

Geotechnical Design Report for Building Permit Application CHEO 1Door4care Parking Garage

Client Name: EllisDon Date: August 21, 2023

File: 36182

TABLE OF CONTENTS

1.	INTRODUCTION				
2.	BAC	KGROUND	1		
3.	UNDI	ERSTANDING OF SUBSURFACE CONDITIONS	2		
4.	FOU	NDATION DESIGN RECOMMENDATIONS	5		
	4.1	Foundation Excavation and Temporary Dewatering	5		
	4.2	Site Preparation	6		
	4.3	Protection of Expansive Shale	7		
	4.4	Engineered Fill Pad	7		
	4.5	Foundation Design	8		
	4.6	Frost Depth	9		
	4.7	Slab-On-Grade and Raft Foundations	9		
	4.8	Backfill to Structures and Lateral Earth Pressure	10		
	4.9	Site Seismic Classification	11		
	4.10	Cement Type	11		
	4.11	Site Servicing	12		
5.	CLOS	SURE	13		
STAT	TEMEN ⁻	T OF LIMITATIONS AND CONDITIONS			
		IN-TEXT TABLES			
Table	e 3.1: Ap	pproximate Depth and Elevation of Bedrock	2		
		roundwater Level Readings at the Site			
		oundation Design Options			
		ecommended Geotechnical Resistances at ULS and SLS			
rable	3 4.3: La	ateral Earth Pressure Coefficients	11		

APPENDICES

APPENDIX A

Borehole Location Plan (from GHD's) Report Record of Boreholes and Laboratory Test Results

1. INTRODUCTION

Thurber Engineering Ltd. (Thurber) has been retained by EllisDon to provide geotechnical input to the design of foundations for the proposed parking structure at the Children's Hospital for Eastern Ontario (CHEO) Campus.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions included in Appendix A.

Geo-environmental (chemical) aspects of the project including disposal excess soil/groundwater off site, consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources, are outside our terms of reference for this project and are not addressed herein.

This report has been issued based on a review of the geotechnical investigations conducted by Infrastructure Ontario's engineer (GHD). The soil conditions may vary between and beyond the borehole locations, and accordingly geotechnical inspection during construction is important to assess any variation of subsurface conditions and to provide additional recommendations if necessitated by such variations.

The use of this report is contingent to ED obtaining a reliance letter from the owner (Infrastructure Ontario) for all the subsurface investigation report(s) provided by the owner and that the reliance letter will include Thurber in conjunction with ED.

It should be noted that Thurber accepts no responsibility for the accuracy and quality of the factual information presented by others.

2. BACKGROUND

Preliminary geotechnical investigations were conducted at the Site by GHD (Infrastructure Ontario's Consultant), the results of which were presented in a report titled "1Door4Care: CHEO Integrated Treatment Centre – Geotechnical Investigation Report (Parking Garage)" dated October 25, 2022.

The geotechnical investigations took place in two stages between January 12, 2021 and July 19, 2022. The scope of geotechnical investigation included advancing a total of 23 boreholes and 6 monitoring wells and geophysical survey using Ground Penetration Radar (GPR).

3. UNDERSTANDING OF SUBSURFACE CONDITIONS

A plan showing the location of the proposed structure at the site as well as the location of the boreholes and monitoring wells advanced at the site has been included in Appendix B. The record of borehole sheets along with the laboratory test results have been included in Appendix B.

The inferred subsurface conditions outlined in this report, have been inferred based on the record of boreholes presented in the above GHD's report.

In general, the subsurface conditions at the site consisted of asphalt over non-cohesive fill (predominantly gravelly sand/gravel/sandy gravel/silty sand to sand and gravel) which is in turn underlain by non-cohesive native soil (predominantly compact to dense gravelly sand/sand/silty sand/sand and gravel/sand and silt) over shale bedrock. The thickness of the fill at the site varied between 0.3 m and 0.8 m. The silty native soil extended to depths ranging from 0.6 m to 1.2 m below existing ground surface, and shale bedrock was encountered or inferred at depths ranging from 0.4 m to 1.2 m below existing ground surface.

Due to the method of investigation and the presence of highly weathered shale below native soil, the top of the bedrock profile cannot be accurately determined. However, the estimated depths to the highly weathered shale bedrock surface as well as estimated elevation of the competent shale bedrock from augering and coring or auger refusal at the location of each borehole at the site have been presented in the following table:

Table 3.1: Approximate Depth and Elevation of Bedrock

Borehole	Estimated	Estimated
Identification	Depth/Elevation of	Elevation of
Number	Bedrock Surface	Competent
	(mbgs/m)	Bedrock Surface
		(m)
BH1-21	0.9 / 80.5	3.2 / 78.2*
BH2-21	1.1 / 80.2	2.8 / 78.6*
MW3-21	0.6 / 80.8	4.6 / 76.8
BH4-21	0.8 / 81.5	2.8 / 79.5*
MW5-21	0.4 / 81.4	•
MW6-21	1.2 / 80.9	3.5 / 78.7
BH7-21	0.8 / 81.5	2.5 / 79.7*
MW8-21	0.9 / 81.3	2.2 / 80.0*
B1-21	1.0 / 81.0	1.0 / 81.3*

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 2 of 14

Borehole Identification Number	Estimated Depth/Elevation of Bedrock Surface (mbgs/m)	Estimated Elevation of Competent Bedrock Surface (m)
B2-21	0.9 / 80.5	-
B3-21	1.2 / 80.9	-
MW9-22	0.8 / 81.2	2.6 / 79.4
BH10-22	0.7 / 81.5	1.2 / 80.9*
BH11-22	0.9 / 81.3	2.5 / 79.6
BH12-22	1.1 / 81.0	1.8 / 80.2*
BH13-22	1.0 / 81.2	1.9 / 80.2
BH14-22	0.7 / 81.5	1.2 / 81.0*
BH15-22	0.6 / 81.5	1.1 / 81.1*
BH16-22	0.9 / 81.2	1.2 / 80.9*
BH17-22	1.0 / 81.1	1.1 / 81.0*
BH18-22	0.8 / 81.3	1.4 / 80.7
BH19-22	0.9 / 80.2	-
MW20-22	1.0 / 80.2	1.6 / 79.6*

^{*} Estimated Elevation due to Auger Refusal

The groundwater level measurements in the wells are summarized below:

Table 3.2: Groundwater Level Readings at the Site

Borehole	Ground Surface Elev. (m)	Depth to Water (m)	Groundwater Elev. (m)	Main Screened Deposit
	, ,	2.7	78.7	-
MW3-21	81.37	2.5	78.9	Weathered Shale
		2.6	78.8	
MW5-21	81.83	Dry	Dry	Gravelly Sand FILL/Weathered Shale
	/IW6-21 82.17	3.0	79.2	
M\\\/6-21		3.0	79.2	Shale
101000 21		3.1	79.1	Stiale
		3.0	79.2	
		2.0	80.2	Shale

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 3 of 14

Borehole	Ground Surface Elev. (m)	Depth to Water (m)	Groundwater Elev. (m)	Main Screened Deposit
MW8-21	82.2	2.1	80.1	
		1.7	80.5	
		1.7	80.5	

The groundwater level will be subject to seasonal fluctuations and precipitation events and should be expected to be higher during wet seasons. Perched water may be present at higher levels within the existing fills and/or directly above the bedrock surface.

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 4 of 14

4. FOUNDATION DESIGN RECOMMENDATIONS

The discussions and preliminary design recommendations presented in this report are based on the information provided to us and on the factual data obtained as part of the investigations completed by GHD. These preliminary recommendations are subject to changes and modifications subject to completion of a supplemental geotechnical investigation (to be carried out during execution).

It is understood that the proposed structure includes an 8-storey building with no below-grade levels. The average top of ground elevation within the proposed building footprint is about Elev. 82.1 m, based on boreholes MH6-21, B2-21, MW9-22, and BH11-22 to BH18-22. The final grades of the lowest level of the proposed structure will be at about Elev. 82.8 m, and the structure will be supported on spread/square footings founded at about Elev. 81.0 m (where bedrock was found at the site).

The reference geotechnical report indicated that bedrock at the site is Shale of Georgian Bay formation which is the dominant bedrock formation in the Greater Toronto Area (GTA). However, a review of bedrock geology maps for Ottawa (MAP 1508A published by Geological Survey of Canada) indicates that the site is located at the border of Carlsbad and Billings Shale formations.

Although the Georgian Bay Shale formation presents some long-term swelling potential associated with changes in salinity, changes in groundwater regime, changes in in-situ stresses, etc., the Carlsbad and Billings Shale formations of Ottawa have not shown such behavior. However, the shale from the Billings Formation (which is likely to be encountered at the site, and to be confirmed as part of the supplemental investigation during the execution) is susceptible to heaving if allowed to weather in the presence of oxygen and moisture. The general mechanism is that oxidation of pyrite within the shale produces sulfuric acid, which in turn reacts with calcite in the shale to form gypsum crystals, which occupy a larger volume than the original materials. A by-product of this chain of reactions also tends to increase sulphate levels which can attack buried concrete structures.

4.1 Foundation Excavation and Temporary Dewatering

It is anticipated that the finished floor of the building will be at about Elev. 82.7 m and that the excavations will be extended to about Elev. 81.0 m. In general, the open-cut excavations will extend through non-cohesive fill (predominantly gravelly sand/gravel/sandy gravel/silty sand to sand and gravel), non-cohesive native soil (predominantly compact to dense gravelly

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 5 of 14

sand/sand/silty sand/sand and gravel/sand and silt) and shale bedrock. Groundwater is expected to be at or below the base of excavation.

Use of a hydraulic excavator should be suitable for trench excavation within the overburden soils. Provision should be made for handling and removal of asphalt and possible obstructions (i.e., cobbles and boulders) within the fill/soils.

All temporary excavations must be carried out in accordance with the current Occupational Health and Safety Act (OHSA) of Ontario and local regulations. Provided that the excavations are adequately dewatered, the overburden soils are classified as Type 3 above the groundwater level in accordance with the OHSA. Accordingly, excavations in the overburden above the groundwater level can be inclined at 1H:1V, or flatter.

Soil must not be stockpiled beside the excavation within a horizontal distance from the excavation wall equal to the depth of excavation.

Depending on the final elevation of the footings, bedrock removal may be necessary. It will be possible to remove the upper highly weathered portion of shale, to about 0.5 to 1.0 m depth using large hydraulic excavating equipment. Further shale bedrock removal could be accomplished using mechanical methods (such as hoe ramming); however, it is unlikely that removal of competent shale would be necessary for excavations with their base at or above Elev. 81 m.

Provided that the base of excavation is kept at or above Elev. 81 m, groundwater seepage into the excavation is expected to be handled by filtered sumps and drains.

4.2 Site Preparation

The existing fill and loose native soils founded at the site are not suitable for the support of foundations and floor slabs. These deposits, along with all existing foundations, floor slabs and utilities associated with the current site development, will need to be removed from beneath proposed foundations and slabs and from within the influence zone of the foundations and slabs. The influence zone includes the area beneath an imaginary line extending downward and outward from the edges of the proposed foundations/slabs at a 45 degrees angle down to undisturbed native soil or bedrock. Grades can be raised using Engineered Fill.

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 6 of 14

4.3 Protection of Expansive Shale

The shale bedrock at this site has the potential to swell following exposure to oxygen. The general mechanism is considered to be that pyrite (FeS2) which is present at low concentrations in the shale, is weathered in the combined presence of oxygen and water to form sulphuric acid.

That sulphuric acid then reacts with calcite, which is also present within the shale either as an integral part of the rock or as filling within fractures, to form gypsum. The gypsum crystals tend to form within existing fractures and to be volumetrically larger than the materials that formed them, thus resulting in heaving.

For the above reactions to occur there must be both water and oxygen available. An increase in the ground temperature, such as due to the heat from the parking vehicle, heated areas, etc., is also considered to promote the above reactions.

It is also possible for the products of the above reactions to attack the concrete (i.e., sulphate attack).

To help prevent expansion of the shale and/or reaction with the concrete, the shale must be protected from exposure to oxygen both in the long term as well as temporarily during construction adjacent to the existing building.

The shale bedrock subgrade, when exposed during construction, should be covered as soon as practical (within 12 hours) following the first exposure with a lean concrete layer at least 100 millimetres thick.

Construction planning should ensure the shale is not left exposed and uncovered overnight. Where shale is exposed on the sides of the excavation, the mud slab (with sulphate resistant cement) or shotcrete should be placed such that the concrete covers the shale to at least 100 millimetres above the top of rock level.

Previous excavations or trenches within the proposed construction area should be re-excavated down to shale bedrock and approximately 150 millimetres of the previously exposed shale removed prior to the placement of the concrete skim coat.

4.4 Engineered Fill Pad

The engineered fill, where and if required, should consist of Ontario Provincial Standard Specification (OPSS) Granular A or Granular B Type II placed in a maximum 300 mm thick loose

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 7 of 14

lifts and compacted to 100 percent of the material's standard Proctor maximum dry density (SPMDD). The top of the engineered fill should be at least 1.0 m wider than foundations at the underside of the footing. Where engineered fill is placed to support the structure footings, its thickness should not be less than 1.0 m unless the engineered fill is placed on bedrock, in which case a lower thickness would be acceptable for the engineered fill.

4.5 Foundation Design

The following options are considered feasible for support of the building structure:

Table 4.1: Foundation Design Options

Foundation Options	Advantages	Disadvantages
Spread/Square Footings on Competent Bedrock	Allows for relatively high geotechnical bearing capacities at ULS and SLS	May require deeper excavations and lower founding elevations
Spread/Square Footings on at least 0.2 m thick engineered fill on Weathered Bedrock	Allows shallower excavations	Will provide moderate geotechnical resistances at ULS and SLS

The following Table may be used for the design of shallow foundations bearing on a maximum 1 m thick engineered fill pad over weathered shale or directly supported on competent bedrock:

Table 4.2: Recommended Geotechnical Resistances at ULS and SLS

Founding Stratum	Footing Size (m)/Type	Factored Geotechnical Resistance at ULS (kPa)	Geotechnical Resistance at SLS (kPa) for 20 mm of Settlement
	2 m wide strip	600	500
	3 m wide strip	650	480
Engineered Fill Pad	4 m wide strip	700	400
over Weathered Shale	2 m Square	850	800
	3 m Square	880	550
	4 m Square	900	400
	2 m wide strip	1,100	1,100
	3 m wide strip	1,200	1,100
Competent Shale	4 m wide strip	1,300	1,200
	2 m Square	1,600	1,500
	3 m Square		1,200

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 8 of 14

Founding Stratum	Footing Size	Factored	Geotechnical Resistance at
	(m)/Type	Geotechnical	SLS (kPa) for 20 mm of
		Resistance at ULS (kPa)	Settlement
	4 m Square		1,000

The resistance values provided above are for vertical, concentric loads. Where eccentric or inclined loads are applied, the resistance values used in the design must be reduced accordingly.

The sliding resistance of a cast-in-place footing on bedrock or engineered fill may be computed using the unfactored friction coefficient of 0.7 or 0.55, respectively.

Due to potential swelling of Billings Shale, the final prepared bedrock surface shall be covered by shotcrete or lean concrete within 12 hours of exposure.

Where previous excavations or trenches are present within about 1 m from the closest edge of each proposed foundation or within the footprint of the slab-on-grade, those utilities (including their bedding and backfill) should be fully removed (abandoned) and backfilled with lean concrete (to the top of the adjacent shale bedrock) after removal of about 150 millimetres of the previously exposed shale (the shale which was exposed during construction of the existing trenches).

4.6 Frost Depth

The design frost depth in Ottawa is 1.8 m below the ground surface. The base of all footings should be founded at a minimum depth of 1.8 m, both vertically and horizontally or be provided with an equivalent thickness of insulation such as expanded polystyrene (EPS) for frost protection. Typically, 25 mm of EPS can be considered equivalent to 300 mm of earth cover for frost protection.

Perimeter footings and interior footings within 1.5 m of perimeter walls of heated structures should be protected by a minimum soil cover of 1.5 m or equivalent insulations. For interior foundations with a horizontal distance greater than 1.5 m from the perimeter of a heated building, frost protection is not required.

4.7 Slab-On-Grade and Raft Foundations

A conventional slab-on-grade is suitable for this project after completion of the site preparation and protection of the swelling shale as described in previous sections. The design of slabs-on-grade may be based on a modulus of subgrade reaction of 25 MPa/m, based on a loaded area of

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 9 of 14

0.3 m by 0.3 m. A layer of free draining granular material such as OPSS Granular A at least 200 mm thick compacted to 100% of SPMDD should be placed below the floor slab to create a level construction pad and to provide drainage and support. Any bulk fill required to raise the grade to the underside of the Granular A should consist of OPSS Granular B Type II.

Perimeter drains and under slab drains are not required in areas where the Finished Floor Elevation is at least 200 mm above the exterior grades and surface water is directed away from the building.

In building areas that include below grade structures (e.g., elevator pits), the walls and floors should be designed as water-tight and to resist hydrostatic pressures unless perimeter and under slab drainage is provided. The decision on whether to provide drainage for the below grade structures should consider factors such as the quality and quantity of water that will be removed from the site and the need to prevent the underlying shale bedrock from drying out which could lead to heave.

4.8 Backfill to Structures and Lateral Earth Pressure

Backfilling the structures should be conducted with free draining non frost susceptible granular material such as OPSS Granular A or Granular B Type I, II or III conforming to the requirements of OPSS.MUNI 1010. Small vibratory compaction equipment should be used within about 0.5 m of the wall to minimize compaction induced stresses. Compaction of the backfill materials should be conducted as per OPSS.MUNI 501.

Lateral earth pressures acting on the structure may be assumed to be triangular and to be governed by the characteristics of the backfill. For a fully drained condition, the pressures should be computed in accordance with the CHBDC but generally are given by the expression:

$$P_h(d) = K^*(\gamma d + q)$$

where: $P_h(d)$ = lateral earth pressure at depth d (kPa);

K = static earth pressure coefficient (see table);

 γ = unit weight of retained soil (kN/m³), adjusted for groundwater level;

d = depth below top of fill where pressure is computed (m); and

q = value of any surcharge (kPa).

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 10 of 14

A compaction surcharge should be applied in the design. The magnitude of the lateral pressure representing the compaction surcharge should be 12 kPa at the top of fill which linearly decreases to zero at a depth of 1.7 m (for OPSS Granular B Type I) or at a depth of 2.0 m (for OPSS Granular A or Granular B Type II).

Earth pressure coefficients for backfill to the structure walls are dependent on properties of the granular fill used as the backfill. Typical earth pressure coefficients are shown in the table below, assuming the ground surface behind the wall is flat.

Loading Condition	OPSS Granular A or Granular B Type II Φ = 35°, γ = 22.0 kN/m³	OPSS Granular B Type I or Type III Φ = 32°, γ = 21.0 kN/m ³
Active, K _a	0.27	0.31
At-Rest, Ko	0.43	0.47
Passive, K _p	3.7	3.3

Table 4.3: Lateral Earth Pressure Coefficients

4.9 Site Seismic Classification

Based on the results of the MASW survey conducted in the vicinity of the proposed structure, described in a report by GHD titled "1Door4Care: CHEO Integrated Treatment Centre – Geotechnical Investigation Report (1Door4Care)" dated October 25, 2022, the average shear wave velocity at the site is greater than 760 m/s, and less than 1500 m/s, therefore, a Site Class B designation should be used in the design of the proposed structure provided that the thickness of soil between underside of the foundations and the top of bedrock does not exceed 3 m.

Based on correspondence with structural engineers it is understood that a Request For Information (RFI) will be sent to IO to identify the governing code (NBC 2015, NBC 2020, OBC 2012, etc.) in design of the structure. Further recommendations along with the anticipated seismic hazard values will be provided once clarifications have been received.

4.10 Cement Type

A moderate potential for sulphate attack was identified for the weathered shale. Therefore, design of the foundations and below grade walls of the proposed structure should consider CSA Type MS or MH cements.

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 11 of 14

4.11 Site Servicing

Bedding requirements for the sewers and watermains are summarized as follows:

- Where the subgrade consists of native soil, a bedding thickness of 150 mm can be used in accordance with City of Ottawa Standard Detail Drawing, S6, S7 and W17; or
- Where the subgrade consists of bedrock, the bedding thickness should be increased to 300 mm in accordance with City of Ottawa Standard Detail Drawing S6, S7, and W17 to reduce the potential for point loads from a potentially irregular bedrock surface.

In all cases the bedding material and pipe cover (to at least 300 mm above the top of pipe) should consist of Granular A (S.P. F-3147) that is compacted using suitable vibratory compaction equipment in accordance with S.P. D-029.

The lateral clearance from the outside edge of the pipe to the trench wall should be a minimum of 450 mm for a pipe diameter less than or equal to 900 mm. For pipes with a diameter larger than 900 mm, the minimum lateral clearance should be increased to 500 mm.

The use of clear crushed stone as a bedding layer should not be permitted since fine particles of the overlying backfill soils could potentially migrate into the voids in the clear crushed stone and cause settlement of the pipe and/or the road surface.

Trench backfill above the pipe cover/embedment material should conform to City of Ottawa specification S.P. F-2120 and/or OPSD 802.030 to 803.034 whichever is governing. Backfill should consist of approved excavated material, such as heterogeneous fill (provided that it is fee of organic matter and other deleterious materials), or native inorganic overburden that has a suitable moisture content for compaction.

As noted previously, the shale bedrock at this site is potentially expansive following exposure to oxygen. Due to the risk for expansion, the excavated shale bedrock is not recommended for reuse as trench backfill. The excavated shale, as well as any fill that contains organic and/or deleterious materials, should be transferred off-site in accordance with the Soil Characterization Report prepared for this project, which is provided under separate cover.

If imported fill is required to make up the balance of trench backfill, it should consist of compactable and inorganic earth borrow (OPSS.MUNI 206/212) or Select Subgrade Material (OSSS.MUNI 1010).

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 12 of 14

All trench backfill, including re-used soils and imported fill, should be compacted in accordance with City S.P. D-029. If the trench backfill material is too wet to achieve the required compaction requirements, it should be stockpiled and allowed to dry, or wasted and replaced with more suitable fill.

The trench backfill above the bedrock surface and within the frost zone (i.e., between the pavement subgrade level and 1.8 m depth, or the bedrock surface, whichever is shallower) should match the soil exposed on the trench walls for frost heave compatibility. This will require some separation of materials upon excavation. Qualified geotechnical personnel should approve the backfill materials for frost compatibility and review the requirements for frost tapers at the time of construction based on the soils exposed in the trench walls. Watermains with less than 2.4 m of cover should be insulated in accordance with City of Ottawa Standard Detail Drawing W22.

Backfilling operations during cold weather must avoid frozen lumps of material, snow, and ice; otherwise, settlement should be expected.

Seepage barriers should be constructed at periodic intervals along the trench to reduce the potential for groundwater level lowering in the surrounding area due to the "French drain" effect on the granular bedding and surround. Otherwise, long-term groundwater level lowering could result in heaving of the shale beneath the new service pipes or adjacent structures. Seepage barriers also act as cut-offs to prevent migration of contaminants along the relatively permeable backfill in the trenches, as well as a mitigation method during construction to limit groundwater inflow along the trench.

It is important that the seepage barriers extend from trench wall to trench wall and that they fully penetrate the granular surround materials to the trench bottom. The seepage barriers should be at least 1.5 m long. Construction of the seepage barriers should be in accordance with the City of Ottawa's Standard Detail Drawing No. S8. Seepage barriers should be placed at a maximum spacing of 75 m along the trench and on either side of crossing roadways to limit hydraulic connections with intersecting services.

