE :                                                                |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               | - End of Borenole<br>- Borehole was ba<br>holeplug and seal           | at 2.77 m bgs<br>ckfilled with bentonite<br>ed with cold patch   |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               | - bgs donates 'bel                                                    | ow ground surface                                                |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
| 29                            |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |
|                               |                                                                       |                                                                  |            |                    |                     |                     |                               |                      |                                                     |                                                             |                                                    |                               |              |              |    |

| BOREHOLE No:       MW5-21<br>LEVATION:       BOREHOLE REPORT         CUENT:       Infrastructure Ontaino (LO)       Page:       1 of 1         CRUENT:       Infrastructure Ontaino (LO)       Infrastructure Ontaino (LO)       Infrastructure Ontaino (LO)         PROJECT:       Ontaino:       Ontaino:       Containo:       Infrastructure Ontaino (LO)       Infrastructure Ontaino (LO)         DeSCRIPED BY:       K.Schalar       CHECKED BY:       S.Shahangian       IN SS : SPLIT SPOON         DATE (START):       January 15.2021       DATE (FINISH):       January 15.2021       IN CONCONCOLE         NORTHNIC       G027593.331       EASTING:       HU128.777       IN SS # 00 EO 70 89 00         Solu AND BEDROCK       Bit SS SS (SR CONC)       Bit SS SS (SR CONC)       Bit SS SS (SR CONC)       Bit SS SS SS (SR CONC)         Feed. Metree S1.33       CROUND SURFACE       N SS # 00 EO 70 89 00       N SS # 00 EO 70 89 00       In SS # 00 EO 70 89 00         Color Strass       CROUND SURFACE       N SS SS 100 8       SS SS 100 8       SS SS 100 8       SS SS 100 9       SS SS 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | REFEREN                                                             | CE No.               | :                      | 11205379-90                                                                                |                                                                       |            |                    |                       |                     |                               |                      | ENC                                         | LOS                                                      | URE                                                   | No.                           | : _                |                             | 5                   |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------|----------------------|------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------|--------------------|-----------------------|---------------------|-------------------------------|----------------------|---------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|-------------------------------|--------------------|-----------------------------|---------------------|---|
| Page:         I df 1           CUENT:         Infrastructure Ontario (LO.)         Page:         I df 1           PROLECT:         Endemmary Geolechneid Investgation.         Propeed Parting Structure         SS         SS <t< td=""><td></td><td></td><td>6</td><td></td><td></td><td>BOREHOLE No.:</td><td>_</td><td></td><td>MW5</td><td>-21</td><td></td><td>В</td><td>OF</td><td>۶E۲</td><td>101</td><td>LE</td><td>R</td><td>EP</td><td>OR</td><td>т</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                     | 6                    |                        |                                                                                            | BOREHOLE No.:                                                         | _          |                    | MW5                   | -21                 |                               | В                    | OF                                          | ۶E۲                                                      | 101                                                   | LE                            | R                  | EP                          | OR                  | т |
| CLEINT:         Infrastructure Ontario (0.0.)         EGEND           PROJECT:         Preliminary Geological Investigation - Proposed Parking Structure<br>Children's Management Structure         Sister SPUT SPOON           LOCATION:         COLUMN Official<br>Description         Sister SPUT SPOON           DESCRIPED BY:         K. Schaller         CHECKED BY:         Shahangian           DATE (START):         January 15, 2021         DATE (FINISH):         January 15, 2021           NORTHINC:         5027593.381         EASTINC:         449128.777           G         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §         §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                                     | 9                    | iHD                    |                                                                                            | ELEVATION:                                                            |            | 81.                | 83 m                  |                     |                               |                      | <u> </u>                                    | Page                                                     | »:                                                    | 1                             | of                 | _1_                         |                     |   |
| PROLECT:         Preliminary Gedechical investigation - Processed Parking Structure<br>Childron's Hopelal of Eastern Onlato Campus - 401 Smyth Road.         Structure<br>The Structure         Struct                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | CLIENT:                                                             |                      | Infra                  | astructure Ontario (I.                                                                     | 0.)                                                                   |            |                    |                       |                     |                               | LEC                  | GEN                                         | D                                                        |                                                       |                               |                    |                             |                     |   |
| DESCRIBED BY:         K. Schalter         CHECKED BY:         S. Shahangian         WATERLEVEL           DATE (START):         January 15, 2021         DATE (FINISH):         January 15, 2021         WATERLEVEL           NORTHING:         5072599, 381         EASTING:         449128.777         Statutory 15, 2021         Materlevel 15, cml         Application of the status                                                                                                                                                                                                                                                                                                                    |                            | PROJECT:<br>LOCATION                                                | l:                   | Preli<br>Chile<br>Otta | iminary Geotechnica<br>dren's Hospital of Ea<br>wa, Ontario                                | al Investigation - Propos<br>astern Ontario Campus -                  | ed<br>- 4( | Parking<br>)1 Smyt | <u>Struc</u><br>h Roa | <u>ture</u><br>d,   |                               | $\boxtimes$          | SS<br>ST                                    | - 5                                                      | SPLIT<br>SHEL                                         | F SP<br>.BY                   |                    | N<br>BE                     |                     |   |
| DATE (START)         January 15. 2021         DATE (FINISH)         January 15. 2021           NORTHING:         5027590.381         EASTING:         449128.777           E         502         SOLI AND BEDROCK         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17/07                      | DESCRIBE                                                            | ED BY:               | <u>K.</u> S            | challer                                                                                    | CHECKED BY:                                                           |            | S. Sha             | hangi                 | an                  |                               | ⊥⊔<br>¥              | RU                                          | - F<br>- V                                               | VATI                                                  | ERL                           | .EVE               | ΞL                          |                     |   |
| NORTHING:         6027589.381         EASTING:         449128.777           E         500<br>90.00         0<br>90.00         0<br>90.00 <t< td=""><td>ate: 2/7</td><td>DATE (STA</td><td>ART):</td><td>Janu</td><td>uary 15, 2021</td><td>DATE (FINISH)</td><td>:</td><td>Januar</td><td>y 15,</td><td>2021</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                 | ate: 2/7                   | DATE (STA                                                           | ART):                | Janu                   | uary 15, 2021                                                                              | DATE (FINISH)                                                         | :          | Januar             | y 15,                 | 2021                |                               |                      |                                             |                                                          |                                                       |                               |                    |                             |                     |   |
| End         State         Description of<br>solution         State         State<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ë                          | NORTHING                                                            | G:                   | 5027                   | 7589.381                                                                                   | EASTING:                                                              |            | 449128             | 3.777                 |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             |                     |   |
| Freet Metrics         91:33         GROUND SURFACE         %         N         10:28:39:40:50:00:78:80:00           1         -0.30         81:43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ער אווו פראראראיש אוווא סכ | Depth                                                               | Elevation<br>(m) BGS | Stratigraphy           | DESCR<br>SOIL ANI                                                                          | RIPTION OF<br>D BEDROCK                                               | State      | Type and<br>Number | Recovery/<br>TCR(%)   | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | She<br>Sei<br>O<br>w <sub>p</sub> w<br>(blo | ear tes<br>nsitivit<br>Wate<br>Atter<br>"N" V<br>ows / 2 | st (Cu<br>ty (S)<br>er cor<br>rberg<br>/alue<br>12 in | )<br>ntent<br>limits<br>30 ci | (%)<br>s (%)<br>m) | ∆ Fi<br>□ La                | ield<br>ab          |   |
| 1       0.10       81/3       ASPHAL : 100 mm       CS1       7       -       -       0.01       81/3         2       0.40       81/3       SNN and GRAVEL, some sill, trace lay, brown, moist, dense       SS1       100       8       8-16-20-35       38       Bentonite         3       1.0       GRAVELL SAND, some sill, trace lay, brown, moist, dense       SS2       100       3       50 <sup>+</sup> -       -       -       0.031 mm         4       GRAVELL SAND, some sill, trace day, Clay: 3%, Sill       SS2       100       3       50 <sup>+</sup> -       -       -       0.031 mm         5       -       -       -       -       -       0.01       -       50 <sup>+</sup> -       -       -       0.031 mm         6       1.83       80.00       -       SS2       100       3       50 <sup>+</sup> -       -       -       Screen       -       0.031 mm       -       -       Screen       -       1.83 mm       -       -       -       Screen       -       1.83 mm       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Feet Metres                                                         | 81.83                |                        | GROUN                                                                                      | D SURFACE                                                             |            |                    | %                     |                     |                               | N                    | 10                                          | 20 3                                                     | 0 40                                                  | 50 6                          | 0 70               | 80 90                       | )<br><del>- M</del> |   |
| 2       -0.40       81.43         3       -1.0         4       -1.0         5       -1.0         6       -1.33         6       -1.33         6       -1.33         6       -1.33         7       -2.0         8       -1.00         8       -1.00         8       -1.00         9       -1.33         6       -1.33         8       -1.00         8       -1.00         9       -1.00         9       -2.0         8       -2.0         9       -2.0         9       -2.0         9       -2.0         9       -2.0         9       -2.0         9       -2.0         10       -3.0         11       -2.0         12       -2.0         13       -4.0         14       -2.0         9       -2.0         9       -2.0         14       -2.0         9       -2.0         14       -5.0         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210                        | 1 - 0.10                                                            | 81.73<br>81.53       |                        | - ASPHALT : 100 m                                                                          | EL, some silt, trace                                                  | ×          | GS1                |                       | 7                   |                               |                      | 0                                           |                                                          | +                                                     | +                             | 0.3                | 31 m                        | _                   |   |
| 3       1.0         4       1.0         5       GRAVELLY SAND, some silt, trace clay, brown, moist, dene Gravel : 23%, Sand : 49%, Clay : 89%, Silt         6       1.3         7       2.0         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | д<br>Кер<br>Л              | 2 - 0.40                                                            | 81.43                |                        | clay, brown, moist,<br>Gravel : 43%, San                                                   | , dense<br>d : 41%, Clay : 3%, Silt                                   | 7          | SS1                | 100                   | 8                   | 8-18-20-35                    | 38                   | -9-                                         |                                                          |                                                       |                               | <br>3ent           | onite                       |                     |   |
| 5       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | כה_עטב.6L                  | 3 <u>-</u> 1.0<br>4 <u>-</u>                                        |                      |                        | : 13%<br>FILL :<br>GRAVELLY SAND                                                           | ), some silt, trace clay,                                             |            | SS2                | 100                   | 3                   | 50/<br>125mm                  | 50+                  | 0                                           |                                                          |                                                       |                               | 1.0<br>_#∠ ↓       | )5 m <sup>-</sup><br>Sariu. | _                   |   |
| 7       2.0       Debugged damp, very damage         8       -       -         9       -       -         10       3.0       -         11       -       -         10       3.0       -         11       -       -         12       -       -         13       -       -         14       -       -         15       -       -         16       -       -         17       -       -         18       -       -         19       -       -         10       -       -         13       -       -         14       -       -         15       -       -         16       -       -         20       -       6.0         21       -       -         22       -       -         23       -       -         24       -       -         25       -       -         26       -       -         27       -       -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 5<br><br>6 1.83                                                     | 80.00                |                        | Gravel : 23%, San<br>20%                                                                   | d : 49%, Clay : 8%, Silt                                              |            | SS3                | 100                   | 5                   | 50/<br>100mm                  | 50+                  | 0                                           |                                                          |                                                       | •                             | Sc<br> <br>1.8     | reen<br>33 m                | _                   |   |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ry FIIE: G                 | 7 - 2.0                                                             |                      |                        | grey, damp, very d                                                                         | lense                                                                 |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             |                     |   |
| 11       - Borehole was dy upon completion         12       - Monitoring well installed at 1.837 m bgs         - Borehole was dy on January 28.2021         - Borehole was dy on Pebruary 10.2021         - Borehole was dy on Pebruary 10.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PU LIDIA                   | 9 –<br>10 – 3.0                                                     |                      |                        | NOTE :<br>- End of Borehole :                                                              | <u></u><br>at 1.83 m bgs                                              |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             |                     |   |
| - Borehole was dry on February 10, 2021<br>- bgs donates 'below ground surface'<br>- bgs donates 'below ground s | 2319 - 9U.G                |                                                                     |                      |                        | <ul> <li>Borehole was dry</li> <li>Monitoring well in</li> <li>Borehole was dry</li> </ul> | / upon completion<br>hstalled at 1.837 m bgs<br>/ on January 28, 2021 |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             |                     |   |
| $ \begin{array}{c} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 16 \\ 21 \\ 22 \\ 23 \\ 7.0 \\ 24 \\ 25 \\ 26 \\ 8.0 \\ 27 \\ 28 \\ 29 \\ 9.0 \\ 30 \\ 31 \\ 32 \\ 32 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 121 I/8/5CU                | 13 <u>+</u> 4.0                                                     |                      |                        | - Borehole was dry<br>- bgs donates 'belo                                                  | / on February 10, 2021<br>ow ground surface'                          |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             |                     |   |
| $ \begin{array}{c} 16 \\ - \\ 5.0 \\ 17 \\ - \\ 18 \\ - \\ 20 \\ - \\ 6.0 \\ 21 \\ - \\ 22 \\ - \\ 23 \\ - \\ 7.0 \\ 24 \\ - \\ 25 \\ - \\ 26 \\ - \\ 8.0 \\ 27 \\ - \\ 28 \\ - \\ 31 \\ - \\ 32 \\ - \\ - \\ 32 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23/11Z                     |                                                                     |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    | +                           |                     |   |
| $ \begin{array}{c} 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 7.0 \\ 24 \\ 25 \\ 26 \\ 8.0 \\ 27 \\ 28 \\ 10 \\ 30 \\ 31 \\ 32 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 16                                                                  |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          | -                                                     |                               | -                  | +                           |                     |   |
| $ \begin{array}{c} 19 \\ 20 \\ -6.0 \\ 21 \\ -1 \\ 22 \\ -1 \\ 22 \\ -1 \\ 23 \\ -7.0 \\ 24 \\ -1 \\ 25 \\ -1 \\ 25 \\ -1 \\ 26 \\ -8.0 \\ 27 \\ -1 \\ 28 \\ -1 \\ 28 \\ -1 \\ 28 \\ -1 \\ 28 \\ -1 \\ 28 \\ -1 \\ 28 \\ -1 \\ 28 \\ -1 \\ 28 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -UZTT/                     | 17                                                                  |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          | -                                                     |                               | -                  | +                           | _                   |   |
| 20 - 0.0 $21 - 1 - 22 - 1 - 23 - 7.0$ $22 - 1 - 25 - 1 - 26 - 8.0$ $27 - 1 - 28 - 1 - 29 - 9.0$ $30 - 1 - 9.0$ $31 - 1 - 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HR/TI                      |                                                                     |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             |                     |   |
| $ \begin{array}{c} 21 \\ 22 \\ -1 \\ 33 \\ -7.0 \\ 24 \\ -1 \\ 25 \\ -1 \\ 26 \\ -8.0 \\ 27 \\ -1 \\ 28 \\ -1 \\ 28 \\ -1 \\ 30 \\ -9.0 \\ 31 \\ -1 \\ 32 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 20 - 0.0                                                            |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             |                     |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IABAS                      | 22                                                                  |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             | _                   |   |
| $ \begin{array}{c} 24 \\ -5 \\ -6 \\ -8.0 \\ 27 \\ -1 \\ 28 \\ -1 \\ 29 \\ -9.0 \\ 30 \\ -1 \\ 32 \\ -1 \\ 32 \\ -1 \\ 32 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -06 04                     | 23 - 7.0                                                            |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             | $\neg$              |   |
| $ \begin{array}{c} 25 \\ 26 \\ -8.0 \\ 27 \\ -8.0 \\ 28 \\ -9.0 \\ 30 \\ -1 \\ 32 \\ -1 \\ 32 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GACYI                      | 24 —                                                                |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             | _                   |   |
| $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 25                                                                  |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          | -                                                     |                               |                    | $\square$                   | $\neg$              |   |
| $ \begin{array}{c} 28 \\ -1 \\ 29 \\ -1 \\ 30 \\ -1 \\ 31 \\ -1 \\ 32 \\ -1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LI BRU                     | 27 - 8.0                                                            |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          | _                                                     |                               |                    | $\square$                   | _                   |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ן - Aטע                    | 28                                                                  |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      | $\square$                                   |                                                          | +                                                     |                               | +                  | +                           | $\neg$              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>JASSIS</b>              | $\begin{vmatrix} 29 \\ - \\ 30 \end{vmatrix}$ $+ 9.0 \end{vmatrix}$ |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      | $\mid$                                      |                                                          | +                                                     |                               | +                  | +                           | $\neg$              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CANNIS                     | 30                                                                  |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      | $\mid$                                      |                                                          | +                                                     |                               | $\mp$              | +                           | $\neg$              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | 32 —                                                                |                      |                        |                                                                                            |                                                                       |            |                    |                       |                     |                               |                      |                                             |                                                          |                                                       |                               |                    |                             |                     |   |

|              | REFEREN                             | ICE No.              | :                    | 11205379-90                                                   |                                                  |                  |                    |                       |                     |                               |                      | ENCLOSURE No.:6                                                                                                                                         |   |
|--------------|-------------------------------------|----------------------|----------------------|---------------------------------------------------------------|--------------------------------------------------|------------------|--------------------|-----------------------|---------------------|-------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|              |                                     |                      |                      |                                                               | BOREHOLE No.:                                    |                  |                    | MW6                   | -21                 |                               | В                    |                                                                                                                                                         |   |
|              |                                     | 9                    | äHD                  |                                                               | ELEVATION:                                       |                  | 82.                | 17 m                  |                     |                               | 2                    | Page: <u>1</u> of <u>2</u>                                                                                                                              |   |
|              | CLIENT:                             |                      | Infra                | astructure Ontario (I.0                                       | O.)                                              |                  |                    |                       |                     |                               | LE                   | EGEND                                                                                                                                                   |   |
|              | PROJECT<br>LOCATION                 | ::                   | Prel<br>Chil<br>Otta | liminary Geotechnica<br>dren's Hospital of Ea<br>awa, Ontario | l Investigation - Propos<br>stern Ontario Campus | ed<br>- 40       | Parking<br>)1 Smyt | <u>Struc</u><br>h Roa | ture<br>d,          |                               | $\boxtimes$          | SS - SPLIT SPOON<br>ST - SHELBY TUBE                                                                                                                    |   |
| 12/97        | DESCRIB                             | ED BY:               | <u>K.</u> S          | Schaller                                                      | CHECKED BY:                                      |                  | S. Sha             | hangi                 | an                  |                               | LL<br>▼              | I RC - ROCK CORE<br>- WATER LEVEL                                                                                                                       |   |
| ate: 2/2     | DATE (ST                            | ART):                | Jan                  | uary 12, 2021                                                 | DATE (FINISH)                                    | :                | Januar             | y 13,                 | 2021                |                               |                      |                                                                                                                                                         |   |
|              | NORTHIN                             | G:                   | 502                  | 7605.404                                                      | EASTING:                                         |                  | 449244             | 1.983                 |                     |                               |                      |                                                                                                                                                         |   |
| WIIH GKAPH+W | Depth                               | Elevation<br>(m) BGS | Stratigraphy         | DESCR<br>SOIL ANI                                             | IPTION OF<br>D BEDROCK                           | State            | Type and<br>Number | Recovery/<br>TCR(%)   | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Shear test (Cu) △ Field<br>Sensitivity (S) □ Lab<br>○ Water content (%)<br>W <sub>p</sub> M Atterberg limits (%)<br>● "N" Value<br>(blows / 12 in30 cm) |   |
|              | Feet Metres                         | 82.17                |                      | GROUNI                                                        | D SURFACE                                        |                  |                    | %                     |                     |                               | N                    | 10 20 30 40 50 60 70 80 90                                                                                                                              | - |
| Keport: SC   | 1 - 0.35                            | 81.82                |                      | GRAVEL : 350 mm                                               |                                                  | $\mathbb{N}$     | SS1                | 87                    | 14                  | 10-30-18-8                    | 48                   | 6 0 • 0.31 m                                                                                                                                            | X |
|              | 3 - 1.0                             | 01.00                |                      | organics, grey/brow<br>NATIVE :<br>MI-GRAVELLY SA             | vn, moist, dense                                 | X                | SS2                | 100                   | 10                  | 4-11-27-45                    | 38                   |                                                                                                                                                         |   |
| GEOLECH      | 4 - 1.22<br>- 1<br>5 - 1<br>5 - 1   | 00.95                |                      | brown, moist, dens<br>Gravel : 32%, Sand<br>: 16%             | d : 45%, Clay : 7%, Silt                         | X                | SS3                | 100                   | 9                   | 35-20-50/<br>75mm             | 100                  |                                                                                                                                                         |   |
| IE: GHD      | 6<br>2.0<br>7                       |                      |                      | BEDROCK (inferre<br>grey, moist, very de                      | ed), shale fragments,<br>ense                    | ×                | SS4                | 100                   | 4                   | 50/<br>75mm                   | 50+                  | + O Bentonite                                                                                                                                           |   |
| LIDIALY FI   | 8 - <u>-</u><br><br>9 - <u>-</u>    |                      |                      |                                                               |                                                  | ×                | SS5                | 100                   | 3                   | 50/<br>100mm                  | 50+                  | + 0 •                                                                                                                                                   |   |
| - 90.67J     | 10 <u>+</u> 3.0<br>+<br>11 <u>+</u> |                      |                      |                                                               |                                                  | X                | SS6<br>SS7         | 100<br>100            | 4                   | 50/<br>100mm                  | 50+<br>50+           | + ○ • 2/10/2021 ¥                                                                                                                                       |   |
| 112053/9     | 12 - 3.51                           | 78.66                |                      | SHALE-BEDROCK<br>of limestone/siltsto                         | K, laminated, interbeds<br>ne (hard layers),     | I                | RC1                | 58                    |                     | 50/<br>50mm<br>50             |                      | 3.66 m                                                                                                                                                  |   |
| 11205379     |                                     |                      |                      | moderately strong,                                            | grey                                             |                  | RC2                | 93                    |                     | 24                            |                      | #2 Sand                                                                                                                                                 |   |
| 112053       | 15 —<br>16 —<br>- 5.0               |                      |                      |                                                               |                                                  |                  |                    |                       |                     |                               |                      |                                                                                                                                                         |   |
|              | 17 —<br>18 —<br>1                   |                      |                      |                                                               |                                                  |                  | RC3                | 95                    |                     | 54                            |                      |                                                                                                                                                         |   |
| -CHAR/11-    | $19 - \frac{1}{20} - 6.0$           |                      |                      |                                                               |                                                  |                  | 1105               | 30                    |                     |                               |                      | Screen                                                                                                                                                  |   |
| ABASE/8-     | $21 - \frac{1}{2}$                  |                      |                      |                                                               |                                                  |                  |                    |                       |                     |                               |                      |                                                                                                                                                         |   |
|              | 23 - 7.0                            |                      |                      |                                                               |                                                  |                  | RC4                | 97                    |                     | 55                            |                      |                                                                                                                                                         |   |
| LEGACY       | 24 —<br><br>25 —                    |                      |                      |                                                               |                                                  |                  |                    |                       |                     |                               |                      | 7.47 m—                                                                                                                                                 |   |
| BRUNEL       | 26 <u>-</u> 8.0                     |                      |                      |                                                               |                                                  | $\left  \right $ |                    |                       |                     |                               |                      | 7.78 m                                                                                                                                                  |   |
| 111 - Ac     | 27                                  |                      |                      |                                                               |                                                  |                  | DOS                | 100                   |                     | 50                            |                      |                                                                                                                                                         |   |
| SUSSAUC      | 29 - 9.0                            |                      |                      |                                                               |                                                  |                  | RU5                | 100                   |                     | 52                            |                      | Bentonite Seal                                                                                                                                          |   |
| N:/CA/MIS    | 31 <u>-</u>                         |                      |                      |                                                               |                                                  |                  |                    |                       |                     |                               |                      |                                                                                                                                                         |   |
| LI6:         | 32 —                                |                      |                      |                                                               |                                                  |                  | RC6                | 100                   |                     | 71                            |                      |                                                                                                                                                         |   |

|                                                                                                                                         | REFERENCE No                                                                                                                                                    | .:11205379-90                                                                                                                                                                                                                       |                                                                                                                                                               |            |                    |                     |                     |                               |                      | ENC                                              | LOS                                                | URE                                                   | No.:                                           |            | 6                |    |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|---------------------|---------------------|-------------------------------|----------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|------------------------------------------------|------------|------------------|----|
|                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                     | BOREHOLE No.:                                                                                                                                                 | _          |                    | MW6                 | -21                 |                               | B                    | OR                                               | 2EF                                                | 10                                                    | LE                                             | RE         | PO               | RT |
|                                                                                                                                         |                                                                                                                                                                 | AHD                                                                                                                                                                                                                                 | ELEVATION:                                                                                                                                                    |            | 82.                | 17 m                |                     |                               | -                    |                                                  | Page                                               |                                                       | 2                                              | of _       | 2                |    |
|                                                                                                                                         | CLIENT:                                                                                                                                                         | Infrastructure Ontario (I                                                                                                                                                                                                           | .0.)                                                                                                                                                          |            |                    |                     |                     |                               | LEC                  | GEN                                              | D                                                  |                                                       |                                                |            |                  |    |
|                                                                                                                                         | PROJECT:                                                                                                                                                        | Preliminary Geotechnic<br>Children's Hospital of E<br>Ottawa, Ontario                                                                                                                                                               | al Investigation - Propos<br>astern Ontario Campus ·                                                                                                          | ed<br>• 40 | Parking<br>)1 Smyt | Struc<br>h Roa      | <u>ture</u><br>d,   |                               | $\boxtimes$          | SS<br>ST                                         | - \$<br>- \$                                       | SPLI<br>SHEL                                          | T SPC<br>_BY T                                 | DON<br>UBE |                  |    |
| 6/21                                                                                                                                    | DESCRIBED BY:                                                                                                                                                   | K. Schaller                                                                                                                                                                                                                         | CHECKED BY:                                                                                                                                                   | _          | S. Sha             | hangia              | an                  |                               | ⊥∐<br>▼              | RC                                               | - F<br>- \                                         | ROC<br>NAT                                            | K COI<br>ER LE                                 | RE<br>EVEL | _                |    |
| te: 2/2                                                                                                                                 | DATE (START):                                                                                                                                                   | January 12, 2021                                                                                                                                                                                                                    | DATE (FINISH)                                                                                                                                                 | _          | Januar             | y 13, 2             | 2021                |                               | -                    |                                                  |                                                    |                                                       |                                                |            |                  |    |
| ELL Da                                                                                                                                  | NORTHING:                                                                                                                                                       | 5027605.404                                                                                                                                                                                                                         | EASTING:                                                                                                                                                      |            | 449244             | 1.983               |                     |                               |                      |                                                  |                                                    |                                                       |                                                |            |                  |    |
| JG WITH GRAPH+W                                                                                                                         | Depth<br>Elevation<br>(m) BGS                                                                                                                                   | Stratigraphy<br>SOIL AN                                                                                                                                                                                                             | RIPTION OF<br>D BEDROCK                                                                                                                                       | State      | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | She<br>Ser<br>O<br>W <sub>p</sub> W <sub>1</sub> | ear te<br>nsitivi<br>Wat<br>Atte<br>"N" \<br>wws / | st (Cu<br>ty (S)<br>er cou<br>rberg<br>/alue<br>12 in | i)<br>htent ( <sup>o</sup><br>limits<br>-30 cm | %)<br>[%)  | ∆ Fielc<br>□ Lab | 1  |
|                                                                                                                                         | Feet Metres 82.17                                                                                                                                               | GROUN                                                                                                                                                                                                                               | ID SURFACE                                                                                                                                                    |            |                    | %                   |                     |                               | Ν                    | 10                                               | 20 3                                               | 0 40                                                  | 50 60                                          | 70 8       | 80 90            |    |
| 54СҮLOG DATABASE18-CHAR\11\1120\112053-\112053-\11205379\11205379+90.GPU <b>∟IDrary FIIE</b> : GHU_GEOTECH_V0Z/GLB <b>Керогт</b> : SUII | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                            | END OF BOREHC<br>NOTE :<br>- End of Borehole<br>- Borehole was dr<br>- Rock coring from<br>- Monitoring well i<br>- Groundwater fou<br>January 28, 2021<br>- Groundwater fou<br>February 10, 202 <sup>-</sup><br>- bgs donates 'bel | ALE :<br>at 10.06 m bgs<br>y upon completion<br>h 3.51 m bgs<br>installed at 7.47 m bgs<br>ind at 2.97 m bgs on<br>and at 3.09 m bgs on<br>ow ground surface' |            |                    |                     |                     |                               |                      |                                                  |                                                    |                                                       |                                                |            | m                |    |
| CA/MISSISSAUGA - 111 BRUNELILE                                                                                                          | $58 - \frac{1}{-1}$ $59 - \frac{1}{-1}$ $60 - \frac{1}{-1}$ $61 - \frac{1}{-1}$ $62 - \frac{1}{-1}$ $63 - \frac{1}{-1}$ $64 - \frac{1}{-1}$ $65 - \frac{1}{-1}$ |                                                                                                                                                                                                                                     |                                                                                                                                                               |            |                    |                     |                     |                               |                      |                                                  |                                                    |                                                       |                                                |            |                  |    |
| Í,                                                                                                                                      |                                                                                                                                                                 | <u>                                      </u>                                                                                                                                                                                       |                                                                                                                                                               |            |                    |                     |                     |                               |                      |                                                  |                                                    |                                                       |                                                |            |                  |    |

|                 | REFEREN                                                            | ICE No.              | :                     | 11205379-90                                                     |                                                  |            |                    |                     |                     |                               |                      | ENC                                       | CLOS                                                          | URE                                                  | No.                             | :                  |               | 7        |
|-----------------|--------------------------------------------------------------------|----------------------|-----------------------|-----------------------------------------------------------------|--------------------------------------------------|------------|--------------------|---------------------|---------------------|-------------------------------|----------------------|-------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|---------------------------------|--------------------|---------------|----------|
|                 |                                                                    | 6                    |                       |                                                                 | BOREHOLE No.                                     | : _        |                    | BH7-                | 21                  |                               | В                    | OF                                        | ۶E۲                                                           | 10                                                   | LE                              | R                  | EPC           | ORT      |
|                 |                                                                    | 6                    | iHD                   |                                                                 | Elevation:                                       |            | 82.                | <u>.22 m</u>        |                     |                               | -                    | •                                         | Page                                                          | :                                                    | 1                               | of                 | _1_           |          |
|                 | CLIENT:                                                            |                      | Infra                 | astructure Ontario (I.                                          | 0.)                                              |            |                    |                     |                     |                               | LEC                  | GEN                                       | D                                                             |                                                      |                                 |                    |               |          |
|                 | PROJECT<br>LOCATION                                                | :<br>N:              | Prel<br>Chile<br>Otta | iminary Geotechnica<br>dren's Hospital of Ea<br>wa, Ontario     | l Investigation - Propos<br>stern Ontario Campus | ed<br>- 40 | Parking<br>)1 Smyt | Struc<br>h Roa      | ture<br>d,          |                               | $\boxtimes$          | SS<br>ST                                  | - 9                                                           | SPLI <sup>-</sup><br>SHEL                            | T SP<br>_BY                     |                    | N<br>E        |          |
| 17/07           | DESCRIBE                                                           | ED BY:               | <u>K.</u> S           | schaller                                                        | CHECKED BY:                                      |            | S. Sha             | hangia              | an                  |                               | ⊥⊔<br>Ţ              | RC                                        | - F<br>- V                                                    | VAT                                                  | ERL                             | .EVE               | EL            |          |
| ale: 2/.        | DATE (ST                                                           | ART):                | Janu                  | uary 19, 2021                                                   | DATE (FINISH)                                    | ): _       | Januar             | y 19, :             | 2021                |                               |                      |                                           |                                                               |                                                      |                                 |                    |               |          |
|                 | NORTHIN                                                            | G:                   | 502                   | 7618.043                                                        | EASTING:                                         |            | 449176             | 6.612               |                     |                               |                      | 1                                         |                                                               |                                                      |                                 |                    |               |          |
| ערווח פרארח+ייי | Depth                                                              | Elevation<br>(m) BGS | Stratigraphy          | DESCR<br>SOIL ANI                                               | IPTION OF<br>D BEDROCK                           | State      | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Sh<br>Se<br>O<br>W <sub>p</sub> W<br>(blo | ear tes<br>nsitivit<br>Wate<br>Atter<br>/<br>"N" \<br>ows / 2 | st (Cu<br>y (S)<br>er cor<br>rberg<br>/alue<br>12 in | i)<br>ntent<br>limits<br>-30 ci | (%)<br>s (%)<br>m) | ∆ Fie<br>□ La | ∍ld<br>b |
|                 | Feet Metres                                                        | 82.22                |                       | GROUN                                                           | D SURFACE                                        |            |                    | %                   |                     |                               | N                    | 10                                        | 20 3                                                          | 0 40                                                 | 50 6                            | 0 70               | 80 90         | _        |
| Keport: 0       |                                                                    |                      |                       | FILL :<br>SILTY SAND and (<br>moist, very dense                 | GRAVEL, brown,                                   |            | SS1                | 54                  | 6                   | 28-35-17-10                   | 52                   | 0                                         |                                                               |                                                      | •                               |                    |               | _        |
|                 | $\begin{array}{c} -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\$ | 81.46                |                       | BEDROCK (inferre<br>grey, moist, very de                        | ed), shale fragments,<br>ense                    | - X        | SS2                | 100                 | 7                   | 15-40-50/<br>125mm            | 50+                  | 0                                         |                                                               |                                                      | •                               |                    |               | _        |
| C ECE           | 4 —<br>-<br>5 —<br>-<br>-                                          |                      |                       |                                                                 |                                                  | X          | SS3                | 100                 | 4                   | 45-50/<br>75mm                | 50+                  |                                           |                                                               | _                                                    | •                               |                    |               | -        |
|                 | 6 —<br>- 2.0<br>7 — 2.0                                            |                      |                       |                                                                 |                                                  | ×          | SS4                | 100                 | 4                   | 50/<br>125mm                  | 50+                  | 0                                         |                                                               |                                                      | •                               |                    |               |          |
| LIDIALY LI      | 8 <u>-</u> 2.52<br>9 <u>-</u>                                      | 79.70                |                       | \auger refusal                                                  | /                                                |            | SS5                | 100                 | 3                   | 50/<br>75mm                   | 50+                  | 0                                         |                                                               |                                                      | •                               |                    |               |          |
| GLJ<br>GLJ      | 10 3.0                                                             |                      |                       | END OF BOREHOL                                                  | <u>.E :</u>                                      |            |                    |                     |                     |                               |                      |                                           |                                                               |                                                      |                                 |                    |               | _        |
| 01 8 - RU.      |                                                                    |                      |                       | NOTE :<br>- End of Borehole a                                   | at 2.52 m bgs                                    |            |                    |                     |                     |                               |                      |                                           |                                                               |                                                      |                                 |                    |               | _        |
| 21 3/ 1/2/12    |                                                                    |                      |                       | - Borenole was bac<br>holeplug and seale<br>- bgs donates 'belo | ed with cold patch<br>w ground surface'          |            |                    |                     |                     |                               |                      |                                           |                                                               | -                                                    |                                 |                    |               | _        |
|                 | 14                                                                 |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               | _                                                    |                                 |                    |               | _        |
| -SCU21          |                                                                    |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               | -                                                    |                                 |                    |               | _        |
| ZUUZ            | 17 <u>-</u> 5.0                                                    |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               | +                                                    |                                 |                    | ++            | _        |
|                 | 18 —                                                               |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               |                                                      |                                 |                    | ++            | _        |
|                 | 19 - 19 - 10 - 10 - 10 - 10 - 10 - 10 -                            |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               | +                                                    |                                 |                    |               | _        |
| 7-0/301         | 21 —                                                               |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      | Ħ                                         |                                                               | +                                                    |                                 |                    |               | _        |
|                 | 22 —                                                               |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               |                                                      |                                 |                    |               | _        |
| I LOG L         | 23 - 7.0                                                           |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               | +                                                    |                                 |                    |               | _        |
| EGAC'           | 24                                                                 |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               |                                                      |                                 |                    |               | _        |
|                 | 26 - 8.0                                                           |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      | ╞╡                                        |                                                               |                                                      |                                 |                    |               |          |
| NU LL           | 27                                                                 |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      | $\square$                                 |                                                               | +                                                    |                                 |                    |               |          |
| - 490           | 28                                                                 |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               |                                                      |                                 |                    |               |          |
| AUDUA           | 29 - 9.0                                                           |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      | H                                         |                                                               | -                                                    |                                 |                    |               |          |
|                 | 31 -                                                               |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      | Ħ                                         |                                                               | +                                                    |                                 | -                  | +             | _        |
| FIIE: N:        | 32 -                                                               |                      |                       |                                                                 |                                                  |            |                    |                     |                     |                               |                      |                                           |                                                               |                                                      |                                 |                    |               |          |

| REFERENCE No.:                                         | 11205379-90                                |                                                 |       |                    |                     |                     |                               |                            | ENCLOSUR                                                                                                                     | E No.: _                                      |                              | 8         |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------|-------------------------------------------------|-------|--------------------|---------------------|---------------------|-------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------|-----------|--|--|--|--|
|                                                        |                                            | BOREHOLE No.:                                   |       |                    | MW8                 | -21                 |                               | В                          | OREHO                                                                                                                        |                                               | REPO                         | ORT       |  |  |  |  |
| GHI                                                    | <u>لو</u>                                  | ELEVATION:                                      |       | 82.                | 20 m                |                     |                               | Page: <u>1</u> of <u>1</u> |                                                                                                                              |                                               |                              |           |  |  |  |  |
| CLIENT: In                                             | frastructure Ontario (I.                   | D.)                                             |       |                    |                     |                     |                               | LEC                        | GEND                                                                                                                         |                                               |                              |           |  |  |  |  |
| PROJECT: Pr                                            | reliminary Geotechnica                     | cal Investigation - Proposed Parking Structure  |       |                    |                     |                     |                               | SS - SPLIT SPOON           |                                                                                                                              |                                               |                              |           |  |  |  |  |
| LOCATION: Of                                           | hildren's Hospital of Ea<br>ttawa, Ontario | stern Ontario Campus -                          | 40    | 1 Smyt             | n Roa               | d,                  |                               | ST - SHELBY TUBE           |                                                                                                                              |                                               |                              |           |  |  |  |  |
| DESCRIBED BY: <u>K</u> .                               | Schaller                                   | CHECKED BY:                                     |       | S. Sha             | hangia              | an                  |                               | Ţ                          | - WAT                                                                                                                        |                                               | L<br>/EL                     |           |  |  |  |  |
|                                                        | anuary 18, 2021                            | DATE (FINISH):                                  |       | Januar             | y 18, :             | 2021                |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
| NORTHING: 50                                           | )27647.908                                 | EASTING:                                        |       | 44921 <i>°</i>     | 1.832               |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
| Depth<br>Depth<br>Elevation<br>(m) BGS<br>Stratigraphy | DESCR<br>SOIL ANI                          | IPTION OF<br>D BEDROCK                          | State | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%)       | Shear test (C<br>Sensitivity (S<br>O Water co<br>W <sub>p</sub> W <sub>1</sub><br>Atterberg<br>• "N" Value<br>(blows / 12 in | u)<br>)<br>ontent (%<br>g limits (%<br>30 cm) | △ Fi<br>□ La<br>)<br>6)      | eld<br>ab |  |  |  |  |
| Feet Metres 82.20                                      | GROUN                                      | D SURFACE                                       |       |                    | %                   |                     |                               | Ν                          | 10 20 30 40                                                                                                                  | 50 60 7                                       | 0 80 90                      | )         |  |  |  |  |
|                                                        | ASPHALT : 50 mm                            | ·/                                              |       | GS1                |                     | 5                   |                               |                            |                                                                                                                              | 0                                             | .31 m-                       |           |  |  |  |  |
|                                                        | SANDY GRAVEL,<br>Gravel : 61%, Sand        | brown, moist, loose<br>d : 33%, Clay : 2%, Silt | M     | SS1                | 100                 | 7                   | 3-4-2-3                       | 6                          |                                                                                                                              | Ber                                           | ntonite                      |           |  |  |  |  |
|                                                        | BEDROCK (inferre<br>reddish brown/grey     | d), shale fragments,<br>v, wet, very dense      | X     | SS2                | 100                 | 18                  | 23-50/<br>150mm               | 50+                        |                                                                                                                              |                                               | .22 m=                       | _         |  |  |  |  |
|                                                        |                                            |                                                 | X     | SS3                | 100                 | 8                   | 50/<br>100mm                  | 50+                        | 0                                                                                                                            | • #2                                          | Sand                         |           |  |  |  |  |
|                                                        | auger refusal                              | ʃ                                               | ×     | SS4                | 100                 | 4                   | 50/<br>75mm                   | 50+                        | 0                                                                                                                            | • _2<br>_2                                    | .14 m2<br>.22 m <sup>2</sup> | ਸ<br>ਸ    |  |  |  |  |
|                                                        | END OF BOREHOI                             | <u>.E :</u>                                     |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              | _         |  |  |  |  |
|                                                        | NOTE :                                     |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              | $\neg$    |  |  |  |  |
|                                                        | - End of Borehole a<br>- Borehole was dry  | at 2.22 m bgs<br>upon completion                |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              | _         |  |  |  |  |
|                                                        | - Monitoring well in<br>- Groundwater four | stalled at 2.14 m bgs<br>nd at 2.03 m bgs on    |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        | - Groundwater four                         | nd at 2.09 m bgs on                             |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        | - bgs donates 'belo                        | w ground surface'                               |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              | -         |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              | -         |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
| 26 <u>-</u> 8.0                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |
| 29                                                     |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              | -         |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              | ]         |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              | 1         |  |  |  |  |
|                                                        |                                            |                                                 |       |                    |                     |                     |                               |                            |                                                                                                                              |                                               |                              |           |  |  |  |  |

| REFERENCE No.:                                         | 11205379-90                                                      |                                                                                            |              |                    |                     |                     |                               |                      | ENC                                      | LOS                                                           | URE                                                      | No.:                           |                     | 9                |   |  |
|--------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|--------------------|---------------------|---------------------|-------------------------------|----------------------|------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|--------------------------------|---------------------|------------------|---|--|
|                                                        |                                                                  | BOREHOLE No.:                                                                              | _            |                    | B1-2                | 21                  |                               | BOREHOLE REPORT      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
| GHD                                                    | ELEVATION:                                                       |                                                                                            | 82.          | 29 m               |                     |                     | Page: <u>1</u> of <u>1</u>    |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
| CLIENT:Infr                                            | astructure Ontario (I.O                                          | .)                                                                                         |              |                    |                     |                     |                               | <u>LE</u>            | GEN                                      | D                                                             |                                                          |                                |                     |                  |   |  |
| PROJECT: Pre<br>Chi<br>LOCATION: Otta                  | liminary Geotechnical<br>Idren's Hospital of Eas<br>awa, Ontario | cal Investigation - Proposed Parking Structure<br>Eastern Ontario Campus - 401 Smyth Road, |              |                    |                     |                     |                               |                      | SS - SPLIT SPOON                         |                                                               |                                                          |                                |                     |                  |   |  |
| DESCRIBED BY: K.S                                      | Schaller                                                         | CHECKED BY: <u>S. Shahangian</u> ▼ - WATER LEVEL                                           |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
|                                                        | nuary 18, 2021                                                   | DATE (FINISH):                                                                             | _            | Januar             | y 18, 2             | 2021                |                               |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
| NORTHING: 502                                          | 27580.742                                                        | EASTING:                                                                                   |              | 449219             | 9.213               |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
| Depth<br>Depth<br>Elevation<br>(m) BGS<br>Stratigraphy | DESCRI<br>SOIL AND                                               | PTION OF<br>BEDROCK                                                                        | State        | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15 cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Sh<br>Se<br>○<br>w <sub>p</sub> v<br>(bl | ear tes<br>nsitivit<br>Wate<br>J Atter<br>/, "N" V<br>ows / 1 | st (Cu)<br>y (S)<br>ber con<br>berg l<br>′alue<br>l2 in: | )<br>tent ('<br>imits<br>30 cm | ∠<br>⊏<br>%)<br>(%) | ∆ Field<br>] Lab |   |  |
| Feet Metres 82.29                                      | GROUND                                                           | SURFACE                                                                                    |              |                    | %                   |                     |                               | Ν                    | 10                                       | 20 30                                                         | 0 40 5                                                   | 50 60                          | 70 80               | 90               |   |  |
|                                                        | FILL :<br>SILTY SAND and G<br>brown, moist, loose                | RAVEL, greyish                                                                             | $\mathbb{A}$ | SS1                | 62                  | 2                   | 7-3-2-3                       | 5                    | •                                        |                                                               |                                                          |                                |                     |                  |   |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | SAND and GRAVEL<br>clay, brown, moist, v<br>Gravel : 39%, Sand   | ., some silt, trace<br>/ery dense<br>: 39%, Clay : 7%, Silt                                | X            | SS2                | 89                  | 10                  | 9-24-50/<br>125mm             | 50+                  |                                          |                                                               |                                                          | •                              |                     |                  |   |  |
|                                                        | BEDROCK, shale fr<br>red/grey, moist, very<br>auger refusal      | agments, brownish<br>v dense                                                               |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
|                                                        | END OF BOREHOLE                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | r |  |
|                                                        | NOTE :<br>- End of Borehole at                                   | 1.04 m bgs                                                                                 |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | i |  |
|                                                        | - Borehole was dry u<br>- bgs donates 'below                     | upon completion<br>v ground surface'                                                       |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               | -                                                        |                                |                     | -                |   |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | ł |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | 1 |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | 1 |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | ł |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | ł |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | l |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | l |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      | ⊢                                        |                                                               | +                                                        |                                | +                   |                  | ł |  |
| 28 —                                                   |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      | ╞┼                                       |                                                               | +                                                        |                                | +                   |                  | ſ |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  | ſ |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      | ╞╡                                       |                                                               | +                                                        |                                |                     |                  | í |  |
|                                                        |                                                                  |                                                                                            |              |                    |                     |                     |                               |                      |                                          |                                                               |                                                          |                                |                     |                  |   |  |

|                 | REFEREN                                                  | ICE No.  | ·                      | 11205379-90                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 | ENC                                         | LOSU                                                                                                                                                                                                                | IRE N | lo.: |            | 10 |  |  |  |
|-----------------|----------------------------------------------------------|----------|------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|---------|------|-----------------|-----------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------------|----|--|--|--|
|                 |                                                          |          |                        |                                                                                             | BOREHOLE No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                  |                  | B2-2    | 21   |                 | BOREHOLE REPORT |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
|                 |                                                          | 6        | ind                    |                                                                                             | ELEVATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | 82.              | 18 m    |      |                 | -               | F                                           | Page:                                                                                                                                                                                                               | _1    | _ 0  | f <u>1</u> | -  |  |  |  |
|                 | CLIENT:                                                  |          | Infra                  | astructure Ontario (I.                                                                      | 0.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                  |         |      |                 | LE              | GENI                                        | <u>)</u>                                                                                                                                                                                                            |       |      |            |    |  |  |  |
|                 | PROJECT                                                  | ::<br>N: | Preli<br>Chile<br>Otta | iminary Geotechnica<br>dren's Hospital of Ea<br>wa, Ontario                                 | I Investigation - Proposi<br>Istern Ontario Campus -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | SS - SPLIT SPOON |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| 26/21           | DESCRIB                                                  | ED BY:   | <u>K.</u> S            | challer                                                                                     | CHECKED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | III KU - KOCK COKE ▼ - WATER LEVEL |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| Date: 2         | DATE (ST                                                 | ART):    | Janu                   | uary 18, 2021                                                                               | DATE (FINISH):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                  | Januar           | y 18, : | 2021 |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| VELL            | NORTHIN                                                  | G:       | 5027                   | 7629.392                                                                                    | EASTING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | 449254           | 1.399   | 1    | 1               | 1               | 1                                           |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| JG WITH GRAPH+V | Depth<br>Elevation<br>(m) BGS<br>MU TIOS<br>Stratigraphy |          |                        | DESCR<br>SOIL ANI                                                                           | IDLION OL<br>Content e<br>State<br>Content e<br>State<br>Content e<br>Content |                                    |                  |         |      |                 |                 | She<br>Sen<br>W <sub>p</sub> W <sub>1</sub> | Shear test (Cu) $\triangle$ Field<br>Sensitivity (S) $\Box$ Lab<br>$\bigcirc$ Water content (%)<br>$\underset{W_{p}, W_{i}}{\longrightarrow}$ Atterberg limits (%)<br>$\bullet$ "N" Value<br>(blows / 12 in -30 cm) |       |      |            |    |  |  |  |
|                 | Feet Metres                                              | 82.18    |                        | GROUN                                                                                       | D SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                  | %       |      |                 | N               | 10                                          | 20 30                                                                                                                                                                                                               | 40 50 | 0 60 | 70 80 9    | 0  |  |  |  |
| Report: S(      |                                                          |          |                        | FILL :<br>SILTY SAND and (<br>moist, dense                                                  | GRAVEL, brown,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | SS1              | 71      | 4    | 13-17-24-9      | 41              | 0                                           |                                                                                                                                                                                                                     | •     |      |            |    |  |  |  |
| _V02.GLB        |                                                          | 81.27    |                        | BEDROCK, shale                                                                              | fragments, grey, very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathbb{N}$                       | SS2              | 100     | 10   | 4-10-28-34      | 38              | 0                                           |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| SEOTECH         | 4 <u>-</u><br>5 <u>-</u> 1.52                            | 80.66    |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X                                  | SS3              |         | 9    | 22-50/<br>150mm | 50+             |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| S GHD G         | 6<br>2.0<br>7                                            |          |                        | END OF BOREHOL                                                                              | <u>.E :</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| ibrary File     | 8<br>8<br>                                               |          |                        | <ul> <li>End of Borehole a</li> <li>Borehole was dry</li> <li>bgs donates 'below</li> </ul> | at 1.52 m bgs<br>upon completion<br>w ground surface'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| GPJ L           |                                                          |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
|                 | 11 — <u>[</u><br>                                        |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| 5379\112(       | 13 - 4.0                                                 |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| 53\1120         | 14 —<br><br>15 —<br>                                     |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| 20\1120         | 16 —<br>— 5.0<br>17 —                                    |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| 1112            |                                                          |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| 3-CHAR/1        | 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -                  |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| TABASE\         | 21 —<br><br>22 —                                         |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| LOG DA          | 23 - 7.0                                                 |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| LEGACY          | 24 —<br><br>25 —                                         |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| <b>BRUNEL</b>   | 26 8.0                                                   |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| iA - 111 E      | 27 — <u>-</u><br><br>28 — <u>-</u>                       |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| SISSAUG         | 29 + 9.0                                                 |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| :\CA\MIS        | 30 <u>-</u><br>                                          |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |
| File: N:        | 32 —                                                     |          |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                  |         |      |                 |                 |                                             |                                                                                                                                                                                                                     |       |      |            |    |  |  |  |

| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REFEREN                           | ICE No.        | :                      | 11205379-90                                                                                 | ENCLOSURE No.:                                                                           |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----|------------------------------------|-------|----|--------------|--------------------------------------------------------|-------------------------------------------------------------------------------|-------|------|-------|-------|----|-----------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | 6              |                        |                                                                                             | BOREHOLE No.:                                                                            |     |                                    | B3-2  | 21 |              | BOREHOLE REPORT                                        |                                                                               |       |      |       |       |    |           |  |
| GHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                |                        |                                                                                             | ELEVATION:                                                                               |     | 82.                                | .27 m |    |              |                                                        |                                                                               | Page: | _1   | _     | of _1 | _  | <b>VI</b> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLIENT:                           |                | Infra                  | structure Ontario (I.                                                                       | 0.)                                                                                      |     |                                    |       |    |              | <u>LEC</u>                                             | GEN                                                                           | D     |      |       |       |    |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PROJECT                           | ::<br>N:       | Preli<br>Chile<br>Otta | iminary Geotechnica<br>dren's Hospital of Ea<br>wa, Ontario                                 | al Investigation - Proposed Parking Structure<br>astern Ontario Campus - 401 Smyth Road, |     |                                    |       |    |              |                                                        | SS - SPLIT SPOON                                                              |       |      |       |       |    |           |  |
| 26/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DESCRIBE                          | ED BY:         | <u>K.</u> S            | challer                                                                                     | CHECKED BY:                                                                              |     | III RC - ROCK CORE ▼ - WATER LEVEL |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| ate: 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE (ST                          | ART):          |                        |                                                                                             | DATE (FINISH)                                                                            | : _ |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NORTHIN                           | G:             | 5027                   | 7652.016                                                                                    | EASTING:                                                                                 |     | 449199                             | 9.133 |    |              | -                                                      |                                                                               |       |      |       |       |    |           |  |
| Depth BE Revation Depth MITH GRAPH+W<br>(m) BGS (m) BGS ( |                                   |                | IPTION OF<br>D BEDROCK |                                                                                             |                                                                                          |     |                                    |       |    |              | t (Cu)<br>r (S)<br>er cont<br>perg li<br>alue<br>2 in3 | (Cu) △ Field<br>(S) □ Lab<br>content (%)<br>erg limits (%)<br>ue<br>in 30 cm) |       |      |       |       |    |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Feet Metres                       | 82.27          |                        | GROUN                                                                                       | D SURFACE                                                                                |     |                                    | %     |    |              | N                                                      | 10                                                                            | 20 30 | 40 5 | 50 60 | 70 80 | 90 |           |  |
| Report: SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 91.66          |                        | FILL :<br>SILTY SAND with<br>moist, loose                                                   | gravel, greyish brown,                                                                   | X   | SS1                                | 62    | 15 | 6-6-2-2      | 8                                                      | •                                                                             |       |      |       |       |    |           |  |
| V02.GLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 1.0                             | 01.00          |                        | Sand, some gravel<br>grey, moist, stiff                                                     | /<br>l, silt and clay, reddish                                                           |     | SS2                                | 100   | 13 | 4-5-9-25     | 14                                                     |                                                                               |       |      |       |       |    |           |  |
| EO IECH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 1.22<br>1.37<br>5               | 81.05<br>80.90 |                        | BEDROCK (inferre<br>greyish brown, ver                                                      | ed), shale fragments,<br>y dense                                                         | X   | SS3                                | 100   | 7  | 50/<br>150mm | 50+                                                    | 0                                                                             |       |      | •     |       |    |           |  |
| e: GHD_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 <u>-</u><br>- 2.0<br>7 <u>-</u> |                |                        | END OF BOREHO                                                                               | <u>E:</u>                                                                                |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| Library Fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 - <u>-</u><br>9 - <u>-</u>      |                |                        | <ul> <li>End of Borehole a</li> <li>Borehole was dry</li> <li>bgs donates 'below</li> </ul> | at 1.37 m bgs<br>upon completion<br>w ground surface'                                    |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| 90.GPJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 3.0                            |                |                        | 0                                                                                           | 0                                                                                        |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| 205379 - 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| 205379/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 <u>-</u> 4.0                   |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| 2053\112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| 1120\11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| R\11\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 <u>-</u><br>19 <u>-</u>        |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| SE/8-CHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 <u>-</u> 6.0<br>21 <u>-</u>    |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| DATABAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| ACYLOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 <u>-</u> 7.0<br>24 <u>-</u>    |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| NEL/LEG/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| 111 BRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27 - 8.0                          |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| SAUGA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28 — —<br>29 — _                  |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               | +     |      |       | +     |    |           |  |
| MISSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 - 9.0                          |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       | +    |       |       |    |           |  |
| N:/CA/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       | +    |       | +     |    |           |  |
| Ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JZ                                |                |                        |                                                                                             |                                                                                          |     |                                    |       |    |              |                                                        |                                                                               |       |      |       |       |    |           |  |
| ,               | REFEREN            | ICE No.          | :            | 11205379                                                           |                                               |              |                    |                     |                     |                              |                      | ENCLOSI                                                                                   | JRE N                                                      | o.:                                         |         |
|-----------------|--------------------|------------------|--------------|--------------------------------------------------------------------|-----------------------------------------------|--------------|--------------------|---------------------|---------------------|------------------------------|----------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|---------|
|                 |                    |                  |              |                                                                    | BOREHOLE No.:                                 | _            |                    | MW9                 | -22                 |                              | B                    | OREH                                                                                      | OL                                                         | E REPO                                      | DRT     |
|                 |                    |                  |              |                                                                    | ELEVATION:                                    |              | 82                 | .0 m                |                     |                              |                      | Page                                                                                      | _1                                                         | of <u>1</u>                                 |         |
|                 | CLIENT:            | Infrast          | ructur       | e Ontario (I.O.)                                                   | PROJECT: P                                    | reli         | minary             | Geote               | chnica              | al Investigat                | ion                  | LEGEN                                                                                     | <u>ID</u>                                                  |                                             |         |
| 2               | LOCATION           | N:               | 401          | Smyth Road, Ottaw                                                  | a, Ontario                                    |              |                    |                     |                     |                              |                      | 🖂 ss                                                                                      | - S                                                        | PLIT SPOOI                                  | N       |
| : 1/9/:         | DRILLING           | RIG:             | Trac         | k Drill Rig                                                        | DRILLING MET                                  | НО           | D: <u>203</u>      | mm C                | D Ho                | llow Stem A                  | ugers                | I ST<br>I RC                                                                              | - S<br>- R                                                 | HELBY TUB<br>OCK CORE                       | E       |
| L Date          | DESCRIBE           | ED BY:           | D. A         | sh                                                                 | CHECKED BY:                                   |              | A. Kha             | ndeka               | r                   |                              |                      | Ţ                                                                                         | - V                                                        | ATER LEVE                                   | EL      |
| H+WEL           | DATE (ST           | ART):            | 19 J         | uly 2022                                                           | DATE (FINISH):                                | _            | 19 July            | 2022                |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| GRAP            | NORTHIN            | G:               | 5027         | 7588.5 m                                                           | EASTING:                                      |              | 44919              | l.1 m               |                     | 1                            | 1                    | 1                                                                                         |                                                            |                                             |         |
| 9 SOIL LOG WITH | Depth              | Elevation<br>(m) | Stratigraphy | DESCR<br>SOIL AN                                                   | RIPTION OF<br>D BEDROCK                       | State        | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Shear tes<br>Sensitivity<br>O Wate<br>W <sub>p</sub> M<br>Atter<br>• "N" Va<br>(blows / 1 | t (Cu)<br>/ (S)<br>er conter<br>perg lim<br>alue<br>2 in30 | △ Fie<br>□ Lal<br>nt (%)<br>iits (%)<br>cm) | ld<br>D |
| 120537          | Feet Metres        | 82.0             |              | GROUN                                                              | D SURFACE                                     |              |                    |                     | %                   |                              |                      | 10 20 30                                                                                  | 40 50                                                      | 60 70 80 90                                 |         |
| eport: 1        |                    | 81.8             |              | GM-SAND and GF                                                     | RAVEL, grey/brown,                            | $\mathbb{N}$ | SS1                | 62                  | 6                   | 9-8-10-4                     | 18                   |                                                                                           |                                                            | 0.2 m                                       |         |
| 5.GLB R         | 2 + 0.8<br>3 - 10  | 81.2             |              | NATIVE :<br>SM-SILTY SAND ;<br>grey/brown_moist                    | and GRAVEL,                                   | $\mathbb{N}$ | SS2                | 83                  | 3                   | 2-11-27-50                   | 38                   | 0                                                                                         |                                                            |                                             |         |
| ECH_V0          | 4                  |                  |              | SHALE-BEDROC                                                       | K, weathered, light                           |              |                    |                     |                     |                              |                      |                                                                                           |                                                            | _bentonite_                                 |         |
| <u>_GEOT</u>    | 5 <del> </del><br> |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| 79 GHI          | 7 - 2.0            |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            | 2.1 m_                                      |         |
| 112053          | 8 - 2.6            | 79.4             |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| File:           | 9 - 30             |                  |              | SHALE-BEDROC                                                       | K, highly to moderately ately bedded, weak to |              | RC1                | 90                  |                     | 13                           |                      |                                                                                           |                                                            |                                             |         |
| Library         |                    |                  |              | moderately strong                                                  | , grey/black                                  |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| GPJ.            | 12 —               |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| DITION          | 13 4.0             |                  |              |                                                                    |                                               |              | RC2                | 100                 |                     | 40                           |                      |                                                                                           |                                                            |                                             |         |
| GE AD           | 14                 |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            | screen                                      |         |
| GARA            |                    |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| RKING           |                    |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| 79 - PA         | 18 -               |                  |              |                                                                    |                                               |              | RC3                | 07                  |                     | 65                           |                      |                                                                                           |                                                            |                                             |         |
| 112053          | 19                 |                  |              |                                                                    |                                               |              |                    | 51                  |                     | 00                           |                      |                                                                                           |                                                            | 5.8 m_                                      |         |
| BASE/           | 20 - 0.0           |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            | sand                                        |         |
| DATA            | 21                 |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| SH/LOG          | 23 - 7.0           |                  |              |                                                                    |                                               |              | BC4                | 02                  |                     | 67                           |                      |                                                                                           | hor                                                        |                                             |         |
| 79\TEC          | 24 –               |                  |              |                                                                    |                                               |              | RC4                | 93                  |                     | 07                           |                      |                                                                                           |                                                            |                                             |         |
| 112053          | 25                 | 74.0             |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| S\662\          | 26 - 7.9 = 8.0     | 74.2             |              | END OF BOREHO                                                      | <u>LE :</u>                                   |              |                    |                     |                     |                              |                      |                                                                                           |                                                            | 7.9 m                                       |         |
| OJECI           | 27                 |                  |              | NOTE :                                                             |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             | _       |
| ITO/PR          | 29 -               |                  |              | <ul> <li>End of Borehole</li> <li>Rock coring from</li> </ul>      | at 7.85 m bgs<br>2.59 m bgs                   |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             |         |
| ORON            | 30 + 9.0           |                  |              | <ul> <li>Monitoring well in</li> <li>bgs donates 'below</li> </ul> | nstalled at 5.79 m bgs<br>ow ground surface'  |              |                    |                     |                     |                              |                      |                                                                                           | $\mp$                                                      | +++                                         | -       |
| N:\CA\T         | 31 - [             |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             | _       |
| File:           | 32 —               |                  |              |                                                                    |                                               |              |                    |                     |                     |                              |                      |                                                                                           |                                                            |                                             | -       |

| REFE              | REN               | CE No.           | :            | 11205379                                                         |                                                    |       |                    |                     |                     |                              |                      | ENC                                      | LOS                                                          | URE                                            | No.:                                        |            | 10               |          |
|-------------------|-------------------|------------------|--------------|------------------------------------------------------------------|----------------------------------------------------|-------|--------------------|---------------------|---------------------|------------------------------|----------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------|------------|------------------|----------|
|                   |                   |                  |              |                                                                  | BOREHOLE No.                                       | : _   | I                  | 3H10                | -22                 |                              | B                    | OF                                       | ۶F۲                                                          | IOI                                            | F                                           | RF         | PΟ               | RT       |
|                   |                   |                  | <u>i</u> HL  |                                                                  | ELEVATION:                                         |       | 82                 | .1 m                |                     |                              | 5                    | 0.                                       | Page                                                         | e: <u>1</u>                                    | _                                           | of _       | <u>1</u>         |          |
| CLIEN             | NT:               | Infrast          | ructur       | e Ontario (I.O.)                                                 | PROJECT: _F                                        | Preli | minary             | Geote               | chnica              | al Investigat                | ion                  | L                                        | EGE                                                          | ND                                             |                                             |            |                  |          |
|                   |                   | N:               | 401          | Smyth Road, Ottaw                                                | a, Ontario                                         |       |                    |                     |                     |                              |                      | $\triangleright$                         | ss                                                           | -                                              | SPL                                         | IT SF      | POON             |          |
|                   | ING               | RIG:             | Trac         | ck Drill Rig                                                     | DRILLING MET                                       | ГНС   | D: <u>203</u>      | mm C                | D Ho                | llow Stem A                  | ugers                |                                          | ST                                                           | -                                              | SHE                                         | LBY        |                  | <u>:</u> |
| DESC              | RIBE              | ED BY:           | D. A         | sh                                                               | CHECKED BY:                                        |       | A. Kha             | ndeka               | ır                  |                              |                      | Ļ                                        | j ru<br>Z                                                    | , -<br>-                                       | WA                                          | FER I      |                  | L        |
|                   | (ST               | ART):            | 12 J         | luly 2022                                                        | DATE (FINISH                                       | ): _  | 12 July            | 2022                |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  |          |
|                   | THIN              | G:               | 502          | 7596.9 m                                                         | EASTING:                                           |       | 449167             | 7.5 m               |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  |          |
| 9 SOIL LOG WITH C |                   | Elevation<br>(m) | Stratigraphy | DESCR<br>SOIL AN                                                 | IPTION OF<br>D BEDROCK                             | State | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Sh<br>Se<br>○<br>w <sub>p</sub> v<br>(bl | ear te<br>nsitivil<br>Wat<br>Atte<br>'<br>' "N" \<br>ows / ' | st (Cu)<br>er con<br>rberg l<br>/alue<br>12 in | )<br>itent ( <sup>r</sup><br>imits<br>30 cm | (%)<br>(%) | ∆ Fielo<br>] Lab | i        |
| Feet Me           | etres             | 82.1             |              | GROUN                                                            | D SURFACE                                          |       |                    |                     | %                   |                              |                      | 10                                       | 20 3                                                         | 0 40 9                                         | 50 60                                       | 70 8       | 0 90             |          |
| ÷                 |                   |                  |              | FILL :<br>GM-SAND and GF                                         | RAVEL, some silt.                                  |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  |          |
|                   |                   |                  |              | trace clay, brown,<br>Gravel : 43%, San<br>Clay : 3%             | moist, compact<br>d : 43%, Silt : 11%,             |       | SS1                | 83                  | 3                   | 16-13-12-4                   | 25                   | 0                                        | •                                                            |                                                |                                             |            |                  | -        |
| ECH_V05.          | 0.5<br>0.6<br>0.7 | 81.5<br>81.4     |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             | -          |                  |          |
| <br>3             | 1.0               |                  |              | clay, very dense                                                 | <pre>// GRAVEL, trace // /, weathered, light</pre> |       | SS2                | 87                  | 6                   | 7-38-50/<br>75mm             | 88/<br>75mm          |                                          |                                                              |                                                |                                             |            |                  |          |
| 2379 Gt           | 1.0               |                  |              | brown                                                            |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  |          |
| e: 1120           | 1.2               | 80.9             |              | Borehole terminate<br>auger refusal                              | ed due to spoon and                                |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  | _        |
| rary Fij          | 1.5               |                  |              | END OF BOREHO                                                    | LE :                                               |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  | -        |
|                   |                   |                  |              | NOTE :<br>- End of Borehole                                      | at 1.22 m bgs                                      |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  | -        |
|                   | 2.0               |                  |              | <ul> <li>Borehole was dry</li> <li>bgs donates 'below</li> </ul> | / upon completion<br>ow ground surface'            |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  | -        |
| AGE AD            |                   |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  | -        |
| - 8               | 2.5               |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  | -        |
| 79 - PAR          |                   |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  |          |
|                   | 3.0               |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  | -        |
|                   |                   |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                | $\left  \right $                            |            |                  | -        |
|                   | 2 5               |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                | $\left  \right $                            |            |                  | -        |
|                   | 3.5               |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  | -        |
| 1120537           |                   |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      | $\left  \right $                         | +                                                            |                                                |                                             | +          |                  | -        |
| 13 – 13 – -       | 4.0               |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      | $\left  \right $                         |                                                              |                                                |                                             | +          |                  | -        |
|                   |                   |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      | $\left  \right $                         |                                                              |                                                |                                             | +          |                  | ł        |
|                   | 4.5               |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  |          |
|                   |                   |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             | _          |                  |          |
|                   |                   |                  |              |                                                                  |                                                    |       |                    |                     |                     |                              |                      |                                          |                                                              |                                                |                                             |            |                  |          |

| _                                     | REFEREN                                                                                    | CE No            | .:           | 11205379                                                                                  |                                                                  |       |                    |                     |                     |                              |                      | ENCLOSURE No.: 11                                                                                                                        |
|---------------------------------------|--------------------------------------------------------------------------------------------|------------------|--------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------|--------------------|---------------------|---------------------|------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                            | 1                |              |                                                                                           | BOREHOLE No.:                                                    | _     | E                  | 3H11                | -22                 |                              | B                    | OREHOLE REPORT                                                                                                                           |
|                                       |                                                                                            | ì                | 5            |                                                                                           | Elevation:                                                       |       | 82                 | .1 m                |                     |                              |                      | Page: <u>1</u> of <u>1</u>                                                                                                               |
|                                       | CLIENT:                                                                                    | Infras           | tructur      | e Ontario (I.O.)                                                                          | PROJECT: _P                                                      | reli  | minary (           | Geote               | chnica              | al Investigat                | ion                  | LEGEND                                                                                                                                   |
| 3                                     | LOCATION                                                                                   | N:               | 401          | Smyth Road, Ottaw                                                                         | a, Ontario                                                       |       |                    |                     |                     |                              |                      | SS - SPLIT SPOON                                                                                                                         |
| 19/1                                  | DRILLING                                                                                   | RIG:             | Trac         | ck Drill Rig                                                                              | DRILLING MET                                                     | НΟ    | D: <u>203</u>      | mm C                | D Ho                | llow Stem A                  | ugers                | ST - SHELBY TUBE                                                                                                                         |
|                                       | DESCRIBE                                                                                   | ED BY:           | <u>D</u> . A | Nsh                                                                                       | CHECKED BY:                                                      |       | A. Kha             | ndeka               | ır                  |                              |                      | ▼ - WATER LEVEL                                                                                                                          |
|                                       | DATE (STA                                                                                  | ART):            | 18 J         | luly 2022                                                                                 | DATE (FINISH)                                                    | -     | 18 July            | 2022                |                     |                              |                      |                                                                                                                                          |
| L L L L L L L L L L L L L L L L L L L | NORTHING                                                                                   | G:               | 502          | 7638.0 m                                                                                  | EASTING:                                                         | _     | 449184             | l.6 m               | 1                   | 1                            | 1                    |                                                                                                                                          |
|                                       | Depth                                                                                      | Elevation<br>(m) | Stratigraphy | DESCR<br>SOIL AN                                                                          | IPTION OF<br>D BEDROCK                                           | State | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Shear test (Cu) △ Field<br>Sensitivity (S) □ Lab<br>○ Water content (%)<br>↓ Atterberg limits (%)<br>● "N" Value<br>(blows / 12 in30 cm) |
|                                       | Feet Metres                                                                                | 82.1             |              | GROUN                                                                                     | D SURFACE                                                        |       |                    |                     | %                   |                              |                      | 10 20 30 40 50 60 70 80 90                                                                                                               |
|                                       | $\begin{array}{c} 1 \\ 2 \\ - \\ 2 \end{array} \begin{array}{c} - \\ - \\ 0.6 \end{array}$ | 81.5             |              | FILL :<br>GW-GM-SANDY (<br>trace clay, brown,<br>Gravel : 52%, Son                        | GRAVEL, trace silt,<br>moist, compact                            | X     | SS1                | 67                  | 2                   | 19-17-11-3                   | 28                   |                                                                                                                                          |
| GLD<br>GLD                            | 3 _ 0.9                                                                                    | 81.3             |              |                                                                                           |                                                                  | ╢     | SS2                | 62                  | 9                   | 3-6-11-14                    | 17                   |                                                                                                                                          |
|                                       | 4                                                                                          |                  |              | SM-ML-SAND and                                                                            | SILT, trace clay,                                                |       | SS3                | 100                 |                     | 50/<br>75mm                  | 50+                  |                                                                                                                                          |
|                                       | 6 2.0                                                                                      |                  |              | SHALE-BEDROCI<br>brown                                                                    | K, weathered, light                                              | X     | SS4                | 100                 |                     | 50/<br>50mm                  | 50+                  | •••••                                                                                                                                    |
|                                       | 8 <u>-</u> 2.5<br>9 <u>-</u><br>10 <u>-</u> 3.0<br>11 <u>-</u>                             | 79.6             |              | auger refusal<br>SHALE-BEDROCI<br>moderately weathe<br>grey/black                         | K, moderately bedded,<br>ered, medium strong,                    |       | RC1                | 78                  |                     | 36                           |                      |                                                                                                                                          |
|                                       | 12                                                                                         |                  |              |                                                                                           |                                                                  |       | RC2                | 100                 |                     | 60                           |                      |                                                                                                                                          |
|                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                      |                  |              |                                                                                           |                                                                  |       | RC3                | 100                 |                     | 50                           |                      |                                                                                                                                          |
|                                       | 22 - 7.0 $23 - 7.0$ $24 - 7.0$ $25 - 7.0$ $26 - 8.9$                                       | 74.2             |              |                                                                                           |                                                                  |       | RC4                | 100                 |                     | 55                           |                      |                                                                                                                                          |
|                                       | 27                                                                                         |                  |              | END OF BOREHO<br>NOTE :<br>- End of Borehole<br>- Borehole was dry<br>- bgs donates 'belo | LE :<br>at 7.98 m bgs<br>r upon completion<br>ow ground surface' |       |                    |                     |                     |                              |                      |                                                                                                                                          |
|                                       |                                                                                            |                  |              |                                                                                           |                                                                  |       |                    |                     |                     |                              |                      |                                                                                                                                          |

|                   | REFEREN         | CE NO.           | :            | 11205379                                        |                                    |              |                    |                     |                     |                              |                      | ENC                                         | -050                                                       | IRE N                                               | 0.:                      |                 | 12         |
|-------------------|-----------------|------------------|--------------|-------------------------------------------------|------------------------------------|--------------|--------------------|---------------------|---------------------|------------------------------|----------------------|---------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|--------------------------|-----------------|------------|
|                   |                 |                  |              |                                                 | BOREHOLE No.                       |              | E                  | 3H12                | -22                 |                              | B                    | OR                                          | ΕH                                                         | OL                                                  | ER                       | REP             | ORT        |
|                   |                 |                  |              |                                                 | ELEVATION:                         |              | 82                 | .1 m                |                     |                              | _                    | F                                           | Page:                                                      | _1                                                  | of                       |                 |            |
| ſ                 | CLIENT:         | Infrast          | ructur       | e Ontario (I.O.)                                | PROJECT: F                         | reli         | minary (           | Geote               | chnica              | al Investigati               | ion                  | LE                                          | GEN                                                        | ID                                                  |                          |                 |            |
| ~                 | LOCATION        | N:               | 401          | Smyth Road, Ottaw                               | a, Ontario                         |              |                    |                     |                     |                              |                      | $\bowtie$                                   | SS                                                         | - S                                                 | PLIT                     | SPOO            | N          |
| 1/9/2:            | DRILLING        | RIG:             | Trac         | ck Drill Rig                                    | DRILLING MET                       | ΉО           | D: <u>203</u>      | mm C                | D Ho                | llow Stem A                  | ugers                |                                             | ST                                                         | - S                                                 | HELE                     | BY TU           | BE         |
| Date:             | DESCRIBE        | ED BY:           | D. A         | sh                                              | CHECKED BY:                        |              | A. Kha             | ndeka               | ır                  |                              |                      | ⊔⊔<br>Ţ                                     | RC                                                         | - r<br>- V                                          | VATE                     | R LE            | E<br>/EL   |
| WELL              | DATE (ST        | ART):            | 12 J         | luly 2022                                       | DATE (FINISH)                      | :            | 12 July            | 2022                |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| RAPH+             | NORTHIN         | G:               | 502          | 7590.3 m                                        | EASTING:                           |              | 449214             | .3 m                |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| 9 SOIL LOG WITH G | Depth           | Elevation<br>(m) | Stratigraphy | DESCR<br>SOIL AN                                | IPTION OF<br>D BEDROCK             | State        | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | She<br>Sen<br>W <sub>p</sub> W <sub>1</sub> | ar test<br>sitivity<br>Wate<br>Atterb<br>"N" Va<br>ws / 12 | (Cu)<br>(S)<br>r conte<br>berg lim<br>lue<br>2 in30 | nt (%)<br>nits (%<br>cm) | △ F<br>□ L<br>) | ïeld<br>ab |
| 20537             | Feet Metres     | 82.1             |              | GROUN                                           | D SURFACE                          |              |                    |                     | %                   |                              |                      | 10                                          | 20 30                                                      | 40 50                                               | 60 7                     | 0 80 9          | 0          |
| Report: 11        |                 |                  |              | FILL :<br>GM-GRAVEL, son<br>clay, brown, moist, | ne sand and silt, trace<br>compact | $\mathbb{N}$ |                    | 10                  | -                   | 40.05 5 5                    |                      |                                             |                                                            |                                                     |                          |                 |            |
| GLBR              | 1               |                  |              | Gravel : 66%, San<br>20%                        | d : 14%, Clay & Silt :             | Ŵ            | SS1                | 46                  | 3                   | 13-25-5-5                    | 30                   |                                             |                                                            | $\downarrow$                                        |                          |                 |            |
| H_V05             | 2 - 0.5         | 04.4             |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            | $\downarrow$                                        |                          |                 |            |
| OTEC              | 0.7             | 81.4             |              | NATIVE :<br>SM-ML-SAND and                      | SILT. trace clav.                  | 7/           |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| HD_GE             | 3               |                  |              | brown, moist, very                              | dense                              | ľ            | SS2                | 100                 | 5                   | 15-39-40-50/<br>75mm         | 79                   | 0                                           |                                                            |                                                     |                          | •               |            |
| 5379 G            | - 1.1           | 81.0             |              | SHALE-BEDROCH                                   | K, weathered, light                | +            | 000                | 100                 |                     | 50/                          | 50/                  |                                             |                                                            |                                                     |                          |                 |            |
| : 1120            | 4               |                  |              | brown                                           |                                    |              | 553                | 100                 |                     | 50/<br>0mm                   | 0mm                  |                                             |                                                            |                                                     |                          |                 |            |
| ary File          | 5 1.5           |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| Libra             | -               |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| N.GPJ             | 6 — 1.8         | 80.2             |              | Borehole terminate                              | ed due to spoon and                |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| DITIDO            | 2.0<br>7        |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| AGE A             | / _  <br>_      |                  |              |                                                 | <u>LE .</u>                        |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| G GAR             | 8 - 25          |                  |              | - End of Borehole                               | at 1.83 m bgs                      |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| ARKIN             | - 2.5           |                  |              | - bgs donates 'belo                             | ow ground surface'                 |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| 379 - F           | 9 —             |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| N11205            |                 |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| ABASE             |                 |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| G DAT             | 11 —            |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| CH/LO             | - 3.5           |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| 379\TE            | 12 —            |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| 2/11205           |                 |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |
| TS\662            | '3 <u>-</u> 4.0 |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             | $\uparrow$                                                 | ++                                                  |                          |                 |            |
| ROJEC             | 14 —            |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      | $\vdash$                                    | +                                                          | ++                                                  |                          |                 |            |
| NTO/P             |                 |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      | $\vdash$                                    | +                                                          | +                                                   |                          |                 |            |
| <b>TORO</b>       | 15 - 4.5        |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      | $\vdash$                                    | +                                                          | ++                                                  |                          |                 |            |
| N:\CA             |                 |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      | $\square$                                   | +                                                          | +                                                   |                          |                 |            |
| File:             |                 |                  |              |                                                 |                                    |              |                    |                     |                     |                              |                      |                                             |                                                            |                                                     |                          |                 |            |

| _                 | REFEREN          | ICE No.          | :            | 11205379                            |                        |                         |                    |                     |                     |                              |                      | EN                                       | SLOS                                                   | JURI                                                   |                              | .:                    | 1              | 3       |
|-------------------|------------------|------------------|--------------|-------------------------------------|------------------------|-------------------------|--------------------|---------------------|---------------------|------------------------------|----------------------|------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------|-----------------------|----------------|---------|
|                   |                  |                  |              |                                     | BOREHOLE No.:          | _                       | E                  | 3H13                | -22                 |                              | B                    | OF                                       | RE                                                     | HO                                                     | LE                           | R                     | EPC            | DRT     |
|                   |                  |                  | <b>HL</b>    |                                     | ELEVATION:             |                         | 82                 | .2 m                |                     |                              |                      | •.                                       | Pag                                                    | e: _                                                   | 1                            | of                    | _1_            |         |
|                   | CLIENT:          | Infrast          | ructur       | e Ontario (I.O.)                    | PROJECT: P             | reli                    | minary (           | Geote               | chnica              | al Investigat                | ion                  | L                                        | EGE                                                    | ND                                                     |                              |                       |                |         |
| N                 | LOCATION         | N:               | 401          | Smyth Road, Ottaw                   | a, Ontario             |                         |                    |                     |                     |                              |                      | $\triangleright$                         | s:                                                     | 3                                                      | - SF                         | LIT S                 | SPOOI          | N       |
| : 1/9/2           | DRILLING         | RIG:             | Trac         | k Drill Rig                         | DRILLING MET           | НО                      | D: <u>203</u>      | mm C                | D Ho                | llow Stem A                  | ugers                |                                          | S⁻<br>קרוק                                             | Г<br>Э.                                                | - SH                         | IELB,                 |                | E       |
| Date              | DESCRIB          | ED BY:           | <u>L. M</u>  | cCann/S. Wallis                     | CHECKED BY:            |                         | A. Kha             | ndeka               | ır                  |                              |                      | 2                                        | <u>r</u>                                               | 0                                                      | - W                          | ATER                  |                | EL      |
| +WELL             | DATE (ST         | ART):            | 4 Ju         | ly 2022                             | DATE (FINISH):         |                         | 4 July             | 2022                |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                |         |
| GRAPH             | NORTHIN          | G:               | 5027         | 7615.5 m                            | EASTING:               |                         | 449212             | 2.0 m               |                     | 1                            |                      |                                          |                                                        |                                                        |                              |                       |                |         |
| 9 SOIL LOG WITH ( | Depth            | Elevation<br>(m) | Stratigraphy | DESCF<br>SOIL AN                    | IPTION OF<br>D BEDROCK | State                   | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Sh<br>Se<br>O<br>W <sub>p</sub> V<br>(bl | near te<br>ensitiv<br>Wa<br>Ma<br>Atte<br>"N"<br>ows / | est (C<br>ity (S<br>ter co<br>erbero<br>Value<br>12 in | u)<br>)<br>onteni<br>g limit | t (%)<br>s (%)<br>cm) | ∆ Fie<br>□ Lat | ld<br>o |
| Fe Good           | eet Metres       | 82.2             |              | GROUN                               | D SURFACE              |                         |                    |                     | %                   |                              |                      | 10                                       | 20 3                                                   | 30 40                                                  | 50 (                         | 50 70                 | 80 90          | _       |
| ∓  0<br>₩ 1       | 0.1              | 82.1             | $\bigotimes$ | ∼ASPHALT : 75 mn<br>FILL :          | <u>۱</u>               | $\mathbb{N}$            | SS1                | 100                 |                     | 10-13-10-5                   | 23                   | +                                        | •                                                      | $\left  \right $                                       | +                            | $\left  \right $      | ++             | -       |
| 8<br>2            | - <u>-</u>       |                  |              | GW-GM-SANDY (                       | GRAVEL, light          | μ                       |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                | _       |
| 2.GLB             | 0.9              | 81.3<br>81.2     |              | _ NATIVE :                          |                        | $\overline{\mathbb{N}}$ | SS2                | 71                  |                     | 2-2-11-15                    | 13                   |                                          |                                                        |                                                        |                              |                       |                |         |
| °<br>ਸ਼ੂਂ 4       | <sup>−</sup> 1:0 | 01.2             |              | SP-GP-SAND and<br>brown, moist, com | GRAVEL, trace clay,    |                         |                    |                     |                     |                              |                      |                                          | +                                                      |                                                        | -                            |                       | ++             | _       |
| 5 100             |                  |                  |              | SHALE-BEDROC                        | K, weathered, grey     |                         | RC1                | 82                  |                     | 0                            |                      |                                          |                                                        |                                                        |                              |                       |                |         |
| 9<br>9<br>9       |                  | 80.2             |              |                                     | (moderately to highly  | ╢                       |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                | _       |
| 7 0               |                  |                  |              | weathered, thinly i                 | bedded, highly to      |                         |                    |                     |                     |                              |                      |                                          | _                                                      |                                                        | _                            |                       |                |         |
| 8 1120            |                  |                  |              | moderately nactur                   | eu, grey, weak         |                         | RC2                | 95                  |                     | 10                           |                      |                                          |                                                        |                                                        | _                            |                       |                |         |
|                   | $\frac{1}{4}$    |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                |         |
| 11                | , e.e<br>        |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          | _                                                      |                                                        | -                            |                       |                | _       |
| 12                |                  |                  |              | occasional clay an                  | d shale layers         | T                       |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                |         |
|                   | 3 - 4.0          |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                | _       |
|                   | ↓                |                  |              |                                     |                        |                         | RC3                | 100                 |                     | 37                           |                      |                                          |                                                        |                                                        | -                            |                       |                | _       |
| BBR 15            | 5 - [            |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        | _                            |                       |                |         |
| b<br>9<br>16      | 3 - 5.0          |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                | _       |
|                   | 7                |                  |              | occasional clay an                  | d shale layers         |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                |         |
| - 18              | 3                |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          | _                                                      | $\left  \right $                                       | _                            |                       |                | _       |
| 11206             | ) <u> </u>       |                  |              |                                     |                        |                         | RC4                | 100                 |                     | 43                           |                      |                                          |                                                        |                                                        |                              |                       |                |         |
|                   |                  |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                | _       |
|                   | 6.6              | 75.5             | =            |                                     |                        | μ                       |                    |                     |                     |                              |                      |                                          | _                                                      | $\left  \right $                                       | -                            |                       | ++             | _       |
|                   | 3 - 7.0          |                  |              | END OF BOREHO                       | <u>LE :</u>            |                         |                    |                     |                     |                              |                      |                                          |                                                        | $\square$                                              |                              |                       | ++             | -       |
| 24<br>26/1EC      | ↓ <u>↓</u>       |                  |              | NOTE :<br>- End of Borehole         | at 2.37 m bos          |                         |                    |                     |                     |                              |                      |                                          |                                                        | $\square$                                              |                              |                       |                | -       |
| 25 25             | ;                |                  |              | - Borehole was dry                  | upon completion        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                |         |
| 26                | 3 8.0            |                  |              | - bgs donates 'bel                  | bw ground surface'     |                         |                    |                     |                     |                              |                      |                                          | -                                                      | $\square$                                              | -                            |                       |                | -       |
| 27<br>27          |                  |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                | 1       |
|                   | 3 - [            |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                |         |
|                   | 9.0              |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      | 7                                        | -                                                      | $\square$                                              |                              | $\square$             | +              | -       |
| ATOR<br>ATOR      |                  |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       | $\ddagger$     |         |
|                   |                  |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                |         |
|                   | -<br>            |                  |              |                                     |                        |                         |                    |                     |                     |                              |                      |                                          |                                                        |                                                        |                              |                       |                |         |