5. CLOSURE

This report was issued for the purpose of building permit application only, before any final design or construction details had been prepared or issued. Therefore, differences may exist between the report recommendations and the final design, the project specifications, or conditions during construction. In such instances, Thurber Engineering Ltd. should be contacted immediately to address these differences. Designers and contractors undertaking or bidding the work should examine the factual results of the investigation, satisfy

Client: EllisDon August 21, 2023
File No.: 36182 Page: 13 of 14

Date: August 21, 2023

themselves as to the adequacy of the information for design and construction, and make their own interpretation of the data as it may affect their proposed scope of work, cost, schedules, safety, and equipment capabilities.

We trust this information meets your present needs. If you have any questions, please contact the undersigned at your convenience.

Nina Warrier, P. Eng. Geotechnical Engineer

Mehdi Mostakhdemi, M.Sc., P. Eng. Review Engineer

File: **36182**

 Client:
 EllisDon
 August 21, 2023

 File No.:
 36182
 Page: 14 of 14

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

7. INDEPENDENT JUDGEMENTS OF CLIENT

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

APPENDIX A

Borehole Location Plan (from GHD's) Report Record of Boreholes and Laboratory Test Results

Notes on Borehole and Test Pit Reports

Soil description:

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

	Classification (Unified system)			
Clay	< 0.002 mm			
Silt	0.002 to 0.075 mm			
Sand	0.075 to 4.75 mm	fine medium coarse	0.075 to 4.25 mm 0.425 to 2.0 mm 2.0 to 4.75 mm	
Gravel Cobbles	4.75 to 75 mm 75 to 300 mm	fine coarse	4.75 to 19 mm 19 to 75 mm	
Boulders	>300 mm			

Relative density of granular soils	Standard penetration index "N" value
	(BLOWS/ft – 300 mm)
Very loose	0-4
Loose	4-10
Compact	10-30
Dense	30-50
Very dense	>50

	Rock quality designation		
	"RQD" (%) Value	Quality	
	<25	Very poor	
ĺ	25-50	Poor	
	50-75	Fair	
	75-90	Good	
	>90	Excellent	

Terminology	,	
"trace" "some"	1-10% 10-20%	
adjective (silty, sandy)	20-35%	
"and"	35-50%	

Consistency of cohesive soils	Undrained she strength (Cu								
	(P.S.F)	(kPa)							
Very soft	<250	<12							
Soft	250-500	12-25							
Firm	500-1000	25-50							
Stiff	1000-2000	50-100							
Very stiff	2000-4000	100-200							
Hard	>4000	>200							

CHEM: Chemical analysis

GS: Grab sample

Samples:

Type and Number

The type of sample recovered is shown on the log by the abbreviation listed hereafter. The numbering of samples is sequential for each type of sample.

SS: Split spoon ST: Shelby tube AG: Auger SSE, GSE, AGE: Environmental sampling PS: Piston sample (Osterberg) RC: Rock core

Recovery

The recovery, shown as a percentage, is the ratio of length of the sample obtained to the distance the sampler was driven/pushed into the soil

RQD

The "Rock Quality Designation" or "RQD" value, expressed as percentage, is the ratio of the total length of all core fragments of 4 inches (10 cm) or more to the total length of the run.

IN-SITU TESTS:

N: Standard penetration index N_c : Dynamic cone penetration index k: Permeability R: Refusal to penetration Cu: Undrained shear strength Cu: ABS: Absorption (Packer test) Cu: Pressure meter

LABORATORY TESTS:

GHD PS-020.01 - Notes on Borehole and Test Pit Reports - Rev.0 - 07/01/2015

 $I_p: \mbox{Plasticity index} \qquad H: \mbox{Hydrometer analysis} \qquad A: \mbox{Atterberg limits} \qquad C: \mbox{Consolidation} \qquad \mbox{vapor} \\ W_i: \mbox{Liquid limit} \qquad GSA: \mbox{ Grain size analysis} \qquad w: \mbox{Water content} \qquad CS: \mbox{Swedish fall cone}$

Wp: Plastic limit γ: Unit weight

Explanation of Terms Used in the Bedrock Core Log

Strength (ISRM)

Terms	Grade	Description	Unconfi Compressive S (MPa)	
Extremely Weak Rock	RQ	Indented by thumbnail	0.25-1.0	36-145
Very Weak	R1	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife.	1.0-5.0	145-725
Weak Rock	R2	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer.	5.0-25	725-3625
Medium Strong	R3	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer.	25-50	3625-7250
Strong Rock	R4	Specimen requires more than one blow of geological hammer to fracture it.	50-100	7250-14500
Very strong Rock	R5	Specimen requires many blows of geological hammer to fracture it.	100-250	14500-36250
Extremely Strong Rock	R6	Specimen can only be chipped with geological hammer.	>250	>36250

Bedding (Geological Society Eng. Group Working Party, 1970, Q.J. of Eng. Geol. Vol 3)

Term Bed Thickness

Very thickly bedded	>2 m	>6.5 ft.
Thickly bedded	600 mm-2 m	2.00-6.50 ft.
Medium bedded	200 mm-600 mm	0.65-2.00 ft.
Thinly bedded	60 mm-200 mm	0.20-0.65 ft.
Very thinly bedded	20 mm-60 mm	0.06-0.20 ft.
Laminated	6 mm-20 mm	0.02-0.06 ft.
Thinly laminated	<6 mm	<0.02 ft.

TCR (Total Core Recovery)

Sum of lengths of rock core recovered from a core run, divided by the length of the core rum and expressed as a percentage

SCR (Solid Core Recover)

Sum length of solid full diameter drill core recovered expressed as a percentage of the total length of the core run.

Explanation of Terms Used in the Bedrock Core Log

Weathering (ISRM)

Terms	Grade	Description
Fresh	W1	No visible sign of rock material weathering.
Slightly	W2	Discolouration indicates weathering of rock weathered material and discontinuity surfaces. All the rock material may be discoloured by weathering and may be somewhat weaker than in its fresh condition.
Moderately	W3	Less than half of the rock material is weathered decomposed and/or disintegrated a soil. Fresh or discoloured rock is present either as a corestone.
Highly Weathered	W4	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.
Completely Weathered	W5	All rock material is decomposed and/or disintegrated to a soil. The original mass structure is still largely intact.
Residual Soil	W6	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has been significantly transported.

ROD (Rock Quality Designation, after Deere, 1968)

Sum of lengths of pieces of rock core measured along centerline of core equal to or greater than 100 mm from a core run, divided by the length of the core run and expressed as a percentage. Core fractured by drilling is considered intact. RQD normally quoted for N-Size core.

RQD (%)	Rock Quality
90-100	Excellent
75-90	Good
50-75	Fair
25-50	Poor
0-25	Very Poor

(FI) Fracture Index

Expressed as the number of discontinuities per 300 mm (1 ft.) Excluded drill-induced fractures and fragmented zones. Reported as ">25" if frequency exceeds 25 fractures/0.3 m.

Broken Zone

Zone where core diameter core of very low RQD which may include some drill-induced fractures.

Fragmented Zone

Zone where core is less than full diameter and RQD = 0.

Discontinuity Spacing (ISRM)

Term	Average Spa	ncing
Extremely widely spaced	>6 m	>20.00 ft.
Very widely spaced	2 m-6 m	6.50-20.00 ft.
Widely spaced	600 mm-2 m	2.00-6.50 ft.
Moderately spaced	200 mm-600 mm	0.65-2.00 ft.
Closely spaced	60 mm-200 mm	0.20-0.65 ft.
Very closely spaced	20 mm-60 mm	0.06-0.20 ft.
Extremely closely spaced	<20 mm	>0.06 ft.

Note: Excludes drill-induced fractures and fragmented rock.

Discontinuity Orientation

Discontinuity, fracture, and bedding plane orientations are cited as the acute angle measured with respect to the core axis. Fractures perpendicular to the core axis are at 90 degrees and those parallel to the core axis are at 0 degrees.

REFERENCE No.: 11205379-90 ENCLOSURE No.: BH1-21 BOREHOLE No.: BOREHOLE REPORT ELEVATION: 81.39 m Page: 1 of 1 CLIENT: Infrastructure Ontario (I.O.) **LEGEND** Preliminary Geotechnical Investigation - Proposed Parking Structure Children's Hospital of Eastern Ontario Campus - 401 Smyth Road, PROJECT: \boxtimes ss - SPLIT SPOON - SHELBY TUBE Ottawa, Ontario LOCATION: - ROCK CORE DESCRIBED BY: K. Schaller CHECKED BY: S. Shahangian - WATER LEVEL \mathbf{Y} DATE (START): January 15, 2021 DATE (FINISH): January 15, 2021 NORTHING: 5027575.049 **EASTING:** 449073.301 SOIL LOG WITH GRAPH+WELL Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) Moisture Content 'N' Value/ SCR(%) Elevation (m) BGS ☐ Lab Blows per Depth Water content (%) **DESCRIPTION OF** 15 cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 81.39 **GROUND SURFACE** Ν 10 20 30 40 50 60 70 80 90 ASPHALT: 125 mm 0.13 81.26 GS1 4 -- \circ Report: FILL SAND and GRAVEL, trace clay, brown, 25 SS1 2 5 10-5-4-6 9 moist, loose to very dense GHD GEOTECH_V02.GLB 0.91 Gravel: 48%, Sand: 41%, Clay: 3%, Silt 80.48 - 1.0 : 8% SS2 88 10 12-30-50/ 50+ ф Gravel: 39%, Sand: 39%, Clay: 7%, Silt 100mm 15% 5 SS3 50/ BEDROCK (inferred), shale fragments, 100 4 50+ 0 greyish brown, very dense 100mm 2.0 SS4 50/ 100 4 50+ 75mm SS5 100 4 50/ 50+ 75mm 3.0 ---\112053--\11205379\11205379 - 90.GPJ 10 auger refusal 3.20 78.19 11 **END OF BOREHOLE:** 12 NOTE: 13 4.0 - End of Borehole at 3.20 m bgs - Borehole was backfilled with bentonite 14 holeplug and sealed with cold patch - bgs donates 'below ground surface' 15 16 - 5.0 17 18 N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11 19 6.0 20 21 22 7.0 23 24 25 26 8.0 27 28 29 9.0 30 31 32

_	REFEREN	ICE No.	: <u> </u>	11205379-90								FNC	CLOS	URE	No.	: <u> </u>		2	
		G	LID.		BOREHOLE No.:	_		BH2-	21		В	OF	REH	10	LE	R	EP	OI	RT
					ELEVATION:		81.	36 m					Page						
r	CLIENT:		Infra	astructure Ontario (I.	O.)						LEC	GEN	ID						
	PROJECT LOCATION		Chil	liminary Geotechnica dren's Hospital of Ea awa, Ontario	al Investigation - Propose astern Ontario Campus -	ed 40	Parking 01 Smyth	Struc i Roa	ture d,			SS ST	- S	SHE	T SF LBY	TUE	3E		
70/21	DESCRIBI	ED BY:	K. S	Schaller	CHECKED BY:	_	S. Sha	nangia	an		Ā	RC			K CO ER I				
are: 2/2	DATE (ST	ART):	Jan	uary 18, 2021	DATE (FINISH):	_	Januar	y 18, :	2021										
] - -	NORTHIN	G:	502	7616.781	EASTING:		449071	.365											
WIII GRAPH+W	Depth	Elevation (m) BGS	Stratigraphy		State Content Moisture Moistur						'N' Value/ SCR(%)	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) Atterberg limits (%) ■ "N" Value (blows / 12 in30 cm)							
	Feet Metres	81.36		GROUN	D SURFACE			%			N	10	20 3	0 40	50 6	0 70	08 0	90	
ונ: פר בי	1 - 0.10	81.26		ASPHALT : 100 m	m	XX	GS1		4			0		Ŧ				П	
oden debo	2 - 0.61	80.75		SAND and GRAVE	EL, trace silt, brown, d : 50%, Clay : 2%, Silt	\bigvee	SS1	71	19	9-7-3-4	10	•							
GEOLECH_VUZ	4 - 1.14	80.22		dark brown, moist.	race clay and gravel, very dense	X	SS2	87	7	10-22-42/ 100mm	50+		-	1					
טיים טיים טיים	5 6 2.0			: 18% BEDROCK (inferre	ed), shale fragments,	\boxtimes	SS3	83	4	50/ 125mm	50+								
Library rile.	7 - 2.3			grey, moist, very d	ense	×	SS4	100	4	50/ 75mm	50+				+				
1	9 - 2.77	78.59	=	∖auger refusal		_	SS5	100	9	50/ 25mm	50+	0			•			Н	
2	10 - 3.0			END OF BOREHO	LE:					2011111				+					
2	12 —			NOTE: - End of Borehole:	at 2.77 m bgs														
ő	13 - 4.0			- Borehole was back holeplug and sealed - bgs donates 'belo	ckfilled with bentonite ed with cold patch														
ś	15 —																		
Ш	16 — 																		
Ш	18																		
	19 + 6.0																		
ž l	21 —																		
5	22 + 7.0																		
길	24 —																		
LILEG	25 —																	\exists	
4	26 – 8.0																		
s III	27 - 28 -																		
2	29 —											$oxed{\top}$							
MISSIS	30 + 9.0											\dashv		1				H	
[]	31 —																	Ħ	
į	32 🛨											\vdash		-	+	H	+	+	

	REF	EREN	ICE No.	:	11205379-90								ENCI	OSUF	RE No).: _		3	3	
				TIP.		BOREHOLE No.:	_		MW3	-21		В	OR	EH(DLE	ΞF	ξEI	PC)R	Т
			6	MU		ELEVATION:		81.	37 m					Page:						-
İ	CLIE	NT:		Infra	astructure Ontario (I.C	D.)					I	LEC	GENE					_		
	PRO	JECT	:	Prel Chile Otta	iminary Geotechnical dren's Hospital of Eas wa, Ontario	Investigation - Propos stern Ontario Campus -							SS ST	- SP - SH	LIT S ELBY	′ TU	IBE			
6/21	DES	CRIBE	ED BY:	K. S	challer	CHECKED BY:		S. Sha	hangi	an			RC		CK C					
te: 2/2	DATI	E (ST	ART):	Janı	uary 14, 2021	DATE (FINISH):	_	Januar	y 15, :	2021										
a ∐	NOR	THIN	 G:	502	7638.113	EASTING:		449119	9.449											
205379/11205379 - 90.GPJ Library File: GHD_GEOTECH_V02.GLB Report: SOIL LOG WITH GRAPH+WELL Date: 2/26/21	Depth		Elevation (m) BGS	Stratigraphy		PTION OF) BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Sen:	ar test (sitivity (Water of Atterbe	S) conter rg limi	ts (%		₄ Fie] Lal		
	Feet M	letres	81.37		GROUNE) SURFACE			%			N	_ `	20 30 4			'0 80	90		
£ SO	1 -	0.18		>	ASPHALT : 175 mm		M	SS1	100	8	17-22-50/	72	9			0	.31	m_		Ħ
Repo	2 +	0.30 0.61	80.76		FILL:		\mathcal{L}				150mm					7		#		
2.GLB	3 -	- 1.0			organics, shale frag		X	SS2	100	9	42-50/ 75mm	50+	0					\pm		
OH N	4	1.0			damp/moist, very de BEDROCK (inferre	ense d), shale fragments,	\boxtimes	SS3	100	4	50/	50+	8				\vdash	+		
EOTE	5				grey, wet, very dens Gravel : 19%, Sand	se I : 50%, Clay : 14%,	X	SS4 SS5	100 100	4 4	125mm 50/	50+ 50+	0		-	Ber	ntonii	te_		
되	6	- 2.0			Silt : 17%						100mm 50/						Ħ	#		
ije:	7 +	0					×	SS6	100	4	100mm 50/	50+	-		+		\vdash	+		
brary F	8 +										75mm						/10/2 .74		1	Ţ
ت ا	9 10 -	- 3.0						SS7	83	4	50/ 150mm	50+	0		•		.74 Sar			
- 90.GF	11 =						×	SS8		17								\pm	_	
5379	12 -							SS8A	100	11	50/ 50mm	50+	þ°		•		\vdash	+	-	
79/1120	13	- 4.0					×	SS9	100	5	50/	50+	0		•	_S	Scree	∍n	\exists	
120537	14										50mm						Ħ	\pm		
)53-\1	15	4.57	76.80		auger refusal		Ť	SS10	100	4	50/ 50mm	50+	0		+	4	.57 Sar	m nd		
-\1120	16	5.0			of limestone/siltstor		Ш	RC1	100		100					4	.88	m-		
/1120-	17 —				highly weathered to moderately strong,												Ħ	#		
11	18 +							RC2	100		78							\pm		
CHAR	20	6.0						ROZ	100		70						\vdash	+		
SE/8-(21																Ħ	#		
4TABA	22 —						Ħ											\pm		
.0G D/	23	7.0													Н		\vdash	+		
3ACY\L	24							RC3	98		85				Bent	onite	e Se	al		
:L\LEG	25																			
SRUNE	26	8.0					\blacksquare										\vdash	+		
- 111 E	27																H	4		
File: N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11\1120\112053\11	28 -							RC4	100		93						Ħ	#		
SSISS,	30	9.0						1104	.00						\coprod		\exists	\pm		
CA/MI:	31														\prod		H	\mp		
: 	32							RC5	83		61						Ħ	#		
ŒĹ				KXXM					1 -	1	1	l	1 1	1 1	1 I		1 I	- 1		

REFERENCE No.: 11205379-90 ENCLOSURE No.: BOREHOLE No.: MW3-21 **BOREHOLE REPORT ELEVATION:** 81.37 m Page: 2 of 2 CLIENT: Infrastructure Ontario (I.O.) **LEGEND** Preliminary Geotechnical Investigation - Proposed Parking Structure Children's Hospital of Eastern Ontario Campus - 401 Smyth Road, PROJECT: \boxtimes ss - SPLIT SPOON ST - SHELBY TUBE LOCATION: Ottawa, Ontario - ROCK CORE 2/26/21 DESCRIBED BY: K. Schaller CHECKED BY: S. Shahangian - WATER LEVEL \mathbf{Y} DATE (START): January 14, 2021 DATE (FINISH): January 15, 2021 NORTHING: 5027638.113 **EASTING:** 449119.449 SOIL LOG WITH GRAPH+WELL Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) Moisture Content 'N' Value/ SCR(%) Elevation (m) BGS ☐ Lab Blows per State Depth Water content (%) **DESCRIPTION OF** 15 cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 81.37 **GROUND SURFACE** Ν 10 20 30 40 50 60 70 80 90 _ 10.06 71.31 10.06 m GHD_GEOTECH_V02.GLB Report: **END OF BOREHOLE:** 34 35 NOTE: - End of Borehole at 10.06 m bgs 36 -11.0 - Borehole was dry upon completion - Rock coring from 4.57 m bgs 37 - 50 mm diameter monitoring well installed at 7.47 m bgs 38 - Groundwater found at 2.69 m bgs on 39 January 28, 2021 12.0 - Groundwater found at 2.49 m bgs on 40 Library File: February 10, 2021 - bgs donates 'below ground surface' 41 42 13.0 ---\112053--\11205379\11205379 - 90.GPJ 43 44 45 14.0 46 47 48 49 -15.0 N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11-----\1120-50 52 -16.053 54 55 17.0 56 57 58 59 18.0 60 61 62 19.0 63 64 65

REFERENCE No.: 11205379-90 ENCLOSURE No.: BH4-21 BOREHOLE No.: BOREHOLE REPORT ELEVATION: 82.23 m Page: 1 of 1 CLIENT: Infrastructure Ontario (I.O.) **LEGEND** Preliminary Geotechnical Investigation - Proposed Parking Structure Children's Hospital of Eastern Ontario Campus - 401 Smyth Road, PROJECT: \boxtimes ss - SPLIT SPOON ST - SHELBY TUBE Ottawa, Ontario LOCATION: - ROCK CORE DESCRIBED BY: K. Schaller CHECKED BY: S. Shahangian - WATER LEVEL \mathbf{Y} DATE (START): January 18, 2021 DATE (FINISH): January 18, 2021 NORTHING: 5027621.207 **EASTING:** 449159.803 SOIL LOG WITH GRAPH+WELL Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) Moisture Content 'N' Value/ SCR(%) Elevation (m) BGS ☐ Lab Blows per State Depth Water content (%) **DESCRIPTION OF** 15 cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.23 **GROUND SURFACE** % Ν 10 20 30 40 50 60 70 80 90 FILL: SAND and GRAVEL, trace clay and silt, Report: SS1 75 48 15-27-21-10 brown, moist to wet, dense Gravel: 46%, Sand: 41%, Clay: 3%, Silt GHD GEOTECH_V02.GLB 0.76 81.47 10% SS2 91 7 6-19-34-50/ 53 3 BEDROCK (inferred), shale fragments, 1.0 50mm grey, moist, very dense SS3 90 8 21-50/ 50+ 100mm 5 SS4 100 4 50/ 50+ 2.0 75mm SS5 100 5 50/ 50+ 0 75mm 2.77 79.46 auger refusal 3.0 ---\112053--\11205379\11205379 - 90.GPJ 10 **END OF BOREHOLE:** 11 NOTE: 12 - End of Borehole at 2.77 m bgs - Borehole was backfilled with bentonite 13 4.0 holeplug and sealed with cold patch 14 - bgs donates 'below ground surface' 15 16 - 5.0 17 18 N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11 19 6.0 20 21 22 7.0 23 24 25 26 8.0 27 28 29 9.0 30 31 32

_	REFEREN	ICE No.	:	11205379-90								ENC	LOSU	IRE I	No.:			5	
					BOREHOLE No.:	_	ı	MW5	-21		В	OR	EH	OL	E	RE	ΞP(OF	RT.
		6	IMD		ELEVATION:		81.	83 m			_		Page:						` .
İ	CLIENT:		Infra	astructure Ontario (I.	O.)						LEC	GEN	D						
	PROJECT	:	Prel	iminary Geotechnica	al Investigation - Propose	ed	Parking	Struc	ture		\boxtimes	SS		PLIT	SP	NOC			
	LOCATION	N:		aren's Hospital of Ea awa, Ontario	astern Ontario Campus -	40	Ji Smyti	n Roa	a, 					HELE OCK		UBE RF	Ē		
17/07/	DESCRIBE	ED BY:	<u>K. S</u>	Schaller	CHECKED BY:	_	S. Sha	hangi	an		Ā					EVE	L		
Jare: ∠	DATE (ST	ART):	Jan	uary 15, 2021	DATE (FINISH):	_	Januar	y 15, :	2021										
, 	NORTHIN	G:	502	7589.381	EASTING:		449128	3.777		Г	1								
G WIIH GRAPH+v	Depth	Elevation (m) BGS	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Ser O W _p W _l	ear test nsitivity Wate Atterb "N" Va wws / 12	(S) r cont erg li	ent (mits	%) (%)	△ Fi □ La		
3 	Feet Metres				D SURFACE			%			N	10	20 30	40 5	0 60	70 8	30 90)	
ر ا	1 - 0.10	81.53		ASPHALT : 100 m	EL, some silt, trace	X	GS1		7			-				0.31	m-		
rep n	2 - 0.40	81.43		clay, brown, moist		\mathbb{I}	SS1	100	8	8-18-20-35	38	9		•	В	ento	nite		
/0Z.GL	3 = 1.0			: 13% FILL :		\succeq	SS2	100	3	50/	50+			\Rightarrow		1.05	5 m=	- 85	538 55555
ב ב	4 +		臺	brown, moist, dens), some silt, trace clay, se					125mm					-	\perp	\perp		
2 2	5 183	80.00	1	Gravel : 23%, San : 20%	d : 49%, Clay : 8%, Silt	×	SS3	100	5	50/ 100mm	50+	0		$oldsymbol{+}^{oldsymbol{c}}$		_Scr -1.83			
2 2	7 - 2.0	00.00		BEDROCK (inferred) grey, damp, very c	ed), shale fragments, lense											1.00			
II) FIIE	8 =			END OF BOREHO													\forall		
Ligit	9 =			NOTE:													H		
0.Gr	10 - 3.0			- End of Borehole - Borehole was dry	upon completion												Ħ		
37/8-2	11 —			- Borehole was dry	nstalled at 1.837 m bgs y on January 28, 2021												\sharp		
3071176	13 - 4.0			- Borehole was dry - bgs donates 'beld	y on February 10, 2021 ow ground surface'												\exists		
70227	14 -																H		
23-11	15																H		
UZI I.Z.	16 - 5.0																Ħ		
-07 LI.	17 —																\sharp		
	19 —																\exists		
7 7 7	20 + 6.0																\exists		
SASE 10	21 📜																\forall		
DAIAE	22 —																H		
۲ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	23 — 7.0																Ħ		
T GAC	25 —																\sharp		
ONELIL	26 - 8.0																\exists		
ון סקו	27 - 0.0																\coprod		
- 45 - 1	28 —																\prod	7	
SISSAL	29 - 9.0																$ \downarrow $		
AWINS	30 - 31 - 31																\sharp	\exists	
) N N	32 —												\parallel				\sharp		