|                                                                                                                          | REFERENCE                                                         | E NO.:           |              | 11205379                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |       |                    |                     |                     |                              |                      | ENCLO                                                            | SURE                                                              | NO                                          |                   | 14           |  |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|---------------------|---------------------|------------------------------|----------------------|------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|-------------------|--------------|--|
|                                                                                                                          |                                                                   |                  |              |                                                                                                                                                                                                                                                                                    | BOREHOLE No.                                                                                                                                                                                                                    | : _   |                    | 3H14                | -22                 |                              | B                    | ORE                                                              | ноі                                                               | E                                           | REP               | ORT          |  |
|                                                                                                                          |                                                                   |                  |              |                                                                                                                                                                                                                                                                                    | ELEVATION:                                                                                                                                                                                                                      |       | 82                 | .2 m                |                     |                              | _                    | Pa                                                               | ge: <u>1</u>                                                      |                                             | of <u>1</u>       | _            |  |
|                                                                                                                          | CLIENT: _lr                                                       | nfrasti          | ructure      | e Ontario (I.O.)                                                                                                                                                                                                                                                                   | PROJECT: _F                                                                                                                                                                                                                     | Preli | minary             | Geote               | chnica              | al Investigati               | on                   | LEG                                                              | END                                                               |                                             |                   |              |  |
| N                                                                                                                        | LOCATION:                                                         |                  | 401          | Smyth Road, Ottawa                                                                                                                                                                                                                                                                 | a, Ontario                                                                                                                                                                                                                      |       |                    |                     |                     |                              |                      | 🖂 s                                                              | s -                                                               | SPLI                                        | T SPO             | ON           |  |
| : 1/9/2                                                                                                                  | DRILLING RI                                                       | IG: _            | Trac         | k Drill Rig                                                                                                                                                                                                                                                                        | DRILLING MET                                                                                                                                                                                                                    | ΉО    | D: <u>203</u>      | mm O                | D Ho                | llow Stem A                  | ugers                | . ⊠ s                                                            | т -                                                               | SHE                                         |                   | JBE          |  |
| Date:                                                                                                                    | DESCRIBED                                                         | BY:              | D. A         | sh                                                                                                                                                                                                                                                                                 | CHECKED BY:                                                                                                                                                                                                                     |       | A. Kha             | ndeka               | ır                  |                              |                      | ⊥⊥ ⊓<br>Ţ                                                        | -                                                                 | WAT                                         | ER LE             | VEL          |  |
| +WELL                                                                                                                    | DATE (STAR                                                        | RT): _           | 12 J         | uly 2022                                                                                                                                                                                                                                                                           | DATE (FINISH)                                                                                                                                                                                                                   | ): _  | 12 July            | 2022                |                     |                              |                      |                                                                  |                                                                   |                                             |                   |              |  |
| BRAPH                                                                                                                    | NORTHING:                                                         |                  | 5027         | 7618.1 m                                                                                                                                                                                                                                                                           | EASTING:                                                                                                                                                                                                                        |       | 449237             | 7.3 m               |                     |                              | -                    |                                                                  |                                                                   |                                             |                   |              |  |
| 9 SOIL LOG WITH (                                                                                                        | Depth                                                             | Elevation<br>(m) | Stratigraphy | DESCR<br>SOIL ANI                                                                                                                                                                                                                                                                  | IPTION OF<br>D BEDROCK                                                                                                                                                                                                          | State | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Shear<br>Sensiti<br>O W<br>M<br>W <sub>p</sub> W<br>At<br>(blows | test (Cu<br>vity (S)<br>ater con<br>terberg<br>' Value<br>/ 12 in | )<br>itent (%<br>limits (<br><u>30 cm</u> ] | △<br>□<br>%)<br>) | Field<br>Lab |  |
| 20537                                                                                                                    | Feet Metres 8                                                     | 32.2             |              | GROUN                                                                                                                                                                                                                                                                              | D SURFACE                                                                                                                                                                                                                       |       |                    |                     | %                   |                              |                      | 10 20                                                            | 30 40                                                             | 50 60                                       | 70 80 9           | 90           |  |
| 379/TECHILOG DATABASE/11205379 - PARKING GARAGE ADDITION.GPJ LIbrary File: 11205379 GHD_GEOTECH_V05.GLB Report: 112<br>T | $\begin{array}{c} & & & & & \\ & & & & & \\ 1 & & & & \\ & & & &$ | 81.6<br>81.5     |              | FILL :<br>GW-GM-SANDY G<br>trace clay, brown, r<br>Gravel : 66%, Sand<br>12%<br>NATIVE :<br>SP-GP-SAND and<br>trace clay, brown, r<br>SHALE-BEDROCK<br>brown<br>Borehole terminate<br>auger refusal<br>END OF BOREHOI<br>NOTE :<br>- End of Borehole as dry<br>- bgs donates 'belo | GRAVEL, trace silt,<br>moist, dense<br>d : 22%, Clay & Silt :<br>GRAVEL, trace silt,<br>moist, very dense<br>(, weathered, light<br>ad due to spoon and<br><u>E :</u><br>at 1.22 m bgs<br>upon completion<br>ow ground surface' |       | SS1                | 58                  | 2                   | 11-25-16-6<br>7-35-48-42     | 41 83                |                                                                  |                                                                   |                                             |                   |              |  |
| IL: N:\CA\TORONTO\PROJECTS\662\112                                                                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$             |                  |              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                 |       |                    |                     |                     |                              |                      |                                                                  |                                                                   |                                             |                   |              |  |

| +WELL Date: 1/9/22      | CLIENT:<br>LOCATION<br>DRILLING<br>DESCRIBE<br>DATE (ST/   | Infrast                 | ructur       |                                                                                  | BOREHOLE No.:<br>ELEVATION:                                 | _     | E                  | <u>3H15</u>         | -22                 |                              | B                    | OR                                            | EHC                                                                  | DLE                                         | ER                       | EPC            | DRT     |
|-------------------------|------------------------------------------------------------|-------------------------|--------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|-------|--------------------|---------------------|---------------------|------------------------------|----------------------|-----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|--------------------------|----------------|---------|
| +WELL Date: 1/9/22      | CLIENT:<br>LOCATION<br>DRILLING<br>DESCRIBE<br>DATE (ST/   | Infrast                 | ructur       |                                                                                  | ELEVATION:                                                  |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                |         |
| +WELL Date: 1/9/22      | CLIENT: _<br>LOCATION<br>DRILLING<br>DESCRIBE<br>DATE (ST/ | Infrast<br>N:<br>RIG: _ | ructur       |                                                                                  |                                                             |       | 82                 | .1 m                |                     |                              |                      | Р                                             | age:                                                                 | _1_                                         | of                       | _1_            |         |
| +WELL Date: 1/9/22      | LOCATION<br>DRILLING<br>DESCRIBE<br>DATE (ST/              | I:<br>RIG: _            | 404          | e Ontario (I.O.)                                                                 | PROJECT: P                                                  | reli  | minary (           | Geote               | chnica              | al Investigat                | ion                  | LE                                            | GEN                                                                  | <u>)</u>                                    |                          |                |         |
| +WELL Date: 1/9/2       | DRILLING<br>DESCRIBE<br>DATE (ST/                          | RIG: _                  | 401          | Smyth Road, Ottaw                                                                | a, Ontario                                                  |       |                    |                     |                     |                              |                      | $\boxtimes$                                   | SS                                                                   | - SI                                        | PLIT \$                  | SPOO           | N       |
| +WELL Date              | DESCRIBE                                                   |                         | Trac         | ck Drill Rig                                                                     | DRILLING MET                                                | НО    | D: <u>203</u>      | mm O                | D Ho                | llow Stem A                  | ugers                |                                               | ST<br>RC                                                             | - SI<br>- R                                 | HELB<br>OCK (            | Y TUB<br>CORF  | E       |
| +WELI                   | DATE (ST/                                                  | ED BY:                  | D. A         | sh                                                                               | CHECKED BY:                                                 |       | A. Kha             | ndeka               | r                   |                              |                      | Ţ                                             |                                                                      | - W                                         | ATEF                     | RLEVE          | EL      |
| <b>+ - -</b>            |                                                            | ART):                   | 12 J         | luly 2022                                                                        | DATE (FINISH):                                              | _     | 12 July            | 2022                |                     |                              |                      |                                               |                                                                      |                                             |                          |                |         |
| GRAPH                   | NORTHIN                                                    | G:                      | 5027         | 7642.6 m                                                                         | EASTING:                                                    |       | 449234             | .7 m                |                     |                              |                      |                                               |                                                                      |                                             |                          |                |         |
| 9 SOIL LOG WITH         | Depth                                                      | Elevation<br>(m)        | Stratigraphy | DESCF<br>SOIL AN                                                                 | RIPTION OF<br>D BEDROCK                                     | State | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Shea<br>Sens<br>W <sub>p</sub> W <sub>1</sub> | ar test (<br>sitivity (<br>Water (<br>Atterbe<br>"N" Valu<br>vs / 12 | Cu)<br>S)<br>conter<br>rg lim<br>ie<br>in30 | nt (%)<br>its (%)<br>cm) | ∆ Fie<br>□ Lal | ld<br>ว |
| 50537<br>P 4            | eet Metres                                                 | 82.1                    |              | GROUN                                                                            | D SURFACE                                                   |       |                    |                     | %                   |                              |                      | 10 2                                          | 20 30 4                                                              | 0 50                                        | 60 70                    | 80 90          | -       |
| 1_V05.GLB Report: 11    | -<br>-<br>-<br>- 0.5<br>- 0.6                              | 81.5                    |              | FILL :<br>SM-SAND and GF<br>clay, brown, moist<br>Gravel : 40%, San<br>Clay : 3% | RAVEL, trace silt, trace<br>, dense<br>d : 47%, Silt : 10%, |       | SS1                | 62                  | 3                   | 16-18-13-5                   | 31                   | 0                                             | •                                                                    |                                             |                          |                | _       |
| 5379 GHD_GEOTECH        | <br><br><br>1.0<br>1.1                                     | 81.1                    |              | SHALE-BEDROC<br>brown<br>Borehole terminat                                       | K, weathered, light<br>ed due to spoon and                  |       | SS2                | 100                 | 6                   | 20-25-50/<br>125mm           | 75/<br>125mn         | 0<br>1                                        |                                                                      |                                             |                          |                | _       |
| brary File: 1120<br>G A | <br>1.5                                                    |                         |              | END OF BOREHO<br>NOTE :                                                          | <u>LE :</u><br>at 1.07 m bos                                |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                | _       |
| DDITION.GPJ L           | <br><br><br>2.0                                            |                         |              | - Borehole was dr<br>- bgs donates 'bel                                          | / upon completion<br>ow ground surface'                     |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                | _       |
| (ING GARAGE AI          | <br><br><br>2.5                                            |                         |              |                                                                                  |                                                             |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                | _       |
| 1205379 - PARI<br>G     |                                                            |                         |              |                                                                                  |                                                             |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                |         |
| C DATABASE/1<br>11      | ) 3.0                                                      |                         |              |                                                                                  |                                                             |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                |         |
| 12 12 12                | 3.5<br>2                                                   |                         |              |                                                                                  |                                                             |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                |         |
| CTS/662/112(            | 3 - 4.0                                                    |                         |              |                                                                                  |                                                             |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                | -       |
| DNTO/PROJE              | +                                                          |                         |              |                                                                                  |                                                             |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                | -       |
| 15 N:\CA\TOK            |                                                            |                         |              |                                                                                  |                                                             |       |                    |                     |                     |                              |                      |                                               |                                                                      |                                             |                          |                | -       |

|                      | REFEREN        | CE No.           | :            | 11205379                                                                   |                                                                     |       |                    |                     |                     |                              |                      | ENCLOSURE No.: 16                                                                                                                                                                         |
|----------------------|----------------|------------------|--------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|-------|--------------------|---------------------|---------------------|------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                |                  |              |                                                                            | BOREHOLE No.:                                                       | _     | E                  | 3H16                | -22                 |                              | B                    | OREHOLE REPORT                                                                                                                                                                            |
|                      |                |                  |              |                                                                            | ELEVATION:                                                          |       | 82                 | .1 m                |                     |                              |                      | Page: <u>1</u> of <u>1</u>                                                                                                                                                                |
| ľ                    | CLIENT:        | Infrast          | ructur       | e Ontario (I.O.)                                                           | PROJECT: P                                                          | reli  | minary (           | Geote               | chnica              | al Investigat                | ion                  | LEGEND                                                                                                                                                                                    |
| N                    | LOCATION       | N:               | 401          | Smyth Road, Ottaw                                                          | a, Ontario                                                          |       |                    |                     |                     |                              |                      | 🔀 SS - SPLIT SPOON                                                                                                                                                                        |
| 7/8/1                | DRILLING       | RIG:             | Trac         | ck Drill Rig                                                               | DRILLING MET                                                        | но    | D: <u>203</u>      | mm C                | D Ho                | llow Stem A                  | ugers                |                                                                                                                                                                                           |
| Date:                | DESCRIBE       | ED BY:           | D. A         | Ash                                                                        | CHECKED BY:                                                         |       | A. Kha             | ndeka               | ır                  |                              |                      | III RC - ROCK CORE ▼ - WATER LEVEL                                                                                                                                                        |
| VELL                 | DATE (ST/      | ART):            | 12 J         | July 2022                                                                  | DATE (FINISH)                                                       | :     | 17 Dec             | embe                | r 202               | 2                            |                      |                                                                                                                                                                                           |
|                      | NORTHIN        | G:               | 502          | 7594.4 m                                                                   | EASTING:                                                            |       | 449262             | 2.3 m               |                     |                              |                      |                                                                                                                                                                                           |
|                      | Depth          | Elevation<br>(m) | Stratigraphy | DESCR<br>SOIL AN                                                           | RIPTION OF<br>D BEDROCK                                             | State | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Shear test (Cu) $\bigtriangleup$ Field<br>Sensitivity (S) $\Box$ Lab<br>Water content (%)<br>$\square_{\mu_p}$ Atterberg limits (%)<br>$\square_{\mu_p}$ N" Value<br>(blows / 12 in30 cm) |
| 10007                | Feet Metres    | 82.1             |              | GROUN                                                                      | D SURFACE                                                           |       |                    |                     | %                   |                              |                      | 10 20 30 40 50 60 70 80 90                                                                                                                                                                |
| ברע_ עטט.טרש הקשטוו. | 1              | 81.4             |              | FILL :<br>SW-SM-SAND an<br>trace clay, brown,<br>Gravel : 44%, San<br>: 2% | d GRAVEL, trace silt,<br>moist, compact<br>d : 45%, Silt : 9%, Clay |       | SS1                | 54                  | 3                   | 2-6-8-6                      | 14                   |                                                                                                                                                                                           |
| יאס פרוע פרעי        | 3 0.9<br>1.0   | 81.2             |              | SP-GP-SAND and<br>trace clay, brown,<br>SHALE-BEDROCI<br>brown             | GRAVEL, trace silt,<br>moist, compact /<br>K, weathered, light      |       | SS2                | 87                  | 7                   | 2-4-11-14                    | 15                   |                                                                                                                                                                                           |
| 20211                | 4 - 1.2        | 80.9             |              | Borehole terminate<br>auger refusal                                        | ed due to spoon and                                                 |       | SS3                | 100                 |                     | 50/<br>0mm                   | 50/<br>0mm           | n                                                                                                                                                                                         |
| ary rite             | 5 _ 1.5        |                  |              | END OF BOREHO                                                              | <u>LE :</u>                                                         |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
|                      | 6 — -<br>- 2.0 |                  |              | NOTE :<br>- End of Borehole<br>- Borehole was dry<br>- bgs donates 'belo   | at 1.22 m bgs<br>/ upon completion<br>ow ground surface'            |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
|                      | 7 -            |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
|                      | 8 —<br>— 2.5   |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
|                      | 9 —            |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
|                      |                |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
|                      | 11 3.5         |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
|                      | 12 -           |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
| 010/00/01/11         | 13 - 4.0       |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
|                      | 14 —           |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
|                      | 15 - 4.5       |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |
| LIE. N. CA           | 16 —           |                  |              |                                                                            |                                                                     |       |                    |                     |                     |                              |                      |                                                                                                                                                                                           |

| BOREHOLE No.:         BH17-22         BOREHOLE RepOR           CLIENT:         Infrastructure Oriario (L.O.)         PROJECT:         Product:         B2.1 m         Product:         Produc:         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CE NO.               | ·            | 11205379                                                                                                                                                                                                                                                           |                                                                      |       |                    |                     |                     |                                  |                      | ENGLOSURE NO.:                                                                                                                                     | 17                          |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------|--------------------|---------------------|---------------------|----------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|
| ELEVATION:         B2.1 m         Page:         1         of           CLENT:         Infrastructure Ontario (I.O.)         PROJECT:         Preliminary Geotechnical Investigation         LECEND           DOLLING:         015 Smyth Road, Ottawa, Ontario         DRULING RIG:         Track Drill Rig         DRULING RIG:         Str. ShELEY TUBE           DOLLING:         Track Drill Rig         DRULING RIG:         Track Drill Rig         DRULING RIG:         Str. ShELEY TUBE           DOESCREED BY:         DAH         CHECKED BY:         A.Khandekar         WATER LEVEL           DATE (START):         12 July 2022         DATE (FINISH):         12 July 2022         DATE (FINISH):         12 July 2022           NORTHING:         50027619.3 m         EASTINS:         449258.6 m         Str. Shert Ref. (C)         Descrete (FINISH):           SOIL AND BEDROCK         SSI Str. Shert Ref. (C)         Descrete (FINISH):         12 July 2022         Descrete (FINISH):         Descrete (FINISH): <td></td> <td></td> <td></td> <td></td> <td></td> <td>BOREHOLE No.:</td> <td></td> <td>E</td> <td>3H17</td> <td>-22</td> <td></td> <td>B</td> <td></td> <td>REPO</td> <td>RT</td>                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |              |                                                                                                                                                                                                                                                                    | BOREHOLE No.:                                                        |       | E                  | 3H17                | -22                 |                                  | B                    |                                                                                                                                                    | REPO                        | RT       |
| CLENT:         Infrastructure Ontario (L.O.)         PROJECT:         Preliminary Geotechnical Investigation         LEGEND           DORLING RG:         Track Drill Rig         DRILLING RG:         Track Drill Rig         DRILLING METHOD.         203mm OD Hollow Stem Augers         ST         - SPLIT SPOON           DESCRIBED BY:         D.A.H.         OHCKOKE DRIY:         A. Khandebar         ST         - SPLIT SPOON           DATE (START)         12.July 2022         DATE (FINSHY)         12.July 2022         - WATER LEVEL           NORTHING:         5027619.3 m         EASTING:         449258.8 m         - WATER LEVEL           NORTHING:         5027619.3 m         EASTING:         449258.8 m         - WATER LEVEL           Total Strant:         12.July 2022         DATE (FINSHY)         12.July 202         - WATER LEVEL           Total Strant:         12.July 2022         DATE (START)         12.July 202         - WATER LEVEL           Total Strant:         12.July 2022         DATE (START)         12.July 202         - WATER LEVEL           Total Strant:         12.July 2022         DATE (START)         12.July 202         - WATER LEVEL           Total Strant:         12.July 2022         DATE (START)         12.July 202         - WATER LEVEL           Total Strant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |              |                                                                                                                                                                                                                                                                    | ELEVATION:                                                           |       | 82                 | .1 m                |                     |                                  |                      | Page: <u>1</u> o                                                                                                                                   | f <u>1</u>                  |          |
| LOCATION:       401 Smyth Road. Ottawa, Ontario       SS       SPLIT SPOON         INDEXCRIPED BY:       D.Ash       ORILLING RETHOD:       203mm 0D Hollow Stem Augers       SS       SPLIT SPOON         IDDESCRIPED BY:       D.Ash       CHECKED BY:       A.Knandekar       WATER LEVEL         IDDESCRIPED BY:       D.Ash       CHECKED BY:       A.Knandekar       WATER LEVEL         IDDESCRIPTION OF       SS       State Test (OU)       OPEN TEST (START)       OPEN TEST (START)       OPEN TEST (START)         IDDESCRIPTION OF       SS       SS       STATE (FINISH):       IDDESCRIPTION OF       State Test (OU)       OPEN TEST (START)         IDDESCRIPTION OF       SS       SS       SS       STATE (START)       OPEN TEST (START)         IDDESCRIPTION OF       SS       SS       SS       SS       OPEN TEST (START)       OPEN TEST (START)         IDDESCRIPTION OF       SS       SS       SS       OPEN TEST (START)       OPEN TEST (START)       OPEN TEST (START)       OPEN TEST (START)         IDDESCRIPTION OF       SS       SS       OPEN TEST (START)       OPEN TEST (ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                       | CLIENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Infrast              | ructur       | e Ontario (I.O.)                                                                                                                                                                                                                                                   | PROJECT: P                                                           | reli  | minary (           | Geote               | chnica              | al Investigati                   | ion                  | LEGEND                                                                                                                                             |                             |          |
| BRILLING RIG.         Track Drill Rig         DRILLING METHOD. 203mm OD Hollow Stem Auges         ST         SHELEY TUBE           DESCRIPED BY:         D.Ah         CHECKED BY:         A.Knandekar         WATER LEVEL           DATE (START):         12.July 2022         DATE (FINISH):         12.July 2022         WATER LEVEL           NORTHING:         6027618.3 m         EASTING:         449258.8 m         Standekar         WATER LEVEL           SOLL AND BEDROCK         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~                                                                                                                                                     | LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N:                   | 401          | Smyth Road, Ottaw                                                                                                                                                                                                                                                  | a, Ontario                                                           |       |                    |                     |                     |                                  |                      | 🖂 SS - SPLIT                                                                                                                                       | SPOON                       |          |
| DESCRIBED BY:         D. Ash         CHECKED BY:         A. Khandekar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/9/2:                                                                                                                                                | DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RIG:                 | Trac         | ck Drill Rig                                                                                                                                                                                                                                                       | DRILLING MET                                                         | ΉО    | D: <u>203</u>      | mm C                | D Ho                | llow Stem A                      | ugers                | ST - SHEL                                                                                                                                          |                             | <u>:</u> |
| DATE (START):       12 July 2022       DATE (FINISH):       12 July 2022         NORTHING:       5027619.3 m       EASTING:       449258.6 m         Sometoxic, Columnation of the second o | Date:                                                                                                                                                 | DESCRIBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ED BY:               | <u>D.</u> A  | sh                                                                                                                                                                                                                                                                 | CHECKED BY:                                                          |       | A. Kha             | ndeka               | ır                  |                                  |                      | III RC - ROCH<br>▼ - WATH                                                                                                                          | ER LEVEL                    | _        |
| NORTHING:         5027619.3 m         EASTING:         449258.6 m           5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WELL                                                                                                                                                  | DATE (STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ART):                | 12 J         | luly 2022                                                                                                                                                                                                                                                          | DATE (FINISH)                                                        | : _   | 12 July            | 2022                |                     |                                  |                      |                                                                                                                                                    |                             |          |
| Bit Mathematical Stress         Sector Stress <t< td=""><td>SRAPH-</td><td>NORTHING</td><td>G:</td><td>502</td><td>7619.3 m</td><td>EASTING:</td><td></td><td>449258</td><td>3.6 m</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                          | SRAPH-                                                                                                                                                | NORTHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G:                   | 502          | 7619.3 m                                                                                                                                                                                                                                                           | EASTING:                                                             |       | 449258             | 3.6 m               |                     |                                  |                      |                                                                                                                                                    |                             |          |
| Feet         Metres         82.1         GROUND SURFACE         %         10 20 30 40 50 60 70 60 90           1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>9 SOIL LOG WITH G</td><td>Depth</td><td>Elevation<br/>(m)</td><td>Stratigraphy</td><td>DESCR<br/>SOIL AN</td><td>RIPTION OF<br/>D BEDROCK</td><td>State</td><td>Type and<br/>Number</td><td>Recovery/<br/>TCR(%)</td><td>Moisture<br/>Content</td><td>Blows per<br/>15cm/<br/>RQD(%)</td><td>'N' Value/<br/>SCR(%)</td><td>Shear test (Cu)<br/>Sensitivity (S)<br/>Water content (%<br/>M<sub>p</sub>, W<sub>i</sub> Atterberg limits (%<br/>"N" Value<br/>(blows / 12 in30 cm)</td><td>△ Field<br/>□ Lab<br/>)<br/>6)</td><td>1</td></t<>                                                                                                                                                                                                                                                                                                             | 9 SOIL LOG WITH G                                                                                                                                     | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elevation<br>(m)     | Stratigraphy | DESCR<br>SOIL AN                                                                                                                                                                                                                                                   | RIPTION OF<br>D BEDROCK                                              | State | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%)     | 'N' Value/<br>SCR(%) | Shear test (Cu)<br>Sensitivity (S)<br>Water content (%<br>M <sub>p</sub> , W <sub>i</sub> Atterberg limits (%<br>"N" Value<br>(blows / 12 in30 cm) | △ Field<br>□ Lab<br>)<br>6) | 1        |
| Image: 1       FILL:       FILL:       SS1       54       -       4-10-17-11       27       •         Image: 1       0.5       0.7       81.4       SS1       54       -       4-10-17-11       27       •         Image: 1       0.5       0.7       81.4       SS1       54       -       4-10-17-11       27       •         Image: 1       0.5       0.7       81.4       SS1       54       -       4-10-17-11       27       •       Image: 1       0.5         Image: 1       1.0       S1.0       SS1       SS2       100       -       3-8-22-50/<br>76mm       30       •       Image: 1       Image: 1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 205379                                                                                                                                                | Feet Metres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.1                 |              | GROUN                                                                                                                                                                                                                                                              | D SURFACE                                                            |       |                    |                     | %                   |                                  |                      | 10 20 30 40 50 60                                                                                                                                  | 70 80 90                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N.\CA\TORONTO\PROJECTS\662\11205379\TECH\LOG DATABASE\11205379 - PARKING GARAGE ADDITION.GPJ Library File: 11205379 GHD_GEOTECH_V05.GLB Report: 11205 | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ | 81.4<br>81.0<br>81.0 |              | FILL :<br>GW-GM-GRAVEL<br>trace clay, brown,<br>Gravel : 52%, San<br>: 2%,<br>NATIVE :<br>SP-GP-SAND and<br>trace clay, brown,<br>Borehole terminate<br>auger refusal<br>END OF BOREHO<br>NOTE :<br>- End of Borehole<br>- Borehole was dry<br>- bgs donates 'beld | with SAND, trace silt,<br>moist, compact<br>d : 39%, Silt : 7%, Clay |       | SS1<br>SS2         | 54                  |                     | 4-10-17-11<br>3-8-22-50/<br>75mm | 27                   |                                                                                                                                                    |                             |          |

| _                 | REFEREN              | ICE No.          | :            | 11205379                                                       |                           |              |                    |                     |                     |                              |                      | ENC                                              | LOS                                          | URE                                                      | No.:                          |                       | 18         |  |
|-------------------|----------------------|------------------|--------------|----------------------------------------------------------------|---------------------------|--------------|--------------------|---------------------|---------------------|------------------------------|----------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------------|-------------------------------|-----------------------|------------|--|
|                   |                      |                  |              |                                                                | BOREHOLE No.:             | _            | E                  | 3H18                | -22                 |                              | B                    | OR                                               | FF                                           | IOI                                                      | FF                            |                       | ORT        |  |
|                   |                      |                  | <u>eli</u>   |                                                                | ELEVATION:                |              | 82                 | .1 m                |                     |                              |                      |                                                  | Page                                         | : <u>1</u>                                               | 0                             | f <u>1</u>            |            |  |
|                   | CLIENT:              | Infrast          | tructur      | e Ontario (I.O.)                                               | PROJECT: P                | reli         | minary (           | Geote               | chnica              | al Investigati               | ion                  | LE                                               | EGE                                          | ND                                                       |                               |                       |            |  |
|                   | LOCATIO              | N:               | 401          | Smyth Road, Ottaw                                              | a, Ontario                |              |                    |                     |                     |                              |                      | $\boxtimes$                                      | ss                                           | -                                                        | SPLIT                         | SPOO                  | N          |  |
| 1/9/22            | DRILLING             | RIG:             | Trac         | k Drill Rig                                                    | DRILLING METI             | ю            | D: 203             | mm C                | D Ho                | llow Stem A                  | ugers                |                                                  | ST                                           | -                                                        | SHEL                          | BY TU                 | BE         |  |
| Date:             | DESCRIBI             | ED BY:           | D. A         | sh                                                             | CHECKED BY:               |              | A. Kha             | ndeka               | ır                  |                              |                      |                                                  | RC                                           | ; -                                                      | ROCH                          | CORI                  | E<br>/EL   |  |
| VELL              | DATE (ST             | ART):            | 15 J         | uly 2022                                                       | DATE (FINISH):            |              | 15 July            | 2022                |                     |                              |                      | -                                                | •                                            |                                                          |                               |                       |            |  |
| RAPH+/            | NORTHIN              | G:               | 5027         | 7645.0 m                                                       | EASTING:                  |              | 449256             | 6.7 m               |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| 9 SOIL LOG WITH G | Depth                | Elevation<br>(m) | Stratigraphy | DESCR<br>SOIL AN                                               | IPTION OF<br>D BEDROCK    | State        | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | She<br>Ser<br>O<br>W <sub>p</sub> W <sub>1</sub> | ear tes<br>sitivit<br>Wate<br>Atter<br>"N" V | st (Cu)<br>y (S)<br>er con<br>rberg l<br>/alue<br>12 in: | tent (%<br>imits (%<br>30 cm) | △ F<br>□ L<br>)<br>() | ield<br>ab |  |
| 20537             | Feet Metres          | 82.1             |              | GROUN                                                          | D SURFACE                 |              |                    |                     | %                   |                              |                      | 10                                               | 20 3                                         | 0 40 5                                                   | 50 60 7                       | 0 80 9                | 0          |  |
| port: 112         | 1<br>                |                  |              | FILL :<br>GW-GM-SANDY (<br>trace silt_trace cla                | GRAVEL with sand,         | M            | SS1                | 62                  |                     | 9-8-10-4                     | 18                   |                                                  | •                                            |                                                          |                               |                       |            |  |
| GLB Re            | 2 - 0.6 = 0.8        | 81.5<br>81.3     |              | compact<br>Gravel : 73%, San                                   | d : 21%, Silt : 5%, Clay∬ | $\mathbb{N}$ | 552                | 83                  |                     | 2-11-27-50                   | 38                   |                                                  |                                              |                                                          |                               |                       | _          |  |
| CH_V05.           |                      |                  |              | : 1%<br>NATIVE :<br>SP-GP-SAND and                             | GRAVEL trace silt         | μ            | 002                | 00                  |                     | 2-11-27-50                   | 00                   |                                                  |                                              | -                                                        |                               |                       |            |  |
| GEOTE             | 5 - 1.4              | 80.7             |              | trace clay, moist, c                                           | lense                     |              | RC1                | 100                 |                     | 0                            |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| 379 GHD           | 7 <u>-</u> 2.0       |                  |              | auger refusal<br>SHALE-BEDROCI                                 | K, moderately to highly   |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       | _          |  |
| 112053            | 8                    |                  |              | moderately strong                                              | grey/black                |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| rary File         |                      |                  |              |                                                                |                           |              | RC2                | 100                 |                     | 0                            |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| -J Libi           |                      |                  | իկկկ         |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| TION.GI           | 13 - 4.0             |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| GE ADD            | 14 <del>-</del>      |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       | _          |  |
| G GARA            | 15 —<br>16 —<br>16 — |                  |              |                                                                |                           |              | RC3                | 100                 |                     | 36                           |                      |                                                  |                                              |                                                          |                               |                       | _          |  |
| PARKIN            | 17 –<br>             |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| 05379 -           | 18 —<br><br>19 —     |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       | _          |  |
| ASE/112           | 20 6.0               |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       | _          |  |
| DATAB/            | 21 —                 |                  |              |                                                                |                           |              | RC4                | 100                 |                     | 51                           |                      |                                                  |                                              |                                                          |                               |                       | _          |  |
| H/LOG             | 22 - 7.0             |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| VTECH             | 24 — 7.1<br>24 —     | 75.0             |              |                                                                |                           | ┦┸           |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| 205379            | 25 —                 |                  |              | END OF BOREHO                                                  |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| 362/11:           | 26 - 8.0             |                  |              | - End of Borehole                                              | at 7.13 m bgs             |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| ECTS              | 27 -                 |                  |              | <ul> <li>Rock coring from</li> <li>Borehole was dry</li> </ul> | upon completion           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| PROJE             | 28                   |                  |              | - bgs donates 'belo                                            | ow ground surface'        |              |                    |                     |                     |                              |                      |                                                  |                                              | $\mp$                                                    |                               |                       |            |  |
| NTO/              | 29                   |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |
| <b>\TORC</b>      | 30 -                 |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          | $\square$                     |                       | _          |  |
| N:\CA             | 31 —                 |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       | $\neg$     |  |
| File:             | 32 <del>-</del>      |                  |              |                                                                |                           |              |                    |                     |                     |                              |                      |                                                  |                                              |                                                          |                               |                       |            |  |

|                             | REFEREN                                 | CE No.               | :            | 11205379                                                                                                                  |                                                                                                     |       |                    |                     |                     |                              |                      | ENCLO                                                                       | SURE                                                                 | No.:                          |                        | 19         |
|-----------------------------|-----------------------------------------|----------------------|--------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|--------------------|---------------------|---------------------|------------------------------|----------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|------------------------|------------|
|                             |                                         |                      |              |                                                                                                                           | BOREHOLE No.:                                                                                       | : _   |                    | BH19                | -22                 |                              | B                    | ORE                                                                         | ноі                                                                  | EF                            | REP                    | ORT        |
|                             |                                         |                      | <b>HI</b>    |                                                                                                                           | ELEVATION:                                                                                          |       | 81                 | .1 m                |                     |                              |                      | Pag                                                                         | ge: <u>1</u>                                                         | 0                             | f <u>1</u>             |            |
| ľ                           | CLIENT:                                 | Infrast              | ructur       | e Ontario (I.O.)                                                                                                          | PROJECT: P                                                                                          | reli  | minary             | Geote               | chnica              | al Investigat                | ion                  | LEG                                                                         | END                                                                  |                               |                        |            |
| ~                           | LOCATION                                | N:                   | 401          | Smyth Road, Ottaw                                                                                                         | a, Ontario                                                                                          |       |                    |                     |                     |                              |                      | ⊠ s                                                                         | s -                                                                  | SPLIT                         | SPOO                   | N          |
| 1/9/2                       | DRILLING                                | RIG:                 | Trac         | ck Drill Rig                                                                                                              | DRILLING MET                                                                                        | ΉО    | D: <u>203</u>      | mm C                | D Ho                | llow Stem A                  | ugers                | ⊠ s                                                                         | т -                                                                  | SHEL                          |                        | BE         |
| Date:                       | DESCRIBE                                | ED BY:               | D. A         | sh                                                                                                                        | CHECKED BY:                                                                                         |       | A. Kha             | ndeka               | ır                  |                              |                      | ⊥⊥ N<br>Ţ                                                                   | -                                                                    | WATE                          |                        | /EL        |
| +WELL                       | DATE (STA                               | ART):                | 14 J         | luly 2022                                                                                                                 | DATE (FINISH)                                                                                       | : _   | 14 July            | / 2022              |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| GRAPH                       | NORTHING                                | G:                   | 502          | 7588.9 m                                                                                                                  | EASTING:                                                                                            |       | 449046             | 6.7 m               |                     | 1                            |                      |                                                                             |                                                                      |                               |                        |            |
| 9 SOIL LOG WITH 0           | Depth                                   | Elevation<br>(m)     | Stratigraphy | DESCR<br>SOIL AN                                                                                                          | RIPTION OF<br>D BEDROCK                                                                             | State | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%) | 'N' Value/<br>SCR(%) | Shear t<br>Sensitiv<br>O Wa<br>W <sub>p</sub> W <sub>1</sub> Att<br>(blows) | est (Cu)<br>vity (S)<br>ater con<br>terberg I<br>' Value<br>/ 12 in: | tent (%<br>imits (%<br>30 cm) | △ F<br>□ L<br>)<br>;;) | ïeld<br>ab |
| 20537                       | Feet Metres                             | 81.1                 |              | GROUN                                                                                                                     | D SURFACE                                                                                           |       |                    |                     | %                   |                              |                      | 10 20                                                                       | 30 40 5                                                              | 50 60 7                       | 0 80 9                 | 0          |
| H_V05.GLB Report: 112       | 0.1<br>1                                | 81.0                 |              | ASPHALT : 75 mm<br>FILL :<br>SM-GRAVELLY S,<br>clay, brown, loose                                                         | n<br>AND, trace silt, trace                                                                         |       | SS1                | 79                  |                     | 4-5-3-6                      | 8                    | •                                                                           |                                                                      |                               |                        |            |
| y File: 11205379 GHD_GEOTEC | 3 - 0.9<br>- 1.0<br>4<br>- 1.4<br>5 1.5 | 80.4<br>80.2<br>79.7 |              | NATIVE :<br>SP-GP-SAND and<br>trace clay, brown,<br>Gravel : 31%, San<br>Clay : 7%<br>SHALE-BEDROCI<br>brown to grey/blac | GRAVEL, some silt,<br>moist, very dense<br>d : 46%, Silt : 16%,<br><, weathered, light<br>k<br>LE : |       | SS2                | 71                  |                     | 17-33-50/<br>125mm           | 83/<br>125mn         | <b>1</b>                                                                    |                                                                      |                               |                        |            |
| ARAGE ADDITION.GPJ Librar   | 6<br>7<br><br><br><br><br><br>          |                      |              | NOTE :<br>- End of Borehole<br>- Borehole was dry<br>- bgs donates 'belo                                                  | at 1.37 m bgs<br>/ upon completion<br>ow ground surface'                                            |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| 05379 - PARKING G           | 8 - 2.5<br>- 2.5<br>9                   |                      |              |                                                                                                                           |                                                                                                     |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| DATABASE/11:                |                                         |                      |              |                                                                                                                           |                                                                                                     |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| 379/TECH/LOG                |                                         |                      |              |                                                                                                                           |                                                                                                     |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| 32/11205                    |                                         |                      |              |                                                                                                                           |                                                                                                     |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| ECTS/6                      | - 4.0                                   |                      |              |                                                                                                                           |                                                                                                     |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| <b>\PROJE</b>               | 14 —                                    |                      |              |                                                                                                                           |                                                                                                     |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| RONTO                       | 15 - 4.5                                |                      |              |                                                                                                                           |                                                                                                     |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| CA/TO                       |                                         |                      |              |                                                                                                                           |                                                                                                     |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |
| File: N                     | 16 —                                    |                      |              |                                                                                                                           |                                                                                                     |       |                    |                     |                     |                              |                      |                                                                             |                                                                      |                               |                        |            |

|                                                                                                                                               | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E No.: _                         | 11205379                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                        |       |                    |                     |                     |                                       |                         | ENCLOSURE N                                                                                                                            | lo.:                                       | 20           |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|---------------------|---------------------|---------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------|
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                                                                                                                                                                                                                                                                                                                        | BOREHOLE No.:                                                                                                                                                                                                                                                                   | _     | Ν                  | /W20                | -22                 |                                       | B                       | OREHOL                                                                                                                                 | E REP                                      | ORT          |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                                                                                                                                                                                                                                                                                                                                        | ELEVATION:                                                                                                                                                                                                                                                                      |       | 81                 | .2 m                |                     |                                       |                         | Page: 1                                                                                                                                | of                                         | -            |
|                                                                                                                                               | CLIENT: In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nfrastruc                        | ture Ontario (I.O.)                                                                                                                                                                                                                                                                                                                    | PROJECT: P                                                                                                                                                                                                                                                                      | reli  | minary (           | Geote               | chnica              | al Investigat                         | ion                     | LEGEND                                                                                                                                 |                                            |              |
| 2                                                                                                                                             | LOCATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                               | 01 Smyth Road, Ottav                                                                                                                                                                                                                                                                                                                   | va, Ontario                                                                                                                                                                                                                                                                     |       |                    |                     |                     |                                       |                         | 🛛 ss - s                                                                                                                               | SPLIT SPO                                  | ON           |
| : 1/9/2                                                                                                                                       | DRILLING RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G: <u> </u>                      | rack Drill Rig                                                                                                                                                                                                                                                                                                                         | DRILLING MET                                                                                                                                                                                                                                                                    | HO    | D: <u>203</u>      | mm C                | D Ho                | llow Stem A                           | ugers                   | ST -S                                                                                                                                  | SHELBY TU<br>ROCK COR                      | JBE<br>E     |
| L Date                                                                                                                                        | DESCRIBED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BY: <u>D</u>                     | . Ash                                                                                                                                                                                                                                                                                                                                  | CHECKED BY:                                                                                                                                                                                                                                                                     |       | A. Kha             | ndeka               | ır                  |                                       |                         | ¥ - V                                                                                                                                  | VATER LE                                   | √EL          |
| H+WEL                                                                                                                                         | DATE (STAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RT): <u>1</u> 4                  | 4 July 2022                                                                                                                                                                                                                                                                                                                            | _ DATE (FINISH):                                                                                                                                                                                                                                                                | _     | 14 July            | 2022                |                     |                                       |                         |                                                                                                                                        |                                            |              |
| GRAPI                                                                                                                                         | NORTHING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                               | 027656.2 m                                                                                                                                                                                                                                                                                                                             | EASTING:                                                                                                                                                                                                                                                                        |       | 449095             | 5.7 m               | r                   |                                       | 1                       |                                                                                                                                        |                                            |              |
| 9 SOIL LOG WITH                                                                                                                               | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elevation<br>(m)<br>Strationanhy | DESCR<br>SOIL AN                                                                                                                                                                                                                                                                                                                       | RIPTION OF<br>ID BEDROCK                                                                                                                                                                                                                                                        | State | Type and<br>Number | Recovery/<br>TCR(%) | Moisture<br>Content | Blows per<br>15cm/<br>RQD(%)          | 'N' Value/<br>SCR(%)    | Shear test (Cu)<br>Sensitivity (S)<br>Water conte<br>M <sub>p</sub> W <sub>1</sub><br>Atterberg lin<br>• "N" Value<br>(blows / 12 in30 | △ F<br>□ L<br>ent (%)<br>nits (%)<br>0 cm) | -ield<br>.ab |
| 20537                                                                                                                                         | Feet Metres 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.2                             | GROUN                                                                                                                                                                                                                                                                                                                                  | ND SURFACE                                                                                                                                                                                                                                                                      |       |                    |                     | %                   |                                       |                         | 10 20 30 40 50                                                                                                                         | 60 70 80 9                                 | )0           |
| AltorontoproJects(66211265379TechLoG DATABASE(1205379 - PARKING GARAGE ADDITION.GPJ LIbrary File: 11205379 GHD_GEOTECH_V05.GLB Report: 112055 | Feet       Metres       8         0       -       0.1       8         1       -       -       0.5       2         2       -       0.5       2       -         -       0.5       2       -       0.8       8         3       -       1.0       8       8         4       -       1.0       8       1.0       8         4       -       1.0       7       6       -       7         6       -       2.0       7       -       7       6       -       7         6       -       2.0       7       -       1.6       7       7         6       -       -       2.0       7       -       1.6       7         9       -       -       3.0       -       1.1       1.6       7         10       -       3.0       -       -       1.0       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1       1.1 <td< td=""><td>90.5<br/>90.2<br/>79.6</td><td>ASPHALT : 75 mi<br/>FILL :<br/>SM-GRAVELLY S<br/>clay, brown, mois'<br/>Gravel : 36%, Sar<br/>Clay : 4%<br/>NATIVE :<br/>SP-GP-SAND and<br/>trace clay, brown,<br/>Gravel : 46%, Sar<br/>: 4%<br/>SHALE-BEDROC<br/>Borehole terminat<br/>auger refusal<br/>END OF BOREHO<br/>NOTE :<br/>- End of Borehole<br/>- Monitoring well i<br/>- bgs donates 'bel</td><td>AD SURFACE<br/>m<br/>SAND, some silt, trace<br/>t, compact<br/>nd : 44%, Silt : 16%,<br/>d GRAVEL, trace silt,<br/>moist, dense<br/>nd : 41%, Silt : 9%, Clay<br/>K, weathered, grey<br/>ted due to spoon and<br/>DLE :<br/>at 1.60 m bgs<br/>nstalled at 1.60 m bgs<br/>low ground surface'</td><td></td><td>SS1<br/>SS2<br/>SS3</td><td>58<br/>87<br/>100</td><td><u>5</u><br/>5<br/></td><td>6-10-8-5<br/>8-21-29-27<br/>50/<br/>75mm</td><td>18<br/>50<br/>50/<br/>75mm</td><td></td><td>0 60 70 80 9</td><td></td></td<> | 90.5<br>90.2<br>79.6             | ASPHALT : 75 mi<br>FILL :<br>SM-GRAVELLY S<br>clay, brown, mois'<br>Gravel : 36%, Sar<br>Clay : 4%<br>NATIVE :<br>SP-GP-SAND and<br>trace clay, brown,<br>Gravel : 46%, Sar<br>: 4%<br>SHALE-BEDROC<br>Borehole terminat<br>auger refusal<br>END OF BOREHO<br>NOTE :<br>- End of Borehole<br>- Monitoring well i<br>- bgs donates 'bel | AD SURFACE<br>m<br>SAND, some silt, trace<br>t, compact<br>nd : 44%, Silt : 16%,<br>d GRAVEL, trace silt,<br>moist, dense<br>nd : 41%, Silt : 9%, Clay<br>K, weathered, grey<br>ted due to spoon and<br>DLE :<br>at 1.60 m bgs<br>nstalled at 1.60 m bgs<br>low ground surface' |       | SS1<br>SS2<br>SS3  | 58<br>87<br>100     | <u>5</u><br>5<br>   | 6-10-8-5<br>8-21-29-27<br>50/<br>75mm | 18<br>50<br>50/<br>75mm |                                                                                                                                        | 0 60 70 80 9                               |              |
| File: N:                                                                                                                                      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 |       |                    |                     |                     |                                       |                         |                                                                                                                                        |                                            |              |



| Clie    | Client:<br>Project, Site: | Infrastructure Ontario                                                                               |                       | Lab No.:           | G-21-01           |           |  |  |  |
|---------|---------------------------|------------------------------------------------------------------------------------------------------|-----------------------|--------------------|-------------------|-----------|--|--|--|
| Proj    | ect, Site:                | Proposed Parking Structure<br>Children's Hospital of Eastern Onta<br>401 Smyth Road, Ottawa, Ontario | rio Campus            | _<br>_Project No.: | 11205379-80       |           |  |  |  |
|         | Borehole No.:             | B1-21                                                                                                |                       | Sample No.:        | SS2               |           |  |  |  |
|         | Depth:                    | 0.7-1.0m                                                                                             |                       | Enclosure:         |                   |           |  |  |  |
|         |                           |                                                                                                      |                       |                    |                   |           |  |  |  |
|         | 100                       |                                                                                                      |                       |                    |                   | 0         |  |  |  |
|         | 90                        |                                                                                                      |                       |                    |                   | 10        |  |  |  |
|         | 80 -                      |                                                                                                      |                       |                    |                   | 20        |  |  |  |
|         | 70                        |                                                                                                      |                       |                    |                   |           |  |  |  |
| 5       | 70                        |                                                                                                      |                       |                    |                   |           |  |  |  |
| Passin  | 60                        |                                                                                                      |                       |                    |                   | Ketai 04  |  |  |  |
| rcent I | 50                        |                                                                                                      |                       |                    |                   | 50 DE     |  |  |  |
| Pe      | 40                        |                                                                                                      |                       |                    |                   | <b>Be</b> |  |  |  |
|         | 30                        |                                                                                                      |                       |                    |                   | 60        |  |  |  |
|         |                           |                                                                                                      |                       |                    |                   | 70        |  |  |  |
|         | 20                        |                                                                                                      |                       |                    |                   | 80        |  |  |  |
|         | 10                        |                                                                                                      |                       |                    |                   | 90        |  |  |  |
|         |                           |                                                                                                      |                       |                    |                   |           |  |  |  |
|         | 0.001                     | 0.01 0.1                                                                                             | Diameter (mm)         |                    | 10                | 100       |  |  |  |
|         |                           | Clay & Silt                                                                                          | Sand                  |                    | Gravel            |           |  |  |  |
|         |                           | Particle-Size L                                                                                      | nits as per USCS (AST | 1 D-2487)          |                   |           |  |  |  |
|         |                           | Soil Description                                                                                     | Gravel (%)            | Sand (%)           | Clay & Silt (%)   |           |  |  |  |
|         | s                         | and and Gravel, some Silt, trace Clay                                                                | 39                    | 39                 | 22                |           |  |  |  |
|         |                           | Clay-size particles (<0.002 mm):                                                                     |                       | I                  | 7 %               |           |  |  |  |
| Ren     | narks:                    |                                                                                                      |                       |                    |                   |           |  |  |  |
| Perf    | ormed by:                 | Z. Mathurin                                                                                          |                       | Date:              | February 10, 2021 |           |  |  |  |
| Veri    | fied by:                  | E. Bennett                                                                                           |                       | Date:              | February 17, 2021 |           |  |  |  |



| Clie            | Client:<br>Project, Site:                                                                              | Infrastructure Ontario                                                                               |                     | Lab No.:     | G-21-01          |                                                                     |
|-----------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------|--------------|------------------|---------------------------------------------------------------------|
| Pro             | ject, Site:                                                                                            | Proposed Parking Structure<br>Children's Hospital of Eastern Onta<br>401 Smyth Road, Ottawa, Ontario | rio Campus          | Project No.: | 11205379-80      |                                                                     |
|                 | Borehole No.:                                                                                          | B3-21                                                                                                |                     | Sample No.:  | SS2              |                                                                     |
|                 | Depth:                                                                                                 | 0.7-1.0                                                                                              |                     | Enclosure:   | -                |                                                                     |
| Percent Passing | 100         90         80         70         60         50         40         30         20         10 |                                                                                                      |                     |              |                  | 0<br>10<br>20<br>30<br>40<br>50<br>50<br>50<br>60<br>70<br>80<br>80 |
|                 | 0.001                                                                                                  | 0.01 0.1 Di                                                                                          | ameter (mm)         |              | 10               | 100 100                                                             |
|                 | <b></b>                                                                                                |                                                                                                      | Sand                |              | Gravel           |                                                                     |
|                 |                                                                                                        | Clay & Silt                                                                                          | ine Mediu           | um Coarse    | Fine Coarse      | -                                                                   |
|                 |                                                                                                        | Particle-Size Limit                                                                                  | s as per USCS (ASTM | I D-2487)    |                  |                                                                     |
|                 |                                                                                                        | Soil Description                                                                                     | Gravel (%)          | Sand (%)     | Clay & Silt (%)  |                                                                     |
|                 | San                                                                                                    | ld, some Gravel, some Silt, some Clay                                                                | 19                  | 50           | 31               |                                                                     |
|                 |                                                                                                        | Clay-size particles (<0.002 mm):                                                                     |                     |              | 14 %             |                                                                     |
| Ren             | narks:                                                                                                 |                                                                                                      |                     |              |                  |                                                                     |
| Per             | formed by:                                                                                             | Z. Mathurin                                                                                          |                     | Date:        | February 10, 202 | 21                                                                  |
| Veri            | ified by:                                                                                              | E. Bennett                                                                                           |                     | Date:        | February 17, 202 | 21                                                                  |



| Clie   | Client:<br>Project, Site: | Infrastructure                                | Ontario                                                             |                   | Lab No.:               | G-21-01        |                |
|--------|---------------------------|-----------------------------------------------|---------------------------------------------------------------------|-------------------|------------------------|----------------|----------------|
| Pro    | ject, Site:               | Proposed Par<br>Children's Ho<br>401 Smyth Ro | king Structure<br>spital of Eastern Ontario<br>oad, Ottawa, Ontario | o Campus          | Project No.:           | 11205379-80    |                |
|        | Borehole N                | o.:                                           | BH1-21                                                              |                   | Sample No.:            | Grab           |                |
|        | Depth:                    |                                               | 0.1-0.3m                                                            |                   | Enclosure:             | _              |                |
|        | 100                       |                                               |                                                                     |                   |                        | <b></b>        | •••• 0         |
|        |                           |                                               |                                                                     |                   |                        |                |                |
|        | 90                        |                                               |                                                                     |                   |                        | 1 1            | 10             |
|        | 80                        |                                               |                                                                     |                   |                        |                | 20             |
|        |                           |                                               |                                                                     |                   |                        |                |                |
|        | 70                        |                                               |                                                                     |                   |                        |                | 30             |
| ssing  | 60                        |                                               |                                                                     |                   |                        |                | tained 40      |
| ent Pa | 50                        |                                               |                                                                     |                   |                        |                | but Ke         |
| Perce  | 50                        |                                               |                                                                     |                   |                        |                | Berce 00       |
|        | 40                        |                                               |                                                                     |                   |                        |                | 60             |
|        | 30                        |                                               |                                                                     |                   |                        |                | 70             |
|        | 30                        |                                               |                                                                     |                   |                        |                |                |
|        | 20                        |                                               |                                                                     |                   |                        |                | 80             |
|        | 10                        |                                               |                                                                     |                   |                        |                | 90             |
|        |                           |                                               |                                                                     |                   |                        |                |                |
|        | 0.001                     | 0.01                                          | 0.1<br>Dian                                                         | neter (mm)        |                        | 10             | 100 <u>100</u> |
|        |                           | Clav & Silt                                   |                                                                     | Sand              |                        | Gravel         |                |
|        |                           | ,                                             | Fin<br>Particle-Size Limits                                         | as per USCS (ASTM | ım Coarse<br>I D-2487) | Fine Coarse    | •              |
|        |                           | Soil Desci                                    | ription                                                             | Gravel (%)        | Sand (%)               | Clay & Silt (% | %)             |
|        |                           | Gravel and Sand, trac                         | ce Silt, trace Clay                                                 | 48                | 41                     | 11             |                |
|        |                           |                                               |                                                                     |                   |                        | 3 %            |                |
| Rei    | narks:<br>-               |                                               |                                                                     |                   |                        |                |                |
| Per    | formed by:                | ·                                             | Z. Mathurin                                                         |                   | Date:                  | February 10, 2 | 2021           |
| Ver    | ified by:                 |                                               | E. Bennett                                                          |                   | Date:                  | February 17, 2 | 2021           |



| Clie   | ent:        | Infrastructure Ontario                                                                  |                                    | Lab No.:      | G-21-01           |                                              |  |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------|------------------------------------|---------------|-------------------|----------------------------------------------|--|--|--|--|
| Pro    | ject, Site: | Proposed Parking Structure<br>Children's Hospital of Easte<br>401 Smyth Road, Ottawa, 0 | e<br>ern Ontario Campus<br>Ontario | Project No.:  | 11205379-80       |                                              |  |  |  |  |
|        | Borehole No | .: BH2-21                                                                               |                                    | Sample No.:   | Grab              |                                              |  |  |  |  |
|        | Depth:      | 0.1-0.3r                                                                                | n                                  | Enclosure:    | -                 |                                              |  |  |  |  |
|        |             |                                                                                         |                                    |               |                   |                                              |  |  |  |  |
|        | 100         |                                                                                         |                                    |               |                   | <b>●                                    </b> |  |  |  |  |
|        |             |                                                                                         |                                    |               |                   |                                              |  |  |  |  |
|        | 90          |                                                                                         |                                    |               |                   | 10                                           |  |  |  |  |
|        | 80          |                                                                                         |                                    |               |                   | 20                                           |  |  |  |  |
|        | 70          |                                                                                         |                                    |               |                   | 30                                           |  |  |  |  |
|        | 70          |                                                                                         |                                    |               |                   |                                              |  |  |  |  |
| assinç | 60          |                                                                                         |                                    |               |                   | 40 ketaine                                   |  |  |  |  |
| cent F | 50          |                                                                                         |                                    |               |                   | 50 E                                         |  |  |  |  |
| Per    | 10          |                                                                                         |                                    |               |                   | Per la   |  |  |  |  |
|        | 40 30 20    |                                                                                         |                                    |               |                   | 60                                           |  |  |  |  |
|        |             |                                                                                         |                                    |               |                   | 70                                           |  |  |  |  |
|        |             |                                                                                         |                                    |               |                   | 80                                           |  |  |  |  |
|        |             |                                                                                         |                                    |               |                   |                                              |  |  |  |  |
|        | 10          |                                                                                         |                                    |               |                   | 90                                           |  |  |  |  |
|        | 0.001       | 0.01                                                                                    | 0.1                                | 1             | 10                | 100 <u>100</u>                               |  |  |  |  |
|        |             |                                                                                         | Diameter (mm)                      | - 4           | 2 and             |                                              |  |  |  |  |
|        |             | Clay & Silt                                                                             | Fine                               | Medium Coarse | Fine Coarse       |                                              |  |  |  |  |
|        |             | Particle-                                                                               | Size Limits as per USCS            | (ASTM D-2487) |                   |                                              |  |  |  |  |
|        |             | Soil Description                                                                        | Gravel                             | %) Sand (%)   | Clay & Silt (%    | )                                            |  |  |  |  |
|        |             | Sand and Gravel, trace Silt, trace Cla                                                  | ay 42                              | 50            | 8                 |                                              |  |  |  |  |
|        |             |                                                                                         |                                    |               | 2 %               |                                              |  |  |  |  |
| Rei    | marks:      |                                                                                         |                                    |               |                   |                                              |  |  |  |  |
| Ber    | formed bur  | 7 1.4-4                                                                                 | ourio                              | Data          | Echruczy 40, 00   | )21                                          |  |  |  |  |
| Per    | ionnea by:  | 2. Mat                                                                                  |                                    |               |                   |                                              |  |  |  |  |
| Ver    | ified by:   | E. Ber                                                                                  | nnett                              | Date:         | February 17, 2021 |                                              |  |  |  |  |



| Cli      | Client:<br>Project, Site: | Infrastructure Ontario                                                             |                               |                  | Lab No.:                | G-21-01                        |             |  |  |  |
|----------|---------------------------|------------------------------------------------------------------------------------|-------------------------------|------------------|-------------------------|--------------------------------|-------------|--|--|--|
| Pro      | oject, Site:              | Proposed Parking Structur<br>Children's Hospital of Eas<br>401 Smyth Road, Ottawa, | re<br>tern Ontario<br>Ontario | Campus           | Project No.:            | 11205379-80                    |             |  |  |  |
|          | Borehole No.:             | BH2-2                                                                              | 21                            |                  | Sample No.:             | SS1                            |             |  |  |  |
|          | Depth:                    | 0.5-0.8                                                                            | ßm                            |                  | Enclosure:              | -                              |             |  |  |  |
|          |                           |                                                                                    |                               |                  |                         |                                |             |  |  |  |
|          | 100                       |                                                                                    |                               |                  |                         |                                | ••••        |  |  |  |
|          |                           |                                                                                    |                               |                  |                         |                                |             |  |  |  |
|          | 90                        |                                                                                    |                               |                  |                         |                                | 10          |  |  |  |
|          | 80                        |                                                                                    |                               |                  |                         |                                | 20          |  |  |  |
|          |                           |                                                                                    |                               |                  |                         |                                |             |  |  |  |
|          | 70                        |                                                                                    |                               |                  |                         |                                | 30          |  |  |  |
| sing     | 60                        |                                                                                    |                               |                  |                         |                                | 40 III      |  |  |  |
| t Pas    |                           |                                                                                    |                               |                  |                         |                                | t Reta      |  |  |  |
| ercen    | 50                        |                                                                                    |                               |                  |                         |                                | 50 U        |  |  |  |
| <u>م</u> | 40                        |                                                                                    |                               |                  |                         |                                | 60 <b>L</b> |  |  |  |
|          |                           |                                                                                    |                               |                  |                         |                                |             |  |  |  |
|          | 30                        |                                                                                    |                               |                  |                         |                                | 70          |  |  |  |
|          | 20                        |                                                                                    |                               |                  |                         |                                | 80          |  |  |  |
|          |                           |                                                                                    |                               |                  |                         |                                |             |  |  |  |
|          | 10                        |                                                                                    |                               |                  |                         |                                | 90          |  |  |  |
|          | 0 001                     | 0.01                                                                               | 0.1                           | 1                |                         | 10                             |             |  |  |  |
|          | 0.001                     | 0.01                                                                               | Diame                         | ter (mm)         |                         | 10                             |             |  |  |  |
|          |                           | Clay & Silt                                                                        | Fine                          | Sand             | im Coarse               | Gravel                         | <u> </u>    |  |  |  |
|          |                           | Particle                                                                           | -Size Limits a                | s per USCS (ASTM | D-2487)                 |                                | ·           |  |  |  |
|          |                           | Soil Description                                                                   |                               | Gravel (%)       | Sand (%)                | Clay & Silt (                  | %)          |  |  |  |
|          | S                         | and, some Silt, some Gravel, trace                                                 | Clay                          | 15               | 61                      | 24                             |             |  |  |  |
|          |                           | Clay-size particles (<0.002 mm                                                     | ı):                           |                  |                         | 6 %                            |             |  |  |  |
| Re       | marks:                    |                                                                                    |                               |                  |                         |                                |             |  |  |  |
|          |                           |                                                                                    |                               |                  |                         |                                |             |  |  |  |
| Pe       | formed by:                | Z. Ma                                                                              | thurin                        |                  | Date: February 10, 2021 |                                |             |  |  |  |
| Ve       | ified by:                 | E. Be                                                                              | ennett                        |                  | Date:                   | <b>Date:</b> February 17, 2021 |             |  |  |  |



| Clie   | Client:<br>Project, Site: | Infrastructure                              | e Ontario                                                             |                   | Lab No.:            | G-21-01                               |                |
|--------|---------------------------|---------------------------------------------|-----------------------------------------------------------------------|-------------------|---------------------|---------------------------------------|----------------|
| Pro    | ject, Site:               | Proposed Pa<br>Children's Ho<br>401 Smyth R | rking Structure<br>ospital of Eastern Ontario<br>oad, Ottawa, Ontario | o Campus          | Project No.:        | 11205379-80                           |                |
|        | Borehole N                | o.:                                         | BH4-21                                                                |                   | Sample No.:         | SS1                                   |                |
|        | Depth:                    |                                             | 0.2-0.5m                                                              |                   | Enclosure:          | -                                     |                |
|        | 100                       |                                             |                                                                       |                   |                     | · · · · · · · · · · · · · · · · · · · | ••••           |
|        | 90                        |                                             |                                                                       |                   |                     |                                       | 10             |
|        | 30                        |                                             |                                                                       |                   |                     |                                       | 10             |
|        | 80                        |                                             |                                                                       |                   |                     |                                       | 20             |
|        | 70                        |                                             |                                                                       |                   |                     |                                       | 30             |
| _      | 10                        |                                             |                                                                       |                   |                     |                                       | σ              |
| assing | 60                        |                                             |                                                                       |                   |                     |                                       | etaine 40      |
| ent P  | 50                        |                                             |                                                                       |                   |                     |                                       | 50 B           |
| Perc   |                           |                                             |                                                                       |                   |                     |                                       | Perc Perc      |
|        | 40                        |                                             |                                                                       |                   |                     |                                       | 60             |
|        | 30                        |                                             |                                                                       |                   |                     |                                       | 70             |
|        |                           |                                             |                                                                       |                   |                     |                                       |                |
|        | 20                        |                                             |                                                                       |                   |                     |                                       | 80             |
|        | 10                        |                                             |                                                                       |                   |                     |                                       | 90             |
|        | -                         |                                             |                                                                       |                   |                     |                                       |                |
|        | 0.001                     | 0.01                                        | 0.1<br>Dian                                                           | neter (mm)        |                     | 10                                    | 100 <u>100</u> |
|        |                           | Clay & Silt                                 |                                                                       | Sand              |                     | Gravel                                |                |
|        |                           |                                             | Fin<br>Particle-Size Limits                                           | as per USCS (ASTM | um Coarse I D-2487) | Fine Coars                            | e              |
|        |                           | Soil Desc                                   | ription                                                               | Gravel (%)        | Sand (%)            | Clay & Silt (                         | %)             |
|        |                           | Gravel and Sand, tra                        | ice Silt, trace Clay                                                  | 46                | 41                  | 13                                    |                |
|        |                           |                                             |                                                                       |                   |                     | 3 %                                   |                |
| Rer    | narks:                    |                                             |                                                                       |                   |                     |                                       |                |
| Per    | formed by                 | :                                           | Z. Mathurin                                                           |                   | Date:               | February 10,                          | 2021           |
| Ver    | ified by:                 |                                             | E. Bennett                                                            |                   | Date:               | February 17,                          | 2021           |



| Clie  | Client:<br>Project, Site: | Infrastructure Ontario                                                                         |                         | Lab No.:                       | G-21-01         |                |  |  |
|-------|---------------------------|------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|-----------------|----------------|--|--|
| Pro   | ject, Site:               | Proposed Parking Structure<br>Children's Hospital of Eastern (<br>401 Smyth Road, Ottawa, Onta | ntario Campus<br>io     | -<br>Project No.:              | 11205379-80     |                |  |  |
|       | Borehole No.:             | MW5-21                                                                                         |                         | Sample No.:                    | Grab            |                |  |  |
|       | Depth:                    | 0.1-0.3m                                                                                       |                         | Enclosure:                     | -               |                |  |  |
|       |                           |                                                                                                |                         |                                |                 |                |  |  |
|       |                           |                                                                                                |                         |                                |                 |                |  |  |
|       | 100                       |                                                                                                |                         |                                |                 | 0              |  |  |
|       |                           |                                                                                                |                         |                                |                 |                |  |  |
|       | 90                        |                                                                                                |                         |                                |                 | 10             |  |  |
|       | 80                        |                                                                                                |                         |                                |                 | 20             |  |  |
|       |                           |                                                                                                |                         |                                |                 |                |  |  |
|       | 70                        |                                                                                                |                         |                                |                 | 30             |  |  |
| ssing | 60                        |                                                                                                |                         | /                              |                 | 40 tained      |  |  |
| nt Pa | 50                        |                                                                                                |                         |                                |                 | ut Kei         |  |  |
| Perce | 50                        |                                                                                                |                         |                                |                 | 50 Berce       |  |  |
|       | 40                        |                                                                                                |                         |                                |                 | 60             |  |  |
|       | 20                        |                                                                                                |                         |                                |                 |                |  |  |
|       | 30                        |                                                                                                |                         |                                |                 | 70             |  |  |
|       |                           |                                                                                                |                         |                                |                 | 80             |  |  |
|       | 10                        |                                                                                                |                         |                                |                 |                |  |  |
|       | 10                        |                                                                                                |                         |                                |                 | 90             |  |  |
|       | 0.001                     | 0.01 0                                                                                         | 1                       |                                | 10              | 100 <u>100</u> |  |  |
|       |                           |                                                                                                | Diameter (mm)           |                                |                 |                |  |  |
|       |                           | Clay & Silt                                                                                    | Sand                    | um Coorco                      | Gravel          |                |  |  |
|       |                           | Particle-Size                                                                                  | imits as per USCS (ASTM | /I D-2487)                     |                 |                |  |  |
|       |                           |                                                                                                |                         | <b>I</b>                       |                 |                |  |  |
|       |                           | Soil Description                                                                               | Gravel (%)              | Sand (%)                       | Clay & Silt (%) |                |  |  |
|       | G                         | ravel and Sand, some Silt, trace Clay                                                          | 43                      | 41                             | 16              |                |  |  |
|       |                           | Clay-size particles (<0.002 mm):                                                               |                         |                                | 3 %             |                |  |  |
|       |                           | · · · · /                                                                                      |                         |                                |                 |                |  |  |
| Ren   | narks:                    |                                                                                                |                         |                                |                 |                |  |  |
|       |                           |                                                                                                |                         |                                |                 |                |  |  |
| Per   | formed by:                | Z. Mathuri                                                                                     |                         | Date: February 10, 2021        |                 |                |  |  |
| Ver   | fied by:                  | E. Bennet                                                                                      |                         | <b>Date:</b> February 17, 2021 |                 |                |  |  |



| Clie   | Client:<br>Project, Site: | Infrastructure Ontario                                                                               |              | Lab No.:     | G-21-01                               |                                        |
|--------|---------------------------|------------------------------------------------------------------------------------------------------|--------------|--------------|---------------------------------------|----------------------------------------|
| Pro    | ject, Site:               | Proposed Parking Structure<br>Children's Hospital of Eastern Onta<br>401 Smyth Road, Ottawa, Ontario | rio Campus   | Project No.: | 11205379-80                           |                                        |
|        | Borehole No.:             | MW5-21                                                                                               |              | Sample No.:  | SS1                                   |                                        |
|        | Depth:                    | 0.5-0.8m                                                                                             |              | Enclosure:   | -                                     |                                        |
|        | ·                         |                                                                                                      |              |              |                                       |                                        |
|        |                           |                                                                                                      |              |              |                                       |                                        |
|        | 100                       |                                                                                                      |              |              | · · · · · · · · · · · · · · · · · · · | •••••••••••••••••••••••••••••••••••••• |
|        |                           |                                                                                                      |              |              |                                       |                                        |
|        | 90                        |                                                                                                      |              |              |                                       | 10                                     |
|        | 80                        |                                                                                                      |              |              |                                       | 20                                     |
|        | _                         |                                                                                                      |              |              |                                       |                                        |
|        | 70                        |                                                                                                      |              |              |                                       | 30                                     |
| ssing  | 60                        |                                                                                                      |              |              |                                       | 40 stained                             |
| ent Pa | 50                        |                                                                                                      |              |              |                                       | ant Re                                 |
| Perce  | 50                        |                                                                                                      |              |              |                                       | Berce 02                               |
|        | 40                        |                                                                                                      |              |              |                                       | 60                                     |
|        | 30                        |                                                                                                      |              |              |                                       | 70                                     |
|        |                           |                                                                                                      |              |              |                                       |                                        |
|        | 20                        |                                                                                                      |              |              |                                       | 80                                     |
|        | 10                        |                                                                                                      |              |              |                                       | 90                                     |
|        |                           |                                                                                                      |              |              |                                       |                                        |
|        | 0.001                     | 0.01 0.1                                                                                             | iameter (mm) |              | 10                                    | 100 <u>100</u>                         |
|        |                           |                                                                                                      | Sand         |              | Gravel                                |                                        |
|        |                           | Cidy & Silt                                                                                          | Fine Mediu   | um Coarse    | Fine Coarse                           | _                                      |
|        |                           | Falticle-Size Lini                                                                                   |              | 1 D-2487)    |                                       |                                        |
|        |                           | Soil Description                                                                                     | Gravel (%)   | Sand (%)     | Clay & Silt (%)                       |                                        |
|        | (                         | Gravelly Sand, some Silt, trace Clay                                                                 | 23           | 49           | 28                                    |                                        |
|        |                           | Clay-size particles (<0.002 mm):                                                                     |              |              | 8 %                                   |                                        |
| Rer    | narks:                    |                                                                                                      |              |              |                                       |                                        |
|        |                           |                                                                                                      |              |              |                                       |                                        |
| Per    | formed by:                | Z. Mathurin                                                                                          |              | Date:        | February 10, 202                      | 21                                     |
| Ver    | ified by:                 | E. Bennett                                                                                           |              | Date:        | February 17, 202                      | 21                                     |



| Clie   | Client:<br>Project, Site: | Infrastructure Ontario                                                                              |                       | Lab No.:     | G-21-01          |               |
|--------|---------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|--------------|------------------|---------------|
| Pro    | ject, Site:               | Proposed Parking Structure<br>Children's Hospital of Eastern Ont<br>401 Smyth Road, Ottawa, Ontario | ario Campus           | Project No.: | 11205379-80      |               |
|        | Borehole No.:             | MW6-21                                                                                              |                       | Sample No.:  | SS2              |               |
|        | Depth:                    | 0.8-1.1m                                                                                            |                       | Enclosure:   | -                |               |
|        |                           |                                                                                                     |                       |              |                  |               |
|        |                           |                                                                                                     |                       |              |                  |               |
|        | 100                       |                                                                                                     |                       |              |                  |               |
|        | 90                        |                                                                                                     |                       |              |                  | 10            |
|        |                           |                                                                                                     |                       |              |                  |               |
|        | 80                        |                                                                                                     |                       |              |                  | 20            |
|        | 70                        |                                                                                                     |                       |              |                  | 30            |
| bu     | 60                        |                                                                                                     |                       |              |                  | l do u        |
| Passi  | 60                        |                                                                                                     |                       |              |                  | Retai         |
| ercent | 50                        |                                                                                                     |                       |              |                  | 50 <b>tu</b>  |
| Pe     | 40                        |                                                                                                     |                       |              |                  | <b>– –</b> 60 |
|        | 40                        |                                                                                                     |                       |              |                  |               |
|        | 30                        |                                                                                                     |                       |              |                  | 70            |
|        | 20                        |                                                                                                     |                       |              |                  | 80            |
|        |                           |                                                                                                     |                       |              |                  |               |
|        | 10                        |                                                                                                     |                       |              |                  | 90            |
|        | 0 001                     |                                                                                                     | 1                     |              | 10               | 100           |
|        | 0.001                     |                                                                                                     | Diameter (mm)         |              |                  | 7             |
|        |                           | Clay & Silt                                                                                         | Sand<br>Fine Mediu    | um Coarse    | Gravel           |               |
|        |                           | Particle-Size Lim                                                                                   | its as per USCS (ASTN | 1 D-2487)    |                  |               |
|        |                           | Soil Description                                                                                    | Gravel (%)            | Sand (%)     | Clay & Silt (%)  |               |
|        | (                         | Gravelly, Sand, some Silt, trace Clay                                                               | 32                    | 45           | 23               |               |
|        |                           | Clay-size particles (<0.002 mm):                                                                    |                       |              | 7 %              |               |
| Rei    | narks:                    |                                                                                                     |                       |              |                  |               |
|        |                           |                                                                                                     |                       |              |                  |               |
| Per    | formed by:                | Z. Mathurin                                                                                         |                       | Date:        | February 10, 202 | 1             |
| Ver    | ified by:                 | E. Bennett                                                                                          |                       | Date:        | February 17, 202 | 1             |



| Clie            | Client:<br>Project, Site:                       | Infrastructure Ontario                                                                  |                                                      | Lab No.:                | G-21-01          |                                              |  |  |  |
|-----------------|-------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------|------------------|----------------------------------------------|--|--|--|
| Pro             | ject, Site:                                     | Proposed Parking Structure<br>Children's Hospital of Easte<br>401 Smyth Road, Ottawa, 0 | e<br>ern Ontario Campus<br>Ontario                   | Project No.:            | 11205379-80      |                                              |  |  |  |
|                 | Borehole No.:                                   | MW8-21                                                                                  |                                                      | Sample No.:             | Grab             |                                              |  |  |  |
|                 | Depth:                                          | 0.0-0.3n                                                                                | ו                                                    | Enclosure:              | -                |                                              |  |  |  |
|                 | 90                                              |                                                                                         |                                                      |                         |                  | 0                                            |  |  |  |
|                 | 80                                              |                                                                                         |                                                      |                         |                  | 20                                           |  |  |  |
| Percent Passing | 70       60       50       40       30       20 |                                                                                         |                                                      |                         |                  | 30<br>40<br>50<br>50<br>60<br>60<br>70<br>80 |  |  |  |
|                 | 10                                              |                                                                                         |                                                      |                         |                  | 90                                           |  |  |  |
|                 | 0.001                                           | 0.01                                                                                    | 0.1 Diameter (mm)                                    | 1                       | 10               | 100 100                                      |  |  |  |
|                 |                                                 |                                                                                         | Sand                                                 |                         | Gravel           |                                              |  |  |  |
|                 |                                                 | Particle-                                                                               | Fine Mee<br>Size Limits as per USCS (AS <sup>-</sup> | dium Coarse             | Fine Coarse      |                                              |  |  |  |
|                 |                                                 | Soil Description                                                                        | Gravel (%)                                           | Sand (%)                | Clay & Silt (%)  |                                              |  |  |  |
|                 |                                                 | Sandy Gravel, trace Silt, trace Clay                                                    | 61                                                   | 33                      | 6                |                                              |  |  |  |
|                 |                                                 |                                                                                         |                                                      |                         | 2 %              |                                              |  |  |  |
| Rei             | narks:                                          |                                                                                         |                                                      |                         |                  |                                              |  |  |  |
| Per             | formed by:                                      | Z. Math                                                                                 | nurin                                                | Date:                   | February 10, 202 | 21                                           |  |  |  |
| Ver             | ified by:                                       | E. Ben                                                                                  | nett                                                 | Date: February 17, 2021 |                  |                                              |  |  |  |



| Clie            | ent:                                                          |                                                  |      |                |           |       |               | Infra          | astri    | uct  | ure  | e 0  | ntar    | io  |        |     |     |                              |       | La    | bl  | No.: |      |            |   |     |       | (    | G-2 | 2-0  | 3    |   |     |                                                         |                  |
|-----------------|---------------------------------------------------------------|--------------------------------------------------|------|----------------|-----------|-------|---------------|----------------|----------|------|------|------|---------|-----|--------|-----|-----|------------------------------|-------|-------|-----|------|------|------------|---|-----|-------|------|-----|------|------|---|-----|---------------------------------------------------------|------------------|
| Pro             | ject,                                                         | Site:                                            |      |                |           |       |               | С              | hild     | ren  | h H  | os   | oital   |     |        |     |     |                              |       | _Pr   | oje | ctl  | No.  | .:         | _ |     |       | 1    | 120 | )537 | 79   |   |     |                                                         |                  |
|                 | Bore                                                          | hole No.:                                        |      |                |           |       |               |                | BH       | 10-  | 22   |      |         |     |        |     |     |                              | _     | Sa    | mp  | le N | lo.: |            | _ |     |       |      | SS  | S-1  |      |   |     |                                                         |                  |
|                 | Dept                                                          | h:                                               |      |                |           |       |               |                | 0 - 0    | 0,61 | 1 m  | 1    |         |     |        |     |     |                              | -     | En    | clo | sure | e:   |            | - |     |       |      |     | -    |      |   |     |                                                         |                  |
| Percent Passing | 100 -<br>90 -<br>80 -<br>70 -<br>50 -<br>30 -<br>20 -<br>10 - |                                                  |      |                |           |       |               |                |          |      |      |      |         |     |        |     |     |                              |       |       |     |      |      |            |   |     | /     | /    |     |      |      |   |     | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | Percent Retained |
|                 | 0.00                                                          | 01                                               | -    | •              | 0         | .01   |               |                |          |      |      | 0.   | 1<br>Di | ame | ter (r | nm) |     |                              | 1     |       |     |      |      |            |   | 1   | 0     |      |     |      |      |   | 100 | 100<br>0                                                | )                |
|                 | Г                                                             |                                                  |      |                |           |       |               |                |          |      | -    |      |         |     |        |     | Sa  | nd                           |       |       |     |      |      |            |   |     |       | Grav | /el |      |      | 7 |     |                                                         |                  |
|                 |                                                               |                                                  |      | Cla            | ay 8      | Silt  |               |                |          |      |      |      | F       | ine |        |     |     | N                            | /ledi | um    |     | Co   | ars  | e          |   | Fir | ne    |      | C   | Coar | se   |   |     |                                                         |                  |
|                 | L                                                             |                                                  |      |                |           |       |               |                | Part     | icle | -Si  | ze l | Limit   | s a | s pe   | r U | SCS | (A                           | STN   | 1 D-2 | 487 | )    |      |            |   |     |       |      |     |      |      |   |     |                                                         |                  |
|                 |                                                               |                                                  |      | s              | Soil      | Des   | crip          | tion           |          |      |      |      |         |     | (      | Gra | vel | (%                           | )     |       | s   | and  | (%   | <b>)</b> ) |   |     |       | Cla  | у&  | Silt | t (% | ) |     |                                                         |                  |
|                 |                                                               | Gravel and Sand, with Some Silt and Traces of Cl |      |                |           |       |               |                |          |      | Clay | '    |         |     | 43     |     |     |                              |       | 43    | 3   |      |      |            |   |     | 1     | 4    |     |      |      |   |     |                                                         |                  |
|                 | -                                                             |                                                  | Clay | Silt-<br>-size | siz<br>pa | e par | ticle<br>s (% | es (%<br>6) (< | %):<br>: | 02 I | mm   | ו):  |         |     | 11     |     |     |                              |       |       |     |      |      |            |   |     |       |      |     |      |      |   |     |                                                         |                  |
| _               |                                                               |                                                  | -    |                | _         |       | •             |                |          |      |      |      |         | _   |        |     |     |                              |       |       |     |      |      |            |   |     |       |      |     | _    |      | _ |     | _                                                       |                  |
| Rei             | More information is available upon request.                   |                                                  |      |                |           |       |               |                |          |      |      |      |         |     |        |     |     |                              |       |       |     |      |      |            |   |     |       |      |     |      |      |   |     |                                                         |                  |
| Per             | formed by:J. Lalonde                                          |                                                  |      |                |           |       |               |                |          |      | )    |      |         |     |        |     |     | <b>Date:</b> August 15, 2022 |       |       |     |      |      |            |   |     |       |      |     |      |      |   |     |                                                         |                  |
| Ver             | ified                                                         | ried by: J. Lalonde                              |      |                |           |       |               |                |          |      |      |      |         |     |        |     |     |                              | I     | Dat   | e:  |      | -    |            | A | ugı | ust 2 | 24,  | 202 | 22   |      |   |     |                                                         |                  |



| Client:                                                           | : Infrastructure Onta |       |        |                        |                          |                                                  |                                                  |                      |                             |             |             | Onta   | irio |                              |        |     |                  |           | La  | b N          | o.:              |            |             | _ | G-22-03 |       |     |      |                 |          |    | _ |  |   |                  |
|-------------------------------------------------------------------|-----------------------|-------|--------|------------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|----------------------|-----------------------------|-------------|-------------|--------|------|------------------------------|--------|-----|------------------|-----------|-----|--------------|------------------|------------|-------------|---|---------|-------|-----|------|-----------------|----------|----|---|--|---|------------------|
| Project, S                                                        | Site:                 |       |        |                        |                          |                                                  |                                                  | (                    | Child                       | dre         | n ŀ         | los    | pita | l                            |        |     |                  |           |     | _Pro         | oje              | ct N       | lo.:        |   | _       |       |     | 1    | 120             | 537      | 79 |   |  | _ |                  |
| Boreh<br>Depth                                                    | nole N<br>n:          | lo.:  |        |                        |                          |                                                  |                                                  |                      | Bł<br>0 -                   | -111<br>0,6 | -22<br>61 r | 2<br>m |      |                              |        |     |                  |           | -   | Sar<br>End   | mpl <sup>i</sup> | e N<br>ure | o.:<br>:    |   | -       |       |     |      | SS              | 6-1<br>- |    |   |  | _ |                  |
| 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0.00 | 1                     | Grave | e info | CI<br>CI<br>CI<br>Silt | lay<br>So<br>and<br>stio | 0.01<br>8. Si<br>il Do<br>, wit<br>ze p<br>artic | lit<br>escri<br>h Tra<br>partic<br>cles<br>avail | iptio<br>aces<br>(%) | Par<br>n<br>(%) ::<br>(<0.( | rticl       | le-S        |        | Limi | Diamo                        | eter ( | mm) | Sa<br>Scs<br>Scs | Ind N (%) |     | um<br>1 D-24 |                  | Coa        | arse<br>(%) |   |         | 1     | 0   | Grav | /el<br>y &<br>1 | coars    |    |   |  |   | Percent Retained |
|                                                                   |                       |       |        |                        |                          |                                                  |                                                  |                      |                             |             |             |        |      |                              |        |     |                  |           |     |              |                  |            |             |   |         |       |     |      |                 |          | _  |   |  |   |                  |
| Performe                                                          | formed by: J. Lalonde |       |        |                        |                          |                                                  |                                                  |                      |                             | e           |             |        |      |                              |        |     | _                | D         | ate | <b>:</b>     |                  | _          |             | A | ugı     | ust ′ | 11, | 202  | 2               |          | _  |   |  |   |                  |
| Verified I                                                        | rmed by: J. Lalonde   |       |        |                        |                          |                                                  |                                                  |                      |                             |             |             |        |      | <b>Date:</b> August 24, 2022 |        |     |                  |           |     |              |                  |            | _           |   |         |       |     |      |                 |          |    |   |  |   |                  |



| Clie            | nt:                                                                             |                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inf                               | rastru         | ıctu         | ire     | Ontario                             |  |     |                                                     |                  | La           | b No           | .:          |    |     | G-2  | 2-03       | 1                                                                 | <br>                                                                       |
|-----------------|---------------------------------------------------------------------------------|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|--------------|---------|-------------------------------------|--|-----|-----------------------------------------------------|------------------|--------------|----------------|-------------|----|-----|------|------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|
| Proj            | ect, Site:                                                                      |                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (                                 | Childr         | ren          | Ho      | spital                              |  |     |                                                     |                  | _Pr          | oject          | No.:        |    |     | 1120 | )537       | 9                                                                 | <br>_                                                                      |
|                 | Borehole No.<br>Depth:                                                          | :                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | BH1<br>0 - 0   | 12-2<br>),61 | 22<br>m |                                     |  |     |                                                     | _                | Sa<br>En     | mple<br>closui | No.:<br>re: |    |     | S    | S-1<br>-   |                                                                   | <br>_                                                                      |
| Percent Passing | 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0<br>0.001<br>Grav | vel, with \$                | Clay<br>Somo | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | criptio<br>and Si<br>ticles (%) ( | Parti n (<0.00 |              |         | 0.1 Diam<br>Fin<br>e Limits<br>Clay |  | mm) | San<br>CS (<br>//////////////////////////////////// | d<br>Med<br>ASTI | ium<br>M D-2 |                | oarse       | 10 | Gra | ay & | Coars Silt | •••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•••<br>•• | D<br>10<br>20<br>30<br>40<br>50<br>50<br>50<br>60<br>70<br>80<br>90<br>100 |
| Rem             | Remarks: More information is available upon request.                            |                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                |              |         |                                     |  |     |                                                     |                  |              |                |             |    |     |      | <br>       |                                                                   |                                                                            |
| Perf            | erformed by:                                                                    |                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                |              |         |                                     |  |     |                                                     |                  |              | Da             | te:         |    | Aug | gust | 11, 2      | 2022                                                              | _                                                                          |
| Veri            | fied by:                                                                        | d by: Date: August 24, 2022 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                |              |         |                                     |  |     | <br>_                                               |                  |              |                |             |    |     |      |            |                                                                   |                                                                            |