	REFEREN	CE No.	:	11205379-90								EN	CLOSU	RE No	o.: _		6		
					BOREHOLE No.:		ļ	MW6	-21		В	OF	REHO	OLF	ΞR	ξEF	20	R.	Т
		9	MD		ELEVATION:		82.	17 m				•	Page:						-
İ	CLIENT:		Infra	astructure Ontario (I.	O.)					L	LEC	GEN	ND						
	PROJECT:		Prel	iminary Geotechnica	al Investigation - Propose	ed I	Parking	Struc	ture				<u></u>	LIT S	POC	N			
			Chil	dren's Hospital of Ea wa, Ontario	astern Ontario Campus -	40	1 Smyt	n Roa	d,			ST	- SH	IELBY	/ TU	BE			
17/07	DESCRIBE	ED BY:	K. S	Schaller	CHECKED BY:		S. Sha	hangi	an		Ţ	RC		OCK C ATER					
Te: 2/2	DATE (STA	ART):	Janı	uary 12, 2021	DATE (FINISH):	_	Januar	y 13,	2021										
∏	NORTHING	 G:	502	7605.404	EASTING:		449244	1.983											
G WILH GRAPH+WE	Depth	Elevation (m) BGS	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15 cm/ RQD(%)	'N' Value/ SCR(%)	Se O W _p V	near test (ensitivity (Water Atterbe	S) (contererg limited	its (%		Field Lab		
	Feet Metres	82.17			D SURFACE			%			N	10	20 30 4	10 50	60 7	08 0	90	1	
)))	1 + 0.35	81.82		GRAVEL : 350 mm	1	\bigvee	SS1	87	14	10-30-18-8	48		0	•	0.	31 r	m -	M	
Керс	2 - 0.61			FILL :	e gravel, trace	$\langle \rangle$								#		7	Ŧ		
JZ.GLE	3 - 1.0			\organics, grey/brov	wn, moist, dense		SS2	100	10	4-11-27-45	38	¢	,			\pm	#		
٥ ا	4 - 1.22	80.95	• •	ML-GRAVELLY SA		$\langle \rangle$	SS3	100	9	35-20-50/	100					+	\pm		
SEO E	5 🛨			Gravel : 32%, San	d : 45%, Clay : 7%, Silt	Δ	333	100	9	75mm	100	Н		++		\neq	#		
OHD.	6 - 2.0				ed), shale fragments, ense	×	SS4	100	4	50/ 75mm	50+	0			-Ben	tonit	ie—		
ry rile	8 —					\times	SS5	100	3	50/	50+	0				+	+		
LIDra	9 🛨 📗									100mm				\blacksquare		#	Ŧ		
.GP.	10 - 3.0					×	SS6	100	4	50/	50+	0		•	2	10/2	2021		Ţ
9 - 8/9	11 -	78.66	V///	SHALE BEDDOCK	K, laminated, interbeds	×		100	4	100mm 50/		0				+	t		
2071.	12 - 3.51			of limestone/siltsto	one (hard layers),	\parallel	RC1	58		50mm 50				++	3.	66 r	<u>n</u> –		
053/9/	13 - 4.0			moderately strong,		ı	D00	00						\blacksquare	#2	San	d	-	
3\112	15 —					ı	RC2	93		24				\parallel		\pm	#		
CUZ1.17	16 - 5.0					\parallel										\pm	\pm		
-021	17 📑					ı								++		+	+		
	18 —					ı	RC3	95		54				\Box		#	#	-	
TAR/	19 - 6.0					ı									s		n_		
1 8-C	20 + 0.0													\pm		\pm	士		
ABAS	22					ı						\vdash		\vdash		+	+		
JG DA	23 - 7.0					ı	501							\perp		\mp	\mp		
ACY IL	24					ı	RC4	97		55					+	47 r			
LILEG	25					ı										San 78 r	ıd⊟	100 N	
RONE	26 - 8.0					Ħ						Н	++	+	+	+	+		
	27 —					ı								\Box		#	Ŧ		
AUGA	28 —						RC5	100		52				\parallel		#	#		
22122	30 = 9.0													Bent	tonite	Sea	al		
CAIMI	31 —					\parallel						\prod	$+\Gamma$	+	+	+	+		
: 	32						RC6	100		71				Ħ		\mp	+		

REFERENCE No.: 11205379-90 ENCLOSURE No.: MW6-21 BOREHOLE No.: **BOREHOLE REPORT ELEVATION:** 82.17 m Page: 2 of 2 CLIENT: Infrastructure Ontario (I.O.) **LEGEND** Preliminary Geotechnical Investigation - Proposed Parking Structure Children's Hospital of Eastern Ontario Campus - 401 Smyth Road, PROJECT: \boxtimes ss - SPLIT SPOON ST - SHELBY TUBE LOCATION: Ottawa, Ontario - ROCK CORE DESCRIBED BY: K. Schaller CHECKED BY: S. Shahangian - WATER LEVEL \mathbf{Y} DATE (START): January 12, 2021 DATE (FINISH): January 13, 2021 NORTHING: 5027605.404 **EASTING:** 449244.983 SOIL LOG WITH GRAPH+WELL Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) Moisture Content 'N' Value/ SCR(%) Elevation (m) BGS ☐ Lab Blows per Depth State Water content (%) **DESCRIPTION OF** 15 cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.17 **GROUND SURFACE** Ν 10 20 30 40 50 60 70 80 90 _ 10.06 72.11 10.06 m GHD_GEOTECH_V02.GLB Report: **END OF BOREHOLE:** 34 35 NOTE: - End of Borehole at 10.06 m bgs 36 -11.0 - Borehole was dry upon completion - Rock coring from 3.51 m bgs 37 - Monitoring well installed at 7.47 m bgs - Groundwater found at 2.97 m bgs on 38 January 28, 2021 - Groundwater found at 3.09 m bgs on 39 12.0 February 10, 2021 40 - bgs donates 'below ground surface' 41 42 13.0 ---\112053--\11205379\11205379 - 90.GPJ 43 44 45 14.0 46 47 48 49 -15.0 50 N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11 52 -16.053 54 55 17.0 56 57 58 59 -18.0 60 61 62 19.0 63 64 65

REFERENCE No.: 11205379-90 ENCLOSURE No.: BOREHOLE No.: BH7-21 BOREHOLE REPORT **ELEVATION:** 82.22 m Page: 1 of 1 CLIENT: Infrastructure Ontario (I.O.) **LEGEND** Preliminary Geotechnical Investigation - Proposed Parking Structure Children's Hospital of Eastern Ontario Campus - 401 Smyth Road, PROJECT: \boxtimes ss - SPLIT SPOON - SHELBY TUBE LOCATION: Ottawa, Ontario - ROCK CORE DESCRIBED BY: K. Schaller CHECKED BY: S. Shahangian - WATER LEVEL \mathbf{Y} DATE (START): January 19, 2021 DATE (FINISH): January 19, 2021 NORTHING: 5027618.043 **EASTING:** 449176.612 SOIL LOG WITH GRAPH+WELL Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) Moisture Content 'N' Value/ SCR(%) Elevation (m) BGS ☐ Lab Blows per Depth State Water content (%) **DESCRIPTION OF** 15 cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.22 **GROUND SURFACE** % Ν 10 20 30 40 50 60 70 80 90 FILL: Report: SILTY SAND and GRAVEL, brown, SS1 52 0 54 6 28-35-17-10 moist, very dense GHD GEOTECH_V02.GLB 0.76 81.46 SS2 100 7 15-40-50/ 50+ BEDROCK (inferred), shale fragments, 3 125mm 1.0 grey, moist, very dense SS3 100 45-50/ 4 50+ 5 75mm SS4 100 4 50/ 50+ 0 2.0 125mm SS5 100 3 50/ 50+ 2.52 79.70 auger refusal 75mm **END OF BOREHOLE:** 3.0 ---\112053--\11205379\11205379 - 90.GPJ 10 NOTE: 11 - End of Borehole at 2.52 m bgs 12 - Borehole was backfilled with bentonite holeplug and sealed with cold patch 13 4.0 - bgs donates 'below ground surface' 14 15 16 - 5.0 17 18 N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11 19 6.0 20 21 22 7.0 23 24 25 26 8.0 27 28 29 9.0 30 31 32

REFERENCE No.: 11205379-90 ENCLOSURE No.: MW8-21 BOREHOLE No.: BOREHOLE REPORT ELEVATION: 82.20 m Page: 1 of 1 CLIENT: Infrastructure Ontario (I.O.) **LEGEND** Preliminary Geotechnical Investigation - Proposed Parking Structure Children's Hospital of Eastern Ontario Campus - 401 Smyth Road, PROJECT: \boxtimes ss - SPLIT SPOON ST - SHELBY TUBE LOCATION: Ottawa, Ontario - ROCK CORE DESCRIBED BY: K. Schaller CHECKED BY: S. Shahangian - WATER LEVEL \mathbf{Y} DATE (START): January 18, 2021 DATE (FINISH): January 18, 2021 NORTHING: 5027647.908 **EASTING:** 449211.832 SOIL LOG WITH GRAPH+WELL Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) Moisture Content 'N' Value/ SCR(%) Elevation (m) BGS ☐ Lab Blows per Depth Water content (%) **DESCRIPTION OF** 15 cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.20 **GROUND SURFACE** Ν 10 20 30 40 50 60 70 80 90 0.05 82.15 ASPHALT: 50 mm GS1 5 --Report: FILL 0.31 SANDY GRAVEL, brown, moist, loose 100 2 SS1 7 3-4-2-3 6 Gravel: 61%, Sand: 33%, Clay: 2%, Silt GHD GEOTECH_V02.GLB Bentonite : 6% 0.86 1.0 81.34 3 BEDROCK (inferred), shale fragments, SS2 23-50/ 100 18 50+ 1.22 m reddish brown/grey, wet, very dense 150mm #2 Sand 5 50/ SS3 100 8 50+ 100mm Screen 2.0 Y 2.14 m 21 SS4 100 4 50/ 50+ 2.22 79.98 auger refusal 2.22 m 75mm **END OF BOREHOLE:** 9 3.0 ---\112053--\11205379\11205379 - 90.GPJ NOTE: 10 - End of Borehole at 2.22 m bgs 11 Borehole was dry upon completionMonitoring well installed at 2.14 m bgs 12 - Groundwater found at 2.03 m bgs on January 28, 2021 13 4.0 - Groundwater found at 2.09 m bgs on February 10, 2021 14 - bgs donates 'below ground surface' 15 16 - 5.0 17 18 N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11 19 6.0 20 21 22 7.0 23 24 25 26 8.0 27 28 29 9.0 30 31 32

REFERENCE No.: 11205379-90 ENCLOSURE No.: B1-21 BOREHOLE No.: **BOREHOLE REPORT** ELEVATION: _ 82.29 m Page: 1 of 1 CLIENT: Infrastructure Ontario (I.O.) **LEGEND** Preliminary Geotechnical Investigation - Proposed Parking Structure Children's Hospital of Eastern Ontario Campus - 401 Smyth Road, PROJECT: \boxtimes ss - SPLIT SPOON - SHELBY TUBE Ottawa, Ontario LOCATION: - ROCK CORE DESCRIBED BY: K. Schaller CHECKED BY: S. Shahangian - WATER LEVEL \mathbf{Y} DATE (START): January 18, 2021 DATE (FINISH): January 18, 2021 NORTHING: 5027580.742 **EASTING:** 449219.213 SOIL LOG WITH GRAPH+WELL Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) Moisture Content 'N' Value/ SCR(%) Elevation (m) BGS ☐ Lab Blows per State Depth Water content (%) **DESCRIPTION OF** 15 cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.29 **GROUND SURFACE** % Ν 10 20 30 40 50 60 70 80 90 FILL: SILTY SAND and GRAVEL, greyish Report: SS1 5 62 2 7-3-2-3 brown, moist, loose 0.46 81.83 2 NATIVE: GHD_GEOTECH_V02.GLB SAND and GRAVEL, some silt, trace SS2 89 10 9-24-50/ 50+ 81.38 81.25 0.91 1.04 125mm clay, brown, moist, very dense Gravel: 39%, Sand: 39%, Clay: 7%, Silt : 15% 5 BEDROCK, shale fragments, brownish red/grey, moist, very dense auger refusal 2.0 **END OF BOREHOLE:** NOTE: - End of Borehole at 1.04 m bgs 3.0 - Borehole was dry upon completion ---\112053--\11205379\11205379 - 90.GPJ 10 - bgs donates 'below ground surface' 11 12 13 4.0 14 15 16 - 5.0 17 18 N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11 19 6.0 20 21 22 7.0 23 24 25 26 8.0 27 28 29 9.0 30 31 32

REFERENCE No.: 11205379-90 ENCLOSURE No.: 10 B2-21 BOREHOLE No.: **BOREHOLE REPORT ELEVATION:** 82.18 m Page: 1 of 1 CLIENT: Infrastructure Ontario (I.O.) **LEGEND** Preliminary Geotechnical Investigation - Proposed Parking Structure Children's Hospital of Eastern Ontario Campus - 401 Smyth Road, PROJECT: \boxtimes ss - SPLIT SPOON ST - SHELBY TUBE LOCATION: Ottawa, Ontario - ROCK CORE DESCRIBED BY: K. Schaller CHECKED BY: S. Shahangian - WATER LEVEL \mathbf{Y} DATE (START): January 18, 2021 DATE (FINISH): January 18, 2021 NORTHING: 5027629.392 **EASTING:** 449254.399 SOIL LOG WITH GRAPH+WELL Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) Moisture Content 'N' Value/ SCR(%) Elevation (m) BGS ☐ Lab Blows per Depth State Water content (%) **DESCRIPTION OF** 15 cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.18 **GROUND SURFACE** % Ν 10 20 30 40 50 60 70 80 90 FILL: SILTY SAND and GRAVEL, brown, Report: SS1 71 41 0 13-17-24-9 moist, dense 2 GEOTECH_V02.GLB 100 81.27 SS2 4-10-28-34 3 -991 10 38 BEDROCK, shale fragments, grey, very dense SS3 9 22-50/ 50+ 1.52 80.66 150mm **END OF BOREHOLE:** 2.0 - End of Borehole at 1.52 m bgs - Borehole was dry upon completion - bgs donates 'below ground surface' - 3.0 10 11 12 13 4.0 14 15 16 - 5.0 17 18 N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11 19 6.0 20 21 22 7.0 23 24 25 26 8.0 27 28 29 9.0 30 31 32

REFERENCE No.: 11205379-90 ENCLOSURE No.: BOREHOLE No.: B3-21 **BOREHOLE REPORT** ELEVATION: 82.27 m Page: 1 of 1 Infrastructure Ontario (I.O.) CLIENT: _ **LEGEND** Preliminary Geotechnical Investigation - Proposed Parking Structure Children's Hospital of Eastern Ontario Campus - 401 Smyth Road, PROJECT: \boxtimes ss - SPLIT SPOON - SHELBY TUBE LOCATION: Ottawa, Ontario - ROCK CORE CHECKED BY: _ DESCRIBED BY: K. Schaller - WATER LEVEL ¥ DATE (FINISH): DATE (START): 5027652.016 NORTHING: EASTING: 449199.133 Report: SOIL LOG WITH GRAPH+WELL Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Recovery/ TCR(%) Moisture Content Type and Number 'N' Value/ SCR(%) Elevation (m) BGS ☐ Lab Blows per Water content (%) **DESCRIPTION OF** vvaler content (%)
Atterberg limits (%)
"N" Value 15 cm/ SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.27 **GROUND SURFACE** Ν 10 20 30 40 50 60 70 80 90 FILL: SILTY SAND with gravel, greyish brown, SS1 62 15 6-6-2-2 8 moist, loose 0.61 81.66 trace to some clay GHD_GEOTECH_V02.GLB Sand, some gravel, silt and clay, reddish SS2 3 100 ٠ 1.0 13 4-5-9-25 14 grey, moist, stiff 81.05 SS3 BEDROCK (inferred), shale fragments, 100 7 50/ 50+ 0 1.37 150mm \greyish brown, very dense **END OF BOREHOLE:** - 2.0 NOTE: - End of Borehole at 1.37 m bgs - Borehole was dry upon completion - bgs donates 'below ground surface' **—** 3.0 ---\112053--\11205379\11205379 - 90.GPJ 10 -11 12 -13 **├** 4.0 14 15 16 -- 5.0 17 18 N:\CA\MISSISSAUGA - 111 BRUNEL\LEGACY\LOG DATABASE\8-CHAR\11-19 6.0 20 21 22 7.0 23 -24 25 26 8.0 27 28 29 9.0 30 31 32

	REFEREN	CE No.	:	11205379									ENCLO	SUR	RE No	.:		9	
		Į			BOREHOLE No	.: .		l	MW9	-22		В	ORE	HC)LE	RI	ΞP(OR	λT.
		ì			ELEVATION: _			82	.0 m						1_				
	CLIENT:	Infrast	ructur	e Ontario (I.O.)	PROJECT: _	Pre	elin	ninary (Geote	chnica	al Investigat	ion	LEG	END)				
72	LOCATION	1 :	401	Smyth Road, Ottaw	a, Ontario									SS	- SP	LIT S	POC	N	
1/9/2	DRILLING	RIG: _	Trac	ck Drill Rig	DRILLING ME	TH	0[D: <u>203</u>	mm C	D Ho	llow Stem A	<u>uger</u> s				ELBY			
∟ Date	DESCRIBE	ED BY:	<u>D. A</u>	sh	CHECKED BY	': _		A. Kha	ndeka	ır			▼			ATER			
1+WEL	DATE (STA	ART):	19 J	uly 2022	DATE (FINISH	l):	_	19 July	2022	!									
GRAPH	NORTHING	3 :	5027	7588.5 m	EASTING:			449191	.1 m										
9 SOIL LOG WITH (Depth	Elevation (m)	Stratigraphy		RIPTION OF D BEDROCK	0+0+0	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Shear Sensit O W W _p W _l A	ivity (\$ /ater o tterbe	S) Écontent rg limit	s (%)	△ Fi		
20537	Feet Metres	82.0			D SURFACE					%			10 20	30 4	0 50 6) N e	/I V /
Report: 11	1 - 0.3	81.8		∖moist, compact	RAVEL, grey/brown,	$/\!$	\bigvee	SS1	62	6	9-8-10-4	18	0			0.2	2 m		
V05.GLB F	3 - 1.0	81.2			compact to dense	$\sqrt{\ \ }$		SS2	83	3	2-11-27-50	38	0	•		bento	nite		
File: N.XCATORONTOIPROJECTS1662/11205379/TECHILOG DATABASE/11205379 - PARKING GARAGE ADDITION.GPJ Library File: N.XCATORONTOIPROJECTS1662/11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	10 3.0 11 2.0 10 3.0 11 1 12 1 13 4.0 14 1 15 1 16 5.0 17 1 18 1 19 6.0 21 2 22 2 23 7.0	79.4		SHALE-BEDROC brown SHALE-BEDROC	K, weathered, light K, highly to moderately ately bedded, weak to			RC1 RC2 RC3	90 100 97		13 40 65						and the manual state of the sta		
File: N:\CA\TORONTO\PROJECTS\662\11205379\T.	24 — 7.9 25 — 7.9 26 — 8.0 27 — 28 — 29 — 29 — 30 — 31 — 31 — 32 — 32 — 32 — 32 — 32 — 32	74.2			at 7.85 m bgs											7.9	9 m-		

RE	FEREN	ICE No.	.:	11205379								ENCI	LOSU	RE No	D.: _		10
			GHE		BOREHOLE N ELEVATION:						В			OLE			
CL	IENT:	Infras	tructur	e Ontario (I.O.)	PROJECT:	Preli	minary (Geote	chnic	al Investigat	tion	LE	GEN	<u>D</u>			
LO	CATIO	N:	401	Smyth Road, Ottaw	a, Ontario								SS	- SI	PLIT :	SPOC	NC
DR	RILLING	RIG: _	Trac	k Drill Rig	DRILLING N	IETHC	D: 203	mm C	DD Ho	llow Stem A	Augers		ST RC			Y TU CORI	
				sh								Ā			ATE	R LEV	/EL
DA	TE (ST	ART):	12 J	uly 2022	DATE (FINIS	SH): _	12 July	2022	2								
NC	PRTHIN	G:		7596.9 m	EASTING:		449167				1	Sho	ar test	(Cu)		ΔF	iold
d	Depth	Elevation (m)	Stratigraphy		RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Sen:	sitivity Water Atterb "N" Val	(S) conter erg lim	ts (%)		
Feet 0	Metres	82.1		GROUN	D SURFACE				%			10	20 30	40 50	60 70	80 9	0
-	<u>-</u> -			GM-SAND and GF trace clay, brown,		1											
1 —	_			Gravel : 43%, San Clay : 3%	id : 43%, Silt : 11%,	ΙX	SS1	83	3	16-13-12-4	25	0	•				
2 -	- 0.5 - 0.6	81.5				/\											
-	0.7	81.4		NATIVE : SM-SILTY SAND	and GRAVEL, trace	Л	SS2	87	6	7-38-50/	88/						
3 —	_ 1.0				K, weathered, light	<u> </u>	332			75mm	75mm						
-	_			brown													
4 -	1.2	80.9		Borehole terminat	ed due to spoon and												
5 —	1.5			END OF BOREHO	<u>LE :</u>												
=	<u>-</u>			NOTE:	at 4 00 mg lang												
6 —	-			 End of Borehole Borehole was dry bos donates 'believe 	at 1.22 m bgs y upon completion ow ground surface'												
7 -	— 2.0 -			- bgs donates bei	ow ground surface												
-	 - -																
8 —	- - 2.5																
9 —	- -																
9 -	-																
10 —	3.0																
-	_																
11 —	- - 3.5																
12 —	 - -											\vdash			+	+	\dashv
-	ŧ.											\vdash			+	+	_
13 —	4.0														+	+	\dashv
14 —	-											\vdash			+	+	\dashv
-	ļ														+		_
15 —	- 4.5 -													+	+		
-	<u>-</u> -																\perp
16 —	+																