| Clie            | nt:                                                                                                                                                                            | _       |        |      |          | Int     | frastr      | uctu         | ıre     | Onta   | irio   |        |                       |                  | Li       | ab N          | lo.:            |             | _ |    |     | G-2              | 2-03     | 3    |   |                                                                                      |                       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|------|----------|---------|-------------|--------------|---------|--------|--------|--------|-----------------------|------------------|----------|---------------|-----------------|-------------|---|----|-----|------------------|----------|------|---|--------------------------------------------------------------------------------------|-----------------------|
| Pro             | ect, Site                                                                                                                                                                      | : _     |        |      |          |         | Child       | ren          | Ho      | ospita | l      |        |                       |                  | _P       | roje          | ct N            | o.:         |   |    | 1   | 120              | )537     | 9    |   |                                                                                      |                       |
|                 | Borehole<br>Depth:                                                                                                                                                             | No.:    |        |      |          |         | BH<br>0 - ( | 14-2<br>0,61 | 22<br>m |        |        |        |                       | _                | Sa<br>Er | ampl<br>nclos | e No<br>sure:   | <b>)</b> .: | _ |    |     | SS               | S-1<br>- |      |   |                                                                                      |                       |
| Percent Passing | 100       90         80       90         70       60         50       90         40       90         30       90         20       90         10       90         0       0.001 | Sandy   | Grav   |      | 0.01     |         | Part        |              | -Siz    | 0.1 C  | Diamet | ter (m | San<br>CS (<br>rel (' | d<br>Med<br>ASTI |          | 2487          | Coa<br>)<br>and | rse<br>(%)  |   | 10 | Gra | vel<br>c<br>ay & | Coars    | -••• |   | - 0<br>- 10<br>- 20<br>- 30<br>- 40<br>- 50<br>- 60<br>- 70<br>- 80<br>- 90<br>- 100 | 0<br>Percent Retained |
|                 |                                                                                                                                                                                | Cla     | iy-siz | e p  | article  | s (%)   | (<0.0       | 02 n         | nm)     | ):     |        |        |                       |                  |          |               |                 |             |   |    |     |                  |          |      |   |                                                                                      |                       |
| Ren             | narks:                                                                                                                                                                         | More in | nform  | atic | on is av | ailable | e upor      | n rec        | que     | st.    |        |        |                       |                  |          |               |                 |             |   |    |     |                  |          |      |   | <u> </u>                                                                             |                       |
| Per             | ormed b                                                                                                                                                                        | y:      |        |      |          |         | J.          | Lal          | on<br>( | de     |        |        |                       |                  |          | 0             | Date            | :           | _ |    | Aug | ust ′            | 11, 2    | 2022 | 2 |                                                                                      |                       |
| Ver             | fied by: Date: August 24, 2022                                                                                                                                                 |         |        |      |          |         |             |              |         |        |        |        |                       |                  |          |               |                 |             |   |    |     |                  |          |      |   |                                                                                      |                       |



| Cli     | ent:                     |                       |                          |       |              |                |        | Infr          | asti         | ruct  | tur | e C  | Onta | ario        | )         |       |     |       |          |             | La            | bľ  | No.      |            |     | _   |     |    |     | G-2  | 22-0 | )3   |             |    |             |         |
|---------|--------------------------|-----------------------|--------------------------|-------|--------------|----------------|--------|---------------|--------------|-------|-----|------|------|-------------|-----------|-------|-----|-------|----------|-------------|---------------|-----|----------|------------|-----|-----|-----|----|-----|------|------|------|-------------|----|-------------|---------|
| Pro     | oject,                   | , Site:               |                          |       |              |                |        | C             | Chilo        | lrer  | n H | los  | pita | al          |           |       |     |       |          |             | _Pro          | oje | ect      | No.        | .:  | -   |     |    | 1   | 120  | )53  | 79   |             |    |             |         |
|         | Bore                     | ehole No.:            |                          |       |              |                |        |               | Bŀ           | 115   | -22 | 2    |      |             |           |       |     |       |          |             | Sa            | mp  | le N     | lo.:       |     |     |     |    |     | S    | S-1  |      |             |    |             |         |
|         | Dep                      | oth:                  |                          |       |              |                |        |               | 0 -          | 0,6   | 1 n | n    |      |             |           |       |     |       |          |             | En            | clo | sure     | <b>e</b> : |     | _   |     |    |     |      | -    |      |             |    |             |         |
|         |                          |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    |             |         |
|         | 100 -                    | <b></b>               |                          |       |              |                |        |               | 1 1          |       |     |      | 1    |             |           |       |     |       |          |             |               |     |          | 1          |     |     |     | 1  |     |      | -•   | ┍─₱  | ┍┍┥         | •  | - 0         |         |
|         | 90 -                     |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    | - 10        |         |
|         |                          |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    |             |         |
|         | 80 -                     |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     | Ι   |    |     |      |      |      |             |    | - 20        |         |
|         | 70 -                     |                       |                          |       |              |                |        |               |              | 1     |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     | Ϊ   |     |    |     |      |      |      |             |    | - 30        | ъ       |
| Passing | 60 -                     |                       |                          | +     |              |                |        |               |              | +     |     |      |      |             |           |       | -   |       |          |             |               |     |          |            | /   |     |     |    |     |      |      |      | +           |    | - 40        | Retaine |
| ercent  | 50 -                     |                       |                          | +     |              |                |        |               |              | +     |     |      |      |             |           |       |     |       |          |             |               |     |          | /          |     |     |     |    |     |      |      |      | +           |    | - 50        | ercent  |
|         | 40 -                     |                       |                          |       |              |                |        |               |              | _     |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    | - 60        |         |
|         | 30 -                     |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      | $\parallel$ |    | - 70        |         |
|         | 20 -                     |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    | - 80        |         |
|         | 20                       |                       |                          |       |              |                |        |               |              |       |     |      | -    | ~           | $\square$ |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    | 00          |         |
|         | 10 -                     |                       | -                        | •     | +            | ┿┥╸            |        | -             | -            |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      | Ħ           |    | - 90        |         |
|         | 0 -<br>0.0               | 001                   |                          |       |              | 0.01           |        |               |              |       |     | 0    | 0.1  | Dian        | nete      | r (mi | m)  |       |          | 1           |               |     |          |            |     |     | 1   | 0  |     |      |      |      |             | 10 | - 100<br>00 | 0       |
|         |                          |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           |       |     | Sa    | nd       |             |               |     |          |            |     |     |     |    | Gra | vel  |      |      |             |    |             |         |
|         |                          |                       |                          | CI    | ay           | & SIII         |        |               | Pa           | rticl | e-S | Size | Lin  | Fir<br>nits | ne<br>as  | per   | US  | cs    | M<br>(As | ledi<br>STI | ium<br>VI D-2 | 487 | Co<br>7) | ars        | e   |     | Fi  | ne |     | (    | Соа  | rse  | _           |    |             |         |
|         | l                        |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    |             |         |
|         |                          |                       |                          | ;     | Soi          | il De:         | scrip  | otio          | n            |       |     |      |      |             |           | G     | rav | /el ( | (%)      | )           |               | S   | and      | I (%       | 5)  |     |     |    | Cla | ay & | Sil  | t (% | »)          |    |             |         |
|         |                          | Sand a                | nd Gr                    | avel, | wit          | th So          | me     | Silt a        | and          | Tra   | ces | s of | Cla  | ау          |           |       | 4   | 40    |          |             |               |     | 4        | 7          |     |     |     |    |     | 1    | 13   |      |             |    |             |         |
|         |                          |                       | Clav                     | Silt  | -siz<br>e pa | ze pa<br>artic | articl | les (<br>%) ( | %) :<br><0.0 | 002   | mi  | m):  |      |             |           |       |     |       |          |             |               |     |          |            | 1   | 0   |     |    |     |      |      |      |             |    |             |         |
|         |                          |                       | ,                        |       | -            |                |        | , (           |              |       |     | ,    |      |             | 1         |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    |             |         |
| Re      | mark                     | ά <b>s:</b> <u>Μα</u> | ore inf                  | orma  | tio          | n is a         | ivaila | able          | upo          | n re  | equ | iest | t.   |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    |             |         |
|         |                          |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    |             |         |
| Pe      | Performed by: J. Lalonde |                       |                          |       |              |                |        |               |              |       |     |      |      |             |           | _     | I   | Dat   | e:       |             | -             |     | A        | ۱ug        | ust | 11, | 202 | 22 |     |      |      |      |             |    |             |         |
| Ve      | rified                   | l by:                 | y: Date: August 24, 2022 |       |              |                |        |               |              |       |     |      |      |             |           |       |     |       |          |             |               |     |          |            |     |     |     |    |     |      |      |      |             |    |             |         |



| Clie      | ent:                     |         |      |       |             |             |            |                  | In             | fras       | truc      | ctur  | re                    | On  | tario | )    |       |     |          |    |     | Lab  | ) N  | o.:  |      |        |   |      |   | G    | -22  | -03    | i   |          |            | _          |
|-----------|--------------------------|---------|------|-------|-------------|-------------|------------|------------------|----------------|------------|-----------|-------|-----------------------|-----|-------|------|-------|-----|----------|----|-----|------|------|------|------|--------|---|------|---|------|------|--------|-----|----------|------------|------------|
| Pro       | ject                     | , Site: | :    |       |             |             |            |                  |                | Chi        | ldre      | en H  | Ю                     | spi | tal   |      |       |     |          |    |     | Pro  | jec  | t N  | lo.: |        |   |      |   | 11   | 205  | 5379   | 9   |          |            | _          |
|           | Bor                      | ehole   | No.: |       |             |             |            |                  |                | В          | 3H10      | 6-22  | 2                     |     |       |      |       |     |          |    |     | San  | nple | e No | o.:  |        |   |      |   |      | SS   | -1     |     |          |            | _          |
|           | Dep                      | oth:    |      | _     |             |             |            |                  |                | 0          | - 0,      | 61 ı  | m                     |     |       |      |       |     |          |    |     | Enc  | losi | ure: |      |        |   |      |   |      | -    | ·      |     |          |            | _          |
|           |                          |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     |      |      |      |      |        |   |      |   |      |      |        |     |          |            |            |
|           | 100                      |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     |      |      |      |      |        |   |      | _ |      | •    | •      | -•• | ┝╋       | <b>∩</b> ° |            |
|           | 90                       |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     |      |      |      |      |        |   |      | - |      |      |        | +   |          | - 1(       | 0          |
|           | 80                       |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     |      |      |      |      |        |   | /    |   |      |      |        | +   |          | - 20       | 0          |
| 5         | 70                       | -       |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     |      |      |      |      |        | / |      |   |      |      |        | +   |          | - 30       | 0<br>7     |
| nt Passin | 60                       |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     |      |      |      |      |        |   |      |   |      |      |        | +   |          | - 40       | nt Retaine |
| Perce     | 50<br>40                 |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     |      |      | /    | /    |        |   |      |   |      |      |        |     |          | - 50       | Derce 0    |
|           | 30                       |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     | /    |      |      |      |        |   |      |   |      |      |        |     |          | 7'         | 0          |
|           | 20                       |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     |      |      |      |      |        |   |      |   |      |      |        | ++  |          | - 81       | 0          |
|           | 10                       |         |      |       |             |             |            |                  |                | -*         |           |       |                       | ┢   | ~     |      | 1     |     |          |    |     |      |      |      |      |        |   |      |   |      |      |        |     |          | - 91       | 0          |
|           | 0<br>0.                  | 001     |      | •     | •           |             | 0.         | 01               |                |            |           |       |                       | 0.1 | Dia   | nete | r (mi |     |          |    | 1   |      |      |      |      |        |   | 10   |   |      |      |        |     | <u> </u> | 100        | 00         |
|           |                          |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       | :   | San      | d  |     |      |      |      |      |        |   |      | G | rave | el . |        |     | ٦        |            |            |
|           |                          |         |      |       | C           | lay         | /&         | Silt             |                | D          | artic     | -lo_9 | Siz                   | ألم | Fii   | ne   | nor   |     | <u> </u> | Me | diu | IM   | 87)  | Coa  | rse  |        |   | Fine | ) |      | Co   | oars   | e   |          |            |            |
|           |                          |         |      |       |             |             |            |                  |                |            |           |       | 512                   |     |       |      | per   |     |          |    |     | 0-24 | ,    |      |      |        |   |      |   |      |      |        |     |          |            | ٦          |
|           |                          |         |      |       |             | So          | oil        | Desc             | riptio         | on         |           |       |                       |     |       |      | G     | rav | el ('    | %) |     |      | Sa   | nd   | (%)  | )      |   |      | C | Clay | & S  | Silt ( | (%) |          |            |            |
|           |                          |         | Sand | and   | Gra         | ave         | el, v      | vith T           | races          | s of S     | Silt      | and   | IC                    | lay |       |      |       | 4   | 4        |    |     |      |      | 45   |      |        |   |      |   |      | 11   |        |     |          |            |            |
|           |                          |         |      | Clay  | Sil<br>siz/ | t-s<br>:e p | ize<br>par | e part<br>ticles | icles<br>s (%) | (%)<br>(<0 | :<br>.002 | 2 m   | m)                    | ):  |       |      |       |     |          |    |     |      |      |      |      | 9<br>2 |   |      |   |      |      |        |     |          |            | _          |
| Rei       | narl                     | (S:     | Mor  | e inf | orm         | atio        | on         | is ava           | ailable        | e up       | on r      | equ   | ues                   | st. |       | ·    |       |     |          |    |     |      |      |      |      |        |   |      |   |      |      |        |     |          |            |            |
|           |                          |         |      |       |             |             |            |                  |                |            |           |       |                       |     |       |      |       |     |          |    |     |      |      |      |      |        |   |      |   |      |      |        |     |          |            | -          |
| Per       | Performed by: J. Lalonde |         |      |       |             |             |            |                  |                |            |           |       |                       | _   | D     | ate  | :     |     | _        |    | Αι  | Igu  | st 1 | 1, 2 | 202  | 2      |   | -    |   |      |      |        |     |          |            |            |
| Ver       | ified                    | l by:   |      |       |             | ~           | 2          | $\leq$           | k              |            | X         | 2     | Date: August 24, 2022 |     |       |      |       |     |          |    |     | _    |      |      |      |        |   |      |   |      |      |        |     |          |            |            |



| Cli             | ent:                                                          |              | -       |       |                      |      |        |       | Infr   | rast   | ruc    | tur | e C  | Dnt   | ario | )   |       |      |     |     |      | Lat  | o N  | lo.: |      |   |   |     |    | G    | -22  | -03    |     |   |                                                                           | -                |
|-----------------|---------------------------------------------------------------|--------------|---------|-------|----------------------|------|--------|-------|--------|--------|--------|-----|------|-------|------|-----|-------|------|-----|-----|------|------|------|------|------|---|---|-----|----|------|------|--------|-----|---|---------------------------------------------------------------------------|------------------|
| Pro             | ject,                                                         | , Site:      | _       |       |                      |      |        |       | C      | Chilo  | drei   | n H | los  | spit  | al   |     |       |      |     |     |      | Pro  | ojeo | ct N | lo.: |   |   |     |    | 11   | 205  | 379    | Э   |   |                                                                           | -                |
|                 | Bor                                                           | ehole No     | o.:     |       |                      |      |        |       |        | Bł     | H17    | -22 | 2    |       |      |     |       |      |     |     |      | San  | nple | e No | D.:  |   |   |     |    |      | SS-  | ·1     |     |   |                                                                           |                  |
|                 | Dep                                                           | oth:         | -       |       |                      |      |        |       |        | 0 -    | 0,6    | 1 n | n    |       |      |     |       |      |     |     |      | Enc  | los  | ure  |      |   |   |     |    |      | -    |        |     |   |                                                                           | -                |
| Percent Passing | 100 -<br>90 -<br>80 -<br>70 -<br>50 -<br>30 -<br>20 -<br>10 - |              |         |       |                      |      |        |       |        |        |        |     |      |       |      |     |       |      |     |     |      |      |      |      |      |   |   |     |    |      |      |        |     |   | 0<br>- 10<br>- 20<br>- 30<br>- 40<br>- 50<br>- 60<br>- 70<br>- 80<br>- 90 | Percent Retained |
|                 | 0<br>0.0                                                      | 001          |         |       |                      | C    | 0.01   |       |        |        |        |     | 0    | ).1   | Dia  | net | er (m | ım)  |     |     | 1    |      |      |      |      |   |   | 10  |    |      |      |        |     | 1 | 00 10                                                                     | 00               |
|                 |                                                               |              |         |       |                      |      |        |       |        |        |        |     |      |       |      |     |       |      | Sa  | nd  |      |      |      |      |      |   |   |     | G  | rave | l    |        |     | ٦ |                                                                           |                  |
|                 |                                                               |              |         |       | Cla                  | iy 8 | k Silt |       |        | De     | rtial  |     |      | . 1   | Fi   | ne  |       |      |     | M   | ediu | um   | 107  | Coa  | arse |   | F | ine | •  |      | Co   | bars   | е   |   |                                                                           |                  |
|                 |                                                               |              |         |       |                      |      |        |       |        | Fa     | ruci   | e-3 | bize | , רוו | mits | as  | , per | 03   | 503 | (A3 |      | D-24 | +07  | )    |      |   | - |     |    |      |      |        |     |   |                                                                           |                  |
|                 |                                                               |              |         |       | s                    | Soi  | Des    | scrij | ptio   | n      |        |     |      |       |      |     | G     | irav | /el | (%) |      |      | Sa   | and  | (%)  |   |   |     | C  | lay  | & S  | Silt ( | %)  |   |                                                                           |                  |
|                 |                                                               |              | Sandy   | Gra   | avel                 | , w  | ith T  | race  | es of  | f Silt | t and  | d C | Clay | /     |      |     |       | ł    | 52  |     |      |      |      | 39   |      |   |   |     |    |      | 9    |        |     |   |                                                                           |                  |
|                 |                                                               |              |         | S     | ilt-                 | siz  | e pa   | rtic  | les (  | (%)    | :      |     |      |       |      |     |       |      |     |     |      |      |      |      |      | 7 | - |     |    |      |      |        |     |   |                                                                           |                  |
|                 |                                                               |              | Cla     | ay-s  | ize                  | ра   | rtic   | es (  | (%) (  | <0.(   | 002    | mr  | m):  |       |      |     |       |      |     |     |      |      |      |      |      | 2 |   |     |    |      |      |        |     |   |                                                                           |                  |
| Re              | mark                                                          | (s: <u>)</u> | More in | nfori | mat                  | ion  | ı is a | vaila | able   | upo    | on re  | equ | iest | t.    |      |     |       |      |     |     |      |      |      |      |      |   |   |     |    |      |      |        |     |   |                                                                           | -<br>-           |
| Pe              | forn                                                          | ned by:      | _       | ,     | _                    |      |        | \     |        | J      | نہا .ا | alo | nd   | е     |      |     |       |      |     |     |      | _    | D    | )ate | ):   |   |   |     | A  | ugu  | st 9 | 9, 20  | )22 | ! |                                                                           | -                |
| Ve              | ified                                                         | l by:        |         | (     | $\overline{\langle}$ | ~    |        | k     | $\geq$ | 2      | 5      | }   |      |       |      |     |       |      |     |     |      | -    | D    | Date | ):   |   |   |     | Au | igus | st 2 | 4, 2   | 022 | 2 |                                                                           | -                |



| Cli             | ent:                                                |              | _        |       |            |        |        |       | Infr  | rastr  | uct              | ure  | e 0   | ntari    | 0                    |        |                               |       |             | _L          | ab N  | lo.: |      |   |    |    | C     | G-22  | 2-03   |     |    |                                                                     |             |
|-----------------|-----------------------------------------------------|--------------|----------|-------|------------|--------|--------|-------|-------|--------|------------------|------|-------|----------|----------------------|--------|-------------------------------|-------|-------------|-------------|-------|------|------|---|----|----|-------|-------|--------|-----|----|---------------------------------------------------------------------|-------------|
| Pro             | ject                                                | , Site:      | _        |       |            |        |        |       | C     | Child  | lrer             | ι H  | osp   | oital    |                      |        |                               |       |             | _P          | roje  | ct N | lo.: |   |    |    | 11    | 1205  | 5379   | 9   |    |                                                                     |             |
|                 | Bor                                                 | ehole No     | ).:      |       |            |        |        |       |       | BH     | 118-             | -22  |       |          |                      |        |                               |       | _           | S           | ampl  | e No | o.:  |   |    |    |       | SS    | -1     |     |    |                                                                     |             |
|                 | Dep                                                 | oth:         | _        |       |            |        |        |       |       | 0 -    | 0,6 <sup>-</sup> | 1 m  | 1     |          |                      |        |                               |       | _           | E           | nclos | sure |      |   |    |    |       | -     |        |     |    |                                                                     |             |
| Percent Passing | 100<br>90<br>80<br>70<br>60<br>50<br>40<br>30<br>20 |              |          |       |            |        |        |       |       |        |                  |      |       |          |                      |        |                               |       |             |             |       |      |      |   |    |    |       |       |        |     |    | - 0<br>- 10<br>- 20<br>- 30<br>- 40<br>- 50<br>- 60<br>- 70<br>- 80 | ( ( ( ( ( ( |
|                 | 10                                                  |              |          |       |            |        |        |       |       |        | -                | -•   |       | -        | -                    | +      | -                             | -+    | -           |             |       |      |      |   |    |    | -     |       |        |     |    | - 90                                                                | )           |
|                 | 0.0                                                 | 001          | •        | +•    |            | 0      | ).01   | -     |       |        |                  |      | 0.'   | 1<br>Dia | amete                | er (mr | n)                            |       | 1           | 1           |       |      |      |   |    | 10 |       |       |        |     | 1( | 10<br>00                                                            | 00          |
|                 |                                                     |              |          |       | Cla        | iy 8   | silt   |       |       |        |                  |      |       |          |                      |        | ;                             | San   | d           |             |       | _    |      |   | _  | G  | irave | el    |        |     |    |                                                                     |             |
|                 |                                                     |              |          |       |            |        |        |       |       | Par    | ticle            | e-Si | ize l | Limits   | ine<br>s as          | per    | USC                           | CS (  | Med<br>ASTI | ium<br>M D· | -2487 | )    | arse |   | FI | ne |       | C     | oars   | e   | _  |                                                                     |             |
|                 |                                                     |              |          |       | s          | Soil   | l Des  | scrij | ptio  | n      |                  |      |       |          |                      | Gı     | rave                          | əl (% | 6)          |             | Si    | and  | (%)  |   |    | C  | Clay  | /& \$ | Silt ( | (%) |    |                                                                     |             |
|                 |                                                     | :            | Sandy    | Gra   | ivel       | , w    | ith T  | race  | es of | f Silt | anc              | I CI | lay   |          |                      |        | 7                             | 3     |             |             |       | 21   |      |   |    |    |       | 6     |        |     |    |                                                                     |             |
|                 |                                                     |              |          | S     | ilt-       | siz    | e pa   | rtic  | les ( | (%) :  |                  |      |       |          |                      |        |                               |       |             |             |       |      |      | 5 |    |    |       |       |        |     |    |                                                                     |             |
|                 |                                                     |              | Cla      | ıy-si | ize        | ра     | rticl  | les ( | (%) ( | <0.0   | 02               | mn   | n):   |          |                      |        |                               |       |             |             |       | 1    |      |   |    |    |       |       |        |     |    |                                                                     |             |
| Rei             | mark                                                | (s: <u>1</u> | /lore in | nforn | nat        | ion    | ı is a | vaila | able  | upoi   | n re             | que  | est.  |          |                      |        |                               |       |             |             |       |      |      |   |    |    |       |       |        |     |    |                                                                     |             |
| Pei             | forn                                                | ned by:      |          |       | /          |        |        |       |       | J      | . Lą             | lor  | nde   | ,        | Date: August 9, 2022 |        |                               |       |             |             |       |      |      |   |    |    |       |       |        |     |    |                                                                     |             |
| Vei             | ifiec                                               | l by:        | _        |       | $\langle $ | $\geq$ | $\leq$ |       | 0     | 00     | 2                | Ł    |       |          |                      |        | Date:         August 24, 2022 |       |             |             |       |      |      |   |    |    |       |       |        |     |    |                                                                     |             |



| Clie               | ent:                                                                                                                 |          |        |                |              |                |                | Inf        | rast         | ruc      | tur  | e C   | Dnt  | aric    | )  |       |     |       |     |             | Lab       | N    | o.:  |             |         |      |     |    | G    | -22 | -03   |       |   |                                                                                     | _   |
|--------------------|----------------------------------------------------------------------------------------------------------------------|----------|--------|----------------|--------------|----------------|----------------|------------|--------------|----------|------|-------|------|---------|----|-------|-----|-------|-----|-------------|-----------|------|------|-------------|---------|------|-----|----|------|-----|-------|-------|---|-------------------------------------------------------------------------------------|-----|
| Pro                | ject, S                                                                                                              | ite:     |        |                |              |                |                | (          | Chil         | drei     | n F  | los   | spit | al      |    |       |     |       |     |             | Pro       | jec  | t N  | o.:         |         |      |     |    | 112  | 205 | 379   | }     |   |                                                                                     | -   |
|                    | Boreho                                                                                                               | ole No.: |        |                |              |                |                |            | Bl           | H19      | )-22 | 2     |      |         |    |       |     |       |     |             | Sam       | nple | e No | <b>)</b> .: |         |      |     |    | :    | SS- | 2     |       |   |                                                                                     | _   |
|                    | Depth:                                                                                                               | :        |        |                |              |                |                |            | 0,76         | - 1      | ,37  | ' m   |      |         |    |       |     |       |     |             | Enc       | losı | ure: |             |         |      |     |    |      | -   |       |       |   |                                                                                     | -   |
| Percent Passing    | 100         90         80         70         60         50         40         30         20         10         0.001 |          |        |                |              | 0.01           |                |            |              |          |      |       | .1   |         |    | r (mn | n)  |       |     | 1           |           |      |      |             |         |      | 10  |    |      |     |       |       |   | - 0<br>- 10<br>- 20<br>- 30<br>- 40<br>- 50<br>- 60<br>- 70<br>- 80<br>- 90<br>- 10 | 000 |
|                    |                                                                                                                      |          |        | Cla            | ay 8         | & Silt         | :              |            |              |          |      |       |      | <b></b> | _  |       | ;   | San   | d   | al !        |           |      |      |             |         | _    |     | Gr | avel |     |       | _     | ] |                                                                                     |     |
|                    |                                                                                                                      |          |        |                |              |                |                |            | Ра           | rticl    | e-S  | Size  | Lin  | nits    | as | per   | USC | CS (  | AST | αiu<br>ΓM I | m<br>D-24 | 87)  | Joa  | rse         |         | -    | ine |    |      |     | arse  | •<br> |   |                                                                                     |     |
|                    |                                                                                                                      |          |        | ę              | Soi          | l Des          | scrij          | ptio       | n            |          |      |       |      |         |    | Gı    | rav | el (' | %)  |             |           | Sa   | nd   | (%)         |         |      |     | с  | lay  | & S | ilt ( | %)    |   |                                                                                     | Ī   |
|                    | Sand and Gravel, with Some                                                                                           |          |        |                |              |                | Silt           | and        | Tra          | ces      | s of | Cl    | ay   |         |    | 3     | 81  |       |     |             |           | 46   |      |             |         |      |     |    | 23   |     |       |       |   |                                                                                     |     |
|                    |                                                                                                                      |          | Clay   | Silt-<br>-size | -siz<br>e pa | e pa<br>articl | irtic<br>les ( | les<br>(%) | (%)<br>(<0.( | :<br>002 | mr   | m):   |      |         |    |       |     |       |     |             |           |      |      |             | 16<br>7 |      |     |    |      |     |       |       |   |                                                                                     |     |
| Rer                | narks:                                                                                                               | Mor      | e info | ormat          | tior         | n is a         | ivaila         | able       | upc          | on re    | equ  | iest  | t.   |         |    |       |     |       |     |             |           |      |      |             |         |      |     |    |      |     |       |       |   |                                                                                     | -   |
| Per                | Performed by: J. Lalonde                                                                                             |          |        |                |              |                |                | е          |              |          |      |       |      |         |    | -     | D   | ate   | :   |             |           |      | Au   | gus         | st 1    | 7, 2 | 022 | 2  |      | _   |       |       |   |                                                                                     |     |
| Verified by: Date: |                                                                                                                      |          |        |                |              |                |                |            |              | Au       | gus  | st 24 | 4, 2 | 022     | 2  |       | _   |       |     |             |           |      |      |             |         |      |     |    |      |     |       |       |   |                                                                                     |     |



| Client:                                                                                         |                    |            |              | Infrastructu        | ire Ontario |           |                                            | Lab No.:                  | G-                    | 22-03      |                                                                |                       |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------------|------------|--------------|---------------------|-------------|-----------|--------------------------------------------|---------------------------|-----------------------|------------|----------------------------------------------------------------|-----------------------|--|--|--|
| Project,                                                                                        | , Site:            |            |              | Children            | Hospital    |           |                                            | Project No.:              | 112                   | 205379     |                                                                |                       |  |  |  |
| Bore<br>Dep                                                                                     | ehole No.:<br>oth: |            |              | MW20-<br>0,00 - 0,6 | 22<br>61 m  |           |                                            | Sample No.:<br>Enclosure: |                       | SS-1<br>-  |                                                                |                       |  |  |  |
| 100 -<br>90 -<br>80 -<br>70 -<br><b>Buissiud</b><br>60 -<br>40 -<br>30 -<br>20 -<br>10 -<br>0.0 |                    |            | 0.01         | Particle            | 0.1 Diam    | eter (mm) | 1<br>Sand<br>Media<br>SCS (ASTM<br>vel (%) | um Coarse D-2487)         | 10<br>Clay 4          | Coarse     | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | 0<br>Percent Retained |  |  |  |
|                                                                                                 |                    | Silt-      | size partio  | cles (%) :          | - ,         |           |                                            | 16                        |                       |            |                                                                |                       |  |  |  |
|                                                                                                 |                    | Clay-size  | particles    | (%) (<0.002 n       | nm):        |           |                                            | 4                         |                       |            |                                                                |                       |  |  |  |
| Remark                                                                                          | ks: Mor            | e informat | tion is avai | lable upon rec      | quest.      |           |                                            |                           |                       |            |                                                                |                       |  |  |  |
| Perform                                                                                         | ned by:            |            | $\frown$     | J. La               | onde        |           |                                            | Date:                     | Augus                 | st 9, 2022 |                                                                |                       |  |  |  |
| Verified                                                                                        | l by:              |            | $\geq$       | bæ                  | <u> </u>    |           |                                            | Date:                     | Date: August 24, 2022 |            |                                                                |                       |  |  |  |



| Client:             |                | _       |                   |               |           |                        |           | Inf                   | rast        | ruc             | ctur        | re (                                                                                                                                            | Onta  | ario | 1             |     |     |       |                                                                      |                      | Lab         | No          | o.:        |     |  |   |    |    | G-    | 22-  | 03     |    |  |                                                                                           |                                         |
|---------------------|----------------|---------|-------------------|---------------|-----------|------------------------|-----------|-----------------------|-------------|-----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|---------------|-----|-----|-------|----------------------------------------------------------------------|----------------------|-------------|-------------|------------|-----|--|---|----|----|-------|------|--------|----|--|-------------------------------------------------------------------------------------------|-----------------------------------------|
| Project,            | Site:          | _       |                   |               |           |                        |           | (                     | Chil        | dre             | n ł         | Hos                                                                                                                                             | spita | al   |               |     |     |       |                                                                      |                      | Proj        | jec         | t N        | o.: |  |   |    |    | 112   | 205  | 379    | I  |  |                                                                                           |                                         |
| Borel<br>Depti      | hole No.<br>h: | .: _    |                   |               |           |                        |           |                       | M\<br>0,61  | W2              | 0-2<br> ,22 | 2<br>2 m                                                                                                                                        |       |      |               |     |     |       | _                                                                    |                      | Sam<br>Encl | iple<br>osu | No<br>ire: | .:  |  |   |    |    | ç     | SS-2 | 2      |    |  |                                                                                           |                                         |
| 100                 | •<br>•         |         |                   | Cla           |           | 0.01                   |           |                       | Pa          | rtic            |             |                                                                                                                                                 | D.1   | Diam | neter<br>as p | (mm |     |       | d                                                                    |                      | n<br>D-248  |             |            | rse |  | F | 10 | Gr |       |      | arse   |    |  | 0<br>- 10<br>- 20<br>- 30<br>- 40<br>- 50<br>- 60<br>- 70<br>- 80<br>- 90<br>- 10<br>- 00 | 00 (( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( |
| l r                 |                |         |                   | s             | Soil      | Des                    | scrip     | otio                  | n           |                 |             |                                                                                                                                                 |       |      | Γ             | Gra | ave | el (% | %)                                                                   |                      |             | Sar         | nd (       | %)  |  |   |    | с  | lay a | & S  | ilt (9 | %) |  |                                                                                           | Ī                                       |
|                     | (              | Grave   | l an<br>S<br>ay-s | id S<br>ilt-: | siz<br>pa | d, Tr<br>e pa<br>rticl | rticles ( | s of<br>les (<br>%) ( | Silt<br>(%) | and<br>:<br>002 | d C         | Gravel (%)         Sand (%)         Clay & Sitt (%)             Clay         46         41         13           9         9         4         4 |       |      |               |     |     |       |                                                                      |                      |             |             |            |     |  |   |    |    |       |      |        |    |  |                                                                                           |                                         |
| Remarks             | s: <u>N</u>    | lore ir | nforr             | mat           | ion       | is a                   | vaila     | able                  | upc         | on r            | eqı         | les                                                                                                                                             | t.    |      |               |     |     |       |                                                                      | Dete: August 0, 2022 |             |             |            |     |  |   |    |    |       |      |        |    |  |                                                                                           |                                         |
| Perform<br>Verified | ed by:<br>by:  | -       |                   | (             | <         | $\sim$                 |           |                       | X           |                 |             |                                                                                                                                                 | e     |      |               |     |     |       | Date:         August 9, 2022           Date:         August 23, 2022 |                      |             |             |            |     |  |   |    |    |       |      |        |    |  |                                                                                           |                                         |



#### Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

| Client:                  |                              |            | nfrastructure Or | tario                             | Lab no.:                      | G-20-01                                       |
|--------------------------|------------------------------|------------|------------------|-----------------------------------|-------------------------------|-----------------------------------------------|
| Project/Site:            |                              | CHEO P     | roposed New Pa   | rking Garage                      | Project no.:                  | 11205379-80                                   |
| Borehole no.:            | BH3                          |            | Sample no.:      | SS2                               | Depth:                        | 0.6-1.2m                                      |
| Soil description:        |                              |            |                  |                                   | Date sampled:                 | 18-Jan-21                                     |
| Apparatus:               | Hand                         | Crank      | Balance no.:     | 1                                 | Porcelain bowl no.:           | 1                                             |
| Liquid limit device no.: |                              | 1          | Oven no.:        | 1                                 | Spatula no.:                  | 1                                             |
| Sieve no.:               |                              | 1          | Glass plate no.: | 1                                 |                               |                                               |
| r                        | Liquid Limit (               | LL):       |                  | Soil Preparation:                 |                               |                                               |
|                          | Test No. 1                   | Test No. 2 | Test No. 3       | ☑ Cohesive <4                     | 25 μm 🛛                       | Dry preparation                               |
| Number of blows          | 30                           | 25         | 20               | Cohesive >4                       | 25 μm ☑                       | Wet preparation                               |
|                          | Water Conte                  | nt:        | 1                | Non-cohesiv                       | /e                            |                                               |
| Tare no.                 | S39                          | S11        | S32              |                                   | Results                       |                                               |
| Wet soil+tare, g         | 32.39                        | 33.80      | 32.26            | 38.0                              |                               |                                               |
| Dry soil+tare, g         | 29.85                        | 30.89      | 29.53            | 36.0                              |                               |                                               |
| Mass of water, g         | 2.54                         | 2.91       | 2.73             | (%)                               |                               |                                               |
| Tare, g                  | 21.63                        | 21.65      | 21.60            | te 34.0                           |                               |                                               |
| Mass of soil, g          | 8.22                         | 9.24       | 7.93             |                                   |                               |                                               |
| Water content %          | 30.9%                        | 31.5%      | 34.4%            | 32.0 × 32.0                       |                               |                                               |
| Plastic Limit (Pl        | L) - Water Cont              | ent:       |                  | 30.0                              |                               |                                               |
| Tare no.                 | S37                          | S18        |                  | 30.0                              |                               |                                               |
| Wet soil+tare, g         | 28.17                        | 28.51      |                  | 28.0                              |                               |                                               |
| Dry soil+tare, g         | 27.24                        | 27.53      |                  | 15 17                             | 19 21 23 25 27<br>Nb Blows    | 29 31 33 35                                   |
| Mass of water, g         | 0.93                         | 0.98       |                  |                                   | Soil Plasticity Chart         |                                               |
| Tare, g                  | 21.98                        | 22.23      |                  | 70                                | LL 5D                         |                                               |
| Mass of soil, g          | 5.26                         | 5.30       |                  | 60 Low plasticity                 | High plastic                  | sity<br>lav                                   |
| Water content %          | 17.7%                        | 18.5%      |                  |                                   |                               |                                               |
| Average water content %  | 18.                          | 1%         |                  | ä 40                              |                               |                                               |
| Natural Wate             | r Content ( W <sup>n</sup> ) | :          |                  | 면<br>                             | CL.                           |                                               |
| Tare no.                 | G                            |            |                  |                                   | bilty                         | (MH) and (CH)                                 |
| Wet soil+tare, g         | 445.80                       |            |                  | 20                                | High     infor     - Inpr     | i compressibility<br>ganic silt<br>nanic clav |
| Dry soil+tare, g         | 393.10                       |            |                  |                                   | - Medium co<br>norganic si    | mpressibility<br>It                           |
| Mass of water, g         | 52.70                        |            |                  | 0 10 20                           | ) 30 40 50 60                 | 70 80 90 100                                  |
| Tare, g                  | 0.00                         |            |                  |                                   | Liquid Limit LL               |                                               |
| Mass of soil, g          | 393.10                       |            |                  | Liquid Limit<br>(LL) Plastic Limi | it (PL) Plasticity Index (PI) | Natural Water Content W <sup>n</sup>          |
| Water content %          | 13.4%                        |            |                  | 32 18                             | 14                            | 13                                            |
| Remarks:                 |                              |            |                  |                                   |                               |                                               |
|                          |                              |            |                  |                                   |                               |                                               |
| Performed by:            |                              | Ali E      | lhaddad          | Date:                             | Feb                           | ruary 12, 2021                                |
| Verified by:             |                              | E.I        | Bennett          | Date:                             | Feb                           | ruary 18, 2021                                |



#### Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

| Client:                  |                            |              | Infrastructure On | tario                |                       | Lab no.:              | G-22-03                              |
|--------------------------|----------------------------|--------------|-------------------|----------------------|-----------------------|-----------------------|--------------------------------------|
| Project/Site:            |                            |              | Children Hospi    | tal                  |                       | Project no.:          | 11205379                             |
| Borehole no.:            | BH13-22                    |              | Sample no.:       |                      | SS-2                  | Depth:                | 0,61 - 1,22 m                        |
| Soil Description:        |                            |              |                   |                      |                       | Date sampled:         |                                      |
| Apparatus:               | Hand                       | Crank        | Balance no.:      | 8033                 | 3031049               | Porcelain bowl no.:   | 1                                    |
| Liquid limit device no.: |                            | 1            | Oven no.:         | B23                  | 3-04645               | Spatula no.:          | 1                                    |
| Sieve no.:               | 015                        | 5690         | Glass plate no.:  |                      | 1                     | -                     |                                      |
|                          | Liquid Limit               | (LL):        | •                 | Soil Preparati       | on:                   |                       |                                      |
|                          | Test No. 1                 | Test No. 2   | Test No. 3        |                      | Cohesive <425 µr      | n 🗸                   | Dry preparation                      |
| Number of blows          |                            |              |                   |                      | Cohesive >425 µr      | n 🗆                   | Wet preparation                      |
|                          | Water Conte                | ent:         |                   |                      | Non-cohesive          |                       |                                      |
| Tare no.                 |                            |              |                   |                      |                       | Results               |                                      |
| Wet soil+tare, g         |                            |              |                   | 2.0                  |                       |                       |                                      |
| Dry soil+tare, g         |                            |              |                   |                      |                       |                       |                                      |
| Mass of water, g         |                            |              |                   | (%)                  |                       |                       |                                      |
| Tare, g                  |                            |              |                   | ntent                |                       |                       |                                      |
| Mass of soil, g          |                            |              |                   | er Co                |                       |                       |                                      |
| Water content %          |                            |              |                   | Wat                  |                       |                       |                                      |
| Plastic Limit (Pl        | L) - Water Cont            | ent:         |                   |                      |                       |                       |                                      |
| Tare no.                 |                            |              |                   |                      |                       |                       |                                      |
| Wet soil+tare, g         |                            |              |                   | 0.0                  |                       |                       |                                      |
| Dry soil+tare, g         |                            |              |                   |                      | 15 17                 | 19 21<br>Nb Blows     | 23 25 27                             |
| Mass of water, g         |                            |              |                   |                      | Soil                  | Plasticity Chart ASTI | M D2487                              |
| Tare, g                  |                            |              |                   | 70                   |                       | LL 50                 |                                      |
| Mass of soil, g          |                            |              |                   | 60 —                 | Lean clay (CL)        | Ent alov              |                                      |
| Water content %          |                            |              |                   | ы<br>50 —            |                       |                       |                                      |
| Average water content %  |                            |              |                   | ä 40 –               |                       | Organic cla           | ay OH)                               |
| Natural Wate             | r Content ( W <sup>n</sup> | ):           |                   |                      | Orga                  | anic clay OL          |                                      |
| Tare no.                 |                            |              |                   | is blastic           | Ity clay (CL (ML)     | T EI                  | astic silt MH                        |
| Wet soil+tare, g         |                            |              |                   | 20                   |                       | Org                   | anic silt OH                         |
| Dry soil+tare, g         |                            |              |                   | 10                   |                       | Organic silt          |                                      |
| Mass of water, g         |                            |              |                   |                      | 10 20 3               |                       | 70 80 90 100                         |
| Tare, g                  |                            |              |                   |                      |                       | Liquid Limit LL       |                                      |
| Mass of soil, g          |                            |              | 1                 | Liquid Limit<br>(LL) | Plastic Limit<br>(PL) | Plasticity Index (PI) | Natural Water Content W <sup>n</sup> |
| Water content %          |                            |              |                   |                      | . ,                   |                       |                                      |
| Remarks:                 | Non-Plastic S              | Sample       |                   | -                    |                       |                       |                                      |
|                          |                            |              |                   |                      |                       |                       |                                      |
| Performed by:            | $\frown$                   | <u> </u>     | atanda            |                      | Date:                 | Sont                  | amber 13, 2022                       |
| . chomed by              |                            | J. L         |                   |                      |                       | <u>Gepte</u>          |                                      |
| Verified by:             | $\rightarrow$              | <u>va</u>    | <u> </u>          |                      | Date:                 | Septe                 | ember 13, 2022                       |
| Laboratory Location:     | 179 Col                    | onnade Rd. S | uite 400, Ottawa  | , Ontario            |                       |                       |                                      |



#### Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

| Client:                  |                            |              | Infrastructure On | tario                |                       | Lab no.:              | G-22-03                              |
|--------------------------|----------------------------|--------------|-------------------|----------------------|-----------------------|-----------------------|--------------------------------------|
| Project/Site:            |                            |              | Children Hospi    | ital                 |                       | Project no.:          | 11205379                             |
| Borehole no.:            | BH19-22                    |              | Sample no.:       |                      | SS-2                  | Depth:                | 0,76 - 1,37 m                        |
| Soil Description:        |                            |              |                   |                      |                       | Date sampled:         |                                      |
| Apparatus:               | Hand                       | Crank        | Balance no.:      | 8033                 | 3031049               | Porcelain bowl no.:   | 1                                    |
| Liquid limit device no.: |                            | 1            | Oven no.:         | B23                  | 3-04645               | Spatula no.:          | 1                                    |
| Sieve no.:               | 015                        | 5690         | Glass plate no.:  |                      | 1                     |                       |                                      |
|                          | Liquid Limit               | (LL):        |                   | Soil Preparati       | on:                   |                       |                                      |
|                          | Test No. 1                 | Test No. 2   | Test No. 3        |                      | Cohesive <425 µr      | n 🗸                   | Dry preparation                      |
| Number of blows          |                            |              |                   |                      | Cohesive >425 µr      | n 🗆                   | Wet preparation                      |
|                          | Water Conte                | ent:         |                   |                      | Non-cohesive          |                       |                                      |
| Tare no.                 |                            |              |                   |                      |                       | Results               |                                      |
| Wet soil+tare, g         |                            |              |                   | 2.0                  |                       |                       |                                      |
| Dry soil+tare, g         |                            |              |                   |                      |                       |                       |                                      |
| Mass of water, g         |                            |              |                   | (%)                  |                       |                       |                                      |
| Tare, g                  |                            |              |                   | ntent                |                       |                       |                                      |
| Mass of soil, g          |                            |              |                   | er Co                |                       |                       |                                      |
| Water content %          |                            |              |                   | Wat                  |                       |                       |                                      |
| Plastic Limit (Pl        | L) - Water Cont            | ent:         |                   | -                    |                       |                       |                                      |
| Tare no.                 |                            |              |                   |                      |                       |                       |                                      |
| Wet soil+tare, g         |                            |              |                   | 0.0                  |                       |                       |                                      |
| Dry soil+tare, g         |                            |              |                   |                      | 15 17                 | 19 21<br>Nb Blows     | 23 25 27                             |
| Mass of water, g         |                            |              |                   |                      | Soil                  | Plasticity Chart AST  | M D2487                              |
| Tare, g                  |                            |              |                   | 70                   |                       | LL 50                 |                                      |
| Mass of soil, g          |                            |              |                   | 60 -                 | Lean clay (c)         | Eat clay              |                                      |
| Water content %          |                            |              |                   | ы<br>т 50 —          |                       |                       |                                      |
| Average water content %  |                            |              |                   | ä 40 –               |                       | Organic cla           | ay OH)                               |
| Natural Wate             | r Content ( W <sup>n</sup> | ):           |                   |                      | Orga                  | nic clay OL           |                                      |
| Tare no.                 |                            |              |                   | Si Si                | Ity clay (CL (ML)-    | T EI                  | astic silt (MH)                      |
| Wet soil+tare, g         |                            |              |                   | 20                   |                       | Org                   | anic silt OH                         |
| Dry soil+tare, g         |                            |              |                   | 10                   |                       | Organic silt          |                                      |
| Mass of water, g         |                            |              |                   | 0                    | 10 20 3               |                       | 70 80 90 100                         |
| Tare, g                  |                            |              |                   | -                    |                       | Liquid Limit LL       |                                      |
| Mass of soil, g          |                            |              |                   | Liquid Limit<br>(LL) | Plastic Limit<br>(PL) | Plasticity Index (PI) | Natural Water Content W <sup>n</sup> |
| Water content %          |                            |              |                   |                      | . ,                   |                       |                                      |
| Remarks:                 | Non-Plastic S              | Sample       |                   | -                    |                       |                       |                                      |
|                          |                            |              |                   |                      |                       |                       |                                      |
| Performed by             | $\frown$                   |              | alonde            |                      | Date:                 | Sent                  | ember 13, 2022                       |
| Vorified by:             | $\overline{\langle}$       |              | $\nabla$          |                      | Data                  | Cont                  | amber 13, 2022                       |
| vernied by:              | $\overline{}$              | <u>S</u>     | 5                 |                      | Date:                 | 5ept6                 | 5111JEI 13, 2U22                     |
| Laboratory Location:     | 179 Col                    | onnade Rd. S | uite 400, Ottawa  | , Ontario            |                       |                       |                                      |


## Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

| Client:                  |                            |              | Infrastructure On | tario                |                       | Lab no.:              | G-22-03                              |  |
|--------------------------|----------------------------|--------------|-------------------|----------------------|-----------------------|-----------------------|--------------------------------------|--|
| Project/Site:            |                            |              | Children Hospi    | tal                  |                       | Project no.:          | 11205379                             |  |
| Borehole no.:            | MW20-22                    | 2            | Sample no.:       |                      | SS-2                  | Depth:                | 0,61 - 1,22 m                        |  |
| Soil Description:        |                            |              |                   |                      |                       | Date sampled:         |                                      |  |
| Apparatus:               | Hand                       | Crank        | Balance no.:      | 8033                 | 3031049               | Porcelain bowl no.:   | 1                                    |  |
| Liquid limit device no.: |                            | 1            | Oven no.:         | B23                  | -04645                | Spatula no.:          | 1                                    |  |
| Sieve no.:               | 015                        | 5690         | Glass plate no.:  |                      | 1                     |                       |                                      |  |
|                          | Liquid Limit               | (LL):        | -                 | Soil Preparati       | on:                   |                       |                                      |  |
|                          | Test No. 1                 | Test No. 2   | Test No. 3        |                      | Cohesive <425 µr      | n 🖉                   | Dry preparation                      |  |
| Number of blows          |                            |              |                   |                      | Cohesive >425 µr      | n 🗆                   | Wet preparation                      |  |
|                          | Water Conte                | ent:         |                   |                      | Non-cohesive          |                       |                                      |  |
| Tare no.                 |                            |              |                   |                      |                       | Results               |                                      |  |
| Wet soil+tare, g         |                            |              |                   | 2.0                  |                       |                       |                                      |  |
| Dry soil+tare, g         |                            |              |                   |                      |                       |                       |                                      |  |
| Mass of water, g         |                            |              |                   | (%)                  |                       |                       |                                      |  |
| Tare, g                  |                            |              |                   | ntent (              |                       |                       |                                      |  |
| Mass of soil, g          |                            |              |                   | er Co                |                       |                       |                                      |  |
| Water content %          |                            |              |                   | Wat                  |                       |                       |                                      |  |
| Plastic Limit (Pl        | L) - Water Cont            | ent:         |                   | 1                    |                       |                       |                                      |  |
| Tare no.                 |                            |              |                   |                      |                       |                       |                                      |  |
| Wet soil+tare, g         |                            |              |                   | 0.0                  | ļ                     |                       |                                      |  |
| Dry soil+tare, g         |                            |              |                   |                      | 15 17                 | 19 21<br>Nb Blows     | 23 25 27                             |  |
| Mass of water, g         |                            |              | -                 |                      | Soil                  | Plasticity Chart AST  | M D2487                              |  |
| Tare, g                  |                            |              |                   | 70                   |                       | LL 50                 |                                      |  |
| Mass of soil, g          |                            |              |                   | 60 -                 | Lean clay (C)         | Eat alou (            |                                      |  |
| Water content %          |                            |              |                   | Ч<br>                |                       | Fat day               |                                      |  |
| Average water content %  |                            |              |                   | ≝<br>₩ 40            |                       | Organic cla           | ау он                                |  |
| Natural Wate             | r Content ( W <sup>n</sup> | ):           |                   |                      | Orga                  | Inic clay OL          |                                      |  |
| Tare no.                 |                            |              |                   | lis Plastic          | ty clay (CL) (ML)     | 7 Eli                 | astic silt MH                        |  |
| Wet soil+tare, g         |                            |              |                   | 20                   |                       | Org.                  | anic silt OH                         |  |
| Dry soil+tare, g         |                            |              | 1                 | 10                   |                       | Organic silt          |                                      |  |
| Mass of water, g         |                            |              |                   | 0                    | 10 20 3               |                       | 70 80 90 100                         |  |
| Tare, g                  |                            |              |                   |                      | 10 20 0               | Liquid Limit LL       |                                      |  |
| Mass of soil, g          |                            |              | 1                 | Liquid Limit<br>(LL) | Plastic Limit<br>(PL) | Plasticity Index (PI) | Natural Water Content W <sup>n</sup> |  |
| Water content %          |                            |              |                   |                      |                       |                       |                                      |  |
| Remarks:                 | Non-Plastic S              | Sample       | ·                 | ·                    |                       | ·                     |                                      |  |
|                          |                            |              |                   |                      |                       |                       |                                      |  |
| Performed by             |                            | <u> </u>     | alomie            |                      | Date:                 | Sente                 | ember 13, 2022                       |  |
| Varified by:             |                            |              | <u> </u>          |                      | Data                  |                       | ambor 12, 2022                       |  |
| vermed by:               | $-\epsilon$                | 100          | 5                 |                      | Date:                 | Septe                 | emper 13, 2022                       |  |
| Laboratory Location:     | 179 Col                    | onnade Rd. S | uite 400, Ottawa  | , Ontario            |                       |                       |                                      |  |



# Moisture Content of Soils (ASTM D 2216)

| Client:                          | Infrastru | ucture Ontar | io      |            | Lab No.:    |         | G-2      | 2-03    |
|----------------------------------|-----------|--------------|---------|------------|-------------|---------|----------|---------|
| Project/Site:                    | Childro   | en's Hospita | I       |            | Project No. | :       | 11205379 |         |
| Apparatus Used for Testing       | Oven No.: | B23-(        | 04645   | Scale No.: | 80330       | 31049   |          |         |
| BH No.:                          |           |              |         |            | BH10-22     | BH10-22 | BH11-22  | BH11-22 |
| Sample No.:                      |           |              |         |            | SS1         | SS2     | SS1      | SS2     |
| Depth:                           |           |              |         |            | 0,0-2,0     | 2,0-3,3 | 0,0-2,0  | 2,0-4,0 |
| Container no.                    |           |              |         |            | 32          | 25      | 28       | 4       |
| Mass of container + wet soil (g) |           |              |         |            | 70.50       | 70.00   | 75.70    | 72.80   |
| Mass of container + dry soil (g) |           |              |         |            | 68.90       | 66.80   | 74.40    | 68.10   |
| Mass of container (g)            |           |              |         |            | 14.80       | 14.60   | 14.70    | 14.80   |
| Mass of dry soil (g)             |           |              |         |            | 54.1        | 52.2    | 59.7     | 53.3    |
| Mass of water (g)                |           |              |         |            | 1.6         | 3.2     | 1.3      | 4.7     |
| Moisture content (%)             |           |              |         |            | 3.0         | 6.1     | 2.2      | 8.8     |
| BH No.:                          | BH12-22   | BH12-22      | BH14-22 | BH14-22    | BH15-22     | BH15-22 | BH16-22  | BH16-22 |
| Sample No.:                      | SS1       | SS2          | SS1     | SS2        | SS1         | SS2     | SS1      | SS2     |
| Depth:                           | 0,0-2,0   | 2,0-4,0      | 0,0-2,0 | 2,0-4,0    | 0,0-2,0     | 2,0-3,5 | 0.0-2,0  | 2,0-4,0 |
| Container no.                    | 42        | 15           | 14      | 35         | 18          | 9       | 13       | 23      |
| Mass of container + wet soil (g) | 83.70     | 74.40        | 79.40   | 74.00      | 61.00       | 62.70   | 78.90    | 58.40   |
| Mass of container + dry soil (g) | 81.60     | 71.80        | 77.90   | 71.10      | 59.50       | 60.20   | 77.00    | 55.40   |
| Mass of container (g)            | 14.60     | 14.80        | 14.80   | 15.10      | 15.00       | 14.70   | 14.80    | 15.10   |
| Mass of dry soil (g)             | 67.0      | 57.0         | 63.1    | 56.0       | 44.5        | 45.5    | 62.2     | 40.3    |
| Mass of water (g)                | 2.1       | 2.6          | 1.5     | 2.9        | 1.5         | 2.5     | 1.9      | 3.0     |
| Moisture content (%)             | 3.1       | 4.6          | 2.4     | 5.2        | 3.4         | 5.5     | 3.1      | 7.4     |
| Remarks:                         |           |              |         |            |             |         |          |         |
| Performed By:                    |           | antiste      |         | Date:      |             | luly 2  | 7 2022   |         |
| Verified by :                    |           |              |         | Date:      |             | August  | 3, 2022  |         |



# Moisture Content of Soils (ASTM D 2216)

| Client:                          | Infrastru                  | ucture Ontar        | io      |            | Lab No.:     | G-22-03       |
|----------------------------------|----------------------------|---------------------|---------|------------|--------------|---------------|
| Project/Site:                    | Childro                    | en's Hospital       | I       |            | Project No.: | 11205379      |
| Apparatus Used for Testing       | Oven No.:                  | Oven No.: B23-04645 |         | Scale No.: | 8033031049   | )             |
| MW No.:                          | BH9-22                     | BH9-22              |         |            |              |               |
| Sample No.:                      | SS1                        | SS2                 |         |            |              |               |
| Depth:                           | 0,0-2,0                    | 2,5-4,5             |         |            |              |               |
| Container no.                    | 9                          | 32                  |         |            |              |               |
| Mass of container + wet soil (g) | 59.30                      | 55.60               |         |            |              |               |
| Mass of container + dry soil (g) | 56.90                      | 54.30               |         |            |              |               |
| Mass of container (g)            | 14.70                      | 14.90               |         |            |              |               |
| Mass of dry soil (g)             | 42.2                       | 39.4                |         |            |              |               |
| Mass of water (g)                | 2.4                        | 1.3                 |         |            |              |               |
| Moisture content (%)             | 5.7                        | 3.3                 |         |            |              |               |
| MW No.:                          | BH14                       | BH20-22             | BH20-22 |            |              |               |
| Sample No.:                      | SS3B                       | SS1                 | SS2     |            |              |               |
| Depth:                           | 2,4-5,1                    | 0,5-2,5             | 2,5-4,5 |            |              |               |
| Container no.                    | 23                         | 16                  | 28      |            |              |               |
| Mass of container + wet soil (g) | 54.30                      | 48.50               | 58.60   |            |              |               |
| Mass of container + dry soil (g) | 52.60                      | 47.00               | 56.40   |            |              |               |
| Mass of container (g)            | 15.00                      | 14.90               | 14.90   |            |              |               |
| Mass of dry soil (g)             | 37.6                       | 32.1                | 41.5    |            |              |               |
| Mass of water (g)                | 1.7                        | 1.5                 | 2.2     |            |              |               |
| Moisture content (%)             | 4.5                        | 4.7                 | 5.3     |            |              |               |
| Remarks:                         |                            |                     |         |            |              |               |
| Performed By:                    | Performed By: J A Baptiste |                     |         |            |              | July 27, 2022 |
| Verified by :                    | bae                        | <u> X</u>           |         | Date:      | A            | ugust 3, 2022 |

GHD

### Standard Proctor Test (ASTM D698)

| Client :                                  | Iı                                                  | frastructure Ontario                                                 |                                    | Lab No :                                                 | A-22-02                                                                    |
|-------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|
| Project/Site                              | e:                                                  | Children Hospital                                                    | Pro                                | oject No :                                               | 11205379                                                                   |
| 2400 -                                    |                                                     |                                                                      |                                    |                                                          |                                                                            |
| 2300 •                                    |                                                     |                                                                      |                                    | Zero A                                                   | Air Voids Line                                                             |
| 2200 <b>.</b><br>( <b>س</b> ا             |                                                     |                                                                      |                                    |                                                          |                                                                            |
| Density (kg                               |                                                     |                                                                      |                                    |                                                          |                                                                            |
| 2000 •                                    |                                                     |                                                                      |                                    |                                                          |                                                                            |
| 1900 •                                    |                                                     |                                                                      |                                    |                                                          |                                                                            |
| 1800 •<br>0.                              | 0 2.0                                               | 4.0<br>Wa                                                            | 6.0 8.0<br>ater Content (%)        | 10.0                                                     | 12.0 14.0                                                                  |
| Prepared Sa<br>ASTM D698                  | mple: Dry<br>Test Method: A                         | 0         Moist           0         B           4.75 mm         9.50 | <b>x 0</b> C <b>x</b> 0 mm 19.0 mr | Assumed G                                                | B <sub>s</sub> : 2.70<br>mmer: Manual                                      |
| Soil Type:<br>Material:                   |                                                     | Crushed Sto                                                          | one                                |                                                          |                                                                            |
| Sample Iden<br>Sample Loca<br>Aggregate S | ee.<br>tification:<br>ation:<br>upplier / Pit Name: | BH11-22<br>In Place                                                  | 2                                  | Max. Dry Density:<br>Optimum Moistur<br>% Retained on 19 | e: <u>2254 kg/m<sup>3</sup></u><br>e. <u>6.4 %</u><br>9.0 mm: <u>2.8 %</u> |
| Sample Date<br>Sampled By:                |                                                     | D. Ash                                                               |                                    | Corrected Dry De<br>Corrected Opt. Mo                    | nsity: 2254 kg/m <sup>3</sup><br>oist.: 6.4 %                              |
| Remarks :                                 |                                                     |                                                                      |                                    |                                                          |                                                                            |
| Performed                                 | by:                                                 | J. Lalonde                                                           |                                    | Date : So                                                | eptember 2, 2022                                                           |
| Verified by                               | ··                                                  | bæl                                                                  |                                    | Date : Se                                                | eptember 6, 2022                                                           |

GHD

#### Standard Proctor Test (ASTM D698)



Standard Proctor Test (ASTM D698)









| Client :<br>Project :                        | Infrastructure Ontario<br>Proposed Parking Structure<br>Children's Hospital of Eastern Ontario Campus<br>401 Smyth Road, Ottawa, Ontario |     |                  |                |                                 |                    | Project N° : <u>11205379-80</u><br>Sample N° : <u>MW3-21 RC2</u><br>Depth : <u>6.4-6.55m</u><br>Sampling Date : <u>January 14-15 / 2021</u> |                   |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|----------------|---------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Testing Appara                               | <u>tus Used :</u>                                                                                                                        |     |                  | 1              |                                 | Caliper Nº1        |                                                                                                                                             |                   |  |
|                                              |                                                                                                                                          | -   | Technical Data   |                |                                 | View of Specimen   |                                                                                                                                             |                   |  |
| Diameter :                                   |                                                                                                                                          | 63  | 63               | 63             | Average<br>63.0                 | (mm)               | В                                                                                                                                           | efore Test :      |  |
| Length :                                     |                                                                                                                                          | 74  | 74               | 74             | 74.0                            | (mm)               |                                                                                                                                             | 21:0"             |  |
| Straightness (0.5mm ma                       | aximum) (S1) :                                                                                                                           | 0.2 | 0.2              | 0.2            | 0.2                             | (mm)               |                                                                                                                                             |                   |  |
| Flatness (25µm maximu                        | ım) (FP2) :                                                                                                                              | Ok  | Ok               | Ok             | Ok                              | _                  |                                                                                                                                             | MW3-21            |  |
| Parallelism (0.25 ° maxi                     | mum) (FP2) :                                                                                                                             | 0.1 | 0.1              | 0.1            | 0.15                            | (°)                |                                                                                                                                             | RCZ               |  |
| Mass :<br>Density :<br>Moisture Conditions : | 6′                                                                                                                                       | 12  | _(g) Volume:<br> | 23<br>53<br>ry | 90676<br>_ (kg/m <sup>3</sup> ) | (mm <sup>3</sup> ) |                                                                                                                                             | DI'Y'             |  |
| Loading Rate (0.5 to <sup>2</sup>            | 1.0 MPa / sec) :                                                                                                                         |     | 0.               | 6              | (MPa/sec)                       |                    | A                                                                                                                                           | fter Test :       |  |
| Type of Fracture :                           |                                                                                                                                          |     | 3                | 3              | _(\\\\ a/300)                   |                    |                                                                                                                                             |                   |  |
| Test Duration (2-15 M                        | linutes) :                                                                                                                               |     | 4                | ŀ              | (minutes)                       |                    |                                                                                                                                             |                   |  |
| Maximum Applied Loa                          | ad :                                                                                                                                     |     | 335              | .49            | ☑ kN                            | lbs                |                                                                                                                                             |                   |  |
| Compressive Stre                             | ngth :                                                                                                                                   |     | 107              | 7.6            | (MPa)                           |                    |                                                                                                                                             | A CEL             |  |
|                                              |                                                                                                                                          |     |                  |                |                                 |                    |                                                                                                                                             | 4                 |  |
| Remarks :                                    |                                                                                                                                          |     |                  |                |                                 |                    |                                                                                                                                             |                   |  |
| Analysed by :                                |                                                                                                                                          |     | Ali Elhaddad     |                |                                 |                    | Date :                                                                                                                                      | February 8, 2021  |  |
| Verified by :                                |                                                                                                                                          |     | E. Bennett       |                |                                 | _                  | Date :                                                                                                                                      | February 17, 2021 |  |



| Client :                 | Infrastructure C | Intario          |                |         |                      | Proj                             | ect N° :          | 11205379-80          |
|--------------------------|------------------|------------------|----------------|---------|----------------------|----------------------------------|-------------------|----------------------|
| Project :                | Proposed Parki   | ng Structure     | Ontonia Commun |         |                      | Sam                              | ple N° : [        | MW3-21 RC3           |
|                          | 401 Smyth Roa    | id, Ottawa, Onta | ario           |         |                      | <b>Depth</b> : <u>7.92-8.07m</u> |                   |                      |
|                          |                  |                  |                |         |                      | Sampling                         | g Date : <u>.</u> | January 14-15 / 2021 |
| Testing Appara           | tus Used :       |                  |                | Loading | device N°            | 1                                |                   | Caliper Nº1          |
|                          |                  |                  | Technical Data |         |                      | View of Specimen                 |                   |                      |
| Diameter :               |                  | 63               | 63             | 63      | Average              | (mm)                             | E                 | Before Test :        |
| Length :                 |                  | 78               | 78             | 78      | 78.0                 | (mm)                             |                   | T26' 0'              |
| Straightness (0.5mm ma   | aximum) (S1) :   | 0.3              | 0.2            | 0.3     | 0.3                  | (mm)                             |                   | MLJZ                 |
| Flatness (25µm maximu    | ım) (FP2) :      | Ok               | Ok             | Ok      | Ok                   |                                  |                   | RC3                  |
| Parallelism (0.25 ° maxi | mum) (FP2) :     | 0.1              | 0.15           | 0.1     | 0.15                 | (°)                              |                   | 1                    |
| Mass :                   | 65               | 6.6              | (g) Volume:    | 24      | 3145                 | (mm <sup>3</sup> )               |                   |                      |
| Density :                |                  |                  | 27             | 00      | (kg/m <sup>3</sup> ) |                                  |                   |                      |
| Moisture Conditions :    |                  |                  | Di             | ry      | _(0)                 |                                  |                   | 100                  |
| Loading Rate (0.5 to 1   | 1.0 MPa / sec) : |                  | 0.             | 6       | (MPa/sec)            |                                  | /                 | After Test :         |
| Type of Fracture :       |                  |                  | 3              | 3       | _(\\\\ 0/000)        |                                  |                   |                      |
| Test Duration (2-15 M    | linutes) :       |                  | 3.             | 5       | -<br>(minutes)       |                                  |                   |                      |
| Maximum Applied Loa      | ad :             |                  | 260            | .09     | _ `                  | lbs                              |                   | 1100 27              |
| Compressive Stre         | ngth :           |                  | 83             | .4      | (MPa)                |                                  |                   |                      |
|                          |                  |                  |                |         |                      |                                  |                   | · · · · ·            |
|                          |                  |                  |                |         |                      |                                  |                   |                      |
| Remarks :                |                  |                  |                |         |                      |                                  |                   |                      |
|                          |                  |                  |                |         |                      |                                  |                   |                      |
| Analysed by :            |                  |                  | Ali Elhaddad   |         |                      | _                                | Date :            | February 8, 2021     |
| Verified by :            |                  |                  | E. Bennett     |         |                      |                                  | Date :            | February 17, 2021    |



| Client :<br>Project :     | Infrastructure O<br>Proposed Parki<br>Children's Hosp<br>401 Smyth Roa | ontario<br>ng Structure<br>bital of Eastern (<br>d. Ottawa. Onta | Ontario Campus<br>ario |           |                       | _ Project N<br>_ Sample N<br>_ Depth<br>Sampling Date | ° : <u>11205379-80</u><br>° : <u>MW3-21 RC5</u><br>n : <u>9.63-9.75m</u><br>e : January 14-15 / <u>2021</u> |
|---------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|-----------|-----------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Testing Appara            | tus Used :                                                             |                                                                  |                        | Loading o | levice Nº             | 1                                                     | Caliper Nº1                                                                                                 |
|                           |                                                                        | ٢                                                                | Fechnical Data         |           | View of Specimen      |                                                       |                                                                                                             |
|                           |                                                                        |                                                                  |                        |           | Average               | _                                                     | Before Test :                                                                                               |
| Diameter :                |                                                                        | 63                                                               | 63                     | 63        | 63.0                  | (mm)                                                  | J 31-20                                                                                                     |
| Length :                  |                                                                        | 91                                                               | 91                     | 91        | 91.0                  | (mm)                                                  |                                                                                                             |
| Straightness (0.5mm ma    | aximum) (S1) :                                                         | 0.2                                                              | 0.3                    | 0.3       | 0.3                   | (mm)                                                  | MW 3-21                                                                                                     |
| Flatness (25µm maximu     | m) (FP2) :                                                             | Ok                                                               | Ok                     | Ok        | Ok                    | _                                                     | RC5                                                                                                         |
| Parallelism (0.25 ° maxir | mum) (FP2) :                                                           | 0.15                                                             | 0.15                   | 0.15      | 0.15                  | (°)                                                   |                                                                                                             |
| Mass :                    | 73                                                                     | 6.3                                                              | (g) Volume:            | 28        | 3669                  | _(mm <sup>3</sup> )                                   |                                                                                                             |
| Density :                 |                                                                        |                                                                  | 259                    | 96        | _(kg/m <sup>3</sup> ) |                                                       |                                                                                                             |
| Moisture Conditions :     |                                                                        |                                                                  | Dr                     | У         |                       |                                                       |                                                                                                             |
| Loading Rate (0.5 to 1    | .0 MPa / sec) :                                                        |                                                                  | 0.                     | 6         | (MPa/sec)             |                                                       | After Test :                                                                                                |
| Type of Fracture :        |                                                                        |                                                                  | 3                      |           | -                     |                                                       |                                                                                                             |
| Test Duration (2-15 M     | inutes) :                                                              |                                                                  | 4                      |           | (minutes)             |                                                       |                                                                                                             |
| Maximum Applied Loa       | ıd :                                                                   |                                                                  | 251                    | .57       | ☑ kN 🔲 I              | bs                                                    | · A CAR AN                                                                                                  |
| Compressive Strer         | ngth :                                                                 |                                                                  | 80                     | .7        | (MPa)                 |                                                       |                                                                                                             |
|                           |                                                                        |                                                                  |                        |           |                       |                                                       |                                                                                                             |
| Remarks :                 |                                                                        |                                                                  |                        |           |                       |                                                       |                                                                                                             |
|                           |                                                                        |                                                                  |                        |           |                       |                                                       |                                                                                                             |
| Analysed by :             |                                                                        |                                                                  | Ali Elhaddad           |           |                       | Date                                                  | e: February 8, 2021                                                                                         |
| Verified by :             |                                                                        |                                                                  | E. Bennett             |           |                       | _ Date                                                | E February 17, 2021                                                                                         |



| Client :                 | Infrastructure C | Intario         |                       |      |                | Proj               | ject Nº : <u>1</u>        | 1205379-80          |  |
|--------------------------|------------------|-----------------|-----------------------|------|----------------|--------------------|---------------------------|---------------------|--|
| Project :                | Proposed Parki   | ng Structure    | Ontario Campus        |      |                | Sam                | ple N° : <u>N</u>         | 1W6-21 RC2          |  |
|                          | 401 Smyth Roa    | d, Ottawa, Onta | ario                  |      |                | _                  | Depth : <u>4.75-4.88m</u> |                     |  |
|                          |                  |                 |                       |      |                | Sampling           | g Date : J                | anuary 14-15 / 2021 |  |
| Testing Appara           | itus Used :      |                 |                       | 1    |                | Caliper Nº1        |                           |                     |  |
|                          |                  |                 | Fechnical Data        |      |                | View of Specimen   |                           |                     |  |
| Diamotor :               |                  | 63              | 63                    | 63   | Average        |                    | В                         | efore Test :        |  |
|                          |                  | 00              | 05                    | 00   | 00.0           |                    |                           |                     |  |
| Length :                 |                  | 86              | 86                    | 86   | 86.0           | (mm)               |                           |                     |  |
| Straightness (0.5mm m    | aximum) (S1) :   | 0.3             | 0.3                   | 0.3  | 0.3            | (mm)               |                           | ×13.01              |  |
| Flatness (25µm maximu    | ım) (FP2) :      | Ok              | Ok                    | Ok   | Ok             |                    |                           | MW6-21              |  |
| Parallelism (0.25 ° maxi | mum) (FP2) :     | 0.15            | 0.15                  | 0.15 | 0.15           | (°)                |                           | RC2                 |  |
| Mass :                   | 70               | 24              | (a) Volume:           | 26   | 8083           | (mm <sup>3</sup> ) |                           |                     |  |
| Density :                |                  |                 | _(g) 101011101<br>261 |      | $(kq/m^3)$     | ()                 |                           | 15'7" -16'          |  |
| Moisture Conditions :    |                  |                 | D                     | ry   | _(,            |                    |                           |                     |  |
| Loading Rate (0.5 to     | 1.0 MPa / sec) : |                 | 0.                    | 6    |                |                    | Α                         | fter Test :         |  |
| Type of Fracture :       |                  |                 |                       | 3    |                |                    |                           |                     |  |
| Test Duration (2-15 M    | linutes) :       |                 | 4                     | 1    | -<br>(minutes) |                    |                           |                     |  |
| Maximum Applied Loa      | ad :             |                 | 294                   | 4.5  | _ (            | lbs                |                           |                     |  |
| Compressive Stre         | ngth :           |                 | 94                    | 5    | (MPa)          |                    |                           | TO ALLO             |  |
|                          |                  |                 |                       |      |                |                    |                           |                     |  |
|                          |                  |                 |                       |      |                |                    |                           |                     |  |
|                          |                  |                 |                       |      |                |                    |                           |                     |  |
| Remarks :                |                  |                 |                       |      |                |                    |                           |                     |  |
|                          |                  |                 |                       |      |                |                    |                           |                     |  |
| Analysed by :            |                  |                 | Ali Elhaddad          |      |                | _                  | Date : _                  | February 8, 2021    |  |
| Verified by :            |                  |                 | E. Bennett            |      |                |                    | Date : _                  | February 17, 2021   |  |



| Client :                  | Infrastructure C                 | Intario                                       |                        |           |                       | Proje               | ect N° : 11205379-80                         |  |  |
|---------------------------|----------------------------------|-----------------------------------------------|------------------------|-----------|-----------------------|---------------------|----------------------------------------------|--|--|
| Project :                 | Proposed Parki                   | ng Structure                                  |                        |           |                       | Samp                | Sample N° : MW6-21 RC4                       |  |  |
|                           | Children's Hosp<br>401 Smvth Roa | oital of Eastern (<br>d. Ottawa <u>, Onta</u> | Ontario Campus<br>Irio | ,         |                       | C                   | <b>Depth :</b> 6.65-6.81m                    |  |  |
|                           |                                  |                                               |                        |           |                       | Sampling            | Sampling Date : January 14-15 / 2021         |  |  |
| Testing Appara            | tus Used :                       |                                               |                        | Loading c | levice Nº             | 1                   | Caliper Nº1                                  |  |  |
|                           |                                  | 1                                             | echnical Data          |           |                       |                     | View of Specimen                             |  |  |
|                           |                                  |                                               |                        |           | Average               |                     | Before Test :                                |  |  |
| Diameter :                |                                  | 63                                            | 63                     | 63        | 63.0                  | (mm)                |                                              |  |  |
| Length :                  |                                  | 82                                            | 82                     | 82        | 82.0                  | (mm)                | alor a la l |  |  |
| Straightness (0.5mm ma    | aximum) (S1) :                   | 0.3                                           | 0.3                    | 0.3       | 0.3                   | (mm)                |                                              |  |  |
| Flatness (25µm maximu     | m) (FP2) :                       | Ok                                            | Ok                     | Ok        | Ok                    |                     | - 70'1                                       |  |  |
| Parallelism (0.25 ° maxir | mum) (FP2) :                     | 0.15                                          | 0.15                   | 0.15      | 0.15                  | (°)                 | MW6-21                                       |  |  |
| Mass :                    | 67                               | 6.1                                           | (g) Volume:            | 25        | 5614                  | _(mm <sup>3</sup> ) |                                              |  |  |
| Density :                 |                                  |                                               | 264                    | 45        | _(kg/m <sup>3</sup> ) |                     | 22' 4"                                       |  |  |
| Moisture Conditions :     |                                  |                                               | Dr                     | ГУ        | _                     |                     |                                              |  |  |
| Loading Rate (0.5 to 1    | 1.0 MPa / sec) :                 |                                               | 0.                     | 6         | (MPa/sec)             |                     | After Test :                                 |  |  |
| Type of Fracture :        |                                  |                                               | 3                      | \$        | _                     |                     |                                              |  |  |
| Test Duration (2-15 M     | inutes) :                        |                                               | 4                      | ŀ         | (minutes)             |                     |                                              |  |  |
| Maximum Applied Loa       | ad :                             |                                               | 311                    | .75       | ☑ kN 🔲 I              | bs                  |                                              |  |  |
| Compressive Strer         | ngth :                           |                                               | 100                    | ).0       | (MPa)                 |                     |                                              |  |  |
|                           |                                  |                                               |                        |           |                       |                     |                                              |  |  |
| Remarks :                 |                                  |                                               |                        |           |                       |                     |                                              |  |  |
| Analysed by :             |                                  |                                               | Ali Elhaddad           |           |                       |                     | Date : February 8, 2021                      |  |  |
| Verified by :             |                                  |                                               | E. Bennett             |           |                       | _                   | Date : February 17, 2021                     |  |  |



| Client :                 | Infrastructure C | Intario          |                        |           |                      | Proje              | ect N°:  | 11205379-80          |
|--------------------------|------------------|------------------|------------------------|-----------|----------------------|--------------------|----------|----------------------|
| Project :                | Proposed Parki   | ng Structure     | Ontonio Oc             |           |                      | Samp               | ole N° : | MW6-21 RC5           |
|                          | 401 Smyth Roa    | nd, Ottawa, Onta | Ontario Campus<br>ario | 5         |                      | Depth : 7.98-8.10m |          |                      |
|                          |                  |                  |                        |           |                      | Sampling           | Date :   | January 14-15 / 2021 |
| Testing Appara           | tus Used :       |                  |                        | Loading o | levice Nº            | 1                  |          | Caliper Nº1          |
|                          | Technical Data   |                  |                        |           |                      |                    |          | View of Specimen     |
| <b>.</b>                 |                  |                  |                        |           | Average              | ٦, 、               |          | Before Test :        |
| Diameter :               |                  | 63               | 63                     | 63        | 63.0                 | (mm)<br>—          |          |                      |
| Length :                 |                  | 93               | 93                     | 93        | 93.0                 | (mm)               |          | 26'2                 |
| Straightness (0.5mm m    | aximum) (S1) :   | 0.3              | 0.3                    | 0.3       | 0.3                  | (mm)               |          |                      |
| Flatness (25µm maximu    | ım) (FP2) :      | Ok               | Ok                     | Ok        | Ok                   |                    |          | MW6-1                |
| Parallelism (0.25 ° maxi | mum) (FP2) :     | 0.15             | 0.15                   | 0.15      | 0.15                 | (°)                |          | RCS                  |
| Mass :                   | 77               | 6.4              | (a) Volume:            | 28        | 9904                 | (mm <sup>3</sup> ) |          |                      |
| Density :                |                  |                  | 26                     | 78        | (kg/m <sup>3</sup> ) | _, ,               |          |                      |
| Moisture Conditions :    |                  |                  | Di                     | ry        |                      |                    |          |                      |
| Loading Rate (0.5 to     | 1.0 MPa / sec) : |                  | 0.                     | 6         | -<br>(MPa/sec)       |                    |          | After Test :         |
| Type of Fracture :       |                  |                  |                        | ł         | _ ( )                |                    |          |                      |
| Test Duration (2-15 M    | linutes) :       |                  | 5                      | 5         | (minutes)            |                    |          |                      |
| Maximum Applied Loa      | ad :             |                  | 318                    | 3.7       | ✓ kN                 | lbs                |          |                      |
| Compressive Stre         | ngth :           |                  | 102                    | 2.2       | (MPa)                |                    |          |                      |
|                          |                  |                  |                        |           |                      |                    |          | A Star               |
|                          |                  |                  |                        |           |                      |                    |          |                      |
|                          |                  |                  |                        |           |                      |                    |          | Contract of the      |
| Remarks :                |                  |                  |                        |           |                      |                    |          |                      |
|                          |                  |                  |                        |           |                      |                    |          |                      |
| Analysed by :            |                  |                  | Ali Elhaddad           |           |                      | _                  | Date :   | February 8, 2021     |
| Verified by :            |                  |                  | E. Bennett             |           |                      | _                  | Date :   | February 17, 2021    |

| Client :                | Infrastructure C   | Ontario    |                |          |                      | Project N <sup>o</sup> | : 11205379                                                                                                     |
|-------------------------|--------------------|------------|----------------|----------|----------------------|------------------------|----------------------------------------------------------------------------------------------------------------|
| Project :               | Children's Hosp    | pital      |                |          |                      | Sample N <sup>o</sup>  | : MW9-22 r.1                                                                                                   |
|                         |                    |            |                |          |                      | Depth                  | : 3,20 - 3,31 m                                                                                                |
|                         |                    |            |                |          |                      | Sampling Date          | :                                                                                                              |
| Testing Appar           | ratus Used :       |            |                | Loadin   | g device N°_9        | 9130                   | Caliper N°_1                                                                                                   |
|                         |                    | -          | Fechnical Data |          |                      |                        | View of Specimen                                                                                               |
|                         |                    |            | 1              |          | Average              | 7                      | Before Test :                                                                                                  |
| Diameter :              |                    | 63.09      | 63.09          | 63.21    | 63.13                | (mm)                   |                                                                                                                |
| Length :                |                    | 109.59     | 108.25         | 109.84   | 109.23               | (mm)                   |                                                                                                                |
| Straightness (0.5mm n   | naximum) (S1) :    | 0.4        | 0.4            | 0.4      | 0.4                  | (mm)                   |                                                                                                                |
| Flatness (25µm maxim    | um) (FP2) :        | Ok         | Ok             | Ok       | Ok                   | (μm)                   |                                                                                                                |
| Parallelism (0.25 ° max | kimum) (FP2) :     | 0.15       | 0.20           | 0.20     | 0.18                 | (°)                    | After Test :                                                                                                   |
| Mass :                  | 91                 | 3.8        | _(g) Volume:   | 34       | 1893                 | (mm <sup>3</sup> )     |                                                                                                                |
| Density :               |                    |            | 267            | 73       | (kg/m <sup>3</sup> ) |                        |                                                                                                                |
| Moisture Conditions     | :                  |            | Dr             | У        | _                    |                        | The second s |
| Loading Rate (0.5 to    | o 1.0 MPa / sec) : |            | 0.5            | 58       | (MPa/sec)            |                        |                                                                                                                |
| Type of Fracture :      |                    |            | Multiple F     | Fracture | _                    |                        |                                                                                                                |
| Test Duration (2-15     | Minutes) :         |            | 12             | 3        | (seconds)            |                        |                                                                                                                |
| Maximum Applied Lo      | oad :              |            | 222.           | .24      | _<br>_(kN)           |                        |                                                                                                                |
| Compressive Stre        | ength :            |            | 71.            | .0       | _(MPa)               |                        |                                                                                                                |
|                         |                    |            |                |          |                      |                        |                                                                                                                |
|                         |                    |            |                |          |                      |                        |                                                                                                                |
|                         |                    |            |                |          |                      |                        |                                                                                                                |
| Remarks :               |                    |            |                |          |                      |                        |                                                                                                                |
|                         |                    |            |                |          |                      |                        |                                                                                                                |
| Analysed by :           | J. Lalonde         | $\frown$   |                |          |                      | Date                   | 8/18/2022                                                                                                      |
| Verified by :           | X                  | <u>ref</u> |                |          |                      | Date                   | : 8/25/2022                                                                                                    |
|                         |                    |            |                |          |                      |                        |                                                                                                                |

| Client :                 | Infrastructure C | Ontario       |                |               |                      | Project N <sup>o</sup> | : 11205379       |  |
|--------------------------|------------------|---------------|----------------|---------------|----------------------|------------------------|------------------|--|
| Project :                | Children's Hosp  | pital         |                |               |                      | Sample N <sup>o</sup>  | : MW9-22 r.2     |  |
|                          |                  |               |                |               |                      | Depth                  | : 4,04 - 4,14 m  |  |
|                          |                  |               |                |               |                      | Sampling Date          | :                |  |
| Testing Appara           | atus Used :      |               |                | Loadin        | g device N°_         | 9130                   | Caliper Nº _1    |  |
|                          |                  |               | Technical Data |               |                      |                        | View of Specimen |  |
|                          |                  |               | 1              |               | Average              |                        | Before Test :    |  |
| Diameter :               |                  | 63.18         | 63.20          | 63.00         | 63.13                | (mm)                   |                  |  |
| Length :                 |                  | 96.49         | 95.36          | 95.29         | 95.71                | (mm)                   |                  |  |
| Straightness (0.5mm m    | aximum) (S1) :   | 0.1           | 0.1            | 0.2           | 0.1                  | (mm)                   |                  |  |
| Flatness (25µm maximu    | ım) (FP2) :      | Ok            | Ok             | Ok            | Ok                   | (μm)                   |                  |  |
| Parallelism (0.25 ° maxi | imum) (FP2) :    | 0.05          | 0.10           | 0.10          | 0.08                 | (°)                    | After Test :     |  |
| Mass :                   | 79               | 8.9           | _(g) Volume: _ | 29            | 9563                 | (mm <sup>3</sup> )     |                  |  |
| Density :                |                  |               | 266            | 57            | (kg/m <sup>3</sup> ) |                        |                  |  |
| Moisture Conditions      |                  |               | Dry            | y             | _                    |                        | A Distance       |  |
| Loading Rate (0.5 to     | 1.0 MPa / sec) : |               | 0.4            | 8             | (MPa/sec)            |                        |                  |  |
| Type of Fracture :       |                  |               | Multiple F     | racture       | _                    |                        |                  |  |
| Test Duration (2-15 N    | /linutes) :      |               | 118            | 8             | (seconds)            |                        |                  |  |
| Maximum Applied Lo       | ad :             |               | 175.           | 67            | _(kN)                |                        |                  |  |
| Compressive Stre         | ngth :           |               | 56.            | 1             | _(MPa)               |                        |                  |  |
|                          |                  |               |                |               |                      |                        |                  |  |
|                          |                  |               |                |               |                      |                        |                  |  |
|                          |                  |               |                |               |                      |                        |                  |  |
| Remarks :                |                  |               |                |               |                      |                        |                  |  |
|                          |                  |               |                |               |                      |                        |                  |  |
| Analysed by :            | J. Lalonde       | $\overline{}$ | <u> </u>       |               |                      | Date                   | : 8/18/2022      |  |
| Verified by :            | $\rightarrow$    | bae           | <u> </u>       |               |                      | Date                   | : 8/25/2022      |  |
|                          |                  |               |                | Lamuam / 0004 |                      |                        |                  |  |