REFERENCE No .: 11205379 ENCLOSURE No.: BOREHOLE No.: BH11-22 BOREHOLE REPORT **ELEVATION:** 82.1 m Page: 1 of 1 PROJECT: Preliminary Geotechnical Investigation CLIENT: Infrastructure Ontario (I.O.) **LEGEND** 401 Smyth Road, Ottawa, Ontario LOCATION: \boxtimes ss - SPLIT SPOON ST - SHELBY TUBE DRILLING METHOD: 203mm OD Hollow Stem Augers DRILLING RIG: Track Drill Rig - ROCK CORE DESCRIBED BY: D. Ash CHECKED BY: A. Khandekar - WATER LEVEL ¥ 11205379 SOIL LOG WITH GRAPH+WELL DATE (START): ___18 July 2022 DATE (FINISH): 18 July 2022 NORTHING: 5027638.0 m **EASTING:** 449184.6 m Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) 'N' Value/ SCR(%) Elevation (m) Moisture ☐ Lab Content Blows per Water content (%) **DESCRIPTION OF** 15cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.1 **GROUND SURFACE** % 10 20 30 40 50 60 70 80 90 FILL: Report: GW-GM-SANDY GRAVEL, trace silt, SS1 67 2 19-17-11-3 28 trace clay, brown, moist, compact 2 0.6 81.5 Gravel: 52%, Sand: 37%, Silt: 8%, Clay 81.3 SS2 62 9 3-6-11-14 17 NATIVE: SM-ML-SAND and SILT, trace clay, SS3 100 50/ 50+ 75mm grey/brown, moist, compact 5 SHALE-BEDROCK, weathered, light SS4 50/ 50+ 100 brown 2.0 50mm 11205379 GHD auger refusal 2.5 79.6 SHALE-BEDROCK, moderately bedded, 9 moderately weathered, medium strong, RC1 78 36 - 3.0 10 grey/black 11 12 N./CA\TORONTO\PROJECTS\662\11205379\TECH\LOG DATABASE\11205379 - PARKING GARAGE ADDITION.GPJ 13 -- 4.0 RC2 100 60 14 15 16 5.0 17 18 RC3 100 50 19 - 6.0 20 21 22 23 - 7.0 RC4 100 55 24 25 8:8 74.2 27 **END OF BOREHOLE:** 28 29 - End of Borehole at 7.98 m bgs 9.0 - Borehole was dry upon completion 30 - bgs donates 'below ground surface' 31

32

34 35 10.0

REFERENCE No.:	11205379	 -							ENCL	.OSUF	RE No	o.: _		12
Ø	HD	BOREHOLE No. ELEVATION:						В		EH(age:				
CLIENT: Infrasti	ructure Ontario (I.O.)	PROJECT: _F	Preli	minary (Geote	chnica	al Investiga	ation	LE	GENI	<u> </u>			
LOCATION:	401 Smyth Road, Ottaw	<i>y</i> a, Ontario								SS			SPO	
DRILLING RIG: _	Track Drill Rig	DRILLING MET	ГНО	D: 203	mm C	D Ho	llow Stem	Augers		ST RC			SY TU COR	
DESCRIBED BY:	D. Ash	CHECKED BY:	_	A. Kha	ndeka	r			Ā				R LE	
DATE (START):	12 July 2022	DATE (FINISH)): _	12 July	2022									
NORTHING:	5027590.3 m	EASTING:		449214	l.3 m									
Depth Elevation (m)	SOIL AN	RIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)		Blows pe 15cm/ RQD(%)	'N' Value/ SCR(%)	Sens W _p W _l	ar test (sitivity (Water Atterbe "N" Valu vs / 12	S) contererg limi	cm)	□ l	
Feet Metres 82.1	GROUN	ID SURFACE	+			%			10 2	20 30 4	10 50	60 7	0 80 9	00
1 0.5	GM-GRAVEL, sor clay, brown, moist	ne sand and silt, trace , compact nd : 14%, Clay & Silt :	\bigvee	SS1	46	3	13-25-5-5	30	0	•				
3 - 1.0	NATIVE : SM-ML-SAND and brown, moist, very	d SILT, trace clay, dense	$\overline{\mathbb{R}}$	SS2	100	5	15-39-40-5 75mm	0/ 79	0					
4 — 1.1 81.0 5 — 1.5	SHALE-BEDROC brown	K, weathered, light		SS3	100	-	50/ 0mm	50/ 0mm						
6 — 1.8 80.2 = 2.0 7 —	auger refusal	ed due to spoon and												
8 – 2.5	NOTE: - End of Borehole - Borehole was dr - bgs donates 'bel	at 1.83 m bgs												
9 3.0														
- 3.5														
3 - 4.0														
14 4.5														
15 —														

REFERENCE No.: 11205379 ENCLOSURE No.: BOREHOLE No.: BH13-22 BOREHOLE REPORT **ELEVATION:** 82.2 m Page: 1 of 1 PROJECT: Preliminary Geotechnical Investigation CLIENT: Infrastructure Ontario (I.O.) **LEGEND** 401 Smyth Road, Ottawa, Ontario LOCATION: \boxtimes ss - SPLIT SPOON 1/9/22 ST - SHELBY TUBE Track Drill Rig DRILLING RIG: DRILLING METHOD: 203mm OD Hollow Stem Augers - ROCK CORE DESCRIBED BY: L. McCann/S. Wallis CHECKED BY: A. Khandekar - WATER LEVEL Ţ 11205379 SOIL LOG WITH GRAPH+WELL DATE (START): 4 July 2022 DATE (FINISH): 4 July 2022 NORTHING: 5027615.5 m **EASTING:** 449212.0 m Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) Elevation (m) Value/ Moisture 'N' Value SCR(%) ☐ Lab Blows per Content Depth Water content (%) **DESCRIPTION OF** 15cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.2 **GROUND SURFACE** % 10 20 30 40 50 60 70 80 90 82.1 0.1 ASPHALT: 75 mm Library File: 11205379 GHD_GEOTECH_V05.GLB Report: SS1 100 FILL 10-13-10-5 23 GW-GM-SANDY GRAVEL. light 2 brown/grey, dry, compact 0.9 1.8 81.3 81.2 NATIVE: SS2 2-2-11-15 13 71 SP-GP-SAND and GRAVEL, trace clay, brown, moist, compact SHALE-BEDROCK, weathered, grey 5 RC1 82 0 80.2 2:8 SHALE-BEDROCK, moderately to highly weathered, thinly bedded, highly to moderately fractured, grey, weak RC2 10 95 3.0 10 11 occasional clay and shale layers N.)CA\TORONTO\PROJECTS\662\11205379\TECH\LOG DATABASE\11205379 - PARKING GARAGE ADDITION.GPJ 12 13 4.0 RC3 100 37 14 15 16 - 5.0 occasional clay and shale layers 17 18 19 RC4 100 43 6.0 20 21 6.6 75.5 22 **END OF BOREHOLE:** 7.0 23 NOTE: 24 - End of Borehole at 2.37 m bgs 25 - Borehole was dry upon completion - Rock coring from 1.32 m bgs 26 - bgs donates 'below ground surface' 8.0 27 28 29 9.0 30 31 32

		GHE		BOREHOLE N ELEVATION:						В	_	EHO age: _			EPO
CLIENT:	Infras	tructur	e Ontario (I.O.)	PROJECT:	Preli	minary (Geote	chnica	al Investigat	ion	LEC	SEND			
LOCATION	l:	401	Smyth Road, Ottaw	a, Ontario							\boxtimes		- SPI	LIT S	POON
			ck Drill Rig		IETHC	D: 203	mm C	D Ho	llow Stem A	ugers		ST			/ TUBE
DESCRIBE	D BY:	D. A	sh	CHECKED E	3Y: _	A. Kha	ndeka	ır			Щ ¥	RC			LEVEL
DATE (STA	ART):	12 J	uly 2022	DATE (FINIS	SH): _	12 July	2022	!							
NORTHING	 3:	5027	7618.1 m	EASTING:		449237	7.3 m								
Depth	Elevation (m)	Stratigraphy	DESCR	IPTION OF D BEDROCK	State	1		Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Sensi	test (Cutivity (S) Vater co tterberg	ntent limits	s (%)	△ Field □ Lab
Feet Metres	82.2			D SURFACE				%			`	30 40			80 90
			FILL : GW-GM-SANDY (GRAVEL, trace silt,											
1 - 0.5			trace clay, brown,		$\bigg \bigg $	SS1	58	2	11-25-16-6	41	0	•			
2 - 0.6	81.6 81.5												+	\forall	+++
- 0.7	01.0		SP-GP-SAND and trace clay, brown,	GRAVEL, trace silt, moist, very dense	$/ \parallel \rangle$									\vdash	++
3 1.0				K, weathered, light	_ \	SS2	100	5	7-35-48-42	83	0			\vdash	
4 - 1.2	81.0		<u> </u>		/ \									\vdash	
-			auger refusal	ed due to spoon and											
5 _ 1.5			END OF BOREHO	<u>LE :</u>											
+			NOTE: - End of Borehole	at 1 22 m h ga											
6			- Borehole was dry - bgs donates 'beld	upon completion											
7 - 2.0			bgo donates bett	ow ground surface											
·															
8 - 2.5															
+ 2.0														\vdash	++
9 —												+		+	+
10 - 3.0												+		\vdash	
`												$\perp \downarrow$		\perp	\coprod
11 -															
- 3.5															
12 —														\top	
+												+		\top	
13 4.0												++	+	+	++
14 —												+		+	++
												+		\vdash	+
15 — 4.5												$\perp \downarrow$		\dashv	$\perp \perp \mid$
⊢		1												.	

		Ç	GHE		BOREHOLE No. ELEVATION:						В	ORI		OLE			
CLI	ENT: _	Infrast	ructur	e Ontario (I.O.)	PROJECT: _F	reli	minary (Geote	chnic	al Investigat	ion	LEC	GENI	<u> </u>			
LO	CATION	l:	401	Smyth Road, Ottaw	a, Ontario							\boxtimes				SPO	
DR	ILLING	RIG: _	Trac	k Drill Rig	DRILLING MET	ΉΟ	D: 203	mm C	D Ho	llow Stem A	ugers		ST RC			SY TU COR	
DE	SCRIBE	D BY:	<u>D. A</u>	sh	CHECKED BY:	_	A. Kha	ndeka	ır			Ţ				R LE\	
DA	TE (STA	ART):	12 J	uly 2022	DATE (FINISH): _	12 July	2022									
NO	RTHING	3 :	5027	7642.6 m	EASTING:		449234	1.7 m									
Denth	2	Elevation (m)	Stratigraphy		LIPTION OF D BEDROCK	State	Type and Number	Recovery/ TCR(%)	Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Sens O N W _p W _l	N" Valu	S) conten erg limi		△ F □ L	
Feet 0	Metres	82.1			D SURFACE	1			%			10 2	0 30 4	40 50	60 70	80 9	0
-	_				RAVEL, trace silt, trace	$\backslash /$											
1 -	-			clay, brown, moist, Gravel : 40%, San Clay : 3%	dense d : 47%, Silt : 10%,	IX	SS1	62	3	16-18-13-5	31	0	•				
2	- 0.5 - 0.6	81.5		•		/\											
_	- 0.0	01.0		SHALE-BEDROCK brown	K, weathered, light	$\backslash /$											
3 —						ΙX	SS2	100	6	20-25-50/ 125mm	75/ 125mn						
-	- 1.0 - 1.1	81.1	=	Rorehole terminate	ed due to spoon and	_/ \											
4 -	_			auger refusal	ou due to spoon and												
-				END OF BOREHO	LE:												
5 —	- 1.5 -			NOTE:	-1.4.07 m. h.m.												Ц
_	_			 End of Borehole Borehole was dry bgs donates 'beld 	upon completion												
6	-			- bgs donates beit	ow ground surface												
7	— 2.0 -																
.	_																
8 —	- 0.5																
_	- 2.5 -																
9 —	_																
-	- 3.0																
10 —	- 0.0																
11 —	_														\prod		
	- - 3.5																H
12 —	_													+	+	+	H
-	_													+		-	
13 —	- 4.0														$\perp \downarrow$		
-	_																
14 —	_																
<u>,</u> †	- - 4.5																
15 —	_																
			1			- 1	I	1	1	ĺ	1	1		1	1 1		1

		GHE		BOREHOLE No.						В		EHO			PO
CLIENT:	Infrast	tructur	e Ontario (I.O.)	PROJECT:	Preli	minary (Geote	chnica	al Investigat	ion	LEC	<u>SEND</u>			
LOCATION	l:	401	Smyth Road, Ottaw	—— — a, Ontario							\boxtimes		- SPI	₋IT SI	POON
			ck Drill Rig		ТНО	D: 203	mm C	D Ho	llow Stem A	ugers		ST	- SHE	ELBY	TUBE
DESCRIBE	D BY:	D. A	sh	CHECKED BY	:	A. Kha	ndeka	ır					- RO		ORE LEVEL
DATE (STA	ART):	12 J	uly 2022	DATE (FINISH): _	17 Dec	embe	r 202	2						
NORTHING	 3:	5027	7594.4 m	EASTING:		449262	2.3 m								
Depth	Elevation (m)	Stratigraphy	DESCR	LIPTION OF D BEDROCK	State			Moisture Content	Blows per 15cm/ RQD(%)	'N' Value/ SCR(%)	Sensi	r test (C tivity (S Vater co Atterbero N" Value s / 12 in) ´ ontent (g limits	(%) (%)	△ Field □ Lab
Feet Metres	82.1		GROUN	D SURFACE				%			_ `	30 40			30 90
			FILL : SW-SM-SAND and	d GRAVEL, trace silt,											
1 - 0.5			trace clay, brown,			SS1	54	3	2-6-8-6	14	0 •				
0.7	81.4		NATIVE:	CDA\/EL 4=====il4	7										
3 - 0.9 - 1.0	81.2		∖trace clay, brown,		/ \	SS2	87	7	2-4-11-14	15					
- 1.0			SHALE-BEDROCH brown	K, weathered, light	$/ \setminus$										
4 - 1.2	80.9			ed due to spoon and		SS3	100		50/ 0mm	50/ 0mm					
5 - 1.5			auger refusal	ıe.											
			END OF BOREHO	<u>LE .</u>											H
6			- End of Borehole - Borehole was dry	at 1.22 m bgs										+	$\vdash\vdash\vdash$
2.0			- bgs donates 'beld												
7															
_															
8 – 2.5															
9															
+												$\dashv \uparrow$	1		
10 - 3.0												+	+	+	
+												++	+	+	
11 —												+	+	+	H
- 3.5 12 -												+	+	+	
'- 												$\perp \downarrow \downarrow$	$\perp \downarrow \downarrow$	\perp	
13 - 4.0												$\perp \! \! \perp$		\perp	
14 —															
4.5												+	+	\dagger	
15 —												+	+	+	
- I		1				I		1							1

_	REFERENCE No.: 1120537	9							ENCLOS	SURE	No.:		17	
	GHD	BOREHOLE No.: ELEVATION:						В	ORE Pag	HO l				RT
	CLIENT: Infrastructure Ontario (I.		elii	minary (Geote	chnic	al Investiga	ation	LEGE	<u>ND</u>				
/22	LOCATION: 401 Smyth Road								⊠ s: ⊠ s ⁻				OON TUBE	
te: 1/9	DRILLING RIG: Track Drill Rig								∭ R	C -	ROC			
∐ Da	DESCRIBED BY: D. Ash								Ā		WAT	ER L	EVEL	-
H+WE	DATE (START): 12 July 2022	DATE (FINISH):	_	12 July	2022									
GRAP	NORTHING: 5027619.3 m	EASTING:		449258	8.6 m		T							
11205379 SOIL LOG WITH GRAPH+WELL Date: 1/9/22	Depth Elevation (m) Stratigraphy		State	Type and Number	Recovery/ TCR(%)		Blows pe 15cm/ RQD(%)	'N' Value/ SCR(%)	(SWOID)	ity (S) ater cor erberg Value 12 in	ntent (% limits (%) %))	∆ Field ∃ Lab	
12053	Feet Metres 82.1 (GROUND SURFACE				%			10 20	30 40	50 60	70 80	90	
5.GLB Report: 1	1 — GW-GM-G trace clay, Gravel : 52 : 2%,	RAVEL with SAND, trace silt, brown, moist, compact %, Sand : 39%, Silt : 7%, Clay	\bigvee	SS1	54		4-10-17-17	1 27	•					
File: N.;CAITORONTO!PROJECTS 662/11205379\TECHLUG DATABASE\11205379 - PARKING GARAGE ADDITION.GPJ Library File: 11205379 GHD_GEOTECH_V05.GLB Report:	2 - 0.7 81.4 NATIVE: SP-GP-SA trace clay,	ND and GRAVEL, trace silt, brown, moist, compact	\bigvee	SS2	100		3-8-22-50, 75mm	/ 30		•				
J Library File: 1120	brown, Borehole to auger refu: 5 — 1.5 END OF Be	erminated due to spoon and sal												
ARAGE ADDITION.GF	6 — End of Borehole - bgs dona	orehole at 1.14 m bgs was dry upon completion tes 'below ground surface'												
79 - PARKING G	9 —													
4TABASE\11205	10 - 3.0													
379\TECH\LOG D,	11 — 3.5													
IECTS\662\11206	13 — 4.0													
PROJ	14 —													
RONTC	15 — 4.5													
:\CA\TO														
File: N	16 —													

REFERENCE No .: 11205379 ENCLOSURE No.: BOREHOLE No.: BH18-22 BOREHOLE REPORT **ELEVATION:** 82.1 m Page: 1 of 1 PROJECT: Preliminary Geotechnical Investigation CLIENT: Infrastructure Ontario (I.O.) **LEGEND** 401 Smyth Road, Ottawa, Ontario \boxtimes ss - SPLIT SPOON 1/9/22 ST - SHELBY TUBE DRILLING RIG: Track Drill Rig DRILLING METHOD: 203mm OD Hollow Stem Augers - ROCK CORE DESCRIBED BY: D. Ash CHECKED BY: A. Khandekar - WATER LEVEL Ţ 11205379 SOIL LOG WITH GRAPH+WELL DATE (START): 15 July 2022 DATE (FINISH): 15 July 2022 NORTHING: 5027645.0 m **EASTING:** 449256.7 m Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) 'N' Value/ SCR(%) Elevation (m) Moisture ☐ Lab Blows per Content Water content (%) **DESCRIPTION OF** 15cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 82.1 **GROUND SURFACE** % 10 20 30 40 50 60 70 80 90 FILL: GW-GM-SANDY GRAVEL with sand, SS1 62 9-8-10-4 18 trace silt, trace clay, grey/brown, moist, 0.6 81.5 compact GEOTECH_V05.GLB 8.0 81.3 Gravel: 73%, Sand: 21%, Silt: 5%, Clay SS2 38 83 2-11-27-50 1% 1.0 NATIVE: SP-GP-SAND and GRAVEL, trace silt, 1.4 80.7 trace clay, moist, dense SHALE-BEDROCK RC1 100 0 auger refusal **Library File:** 11205379 GHD 2.0 SHALE-BEDROCK, moderately to highly weathered, thinly bedded, very weak to moderately strong, grey/black 3.0 10 RC2 100 0 11 N.)CA\TORONTO\PROJECTS\662\11205379\TECH\LOG DATABASE\11205379 - PARKING GARAGE ADDITION.GPJ 12 13 4.0 14 15 RC3 100 36 16 - 5.0 17 18 19 6.0 20 RC4 100 51 21 22 23 75.0 24 **END OF BOREHOLE:** 25 - End of Borehole at 7.13 m bgs 26 8.0 - Rock coring from 1.40 m bgs 27 - Borehole was dry upon completion - bgs donates 'below ground surface' 28 29 9.0 30 31 32

REFERENCE No.: 11205379					E	ENCLOSUR	E No.: _	19	
	BOREHOLE No.:	В	H19-22		В	OREHO	LE F	REPOF	RT
GHD	ELEVATION:	81.1	1 m			Page: _			
CLIENT: Infrastructure Ontario (I.O.)	PROJECT: Pre	liminary G	eotechnica	al Investiga	ation	LEGEND			
LOCATION: 401 Smyth Road, Ottaw	a, Ontario					⊠ ss		SPOON	
DRILLING RIG: <u>Track Drill Rig</u>	DRILLING METHO	OD: 203m	nm OD Ho	llow Stem	<u>Augers</u>	⊠ ST ∏ RC	- SHELE - ROCK	BY TUBE CORE	
DESCRIBED BY: D. Ash						Ā		R LEVEL	
DATE (START): 14 July 2022	DATE (FINISH):	14 July 2	2022						
NORTHING: 5027588.9 m	EASTING:	449046.				Shoar tost (C	<u> </u>	△ Field	
	RIPTION OF D BEDROCK	Type and Number	Recovery/ TCR(%) Moisture Content	Blows pe 15cm/ RQD(%	'N' Value/ SCR(%)	Shear test (C Sensitivity (S Water co Atterbery "N" Value (blows / 12 in	i) [*] ontent (%) g limits (%	□ Lob	
A CDUAL T. 75 mm	D SURFACE		%			10 20 30 40	50 60 7	0 80 90	
ASPHALT: 75 mm FILL: SM-GRAVELLY Solday, brown, loose	AND, trace silt, trace	SS1	79	4-5-3-6	8	•			
80.2 NATIVE : SP-GP-SAND and trace clay, brown, Gravel : 31%, San Clay : 7%	d : 46%, Silt : 16%, K, weathered, light	SS2	71	17-33-50, 125mm	/ 83/ 125mn 1				
	at 1.37 m bgs				-				
NO - 2.0 - bgs donates 'beld' - bgs donates 'bgs donates 'beld' - bgs donates 'bgs dona	ow ground surface'				-				
8. – 2.5 – 2.5 – 9 – 9 – 9 – 9 – 9 – 9 – 9 – 9 – 9 –					_				
10 — 3.0 — 3					_				
G 11 - 당 + 3.5							+++		
12 —									
13 - 4.0							+		
14 —									
- - - - - - - - - -									
01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
Ē									

REFERENCE No.: 11205379 ENCLOSURE No.: BOREHOLE No.: MW20-22 BOREHOLE REPORT **ELEVATION:** 81.2 m Page: 1 of 1 PROJECT: Preliminary Geotechnical Investigation CLIENT: Infrastructure Ontario (I.O.) **LEGEND** 401 Smyth Road, Ottawa, Ontario \boxtimes ss - SPLIT SPOON **Date:** 1/9/22 ST - SHELBY TUBE DRILLING RIG: Track Drill Rig DRILLING METHOD: 203mm OD Hollow Stem Augers - ROCK CORE DESCRIBED BY: D. Ash CHECKED BY: A. Khandekar - WATER LEVEL Ţ FIIe: N.CAITORONTOIPROJECTS1662/112053791TECHLOG DATABASE1/1205379 - PARKING GARAGE ADDITION. GPJ LIDRAY FIIe: 1/205379 GHD. GEOTECH. V05. GLB Report: 1/205379 SOIL LOG WITH GRAPH+WELL DATE (START): 14 July 2022 DATE (FINISH): 14 July 2022 NORTHING: 5027656.2 m **EASTING:** 449095.7 m Shear test (Cu) Sensitivity (S) △ Field Stratigraphy Type and Number Recovery/ TCR(%) 'N' Value/ SCR(%) Elevation (m) Moisture ☐ Lab Content Blows per Depth Water content (%) **DESCRIPTION OF** 15cm/ Atterberg limits (%) SOIL AND BEDROCK RQD(%) (blows / 12 in.-30 cm) Feet Metres 81.2 **GROUND SURFACE** 10 20 30 40 50 60 70 80 90 ASPHALT: 75 mm 0.1 81.1 02 FILL: SM-GRAVELLY SAND, some silt, trace SS1 58 5 6-10-8-5 18 0 clay, brown, moist, compact bentonite 0.5 Gravel: 36%, Sand: 44%, Silt: 16%, Clay: 4% 0.7 m 8.0 80.5 NATIVE: 3 SP-GP-SAND and GRAVEL, trace silt, 1.0 80.2 trace clay, brown, moist, dense SS2 87 5 8-21-29-27 50 0 1.0 Gravel: 46%, Sand: 41%, Silt: 9%, Clay screer SHALE-BEDROCK, weathered, grey 1.5 SS3 100 50/ 50/ 1.6 79.6 1.6 m Borehole terminated due to spoon and 75mm 75mm auger refusal **END OF BOREHOLE:** 2.0 NOTE: - End of Borehole at 1.60 m bgs - Monitoring well installed at 1.60 m bgs 2.5 - bgs donates 'below ground surface' 9 3.0 3.5 12 13 4.0 14 4.5 15 16 5.0 17 18 5.5 19

CIIE	ent:	Infrastructure Ontario			Lab No.:	G-21-01	
Pro	ject, Site:	Proposed Parking Structure Children's Hospital of Easte 401 Smyth Road, Ottawa, C	rn Ontario C	Campus	Project No.:	11205379-80	
	Borehole No.:	B1-2			Sample No.:	SS2	
	Depth:	0.7-1.0	0m		Enclosure:	-	
	100 90 80 70						0 10 20 30
sing	60						40
Percent Passing	50						Percent Retained
Per	40						60
	30						70
	20						80
	10						90
	0.001	0.01	0.1 Diam	1 eter (mm)		10	100
			Diairi	Sand		Gravel	7
		Clay & Silt	Fine		ım Coarse	Fine Coarse	-
		Particle	e-Size Limits	as per USCS (ASTM	D-2487)	<u> </u>]
		Soil Description		Gravel (%)	Sand (%)	Clay & Silt (%)	
	S	and and Gravel, some Silt, trace (Clay	39	39	22	
		Clay-size particles (<0.002 mn	n):			7 %	
Rer	narks:						
Per	formed by:	Z. Ma	athurin		Date:	February 10, 202	1
Ver	ified by:	E. Be	ennett		Date:	February 17, 202	1

Clie	ent:		Infra	structu	re Onta	ario								_Lab	No.:		G	-21-0°	1				
Pro	ject, Site	:	Chile	oosed P dren's H	- Hospita	l of Ea	aste	rn (Ontari	io Ca	ımpı	ıs		Pro	ject No.	:	11	2053	79-80)			
	• •		401	Smyth	Road,	Ottaw	a, O)nta	ırio														
	Borehole	No.:				В3	-21						_	Sam	ple No.:		SS	S2					
	Depth:					0.7-	1.0							Encl	osure:		-						
	100																					\prod $^{\circ}$	
	90							Ш													$\perp \! \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \!$	10)
	80							+				+									+	20)
	70																					30	
	′0																					J 30	
sing	60							#				+									$+\!\!\!+\!\!\!\!+\!\!\!\!+$	40	ained
Percent Passing																							Percent Retained
ercer	50							+				+									+	50	ercen
4	40											M									Ш	60	
	30					_	\dashv	•				++			+						+	70)
				سمهم																			
	20	01 0.01																		\top	80)	
	10											_									$\perp \downarrow \downarrow$	₉₀)
	0.001			0.01				0.	.1 Dia	meter	(mm)			1			10)				100 100	00
									Diai	meter	(11111)												
			CI	ay & Silt	:						ı	San			T				avel				
						Parti	icle-S	Size	Fin		er US			ium M D-24	Coarse	е	Fin	e	C	oarse			
										, ac p		,											
				Soil Des	scriptio	n					Grav	vel (%	6)		Sand (%	b)		CI	ay & \$	Silt (%	%)		
		Sand	, some	Gravel,	some S	Silt, son	ne C	lay				19			50				31	1			
	Sand, some Gravel, some Silt, son Clay-size particles (<0.002)				nm):												14	%					
Rer	narks:																						
1101	ilai No.																						
Per	formed b	y:				Z. N	Math	uri	n					_	Date:			Febr	uary	10, 2	:021		
Ver	ified by:					E. I	Beni	net	<u>t</u>					_	Date:			Febr	uary	17, 2	:021		

Infrastructure Ontario	4		Lab No.:	G-21-01		-
Children's Hospital of Ea	astern Ontario	Campus	Project No.:	11205379-80		_
·				Crob		
				Grab		-
0.1-	0.3m		Enclosure:			-
					0	0
					2	0
					3	
					4	ained
					5	Percent Retained
					6	
			7	0		
					8	0
					9	0
0.01	0.1 Diame	1 eter (mm)		10	100	00
Olave 9 Oille		Sand		Gravel		
				Fine Co	arse	
Farti	icie-Size Limits	as per USCS (ASTM	D-2467)			7
Soil Description		Gravel (%)	Sand (%)	Clay & S	ilt (%)	
ravel and Sand, trace Silt, trace	e Clay	48	41			
				3 %	<u>,</u>	
						-
Z. N	Mathurin		Date:	February 1	10, 2021	_
E.	Bennett		Date:	February 1	7, 2021	-
Children's Hospital of Eastern Ontario Cal 401 Smyth Road, Ottawa, Ontario BH1-21 0.1-0.3m Ontario BH1-21 Ontario Ontario Clay & Silt Fine Particle-Size Limits as pa	Proposed Parking Structure Children's Hospital of Eastern Ontario Campus 401 Smyth Road, Ottawa, Ontario BH1-21 0.1-0.3m Clay & Silt Particle-Size Limits as per USCS (ASTM Soil Description Tavel and Sand, trace Silt, trace Clay Z. Mathurin	Proposed Parking Structure Children's Hospital of Eastern Ontario BH1-21 0.1-0.3m Sample No.: Enclosure: Sample No.: Enclosure: Clay & Silt Tine Particle-Size Limits as per USCS (ASTM D-2487) Soil Description Cayel and Sand, trace Silt, trace Clay Z. Mathurin Date:	Proposed Parking Structure	Proposed Parking Structure		

Clie	ent:	Infrastructure Or			Lab No.:	G-21-01	1	
		Proposed Parkin						
Pro	ject, Site:	Children's Hospi			Project N	o.: 112053	79-80	
	Danahala Na		BH2-21		Compute No.	.: Grab		
	Borehole No.:				Sample No	.: <u>Glab</u>		
	Depth:		0.1-0.3m		Enclosure:	-		
	100							_ 0
	100							TT °
	90							10
	80							20
						/		
	70							30
ing	60							40
Percent Passing								05 OF
cent	50					/		50 cent
Per								Per
	40							60
	30							70
	20							80
	10							90
								
	0.001	0.01	0.1	Diameter (mm)	1	10		100 100
				Diameter (mm)				
		Clay & Silt		Sand		Gra	vel	
		Ciay & Siit			Medium Coa	rse Fine	Coarse	
			Particle-Size Li	mits as per USCS (ASTM D-2487)			
		Soil Descript	on	Gravel (%	Sand (.%) Cla	ay & Silt (%)	
	Si	and and Gravel, trace \$	Silt. trace Clav	42	50		8	
							2 %	
Rer	narks:							
								
_					_			
Per	formed by:		Z. Mathurin		Date	: <u>Febr</u>	uary 10, 2021	
Ver	ified by:		E. Bennett		Date	: Febr	uary 17, 2021	
								<u></u>

Clie	ent:	Infrastructure Ontario			Lab No.:	G-21-01		
Pro	ject, Site:	Proposed Parking Struc Children's Hospital of E	astern Ontario	Campus	Project No.:	11205379-8	0	
		401 Smyth Road, Ottav						
	Borehole No.:	BH	12-21		Sample No.:	SS1		
	Depth:	0.5-	-0.8m		Enclosure:	_		
	100							T °
	90							10
	00							
	80							20
	70							30
sing	60							40
Percent Passing								05 09 Percent Retained
Percer	50							50 Jercen
_	40							60
	30							70
	20							80
	10							90
	•							
	0.001	0.01	0.1 Diame	eter (mm)		10		100 100
				Sand		Gravel		
		Clay & Silt	Fine			Fine C	Coarse	
		Part	icle-Size Limits	as per USCS (ASTM	D-2487)			
		Soil Description		Gravel (%)	Sand (%)	Clay &	Silt (%)	
	Sar	nd, some Silt, some Gravel, tra	ce Clay	15	61	2	4	
		Clay-size particles (<0.002	mm):			6	%	
Rer	narks:							
Per	formed by:	Z.	Mathurin		Date:	February	10, 2021	
Ver	ified by:	E.	Bennett		Date:	February	17, 2021	

Clie	ent:	_			tructui													Lab	No.:		_	G-	21-0	1					
_					sed P						0-4	- ui -	0							_									
Pro	ject, Site:	_			en's F myth							ario	Cai	mpu	JS			Proj	ect N	lo.:	_	11	2053	379-	80				
	Borehole No.						,	BH4										Samp	alo Ne	` ·		SS	1						
								0.2-0								_					_								
	Depth:	_						0.2-0	0.511	1						_		Enclo	sure:		_	_							
	100																П								-	_	₽	T 0	
																								/					
	90									+																\square		10	
	80																					Ш		_				20	
	00																											20	
	70									+																		30	
g																													eq
Percent Passing	60									П						\top						††						40	Percent Retained
ent F	50															Ш						Ш				Ш		50	ent F
Perc																													Perc
	40					_				+						+						₩		+				60	
	30																	/										70	
	30																											T ′°	
	20									+														+				80	
								_		-	_																		
	10					_	_															Ш						90	
	0																											100	0
	0.001				0.01					C).1 D	Diame	eter (mm)			1					10					1	100	
										Г					Sa	nd							Gr	avel					
			C	Clay	& Silt							Fine	,			Me	diu	ım	Coa	arse		Fine			Coa	rse			
								Parti	cle-S	Size	Lim	its a	as pe	er US	scs	(AS	TM	D-248	37)										
						—												Г			\neg					—	—	\neg	
				So	oil Des	script	tion						(Gra	vel (%)			Sand	(%)			С	lay 8	& Silf	t (%))		
		Grav	el an	nd S	Sand, t	race (Silt, t	trace	: Cla	ay					46				41						13				
																								(3 %				
Rer	narks:																												
	_																												
	_																												
Per	formed by:	_						Z. N	<i>l</i> lath	nur	in								Date) :	_		Feb	ruar	y 10	, 20	21		
Ver	ified by:	_						E. I	Ben	ne	tt							_	Date) :	_		Feb	ruar	y 17	, 20	21		

Clie	ent:	Infrastructure Ontario			Lab No.:	G-21-01		
Pro	ject, Site:	Proposed Parking Stru Children's Hospital of E		Campus	Project No.:	11205379-80		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	401 Smyth Road, Otta	wa, Ontario	•				
	Borehole No.:	MV	V5-21		Sample No.:	Grab		
	Depth:	0.1	-0.3m		Enclosure:			
	100						0	
	90						10	
	80						20	
	70							
	70						30	
ıssing	60						40	tainec
Percent Passing	50						50	Percent Retained
Perc								Perc
	40						60	
	30						70	
	20						80	
	10						90	
								•
	0.001	0.01	0.1 Diame	eter (mm)		10	100	U
		Clay & Silt		Sand		Gravel		
			Fine	Mediu as per USCS (ASTM		Fine Coars	se	
		· u		,				
		Soil Description		Gravel (%)	Sand (%)	Clay & Silt	(%)	
	(Gravel and Sand, some Silt, trac	ce Clay	43	41	16		
		Clay-size particles (<0.002	mm):			3 %		
Rer	narks:							
	_							
Per	formed by:	Z.	Mathurin		Date:	February 10,	2021	
Ver	ified by:	E	. Bennett		Date:	February 17,	2021	

Clie	ent:	Infrastructure Ontario			Lab No.:	G-21-01		
		Proposed Parking Stru		0				
Pro	ject, Site:	Children's Hospital of E 401 Smyth Road, Otta		Campus	Project No.:	11205379-80		
		•				004		
	Borehole No.:		N5-21	-	Sample No.:	SS1		
	Depth:	0.5	5-0.8m		Enclosure:	-		
	100						• • • • • • • • • • • • • • • • • • • •	- 0
						ا		
	90							- 10
								00
	80							- 20
	70							- 30
sing	60							ained 40
Percent Passing								95 05 Percent Retained
rcent	50							- 50 - 50 -
Pel								Pel
	40							- 60
	30							- 70
	20							- 80
	20							- 80
	10							- 90
	•							
	0							100
	0.001	0.01	0.1 Diame	eter (mm)		10	10	00
				Sand		Gravel		
		Clay & Silt	Fine		ım Coarse		arse	
		Par		as per USCS (ASTM		1	<u> </u>	
					,			
		Soil Description		Gravel (%)	Sand (%)	Clay & S	ilt (%)	
		Oon Description		Oraver (70)	Garia (70)	Olay & O	III (70)	
		Gravelly Sand, some Silt, trace	e Clay	23	49	28		
		Clay-size particles (<0.002	mm):			8 %	,	\dashv
	•							
Rer	narks:							
Per	formed by:		Mathurin		Date:	February 1	0, 2021	
							,	
Ver	ified by:	E	. Bennett		Date:	February 1	7, 2021	_

Clie	nt:	Infrastructure Ontario			Lab No.:	G-21-01		
Pro _.	ect, Site:	Proposed Parking Stru Children's Hospital of I	Eastern Ontario	Campus	Project No.:	11205379-80		
		401 Smyth Road, Otta						
	Borehole No.:	-	W6-21		Sample No.:	SS2		
	Depth:	3.0	8-1.1m		Enclosure:	-		
	100						0	
	90						10)
	80						20)
	70						30)
g.								eq
Passin	60						40	Retain
Percent Passing	50						50	Percent Retained
Pel	40							
	40						60)
	30						70)
	20						80)
	10						90)
	0						10	00
	0.001	0.01	0.1 Diame	eter (mm)		10	100	
		Clay & Silt		Sand		Gravel		
			Fine	Mediu as per USCS (ASTM		Fine Coa	rse	
				(1		ı
		Soil Description		Gravel (%)	Sand (%)	Clay & Sil	t (%)	
	C	Gravelly, Sand, some Silt, trac	e Clay	32	45	23		
		Clay-size particles (<0.002	! mm):			7 %		
Ren	narks:							
Peri	ormed by:	Z.	. Mathurin		Date:	February 10), 2021	
Veri	fied by:	E	. Bennett		Date:	February 17	7, 2021	

Clie	ent:	Infrastructure Onta			Lab No.:	G-21-01		ı
D	innt Oite	Proposed Parking		a Campus	Duningt No.	44005070.00		
Pro	ject, Site:	401 Smyth Road,	al of Eastern Ontario Ottawa, Ontario	Campus	Project No.:	11205379-80		
	Borehole No.:	•	MW8-21		Sample No.:	Grab		
			0.0-0.3m		Enclosure:			
	Depth:		0.0-0.0111		Enclosure.			
	100					· · · · · · · · · · · · · · · · · · ·		
	90						10)
						$ \hspace{.06cm} $		
	80						20	,
	70						30)
						/		70
assinę	60						40	etaine
Percent Passing	50						50	Percent Retained
Perce	30							Perce
	40						60)
	30						70)
	20						80	,
	20							,
	10						90)
	0.001	0.01	0.1	1		10	100 100	00
			Diam	neter (mm)				
		Clay & Silt		Sand		Gravel		
			Fine Particle-Size Limits			Fine Coars	se	
			Farticle-Size Lillits	as per 0303 (ASTIV	1 D-2467)			
		Soil Description	on	Gravel (%)	Sand (%)	Clay & Silt	(%)	
		Sandy Gravel, trace Silt,	trace Clay	61	33	6		
						2 %		
_								
Rer	narks:							
Per	formed by:		Z. Mathurin		Date:	February 10,	2021	
Ver	ified by:		E. Bennett		Date:	February 17,	2021	

Clie	ent:	_		Infrastructure	e Ontario			Lab No.:		G-22-03		
Pro	ject, Sit	e:		Children H	lospital			Project No.:		11205379		
	Borehol	e No.:		BH10-22 0 - 0,61 m				Sample No.:	_	SS-1		
	Бериі.	_		0 - 0,0111				Enclosure.		-		
	90										0 10	
	80										20	
Percent Passing	60										40	nt Reta
Perc	40										60	
	20 —										70 80 90	
	0.001		0.01		0.1 Diame	eter (mm)	1		10		100 100	0
						:	Sand		Gra	avel		
			Clay & Silt		Fine		Mediu		Fine	Coarse		
				Particle-Si	ize Limits a	is per USC	CS (ASTM	D-2487)				
			Soil Descrip	otion		Grav	el (%)	Sand (%)	CI	ay & Silt (%)		
	C	Gravel and S	Sand, with Some		of Clay	4	3	43		14		
		Clay	Silt-size partic y-size particles (n):			3				
Rer	narks:	More int	formation is availa	able upon requ	est.							
Per	formed	by:		J. Lalor	nde)			Date:	Aug	gust 15, 2022		
Ver	ified by	: _		booel	<u>/</u>			Date:	Aug	gust 24, 2022		

Clien	t:		lr	nfrastructur	e Ontario			_Lab No.:		G-22-03		
Proje	ct, Site:			Children I	Hospital			_Project No.:		11205379		
	orehole N	No.:		BH11-22 0 - 0,61 r				Sample No.: Enclosure:		SS-1 -		
Percent Passing 2 2 1 1 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clay	0.01			eter (mm)	Sand		10 Gr	ravel	0 10 20 30 40 50 60 70 80	Percent Retained
		Clay	& Silt		Fine		Medi		Fine	Coarse		
				Particle-S	Size Limits a	s per US	SCS (ASTN	1 D-2487)				
		Sc	oil Descripti	on		Gra	vel (%)	Sand (%)	C	lay & Silt (%)		
	,	Gravel and Sand	d, with Trace	s of Silt and	Clay		52	37		11		
			ize particles		m):				3			
Rema	rks:	More information	on is availabl	e upon requ	uest.							
	rmed by	<i>y</i> :		J. Lalo	ende			Date:		igust 11, 2022 igust 24, 2022		

Clie	nt:			Lab No.:	G-22-03		
Pro	ject, Site:	Children	n Hospital		Project No.:	11205379	
	Borehole I	No.: BH12	-22		Sample No.:	SS-1	
	Depth:	0 - 0,6	11 m		Enclosure:		
Percent Passing	100 90 80 70 60 50 40 30 20 10 0.001	0.01 Clay & Silt	Fine			10 Gravel Fine Coarse	0 10 20 30 Percent Retained 90 90 100
		Particl	e-Size Limits a	s per USCS (ASTM	D-2487)	•	
		Soil Description		Gravel (%)	Sand (%)	Clay & Silt (%)	
	G	Gravel, with Some Sand and Silt, Trace	es of Clay	66	14	20	
		Silt-size particles (%) : Clay-size particles (%) (<0.002	mm):				
Rer	narks:	More information is available upon re	equest.				
Per	formed by	y: J. La	alonde		Date:	August 11, 202	2
Ver	ified by:		<u> </u>		Date:	August 24, 202	2

Client: Infrastructure Ontario Project, Site: Children Hospital		Lab No.:	G-22-03					
Pro	ject, Site:	Children	Hospital		Project No.:	11205379		
	Borehole No	0 - 0,61			Sample No.: Enclosure:	SS-1 -		
Percent Passing	100 90 80 70 60 40 30 20 10 0.001	0.01	0.1 Diameter	r(mm) 1 Sand Mediu	m Coarse	10 Gravel Fine Coarse	0 10 20 30 40 page 24 30 40 40 40 40 40 40 40 40 40 40 40 40 40	
		Particle		per USCS (ASTM		Fine Coarse		
		Soil Description		Gravel (%)	Sand (%)	Clay & Silt (%)	
		Sandy Gravel, with Traces of Silt and	Clay	66	22	12		
		Silt-size particles (%) : Clay-size particles (%) (<0.002 r	mm):					
Ren	narks:	More information is available upon red	quest.					
Per	formed by:	J. La	londe		Date:	August 11, 20)22	
Ver	ified by:		2		Date:	August 24, 20)22	

Client:	Infrastructure Ontario	Lab No.:	G-22-03	
Project, Site:	Children Hospital	Project No.:	11205379	_
Borehole No.:	BH15-22	 Sample No.:	SS-1	
Depth:	0 - 0,61 m	 Enclosure:	-	_
CI	Clay & Silt Particle-Size Limits a Soil Description Gravel, with Some Silt and Traces of Clay Silt-size particles (%): ay-size particles (%) (<0.002 mm):			00 100 20 30 40 30 30 30 30 30 30 30 30 30 30 30 30 30
Performed by:	J. Lalonde	Date:	August 11, 2022 August 24, 2022	_

Client:	Infrastructu	ıre Ontario		Lab No.:	G-22-03	
Project, Site:	: Children	Hospital		Project No.:	11205379	
Borehole Depth:	No.: BH16-2 0 - 0,61			Sample No.: Enclosure:	SS-1 -	
100 90 80 70 60 10 10 10 10 10 10 10 10 10 10 10 10 10	Clay & Silt Particle Soil Description Sand and Gravel, with Traces of Silt an Silt-size particles (%): Clay-size particles (%) (<0.002 n	d Clay	Sand Mediu		To Gravel Fine Coarse Clay & Silt (%	10 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40
Performed b	y: J. Lal	onde		Date:	August 11, 20:	

Client:	Infrastructure	e Ontario	_Lab No.:	G-22-03	_
Project, Site:	Children H	ospital	_Project No.:	11205379	_
Borehole No.: Depth:	BH17-22 0 - 0,61 m		Sample No.: Enclosure:	SS-1 -	
CI	Clay & Silt Particle-Si Soil Description / Gravel, with Traces of Silt and Cl Silt-size particles (%): ay-size particles (%) (<0.002 mm	n):	ium Coarse	Gravel Fine Coarse Clay & Silt (%)	0 10 20 30 40 50 60 70 80 90 100 90 90 100 90 90 100 90 90 90 90 90 90 90 90 90 90 90 90 9
Performed by:	J. Ļalor	nde	Date:	August 9, 2022	_
Verified by:	Social		_ Date:	August 24, 2022	_

Client:	Infrastructure Ontario		Lab No.:	G-22-03	_			
Project, Site:	Children Hospital		Project No.:	11205379	_			
Borehole N	No.: BH18-22 0 - 0,61 m		Sample No.: Enclosure:	SS-1 -				
100 90 80 70 60 40 40 40 0.001 Page 100 100 100 100 100 100 100 100 100 10	Clay & Silt Particle-Size Limits Soil Description Sandy Gravel, with Traces of Silt and Clay Silt-size particles (%): Clay-size particles (%) (<0.002 mm):			2 3 3 4 4 5 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	Performed by: J. Lalonde Date: August 9, 2022							
Verified by:			Date:	August 24, 2022	-			