| Client :                 | Infrastructure C | Ontario     |                  |          |                       | Project N <sup>o</sup> | : 11205379             |  |
|--------------------------|------------------|-------------|------------------|----------|-----------------------|------------------------|------------------------|--|
| Project :                | Children's Hosp  | pital       |                  |          |                       | Sample N <sup>o</sup>  | : BH13-22 r.3          |  |
|                          |                  |             |                  |          |                       | Depth                  | : <u>3,61 - 3,71 m</u> |  |
|                          |                  |             |                  |          |                       | Sampling Date          | :                      |  |
| Testing Appara           | ntus Used :      |             |                  | Loadir   | ng device N°_         | 9130                   | Caliper Nº_1           |  |
|                          |                  |             | Technical Data   |          |                       |                        | View of Specimen       |  |
|                          |                  |             |                  |          | Average               | 7                      | Before Test :          |  |
| Diameter :               |                  | 63.00       | 63.09            | 63.15    | 63.08                 | (mm)                   |                        |  |
| Length :                 |                  | 100.38      | 100.26           | 100.38   | 100.34                | (mm)                   | C. I.                  |  |
| Straightness (0.5mm ma   | aximum) (S1) :   | 0.2         | 0.3              | 0.2      | 0.2                   | (mm)                   |                        |  |
| Flatness (25µm maximu    | m) (FP2) :       | Ok          | Ok               | Ok       | Ok                    | (μm)                   |                        |  |
| Parallelism (0.25 ° maxi | mum) (FP2) :     | 0.15        | 0.15             | 0.15     | 0.15                  | (°)                    | After Test :           |  |
| Mass :                   | 83               | 1.5         | _(g)   Volume: _ | 31       | 3579                  | _(mm <sup>3</sup> )    |                        |  |
| Density :                |                  |             | 265              | 52       | _(kg/m <sup>3</sup> ) |                        |                        |  |
| Moisture Conditions :    |                  |             | Dr               | у        | _                     |                        | and the                |  |
| Loading Rate (0.5 to     | 1.0 MPa / sec) : |             | 0.3              | 3        | (MPa/sec)             |                        |                        |  |
| Type of Fracture :       |                  |             | Multiple F       | Fracture | _                     |                        |                        |  |
| Test Duration (2-15 M    | linutes) :       |             | 10               | 8        | (seconds)             |                        |                        |  |
| Maximum Applied Lo       | ad :             |             | 112.             | 31       | _(kN)                 |                        |                        |  |
| Compressive Stre         | ngth :           |             | 35.              | 9        | _(MPa)                |                        |                        |  |
|                          |                  |             |                  |          |                       |                        |                        |  |
|                          |                  |             |                  |          |                       |                        |                        |  |
|                          |                  |             |                  |          |                       |                        |                        |  |
| Remarks :                |                  |             |                  |          |                       |                        |                        |  |
|                          |                  |             |                  |          |                       |                        |                        |  |
| Analysed by :            | J. Latonde       |             |                  |          |                       | Date                   | : 8/18/2022            |  |
| Verified by :            |                  | <u>oæ</u> j |                  |          |                       | Date                   | : 8/25/2022            |  |
|                          |                  |             |                  |          |                       |                        |                        |  |

| Client :                 | Infrastructure   | Ontario    |                |               |                       | Project N°              | : 11205379                |
|--------------------------|------------------|------------|----------------|---------------|-----------------------|-------------------------|---------------------------|
| Project :                | Children's Ho    | spital     |                |               |                       | Sample N <sup>o</sup> : | : MW23-22 r.2             |
|                          |                  |            |                |               |                       | Depth :                 | : <u>6,93 - 7,03 m</u>    |
|                          |                  |            |                |               |                       | Sampling Date           | :                         |
| Testing Appara           | atus Used :      |            |                | Loadin        | g device N°_9         | 9130                    | Caliper N <sup>o</sup> _1 |
|                          |                  |            | Technical Data |               |                       |                         | View of Specimen          |
|                          |                  |            | 1              |               | Average               | 7                       | Before Test :             |
| Diameter :               |                  | 63.11      | 63.04          | 63.06         | 63.07                 | (mm)                    |                           |
| Length :                 |                  | 100.32     | 100.27         | 100.42        | 100.34                | (mm)                    |                           |
| Straightness (0.5mm m    | aximum) (S1) :   | 0.2        | 0.1            | 0.2           | 0.2                   | (mm)                    |                           |
| Flatness (25µm maximu    | um) (FP2) :      | Ok         | Ok             | Ok            | Ok                    | (μm)                    |                           |
| Parallelism (0.25 ° maxi | imum) (FP2) :    | 0.10       | 0.15           | 0.15          | 0.13                  | (°)                     | After Test :              |
| Mass :                   | 8                | 45.1       | _(g) Volume: _ | 31            | 3469                  | _(mm <sup>3</sup> )     |                           |
| Density :                |                  |            | 269            | 96            | _(kg/m <sup>3</sup> ) |                         |                           |
| Moisture Conditions :    | :                |            | Dr             | y             |                       |                         |                           |
| Loading Rate (0.5 to     | 1.0 MPa / sec) : | :          | 0.3            | 9             | (MPa/sec)             |                         |                           |
| Type of Fracture :       |                  |            | Multiple F     | racture       | _                     |                         |                           |
| Test Duration (2-15 N    | /linutes) :      |            | 12             | 1             | (seconds)             |                         |                           |
| Maximum Applied Lo       | oad :            |            | 146.           | 16            | _(kN)                 |                         |                           |
| Compressive Stre         | ngth :           |            | 46.            | 8             | _(MPa)                |                         |                           |
|                          |                  |            |                |               |                       |                         |                           |
|                          |                  |            |                |               |                       |                         |                           |
|                          |                  |            |                |               |                       |                         |                           |
| Remarks :                |                  |            |                |               |                       |                         |                           |
|                          |                  |            |                |               |                       |                         |                           |
| Analysed by :            | J. Lalonde       | <u>_</u>   |                |               |                       | Date                    | 8/18/2022                 |
| Verified by :            | $ \geq ) $       | bael       |                |               |                       | Date :                  | 8/25/2022                 |
|                          |                  | $\bigcirc$ |                | Lanuar ( 0004 |                       |                         |                           |



#### CLIENT NAME: GHD LIMITED 455 Phillip St WATERLOO, ON N2V1C2 (519) 884-0510 ATTENTION TO: Jennifer Balkwill PROJECT: 11205379-RPT8 AGAT WORK ORDER: 21Z712939 SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer DATE REPORTED: Mar 01, 2021 PAGES (INCLUDING COVER): 5 VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>\*Notes</u> VERSION 1:Excluding Sulphide in Soil analysis

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
  incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
  merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
  contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

**AGAT** Laboratories (V1)

| Iember of: Association of Professional Engineers and Geoscientists of Alberta |  |
|-------------------------------------------------------------------------------|--|
| (APEGA)                                                                       |  |
| Western Enviro-Agricultural Laboratory Association (WEALA)                    |  |

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 5



# **Certificate of Analysis**

AGAT WORK ORDER: 21Z712939 PROJECT: 11205379-RPT8 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: GHD LIMITED

#### SAMPLING SITE:

#### ATTENTION TO: Jennifer Balkwill

#### SAMPLED BY:

## **Corrosivity Package**

| DATE RECEIVED: 2021-02-19      | 9        |                    |       |               |               |                 | ſ     | DATE REPORTE    | D: 2021-03-0    | 01    |                 |
|--------------------------------|----------|--------------------|-------|---------------|---------------|-----------------|-------|-----------------|-----------------|-------|-----------------|
|                                |          |                    |       |               |               | 11205379-BH4-   |       | 11205379-MW6-   | 11205379-BH7-   |       | 11205379-MW8-   |
|                                |          | SAMPLE DESCRIPTION |       |               |               | 21-SS2-0.7-1.0m |       | 21-SS2-0.7-1.0m | 21-SS2-0.7-1.0m |       | 21-SS2-1.1-1.3m |
|                                |          |                    |       |               | SAMPLE TYPE:  | Soil            |       | Soil            | Soil            |       | Soil            |
|                                |          |                    |       |               | DATE SAMPLED: | 2021-01-18      |       | 2021-01-13      | 2021-01-19      |       | 2021-01-18      |
| Parameter                      | Unit     | G/S                | RDL   | Date Prepared | Date Analyzed | 2122180         | RDL   | 2122181         | 2122182         | RDL   | 2122183         |
| Chloride (2:1)                 | µg/g     |                    | 4     | 2021-02-24    | 2021-02-24    | 440             | 2     | 253             | 69              | 4     | 562             |
| Sulphate (2:1)                 | µg/g     |                    | 4     | 2021-02-24    | 2021-02-24    | 439             | 2     | 395             | 6               | 4     | 195             |
| pH (2:1)                       | pH Units |                    | NA    | 2021-02-24    | 2021-02-24    | 6.35            | NA    | 7.4             | 7.23            | NA    | 7.95            |
| Electrical Conductivity (2:1)  | mS/cm    |                    | 0.005 | 2021-02-24    | 2021-02-24    | 1.21            | 0.005 | 0.936           | 0.163           | 0.005 | 1.40            |
| Resistivity (2:1) (Calculated) | ohm.cm   |                    | 1     | 2021-02-24    | 2021-02-24    | 826             | 1     | 1070            | 6130            | 1     | 714             |
| Redox Potential 1              | mV       |                    | NA    | 2021-02-23    | 2021-02-23    | 428             | NA    | 389             | 429             | NA    | 377             |
| Redox Potential 2              | mV       |                    | NA    | 2021-02-23    | 2021-02-23    | 446             | NA    | 394             | 416             | NA    | 379             |
| Redox Potential 3              | mV       |                    | NA    | 2021-02-23    | 2021-02-23    | 432             | NA    | 397             | 414             | NA    | 377             |
|                                |          |                    |       |               |               |                 |       |                 |                 |       |                 |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2122180-2122183 EC, pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter.

Redox potential measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry with exposure to oxidative/reduction conditions laboratory results may differ from field measured results.

Redox potential measurement in soil is quite variable and non reproducible due in part, to the general heterogeneity of a given soil. It is also related to the introduction of increased oxygen into the sample after extraction. The interpretation of soil redox potential should be considered in terms of its general range rather than as an absolute measurement.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by \*)



Certified By:



5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

# **Quality Assurance**

#### CLIENT NAME: GHD LIMITED

#### PROJECT: 11205379-RPT8

SAMPLING SITE:

AGAT WORK ORDER: 21Z712939 ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

# **Soil Analysis**

|                               |           |         |           |        |       | -               |                    |                      |       |                    |                      |       |              |                      |       |
|-------------------------------|-----------|---------|-----------|--------|-------|-----------------|--------------------|----------------------|-------|--------------------|----------------------|-------|--------------|----------------------|-------|
| RPT Date: Mar 01, 2021        |           |         | DUPLICATE |        |       |                 | REFERENCE MATERIAL |                      |       | METHOD BLANK SPIKE |                      |       | MATRIX SPIKE |                      |       |
| PARAMETER                     | Batch     | Sample  | Dup #1    | Dup #2 | RPD   | Method<br>Blank | Measured           | Acceptable<br>Limits |       | Recoverv           | Acceptable<br>Limits |       | Recovery     | Acceptable<br>Limits |       |
|                               |           | Ia      |           |        |       |                 | value              | Lower                | Upper |                    | Lower                | Upper |              | Lower                | Upper |
| Corrosivity Package           |           |         |           |        |       |                 |                    |                      |       |                    |                      |       |              |                      |       |
| Chloride (2:1)                | 2129123   |         | 42        | 42     | 0.0%  | < 2             | 93%                | 70%                  | 130%  | 102%               | 80%                  | 120%  | 104%         | 70%                  | 130%  |
| Sulphate (2:1)                | 2129123   |         | 3         | 3      | NA    | < 2             | 100%               | 70%                  | 130%  | 107%               | 80%                  | 120%  | 106%         | 70%                  | 130%  |
| pH (2:1)                      | 2122180 2 | 2122180 | 6.35      | 6.38   | 0.5%  | NA              | 100%               | 90%                  | 110%  |                    |                      |       |              |                      |       |
| Electrical Conductivity (2:1) | 2122180 2 | 2122180 | 1.21      | 1.40   | 14.6% | < 0.005         | 105%               | 80%                  | 120%  |                    |                      |       |              |                      |       |
| Redox Potential 1             | 1         |         |           |        |       |                 | 100%               | 90%                  | 110%  |                    |                      |       |              |                      |       |

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.





#### **AGAT** QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

# **Method Summary**

# CLIENT NAME: GHD LIMITED

# PROJECT: 11205379-RPT8

# AGAT WORK ORDER: 21Z712939

ATTENTION TO: Jennifer Balkwill

| SAMPLING SITE.                 |              | SAWFLED DT.                                      |                           |
|--------------------------------|--------------|--------------------------------------------------|---------------------------|
| PARAMETER                      | AGAT S.O.P   | LITERATURE REFERENCE                             | ANALYTICAL TECHNIQUE      |
| Soil Analysis                  |              | I                                                |                           |
| Chloride (2:1)                 | INOR-93-6004 | modified from SM 4110 B                          | ION CHROMATOGRAPH         |
| Sulphate (2:1)                 | INOR-93-6004 | modified from SM 4110 B                          | ION CHROMATOGRAPH         |
| pH (2:1)                       | INOR 93-6031 | MSA part 3 & SM 4500-H+ B                        | PH METER                  |
| Electrical Conductivity (2:1)  | INOR-93-6036 | modified from MSA PART 3, CH 14<br>and SM 2510 B | EC METER                  |
| Resistivity (2:1) (Calculated) | INOR-93-6036 | McKeague 4.12, SM 2510 B,SSA #5<br>Part 3        | CALCULATION               |
| Redox Potential 1              | INOR-93-6066 | modified G200-09, SM 2580 B                      | REDOX POTENTIAL ELECTRODE |
| Redox Potential 2              | INOR-93-6066 | modified G200-09, SM 2580 B                      | REDOX POTENTIAL ELECTRODE |
| Redox Potential 3              | INOR-93-6066 | modified G200-09, SM 2580 B                      | REDOX POTENTIAL ELECTRODE |

| hain of Custody Reco                                                                                                                                                            | rd If this is a l                                                                                                                                         | Orinking Water s                 | ample, plea        | se use Drink                       | lng Water Chain of (                                                       | ustody Form (po        | table water o                       | onsum                  | ed by h                              | umans)                                |                   |       | Arr                                                               | ival Ter                                   | nperatu                                                  | ires:<br>Réle                    | 18                                          | 014                       | 5.0                               | 4.8                        | 2               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|------------------------------------|----------------------------------------------------------------------------|------------------------|-------------------------------------|------------------------|--------------------------------------|---------------------------------------|-------------------|-------|-------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------------|---------------------------|-----------------------------------|----------------------------|-----------------|
| Report Information:         Company:       GHD Limited         Contact:       Jennifer Balkwill         Address:       455 Phillip St Unit 10         Phone:       519-340-4286 | Dort Information:         pany:       GHD Limited         act:       Jennifer Balkwill         ess:       455 Phillip St Unit 100A, Waterloo, ON, N2L 3X2 |                                  |                    |                                    | sulatory Requi<br>check all applicable boxes)<br>gulation 153/04<br>ble    | rements:               | R406                                | Sev<br>S               | ver Us<br>anitary<br>Regio<br>v. Wat | e<br>7 🗌 S<br>201<br>er Qual          | torm<br>-<br>ity  |       | Cu:<br>No<br>Tur<br>Reg<br>Rus                                    | stody S<br>tes:<br>naro<br>gular<br>sh TA1 | und 1<br>TAT (M                                          | ict:<br>fime<br>lost Analy       | (TAT)<br>(s Apply)                          | Requii                    | □No<br>ed:<br>Busines:            | s Days                     |                 |
| Reports to be sent to:<br>1. Email:<br>2. Email:                                                                                                                                | om                                                                                                                                                        |                                  |                    | Soil Te                            | exture (Check One)<br>Coarse<br>Fine                                       | _ ссме                 | [                                   | Obj                    | ective<br>er<br>Indicat              | s (PWQ                                | O)                | _     | 1                                                                 | 3 E<br>Da                                  | Busines<br>lys<br><b>R</b> Date F                        | s<br>Require                     | 2 B<br>Day<br>ed (Rush                      | usiness<br>s<br>Surcharg  | Es May A                          | lext Bus<br>)ay<br>.pply): | ines            |
| Project Information:<br>Project: 11205379-RPT8 Site Location:                                                                                                                   |                                                                                                                                                           |                                  |                    | Red<br>-                           | this submission<br>cord of Site Con                                        | for a<br>ditlon?<br>NO | Re<br>Cer                           | eport<br>tifica<br>Yes | Gulo<br>ate o                        | deline<br>f Ana<br>D                  | on<br>Iysis<br>No |       | F                                                                 | *7A<br>For 'Sau                            | Please<br>T is exc<br>me Day'                            | provic<br>lusive<br><b>analy</b> | de prior n<br>of weeke<br><b>vsls, plea</b> | otification<br>ands and a | for rush<br>tatutory<br>ot your A | TAT<br>holidays            | S<br>MI         |
| Please note: If quotation numb Invoice Information: Company: Contact: Address: Email:                                                                                           | er is not provided, ellent will                                                                                                                           | be billed full price for a       | s ⊠ No □           | B<br>GW<br>O<br>P<br>S<br>SD<br>SW | Biota<br>Ground Water<br>Oil<br>Paint<br>Soil<br>Sediment<br>Surface Water | 211Q                   | ield Filtered - Metals, Hg, CrVI, D | & Inorganics           | CrVI, 🗆 Hg, 🗆 HWSB                   | 1-F4 PHCs<br>F4G if required TYEs TNo | Be T Arochar      |       | Disposal Characterization ICLP:<br>Ma⊨⊡ VDCs □ ABNs □ BrahP □ PCB | Soils SPLP Rainwater Leach                 | Soils Characterization Package<br>MS Metals, BTEX, F1-F4 | C/SAR                            | rosivity                                    |                           |                                   |                            | Concentration ( |
| Sample Identification                                                                                                                                                           | Date<br>Sampled                                                                                                                                           | Time<br>Sampled                  | # of<br>Containers | Sample<br>Matrix                   | Comm<br>Special In                                                         | ents/<br>structions    | Y/N                                 | Metals                 | Metals                               | BTEX, F<br>Analyze                    | PAHS<br>Total D   | VOC   | Landfill<br>TC2 P. D                                              | Excess                                     | Excess<br>pH, ICP                                        | Salt - E(                        | Cor                                         |                           |                                   |                            |                 |
| 11205379- BH4-21 – SS2 - 0.7-1.0m                                                                                                                                               | 2021-01-18                                                                                                                                                | PM<br>AM<br>PM<br>AM             | 1                  | Soil                               | Corrosivity                                                                |                        |                                     |                        |                                      |                                       |                   |       |                                                                   | _                                          |                                                          |                                  |                                             |                           |                                   |                            |                 |
| .1205379- MW6-21 - SS2 - 0.7-1.0m<br>1205379- BH7-21 - SS2 - 0.7-1.0m<br>11205379- MW8-21 - SS2 - 1.1-1.3m                                                                      | 2021-01-13<br>2021-01-19<br>2021-01-18                                                                                                                    | AM<br>PM<br>AM<br>PM<br>AM<br>PM | 1<br>1<br>1        | Soil<br>Soil<br>Soil               | Corrosivity<br>Corrosivity<br>Corrosivity                                  |                        |                                     |                        |                                      |                                       |                   |       |                                                                   |                                            |                                                          |                                  |                                             |                           |                                   |                            | +               |
|                                                                                                                                                                                 |                                                                                                                                                           | AM<br>PM<br>AM<br>PM<br>AM<br>FM |                    |                                    |                                                                            |                        |                                     |                        |                                      |                                       |                   |       | - + 1                                                             |                                            |                                                          |                                  |                                             |                           |                                   |                            |                 |
| splas Ralinquished By (Print Name and Sign)                                                                                                                                     | <u>م</u>                                                                                                                                                  |                                  | Time               |                                    | Samples Received By (Print                                                 | t Natura and Sign)     | left                                | Ð                      | C                                    | -S                                    | 51 [              | 3-( ) | 9                                                                 | Time                                       | ,<br>Sh                                                  | <u>റ</u> )                       |                                             | Page                      | of                                |                            |                 |



# **CERTIFICATE OF ANALYSIS**

| Work Order              | : WT2214174                                        | Page                       | ÷ 1 of 5                                                |
|-------------------------|----------------------------------------------------|----------------------------|---------------------------------------------------------|
| Client                  | : GHD Limited                                      | Laboratory                 | : Waterloo - Environmental                              |
| Contact                 | : Rick Hawthorne                                   | Account Manager            | : Rick Hawthorne                                        |
| Address                 | : 455 Phillip Street<br>Waterloo ON Canada N2L 3X2 | Address                    | 60 Northland Road, Unit 1<br>Waterloo ON Canada N2V 2B8 |
| Telephone               | :                                                  | Telephone                  | : +1 519 886 6910                                       |
| Project                 | : 11205379-100                                     | Date Samples Received      | : 14-Sep-2022 10:30                                     |
| PO                      | : 735-004287                                       | Date Analysis<br>Commenced | : 15-Sep-2022                                           |
| C-O-C number            | :                                                  | Issue Date                 | : 16-Sep-2022 16:35                                     |
| Sampler                 | : CLIENT                                           |                            | •                                                       |
| Site                    | :                                                  |                            |                                                         |
| Quote number            | 11205379-100-SSOW 735-004287                       |                            |                                                         |
| No. of samples received | : 8                                                |                            |                                                         |
| No. of samples analysed | : 8                                                |                            |                                                         |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

| Signatories      | Position                 | Laboratory Department               |
|------------------|--------------------------|-------------------------------------|
| Greg Pokocky     | Supervisor - Inorganic   | Inorganics, Waterloo, Ontario       |
| Joseph Scharbach |                          | Centralized Prep, Waterloo, Ontario |
| Walt Kippenhuck  | Team Leader - Inorganics | Inorganics, Waterloo, Ontario       |



#### **General Comments**

for analysis.

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

| Unit     | Description                  |
|----------|------------------------------|
| %        | percent                      |
| µS/cm    | Microsiemens per centimetre  |
| mg/kg    | milligrams per kilogram      |
| mV       | millivolts                   |
| ohm cm   | ohm centimetre (resistivity) |
| pH units | pH units                     |

>: greater than.

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

#### **Qualifiers**

| Qualifier | Description                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
| FR5       | As per applicable reference method(s), soil:water ratio for Fixed Ratio Leach was modified to 1:5 due to high soil organic content |



## Analytical Results

WT2214174-001

Sub-Matrix:Soil

#### (Matrix: Soil/Solid)

#### Client sample ID: 11205379- BH16-SS2 Client sampling date / time: 14-Sep-2022

| Analyte                             | CAS Number | Result    | LOR  | Unit     | Method   | Prep Date   | Analysis<br>Date | QCLot  |
|-------------------------------------|------------|-----------|------|----------|----------|-------------|------------------|--------|
| Physical Tests                      |            |           |      |          |          |             |                  |        |
| conductivity (1:2 leachate)         |            | 2650 FR5, | 10.0 | μS/cm    | E100-L   | 16-Sep-2022 | 16-Sep-2022      | 648051 |
| moisture                            |            | 10.4      | 0.25 | %        | E144     | -           | 15-Sep-2022      | 648057 |
| oxidation-reduction potential [ORP] |            | 436       | 0.10 | mV       | E125     | 15-Sep-2022 | 15-Sep-2022      | 648056 |
| pH (1:2 soil:CaCl2-aq)              |            | 8.26      | 0.10 | pH units | E108A    | 15-Sep-2022 | 15-Sep-2022      | 648054 |
| resistivity                         |            | 380       | 100  | ohm cm   | EC100R   | -           | 16-Sep-2022      | -      |
| Leachable Anions & Nutrients        |            |           |      |          |          |             |                  |        |
| chloride, soluble ion content       | 16887-00-6 | 1300      | 5.0  | mg/kg    | E236.Cl  | 16-Sep-2022 | 16-Sep-2022      | 648053 |
| sulfate, soluble ion content        | 14808-79-8 | 498       | 20   | mg/kg    | E236.SO4 | 16-Sep-2022 | 16-Sep-2022      | 648052 |

Please refer to the General Comments section for an explanation of any qualifiers detected.

## Analytical Results

### WT2214174-002

Sub-Matrix:Soil (Matrix: Soil/Solid) Client sample ID: 11205379- BH20-SS2 Client sampling date / time: 14-Sep-2022

| Analyte                             | CAS Number | Result   | LOR  | Unit     | Method   | Prep Date   | Analysis    | QCLot  |
|-------------------------------------|------------|----------|------|----------|----------|-------------|-------------|--------|
|                                     |            |          |      |          |          |             | Date        |        |
| Physical Tests                      |            |          |      |          |          |             |             |        |
| conductivity (1:2 leachate)         |            | 422 FR5, | 10.0 | µS/cm    | E100-L   | 16-Sep-2022 | 16-Sep-2022 | 648051 |
| moisture                            |            | 10.1     | 0.25 | %        | E144     | -           | 15-Sep-2022 | 648057 |
| oxidation-reduction potential [ORP] |            | 419      | 0.10 | mV       | E125     | 15-Sep-2022 | 15-Sep-2022 | 648056 |
| pH (1:2 soil:CaCl2-aq)              |            | 7.78     | 0.10 | pH units | E108A    | 15-Sep-2022 | 15-Sep-2022 | 648054 |
| resistivity                         |            | 2370     | 100  | ohm cm   | EC100R   | -           | 16-Sep-2022 | -      |
| Leachable Anions & Nutrients        |            |          |      |          |          |             |             |        |
| chloride, soluble ion content       | 16887-00-6 | 19.6     | 5.0  | mg/kg    | E236.Cl  | 16-Sep-2022 | 16-Sep-2022 | 648053 |
| sulfate, soluble ion content        | 14808-79-8 | 173      | 20   | mg/kg    | E236.SO4 | 16-Sep-2022 | 16-Sep-2022 | 648052 |

Please refer to the General Comments section for an explanation of any qualifiers detected.

## Analytical Results

WT2214174-003 Sub-Matrix:**Soil** 

(Matrix: Soil/Solid)

#### Client sample ID: 11205379- MW17-SS1 Client sampling date / time: 14-Sep-2022

| Analyte CAS Number Result LOR Unit Method Prep Date                                                                        | Analysis    | QCLot  |
|----------------------------------------------------------------------------------------------------------------------------|-------------|--------|
|                                                                                                                            | Date        |        |
| Physical Tests                                                                                                             |             |        |
| conductivity (1:2 leachate) 231 <sup>FB5</sup> 10.0 µS/cm E100-L 16-Sep-2022                                               | 16-Sep-2022 | 648051 |
| moisture <0.25 0.25 % E144 -                                                                                               | 15-Sep-2022 | 648057 |
| oxidation-reduction potential [ORP]         419         0.10         mV         E125         15-Sep-2022                   | 15-Sep-2022 | 648056 |
| pH (1:2 soil:CaCl2-aq) 8.26 0.10 pH units E108A 15-Sep-2022                                                                | 15-Sep-2022 | 648054 |
| resistivity 4330 100 ohm.cm EC100R -                                                                                       | 16-Sep-2022 | -      |
| Leachable Anions & Nutrients                                                                                               |             |        |
| chloride, soluble ion content         16887-00-6         8.6         5.0         mg/kg         E236.Cl         16-Sep-2022 | 16-Sep-2022 | 648053 |
| sulfate, soluble ion content         14808-79-8         54         20         mg/kg         E236.SO4         16-Sep-2022   | 16-Sep-2022 | 648052 |

Please refer to the General Comments section for an explanation of any qualifiers detected.



### Analytical Results

WT2214174-004

Sub-Matrix:Soil (Matrix: Soil/Solid) Client sample ID: 11205379- MW18-SS3 Client sampling date / time: 14-Sep-2022

| Analyte                             | CAS Number | Result    | LOR  | Unit     | Method   | Prep Date   | Analysis<br>Date | QCLot  |
|-------------------------------------|------------|-----------|------|----------|----------|-------------|------------------|--------|
| Physical Tests                      |            |           |      |          |          |             |                  |        |
| conductivity (1:2 leachate)         |            | 1310 FR5, | 10.0 | μS/cm    | E100-L   | 16-Sep-2022 | 16-Sep-2022      | 648051 |
| moisture                            |            | 8.45      | 0.25 | %        | E144     | -           | 15-Sep-2022      | 648057 |
| oxidation-reduction potential [ORP] |            | 398       | 0.10 | mV       | E125     | 15-Sep-2022 | 15-Sep-2022      | 648056 |
| pH (1:2 soil:CaCl2-aq)              |            | 8.16      | 0.10 | pH units | E108A    | 15-Sep-2022 | 15-Sep-2022      | 648054 |
| resistivity                         |            | 760       | 100  | ohm cm   | EC100R   | -           | 16-Sep-2022      | -      |
| Leachable Anions & Nutrients        |            |           |      |          |          |             |                  |        |
| chloride, soluble ion content       | 16887-00-6 | 734       | 5.0  | mg/kg    | E236.Cl  | 16-Sep-2022 | 16-Sep-2022      | 648053 |
| sulfate, soluble ion content        | 14808-79-8 | 215       | 20   | mg/kg    | E236.SO4 | 16-Sep-2022 | 16-Sep-2022      | 648052 |

Please refer to the General Comments section for an explanation of any qualifiers detected.

## Analytical Results

#### WT2214174-005

Sub-Matrix:Soil

| (Matrix: | Soil/Solid) |
|----------|-------------|
|----------|-------------|

Client sampling date / time: 14-Sep-2022

| Analyte                             | CAS Number | Result    | LOR  | Unit     | Method   | Prep Date   | Analysis    | QCLot  |
|-------------------------------------|------------|-----------|------|----------|----------|-------------|-------------|--------|
|                                     |            |           |      |          |          |             | Date        |        |
| Physical Tests                      |            |           |      |          |          |             |             |        |
| conductivity (1:2 leachate)         |            | 2540 FR5, | 10.0 | µS/cm    | E100-L   | 16-Sep-2022 | 16-Sep-2022 | 648051 |
| moisture                            |            | 6.72      | 0.25 | %        | E144     | -           | 15-Sep-2022 | 648057 |
| oxidation-reduction potential [ORP] |            | 393       | 0.10 | mV       | E125     | 15-Sep-2022 | 15-Sep-2022 | 648056 |
| pH (1:2 soil:CaCl2-aq)              |            | 7.28      | 0.10 | pH units | E108A    | 15-Sep-2022 | 15-Sep-2022 | 648054 |
| resistivity                         |            | 390       | 100  | ohm cm   | EC100R   | -           | 16-Sep-2022 | -      |
| Leachable Anions & Nutrients        |            |           |      |          |          |             |             |        |
| chloride, soluble ion content       | 16887-00-6 | 1420      | 5.0  | mg/kg    | E236.CI  | 16-Sep-2022 | 16-Sep-2022 | 648053 |
| sulfate, soluble ion content        | 14808-79-8 | 219       | 20   | mg/kg    | E236.SO4 | 16-Sep-2022 | 16-Sep-2022 | 648052 |

Please refer to the General Comments section for an explanation of any qualifiers detected.

## Analytical Results

#### WT2214174-006

| Sub Matrix Sail |  |
|-----------------|--|
| Sub-Matrix.Soli |  |

(Matrix: Soil/Solid)

# Client sample ID: 11205379- BH16-22-SS2

Client sampling date / time: 14-Sep-2022

| Analyte                             | CAS Number | Result   | LOR  | Unit     | Method   | Prep Date   | Analysis<br>Date | QCLot  |
|-------------------------------------|------------|----------|------|----------|----------|-------------|------------------|--------|
| Physical Tests                      |            |          |      |          |          |             |                  |        |
| conductivity (1:2 leachate)         |            | 430 FR5, | 10.0 | µS/cm    | E100-L   | 16-Sep-2022 | 16-Sep-2022      | 648051 |
| moisture                            |            | 6.03     | 0.25 | %        | E144     | -           | 15-Sep-2022      | 648057 |
| oxidation-reduction potential [ORP] |            | 354      | 0.10 | mV       | E125     | 15-Sep-2022 | 15-Sep-2022      | 648056 |
| pH (1:2 soil:CaCl2-aq)              |            | 7.85     | 0.10 | pH units | E108A    | 15-Sep-2022 | 15-Sep-2022      | 648054 |
| resistivity                         |            | 2320     | 100  | ohm cm   | EC100R   | -           | 16-Sep-2022      | -      |
| Leachable Anions & Nutrients        |            |          |      |          |          |             |                  |        |
| chloride, soluble ion content       | 16887-00-6 | 83.2     | 5.0  | mg/kg    | E236.CI  | 16-Sep-2022 | 16-Sep-2022      | 648053 |
| sulfate, soluble ion content        | 14808-79-8 | 116      | 20   | mg/kg    | E236.SO4 | 16-Sep-2022 | 16-Sep-2022      | 648052 |

Please refer to the General Comments section for an explanation of any qualifiers detected.



## **Analytical Results**

WT2214174-007

Sub-Matrix:Soil

(Matrix: Soil/Solid)

#### Client sample ID: 11205379- BH17-22-SS2 Client sampling date / time: 14-Sep-2022

| Analyte                             | CAS Number | Result   | LOR  | Unit     | Method   | Prep Date   | Analysis    | QCLot  |
|-------------------------------------|------------|----------|------|----------|----------|-------------|-------------|--------|
|                                     |            |          |      |          |          |             | Date        |        |
| Physical Tests                      |            |          |      |          |          |             |             |        |
| conductivity (1:2 leachate)         |            | 622 FR5, | 10.0 | µS/cm    | E100-L   | 16-Sep-2022 | 16-Sep-2022 | 648051 |
| moisture                            |            | 7.97     | 0.25 | %        | E144     | -           | 15-Sep-2022 | 648057 |
| oxidation-reduction potential [ORP] |            | 350      | 0.10 | mV       | E125     | 15-Sep-2022 | 15-Sep-2022 | 648056 |
| pH (1:2 soil:CaCl2-aq)              |            | 7.47     | 0.10 | pH units | E108A    | 15-Sep-2022 | 15-Sep-2022 | 648054 |
| resistivity                         |            | 1610     | 100  | ohm cm   | EC100R   | -           | 16-Sep-2022 | -      |
| Leachable Anions & Nutrients        |            |          |      |          |          |             |             |        |
| chloride, soluble ion content       | 16887-00-6 | 609      | 5.0  | mg/kg    | E236.Cl  | 16-Sep-2022 | 16-Sep-2022 | 648053 |
| sulfate, soluble ion content        | 14808-79-8 | 94       | 20   | mg/kg    | E236.SO4 | 16-Sep-2022 | 16-Sep-2022 | 648052 |
|                                     |            |          |      |          |          |             |             |        |

Please refer to the General Comments section for an explanation of any qualifiers detected.

## Analytical Results

#### WT2214174-008

Sub-Matrix:Soil

#### (Matrix: Soil/Solid)

Client sampling date / time: 14-Sep-2022

| Analyte                             | CAS Number | Result    | LOR  | Unit     | Method   | Prep Date   | Analysis    | QCLot  |
|-------------------------------------|------------|-----------|------|----------|----------|-------------|-------------|--------|
|                                     |            |           |      |          |          |             | Date        |        |
| Physical Tests                      |            |           |      |          |          |             |             |        |
| conductivity (1:2 leachate)         |            | 5560 FR5. | 10.0 | µS/cm    | E100-L   | 16-Sep-2022 | 16-Sep-2022 | 648051 |
| moisture                            |            | 6.16      | 0.25 | %        | E144     | -           | 15-Sep-2022 | 648057 |
| oxidation-reduction potential [ORP] |            | 371       | 0.10 | mV       | E125     | 15-Sep-2022 | 15-Sep-2022 | 648056 |
| pH (1:2 soil:CaCl2-aq)              |            | 6.81      | 0.10 | pH units | E108A    | 15-Sep-2022 | 15-Sep-2022 | 648054 |
| resistivity                         |            | 180       | 100  | ohm cm   | EC100R   | -           | 16-Sep-2022 | -      |
| Leachable Anions & Nutrients        |            |           |      |          |          |             |             |        |
| chloride, soluble ion content       | 16887-00-6 | 611       | 5.0  | mg/kg    | E236.CI  | 16-Sep-2022 | 16-Sep-2022 | 648053 |
| sulfate, soluble ion content        | 14808-79-8 | 6500      | 20   | mg/kg    | E236.SO4 | 16-Sep-2022 | 16-Sep-2022 | 648052 |

Please refer to the General Comments section for an explanation of any qualifiers detected.



# **QUALITY CONTROL INTERPRETIVE REPORT**

| Work Order              | : WT2214174                    | Page                  | : 1 of 11                        |
|-------------------------|--------------------------------|-----------------------|----------------------------------|
| Client                  | : GHD Limited                  | Laboratory            | : Waterloo - Environmental       |
| Contact                 | : Rick Hawthorne               | Account Manager       | : Rick Hawthorne                 |
| Address                 | : 455 Phillip Street           | Address               | : 60 Northland Road, Unit 1      |
|                         | Waterloo ON Canada N2L 3X2     |                       | Waterloo, Ontario Canada N2V 2B8 |
| Telephone               | :                              | Telephone             | : +1 519 886 6910                |
| Project                 | : 11205379-100                 | Date Samples Received | : 14-Sep-2022 10:30              |
| PO                      | : 735-004287                   | Issue Date            | : 16-Sep-2022 16:35              |
| C-O-C number            | :                              |                       |                                  |
| Sampler                 | : CLIENT                       |                       |                                  |
| Site                    | :                              |                       |                                  |
| Quote number            | : 11205379-100-SSOW 735-004287 |                       |                                  |
| No. of samples received | :8                             |                       |                                  |
| No. of samples analysed | :8                             |                       |                                  |

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

#### Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

**RPD: Relative Percent Difference.** 

#### Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

#### Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Test sample Surrogate recovery outliers exist.

#### **Outliers: Reference Material (RM) Samples**

• No Reference Material (RM) Sample outliers occur.

#### **Outliers : Analysis Holding Time Compliance (Breaches)**

• No Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• No Quality Control Sample Frequency Outliers occur.