Client: Project, Site:		Infrastructure Or	ntario	Lab No.:	G-22-03 11205379			
		Children Hosp	ital	Project No.:				
Borehole No.: Depth:		0,76 - 1,37 m		Sample No.: Enclosure:	SS-2 -			
Percent Passing 100 11 11 11 11 11 11 11 11 11 11 11 11		0.01 0.1 Clay & Silt Particle-Size L	Diameter (mm) Sand Fine Mediu imits as per USCS (ASTM		10 Gravel Fine Coarse	0 10 20 30 90 90 100 100		
		Particle-Size L	imits as per USCS (ASTM	D-2487)				
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)			
	Sand	and Gravel, with Some Silt and Traces of C	Clay 31	46	23			
		Silt-size particles (%) :		16				
		Clay-size particles (%) (<0.002 mm):		7				
Rema	rks:	More information is available upon request.						
Performed by: J. Lalonde Date: August 17, 2022						2		
Verifie	ed by:	- Josef		Date:	August 24, 202	2		

Client: Project, Site:		Infrastructu	Infrastructure Ontario					
		Children	Hospital	Project No.:	11205379			
	Borehole No	0,00 - 0,6			Sample No.: Enclosure:	SS-1 -		
Percent Passing	100	0.01	0.1 Diamete			10	0 10 20 30 40 40 60 70 80 90	Percent Retained
		Clay & Silt	Fire	Sand		Gravel		
			Fine -Size Limits as	per USCS (ASTM		Fine Coarse	\dashv	
		Soil Description		Gravel (%)	Sand (%)	Clay & Silt (%)	
	Sand	d and Gravel, with Some Silt and Trace	es of Clay	36	44	20		
		Silt-size particles (%) : Clay-size particles (%) (<0.002 n	nm):		16 4			
Rem	arks:	More information is available upon rec	quest.					
	ormed by:	J. La	onde		Date:	August 9, 202		
Veri	fied by:		1		Date:	August 24, 202	22	

Client: Project, Site:		Infrastructur	Lab No	.: _	G-22-03			
		Children F	Hospital	Project	No.:	11205379		
Borehole No.: Depth:		.: MW20-2		Sample	_	SS-2		
	Борин.							
	90							0
	70							20 30
Percent Passing	60							05 06 Percent Retained
Perce	40							90 Pero
	20							70 80
	10							90
	0.001	0.01	0.1 Diameter (mm)	1		10	10	
		Clay & Silt	Sai Fine		parse	Gravel Co	oarse	
		Particle-S	Size Limits as per USCS		<u> </u>	I		
		Soil Description	Gravel	%) San	d (%)	Clay & S	Silt (%)	
		Gravel and Sand, Traces of Silt and C	lay 46	2	11	1:	3	
		Silt-size particles (%): Clay-size particles (%) (<0.002 m	m):		9			
Rer	narks: <u>N</u>	More information is available upon requ	iest.					_
Per	formed by:	J. Lalo	nde	Da	te:	August 9	9, 2022	
Ver	ified by:	<u> </u>	<u> </u>	Da	te:	August 2	23, 2022	

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:			Infrastructure On	rio Lab no.:	G-20-01	
Project/Site:	CHEO Proposed N			king Garage Project no.:	11205379-80	
Borehole no.:	BH3		Sample no.:	SS2 Depth:	0.6-1.2m	
Soil description:				Date sampled:	18-Jan-21	
Apparatus:	Hand	Crank	Balance no.:	1 Porcelain bowl no.:	1	
Liquid limit device no.:		1	Oven no.:	1 Spatula no.:	1	
Sieve no.:		1	Glass plate no.:	1		
	Liquid Limit (LL):			Soil Preparation:		
	Test No. 1	Test No. 2	Test No. 3	☑ Cohesive <425 μm □	Dry preparation	
Number of blows	30	25	20	☐ Cohesive >425 μm ☑	Wet preparation	
	Water Conte	ent:		☐ Non-cohesive		
Tare no.	S39	S11	S32	Results		
Wet soil+tare, g	32.39	33.80	32.26	38.0		
Dry soil+tare, g	29.85	30.89	29.53			
Mass of water, g	2.54	2.91	2.73	36.0		
Tare, g	21.63	21.65	21.60	34.0 Outent 34.0 32.0		
Mass of soil, g	8.22	9.24	7.93	Ö		
Water content %	30.9%	31.5%	34.4%	32.0		
Plastic Limit (P	L) - Water Cont	ent:		20.0	•	
Tare no.	S37	S18		30.0		
Wet soil+tare, g	28.17	28.51		28.0		
Dry soil+tare, g	27.24	27.53		15 17 19 21 23 25 27 Nb Blows	29 31 33 35	
Mass of water, g	0.93	0.98	=	Soil Plasticity Chart		
Tare, g	21.98	22.23	=	70 LL 50		
Mass of soil, g	5.26	5.30	=	60 Low plasticity High plastic	ity av	
Water content %	17.7%	18.5%		ਜ਼ Inorganic clay		
Average water content %	18.	1%		± 40		
Natural Wate	r Content (W ⁿ)):	=	Inorganic clay Inorganic clay Inorganic clay Inorganic clay Inorganic clay Inorganic clay Inorganic clay Inorganic clay		
Tare no.	G			Low compressibility	(MH) and (CH)	
Wet soil+tare, g	445.80			- High irlorg	compressibility ganic silt	
Dry soil+tare, g	393.10			10	t	
Mass of water, g	52.70			0 10 20 30 40 50 60	70 80 90 100	
Tare, g	0.00			Liquid Limit LL		
Mass of soil, g	393.10			Liquid Limit (LL) Plastic Limit (PL) Plasticity Index (Pl)	Natural Water Content W ⁿ	
Water content %	13.4%		=	32 18 14	13	
Remarks:						
Performed by:		۸۱: ٦	ilhaddad	Date: Feb	ruony 12, 2021	
		All E	Ihaddad	Febi	ruary 12, 2021	
Verified by: E. I		Bennett	Date: Feb	February 18, 2021		

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:	Infrastructure Ontario					Lab no.:		_	G-22-03
Project/Site:	Children Hospita			al			Project no.:		11205379
Borehole no.:	BH13-22	2	Sample no.:		SS-2		Depth:	(0,61 - 1,22 m
Soil Description:			-				_Date sampled:	_	
Apparatus: Liquid limit device no.: Sieve no.:	Hand 015	8033031049 B23-04645			Porcelain bowl no.: 1 Spatula no.: 1				
	Liquid Limit	(LL):		Soil Prepara	tion:				
	Test No. 1	Test No. 2	Test No. 3	-	Cohes	ive <425 μι	m	_ [Dry preparation
Number of blows				1 .	Cohes	ive >425 μι	m	_ \	Wet preparation
	Water Conte	ent:	1	1 -	Non-ce	ohesive		_	
Tare no.							Results		
Wet soil+tare, g				2.0)				
Dry soil+tare, g				1					
Mass of water, g				- - - - - - -					
Tare, g				- Itent					
Mass of soil, g				Water Content (%)					
Water content %				Wat					
Plastic Limit (Pl	L) - Water Cont	tent:		1					
Tare no.			1						
Wet soil+tare, g			1	0.0					
Dry soil+tare, g			1		15	17	19 21 Nb Blows	:	23 25 27
Mass of water, g			1			Soil	Plasticity Chart	ASTM	D2487
Tare, g]	70			LL 50	\top	
Mass of soil, g]	60 -	Lean	clay (CL)	Ent	clay (CH	
Water content %			1	급 50 +	Lean	Gidy (GE)		+	
Average water content %				7d-7T = Id ×9pu			Orga	anic clay	, ОН
Natural Wate	r Content (W ⁿ):		ioi 30 -		Orga	anic clay OL		
Tare no.]	Plast	Silty clay	(CL)ML)—		Elas	stic silt MH
Wet soil+tare, g			1	20				Organ	nic silt OH
Dry soil+tare, g				10			Organic silt	+	
Mass of water, g				0 0	10	20 3	ML OL 50	60	70 80 90 100
Tare, g]				Liquid Limit LL		
Mass of soil, g]	Liquid Limit (LL)		stic Limit (PL)	Plasticity Index	(PI)	Natural Water Content W ⁿ
Water content %			=	(/		()			
Remarks:	Non-Plastic S	Sample							
									-
Porformed by:			alanda		ı	Date:		Sonta	mher 13, 2022
Performed by:		J. L	_atonde		-			-	mber 13, 2022
Verified by:		CXC	\		- '	Date:		3epter	mber 13, 2022
Laboratory Location:	179 Col	onnade Rd. S	Suite 400, Ottawa	, Ontario	_				

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:	Infrastructure Onta			tario		Lab no.:	G-22-03		
Project/Site:	Children Hos			ital		Project no.:	11205379		
Borehole no.:	BH19-22		Sample no.:	SS-2		Depth:	0,76 - 1,37 m		
Soil Description:						Date sampled:			
Apparatus:	Hand	Crank	Balance no.:	803	33031049	Porcelain bowl no.:	1		
Liquid limit device no.:		1	Oven no.:	B2	23-04645	Spatula no.:	1		
Sieve no.:	015	5690	Glass plate no.:		1	<u> </u>			
_	Liquid Limit ((LL):	1	Soil Prepara	tion:				
	Test No. 1	Test No. 2	Test No. 3	Ø	☑ Cohesive <425 μm ☑ Dry preparation				
Number of blows					Cohesive >42	5 μm	Wet preparation		
	Water Conte	ent:	1		Non-cohesive				
Tare no.						Results			
Wet soil+tare, g				2.0					
Dry soil+tare, g				<u> </u>					
Mass of water, g				(%)					
Tare, g				ntent					
Mass of soil, g				Water Content (%)					
Water content %				Wat					
Plastic Limit (Pl	_) - Water Cont	ent:							
Tare no.			1						
Wet soil+tare, g			-	0.0	,				
Dry soil+tare, g			-		15 17	19 21 Nb Blows	23 25 27		
Mass of water, g			-		S	oil Plasticity Chart AS	「M D2487		
Tare, g			-	70		LL <mark>5</mark> 0			
Mass of soil, g			1	60	Lean clay (CL) Fat clay			
Water content %			-	급 50 +	Lean day (cl.	 			
Average water content %			1	Plasticity Index PI = LL-PL 00 00 00 00 00 00 00 00 00 00 00 00 00		Organic o	Clay OH		
Natural Water	r Content (W ⁿ):		<u>pu</u> 30 +		Organic clay OL			
Tare no.			1	Plastic	Silty clay (CL) ML		Elastic silt (MH)		
Wet soil+tare, g			-	20			rganic silt OH		
Dry soil+tare, g			-	10		Organic silt			
Mass of water, g			1	0	40 20	30 40 50 60	70 80 90 100		
Tare, g			1		10 20	Liquid Limit LL	70 80 90 100		
Mass of soil, g			1	Liquid Limit		it Plasticity Index (PI	Natural Water Content W ⁿ		
Water content %			-	(LL)	(PL)				
Remarks:	Non-Plastic S	Sample	ı	1	1	1	.1		
Performed by:			<i>e</i> londe		Date:	San	tember 13, 2022		
		D.C.	V		_				
Verified by:		CCC			_ Date:	Sep	tember 13, 2022		
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	ı, Ontario	_				

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:	Infrastructure Ontario					Lab no.:		_	G-22-03	
Project/Site:	Children Hospita			al			Project no.:		11205379	
Borehole no.:	MW20-22	2	Sample no.:		SS-2		Depth:		,61 - 1,22 m	
Soil Description:			-				Date sampled:	_		
Apparatus: Liquid limit device no.: Sieve no.:	Hand Crank Balance no.: 1 Oven no.: 0155690 Glass plate no.:			8033031049 B23-04645					1 1	
	Liquid Limit	(LL):		Soil Preparat	tion:					
	Test No. 1	Test No. 2	Test No. 3	 	Cohesive	<425 µr	n [_v D	ry preparation	
Number of blows				1	Cohesive	>425 µr	m [w	Vet preparation	
	Water Conte	ent:	<u> </u>	1 -	Non-cohe	sive	_	_		
Tare no.							Results			
Wet soil+tare, g				2.0)					
Dry soil+tare, g				1						
Mass of water, g				(%						
Tare, g				tent (
Mass of soil, g				Water Content (%)						
Water content %				Wate						
Plastic Limit (Pl	L) - Water Cont	tent:		1						
Tare no.			-							
Wet soil+tare, g				0.0						
Dry soil+tare, g					15	17	19 21 Nb Blows	2	23 25 27	
Mass of water, g			1			Soil	Plasticity Chart A	ASTM	D2487	
Tare, g			1	70			LL 50	Т		
Mass of soil, g			1	60	Lean clay	(CL)	Fate	clay (CH)		
Water content %			1	글 50 —	Lean day			+		
Average water content %				7d-7T = Id хэри			Orgai	nic clay	OH	
Natural Wate	r Content (W ⁿ):		igi 30 —		Orga	nic clay OL			
Tare no.				Plast	Silty clay (CL	(ML)—	,	Elasti	tic silt MH	
Wet soil+tare, g				20				Organio	ic silt OH	
Dry soil+tare, g				10	222333		Organic silt	+		
Mass of water, g			1	0	10	20 3	0 40 50	60	70 80 90 100	
Tare, g							Liquid Limit LL			
Mass of soil, g				Liquid Limit (LL)	Plastic (PL		Plasticity Index	(PI)	Natural Water Content W ⁿ	
Water content %			-	(==)	,,,,	-,				
Remarks:	Non-Plastic S	Sample	•	•			•			
Doufouse at his			alamd -		Dat	e:		`ort:	ahar 13, 2000	
Performed by:	$\overline{}$	J. L	.alonde		-		S	eptem	nber 13, 2022	
Verified by:	~		24		_ Dat	e:	S	eptem	nber 13, 2022	
Laboratory Location:	179 Col	onnade Rd. S	uite 400, Ottawa	, Ontario	_					

Moisture Content of Soils (ASTM D 2216)

Client:	Infrastru	ucture Ontari	io		Lab No.:		G-22-03	
Project/Site:	Childre	en's Hospital	11205379					
Apparatus Used for Testing	Oven No.:	B23-0)4645	Scale No.:	80330	31049		
BH No.:					BH10-22	BH10-22	BH11-22	BH11-22
Sample No.:					SS1	SS2	SS1	SS2
Depth:					0,0-2,0	2,0-3,3	0,0-2,0	2,0-4,0
Container no.					32	25	28	4
Mass of container + wet soil (g)					70.50	70.00	75.70	72.80
Mass of container + dry soil (g)					68.90	66.80	74.40	68.10
Mass of container (g)					14.80	14.60	14.70	14.80
Mass of dry soil (g)					54.1	52.2	59.7	53.3
Mass of water (g)					1.6	3.2	1.3	4.7
Moisture content (%)					3.0	6.1	2.2	8.8
BH No.:	BH12-22	BH12-22	BH14-22	BH14-22	BH15-22	BH15-22	BH16-22	BH16-22
Sample No.:	SS1	SS2	SS1	SS2	SS1	SS2	SS1	SS2
Depth:	0,0-2,0	2,0-4,0	0,0-2,0	2,0-4,0	0,0-2,0	2,0-3,5	0.0-2,0	2,0-4,0
Container no.	42	15	14	35	18	9	13	23
Mass of container + wet soil (g)	83.70	74.40	79.40	74.00	61.00	62.70	78.90	58.40
Mass of container + dry soil (g)	81.60	71.80	77.90	71.10	59.50	60.20	77.00	55.40
Mass of container (g)	14.60	14.80	14.80	15.10	15.00	14.70	14.80	15.10
Mass of dry soil (g)	67.0	57.0	63.1	56.0	44.5	45.5	62.2	40.3
Mass of water (g)	2.1	2.6	1.5	2.9	1.5	2.5	1.9	3.0
Moisture content (%)	3.1	4.6	2.4	5.2	3.4	5.5	3.1	7.4
Remarks:								
Performed By:	→ JABa	ptiste		Date:		July 27	7, 2022	
Verified by :		3	Date:	July 27, 2022 August 3, 2022				

Moisture Content of Soils (ASTM D 2216)

Client:	Infrastr	ucture Ontari	io	Lab No.:			G-2:	2-03
Project/Site:	Childre	en's Hospital	1		Project No.	:	1120	5379
Apparatus Used for Testing	Oven No.: B23-04645 Scal		Scale No.:	.: 8033031049				
MW No.:	BH9-22	BH9-22						
Sample No.:	SS1	SS2						
Depth:	0,0-2,0	2,5-4,5						
Container no.	9	32						
Mass of container + wet soil (g)	59.30	55.60						
Mass of container + dry soil (g)	56.90	54.30						
Mass of container (g)	14.70	14.90						
Mass of dry soil (g)	42.2	39.4						
Mass of water (g)	2.4	1.3						
Moisture content (%)	5.7	3.3						
MW No.:	BH14	BH20-22	BH20-22					
Sample No.:	SS3B	SS1	SS2					
Depth:	2,4-5,1	0,5-2,5	2,5-4,5					
Container no.	23	16	28					
Mass of container + wet soil (g)	54.30	48.50	58.60					
Mass of container + dry soil (g)	52.60	47.00	56.40					
Mass of container (g)	15.00	14.90	14.90					
Mass of dry soil (g)	37.6	32.1	41.5					
Mass of water (g)	1.7	1.5	2.2					
Moisture content (%)	4.5	4.7	5.3					
Remarks:								
Performed By:	√ J A Ba	aptiste		Date:		Julv 27	7, 2022	
Verified by :		<u>}</u>		Date:	July 27, 2022 August 3, 2022			

Client :		Infrastructure Ontario Lab No : A-						
Project/Site	:	Children Hospital	Project No :	Project No : 11205379				
2400								
2300 •				Zero Air Voids Line				
2200 •								
Dry Density (kg/m³)								
2000								
1900 •								
1800	2.0	4.0 6.0	8.0	10.0 12.0	14.0			
			ontent (%)					
Prepared Sam	ple: Dry	0 Moist x		Assumed G _s :	2.70			
ASTM D698 Te	est Method: A	0 B 0 4.75 mm 9.50 mm	C x 19.0 mm	Type of Hammer: M	lanual			
Soil Type: Material:		Crushed Stone						
Proposed Use: Sample Identifi		BH11-22	Max. D	ry Density: 2254	kg/m³			
Sample Location		In Place	Optimu	ım Moisture: 6.4	%			
Sample Date:	phor / r it warne.		Correc	% Retained on 19.0 mm: 2.8 % Corrected Dry Density: 2254 kg/m				
Sampled By:		D. Ash	Correc	ted Opt. Moist.: 6.4	<u> </u>			
Remarks :								
Performed b	y:	J. Lalonde	Date :	September 2, 202	22			
Verified by :		loce	Date :	September 6, 202	22			

Cli	ient :	Ir	nfrastructure Onta	rio	Lab No : A-22-02				
Pr	oject/Site :		Children Hospital	<u> </u>	Project No : 11205379				
Dry Density (kg/m³)	2400 2350 2300 2250 2250 2150 2150 2000 1950					Zero Air Voids			
	0.0	2.0	4.0	6.0 Water Conten		10.0 12.0	14.0		
	epared Sample		0 Moist 0 B 4.75 mm	x 0 0.50 mm	x 19.0 mm	Assumed G_s : Type of Hammer:	2.70 Mechanical		
Ma Pro Sa Sa Ag Sa	Soil Type: Crushed Stone Material: Proposed Use: Sample Identification: BH18-22 Sample Location: Aggregate Supplier / Pit Name: In Place Sample Date: Sampled By: D. Ash				Max. I Optim Reta	Ory Density: um Moisture: ained on 19.0 mm: cted Dry Density: cted Opt. Moist.:	2237 kg/m³ 6.7 % 7.2 % 2265 kg/m³ 6.2 %		
Re	emarks :								
	erformed by	:	J. Lalonde		Date :	Septembe September			

Client :	In	frastructure Ontario	Lab No :	A-22-02				
Project/Site :		Children Hospital	Project No :	Project No : 11205379				
2400								
2300				Zero Air Voids Line				
2200 •								
Dry Density (kg/m³)								
2000								
1900 •								
1800	2.0	4.0 6.0	8.0 10.0	0 12.0 14.0				
		Water Conte	ent (%)					
Prepared Sample:	Dry	0 Moist x	Ass	sumed G _s : 2.70				
ASTM D698 Test M	lethod: A	0 B 0 C 4.75 mm 9.50 mm	х Тур	pe of Hammer: Mechanical				
Soil Type: Material:		Crushed Stone						
Proposed Use: Sample Identification	on:	MW9-22	Max. Dry I	Density: 2258 kg/m³				
Sample Location: Aggregate Supplier	/ Pit Name	In Place	Optimum % Retaine	Moisture: 7.5 % d on 19.0 mm: 10.3 %				
Sample Date:	, ricitanio.		Corrected	Dry Density: 2297 kg/m ³				
Sampled By:		D. Ash	Corrected	Opt. Moist.: 6.7 %				
Remarks :								
Performed by :		J. Lalonde	Date :	September 7, 2022				
Verified by :		xel	Date :	September 13, 2022				

Client :	Infrastructure C	Ontario			Р	Project N° : 11205379-80				
Project :	Proposed Park	ing Structure				Sa	Sample N°: MW3-21 RC1			
	Children's Hos 401 Smyth Roa	pital of Eastern ad Ottawa Onta	Ontario Campus ario	3		_	Depth : 4.8			
		au, Ottawa, Otta	arro			— Samp		nuary 14-15 / 2021		
Testing App	paratus Used :			Loading	device N°	1		Caliper N°11		
			Technical Data					View of Specimen		
					Average	\neg	Bef	ore Test :		
Diameter :		63	63	63	63.0	(mm)		ZIGO		
Length :		117	117	117	117.0	(mm)				
Straightness (0.5mr	m maximum) (S1) :	0.3	0.2	0.3	0.3	(mm)				
Flatness (25µm ma	ximum) (FP2) :	Ok	Ok	Ok	Ok			W3-21		
Parallelism (0.25 ° r	maximum) (FP2) :	0.15	0.15	0.15	0.15	(°)				
Mass :	96	5.2	(g) Volume:	36	6 4 718	(mm³)				
Density:		0.2	_(g)		_(kg/m³)	()				
Moisture Condition	ns :		Di		_ (Kg/III)			631		
Loading Rate (0.5	5 to 1.0 MPa / sec) :		0.	6	(NAD = /= = =)		Aft	er Test :		
Type of Fracture :	:		3	3	_(MPa/sec)					
Test Duration (2-1	15 Minutes) :		3.	5	(minutes)					
Maximum Applied	d Load :		251	.98	_(minutes) ☑ kN ☐ lbs			P d m		
Compressive S	Strength :		80	.8	_ _(MPa)					
Remarks :							•			
Analysed by :			Ali Elhaddad			_	Date :	February 8, 2021		
Verified by :			E. Bennett				Date :	February 17, 2021		

Client :	Infrastructure C	Ontario				Pro	Project N°: 11205379-80			
Project :	Proposed Park	ing Structure						° : MW3-21 RC2		
	Children's Hosp 401 Smyth Roa	oital of Eastern	Ontario Campus ario				Depth : 6.4-6.55m			
		ia, Gilawa, Gila	3110			 Samplin		uary 14-15 / 2021		
Testing App	paratus Used :			Loading	device N°	1	C	aliper N°1		
			Technical Data					View of Specimen		
					Average		Befor	e Test :		
Diameter :		63	63	63	63.0	(mm)				
Length:		74	74	74	74.0	(mm)		21'0"		
Straightness (0.5mm	n maximum) (S1) :	0.2	0.2	0.2	0.2	(mm)				
Flatness (25µm max	ximum) (FP2) :	Ok	Ok	Ok	Ok		1	MW3-21		
Parallelism (0.25 ° n	naximum) (FP2) :	0.1	0.1	0.1	0.15	(°)		RCZ-		
Mass :	6	12	_(g) Volume: _	23	30676	(mm³)				
Density:			265	53	_ (kg/m³)			21'4"		
Moisture Condition	ns:		Dr							
Loading Rate (0.5	to 1.0 MPa / sec) :		0.0	6	– (MPa/sec)		Afte	r Test :		
Type of Fracture :			3		_(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
Test Duration (2-1	5 Minutes) :		4		– (minutes)					
Maximum Applied	Load :		335.	.49	_ ✓ kN □	Ibs				
Compressive S	trength :		107	7.6	_(MPa)					
								4		
Remarks :										
Analysed by :			Ali Elhaddad			_	Date :	February 8, 2021		
Verified by :			E. Bennett				Date :	February 17, 2021		

Client :	Infrastructure O	Ontario				Project N°: 11205379-80				
Project :	Proposed Parki	ng Structure				Sample	N°: MW3-21 RC3			
	Children's Hosp 401 Smyth Roa	oital of Eastern (id. Ottawa. Onta	Ontario Campus ario			— Dep	oth: 7.92-8.07m			
							ate : January 14-15 / 2021			
Testing An	paratus Used :			L oading (device N°	1	Caliper N°1			
reating Ap	<u> </u>									
		7	Гесhnical Data				View of Specimen			
					Average		Before Test :			
Diameter :		63	63	63	63.0	(mm)				
Length:		78	78	78	78.0	(mm)	T26'0"			
Straightness (0.5mi	m maximum) (S1) :	0.3	0.2	0.3	0.3	(mm)	MW 3 - 21			
Flatness (25μm ma	ximum) (FP2) :	Ok	Ok	Ok	Ok		RC3			
Parallelism (0.25 ° ı	maximum) (FP2) :	0.1	0.15	0.1	0.15	(°)				
Mass :	65	6.6	_(g) Volume: _	24	3145	(mm³)				
Density:		<u> </u>	270		_(kg/m ³)	()				
Moisture Conditio	ns :		Dr		_ (0		4150			
Loading Rate (0.5	5 to 1.0 MPa / sec) :		0.6	6	(MPa/sec)		After Test :			
Type of Fracture :			3		_					
Test Duration (2-1	15 Minutes) :		3.8	5	_(minutes)					
Maximum Applied	Load :		260.	.09	☑ kN □	lbs				
Compressive S	Strength :		83.	.4	_(MPa)					
							Marie Marie			
Remarks :	-									
Analysed by :			Ali Elhaddad			Da	ate: February 8, 2021			
Verified by :			E. Bennett			Da	ate: February 17, 2021			

Client :	Infrastructure (Ontario				Project N° : 11205379-80				
Project :	Proposed Park	ing Structure				Sample N° : MW3-21 RC5				
	Children's Hos 401 Smyth Roa		Ontario Campus ario			Dept	h : 9.63-9.75m			
						Sampling Dat	e : January 14-15 / 2021			
Testing App	aratus Used :			Loading	device N°	1	Caliper N°1_			
			Technical Data				View of Specimen			
					Average		Before Test:			
Diameter :		63	63	63	63.0	(mm)	T31' Z4			
Length:		91	91	91	91.0	(mm)				
Straightness (0.5mm	n maximum) (S1) :	0.2	0.3	0.3	0.3	(mm)	MW 3-21			
latness (25μm max	kimum) (FP2) :	Ok	Ok	Ok	Ok		RC5			
Parallelism (0.25 ° n	naximum) (FP2) :	0.15	0.15	0.15	0.15	(°)				
Mass :	73	36.3	_(g) Volume:	28	33669	(mm³)				
Density:			259	96	(kg/m³)					
Moisture Condition	ns:		Dr	-у						
oading Rate (0.5	to 1.0 MPa / sec) :		0.	6			After Test :			
ype of Fracture :			3	.	_(MPa/sec)					
est Duration (2-1	5 Minutes) :		4		_ (minutes)					
/laximum Applied	Load :		251	.57	_ `	lbs				
Compressive S	trength :		80	.7	_ _(MPa)					
							8			
Remarks :										
Analysed by :			Ali Elhaddad			Dat	re: February 8, 2021			
/erified by :			E. Bennett			— Dat	_			
CHILLIA DV .			L. DUIIIUUL			Dai	I GDIUAIY II, ZUZI			

Client :	Infrastructure C	Ontario			Project N° : 11205379-80					
Project :	Proposed Parki	ng Structure				Sample N°: MW6-21 RC2				
	Children's Hosp <u>401 Smyth Roa</u>		Ontario Campus ario			_	Depth : 4.75-4	4.88m		
						Samplin	g Date : Janua	ary 14-15 / 2021		
Testing Ap	paratus Used :			Loading o	device N°	1	Ca	liper N°1_		
			Technical Data					View of Specimen		
			T		Average		Before	Test:		
Diameter :		63	63	63	63.0	(mm)				
Length:		86	86	86	86.0	(mm)				
Straightness (0.5m	m maximum) (S1) :	0.3	0.3	0.3	0.3	(mm)		2130		
Flatness (25μm ma	aximum) (FP2) :	Ok	Ok	Ok	Ok		- 11	MW6-21		
Parallelism (0.25 °	maximum) (FP2) :	0.15	0.15	0.15	0.15	(°)	- 11	RC2		
Mass :	70:	2.4	_(g) Volume: _	26	8083	(mm³)	- 11			
Density:			262	20	(kg/m³)		- 11	15'7" -16'		
Moisture Conditio	ons :		Dr		_(0)		- 11			
Loading Rate (0.5	5 to 1.0 MPa / sec) :		0.6	 6	-		After	Test:		
Type of Fracture	·		3		_(MPa/sec)			. 4		
Test Duration (2-	15 Minutes) :		4		- _(minutes)					
Maximum Applied	d Load :		294	5	☑ kN □	lbs				
Compressive S	Strength :		94.	5	_ _(MPa)					
Remarks :	_									
Analysed by :			Ali Elhaddad				Date :	February 8, 2021		
Verified by :			E. Bennett			_	Date :	February 17, 2021		
- JI III JU DV .			Domicit				Duit .	I ODIGALY II, ZUZI		

Client :	Infrastructure C	Ontario				Project N° : 11205379-80				
Project :	Proposed Park	ing Structure				Sample N° : MW6-21 RC4				
	Children's Hosp 401 Smyth Roa		Ontario Campus ario			Depth : 6.65-6.81m				
						Sampling Date :	January 14-15 / 2021			
Tacting Appa	ratua Haad i			Looding	device N°	1	Caliper N°1_			
Testing Appa	ratus Osed .			Loading	device in	1	Camper N1			
			Technical Data				View of Specimen			
					Average	٦	Before Test :			
Diameter :		63	63	63	63.0	(mm)				
Length:		82	82	82	82.0	(mm)				
Straightness (0.5mm r	maximum) (S1) :	0.3	0.3	0.3	0.3	(mm)	7			
latness (25μm maxin	mum) (FP2) :	Ok	Ok	Ok	Ok		= 21			
Parallelism (0.25 ° ma	aximum) (FP2) :	0.15	0.15	0.15	0.15	(°)	MW6-21			
Mass :	67	6.1	_(g) Volume:	25	55614	(mm³)				
Density:			264	45	(kg/m³)		Tarket 1			
Moisture Conditions	:		Dr		_(3 /					
oading Rate (0.5 to	o 1.0 MPa / sec) :		0.	6	_		After Test :			
ype of Fracture :	,		3		_(MPa/sec)					
est Duration (2-15	Minutes) :		4		— (minutes)					
Maximum Applied L	oad :		311	.75	✓ kN	lbs				
Compressive Str	ength :		100	0.0	_(MPa)					
Remarks :										
Analysed by :			Ali Elhaddad			Date :	February 8, 2021			
/erified by :			E. Bennett			Date :	February 17, 2021			

Client :	Infrastructure C	Ontario				Pr	Project N°: 11205379-80			
Project :	Proposed Park	ing Structure				Sa	Sample N°: MW6-21 RC5			
	Children's Hosp 401 Smyth Roa	pital of Eastern ad. Ottawa. Onta	Ontario Campus ario	3			Depth: 7.			
	y	,				— Sampl		nuary 14-15 / 2021		
								-		
Testing Appara	atus Used :			Loading	device N°	1		Caliper N°1		
			Technical Data					View of Specimen		
					Average		Ве	fore Test:		
Diameter :		63	63	63	63.0	(mm)				
Length:		93	93	93	93.0	(mm)		263		
Straightness (0.5mm m	naximum) (S1) :	0.3	0.3	0.3	0.3	(mm)				
Flatness (25µm maxim	um) (FP2) :	Ok	Ok	Ok	Ok			441.2/ 1		
Parallelism (0.25 ° max		0.15	0.15	0.15	0.15	(°)		MINGS. RCS		
raialielisiii (0.23 iiiax	amum) (FF2).	0.15	0.13	0.13	0.13					
Mass:	77	6.4	_(g) Volume:	28	9904	(mm³)				
Density:		•	26		_(kg/m³)					
Moisture Conditions :	:		Di		_(Kg/III)					
Loading Rate (0.5 to	1.0 MPa / sec) :		0.	6	-		Af	ter Test :		
Type of Fracture :	,		4		_(MPa/sec)					
	Aircota a)				-					
Test Duration (2-15 N	·		5		(minutes)					
Maximum Applied Lo	ad:		318	3.7 ————	☑ kN □	lbs				
Compressive Stre	ength:		102	2.2	_(MPa)			1		
Remarks :							•			
Analysed by :			Ali Elhaddad				Date :	February 8, 2021		
Verified by :			E. Bennett			_ -	Date :	February 17, 2021		

Client :	Infrastructure C					_	: <u>11205379</u>
Project :	Children's Hosp	oital				<u> </u>	: <u>MW9-22 r.1</u> : 3,20 - 3,31 m
							:
Testing Appara	atus Used :			Loadin	ng device N°_9	9130	
		ד	echnical Data				View of Specimen
					Average	7	Before Test :
Diameter :		63.09	63.09	63.21	63.13	(mm)	
Length :		109.59	108.25	109.84	109.23	(mm)	
Straightness (0.5mm ma	aximum) (S1) :	0.4	0.4	0.4	0.4	(mm)	
Flatness (25μm maximu	ım) (FP2) :	Ok	Ok	Ok	Ok	(μm)	
Parallelism (0.25 ° maxii	mum) (FP2) :	0.15	0.20	0.20	0.18	(°)	After Test:
Mass :	91	3.8	(g) Volume:	34	1893	_(mm³)	
Density:			267	73	_(kg/m³)		
Moisture Conditions :			Dr	У	_		
_oading Rate (0.5 to	1.0 MPa / sec) :		0.5	58	_(MPa/sec)		
Type of Fracture :			Multiple I	Fracture	_		
Test Duration (2-15 M	flinutes) :		12	3	_(seconds)		
Maximum Applied Loa	ad :		222	.24	_(kN)		
Compressive Stre	ngth :		71	.0	_(MPa)		
Remarks :							
Analysed by :	J. Lalonde	$\overline{}$				Date	: 8/18/2022
Verified by :	X	xex				Date	:8/25/2022

Client : Project :	Infrastructure (_	°: 11205379 °: MW9-22 r.2
							h: 4,04 - 4,14 m e:
Testing Appara	itus Used :			Loadir	ng device N°_	9130	Caliper N° _1
		1	echnical Data				View of Specimen
Diameter :		63.18	63.20	63.00	Average 63.13	(mm)	Before Test :
Length :		96.49	95.36	95.29	95.71	(mm)	
Straightness (0.5mm ma	aximum) (S1) :	0.1	0.1	0.2	0.1	(mm)	
Flatness (25μm maximu	m) (FP2) :	Ok	Ok	Ok	Ok	(μm)	
Parallelism (0.25 ° maxir	mum) (FP2) :	0.05	0.10	0.10	0.08	(°)	After Test :
Mass :	79	98.9	(g) Volume:	29	9563	(mm³)	
Density : Moisture Conditions :			266	67	_(kg/m³)		
_oading Rate (0.5 to			Dr		-		
Type of Fracture :			0.4		_(MPa/sec)		
Test Duration (2-15 M	(linutes)		Multiple F		=		
Maximum Applied Loa	·		11	8	_(seconds)		
			175.	.67	_(kN)		
Compressive Strer	ngun :		56.	.1	_(MPa)		
Remarks :							
Analysed by :	J. Lalonde		<u> </u>			Date	e: 8/18/2022
Verified by :		bal)				

Client :	Infrastructure (Ontario				Project N°	11205379
Project :	Children's Hos	pital				Sample N°	BH13-22 r.3
						Depth	3,61 - 3,71 m
						Sampling Date	:
Testing Appar	ratus Used :			Loadin	g device N°_	9130	Caliper N° _1
		7	Technical Data				View of Specimen
					Average		Before Test :
Diameter :		63.00	63.09	63.15	63.08	(mm)	221
Length :		100.38	100.26	100.38	100.34	(mm)	
Straightness (0.5mm n	naximum) (S1) :	0.2	0.3	0.2	0.2	(mm)	
Flatness (25μm maxim	um) (FP2) :	Ok	Ok	Ok	Ok	(μm)	
Parallelism (0.25 ° max	kimum) (FP2) :	0.15	0.15	0.15	0.15	(°)	After Test :
Mass :	83	31.5	(g) Volume:	31	3579	(mm³)	
Density:			265	52	_(kg/m³)		
Moisture Conditions	:		Dr	ту	_		37
_oading Rate (0.5 to	1.0 MPa / sec) :		0.3	33	(MPa/sec)		
Type of Fracture :			Multiple F	Fracture			
Test Duration (2-15	Minutes) :		10	8	_(seconds)		
Maximum Applied Lo	oad :		112.	.31	_(kN)		
Compressive Stre	ength:		35.	.9	_(MPa)		
Remarks :							
Analysed by :	J. Latonde					Date	8/18/2022
Verified by :		DOEX				Date	8/25/2022

Client :	Infrastructure C						: 11205379 : MW23-22 r.2
-							: 6,93 - 7,03 m
						Sampling Date	:
Testing Appara	tus Used :			Loadin	ng device N°_9	9130	Caliper N° _1
		ו	Technical Data				View of Specimen
Diameter		62.11	62.04	63.06	Average	(mm)	Before Test :
Diameter:		63.11	63.04	63.06	63.07	(mm)	
Length:		100.32	100.27	100.42	100.34	(mm)	
Straightness (0.5mm ma	eximum) (S1) :	0.2	0.1	0.2	0.2	(mm)	
Flatness (25µm maximul	m) (FP2) :	Ok	Ok	Ok	Ok	(μm)	
Parallelism (0.25 ° maxir	mum) (FP2) :	0.10	0.15	0.15	0.13	(°)	After Test:
Mass :	84	5.1	(g) Volume:	31	3469	_(mm³)	
Density:			269	96	_(kg/m³)		
Moisture Conditions :			Dr	у	_		
Loading Rate (0.5 to 1	1.0 MPa / sec) :		0.3	39	_(MPa/sec)		
Type of Fracture :			Multiple I	- racture			
Test Duration (2-15 M	linutes) :		12	1	(seconds)		
Maximum Applied Loa	ad :		146	.16	- (kN)		
Compressive Strer	ngth :		46	.8	- (MPa)		
					_ `		
Remarks :							
Analysed by :	J. Lalonde					Date	: 8/18/2022
Verified by :		Xex				Date	:8/25/2022

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GHD LIMITED 455 Phillip St

WATERLOO, ON N2V1C2

(519) 884-0510

ATTENTION TO: Jennifer Balkwill PROJECT: 11205379-RPT8

AGAT WORK ORDER: 21Z712939

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Mar 01, 2021

PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

ERSION 1:Excluding Sulphide in Soil analysis

Disclaimer:

*Notes

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

CLIENT NAME: GHD LIMITED

SAMPLING SITE:

Redox Potential 3

Certificate of Analysis

AGAT WORK ORDER: 21Z712939

PROJECT: 11205379-RPT8

ATTENTION TO: Jennifer Balkwill

397

414

NA

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

377

Corrosivity Package

DATE RECEIVED: 2021-02-19 DATE REPORTED: 2021-03-01 11205379-BH4-11205379-MW6- 11205379-BH7-11205379-MW8-SAMPLE DESCRIPTION: 21-SS2-0.7-1.0m 21-SS2-1.1-1.3m 21-SS2-0.7-1.0m 21-SS2-0.7-1.0m SAMPLE TYPE: Soil Soil Soil Soil 2021-01-18 DATE SAMPLED: 2021-01-18 2021-01-13 2021-01-19 2122181 2122183 **Parameter** Unit G/S RDL Date Prepared Date Analyzed 2122180 RDL 2122182 RDL Chloride (2:1) 4 2021-02-24 2021-02-24 440 2 253 4 μg/g 69 562 Sulphate (2:1) 4 2021-02-24 2021-02-24 439 2 395 6 4 195 μg/g pH (2:1) pH Units NA 2021-02-24 2021-02-24 6.35 NA 7.4 7.23 NA 7.95 0.005 0.005 Electrical Conductivity (2:1) mS/cm 0.005 2021-02-24 2021-02-24 1.21 0.936 0.163 1.40 Resistivity (2:1) (Calculated) 2021-02-24 2021-02-24 826 1 1070 6130 1 714 ohm.cm 1 428 Redox Potential 1 m۷ NA 2021-02-23 2021-02-23 NA 389 429 NA 377 446 Redox Potential 2 mV NA 2021-02-23 2021-02-23 NA 394 416 NA 379

2021-02-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2122180-2122183 EC, pH, Chloride and Sulphate were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil). Resistivity is a calculated parameter.

2021-02-23

NA

Redox potential measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry with exposure to oxidative/reduction conditions laboratory results may differ from field measured results

432

NA

Redox potential measurement in soil is quite variable and non reproducible due in part, to the general heterogeneity of a given soil. It is also related to the introduction of increased oxygen into the sample after extraction. The interpretation of soil redox potential should be considered in terms of its general range rather than as an absolute measurement.

Dilution required, RDL has been increased accordingly.

m۷

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED S NYME BASILY OF CHEMIST ASSISTANCE OF CHARTERED S NOW SHEET ASSISTANCE OF CHEMIST ASSISTANCE OF CHARTER S NAM

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GHD LIMITED

AGAT WORK ORDER: 21Z712939

PROJECT: 11205379-RPT8

ATTENTION TO: Jennifer Balkwill

SAMPLING SITE:

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Mar 01, 2021				DUPLICAT	E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		KE
PARAMETER	Batch	Sample	mple Dup #1 Dup #2 PPD Blank Measured Lim		Acceptable Limits		Recovery	Acceptable Limits		Recovery	1 1 10	ptable nits			
		ld					Value	Lower	Upper			Upper			Upper
Corrosivity Package		•													
Chloride (2:1)	2129123		42	42	0.0%	< 2	93%	70%	130%	102%	80%	120%	104%	70%	130%
Sulphate (2:1)	2129123		3	3	NA	< 2	100%	70%	130%	107%	80%	120%	106%	70%	130%
pH (2:1)	2122180 2	2122180	6.35	6.38	0.5%	NA	100%	90%	110%						
Electrical Conductivity (2:1)	2122180 2	2122180	1.21	1.40	14.6%	< 0.005	105%	80%	120%						
Redox Potential 1	1						100%	90%	110%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

CHEMIST OF CHEMIST OF

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GHD LIMITED AGAT WORK ORDER: 21Z712939
PROJECT: 11205379-RPT8 ATTENTION TO: Jennifer Balkwill

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	·	·	
Chloride (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH (2:1)	INOR 93-6031	MSA part 3 & SM 4500-H+ B	PH METER
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION
Redox Potential 1	INOR-93-6066	modified G200-09, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 2	INOR-93-6066	modified G200-09, SM 2580 B	REDOX POTENTIAL ELECTRODE
Redox Potential 3	INOR-93-6066	modified G200-09, SM 2580 B	REDOX POTENTIAL ELECTRODE

5835 Coopers Avenue Mississauga, Ontario L1Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory	Use	Only
	21	-7

Work Order #:	21	王子	129	39	7
					_

Cooler Quantity:	ana b	20,-1	Sip
Arrival Temperatures		19.61	182
LTUCE Pack	40	4-61	4.8
Custody Seal Intact:	□Yes	□No	□N/A

Chain of Cu	istody Record	If this is a l	Orlnking Water	sample, plea	se use Drinl	ding Water Chain o	of Custody Form (pote	able water	consum	ed by huma	ns)		_ / ^	rrival Te	mpera		10g	0 16	5.0	4.0)
Report Informa	ation: GHD Limited				Reg (Please	gulatory Requ	uirements:							ustody s	- /		□Yes		□No		N/
	lennifer Balkwill				_	gulation 153/04	Excess Soils F	R406	Sev	ver Use			Turnaround Time (TAT) Required:						Ξ		
Address:	455 Phillip St Unit 100A	, Waterloo, ON	, N2L 3X2			· ·	_				Storm	1									
						ole <u>Indicate One</u> Ind/Com	Table Indicate O	ne		Region			Re	gular	TAT (Most An	alyses)	5 to 7	Business	s Days	
Phone:	519-340-4286	Fax:				Res/Park	Regulation 55	58	☐ Pro	v. Water Ç	uality		Ru	sh TA	T (Ruch S	Surcharg	(es Apply)				
Penarts to be sent to:	ennifer.balkwill@ghd.com	I ax				Agriculture		- 4		ectives (P											
1. Email:	emmer.baikwinieghd.com					exture (Check One) Coarse	ССМЕ		Oth	er					Busine ays	SS	Day	lusiness /s	1 1	lext Busi ay	ne
2. Email:					- 11 -	Fine				Indicate One			-		•	Requi	red (Rush	Surcharge	es May Ar	pply):	
Duralis at Informa					le	this submissi	on for a	D	onort	Guldeli	20 05										
Project Informa						cord of Site Co				te of A				===				notification			
-	11205379-RPT8				-] No	Е			N			*T/	AT is ex	clusive	e of week	ends and s	tatutory l	holidays	
Site Location: Sampled By:						1 103			1 103] 4				me Da	y' ana	tysis, pież	ise contac	t your A	GAT CPI	/
AGAT ID #:		PO: _7352	22893					7 8	0.	Reg 153			0, R 55		Reg 406						
71971715	Please note: If quotation number is r			analysis.		ple Matrix Le	gend	CrVI, DOC			9	-	4.	PCB.	98						1
Invoice Informa	ation:	R	II To Same: Ye	os 🕖 No 🗆	B GW	Biota Ground Water		Hg, Cr			ON I		Disposal Characterization TCLP.	LI VOCS LI ABNS LI B(a)PLI PCBS S SPLP Rainwater Leach	Pack	4					I
Company:		D	ii io odilic. To	,5 Eq. 110 L	0	Oil		T S		□HWSB	□ Yes		zaticı	ate l	zation Pa	BIEX, FI-r4					1
Contact:					P	Paint		Meta				Aroclor	cteri	ABNs	eriza	<u> </u>	4				1
Address:					S	Soil		ed -	Soil	Hg.I		D Arc	Chara	2 2 3	aracteriz						1
Email:					SD SW	Sediment Surface Water		Filte	Inorganics	□ crvl, □	=		sal (SPLP	Cha :	Aera R					1
					J			Field Filtered - Metals,	So	s - 🗆 Cr F1-F4 I	74	PCBs	Sis	Soil 1	Soils Ch	EC/SAR	. Col				ı
Sample	Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Y/N	Metals	Metals - [BTEX, F1	Analyze r4G ir required	Total P	VOC	Excess (Excess Soils Characterization Peckage	pH, ICPMS Metals, Salt - EC/SAR	Corrosivity				
			AN PN	1																	1
11205379- BH4-21	- SS2 - 0.7-1.0m	2021-01-18	AN PN	1	Soil	Corrosivity															
			AN PN	1								1.0		7							
11205379- MW6-21	- SS2 - 0.7-1.0m	2021-01-13	AN PN	1	Soil	Corrosivity					П										
11205379- BH7-21	- SS2 - 0.7-1.0m	2021-01-19	AN PN	1	Soil	Corrosivity															
11205379- MW8-21	- SS2 - 1.1-1.3m	2021-01-18	AN PN	1	Soil	Corrosivity															
			AN PN								П										T
			AN PN																		T
			AA PA								\top										Ť
			AN PN			 															+
			AN PN											_							t
Samples Relinquished By (Print	Name and Side		PN	/ Time		Samples Received Dur	Print Natus and Sign):					LDate	T.	Tire	2					_	1
	/ ^					(80	Thol	eth	(A)	(1)	16	0360	119		37	w					
Samples Relinquished By (Print	Name and Dign (At)	427	1/2119	To	nov	Samples Bergand Ru	Print Month and Right	R	7	4	eh	20	6	Tim	0	2	Ma	Page	of		
County Ballion Labor By Charles	-47/ OL.	W L		1		3//1	101100	CV	W		en	40	101	Toro	11,	0	116	IN			_

CERTIFICATE OF ANALYSIS

Page Work Order : WT2214174

Client : GHD Limited Laboratory : Waterloo - Environmental

Contact **Account Manager** : Rick Hawthorne : Rick Hawthorne Address Address

: 455 Phillip Street : 60 Northland Road, Unit 1 Waterloo ON Canada N2L 3X2

Waterloo ON Canada N2V 2B8 Telephone

: 1 of 5

: +1 519 886 6910 **Date Samples Received** : 11205379-100 : 14-Sep-2022 10:30

: 735-004287 **Date Analysis** : 15-Sep-2022

Commenced

C-O-C number Issue Date : 16-Sep-2022 16:35 Sampler : CLIENT

: ----: 11205379-100-SSOW 735-004287 Quote number

No. of samples received : 8 No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Telephone

Project

РО

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Joseph Scharbach		Centralized Prep, Waterloo, Ontario
Walt Kinnenhuck	Team Leader - Inorganics	Inorganics Waterloo Ontario

 Page
 : 2 of 5

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

 Unit
 Description

 %
 percent

 μS/cm
 Microsiemens per centimetre

 mg/kg
 milligrams per kilogram

 mV
 millivolts

 ohm cm
 ohm centimetre (resistivity)

 pH units
 pH units

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
FR5	As per applicable reference method(s), soil:water ratio for Fixed Ratio Leach was modified to 1:5 due to high soil organic content

>: greater than.