### RIGHT SOLUTIONS | RIGHT PARTNER



### Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

| Matrix: Soil/Solid                                          |         |               |             |                          | Ev      | aluation: × = | Holding time exce | edance ; ง | = Withir | Holding Tim |
|-------------------------------------------------------------|---------|---------------|-------------|--------------------------|---------|---------------|-------------------|------------|----------|-------------|
| Analyte Group                                               | Method  | Sampling Date | Ext         | Extraction / Preparation |         |               |                   | Analys     |          |             |
| Container / Client Sample ID(s)                             |         |               | Preparation | Holdin                   | g Times | Eval          | Analysis Date     | Holding    | g Times  | Eval        |
|                                                             |         |               | Date        | Rec                      | Actual  |               |                   | Rec        | Actual   |             |
| Leachable Anions & Nutrients : Water Extractable Chloride b | ly IC   |               |             |                          |         |               |                   |            |          |             |
| Glass soil jar/Teflon lined cap                             |         |               |             |                          |         |               |                   |            |          |             |
| 11205379- BH11-22-SS2                                       | E236.CI | 14-Sep-2022   | 16-Sep-2022 | 30                       | 3 days  | 1             | 16-Sep-2022       | 28 days    | 0 days   | 1           |
|                                                             |         |               |             | days                     |         |               |                   |            |          |             |
| Leachable Anions & Nutrients : Water Extractable Chloride b | y IC    |               |             |                          |         |               |                   |            |          |             |
| Glass soil jar/Teflon lined cap                             |         |               |             |                          |         |               |                   |            |          |             |
| 11205379- BH16-22-SS2                                       | E236.CI | 14-Sep-2022   | 16-Sep-2022 | 30                       | 3 days  | ✓             | 16-Sep-2022       | 28 days    | 0 days   | 1           |
|                                                             |         |               |             | days                     |         |               |                   |            |          |             |
| Leachable Anions & Nutrients : Water Extractable Chloride b | y IC    |               |             |                          |         |               |                   |            |          |             |
| Glass soil jar/Teflon lined cap                             |         |               |             |                          |         |               |                   |            |          |             |
| 11205379- BH16-SS2                                          | E236.CI | 14-Sep-2022   | 16-Sep-2022 | 30                       | 3 days  | ✓             | 16-Sep-2022       | 28 days    | 0 days   | 1           |
|                                                             |         |               |             | days                     |         |               |                   |            |          |             |
| Leachable Anions & Nutrients : Water Extractable Chloride b | y IC    |               |             |                          |         |               |                   |            |          |             |
| Glass soil jar/Teflon lined cap                             |         |               |             |                          |         |               |                   |            |          |             |
| 11205379- BH17-22-SS2                                       | E236.CI | 14-Sep-2022   | 16-Sep-2022 | 30                       | 3 days  | 1             | 16-Sep-2022       | 28 days    | 0 days   | 1           |
|                                                             |         |               |             | days                     |         |               |                   |            |          |             |
| Leachable Anions & Nutrients : Water Extractable Chloride b | y IC    |               |             |                          |         |               |                   |            |          |             |
| Glass soil jar/Teflon lined cap                             |         |               |             |                          |         |               |                   |            |          |             |
| 11205379- BH20-SS2                                          | E236.CI | 14-Sep-2022   | 16-Sep-2022 | 30                       | 3 days  | ✓             | 16-Sep-2022       | 28 days    | 0 days   | 1           |
|                                                             |         |               |             | days                     |         |               |                   |            |          |             |
| Leachable Anions & Nutrients : Water Extractable Chloride b | y IC    |               |             |                          |         |               |                   |            |          |             |
| Glass soil jar/Teflon lined cap                             |         |               |             |                          |         |               |                   |            |          |             |
| 11205379- MW09-22                                           | E236.CI | 14-Sep-2022   | 16-Sep-2022 | 30                       | 3 days  | ✓             | 16-Sep-2022       | 28 days    | 0 days   | 1           |
|                                                             |         |               |             | days                     |         |               |                   |            |          |             |
| Leachable Anions & Nutrients : Water Extractable Chloride b | y IC    |               |             |                          |         |               |                   |            |          |             |
| Glass soil jar/Teflon lined cap                             |         |               |             |                          |         |               |                   |            |          |             |
| 11205379- MW17-SS1                                          | E236.Cl | 14-Sep-2022   | 16-Sep-2022 | 30                       | 3 days  | ✓             | 16-Sep-2022       | 28 days    | 0 days   | 1           |
|                                                             |         |               |             | davs                     |         |               |                   |            |          |             |

| Page       | : 4 of 11     |
|------------|---------------|
| Work Order | : WT2214174   |
| Client     | : GHD Limited |
| Project    | 11205379-100  |



| Matrix: Soil/Solid                                              |          |               |             |               | Ev         | aluation: × = | - Holding time exce | edance ; 🔹 | = Within | Holding Time |
|-----------------------------------------------------------------|----------|---------------|-------------|---------------|------------|---------------|---------------------|------------|----------|--------------|
| Analyte Group                                                   | Method   | Sampling Date | Ex          | traction / Pi | reparation |               |                     | Analysis   |          |              |
| Container / Client Sample ID(s)                                 |          |               | Preparation | Holdin        | q Times    | Eval          | Analysis Date       | Holding    | a Times  | Eval         |
|                                                                 |          |               | Date        | Rec           | Actual     |               |                     | Rec        | Actual   |              |
| Leachable Anions & Nutrients : Water Extractable Chloride by IC |          |               |             |               |            |               |                     |            |          |              |
| Glass soil jar/Teflon lined cap                                 |          |               |             |               |            |               |                     |            |          |              |
| 11205379- MW18-SS3                                              | E236.Cl  | 14-Sep-2022   | 16-Sep-2022 | 30            | 3 days     | ✓             | 16-Sep-2022         | 28 days    | 0 days   | 1            |
|                                                                 |          |               |             | days          |            |               |                     |            |          |              |
| Leachable Anions & Nutrients : Water Extractable Sulfate by IC  |          |               |             |               |            |               |                     |            |          |              |
| Glass soil jar/Teflon lined cap                                 |          |               |             |               |            |               |                     |            |          |              |
| 11205379- BH11-22-SS2                                           | E236.SO4 | 14-Sep-2022   | 16-Sep-2022 | 30            | 3 days     | ✓             | 16-Sep-2022         | 28 days    | 0 days   | 1            |
|                                                                 |          |               |             | days          |            |               |                     |            |          |              |
| Leachable Anions & Nutrients : Water Extractable Sulfate by IC  |          |               |             |               |            |               |                     |            |          |              |
| Glass soil jar/Teflon lined cap                                 |          |               |             |               |            |               |                     |            |          |              |
| 11205379- BH16-22-SS2                                           | E236.SO4 | 14-Sep-2022   | 16-Sep-2022 | 30            | 3 days     | ~             | 16-Sep-2022         | 28 days    | 0 days   | 1            |
|                                                                 |          |               |             | days          |            |               |                     |            |          |              |
| Leachable Anions & Nutrients : Water Extractable Sulfate by IC  |          |               |             |               |            |               |                     |            |          |              |
| Glass soil jar/Teflon lined cap                                 |          |               |             |               |            |               |                     |            |          |              |
| 11205379- BH16-SS2                                              | E236.SO4 | 14-Sep-2022   | 16-Sep-2022 | 30            | 3 days     | 1             | 16-Sep-2022         | 28 days    | 0 days   | 1            |
|                                                                 |          |               |             | days          |            |               |                     |            |          |              |
| Leachable Anions & Nutrients : Water Extractable Sulfate by IC  |          |               |             |               |            |               |                     |            |          |              |
| Glass soil jar/Teflon lined cap                                 |          |               |             |               |            |               |                     |            |          |              |
| 11205379- BH17-22-SS2                                           | E236.SO4 | 14-Sep-2022   | 16-Sep-2022 | 30            | 3 days     | ~             | 16-Sep-2022         | 28 days    | 0 days   | 1            |
|                                                                 |          |               |             | days          |            |               |                     |            |          |              |
| Leachable Anions & Nutrients : Water Extractable Sulfate by IC  |          |               |             |               |            |               |                     |            |          |              |
| Glass soil jar/Teflon lined cap                                 |          |               |             |               |            |               |                     |            |          |              |
| 11205379- BH20-SS2                                              | E236.SO4 | 14-Sep-2022   | 16-Sep-2022 | 30            | 3 days     | ✓             | 16-Sep-2022         | 28 days    | 0 days   | 1            |
|                                                                 |          |               |             | days          |            |               |                     |            |          |              |
| Leachable Anions & Nutrients : Water Extractable Sulfate by IC  |          |               |             |               |            |               |                     |            |          |              |
| Glass soil jar/Teflon lined cap                                 |          |               |             |               |            |               |                     |            |          |              |
| 11205379- MW09-22                                               | E236.SO4 | 14-Sep-2022   | 16-Sep-2022 | 30            | 3 days     | ~             | 16-Sep-2022         | 28 days    | 0 days   | ~            |
|                                                                 |          |               |             | days          |            |               |                     |            |          |              |
| Leachable Anions & Nutrients : Water Extractable Sulfate by IC  |          |               |             |               |            |               |                     |            |          |              |
| Glass soil jar/Teflon lined cap                                 |          |               |             |               |            |               |                     |            |          |              |
| 11205379- MW17-SS1                                              | E236.SO4 | 14-Sep-2022   | 16-Sep-2022 | 30            | 3 days     | ~             | 16-Sep-2022         | 28 days    | 0 days   | ~            |
|                                                                 |          |               |             | days          |            |               |                     |            |          |              |
| Leachable Anions & Nutrients : Water Extractable Sulfate by IC  |          |               |             |               |            |               |                     |            |          |              |
| Glass soil jar/Teflon lined cap                                 |          |               |             |               |            |               |                     |            |          |              |
| 11205379- MW18-SS3                                              | E236.SO4 | 14-Sep-2022   | 16-Sep-2022 | 30            | 3 days     | ✓             | 16-Sep-2022         | 28 days    | 0 days   | ✓            |
|                                                                 |          |               |             | days          |            |               |                     |            |          |              |

| Page       | : 5 of 11     |
|------------|---------------|
| Work Order | : WT2214174   |
| Client     | : GHD Limited |
| Project    | 11205379-100  |



| Matrix: Soil/Solid                                                            |        |               |                     |               | Ev                | aluation: × = | Holding time exce | edance ; 🔹     | = Within          | Holding Time |
|-------------------------------------------------------------------------------|--------|---------------|---------------------|---------------|-------------------|---------------|-------------------|----------------|-------------------|--------------|
| Analyte Group                                                                 | Method | Sampling Date | Ext                 | traction / Pi | reparation        |               |                   | Analysis       |                   |              |
| Container / Client Sample ID(s)                                               |        |               | Preparation<br>Date | Holdin<br>Rec | g Times<br>Actual | Eval          | Analysis Date     | Holding<br>Rec | g Times<br>Actual | Eval         |
| Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) |        |               |                     |               |                   |               |                   |                |                   |              |
| Glass soil jar/Teflon lined cap<br>11205379- BH11-22-SS2                      | E100-L | 14-Sep-2022   | 16-Sep-2022         |               |                   |               | 16-Sep-2022       | 30 days        | 2 days            | v            |
| Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) |        |               |                     |               |                   |               |                   |                |                   |              |
| Glass soil jar/Teflon lined cap<br>11205379- BH16-22-SS2                      | E100-L | 14-Sep-2022   | 16-Sep-2022         |               |                   |               | 16-Sep-2022       | 30 days        | 2 days            | 1            |
| Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) |        |               |                     |               |                   |               |                   | 1              |                   |              |
| Glass soil jar/Teflon lined cap<br>11205379- BH16-SS2                         | E100-L | 14-Sep-2022   | 16-Sep-2022         |               |                   |               | 16-Sep-2022       | 30 days        | 2 days            | ¥            |
| Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) |        |               |                     |               |                   |               |                   |                |                   |              |
| Glass soil jar/Teflon lined cap<br>11205379- BH17-22-SS2                      | E100-L | 14-Sep-2022   | 16-Sep-2022         |               |                   |               | 16-Sep-2022       | 30 days        | 2 days            | 4            |
| Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) |        |               |                     |               |                   |               |                   |                |                   |              |
| Glass soil jar/Teflon lined cap<br>11205379- BH20-SS2                         | E100-L | 14-Sep-2022   | 16-Sep-2022         |               |                   |               | 16-Sep-2022       | 30 days        | 2 days            | V            |
| Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) |        |               |                     |               | 11                |               |                   |                |                   |              |
| Glass soil jar/Teflon lined cap<br>11205379- MW09-22                          | E100-L | 14-Sep-2022   | 16-Sep-2022         |               |                   |               | 16-Sep-2022       | 30 days        | 2 days            | 4            |
| Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) |        |               |                     |               |                   |               |                   |                |                   |              |
| Glass soil jar/Teflon lined cap<br>11205379- MW17-SS1                         | E100-L | 14-Sep-2022   | 16-Sep-2022         |               |                   |               | 16-Sep-2022       | 30 days        | 2 days            | 1            |
| Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) |        |               |                     |               |                   |               |                   |                |                   |              |
| Glass soil jar/Teflon lined cap<br>11205379- MW18-SS3                         | E100-L | 14-Sep-2022   | 16-Sep-2022         |               |                   |               | 16-Sep-2022       | 30 days        | 2 days            | ¥            |
| Physical Tests : Moisture Content by Gravimetry                               |        |               |                     |               |                   |               |                   |                |                   |              |
| Glass soil jar/Teflon lined cap<br>11205379- BH11-22-SS2                      | E144   | 14-Sep-2022   |                     |               |                   |               | 15-Sep-2022       |                |                   |              |

| Page       | : 6 of 11     |
|------------|---------------|
| Work Order | : WT2214174   |
| Client     | : GHD Limited |
| Project    | 11205379-100  |



| Matrix: Soil/Solid                              |        |               |             |                          | Ev      | aluation: × = | Holding time excee | edance ; •  | = Within | Holding Time |
|-------------------------------------------------|--------|---------------|-------------|--------------------------|---------|---------------|--------------------|-------------|----------|--------------|
| Analyte Group                                   | Method | Sampling Date | Ex          | Extraction / Preparation |         |               |                    | Analys      |          |              |
| Container / Client Sample ID(s)                 |        |               | Preparation | Holdin                   | g Times | Eval          | Analysis Date      | Holding     | g Times  | Eval         |
|                                                 |        |               | Date        | Rec                      | Actual  |               |                    | Rec         | Actual   |              |
| Physical Tests : Moisture Content by Gravimetry |        |               |             |                          |         |               |                    |             |          |              |
| Glass soil jar/Teflon lined cap                 |        |               |             |                          |         |               |                    |             |          |              |
| 11205379- BH16-22-SS2                           | E144   | 14-Sep-2022   |             |                          |         |               | 15-Sep-2022        |             |          |              |
| Physical Tests : Moisture Content by Gravimetry |        |               |             |                          |         |               |                    |             |          |              |
| Glass soil jar/Teflon lined cap                 |        |               |             |                          |         |               |                    |             |          |              |
| 11205379- BH16-SS2                              | E144   | 14-Sep-2022   |             |                          |         |               | 15-Sep-2022        |             |          |              |
| Physical Tests : Moisture Content by Gravimetry |        |               |             |                          |         |               |                    |             |          |              |
| Glass soil jar/Teflon lined cap                 |        |               |             |                          |         |               |                    |             |          |              |
| 11205379- BH17-22-SS2                           | E144   | 14-Sep-2022   |             |                          |         |               | 15-Sep-2022        |             |          |              |
| Physical Tests : Moisture Content by Gravimetry |        |               |             |                          |         |               |                    |             |          |              |
| Glass soil jar/Teflon lined cap                 |        |               |             |                          |         |               |                    |             |          |              |
| 11205379- BH20-SS2                              | E144   | 14-Sep-2022   |             |                          |         |               | 15-Sep-2022        |             |          |              |
| Physical Tests : Moisture Content by Gravimetry |        |               |             |                          |         |               |                    |             |          |              |
| Glass soil jar/Teflon lined cap                 |        |               |             |                          |         |               |                    |             |          |              |
| 11205379- MW09-22                               | E144   | 14-Sep-2022   |             |                          |         |               | 15-Sep-2022        |             |          |              |
| Physical Tests : Moisture Content by Gravimetry |        |               |             |                          |         |               |                    |             |          |              |
| Glass soil jar/Teflon lined cap                 |        |               |             |                          |         |               |                    |             |          |              |
| 11205379- MW17-SS1                              | E144   | 14-Sep-2022   |             |                          |         |               | 15-Sep-2022        |             |          |              |
| Physical Tests : Moisture Content by Gravimetry |        |               |             |                          |         |               |                    |             |          |              |
| Glass soil jar/Teflon lined cap                 |        |               |             |                          |         |               |                    |             |          |              |
| 11205379- MW18-SS3                              | E144   | 14-Sep-2022   |             |                          |         |               | 15-Sep-2022        |             |          |              |
| Physical Tests : ORP by Electrode               |        |               |             |                          |         |               |                    |             |          |              |
| Glass soil jar/Teflon lined cap                 |        |               |             |                          |         |               |                    |             |          |              |
| 11205379- BH11-22-SS2                           | E125   | 14-Sep-2022   | 15-Sep-2022 |                          |         |               | 15-Sep-2022        | 180<br>days | 1 days   | ~            |
| Physical Tests : ORP by Electrode               |        |               |             |                          |         |               |                    |             |          |              |
| Glass soil jar/Teflon lined cap                 |        |               |             |                          |         |               |                    |             |          |              |
| 11205379- BH16-22-SS2                           | E125   | 14-Sep-2022   | 15-Sep-2022 |                          |         |               | 15-Sep-2022        | 180<br>days | 1 days   | ~            |

| Page       | : 7 of 11      |
|------------|----------------|
| Work Order | : WT2214174    |
| Client     | : GHD Limited  |
| Project    | · 11205379-100 |



| Matrix: Soil/Solid                                                           |        |               |                          |        | Ev      | aluation: × = | Holding time exce | edance ; 🗸 | <pre>/ = Within</pre> | Holding Time |
|------------------------------------------------------------------------------|--------|---------------|--------------------------|--------|---------|---------------|-------------------|------------|-----------------------|--------------|
| Analyte Group                                                                | Method | Sampling Date | Extraction / Preparation |        |         |               | Analysis          |            |                       |              |
| Container / Client Sample ID(s)                                              |        |               | Preparation              | Holdin | g Times | Eval          | Analysis Date     | Holding    | Times                 | Eval         |
|                                                                              |        |               | Date                     | Rec    | Actual  |               |                   | Rec        | Actual                |              |
| Physical Tests : ORP by Electrode                                            |        |               |                          |        |         |               |                   |            |                       |              |
| Glass soil jar/Teflon lined cap                                              |        |               |                          |        |         |               |                   |            |                       |              |
| 11205379- BH16-SS2                                                           | E125   | 14-Sep-2022   | 15-Sep-2022              |        |         |               | 15-Sep-2022       | 180        | 1 days                | ✓            |
|                                                                              |        |               |                          |        |         |               |                   | days       |                       |              |
| Physical Tests : ORP by Electrode                                            |        |               |                          |        |         |               |                   |            |                       |              |
| Glass soil jar/Teflon lined cap                                              |        |               |                          |        |         |               |                   |            |                       |              |
| 11205379- BH17-22-SS2                                                        | E125   | 14-Sep-2022   | 15-Sep-2022              |        |         |               | 15-Sep-2022       | 180        | 1 days                | ✓            |
|                                                                              |        |               |                          |        |         |               |                   | days       |                       |              |
| Physical Tests : ORP by Electrode                                            |        |               |                          |        |         |               |                   |            |                       |              |
| Glass soil jar/Teflon lined cap                                              |        |               |                          |        |         |               |                   |            |                       |              |
| 11205379- BH20-SS2                                                           | E125   | 14-Sep-2022   | 15-Sep-2022              |        |         |               | 15-Sep-2022       | 180        | 1 days                | ✓            |
|                                                                              |        |               |                          |        |         |               |                   | days       |                       |              |
| Physical Tests : ORP by Electrode                                            |        |               |                          |        |         |               |                   |            |                       |              |
| Glass soil jar/Teflon lined cap                                              |        |               |                          |        |         |               |                   |            |                       |              |
| 11205379- MW09-22                                                            | E125   | 14-Sep-2022   | 15-Sep-2022              |        |         |               | 15-Sep-2022       | 180        | 1 days                | ✓            |
|                                                                              |        |               |                          |        |         |               |                   | days       |                       |              |
| Physical Tests : ORP by Electrode                                            |        |               |                          |        |         |               |                   |            |                       |              |
| Glass soil jar/Teflon lined cap                                              |        |               |                          |        |         |               |                   |            |                       |              |
| 11205379- MW17-SS1                                                           | E125   | 14-Sep-2022   | 15-Sep-2022              |        |         |               | 15-Sep-2022       | 180        | 1 days                | ✓            |
|                                                                              |        |               |                          |        |         |               |                   | days       |                       |              |
| Physical Tests : ORP by Electrode                                            |        |               |                          |        |         |               |                   |            |                       |              |
| Glass soil jar/Teflon lined cap                                              |        |               |                          |        |         |               |                   |            |                       |              |
| 11205379- MW18-SS3                                                           | E125   | 14-Sep-2022   | 15-Sep-2022              |        |         |               | 15-Sep-2022       | 180        | 1 days                | ✓            |
|                                                                              |        |               |                          |        |         |               |                   | days       |                       |              |
| Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received |        |               |                          |        |         |               |                   |            |                       |              |
| Glass soil jar/Teflon lined cap                                              |        |               |                          |        |         |               |                   |            |                       |              |
| 11205379- BH11-22-SS2                                                        | E108A  | 14-Sep-2022   | 15-Sep-2022              |        |         |               | 15-Sep-2022       | 30 days    | 1 days                | ✓            |
|                                                                              |        |               |                          |        |         |               |                   |            |                       |              |
| Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received |        |               |                          |        |         |               |                   |            |                       |              |
| Glass soil jar/Teflon lined cap                                              |        |               |                          |        |         |               |                   |            |                       |              |
| 11205379- BH16-22-SS2                                                        | E108A  | 14-Sep-2022   | 15-Sep-2022              |        |         |               | 15-Sep-2022       | 30 days    | 1 days                | ✓            |
|                                                                              |        |               |                          |        |         |               |                   |            |                       |              |
| Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received |        |               |                          |        |         |               |                   |            |                       |              |
| Glass soil jar/Teflon lined cap                                              |        |               |                          |        |         |               |                   |            |                       |              |
| 11205379- BH16-SS2                                                           | E108A  | 14-Sep-2022   | 15-Sep-2022              |        |         |               | 15-Sep-2022       | 30 days    | 1 days                | 1            |
|                                                                              |        |               |                          |        |         |               |                   |            |                       |              |

| Page       | : 8 of 11     |
|------------|---------------|
| Work Order | : WT2214174   |
| Client     | : GHD Limited |
| Project    | 11205379-100  |



| Matrix: Soil/Solid                                                           |        |               |             |                          | Ev      | valuation: × = | Holding time exce | edance ; • | = Within | Holding Time |
|------------------------------------------------------------------------------|--------|---------------|-------------|--------------------------|---------|----------------|-------------------|------------|----------|--------------|
| Analyte Group                                                                | Method | Sampling Date | Ex          | Extraction / Preparation |         |                |                   |            |          |              |
| Container / Client Sample ID(s)                                              |        |               | Preparation | Holdin                   | g Times | Eval           | Analysis Date     | Holding    | g Times  | Eval         |
|                                                                              |        |               | Date        | Rec                      | Actual  |                |                   | Rec        | Actual   |              |
| Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received |        |               |             |                          |         |                |                   |            |          |              |
| Glass soil jar/Teflon lined cap<br>11205379- BH17-22-SS2                     | E108A  | 14-Sep-2022   | 15-Sep-2022 |                          |         |                | 15-Sep-2022       | 30 days    | 1 days   | 1            |
|                                                                              |        |               |             |                          |         |                |                   |            |          |              |
| Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received |        |               |             |                          |         |                |                   |            |          |              |
| Glass soil jar/Teflon lined cap                                              |        |               |             |                          |         |                |                   |            |          |              |
| 11205379- BH20-SS2                                                           | E108A  | 14-Sep-2022   | 15-Sep-2022 |                          |         |                | 15-Sep-2022       | 30 days    | 1 days   | ~            |
| Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received |        |               |             |                          |         |                |                   |            |          |              |
| Glass soil jar/Teflon lined cap                                              |        |               |             |                          |         |                |                   |            |          |              |
| 11205379- MW09-22                                                            | E108A  | 14-Sep-2022   | 15-Sep-2022 |                          |         |                | 15-Sep-2022       | 30 days    | 1 days   | ~            |
| Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received |        |               |             |                          |         |                |                   |            |          |              |
| Glass soil jar/Teflon lined cap                                              |        |               |             |                          |         |                |                   |            |          |              |
| 11205379- MW17-SS1                                                           | E108A  | 14-Sep-2022   | 15-Sep-2022 |                          |         |                | 15-Sep-2022       | 30 days    | 1 days   | ~            |
|                                                                              |        |               |             |                          |         |                |                   |            |          |              |
| Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received | 1      |               |             |                          |         |                |                   |            |          |              |
| 11205370- MW18-SS3                                                           | F108A  | 14-Sep-2022   | 15-Sen-2022 |                          |         |                | 15-Sep-2022       | 30 days    | 1 days   | 1            |
|                                                                              | LIVON  | .1 000 2022   | 10-000-2022 |                          |         |                | 10-000-2022       | JU GUYS    | 1 44 9 5 | ·            |
|                                                                              | 2      |               |             |                          |         | 5              | 2                 |            |          |              |

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).



# **Quality Control Parameter Frequency Compliance**

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

| Matrix: Soil/Solid                                           | Evaluation: $\star$ = QC frequency outside specification; $\star$ = QC frequency within specification. |          |    |         |        |               |            |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|----|---------|--------|---------------|------------|--|--|
| Quality Control Sample Type                                  |                                                                                                        |          | C  | ount    |        | Frequency (%) |            |  |  |
| Analytical Methods                                           | Method                                                                                                 | QC Lot # | QC | Regular | Actual | Expected      | Evaluation |  |  |
| Laboratory Duplicates (DUP)                                  |                                                                                                        |          |    |         |        |               |            |  |  |
| Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) | E100-L                                                                                                 | 648051   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| Moisture Content by Gravimetry                               | E144                                                                                                   | 648057   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| ORP by Electrode                                             | E125                                                                                                   | 648056   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received  | E108A                                                                                                  | 648054   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| Water Extractable Chloride by IC                             | E236.CI                                                                                                | 648053   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| Water Extractable Sulfate by IC                              | E236.SO4                                                                                               | 648052   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| Laboratory Control Samples (LCS)                             |                                                                                                        |          |    |         |        |               |            |  |  |
| Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) | E100-L                                                                                                 | 648051   | 2  | 8       | 25.0   | 10.0          | ✓          |  |  |
| Moisture Content by Gravimetry                               | E144                                                                                                   | 648057   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| ORP by Electrode                                             | E125                                                                                                   | 648056   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received  | E108A                                                                                                  | 648054   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| Water Extractable Chloride by IC                             | E236.CI                                                                                                | 648053   | 2  | 8       | 25.0   | 10.0          | ✓          |  |  |
| Water Extractable Sulfate by IC                              | E236.SO4                                                                                               | 648052   | 2  | 8       | 25.0   | 10.0          | ✓          |  |  |
| Method Blanks (MB)                                           |                                                                                                        |          |    |         |        |               |            |  |  |
| Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) | E100-L                                                                                                 | 648051   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| Moisture Content by Gravimetry                               | E144                                                                                                   | 648057   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| Water Extractable Chloride by IC                             | E236.CI                                                                                                | 648053   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |
| Water Extractable Sulfate by IC                              | E236.SO4                                                                                               | 648052   | 1  | 8       | 12.5   | 5.0           | ✓          |  |  |


## Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

| Analytical Methods                                              | Method / Lab                            | Matrix     | Method Reference                              | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------|-----------------------------------------|------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conductivity in Soil (1:2 Soil:Water Extraction)<br>(Low Level) | E100-L<br>Waterloo -<br>Environmental   | Soil/Solid | CSSS Ch. 15<br>(mod)/APHA 2510<br>(mod)       | Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Conductance is measured in the fluid that is observed in the upper layer.                                                                                                                                                                                         |
| pH by Meter (1:2 Soil:0.01M CaCl2 Extraction)<br>- As Received  | E108A<br>Waterloo -<br>Environmental    | Soil/Solid | MOEE E3137A                                   | pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C) and is carried out in accordance with procedures described in the Analytical Protocol (prescriptive method). A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil by centrifuging, settling, or decanting and then analyzed using a pH meter and electrode. |
| ORP by Electrode                                                | E125<br>Waterloo -<br>Environmental     | Soil/Solid | APHA 2580 (mod)                               | Oxidation Redution Potential (ORP) is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed in the analysis, measured in mV.                                                                                                                                                                                                                                                                                                                                                                                    |
| Moisture Content by Gravimetry                                  | E144<br>Waterloo -<br>Environmental     | Soil/Solid | CCME PHC in Soil - Tier<br>1                  | Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.                                                                                                                                                                                                                                                                                                                                                   |
| Water Extractable Chloride by IC                                | E236.Cl<br>Waterloo -<br>Environmental  | Soil/Solid | EPA 300.1                                     | Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection using a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Anions are measured in the fluid that is observed in the upper layer.                                                                                                                                                                                                                                                            |
| Water Extractable Sulfate by IC                                 | E236.SO4<br>Waterloo -<br>Environmental | Soil/Solid | EPA 300.1                                     | Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection using a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Anions are measured in the fluid that is observed in the upper layer.                                                                                                                                                                                                                                                            |
| Resistivity Calculation for Soil Using E100-L                   | EC100R<br>Waterloo -<br>Environmental   | Soil/Solid | APHA 2510 B                                   | Soil Resistivity (calculated) is determined as the inverse of the conductivity of a 2:1 water:soil leachate (dry weight). This method is intended as a rapid approximation for Soil Resistivity. Where high accuracy results are required, direct measurement of Soil Resistivity by the Wenner Four-Electrode Method (ASTM G57) is recommended.                                                                                                                                                                                                           |
| Preparation Methods                                             | Method / Lab                            | Matrix     | Method Reference                              | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Leach 1:2 Soil:Water for pH/EC                                  | EP108<br>Waterloo -<br>Environmental    | Soil/Solid | BC WLAP METHOD:<br>PH, ELECTROMETRIC,<br>SOIL | The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.                                                                                                                                                                                                                                                                                                                                                                                                    |

| Page       | : 11 of 11     |
|------------|----------------|
| Work Order | : WT2214174    |
| Client     | : GHD Limited  |
| Project    | : 11205379-100 |



| Preparation Methods                            | Method / Lab  | Matrix     | Method Reference | Method Descriptions                                                                      |
|------------------------------------------------|---------------|------------|------------------|------------------------------------------------------------------------------------------|
| Leach 1:2 Soil : 0.01CaCl2 - As Received for   | EP108A        | Soil/Solid | MOEE E3137A      | A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M        |
| рН                                             |               |            |                  | calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is       |
|                                                | Waterloo -    |            |                  | separated from the soil by centrifuging, settling or decanting and then analyzed using a |
|                                                | Environmental |            |                  | pH meter and electrode.                                                                  |
| Preparation of ORP by Electrode                | EP125         | Soil/Solid | APHA 2580 (mod)  | Field-moist sample is extracted in a 1:2 ratio with DI water and then analyzed by ORP    |
|                                                |               |            |                  | meter.                                                                                   |
|                                                | Waterloo -    |            |                  |                                                                                          |
|                                                | Environmental |            |                  |                                                                                          |
| Anions Leach 1:10 Soil:Water (Dry)             | EP236         | Soil/Solid | EPA 300.1        | 5 grams of dried soil is mixed with 50 grams of distilled water for a minimum of 30      |
|                                                |               |            |                  | minutes. The extract is filtered and analyzed by ion chromatography.                     |
|                                                | Waterloo -    |            |                  |                                                                                          |
|                                                | Environmental |            |                  |                                                                                          |
| Distillation for Acid Volatile Sulfide in Soil | EP396-L       | Soil/Solid | APHA 4500S2J     | Acid Volatile Sulfide is determined by colourimetric measurement on a sediment sample    |
|                                                |               |            |                  | that has been treated with hydrochloric acid within a purge and trap system, where the   |
|                                                | Waterloo -    |            |                  | evolved hydrogen sulfide gas is carried into a basic solution by argon gas for analysis. |
|                                                | Environmental |            |                  |                                                                                          |



# **QUALITY CONTROL REPORT**

| Work Order              | WT2214174                                          | Page                    | : 1 of 4                                                       |
|-------------------------|----------------------------------------------------|-------------------------|----------------------------------------------------------------|
| Client                  | : GHD Limited                                      | Laboratory              | : Waterloo - Environmental                                     |
| Contact                 | Rick Hawthorne                                     | Account Manager         | : Rick Hawthorne                                               |
| Address                 | : 455 Phillip Street<br>Waterloo ON Canada N2L 3X2 | Address                 | ∺60 Northland Road, Unit 1<br>Waterloo, Ontario Canada N2V 2B8 |
| Telephone               | :                                                  | Telephone               | :+1 519 886 6910                                               |
| Project                 | : 11205379-100                                     | Date Samples Received   | : 14-Sep-2022 10:30                                            |
| PO                      | : 735-004287                                       | Date Analysis Commenced | : 15-Sep-2022                                                  |
| C-O-C number            | :                                                  | Issue Date              | 16-Sep-2022 16:35                                              |
| Sampler                 | : CLIENT                                           |                         |                                                                |
| Site                    | :                                                  |                         |                                                                |
| Quote number            | : 11205379-100-SSOW 735-004287                     |                         |                                                                |
| No. of samples received | : 8                                                |                         |                                                                |
| No. of samples analysed | : 8                                                |                         |                                                                |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

| Signatories      | Position                 | Laboratory Department                        |
|------------------|--------------------------|----------------------------------------------|
| Greg Pokocky     | Supervisor - Inorganic   | Waterloo Inorganics, Waterloo, Ontario       |
| Joseph Scharbach |                          | Waterloo Centralized Prep, Waterloo, Ontario |
| Walt Kippenhuck  | Team Leader - Inorganics | Waterloo Inorganics, Waterloo, Ontario       |

| Page       | : 2 of 4       |
|------------|----------------|
| Work Order | : WT2214174    |
| Client     | : GHD Limited  |
| Project    | · 11205379-100 |



#### **General Comments**

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

# = Indicates a QC result that did not meet the ALS DQO.

#### Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

#### Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

| Sub-Matrix: Soil/Solid                        |                       |                                     |            | Laboratory Duplicate (DUP) Report |      |          |                    |                     |                         |                     |           |
|-----------------------------------------------|-----------------------|-------------------------------------|------------|-----------------------------------|------|----------|--------------------|---------------------|-------------------------|---------------------|-----------|
| Laboratory sample ID                          | Client sample ID      | Analyte                             | CAS Number | Method                            | LOR  | Unit     | Original<br>Result | Duplicate<br>Result | RPD(%) or<br>Difference | Duplicate<br>Limits | Qualifier |
| Physical Tests (QC                            | Lot: 648051)          |                                     |            |                                   |      |          |                    |                     |                         |                     |           |
| WT2214174-006                                 | 11205379- BH16-22-SS2 | conductivity (1:2 leachate)         |            | E100-L                            | 10.0 | μS/cm    | 430                | 438                 | 1.84%                   | 20%                 |           |
| Physical Tests (QC                            | Lot: 648054)          |                                     |            |                                   |      |          |                    |                     |                         |                     |           |
| WT2214174-008                                 | 11205379- MW09-22     | pH (1:2 soil:CaCl2-aq)              |            | E108A                             | 0.10 | pH units | 6.81               | 6.82                | 0.147%                  | 5%                  |           |
| Physical Tests (QC                            | Lot: 648056)          |                                     |            |                                   |      |          |                    |                     |                         |                     |           |
| WT2214174-007                                 | 11205379- BH17-22-SS2 | oxidation-reduction potential [ORP] |            | E125                              | 0.10 | mV       | 350                | 430                 | 20.5%                   | 25%                 |           |
| Physical Tests (QC                            | Lot: 648057)          |                                     |            |                                   |      |          |                    |                     |                         |                     |           |
| WT2214174-008                                 | 11205379- MW09-22     | moisture                            |            | E144                              | 0.25 | %        | 6.16               | 6.68                | 8.05%                   | 20%                 |           |
| Leachable Anions & Nutrients (QC Lot: 648052) |                       |                                     |            |                                   |      |          |                    |                     |                         |                     |           |
| WT2214174-006                                 | 11205379- BH16-22-SS2 | sulfate, soluble ion content        | 14808-79-8 | E236.SO4                          | 20   | mg/kg    | 116                | 118                 | 1                       | Diff <2x LOR        |           |
| Leachable Anions & Nutrients (QC Lot: 648053) |                       |                                     |            |                                   |      |          |                    |                     |                         |                     |           |
| WT2214174-006                                 | 11205379- BH16-22-SS2 | chloride, soluble ion content       | 16887-00-6 | E236.CI                           | 5.0  | mg/kg    | 83.2               | 83.3                | 0.136%                  | 30%                 |           |

| Page       | : 3 of 4       |
|------------|----------------|
| Work Order | : WT2214174    |
| Client     | : GHD Limited  |
| Project    | : 11205379-100 |



### Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

#### Sub-Matrix: Soil/Solid

| Analyte                                      | CAS Number | Method   | LOR  | Unit  | Result | Qualifier |  |
|----------------------------------------------|------------|----------|------|-------|--------|-----------|--|
| Physical Tests (QCLot: 648051)               |            |          |      |       |        |           |  |
| conductivity (1:2 leachate)                  |            | E100-L   | 5    | µS/cm | <5.00  |           |  |
| Physical Tests (QCLot: 648057)               |            |          |      |       |        |           |  |
| moisture                                     |            | E144     | 0.25 | %     | <0.25  |           |  |
| Leachable Anions & Nutrients (QCLot: 648052) |            |          |      |       |        |           |  |
| sulfate, soluble ion content                 | 14808-79-8 | E236.SO4 | 20   | mg/kg | <20    |           |  |
| Leachable Anions & Nutrients (QCLot: 648053) |            |          |      |       |        |           |  |
| chloride, soluble ion content                | 16887-00-6 | E236.CI  | 5    | mg/kg | <5.0   |           |  |

## Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

| Sub-Matrix: Soil/Solid                       |            |          |      |          | Laboratory Control Sample (LCS) Report |              |          |              |           |
|----------------------------------------------|------------|----------|------|----------|----------------------------------------|--------------|----------|--------------|-----------|
|                                              |            |          |      |          | Spike                                  | Recovery (%) | Recovery | ' Limits (%) |           |
| Analyte                                      | CAS Number | Method   | LOR  | Unit     | Concentration                          | LCS          | Low      | High         | Qualifier |
| Physical Tests (QCLot: 648051)               |            |          |      |          |                                        |              |          |              |           |
| conductivity (1:2 leachate)                  |            | E100-L   | 5    | μS/cm    | 1409 µS/cm                             | 98.8         | 90.0     | 110          |           |
| Physical Tests (QCLot: 648054)               |            |          |      |          |                                        |              |          |              |           |
| pH (1:2 soil:CaCl2-aq)                       |            | E108A    |      | pH units | 7 pH units                             | 100          | 98.0     | 102          |           |
| Physical Tests (QCLot: 648057)               |            |          |      |          |                                        |              |          |              |           |
| moisture                                     |            | E144     | 0.25 | %        | 50 %                                   | 101          | 90.0     | 110          |           |
| Leachable Anions & Nutrients (QCLot: 648052) |            |          |      |          |                                        |              |          |              |           |
| sulfate, soluble ion content                 | 14808-79-8 | E236.SO4 | 20   | mg/kg    | 5000 mg/kg                             | 100          | 70.0     | 130          |           |
| Leachable Anions & Nutrients (QCLot: 648053) |            |          |      |          |                                        |              |          |              |           |
| chloride, soluble ion content                | 16887-00-6 | E236.Cl  | 5    | mg/kg    | 5000 mg/kg                             | 101          | 80.0     | 120          |           |



## Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

| Sub-Matrix:                                  |                         |                                     |            |          | Reference Material (RM) Report |              |            |           |           |
|----------------------------------------------|-------------------------|-------------------------------------|------------|----------|--------------------------------|--------------|------------|-----------|-----------|
|                                              |                         |                                     |            |          | RM Target                      | Recovery (%) | Recovery L | imits (%) |           |
| Laboratory<br>sample ID                      | Reference Material ID   | Analyte                             | CAS Number | Method   | Concentration                  | RM           | Low        | High      | Qualifier |
| Physical Tests (C                            | CLot: 648051)           |                                     |            |          |                                |              |            |           |           |
|                                              | RM                      | conductivity (1:2 leachate)         |            | E100-L   | 3239 µS/cm                     | 100          | 70.0       | 130       |           |
| Physical Tests (C                            | CLot: 648056)           |                                     |            |          |                                |              |            |           |           |
|                                              | RM                      | oxidation-reduction potential [ORP] |            | E125     | 475 mV                         | 102          | 80.0       | 120       |           |
| Leachable Anions                             | s & Nutrients (QCLot: 6 | 48052)                              |            |          |                                |              |            |           |           |
|                                              | RM                      | sulfate, soluble ion content        | 14808-79-8 | E236.SO4 | 217 mg/kg                      | 98.5         | 60.0       | 140       |           |
| Leachable Anions & Nutrients (QCLot: 648053) |                         |                                     |            |          |                                |              |            |           |           |
|                                              | RM                      | chloride, soluble ion content       | 16887-00-6 | E236.CI  | 673 mg/kg                      | 94.1         | 70.0       | 130       |           |

| > |
|---|
|   |

COC Number: 22 -

ð Page

Ś

|                      | Γ                                         |                                       | ļ                                                     | ĥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                   | I                                                | I            | Γ                                     | 1                                 | sə<br>13       | яіс<br>ton | ee I                  | s) (              | ישנ<br>פו         | אצע<br>קצו      | 7H (                  |                                     | VJTEN<br>USPE                                      | s                                         |                    |                 |                     |                     |                  |                  |                |  |   | la serve                                    | ₽                |                                    | D N/A                     |                                 |                                |                            | 200           |
|----------------------|-------------------------------------------|---------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|--------------------------------------------------|--------------|---------------------------------------|-----------------------------------|----------------|------------|-----------------------|-------------------|-------------------|-----------------|-----------------------|-------------------------------------|----------------------------------------------------|-------------------------------------------|--------------------|-----------------|---------------------|---------------------|------------------|------------------|----------------|--|---|---------------------------------------------|------------------|------------------------------------|---------------------------|---------------------------------|--------------------------------|----------------------------|---------------|
| ironmental Division  | terloo                                    | 141/4<br>41/4                         | M 1251                                                | <b>                                </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                   |                                                  |              | 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Teleptione : + : : :              | \r/P) below    |            |                       | (                 | זרנ               |                 | NC                    |                                     | gma                                                | \$                                        |                    |                 |                     |                     |                  |                  |                |  |   | S (ALS use only)                            |                  | tification: 🖂 YES 👘 🗍 NO 🔅         | ole Custody Seals Intact. | FINAL COOLER TEMPERATURES C     | 0.4                            | EPTION (ALS use only)      | St0-77 1175   |
| FnV                  | Turnaround Time (TAT) Requests Wal        | Reinfrans (1) if received with an M.E | 4 day [P4] if received by 3pm M-F - 20% rush surcharg | <ul> <li>2 doy [P4] if received by 3pm M-F - 20% rush surchar,</li> <li>2 doy [P2] if received by 3pm M-F - 20% rush surchar,</li> <li>2 day [P2] if received by 3pm M-F - 50% rush surcharg</li> <li>2 low [E] if received by 3pm M-F - 100% rush surcharg</li> <li>3 low day [E] if received by 10am M-S - 200% rush surcharg</li> <li>3 low day [E] if received by 10am M-S - 200% rush surcharg</li> <li>2 low day [E] if received by 10am M-S - 200% rush surcharg</li> <li>3 low day goply to rush requests on with the and Time Required for all E&amp;P TATs.</li> </ul> |                            | Analysis                          | Indicate Filtered (F), Preserved (P) or Filtere, |              |                                       |                                   |                |            |                       |                   |                   |                 | SAMPLE RECEIPT DETAIL | ooling Method: WONE DICE DICE PACKS | Ibmission Comfrents Identified on Sample Receipt N | oder Custody Seals Intact: 👘 🖓 🗠 🖓 🗛 Sami |                    |                 |                     |                     |                  |                  |                |  |   |                                             |                  |                                    |                           |                                 |                                |                            |               |
| Free: 1 800 668 9878 | Recipients                                |                                       |                                                       | - provide details below if box checked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | ighd.com                          |                                                  |              | ecipients                             | AAIL 🗆 MAIL 🗍 FAX                 | a              |            | d Fields (client use) | PO#               | Routing Code:     |                 |                       | Sampler:                            | Time Sample Type                                   |                                           |                    |                 |                     |                     |                  |                  |                |  |   | ing from drop-down below                    | Ö                | Su                                 | <u>8</u>                  |                                 |                                | I RECEPTION (ALS USE ONLY) |               |
| Canada Toll I        | Reports / F                               | Select Report Format:                 | Merge QC/QCI Reports with COA                         | Compare Results to Criteria on Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Select Distribution:       | Email 1 or Fax jennifer.balkwill@ | Email 2                                          | Email 3      | Invoice R                             | Select Invoice Distribution: 🔲 EM | Email 1 or Fax | Email 2    | Oil and Gas Require   | AFE/Cost Center:  | Major/Minor Code: | Requisitioner:  | Location:             | ALS Contact:                        | Date                                               |                                           |                    |                 | 40.40               |                     |                  |                  |                |  |   | Limits for result evaluation by selection   | (Excel COC only) |                                    |                           |                                 |                                | Parelised hu               | NGCONTRACT NJ |
|                      | ame below will appear on the final report |                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | appear on the final report | A                                 |                                                  |              | J YES D NO                            | rt 🛛 YES 🔲 NO                     |                |            | ormation              |                   |                   |                 |                       | 2                                   | e Identification and/or Coordinates                |                                           |                    | - / 2           | 10-500              |                     | - <u> </u>       | . 22 - 55 2      | 19.22          |  |   | notes / Specify                             |                  | tem?                               |                           |                                 | SE (oliont uso)                | ac (urein use)<br>te:      | L1-00-111     |
| N www.alsglobal.com  | Contact and company na                    | y: GHD Limited                        | Jennifer Balkwill                                     | 519-340-4286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Company address below will | 455 Phillip Street, Unit 100      | vince: Waterloo, Ontario                         | ode: N2L 3X2 | To Same as Report To                  | Copy of Invoice with Repor        | k:             |            | Project Info          | :ount #/ Quote #: | 11205379-100      | E: 735-003472-1 |                       | b Work Order # (ALS use only):      | nple #   Sample<br>antv)   (This d                 | 11205379 ~ RH/M                           | 11205379 × R LI 20 | 11205379 - ML/1 | 111205379 - M- M- / | 11205379 ~ R LL 11. | 11205379 - RH 16 | 11205379 - BH 17 | 11205379 - MWO |  |   | intine Water (DW) Semulae <sup>1</sup> (ali |                  | les taken from a Regulated DW Syst |                           | es lor runan consumption, use r | LI YES LI NO<br>SHIPMENT DELEA |                            |               |
| K                    | Report T                                  | Company                               | Contact:                                              | Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | Street:                           | City/Provi                                       | Postal Co    | Invoice T                             |                                   | Company        | Contact:   |                       | ALS Acco          | Job #:            | PO / AFE        | LSD:                  | ALS Lab                             | ALS Sam<br>(ALS tree                               | •                                         |                    |                 |                     |                     |                  | -                |                |  | - |                                             | 5                | Are sample                         |                           | Are sampa                       |                                |                            | Released      |

Fallure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY, By the use of this form the use of the use of