<: less than.

 Page
 : 3 of 5

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Analytical Results

WT2214174-001

Sub-Matrix: SoilClient sample ID: 11205379- BH16-SS2(Matrix: Soil/Solid)Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		2650 FR5.	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		10.4	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		436	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		8.26	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		380	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	1300	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	498	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-002

Sub-Matrix: SoilClient sample ID: 11205379- BH20-SS2(Matrix: Soil/Solid)Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		422 FR5,	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		10.1	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		419	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.78	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		2370	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	19.6	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	173	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-003

Sub-Matrix: SoilClient sample ID: 11205379- MW17-SS1(Matrix: Soil/Solid)Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		231 FR5	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		<0.25	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		419	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		8.26	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		4330	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	8.6	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	54	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

 Page
 : 4 of 5

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Analytical Results

WT2214174-004

Sub-Matrix: Soil Client sample ID: 11205379- MW18-SS3 (Matrix: Soil/Solid) Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		1310 FR5.	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		8.45	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		398	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		8.16	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		760	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	734	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	215	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-005

Sub-Matrix: SoilClient sample ID: 11205379- BH11-22-SS2(Matrix: Soil/Solid)Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		2540 FR5,	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		6.72	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		393	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.28	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		390	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	1420	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	219	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-006

Sub-Matrix: SoilClient sample ID: 11205379- BH16-22-SS2(Matrix: Soil/Solid)Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Analyte	CAS Number	rtesan	LON	Onn	Wichiod	7 Tep Bate	Date	QOLO
Physical Tests							Date	
conductivity (1:2 leachate)		430 FR5	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		6.03	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		354	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.85	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		2320	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	83.2	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	116	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

 Page
 : 5 of 5

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Analytical Results

WT2214174-007

Sub-Matrix: SoilClient sample ID: 11205379- BH17-22-SS2(Matrix: Soil/Solid)Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		622 FR5,	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		7.97	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		350	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		7.47	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		1610	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	609	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	94	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2214174-008

Sub-Matrix: Soil Client sample ID: 11205379- MW09-22 (Matrix: Soil/Solid) Client sampling date / time: 14-Sep-2022

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
conductivity (1:2 leachate)		5560 FR5.	10.0	μS/cm	E100-L	16-Sep-2022	16-Sep-2022	648051
moisture		6.16	0.25	%	E144	-	15-Sep-2022	648057
oxidation-reduction potential [ORP]		371	0.10	mV	E125	15-Sep-2022	15-Sep-2022	648056
pH (1:2 soil:CaCl2-aq)		6.81	0.10	pH units	E108A	15-Sep-2022	15-Sep-2022	648054
resistivity		180	100	ohm cm	EC100R	-	16-Sep-2022	-
Leachable Anions & Nutrients								
chloride, soluble ion content	16887-00-6	611	5.0	mg/kg	E236.CI	16-Sep-2022	16-Sep-2022	648053
sulfate, soluble ion content	14808-79-8	6500	20	mg/kg	E236.SO4	16-Sep-2022	16-Sep-2022	648052

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : WT2214174 Page : 1 of 11

Client : GHD Limited Laboratory : Waterloo - Environmental

Contact : Rick Hawthorne Account Manager · Rick Hawthorne Address

: 455 Phillip Street Address : 60 Northland Road, Unit 1 Waterloo ON Canada N2L 3X2

Waterloo, Ontario Canada N2V 2B8

Telephone Telephone : +1 519 886 6910 **Project** : 11205379-100 **Date Samples Received** : 14-Sep-2022 10:30

PO Issue Date : 735-004287 : 16-Sep-2022 16:35 C-O-C number

Sampler : CLIENT

Site

Quote number : 11205379-100-SSOW 735-004287

No. of samples received : 8 No. of samples analysed : 8

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

RIGHT SOLUTIONS | RIGHT PARTNER

 Page
 : 3 of 11

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid Evaluation: × = Holding time exceedance; √ = Within Holding Time

Matrix: Soli/Solid					LV	aluation. * -	Holding time exce	euanice , •	- vviti iii i	Holding Til
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Leachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- BH11-22-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap	F000 01	44.0 0000	40.0			,	40.0	00.1		
11205379- BH16-22-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap 11205379- BH16-SS2	E236.CI	14-Sep-2022	16-Sep-2022	00	3 days	✓	16-Sep-2022	28 days	0 days	1
11203379- BH 10-332	E230.CI	14-3ep-2022	10-Sep-2022	30 days	3 uays	•	10-Sep-2022	20 uays	0 days	•
				uays						
Leachable Anions & Nutrients : Water Extractable Chloride by IC Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	1
11200010- B1111-22 002		oop 2022	10 00p 2022	days	o dayo		10 00p 2022	20 days	dayo	
Leachable Anions & Nutrients : Water Extractable Chloride by IC				,-						
Glass soil jar/Teflon lined cap										
11205379- BH20-SS2	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
			•	days						
Leachable Anions & Nutrients : Water Extractable Chloride by IC				-						
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Chloride by IC								1		
Glass soil jar/Teflon lined cap										
11205379- MW17-SS1	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						

 Page
 : 4 of 11

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Matrix: Soil/Solid

Evaluation:	- Holding tim	e exceedance :	/ -	Within Holding Time	

/latrix: Soil/Solid					E\	/aluation: × =	Holding time exce	edance; v	= vvitnin	Holding
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
eachable Anions & Nutrients : Water Extractable Chloride by IC										
Glass soil jar/Teflon lined cap										
11205379- MW18-SS3	E236.CI	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
eachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- BH11-22-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- BH16-22-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- BH16-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap						_				
11205379- BH20-SS2	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap						_				
11205379- MW17-SS1	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						
Leachable Anions & Nutrients : Water Extractable Sulfate by IC										
Glass soil jar/Teflon lined cap										
11205379- MW18-SS3	E236.SO4	14-Sep-2022	16-Sep-2022	30	3 days	✓	16-Sep-2022	28 days	0 days	✓
				days						

Page : 5 of 11 : WT2214174 Work Order Client : GHD Limited : 11205379-100 Project

Matrix: Soil/Solid	_				Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔻	/ = Withir	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap										_
11205379- BH11-22-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	✓
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)									I	
Glass soil jar/Teflon lined cap	E100-L	14-Sep-2022	16 Can 2022				16 Con 2022	20 days	O days	_
11205379- BH16-22-SS2	E100-L	14-3ep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	,
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) Glass soil jar/Teflon lined cap										
11205379- BH16-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	✓
11200010 21110 002	2.00 2	33p 2022	.0 000 2022				.0 000 2022	oo aayo		
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	✓
			·				·			
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap										
11205379- BH20-SS2	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	✓
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	✓
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap	F400 I	44.0 0000	40.0				40.0	00.1		,
11205379- MW17-SS1	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	✓
Physical Tests : Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level)										
Glass soil jar/Teflon lined cap 11205379- MW18-SS3	E100-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	30 days	2 days	✓
1 1200019- IVIVV 10-000	E 100-L	14-36p-2022	10-3ep-2022				10-3ep-2022	50 days	∠ uays	•
Physical Tarta Maister Contact by Contact										
Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap							I			
11205379- BH11-22-SS2	E144	14-Sep-2022					15-Sep-2022			
	1	1		1			1	T.		

 Page
 : 6 of 11

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Matrix: Soil/Solid Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

attix. John John						aldation.	riolding time exceed	, addition	***************************************	riolaling
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
11205379- BH16-22-SS2	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap 11205379- BH16-SS2	E144	14-Sep-2022					15-Sep-2022			
11203379- 0010-332	L144	14-0ep-2022					13-3ep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap							I		1 1	
11205379- BH20-SS2	E144	14-Sep-2022					15-Sep-2022			
1,200010 21,20 002										
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : Moisture Content by Gravimetry							T	I		
Glass soil jar/Teflon lined cap 11205379- MW17-SS1	E144	14-Sep-2022					15-Sep-2022			
11250013 WWW 77 001		11 Gop 2022					10 GSP 2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
11205379- MW18-SS3	E144	14-Sep-2022					15-Sep-2022			
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap 11205379- BH11-22-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180	1 days	1
11200079- DH11-22-002	L125	14-3ep-2022	13-3ер-2022				13-3ep-2022	days	Tuays	•
Physical Tests : ORP by Electrode								,		
Glass soil jar/Teflon lined cap										
11205379- BH16-22-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180	1 days	✓
								days		

 Page
 : 7 of 11

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Matrix: Soil/Solid

Evaluation: 🗴 =	Holding time exceedance ; ✓ = Within Holding Time

atilix. Soli/Solid					LV	aluation. •• –	riolaing time exce	oddiioo ,		
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap										
11205379- BH16-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180	1 days	✓
								days		
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap										
11205379- BH17-22-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180	1 days	✓
								days		
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap										
11205379- BH20-SS2	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180	1 days	✓
								days		
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap										
11205379- MW09-22	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180	1 days	✓
								days		
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap										
11205379- MW17-SS1	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180	1 days	✓
								days		
Physical Tests : ORP by Electrode										
Glass soil jar/Teflon lined cap										
11205379- MW18-SS3	E125	14-Sep-2022	15-Sep-2022				15-Sep-2022	180	1 days	✓
								days		
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap										
11205379- BH11-22-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	✓
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Glass soil jar/Teflon lined cap										
11205379- BH16-22-SS2	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	✓
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received										
Physical Tests : pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received Glass soil jar/Teflon lined cap										
	E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	√

 Page
 : 8 of 11

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Matrix: Soil/Solid Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

					· carcacation in	ribiding time excer	- uu ,		riolaling in
Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
		Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	✓
E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1
E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	4
E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	✓
			1						
E108A	14-Sep-2022	15-Sep-2022				15-Sep-2022	30 days	1 days	1
	E108A E108A E108A	E108A 14-Sep-2022 E108A 14-Sep-2022 E108A 14-Sep-2022 E108A 14-Sep-2022	Preparation Date E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022	Preparation Date Holding Rec E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022	Method Sampling Date Extraction / Preparation Preparation Date Holding Times Rec Actual E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022	Method Sampling Date Extraction / Preparation Preparation Date Holding Times Rec Actual E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022	Method Sampling Date Extraction / Preparation Preparation Holding Times Rec Eval Analysis Date E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022	Method Sampling Date Extraction / Preparation Preparation Analysis Date Rec Analysis Date Analysis Date Rec Holding Times Rec E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 30 days E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 30 days E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 30 days E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 30 days	Method Sampling Date Extraction / Preparation Preparation Preparation Rec Actual Eval Analysis Date Rec Actual Analysis Date Rec Actual Holding Times Rec Actual E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 30 days 1 days E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 30 days 1 days E108A 14-Sep-2022 15-Sep-2022 15-Sep-2022 30 days 1 days

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 9 of 11 Work Order · WT2214174 Client : GHD Limited Project : 11205379-100

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Method QC Lot # QC Regular Expected Evaluation Analytical Methods Actual Laboratory Duplicates (DUP) Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) 648051 12.5 5.0 E100-L Moisture Content by Gravimetry 648057 8 12.5 5.0 E144 ORP by Electrode 1 8 12.5 5.0 648056 E125 1 pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received 648054 1 8 12.5 5.0 E108A Water Extractable Chloride by IC 648053 8 12.5 5.0 E236.CI Water Extractable Sulfate by IC 648052 8 12.5 5.0 ✓ E236.SO4 Laboratory Control Samples (LCS) Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) 2 8 25.0 10.0 E100-L 648051 1 Moisture Content by Gravimetry 648057 8 12.5 5.0 E144 ORP by Electrode 8 12.5 648056 5.0 E125 pH by Meter (1:2 Soil:0.01M CaCl2 Extraction) - As Received 8 12.5 5.0 648054 1 E108A 1 Water Extractable Chloride by IC 648053 2 8 25.0 10.0 E236.CI Water Extractable Sulfate by IC 2 8 25.0 10.0 E236.SO4 648052 Method Blanks (MB) Conductivity in Soil (1:2 Soil:Water Extraction) (Low Level) 648051 1 8 12.5 5.0 E100-L Moisture Content by Gravimetry 648057 1 8 12.5 5.0 E144 1 Water Extractable Chloride by IC 648053 1 8 12.5 5.0 E236.CI Water Extractable Sulfate by IC 8 12.5 648052 5.0

E236.SO4

 Page
 : 10 of 11

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Method / Lab	Matrix	Method Reference	Method Descriptions
E100-L Waterloo - Environmental	Soil/Solid	CSSS Ch. 15 (mod)/APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Conductance is measured in the fluid that is observed in the upper layer.
E108A Waterloo - Environmental	Soil/Solid	MOEE E3137A	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C) and is carried out in accordance with procedures described in the Analytical Protocol (prescriptive method). A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil by centrifuging, settling, or decanting and then analyzed using a pH meter and electrode.
E125 Waterloo - Environmental	Soil/Solid	APHA 2580 (mod)	Oxidation Redution Potential (ORP) is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed in the analysis, measured in mV.
E144 Waterloo - Environmental	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
E236.Cl Waterloo - Environmental	Soil/Solid	EPA 300.1	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection using a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Anions are measured in the fluid that is observed in the upper layer.
E236.SO4 Waterloo - Environmental	Soil/Solid	EPA 300.1	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection using a soil sample that has been added in a defined ratio of soil to deionized water, then shaken well and allowed to settle. Anions are measured in the fluid that is observed in the upper layer.
EC100R Waterloo - Environmental	Soil/Solid	APHA 2510 B	Soil Resistivity (calculated) is determined as the inverse of the conductivity of a 2:1 water:soil leachate (dry weight). This method is intended as a rapid approximation for Soil Resistivity. Where high accuracy results are required, direct measurement of Soil Resistivity by the Wenner Four-Electrode Method (ASTM G57) is recommended.
Method / Lab	Matrix	Method Reference	Method Descriptions
EP108 Waterloo -	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.
	E100-L Waterloo - Environmental E108A Waterloo - Environmental E125 Waterloo - Environmental E144 Waterloo - Environmental E236.Cl Waterloo - Environmental E236.SO4 Waterloo - Environmental E236.SO4 Waterloo - Environmental EC100R Waterloo - Environmental EC100R Waterloo - Environmental EC100R Waterloo - Environmental EC100R	E100-L Soil/Solid Waterloo - Environmental E108A Soil/Solid Waterloo - Environmental E125 Soil/Solid Waterloo - Environmental E144 Soil/Solid Waterloo - Environmental E236.Cl Soil/Solid Waterloo - Environmental E236.SO4 Soil/Solid Waterloo - Environmental E236.SO4 Soil/Solid Waterloo - Environmental EC100R Soil/Solid Waterloo - Environmental EC100R Soil/Solid Waterloo - Environmental EC100R Soil/Solid Waterloo - Environmental Method / Lab Matrix EP108 Soil/Solid	E100-L Soil/Solid CSSS Ch. 15 (mod)/APHA 2510 (mod)

 Page
 : 11 of 11

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil : 0.01CaCl2 - As Received for	EP108A	Soil/Solid	MOEE E3137A	A minimum 10g portion of the sample, as received, is extracted with 20mL of 0.01M
pH				calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is
	Waterloo -			separated from the soil by centrifuging, settling or decanting and then analyzed using a
	Environmental			pH meter and electrode.
Preparation of ORP by Electrode	EP125	Soil/Solid	APHA 2580 (mod)	Field-moist sample is extracted in a 1:2 ratio with DI water and then analyzed by ORP
				meter.
	Waterloo -			
	Environmental			
Anions Leach 1:10 Soil:Water (Dry)	EP236	Soil/Solid	EPA 300.1	5 grams of dried soil is mixed with 50 grams of distilled water for a minimum of 30
				minutes. The extract is filtered and analyzed by ion chromatography.
	Waterloo -			
	Environmental			
Distillation for Acid Volatile Sulfide in Soil	EP396-L	Soil/Solid	APHA 4500S2J	Acid Volatile Sulfide is determined by colourimetric measurement on a sediment sample
				that has been treated with hydrochloric acid within a purge and trap system, where the
	Waterloo -			evolved hydrogen sulfide gas is carried into a basic solution by argon gas for analysis.
	Environmental			

QUALITY CONTROL REPORT

Work Order : WT2214174

Client : GHD Limited
Contact : Rick Hawthorne

:455 Phillip Street

Waterloo ON Canada N2L 3X2

Telephone : ---

Address

Project : 11205379-100 PO : 735-004287

C-O-C number : ----

Sampler : CLIENT

Site :----

Quote number : 11205379-100-SSOW 735-004287

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 4

Laboratory : Waterloo - Environmental

Account Manager : Rick Hawthorne

Address : 60 Northland Road, Unit 1

Waterloo, Ontario Canada N2V 2B8

Telephone : +1 519 886 6910

Date Samples Received : 14-Sep-2022 10:30

Date Analysis Commenced : 15-Sep-2022

Issue Date : 16-Sep-2022 16:35

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Greg Pokocky Supervisor - Inorganic Waterloo Inorganics, Waterloo, Ontario

Joseph Scharbach Waterloo Centralized Prep, Waterloo, Ontario

Walt Kippenhuck Team Leader - Inorganics Waterloo Inorganics, Waterloo, Ontario

 Page
 : 2 of 4

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Laboratory Dunlicate (DLIP) Report

Sub-Matrix: Soil/Solid						Laboratory Duplicate (DOP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Physical Tests (QC	Lot: 648051)												
WT2214174-006	11205379- BH16-22-SS2	conductivity (1:2 leachate)		E100-L	10.0	μS/cm	430	438	1.84%	20%			
Physical Tests (QC	Lot: 648054)												
WT2214174-008	11205379- MW09-22	pH (1:2 soil:CaCl2-aq)		E108A	0.10	pH units	6.81	6.82	0.147%	5%			
Physical Tests (QC	Lot: 648056)												
WT2214174-007	11205379- BH17-22-SS2	oxidation-reduction potential [ORP]		E125	0.10	mV	350	430	20.5%	25%			
Physical Tests (QC	Lot: 648057)												
WT2214174-008	11205379- MW09-22	moisture		E144	0.25	%	6.16	6.68	8.05%	20%			
Leachable Anions 8	Nutrients (QC Lot: 648	3052)											
WT2214174-006	11205379- BH16-22-SS2	sulfate, soluble ion content	14808-79-8	E236.SO4	20	mg/kg	116	118	1	Diff <2x LOR			
Leachable Anions 8	Nutrients (QC Lot: 648	3053)											
WT2214174-006	11205379- BH16-22-SS2	chloride, soluble ion content	16887-00-6	E236.CI	5.0	mg/kg	83.2	83.3	0.136%	30%			

 Page
 : 3 of 4

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 648051)					
conductivity (1:2 leachate)	E100-L	5	μS/cm	<5.00	
Physical Tests (QCLot: 648057)					
moisture	E144	0.25	%	<0.25	
Leachable Anions & Nutrients (QCLot	: 648052)				
sulfate, soluble ion content	14808-79-8 E236.SO4	20	mg/kg	<20	
Leachable Anions & Nutrients (QCLot	: 648053)				
chloride, soluble ion content	16887-00-6 E236.CI	5	mg/kg	<5.0	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid	ub-Matrix: Soil/Solid							Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)						
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier					
Physical Tests (QCLot: 648051)														
conductivity (1:2 leachate)		E100-L	5	μS/cm	1409 μS/cm	98.8	90.0	110						
Physical Tests (QCLot: 648054)														
pH (1:2 soil:CaCl2-aq)		E108A		pH units	7 pH units	100	98.0	102						
Physical Tests (QCLot: 648057)														
moisture		E144	0.25	%	50 %	101	90.0	110						
Leachable Anions & Nutrients (QCLot: 64805														
sulfate, soluble ion content	14808-79-8	E236.SO4	20	mg/kg	5000 mg/kg	100	70.0	130						
Leachable Anions & Nutrients (QCLot: 64805	3)													
chloride, soluble ion content	16887-00-6	E236.CI	5	mg/kg	5000 mg/kg	101	80.0	120						

 Page
 : 4 of 4

 Work Order
 : WT2214174

 Client
 : GHD Limited

 Project
 : 11205379-100

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:						Reference Material (RM) Report						
					RM Target	Recovery (%)	Recovery L	imits (%)				
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier			
Physical Tests (C	(CLot: 648051)											
	RM	conductivity (1:2 leachate)		E100-L	3239 μS/cm	100	70.0	130				
Physical Tests (C	(CLot: 648056)											
	RM	oxidation-reduction potential [ORP]		E125	475 mV	102	80.0	120				
Leachable Anion	s & Nutrients (QCLot: 6	348052)										
	RM	sulfate, soluble ion content	14808-79-8	E236.SO4	217 mg/kg	98.5	60.0	140				
Leachable Anion	s & Nutrients (QCLot: 6	348053)										
	RM	chloride, soluble ion content	16887-00-6	E236.CI	673 mg/kg	94.1	70.0	130				

Chain of Custody (COC) / Analytical Request Form

Page

مح	خ
22 -	
umber: ,	₽
COCN	Page

REFER TO BACK-PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION
Fallure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.